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ABSTRACT 

 
REVERSIBLE SILENCING OF SPINAL NEURONS UNMASKS A LEFT-RIGHT 

COORDINATION CONTINUUM 
 

Amanda Marie Pocratsky 
 

February 24, 2017 
 

This dissertation is focused on dissecting the functional role of two 

anatomically-defined pathways in the adult rat spinal cord. A TetOn dual virus 

system was used to selectively and reversibly induce enhanced tetanus neurotoxin 

expression in L2 neurons that project to L5 (L2-L5) or C6 (long ascending 

propriospinal neurons, LAPNs). Results focus on the changes observed during 

overground locomotion.  

The dissertation is divided into four chapters. Chapter One is a focused 

introduction to locomotion, including its broad description, the central mechanisms 

of its expression, how genetic-based approaches defined these mechanisms, and 

the limitations in these approaches. It concludes with details of the silencing 

paradigm used here and a summary of the main findings.    

Chapter Two describes the functional consequences of silencing L2-L5 

interneurons. The focus is on selective disruption of hindlimb coordination during 

overground locomotion, revealing a continuum from walk to hop. These changes 

are independent of speed, step frequency, and other spatiotemporal features of 

gait. Left-right alternation was restored during swimming and stereotypic 
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exploration, suggesting a task-specific role. Silencing L2-L5 interneurons partially 

uncoupled the hindlimbs, allowing spontaneous shifts in coordination on a step-

by-step basis. It is proposed this pathway distributes temporal information for left-

right hindlimb alternation, securing effective coordination in a context-dependent 

manner.   

Chapter Three focuses on the consequences of silencing LAPNs.Three 

patterns of interlimb coupling are disrupted: left-right forelimb, left-right hindlimb, 

and contralateral hindlimb-forelimb coordination. Observed again was a context-

dependent continuum from walk-to-hop, irrespective of step frequency, speed, and 

the salient features that define locomotion. However, instead of spontaneous shifts 

in coordination as observed from L2-L5 interneuron silencing, the breadth of 

coupling patterns expressed were maintained on a step-by-step basis. It is 

proposed that this ascending, inter-enlargement pathway distributes temporal 

information required for left-right alternation at the shoulder and pelvic girdles in a 

context-dependent manner. 

Collectively, these data suggest that L2-L5 interneurons and LAPNs are key 

pathways that distribute left-right patterning information throughout the neuraxis. 

The functional role(s) of these pathways are exquisitely gated to the context at 

hand, suggesting that the locomotor circuitry undergoes functional reorganization 

thereby endowing or masking the silencing-induced disruptions to interlimb 

coordination. 
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CHAPTER I 

 

A FOCUSED INTRODUCTION TO LOCOMOTION 

 
 

An introduction to locomotion  

Locomotion is a fundamental behavior that allows animals to move in order 

to satisfy their needs, whether it is searching for food, escaping predators, or 

simply traversing through various environments. It can take the form of swimming, 

flying, and overground stepping across various species. While its expression 

appears effortless, locomotion is a complex motor behavior that reflects the 

coordination of numerous muscles throughout the body. How this movement is 

governed can be understood at multiple levels.  

From a broad perspective, locomotion can be described by the stereotypic, 

repeated patterns of stepping, called gait. Walking, trotting, and galloping are 

traditional gaits; however, alternation is the preferred gait observed across insects, 

amphibians, reptiles, birds, and mammals1-7.  As a function of speed, gait can be 

quantitatively described by a set of spatiotemporal parameters (Figure 1)8. This 

interrelationship is well-documented across as well as within various taxa1,7,9-17 

with studies revealing that not only do animals have a broad repertoire of locomotor 

gaits, but there are also preferred methods to switch between them16.  
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Central control of locomotion: a historical perspective  

The planning and initiation stages of locomotion originates in supraspinal 

centers, including the cortex, basal ganglia, midbrain, and hindbrain18-21. However, 

the neuronal elements required to express locomotion are contained entirely within 

the spinal cord7,22-24. It is in the spinal cord that the two salient features which 

define locomotion are generated: rhythm and pattern25. Rhythm and pattern are 

inextricably linked, but functionally distinct phenomena.  

Rhythm is the locomotor “clock.” It is the strong, regular, and repeated 

sequence of steps that defines the various gaits (e.g. repeating step sequence 1-

2-3-4). Alternatively, pattern is the locomotor “tempo” or how quickly the limbs 

move within the defined step sequence. Both intra- and left-right limb movements 

generate this patterned behavior25. As a whole, the spinal networks that secure 

rhythm and pattern are called locomotor central pattern generators (CPGs)26 with 

the cervical and lumbar spinal enlargements serving as hubs for the forelimbs and 

hindlimbs, respectively25. The hindlimb CPG is of particular interest, in part due to 

its major role in generating the propulsive forces required for movement27-29 and 

its clinical significance for functional recovery after spinal cord injury30. Therefore, 

research focused intensely on two key questions: (1) where are the neuronal 

components that form the CPG located within the lumbar spinal cord and (2) how 

does this network, as an integrated unit, control the precise timing and pattern of 

hindlimb movements?  

Studies performed in the spinalized cat or isolated neonatal rodent spinal 

cord revealed that the hindlimb CPG network is distributed throughout the caudal 
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thoracic and lumbar spinal cord, with the rostral lumbar segments showing 

enhanced capacity for rhythmic activity23,31-39. Throughout this rostrocaudal 

distribution, the putative CPG neurons are concentrated in ventral gray matter of 

the spinal cord33,37,40-43. After establishing the positional framework of the hindlimb 

CPG network, scientists then set out to determine how this unit produced the 

rhythm and pattern characteristic of locomotion. 

Rhythm generation likely stems from ipsilateral-projecting neurons that 

directly excite motor neurons25. These neurons are distributed throughout the 

lumbar neuraxis and appear to act as one rhythmic network when locomotion is 

induced. Alternatively, intralimb coordination is secured through ipsilateral 

inhibitory neurons that coordinate stereotypic alternation between flexor and 

extensor motor neurons32,44-48. By default, commissural interneurons that 

anatomically interconnect the two sides of the spinal cord govern left-right 

coordination25. This diverse class of neurons is further described below. 

There are two types of commissural interneurons: (1) intrasegmental 

neurons which likely coordinate segmental, homonymous muscles49,50 and (2) 

intersegmental neurons, which have long axons that project at least two spinal 

segments in either ascending or descending directions51-54. While ascending 

commissural interneurons have been shown to play an important role in 

coordinating left-right activity in the neonatal mouse55, descending commissural 

interneurons are more involved in finer aspects of pattern generation (e.g. crossed 

flexor-extensor coordination) instead of strict left-right alternation56-59.  
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The depth of these studies were at the network-level using traditional 

methods such as electrophysiological recordings and basic anatomical tracing. 

While these results have built our foundational understanding of the hindlimb CPG 

architecture, one fundamental issue remains: how do distinct neurons within this 

network secure specific motor behaviors? To address this question, more discrete 

methods that provide increased specificity are required.  

Genetic dissection of the locomotor circuitry 

Cracking of the genetic code that programs neuronal identity in the 

developing mouse spinal cord60 has enabled unparalleled insight into the 

functional role of transcriptionally-specified neurons during locomotion61. This 

genetic-based approach affords two primary advantages, the ability to (1) target 

specific neuronal subpopulations within the central nervous system and (2) 

reproducibly perform complex manipulations62.  

To summarize, ipsilateral and excitatory neurons that express the 

transcription factor short stature homeoprotein 2 (SHOX2) constitute one 

component of the rhythm generating circuitry63. Currently, the molecular 

identification of other core, rhythmic neurons remains elusive. Intralimb 

coordination is expressed through the synergistic actions of ipsilateral, inhibitory 

V1 and V2b neurons64,65 (“V” indicates a ventrally-derived class of neurons). With 

additional input from V2a neurons66,67, left-right coordination is secured through 

the ascending commissural V0 interneurons68,69. Conversely, the descending 

commissural V3 interneurons are dispensable in left-right alternation70. From this 

body of work, we now understand at the transcriptional level the formation and 
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function of discrete spinal circuits. The next goal was to apply this knowledge at 

the systems level to determine how these pathways create the traditional 

locomotor gaits.  

Emerging from this analysis was the modular organization hypothesis, 

which suggests dedicated neuronal ensembles encode distinct gaits17,61 

(summarized in Figure 2). Central to this hypothesis is the following: (1) locomotor 

gaits are expressed through distinct neuronal ensembles, which are (2) recruited 

in a speed-dependent fashion. These ensembles are genetically defined and 

engaged in an ascending order (as a factor of speed) to ensure the limbs maintain 

effective left-right coordination. Therefore, the walk-trot ensemble secures the 

limbs in alternation at low-to-moderate speeds and step frequencies (Figure 2, 

lower quadrant). With increasing speed, the locomotor network is reconfigured to 

generate asynchronous left-right movements indicative of galloping (Figure 2, 

middle quadrant). The bounding ensemble is selected at greatest speeds to 

produce left-right synchrony (Figure 2, upper quadrant). Importantly, this 

hypothesis upholds the well-defined relationship between gait-associated 

spatiotemporal parameters and locomotor speeds10. While the manipulation of 

genetically-encoded neurons has transformed our understanding of how the 

locomotor circuitry creates various behaviors, there are fundamental concerns 

endemic to this approach that must be addressed. 

Fundamental concerns regarding genetic-based approaches 

First, each “distinct” class of genetically-encoded neurons is actually 

comprised of multiple subpopulations (e.g. 30 subtypes for the V1 class alone)62,71. 
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This is substantiated by a mixed phenotype of excitatory/inhibitory, 

ipsilateral/commissural, and ascending/descending projections60,72. Thus, each 

class is not pure, but instead the amalgamation of numerous traits. Further 

confounding this are documented functional differences between (as well as 

within) subtypes67-69,73,74, an important caveat to consider as it relates to the issues 

described below. 

Second, ablating progenitor domains that give birth to neuronal classes 

(and their subclasses) concurrently alters the non-targeted spinal circuitry. For 

example, when one domain is removed the neighboring domains trans-specify or 

adopt the identity of what is lost61,68,75.  This makes it difficult to determine whether 

the functional changes observed are due to the actual loss of neurons or the de 

novo function of the trans-specified, “hybrid” neurons.   

Third, ablating neurons born from the progenitor domains in the embryonic 

or postnatal spinal cord results in developmental compensation76. As the animal 

matures, the spinal cord will offset this neuronal loss through the formation of new 

circuits or connections. Moreover, there are striking differences in both morphology 

and functional role between the postnatal and adult genetically-encoded 

classes77,78. To circumnavigate this issue, some researchers have conditionally 

ablated neuronal classes after the animal has fully matured67. However, these 

studies are few and far between.  

Fourth, these genetically-identified neurons are not enriched in the lumbar 

enlargement. Instead, they are distributed throughout the entire spinal cord as well 

as supraspinal centers71. Therefore, genetic ablations theoretically remove a 
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substantial component of the entire neuraxis. In an attempt to increase specificity, 

recent effort has been made to selectively knockout neurons within confined 

segments67. Nonetheless, these studies are limited in number and scope.  

Finally, the significant majority of these studies were performed using 

isolated embryonic or neonatal spinal cords72. While this technique provides 

exquisite control in teasing out network perturbations in response to genetic 

ablations, it also removes two omnipresent regulators of the locomotion: 

supraspinal drive and sensory feedback. Therefore, the conclusions drawn from 

these studies are profoundly dependent on the following: the neuronal ensembles 

that elicit fictive, “locomotor-like” behavior faithfully recapitulate the neuronal 

ensembles (and their dynamics) that execute stereotypic locomotion. Of the few in 

vivo studies performed, nearly all used treadmill-based locomotion as the primary 

functional readout67. Although the treadmill produces a consistent number of steps 

over a large (and controllable) range of speeds14, it is a fundamentally different 

stepping environment compared to the more natural overground setting16,17. 

Unsurprisingly, this impacts the emergence of gaits due to conflicting input from 

visual, vestibular, and proprioceptive sources7,14,16,79.  

In light of these limitations, to what level of confidence can we say a 

genetically-encoded class of neurons sub-serves a specific physiological role in 

the natural expression of locomotion? Shockingly, this question is rarely 

addressed. To avoid these pitfalls, the ideal method would be to acutely and 

reversibly silence spinal pathways in the mature, naïve animal while it freely steps 

during overground locomotion76. 
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Acute and reversible silencing of spinal neurons in the naïve adult 

Recently, Kinoshita et al developed an innovative dual virus approach to 

silence anatomically-defined pathways independent of cell-specific promoters80. 

This is an inducible TetOn system consisting of two viral constructs (AAV2-rtTAV16, 

lenti-eTeNT) (Figure 3). Through intraspinal injections, neurons are doubly 

infected at the level of their cell body with AAV2-rtTAV16 and at their synaptic 

terminal field with lenti-eTeNT. Giving ad libitum doxycycline in the drinking water 

induces eTeNT (enhanced tetanus neurotoxin) expression, which prevents 

synaptic vesicle release at the terminal field thereby silencing neurotransmission. 

This system is described in more detail below (refer to Table 1 and Error! 

Reference source not found. for additional detail). 

The lentiviral HiRet-TRE-EGFP.eTeNT is based on the HIV-1 vector, which 

is pseudotyped with a fusion envelope glycoprotein to increase (and sustain) viral 

gene transduction81-83. The lentiviral vector is injected at the terminal field where it 

is then retrogradely transported (“HiRet” = “highly-efficient retrograde”) to cell body 

for subsequent neuronal infection. The second construct is AAV2-CMV-rtTAV16, 

which is a neurotropic virus that expresses the doxycycline activated TetOn 

sequence, a variant of the reverse tetracycline transactivator (rtTAV16)84. Without 

doxycycline, neurons will constitutively express rtTAV16 alone. Doxycycline 

permits rtTAV16 to bind to its promoter TRE (tetracycline responsive element), 

which induces EGFP.eTeNT transgene expression. EGFP.eTeNT is a fusion 

protein which permits fluorescent detection of silenced terminals (enhanced green 

fluorescent protein, EGFP). At the terminal, eTeNT proteolytically cleaves vesicle-



 

9 
 

associated membrane protein 2 (VAMP2) to block exocytosis of synaptic vesicles 

and suppress neurotransmission. Removing doxycycline restores 

neurotransmission. Importantly, the expression of eTeNT does not affect cell 

survival, morphology, or anatomical distribution of infected neurons85. 

Here, we use this TetOn system to acutely and reversibly silence pathways 

in the adult rat spinal cord with overground locomotion as the primary functional 

outcome measure. This dissertation is focused on the consequences of silencing 

two distinct pathways: (1) spinal L2 neurons that project to L5 (L2-L5 interneurons) 

and (2) spinal L2 neurons that project to C6 (long ascending propriospinal neurons, 

LAPNs). Results from these studies are described in Chapters Two and Three, 

respectively, followed by an inclusive discussion that briefly highlights parallels 

found between them. The main conclusions drawn from this body of work are as 

follows.  

Silencing L2 neurons that project to either L5 or C6 disrupts left-right 

coordination. Here, we observed a continuum of interlimb coupling patterns 

ranging from walking to hopping. These changes occurred independently from the 

fundamental principles of locomotion: rhythm, intralimb coordination, speed, and 

its relationship to spatiotemporal gait indices (stance, swing, stride, etc). Strikingly, 

the functional consequences of silencing these spinal pathways are exquisitely 

gated towards the behavioral context at hand. Specifically, when animals were 

stepping in a “non-exploratory, going from A to B mode,” we saw profound changes 

in interlimb coordination. However, if the animal stepped in an “exploratory mode,” 

the silencing-induced effects were immediately abolished. Even after taking into 
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account the speed at which these behaviors were expressed, we still saw a 

“stepping mode” modulation of the silencing-induced phenotype. Moreover, 

hindlimb alternation was immutable to silencing-induced perturbations when the 

limbs were unloaded during swimming. Collectively, these data indicate that L2-L5 

interneurons and LAPNs are key distributors of left-right patterning information to 

secure effective coordination during overground locomotion, but perhaps in a task-

specific manner. 

In light of these findings, we believe that the conditional silencing of spinal 

pathways has unmasked a context-driven reconfiguration of the lumbar central 

pattern generating circuitry. During certain conditions, the “functional demand” for 

these L2 projection pathways is high. The nervous system calls upon them to 

distribute temporal information throughout the neuraxis immediately. Therefore, 

when these neurons are not functionally available to do so, the consequences are 

profound. However, when the behavioral context changes such that the functional 

demand for these pathways is low, the locomotor behavior is not impaired. This 

multifunctional reorganization of the lumbar locomotor circuitry endows the system 

with incredible flexibility, allowing a breadth of motor actions to be expressed on a 

moment-by-moment basis. From a clinical perspective, the lumbar locomotor 

circuitry is the gateway to walking. Therefore, understanding how this circuitry 

governs effective stepping is tantamount to harnessing its intrinsic functional 

capacity as a powerful substrate for locomotor recovery after spinal cord injury. 
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Figure 1 

 
Figure 1. The Relationship Between Gait, Speed, And The Spatiotemporal Indices That Govern Locomotion.  

The top panel illustrates the traditional locomotor gaits schematically (half-bound not shown, but is typified by the 

forelimbs “galloping” and the hindlimbs “bounding”). (a) During slower speeds when the animals are walking or trotting 

(blue), the stance duration (time the paw is in contact with the ground) and stride duration (sum of stance and swing 

durations) are increased. When animals transition to other gaits with increased speed (gallop=green, half-

bound=yellow, full-bound=red), these durations will exponentially decrease. (b) There is a linear relationship between 

speed and stride frequency (the number of strides taken per unit time) as well as stride length (the distance the paw 

travels with each step). Therefore, as animals increase their speed and switch between gaits, the stride frequency 

and length will increase as well. (c) Swing duration (the amount of time the paw is in the air) does not change 

substantially with speed between the various gaits. Plots were generated from a sampling of preliminary hindlimb 

data (Chapter Three).  

1
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Figure 2 

 
Figure 2. Modular Organization Of Locomotor Circuitry.  

(a) The conceptual framework for the genetic-based modular organization hypothesis. Here, discrete pathways are 

selectively recruited in a speed and step-frequency dependent fashion in order to express the various gaits (shown 

in color). (b) Schematic illustrating the principles behind the modular organization hypothesis. Each circle represents 

a locomotor gait. Within each circle are the genetically-identified pathways that have been implicated in expressing 

that particular gait. To date, the V0d interneurons are directly involved in the slower, alternating gait (walk)17. The 

V0v-V2a microcircuit governs the faster alternating gait (trot)17. Genetically-encoded pathways responsible for the 

more synchronous gaits (green=gallop; red=bound) have not been identified. 

1
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Figure 3 

 

Figure 3. TetOn approach to silence spinal pathways in the adult rat.  

(a) AAV2 construct constitutively expresses reverse tetracycline transactivator, 

VP16 (“AAV2-rtTAV16”). (b) Lentiviral construct expresses eTeNT.EGFP upon 

activation of Tetracycline Responsive Element promoter (TRE; “lenti-eTeNT”). (c) 

Injections to silence L2-L5 interneurons (bilateral L2 injections of AAV2-rtTAV16; 

L5 injections of lenti-eTeNT). (d) Injection protocol to silence LAPNs (bilateral L2 

injections of AAV2-rtTAV16; C6 injections of lenti-eTeNT). (e) Within double 

infected neurons, rtTAV16 (blue) is constitutively expressed. rtTAV16 is activated 

by doxycycline (red), allowing it to bind to TRE promoter. TRE induces 

eTeNT.EGFP expression, which cleaves vesicle associated membrane protein 2 

thereby suppressing neurotransmission. Removing doxycycline reverse rtTAV16 

binding from TRE promoter, shutting off expression of eTeNT to restore 

neurotransmission. Refer to Tables 1 and 2 for further detail on constructs. 
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Table 1. AAV2-CMV-rtTAV16 construct features.  

This construct constitutively expresses reverse tetracycline transactivator 16 (rtTAV16) under the 

control of the cytomegalovirus promoter (CMV)80. When activated by doxycycline, rtTAV16 binds to its 

promoter (Tetracycline Responsive Element, TRE). “AAV2-rtTAV16” is injected at the level of the cell 

bodies (refer to Figure 3). 

Table 1

Construct feature Description Purpose 

L/R-IRT Left/right inverted terminal repeat sequences Used to insert genetic sequence into  
     host genome 

CMV Human cytomegalovirus immediate-early 
promoter 

Drive constitutive expression of  
     transgene rtTAV16 

rtTAV16 Reverse tetracycline transactivator, variant 16 
This is a fusion protein of the tetracycline 
repressor with herpes simplex virus 
activation domain VP16 
Variant 16 confers 7-fold increase in 
transcriptional activity and 100-fold increase 
in DOX sensitivity 

A fusion protein that is activated by  
     doxycycline 

When activated, it will bind to its 
promoter (Tetracycline Responsive 
Element; TRE) 

WPRE Woodchuck hepatitis virus post-transcriptional  
     regulatory element 

Enhances the viral titer and transgene  
     expression 

SV40 pA Simian virus 40 polyadenylation termination 
     signal 

Used to define the end of a 
    transcriptional unit (transgene  
     rtTAV16), thereby facilitating the  
     release of the newly synthesized 
     RNA 

1
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Table 2. HiRet-TRE-eTeNT.EGFP construct features.  

Construct inducibly expresses eTeNT.EGFP when rtTAV16 binds to TRE promoter (only after activation 

via doxycycline; described in Table 1)80.”Lenti-eTeNT” is injected at the terminal field (Figure 3). 

Table 2 

Construct feature Description Purpose 

LTR Long terminal repeat sequences Used to insert genetic sequence 
     into host genome 

PSI Packing  Required for transgene mRNA  
     packing and delivery 

RRE Rev response element Accessory protein; allows the  
     mRNA to be exported from the  
     nucleus to the cytoplasm for  
     translation 

cPPT Central polypurine tract Increases transduction efficiency  
     and eTeNT.EGFP expression 

TRE Tetracycline responsive element Promoter for transgene expression  
     (eTeNT.EGFP) only when  
     activated by doxycycline- 
     activated rtTAV16 

EGFP.eTeNT 
 

Enhanced tetanus neurotoxin, light 
chain  
     fragment (eTeNT) that is fused with  
     enhanced green fluorescent protein  
     (EGFP) 

eTeNT cleaves vesicle associated 
     membrane protein 2 (VAMP2), a  
     protein required for presynaptic 
     docking/fusion of vesicles  

PEST Peptide sequence rich in protein (P),  
     glutamic acid (E), serine (S), and  
     threonine (T) 

Signal peptide for protein  
     degradation through  
     ubiquitination 

WPRE Woodchuck hepatitis virus post- 
     transcriptional regulatory element 

Enhances the viral titer and  
     transgene expression 

1
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CHAPTER II 
 

SILENCING SPINAL INTERNEURONS: A CONTINUUM OF WALKING TO 
HOPPING 

 

Introduction 

Locomotion is a behavior that reflects the interaction between supraspinal, 

spinal, and sensory systems21. While supraspinal structures control its initiation, 

the spinal cord coordinates the muscles distributed throughout the body into 

regular patterns of stepping61. This complex behavior is based on two principles: 

rhythm and pattern25. Together, these features are functionally organized into a 

hierarchical network that governs locomotion21. Most central to movement is 

rhythm, which sets the step cycle period and its two defining components: swing 

and stance duration86. Within this rhythm, patterned movements must be precisely 

controlled to secure effective stepping25. Specifically, flexion and extension must 

be exquisitely timed to allow limb segments to shift around joints (intralimb 

coordination)25 while movements between limb pairs must be coordinated 

(interlimb coordination)7. These sequences of interlimb movement are the defining 

features of gait87. As a function of speed, each gait is characterized by a distinct 

set of stepping rhythms and patterns17. Therefore, not only are these principle 

features precisely controlled, but they are also adaptable to the speed. The spinal 
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networks that collectively produce this behavior are called central pattern 

generators, with cervical and lumbar spinal enlargements serving as hubs for the 

fore- and hindlimbs, respectively25. Understanding how locomotion is governed 

through this hierarchical network occurs at various levels and complexity. At the 

systems level, emphasis is placed on describing the overall behavior of the animal 

during locomotion88. A more in-depth approach to determine how specific 

pathways functionally integrate into the system occurs at the network level88. 

Finally, the intrinsic and dynamic properties of individual neurons and synapses is 

investigated at the cellular level88. In this study, we explored the functional 

consequences of silencing an anatomically-defined spinal pathway in an otherwise 

intact system in the freely behaving adult rat.  

Using a dual virus TetOn system originally developed by Tadashi Isa and 

colleagues80, we targeted L2 descending interneurons that project ipsi- or 

contralaterally to L5 in the adult rat spinal cord. A potential analog of the 

commissural pathway silenced here has been previously studied in the isolated 

neonatal rodent spinal cord56-58. Using electrophysiological techniques, 

contralateral L2-L5 interneurons were shown to be rhythmically active throughout 

all phases of the locomotor cycle leading the investigators to suggest that this 

pathway likely coordinates the actions of various muscles required for multi-joint 

movements during stepping52,54,57,59. Therefore, it is hypothesized that 

conditionally silencing ipsi- and contralaterally-projecting L2-L5 interneurons in the 

alert, behaving animal would affect flexor-extensor coordination across the joints, 

disrupting hindlimb kinematics during locomotion. 
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Materials and methods 

Procedures were performed in accordance with the Public Health Service 

Policy on Humane Care and Use of Laboratory Animals, as well as the University 

of Louisville Institutional Animal Care and Use and Institutional Biosafety 

Committees. A total of N=16 adult, female, Sprague-Dawley rats (200-220g) were 

used. Animals were housed two per cage with ad libitum food and water under 12 

hour light:dark cycle. This project utilized Kentucky Spinal Cord Injury Research 

Center Neuroscience core facilities that are supported by P30 GM103507. 

Viral vector production 

Plasmid vectors were provided by Dr. Tadashi Isa and colleagues80. HiRet-

TRE-EGFP.eTeNT (1.6x107 vp/ml) and AAV2-CMV-rtTAV16 (4.8x1012 vp/ml) 

were built following previously described methods89,90. 

Intraspinal injections of viral vectors 

Power analysis of previously obtained gait data revealed N=6-8 was 

sufficient to detect a significant difference with 90-99% power. N=6 rats were 

anesthetized (sodium pentobarbital, 50 mg/kg i.p.) and received a T13 

laminectomy (rostral half) to expose spinal L5. HiRet-TRE-EGFP.eTeNT was 

bilaterally-injected (0.5 µl/site, 1.5 mm rostrocaudal, four sites total) into the 

intermediate gray matter (0.4 mm mediolateral, 1.4 mm dorsoventral) using a 

stereotaxic device (World Precision Instruments, FL, USA)91. Injections were given 

in two, 0.25 µl boluses. Three minute incubations following each bolus were 

allotted to facilitate viral uptake. Following injections, the incision site was sutured 

in layers and surgical staples were applied to close the wound. Animals received 
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traditional post-operative care, including gentamicin (20 mg/kg, s.c.), 

glycopyrrolate (0.02 mg/kg, s.c.), and lactated Ringer’s solution (10 c.c, s.c.). 

Buprenorphine (10mg/kg, s.c.) was given every 12 hours for the first 48 hours post-

surgery for pain management while prophylactic doses of gentamicin was 

administered for 7 days. Animals recovered voluntary bladder control within 24 

hours post-surgery.  

One week later, animals were re-anesthetized (ketamine:xylazine; 80 

mg/kg:4 mg/kg, i.p.) and received a T12 laminectomy (rostral half) to expose spinal 

L2. Animals then received two sets of bilateral injections of AAV2-CMV-rtTAV16 

(0.5 µl/site, 1.5 mm rostrocaudal; 0.6 mm mediolateral, 1.5 mm dorsoventral, four 

injections total). The injection protocols and post-operative care were followed as 

described above. After suturing, the animals received the reversal agent 

Yohimbine (0.1 mg/kg, i.m.) to counteract the effects of xylaxine. Animals 

recovered for 9 days before pre-doxycycline assessments. No animals were 

excluded from the study based on a priori criteria of normal gait at Pre-DOX1.  

Experimental design 

Doxycycline hydrochloride (DOX, 15 mg/ml; Fisher Scientific BP26531; NH, 

USA) was dissolved in 3% sucrose water and provided ad libitum for 5-8 days. 

Approximate volumes of consumption were recorded and replenished daily.  

Functional testing was performed prior to injections (Baseline), before DOX 

(Pre-DOX1), during DOX (DOX1OND1-D8), and one week post-DOX (DOXOFF). 

Assessments were repeated one month later (Pre-DOX2, DOX2OND1-D5) to 

assess the reproducibility of locomotor changes. Before Baseline, animals were 
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acclimated to the stepping/swimming chamber. Stepping was spontaneous and 

volitional. Animals did not receive task-specific or positive/negative reinforcement 

training. The order of animal testing was random. Due to the overt change in 

behavior during silencing, it was impossible to blind the experimenters to control 

versus DOXON time points. Raters were blinded to animal-specifics across time 

points. Each animal served as its own control based on the following: (1) each 

surgery is unique concerning the proportion of total L2-L5 interneurons that are 

double-infected, (2) there is inherent variability in transgene expression across 

animals, and (3) there exists normal inter-animal variability in behavior. Control 

(Baseline, Pre-DOX1, DOXOFF, Pre-DOX2) versus experimental (DOX1OND1-8, 

DOX2OND1-5) time point comparisons were made on an individual and group 

basis. Group data are shown. 

Three-dimensional hindlimb kinematics 

Hindlimb kinematic analysis was performed as described92,93. Briefly, the 

skin overlying the anterior rim of the pelvis (iliac crest; I), head of the greater 

trochanter (hip; H), lateral malleolus of the ankle (A), and the metatarsophalangeal 

joint of the toe (T) was marked thereby describing hindlimb movement using three 

segments (I-H, H-A, A-T) and two angles (I-H-A, H-A-T). Animals freely walked in 

a plexiglass walkway tank while high-speed (100 frames/sec) videos were 

acquired from one ventral and two sagittal viewpoints. Videos were analyzed using 

MaxTraq, MaxMate, and MaxTraq3D software (Innovision Systems; MI, USA). A 

minimum of 2 stepping passes per hindlimb were analyzed that met the following 

criteria: (1) animal walked at least ¾ the length of the tank, or approximately 1 
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meter, (2) continuous walking with no distracted behavior, (3) trajectory was 

relatively straight with minimal lateral deviations, and (4) visually representative of 

the animals overall locomotor behavior.  

To quantify vertical hip movements (“hip height”) during stepping, the 

difference in hip peak-to-trough excursion was calculated on a step-by-step basis. 

Each hindlimb was analyzed separately to confirm no significant side differences. 

Thereafter, both hindlimbs were averaged and then normalized to Baseline. The 

average angular excursion of the proximal (IHA) and distal (HAT) joint angles were 

analyzed for each hindlimb separately. The coordination of the HAT and IHA joint 

angles for each hindlimb was calculated from the time of peak IHA divided into 

peak-to-peak HAT. These coordination values (0 to 1) were then plotted on a 

circular graph with a phase of 0 (or 1) indicating coordinated intralimb movements. 

Volitional overground gait analysis 

Ventral recordings were used to analyze the timing of individual paw 

contacts and lift offs. A minimum of 4 passes (or 8 step cycles, defined as stance 

+ swing) were analyzed per animal following the previously defined criteria. 

Stereotypic exploratory behavior was qualitatively defined as frequent-to-

consistent pausing/hesitation that was concomitant with either visual distractions 

or interactions with the external environment (e.g. sniffing, licking). Stepping 

passes displaying these overt behaviors were not analyzed.   

To quantify hindlimb coordination, the time of initial contact for the left 

hindlimb was divided into the length of time for one complete stride cycle of the 

reference right hindlimb. The following are potential issues with regard to phase 
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analysis in freely stepping animals: (1) interchangeability in lead limb and (2) basal 

level of variability in alternation. To account for the first issue, the circular 0-1 phase 

data was transformed to a linear scale of 0.5-1.0 (convert <0.50 to its reciprocal 

>0.50) thereby normalizing the limbs to account for any inter-animal variability. 

Next, to quantify silencing-induced changes in coordination beyond normal 

variability observed, all control time points (Baseline, Pre-DOX1, DOXOFF, and Pre-

DOX2) were averaged (hindlimb mean= 0.55; forelimb mean=0.54). Any phase 

value >2 S.D. from this mean is irregular (hindlimb: >0.63; forelimb: >0.62). The 

proportion of phases >2 S.D. were compared across time for forelimbs and 

hindlimbs during stepping. The raw phase data was used for circular statistics.   

To quantify the absolute stride-by-stride changes in coordination, phases 

were first calculated from the time of initial contact for the left hindlimb divided into 

the length of time for one complete stride cycle of the reference right hindlimb. 

Next, the absolute change in phase was calculated on a step-by-step basis and 

then plotted over time. Any value >2 S.D. from the control mean change is plotted 

in the shaded area (hindlimb mean=0.043, S.D.>0.113; forelimb mean=0.066; 

S.D.>0.131). 

Multiple comparisons were made with the transformed phases to determine 

if silencing-induced changes correlated with speed or the following gait 

parameters: stance time, swing time, stride time, stride (or step) frequency, and 

stride distance. For the instantaneous data (reflects individual steps), phases were 

compared to the instantaneous speed (distance traveled per step over time, 

centimeters/second), step frequency (inverse of the time for one stride cycle, 
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Hertz), or stride length (distance traveled per step, centimeters) for all control and 

all DOXON time points, respectively. Individual time point comparisons were also 

made. These data were plotted as three-dimensional scatter graphs as well as 

two-dimensional contour plots with speed shown in color. Additionally, the 

frequency of hindlimb phases were analyzed with respect to speeds ≤90 

centimeters/second (walk-trot) and >90 centimeters/second (gallop-bound) at 

individual as well as collapsed control and DOXON time points94-98. Thereafter, the 

instantaneous datasets were averaged and then processed for correlations with 

and without controlling for speed.  

Swim phase analysis 

The walking tank was filled with 7-8 inches of 25-28ºC water and a 

neoprene-covered exit ramp was attached to one end. As the animal swam in both 

directions, a high-speed camera set up 18 inches from the tank recorded 6-7 

complete stroke cycles per pass. A minimum of 4 passes (or 8 stroke cycles) were 

analyzed per animal following the previously defined criteria. The peak downward 

extension of the toe was digitized for both hindlimbs to determine the phase 

relationship during swimming. To quantify this relationship, the time of peak 

extension of the left toe was divided into the length of time for one complete stroke 

cycle of the reference right hindlimb. Values were transformed as described above 

and the proportion of phases >2 S.D. from transformed control mean were 

compared across time (mean=0.54; 2 S.D. >0.64). The stroke-by-stroke change in 

hindlimb coordination was calculated as described above (mean=0.033; 2 S.D. 

>0.098). 
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Viral tissue processing and EGFP.eTeNT immunohistochemistry 

Animals were euthanized during DOX2ON-D5 with an overdose of sodium 

pentobarbital then transcardially perfused with 0.1 M PBS (pH 7.4) and 4% 

paraformaldehyde. Spinal cords were dissected, post-fixed overnight, and 

transferred to 30% sucrose for 3-4 days at 4ºC. Spinal segments L1-L6 were 

dissected, embedded in tissue freezing medium, cryosectioned at 30 µm in 5 sets, 

and stored at -20ºC. Fluorescent immunohistochemical detection of EGFP.eTeNT-

positive terminals at L5 was performed following previously described methods99 

with rabbit anti-GFP (abcam ab290, 1:5,000; UK) and guinea pig anti-NeuN 

(Millipore ABN90P, 1:500; MA, USA) as primary antibodies. Secondary antibodies 

(anti-rabbit AlexaFluor 488, -guinea pig AlexaFluor 594 from Jackson 

Immunoresearch; PA, USA) were used at 1:200 dilutions. Negative controls 

include non-immune sera as well as mid-thoracic spinal cord for absence of 

labeling (data not shown). Images were captured using an Olympus FluoView 

1000 confocal microscope with the oil immersion 100x objective using 488 and 

543 lasers (Olympus; PA, USA). Z-stacks acquired were 53-68 slices at 0.4 µm 

optical steps. The raw .oif files were imported into Amira 3D software (FEI; OR, 

USA) for volume rendering to qualitatively assess the relative density and 

distribution of EGFP.eTeNT-positive terminals onto neurons throughout laminae 

V-IX at spinal L4-5. The 3D images were rotated about the x-, y-, and z-axes to 

verify close apposition of eTeNT-positive terminals onto NeuN-positive somata 

and primary dendrites. 
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Intraspinal fluorescent dextran injections, light sheet fluorescence 

microscopy, and absolute L2-L5 interneuron counts  

N=5 rats were anesthetized with ketamine/xylazine (80mg/kg; 4mg/kg; i.p.). 

The surgical methods and injection coordinates used for the fluorescent dextrans 

were identical to that of the lentiviral vector. 10% FluoroEmerald (in sterile water; 

ThermoFisher; MA, USA) and 10% FluoroRuby were injected on the left and right 

sides of the spinal L5 with respect to the dorsal viewpoint. After 2 weeks of 

retrograde transport, animals were sacrificed and spinal cords dissected as 

described above. The L5 segment was processed for histology as described 

above. Slides were hydrated in 0.1 M TBS, coverslipped, and imaged for a priori 

inclusion criteria of injection site accuracy (spinal level, laminae VII-VIII). Images 

were captured using a Nikon TiE 300 inverted microscope with the 10x objective 

and GFP and TexRed filter settings (Nikon; Tokyo, Japan). Thereafter, the entire 

L2 segment was isolated and optically cleared following previously described 

methods100. Images were acquired using a LSFM microscope using 488 and 594 

lasers (La Vision, Germany) and were imported into Bitplane (Imaris) for analysis. 

Counts of FluoroRuby and FluoroEmerald-labelled neurons were performed 

manually, blinded to ipsi- and contralateral designation. Of the 4,783 L2-L5 

interneurons counted, none had dual ipsi- and contralateral projections. Data 

shown is from N=3. For clarity, FluoroEmerald is shown alone. Power analysis 

revealed that N≥38 animals would have been necessary to detect a significant 

difference between ipsi- and contralateral L2-L5 interneurons (power ≥80%). 
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Figure 4 schematics and definition of ipsi- and contralateral are with respect to the 

in vivo injection site as opposed to the dorsal viewpoint during surgery.  

CTB-AlexaFluor injections, immunohistochemistry, and proportional cell 

counts  

Power analysis demonstrated N=3-5 animals was sufficient to detect a 

significant difference (power >99%) in the number of L2-L5 interneurons that were 

positive versus negative for local projections. N=5 rats were anesthetized with 

ketamine/xylazine and received a complete T12-T13 laminectomy to expose spinal 

L1 through L5. Cholera toxin beta subunit (type B, 1% solution in 0.1M PBS at pH 

7.4; Molecular Probes; OR, USA) conjugated to the following AlexaFluors were 

used for intraspinal injections (with respect to dorsal viewpoint): CTB-488 at right 

L1 (0.5 mm mediolateral; 1.3 mm dorsoventral), CTB-594 at left L4-5, and CTB-

647 at right L4-5 (both at 0.5 mm mediolateral and 1.4 mm dorsoventral). Two 

different CTB fluorophore conjugates were used in order to distinguish between 

ipsi- and contralateral L2-L5 interneurons (ipsi-CTB 594, contra-CTB 594, ipsi-

CTB 647, and contra-CTB 647). We chose to use L1 as our injection site to identify 

local L2-L5 interneuron collaterals for the following reasons: (1) the rostral lumbar 

circuitry is critical for locomotor generation35,37,38,101, (2) it is well-documented that 

local collaterals typically branch off within 1.5 segments of their cell body50,52, and 

(3) injecting at L1 would permit bilateral counts at L2. Injecting at-level with the L2-

L5 interneurons would have greatly limited our analyses. Note that this labelling 

strategy does not implicate a relatively small population of neurons, called 

ascending-descending commissural interneurons (adCINs), whose axons 
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bifurcate and project approximately 1.5 segments rostrocaudally52. Instead, the 

two branches labelled here are highly asymmetrical with one spanning ≤1 segment 

while the other is ≥2-3 segments. Each injection site received a total of 0.5 µl given 

in 0.25 µl boluses over 4 minutes. After 2 weeks of retrograde transport, animals 

were sacrificed following methods described above. Spinal T13-L6 was dissected 

and post-fixed in 4% paraformaldehyde for one hour followed by cryopreservation 

in 30% sucrose. The cords were embedded and sectioned at 30 µm in 5 sets such 

that adjacent sections were 150 µm apart rostrocaudally. All animals met a priori 

inclusion criteria for injection site accuracy. Co-localization of CTB-488 with CTB-

594 or CTB-647 was confirmed using an Olympus FluoView 1000 confocal 

microscope with a water immersion 20x objective and 488, 543 and 647 lasers. 

The z-stacks acquired (10-15 slices at 2 µm optical steps) were imported into Nikon 

NIS-Elements software and rendered using the slice view with orthogonal 

crosshairs to illustrate co-localization. After confirmation of co-localization, one 

complete set was hydrated, stained with Hoechst, coverslipped, and imaged using 

the 10x objective on the inverted microscope using the DAPI, GFP, TexRed, and 

CY5 filters. Power analysis showed that analyzing n=5-7 sections/animal could 

detect a significant difference (94-99% power) for the following: (1) %L2-L5 

positive versus negative for local projections; (2) %L2-L5 positive for local 

projections –ipsilateral versus contralateral; (3) %ipsi-L2-L5 positive for ipsilateral-

local versus contralateral-local; (4) %contra-L2-L5 positive for ipsilateral-local 

versus contralateral-local. CTB-labeled neurons were counted in 7 randomly-

selected sections per animal throughout spinal L2 as defined by Rexed laminae. 
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Counts were performed in a blinded fashion.  The following a priori criteria were 

used: (1) the CTB-positive neurons must be located in laminae V-X (we saw no 

CTB signal in lamina IX), (2) must co-localize with the nuclear marker Hoechst or 

have an overt nucleolar space, and (3) the strength of the CTB signal should be 

approximately two-times greater than the immediate background shown 

quantitatively with the horizontal intensity profile function. The following CTB 

labelled-neurons were counted: 488+, 594+, 647+, 488+/594+, 488+/647+. A total of 

5,884 L2-L5 interneurons and 2,961 resident L2 neurons (488 alone) were 

counted. Similar to the tissue clearing and LSFM cell counts, no 594+/647+ L2 

neurons were found (data not shown). As previously stated, respect is paid to the 

in vivo injection site with regard to schematics and ipsi- and contralateral 

categorization. Images shown are representative. Data shown are proportional 

counts of L2-L5 interneurons. 

Statistical analyses  

Statistical analyses were performed using IBM SPSS v22 software 

package. Parametric and non-parametric comparisons were performed 

accordingly102-107. Differences between groups were considered statistically 

significant for p values ≤0.05.  

Step and swim phase analysis   

For the raw and transformed phase data as well as the absolute step-by-

step (or stroke-by-stroke for swim) change in coordination, significant differences 

in frequency of phase values >2 S.D. from control mean were detected using the 

Binomial Proportion Test106. Levene’s Test for Equality of Variances was used to 
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test for a normal distribution of the phase data. Note that at control time points, 

e.g. Baseline, the data had a non-normal distribution (highly clustered at 0.5). No 

outliers (any value >3 S.D. from the time point average) were detected. 

Circular statistics was performed on the raw phase data to analyze phase 

distribution. Classically, parametric tests are used determine whether the circular 

data is from a uniform distribution. These analyses are based on strict assumptions 

regarding the data distribution and are restricted to either uniform or unimodal 

patterns102,103. Our data did not fit these criteria. Furthermore, we had no evidence 

to support a unimodal distribution with the same degree of concentration (e.g. 

relative concentration at each of the four control time points). Instead, we used 

non-parametric circular statistics to test the null hypothesis that the two time points 

being compared had the same phasic direction (concentrated or clustered)103. 

Time point comparisons were performed using the non-parametric two-sample U2 

tests. Thereafter, all control time points and DOXON time points were respectively 

grouped and compared as well. The length of the vector r, an indicator of the 

amount of concentration or clustering of phases in one direction, was averaged for 

all control and all DOXON time points, respectively, and compared using the 

independent t-test between means with equal variance. Angular deviation s, or the 

circular standard deviation, was also compared using these methods. For 

reference, angular deviation is equivalent to 1 S.D. Two-tail p values are reported.  

The non-parametric Kolmogorov-Smirnov (KS) Test was used to compare 

differences in the cumulative frequency distributions of raw and transformed 

hindlimb phase values over time (data not shown). The KS test was also used to 
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compare cumulative frequency distributions of transformed hindlimb phases at 

speeds ≤90 cm/sec (walk-trot) and >90 cm/sec (gallop-bound) over time.   

Instantaneous phase comparisons were made with the Spearman Rank 

correlation test against the following gait parameters: stance time, swing time, 

stride time, stride frequency, stride length, and speed. The 95% prediction intervals 

were used as a visual aid for distribution of speed-stride length and speed-stride 

time. Prediction intervals were calculated from each control dataset and then 

superimposed onto the corresponding DOX panels. The relative percentage of 

swing and stance durations were compared between two speed groups (≤90 cm/s 

or >90 cm/s) during DOXON using the paired t-test. At speeds ≤90 cm/s, the relative 

percent of swing and stance durations were compared between all control and all 

DOXON time points using the independent t-test between means of equal variance. 

Statistical analyses of control time points at speeds >90 cm/s were not possible 

due very few animals stepping at this velocity. Pearson and part correlations 

(controlling for speed) followed by the Bonferroni correction for Type I errors were 

used on the averaged datasets.  

Step sequence pattern108 data is shown as the percent of total patterns 

observed and was analyzed using repeated measures analysis of variance 

(ANOVA) with groups as a factor followed by Tukey honest significant difference 

(HSD) post hoc t-test for DOX1 and DOX2 separately (data shown is mean ± S.D.). 

Hindlimb kinematics  

Joint angular excursion of each hindlimb was analyzed using mixed model 

ANOVA followed by Bonferroni post hoc t-test (data shown as mean joint excursion 
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± S.D.). After determining no significant side difference, the hip height data was 

normalized to Baseline followed by Pre-DOX1 versus DOX1ON and Pre-DOX2 

versus DOX2ON comparisons using paired t-test for means of equal variance 

(data shown is mean hindlimb hip excursion ± S.D.; two-tail p value reported). Left 

and right hindlimb HAT-IHA phase values were analyzed using circular statistics 

as described above. Right hindlimb is shown. 

Cell counts  

Absolute L2-L5 interneuron cell counts from cleared L2 segments were 

analyzed using the independent t-test between means of equal variance. 

Proportional counts of L2-L5 interneurons differentially labelled with CTB were 

analyzed using one-way ANOVA followed by Tukey’s post hoc t-test as well as 

independent t-tests between means with equal variance (data shown as mean ± 

S.D.; two-tail p values reported). 

Results 

L2-L5 interneurons likely do not participate in intralimb coordination during 

overground locomotion 

We performed bilateral injections at the L2 and L5 spinal cord segments to 

silence both the ipsilateral and contralateral projections (Figure 4a). In double-

infected neurons that constitutively express rtTAV16, doxycycline (DOX) induces 

enhanced tetanus neurotoxin (eTeNT) expression (Figure 4b). eTeNT is then 

transported to the terminal field where it prevents exocytosis of synaptic vesicles 

thereby silencing neurotransmission. Removing DOX from the drinking water 

restores neurotransmission, thereby allowing us to acutely and reversibly silence 
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this anatomically-defined pathway in the otherwise intact adult rat. The data shown 

are from kinematic and gait assessments of animals stepping overground at 

control time points when neurotransmission was intact and during two rounds of 

DOXON-induced silencing (Figure 4c).  

To determine the functional consequences of silencing L2-L5 interneurons 

on flexor-extensor coordination across the hindlimb joints, we marked the skin 

overlying the iliac crest, hip, ankle, and toe in order to describe limb movement 

using three segments (Error! Reference source not found.a,b) and two angles 

Error! Reference source not found.c,d). At control time points, animals displayed 

stereotypic and coordinated flexor-extensor activity across the joints. This is 

illustrated by the characteristic excursions of limb segments (Error! Reference 

source not found.a, bottom), normal hindlimb range-of-motion (Figure 11, 

supplementary to Error! Reference source not found.), and coordinated 

movements in the proximal and distal joint angles (Error! Reference source not 

ound.c, circular plot, 0= coordinated). Unexpectedly, when we silenced L2-L5 

interneurons we saw a disruption in left-right hindlimb alternation during stepping 

(Video 1). The severity of this disruption ranged from mild changes in alternation 

to hindlimb “hopping” where the hindlimbs moved synchronously (shown 

kinematically in Error! Reference source not found.b). Despite the silencing-

nduced effects on left-right alternation, intralimb coordination persisted as seen by 

the characteristic pattern of flexor-extensor activity across the limb joints (Error! 

eference source not found.b) and between the proximal-distal limb angles 

(Error! Reference source not found.d). Collectively, these data suggest that L2-
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5 interneurons are likely not involved in intralimb, flexor-extensor coordination 

during overground locomotion.  

Silencing L2-L5 interneurons alters the overall locomotor stepping pattern 

We next analyzed how silencing L2-L5 interneurons affected the step 

sequence pattern108. Traditionally, the primary pattern used by rodents is called 

alternate. It is characterized by alternation of the hind- and forelimbs with each 

step (Figure 6a, left panel) and has a “zig-zag” appearance in limb recruitment 

graphs (right panel). Prior to silencing, the alternate step pattern dominated (Figure 

6d). When we silenced L2-L5 interneurons, animals significantly increased their 

use of the cruciate step pattern (Figure 6e), which reflects the sequential 

movements of the homologous limb pairs as opposed to alternation between the 

shoulder and pelvic girdles (Figure 6b,c). Removing DOX from the drinking water 

reversed this pattern shift (Figure 6d,e) and silencing one month later reproduced 

the effects (Figure 6f,g). Together, these data suggest that silencing L2-L5 

interneurons produces a quadrupedal stepping behavior that is primarily forelimb-

leading, hindlimb-trailing as opposed to the stereotypic alternation between the two 

girdles.  

Silencing L2-L5 interneurons selectively disrupts hindlimb alternation 

during stepping, revealing a continuum of coordination from walking-to-

hopping 

The salient observation from silencing L2-L5 interneurons is a change in 

hindlimb alternation during stepping (Video 1). However, quadrupedal mammals 

will naturally express various patterns of interlimb coordination. These distinct, 
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repeated patterns are defining features of the classic gaits87. Therefore, we set out 

to determine if the interlimb coordination expressed during silencing reflected 

these stereotypic gait patterns.   

Traditionally, walking and trotting are slower gaits wherein the hindlimbs 

alternate (Figure 7a, lower-panel). This temporal relationship can be expressed as 

a coordination (or phase) value by dividing the initial contact time of the left 

hindlimb by the right hindlimb stride time (stance + swing). These phase values, 

ranging from 0 to 1, are plotted on a circular graph to illustrate interlimb 

coordination (Figure 7a, lower-right). For walking and trotting, the phase value is 

close to 0.5 (180°), indicating left-right alternation with out-of-phase hindlimb 

movements17. With increasing speed, the gait switches from walk-trot to gallop 

where there is a phase-shift with increased overlap between left and right stance 

(or swing) phases (Figure 7b, phase≈0.25 or 0.75, depending on the lead limb)17. 

At even higher speeds, some animals will switch their gait to bounding where the 

hindlimb movements are in-phase (Figure 7c, phase≈0/1). These gait-specific 

coordination changes also occur in the forelimbs.  

First, to control for inter-animal variability in lead limb (illustrated in Figure 

6)12,13, we transformed hindlimb phase values <0.5 to the reciprocal >0.5 and found 

the mean phase of all control time points (Figure 7d). Any value >2 S.D. from this 

mean is beyond control (or normal) variability and was considered “irregular”. Prior 

to silencing, left-right hindlimb alternation was the overt stepping pattern (Figure 

7e). Silencing L2-L5 interneurons significantly disrupted this alternation, but the 

changes observed were not clustered at the coordination values reflective of the 



 

35 
 

traditional gaits. Instead, we saw the emergence of a coordination continuum from 

hindlimb walking to hopping (Figure 7e). Notably, the silencing-induced effects 

were not all-or-none as seen by the preponderance of phase values within the 

normal range. Removing DOX restored hindlimb alternation while re-silencing one 

month later once again significantly disrupted it. These perturbations to hindlimb 

alternation did not influence or “spread” to the forelimbs as alternation persisted 

(Figure 7f). Despite the significant change in hindlimb coordination, the animals 

maintained a 1:1 stepping relationship between the fore- and hindlimbs (Figure 

7g).  

We also investigated hindlimb coordination during swimming (Figure 7h), a 

bipedal locomotor behavior where the limbs are unloaded and the proprioceptive 

and cutaneous feedback associated with plantar stepping is altered. Strikingly, 

hindlimb alternation remained intact (Figure 7h; Video 2), suggesting that L2-L5 

interneurons do not participate in hindlimb alternation during a task where afferent 

feedback associated with stepping is altered/removed. Collectively, these data 

suggest that silencing L2-L5 interneurons selectively disrupts hindlimb alternation 

in a context-specific manner, without affecting the overall stepping ability of the 

animal. 

Silencing L2-L5 interneurons partially uncouples the hindlimbs, allowing 

spontaneous shifts in left-right coordination with each step 

Typically, the pair of limbs at each girdle work together as a coupled unit 

during stepping87. This functional coupling ensures that they step in a consistent 

fashion, regardless of the gait. This characteristic feature of locomotion raises an 
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important question: does the silencing-induced disruption of hindlimb alternation 

reflect a functional uncoupling of the left and right limbs? To address this issue, we 

performed circular statistics on the raw dataset to quantify the amount of 

concentration (Figure 8) and dispersion (Figure 12, supplementary to Figure 8) in 

the phase data103. Limb coupling is exemplified by a high degree of concentration 

in one direction (Figure 8a, top). Alternatively, complete uncoupling indicates that 

the left and right hindlimbs are stepping independently from each other, with 

different frequencies, giving a uniform phase distribution around the circular plot 

(Figure 8a, bottom)102. 

Prior to silencing, the hindlimbs were coupled at alternation with the 

preponderance of phases near 0.5 and with normal variability (Figure 8b, top). 

During silencing, this concentration was significantly reduced. Instead, the 

coordination values became distributed around the circular plot (Figure 8b, bottom, 

Table 3). Removing DOX restored the concentration of phase values towards 

alternation and silencing one month later replicated the effects. As anticipated, the 

forelimb phases remained concentrated at alternation (Figure 8c) as did the 

hindlimbs during swimming (Figure 8d) (Table 4). Complementary to concentration 

is the amount of dispersion and circular variance in the phase data, both of which 

are typically low when the limbs are coupled. Silencing L2-L5 interneurons 

significantly increased these parameters in the hindlimbs alone (Figure 12, 

supplementary to Figure 8). Once again, the effects were not all-or-none and did 

not produce a uniform distribution indicative of complete uncoupling. Therefore, 

we contend that silencing L2-L5 interneurons results in the partial uncoupling of 
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the hindlimbs during overground stepping. Moreover, this uncoupling does not 

impact the forelimbs nor translate to a non-weight bearing locomotor task. 

  Thus far we have examined the effect of silencing L2-L5 interneurons on 

the overall stepping performance. We next wanted to explore how the disruption 

in left-right alternation influenced dynamic coordination on a step-by-step basis. 

To do this, we quantified the absolute change in phase per step and used this as 

an indicator for the relative consistency in hindlimb coordination (Figure 8e, 

example shown in left panel, steps 1-3 with respective |changes|). Consistent 

hindlimb coordination is typified by minor changes in phase on a stride-by-stride 

basis, which suggests the limbs are stepping in a regular, repeated fashion. 

Conversely, large changes in coordination per stride would indicate increased 

variability between the hindlimbs as they are stepping.  

Figure 8f summarizes the absolute change in left-right hindlimb 

coordination, per step, for the individual locomotor bouts of each animal across all 

time points (example shown in Figure 8e). Any sequence of steps with a change 

in hindlimb coordination beyond the normal stride-by-stride variability is plotted in 

the shaded area. Prior to silencing, there were minor changes in step-by-step 

coordination with approximately 96% of all steps taken falling within the normal 

variability observed at control time points (Figure 8h). These small changes were 

primarily concentrated around 0.5 (Figure 13, supplementary to Figure 8). 

Silencing L2-L5 interneurons significantly increased the step-by-step variability in 

hindlimb coordination, as seen by the large spikes in absolute phase change 

(Figure 8f, red bars in top panel). This included step sequences with dramatic 
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changes in coordination per step as well as instances of drift where the hindlimbs 

started in-phase and then drifted out-of-phase (Figure 13, supplementary to Figure 

8). Removing DOX restored the consistency in step-by-step coordination while re-

silencing one month later replicated the increased variability. Once again, this was 

exclusive to hindlimb stepping as forelimb stepping and hindlimb swimming 

remained normal (Figure 13, supplementary to Figure 8).  

 In addition to analyzing the silencing-mediated effects on dynamic hindlimb 

coordination, we also examined the per step changes in stride time, which is the 

duration of the stance and swing phase for one step cycle. We calculated changes 

in stride time and matched them to the corresponding changes in hindlimb 

coordination. Surprisingly, the hindlimbs continued to step with stride durations that 

fell within the normal range despite the large shifts in left-right coordination (Figure 

8f, bottom). Together, these data suggest that silencing L2-L5 interneurons 

partially uncouples the hindlimbs during locomotion, allowing spontaneous shifts 

in left-right coordination to occur on a step-by-step basis. However, these changes 

occurred alongside relatively invariable stride durations, suggesting that the 

disruption to hindlimb coordination occurs within the confines of a stable locomotor 

rhythm. 

Silencing L2-L5 interneurons disrupts hindlimb alternation independent of 

speed and step frequency while preserving the fundamental principles that 

govern locomotion 

Changes in interlimb coordination are tantamount to transition between the 

slower walk-trot gaits and the faster, more synchronous gallop-bound. Therefore, 



 

39 
 

we set out to determine if the observed perturbations in hindlimb coordination were 

associated with stepping speed. First, we compared the transformed phase values 

to the corresponding speeds for collapsed control and DOXON time points, 

respectively (Figure 9b) and found no association between silencing-induced 

changes in hindlimb coordination and speed, with a correlation coefficient of 0.13 

(Figure 9b). This result was substantiated when we analyzed the individual time 

points, the averaged datasets, and the irregular steps only (yellow) (Figure 14, 

supplementary to Figure 9). Importantly, approximately 67% of these irregular 

steps occurred at speeds less than 90 cm/s, a velocity where the alternating gaits 

typically predominate in the adult rat1 (Figure 14, supplementary to Figure 9). We 

also examined the step frequency (number of steps/second) which usually 

increases with speed. It is at greater step frequencies that the more synchronous 

gaits typically occur17. When we compared the silencing-induced changes in 

hindlimb alternation to step frequency, we once again saw no meaningful 

correlation (Figure 9c). The individual time point comparisons corroborated these 

findings (data not shown). In that vein, we also saw no associations between 

silencing-induced changes in hindlimb coordination and various gait parameters 

(Figure 14, supplementary to Figure 9; Table 5, Table 6). Therefore, silencing L2-

L5 interneurons alters hindlimb coordination independent of locomotor speed and 

step frequency. 

Due to the unexpected dissociation between changes in hindlimb 

coordination and step frequency/speed, we wanted to determine if other principal 

features that govern locomotion were also affected. During stepping, the limbs are 
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coordinated in both space and time. This allows us to quantify locomotion using a 

set of spatiotemporal parameters, or gait indices, which include stride length, 

stance duration, swing duration, and stride time12,13. Importantly, these parameters 

change with speed in a stereotypic, well-characterized manner (Figure 9d,g)12,109. 

Silencing L2-L5 interneurons did not alter the primary spatiotemporal gait indices 

of step frequency (Figure 9e, right panel), stride length (Figure 9f)12,109, stride and 

swing times (Figure 9g-h, left panel), and stance duration (Figure 9i). Some 

animals did not step at velocities greater than 90 cm/s at control time points, 

preventing a statistical comparison between the two speed categories (Figure 9i, 

top left vs right). Nonetheless, the pattern and magnitude of change in swing-

stance durations were similar (data not shown). When we focused on the 

dispersion of the irregular hindlimb steps, it became apparent that the silencing-

induced changes to alternation occurred over a relatively broad range of speeds, 

step frequencies, and spatiotemporal indices. This further supports the notion that 

the perturbations to hindlimb alternation are not reflective of the traditional gaits17. 

All together, these data suggest that silencing L2-L5 interneurons disrupts hindlimb 

alternation independent of speed and step frequency and while preserving key 

stepping characteristics that are fundamental to locomotion.   

L2-L5 interneurons are a bilaterally distributed pathway with sparse local 

projections throughout the rostral lumbar spinal cord 

To detect the eTeNT.EGFP-positive terminals in the caudal lumbar cord, 

animals were sacrificed on DOX2ON-D5 and cross-sections of L4-L5 spinal 

segments were co-stained with anti-NeuN (Figure 10a-c) to label neurons and anti-
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GFP to amplify the endogenous eTeNT.EGFP. Immunoreactive eTeNT.EGFP-

positive terminals were found in close apposition to somata and primary dendrites 

of neurons in the ventral gray matter (Figure 10ai). Rotating the neurons in three-

dimensions confirmed that eTeNT.EGFP-positive terminals surrounded the 

somata (Figure 10aii), with patterns suggestive of complex branching (Figure 10bi-

ii). Isotype controls showed little-to-no EGFP signal (Figure 10c). We also 

processed the thoracic spinal cord as an additional negative control and saw no 

EGFP immunoreactivity (data not shown). 

The projection patterns of L2-L5 interneurons in the adult rat are unknown. 

We performed a series of tracing experiments to explore the anatomy through 

which L2-L5 interneurons may exert their functional role(s). We repeated the 

original L5 injections using FluoroEmerald and FluoroRuby to retrogradely label 

L2-L5 interneurons (Figure 10d,e). Thereafter, the L2 segment was dissected, 

cleared, imaged using light sheet fluorescence microscopy (LSFM)100, and 

unbiased counts were performed (Figure 10f-h; Figure 15, supplementary to Figure 

10). Even though silencing L2-L5 interneurons disrupts left-right (contralateral) 

alternation while preserving intralimb (ipsilateral) coordination, quantitative 

analysis revealed no significant difference in the number of ipsi- and contralateral-

projecting interneurons, indicating that this pathway is bilaterally distributed (Figure 

10f-g).  

One explanation for the disruption in left-right alternation is that L2-L5 

interneurons may have collaterals near their somata throughout the rostral lumbar 

spinal cord, an area critical for central pattern generation35,37,38,43,101,110. Previous 
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studies in the isolated spinal cord of the neonatal rodent showed that descending 

commissural interneurons have collaterals within a segment of their somata52,54, 50. 

Therefore, we hypothesized that L2-L5 interneurons would have dense projections 

locally within the rostral lumbar cord. To test this, we first retrogradely-labelled L2-

L5 interneurons with cholera toxin beta subunit (CTB) conjugated to AlexaFluor-

594/-647 (Figure 10i,k). Next, we unilaterally-injected CTB AlexaFluor-488 into the 

L1 segment (Figure 10i,j), allowing us to determine if the local projections were 

ipsi- or contralateral to the L2-L5 somata (Figure 10n). 

Once again, we saw many L2-L5 interneurons within the intermediate gray 

matter (Figure 10l,m) with no significant difference between the ipsi- and 

contralateral subtypes (data not shown). Of the labeled L2-L5 interneurons, few 

had resident collaterals (Figure 10m,o). More local projections arose from the 

contralateral-L2-L5 interneurons as compared to the ipsilateral (Figure 10p). 

These collaterals were also primarily commissural in nature (Figure 10r), 

representing the most abundant projection pattern observed (Figure 15, 

supplementary to Figure 10). Alternatively, the ipsilateral-projecting L2-L5 

interneurons primarily had local collaterals ipsilateral to their somata (Figure 10q). 

This purely ipsilateral pathway constituted the second-largest projection pattern 

observed (Figure 15, supplementary to Figure 10). Notwithstanding, the proportion 

of L2-L5 interneurons with at-level projections appears to be small. Collectively, 

these data illustrate that the majority of L2-L5 interneurons lack local projections 

in the rostral segments of the lumbar cord with only 12% having at-level projections 

that anatomically connect the two sides of the spinal cord.  
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Discussion 

Rhythm and pattern are precisely controlled by the hindlimb locomotor 

circuitry21. Together, these features change with speed in a stereotypic fashion17. 

This is a fundamental principle of locomotion7. We show here that a discrete 

component of stepping, left-right alternation, can be manipulated without 

influencing the other central features. This key finding is the focus of our discussion 

below.  

Reversible silencing of spinal interneurons reveals that left-right alternation 

can be discretely manipulated independent of rhythm. There are five crucial 

findings that support this concept. The first is also the most obvious: effective 

locomotion continued during silencing. If L2-L5 interneurons were a part of the 

rhythm generating circuitry, silencing would have greatly impeded or even 

prevented the animals’ ability to step. Second, the hindlimb:forelimb step ratio 

remained 1:1. This indicates that all four limbs stepped equally with no missteps 

or double-steps, “mistakes” that would have affected the overall rhythm. Third, the 

changes in hindlimb alternation were not associated with step frequency or speed. 

As a function of speed, an increase in step frequency occurs along with changes 

in gait-specific coordination patterns (out-of-phase to in-phase)17. Fourth, the step-

by-step shifts in left-right coordination occurred alongside invariable changes in 

stride time, a defining feature of rhythm109. Fifth, the relationship between speed 

and spatiotemporal (gait) indices was not affected. These findings suggest that 

within a stable locomotor rhythm, silencing L2-L5 interneurons has affected 

patterned left-right movements. Moreover, the silencing did not affect the other 
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pattern of stepping: intralimb coordination. From these data, where do we place 

L2-L5 interneurons within the locomotor hierarchy? We propose that L2-L5 

interneurons should be considered part of the left-right pattern formation layer111 

where they help to secure left-right alternation on a step-by-step basis during 

overground locomotion. This places them functionally “below” the rhythm 

generating circuitry and suggests that they distribute temporal information caudally 

from the rostral lumbar segments.  

These results are in stark contrast to our hypothesized role for these 

interneurons in intralimb (flexor-extensor, multi-joint) coordination, anticipated 

based on previous studies that utilized in vitro neonatal rat and mouse spinal 

cords56-58. These electrophysiological studies explored the intrinsic properties, 

firing patterns, and synaptic output of commissural L2-L5 interneurons. Based 

primarily on the timing of their activity and output onto L4/5 motoneurons during 

drug-induced locomotor-like activity these interneurons were assigned putative 

roles in the flexor-extensor aspects of pattern formation. In turn, this was the 

framework on which we set out to assess their functional role in the mature, freely 

behaving rat. Our findings clearly illustrate the importance of taking hypotheses 

formed at the cellular and network levels and testing them at the systems level. 

However, significant caveats remain in the network-to-systems approach used 

here. Most notably, we cannot reconcile why, at most, 30% of the hindlimb steps 

were disrupted. This may reflect a practical limitation of the dual-virus silencing 

system and/or the probability that functional populations of interneurons are 

unlikely to be purely segmentally defined, anatomically.  It is also possible that we 
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observed the most severe phenotype possible in our model given that the full 

ensemble of pathways that secure left-right coordination remains unknown.  

Another unexpected result was the striking contrast between stepping and 

swimming. Swimming is primarily a bipedal (hindlimbs) locomotor task that is 

characterized by highly stereotypic rhythmic, left-right alternation93 and flexion-

extension durations that are distinct from those of stepping112,113. During 

swimming, the limbs are unloaded, which greatly reduces signaling from Golgi 

tendon organs, a sensory system that typically conveys information about dynamic 

loading of the limbs112. The extension phase is dramatically reduced as compared 

to stepping112 and while the duration of limb flexion is similar between the two 

behaviors, muscle recruitment patterns are distinct113. Therefore, while stepping 

and swimming patterns likely arise from similar or overlapping neural pathways, 

they represent different locomotor programs112. In light of these differences, we 

cannot say that the lack of a phenotype during silencing reflects a lack of 

involvement of L2-L5 interneurons in hindlimb alternation during swimming. 

However, it is abundantly clear that the effects of silencing L2-L5 interneurons are 

pronounced during stepping and inconspicuous during swimming.  

Using reversible silencing of spinal interneurons as a tool, we have revealed 

that a core component of the locomotor pattern can be selectively and reversibly 

manipulated without disrupting the other core features of stepping. The changes 

observed illustrate the nervous system’s ability to adapt to a significant, but 

discrete perturbation. Therefore, the observed continuum of walking-to-hopping 

likely reflects the system’s strategy to maintain effective stepping given the internal 
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and external constraints associated with that particular behavior114. Furthermore, 

changing the behavioral conditions from stepping to swimming exposes how the 

functional importance of distinct pathways can be powerfully modulated by a 

reconfiguration of the whole system. Altogether, these data illustrate a striking 

freedom in an otherwise precisely-controlled system, a phenomenon dependent 

on the behavioral context.
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Figure 4 

 

Figure 4. Experimental Design To Conditionally Silence L2-L5 Interneurons In The Freely Behaving Adult 

Rat.  

(a) In the lumbar spinal cord, L2 neurons with ipsilateral or contralateral projections to L5 were targeted for conditional 

silencing. Bilateral injections of AAV2-CMV-rtTAV16 (blue triangles) and HiRet-TRE-EGFP.eTeNT (green) were 

performed at L2 and L5, respectively. (b) In the presence of doxycycline (DOX) only double infected neurons 

conditionally express eTeNT (bottom panel; adapted from Kinoshita et al. 2012). eTeNT is transported to the terminal 

field where it prevents synaptic vesicle release thereby silencing neurotransmission. (c) Behavioral assessments 

were performed at four control time points (Baseline, BL; Pre-DOX1, PD1; DOXOFF; Pre-DOX2, PD2) and during two 

rounds of DOXON silencing separated by a one month washout (DOX1ON days 3,5,8 and DOX2ON days 3 and 5).

4
7
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Figure 5 

 

Figure 5. L2-L5 Interneurons Are Dispensable For Intralimb Coordination 

During Locomotion.  

(a) Intralimb movements described by the excursion of the iliac crest (I), hip (H), 

ankle (A), and toe (T). Shown below is a representative two-dimensional stick-

figure of stepping kinematics at control time points. (b) Silencing L2-L5 

interneurons significantly increased vertical movements in the hip (black horizontal 

trace; data not shown) while preserving normal intralimb kinematics (refer to Figure 

11). (c) Analysis of proximal (IHA) and distal (HAT) hindlimb joint angles (top 

panel). Peak angular excursions (middle panel, triangles; shaded region=stance 

phase) were used to calculate intralimb coordination (circular graph, white 

inset=normal variability at control time points). (d) Intralimb coordination between 

the proximal and distal hindlimb joint angles remained intact. Individual 

circles=intralimb coordination value for one stride (n=30/time point). Collapsed 

CON and DOXON time points shown. LHL=left hindlimb; RHL=right hindlimb. All 
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comparisons in (d) were p>0.5, Watson’s non-parametric two-sample U2 test; LHL: 

Control vs DOXON U2=0.04232; RHL: CON vs DOXON U2=-0.13874; CON: LHL vs 

RHL U2=-0.00653; DOXON: LHL vs RHL U2=0.01623).  
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Figure 6 

 

Figure 6. Silencing L2-L5 Interneurons Altered The Locomotor Step 

Sequence Pattern.  

(a-c) Schematics of alternate and cruciate step sequence patterns as defined by 

footfall order (right panels). The alternate pattern predominates at control time 

points (d, Baseline: 83.0±13.5%; Pre-DOX1: 82.3±14.8%). Silencing L2-L5 

interneurons changed the pattern from alternate to cruciate (d-e, DOX1ON-D8: 

33.5±30.4% alternate, 48.4±29.8% cruciate as compared to 7.7±8.9% and 

11.4±9.0% at Baseline and Pre-DOX1, respectively). This was reversed by DOX 
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removal and replicated one month later (f-g). (*p≤0.05; **p≤0.01; repeated 

measures analysis of variance (ANOVA) and Tukey honest significant difference 

(HSD) post hoc t-test; data are mean ± S.D.; n=47-66 step sequence patterns/time 

point) (LHL=left hindlimb, RHL=right hindlimb, LFL=left forelimb, RFL=right 

forelimb). 
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Figure 7 

 

Figure 7. Silencing L2-L5 Interneurons Selectively Disrupts Left-Right 

Hindlimb Alternation During Overground Stepping.  

(a-c) Stereotypic locomotor gaits with representative swing-stance graphs and 

characteristic left-right hindlimb coordination values (shown in circular plots, see 

methods for detail). (d) Schematic illustrating phase transformation (see methods 

for detail). Shaded area denotes any coordination value beyond normal variability 

observed (>2 S.D.) at control time points. Each circle represents one step cycle 

(n=84/time point). (e) Silencing L2-L5 interneurons significantly increased the 

proportion of steps that deviated beyond normal variability observed at control time 

points. Removing DOX restored alternation and silencing one month later repeated 

the effects (Baseline, n=3/84 vs DOX1ON, n=15/84, 24/84, 17/84; Pre-DOX2, 

n=2/84 vs DOX2ON, n=15/84, 21/84; **p≤0.01, ***p≤0.001; Binomial Proportion 

(B.P.) Test; group data shown [N=6]).  Control time points were not significantly 
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different from each other (data not shown).  (f) Left-right forelimb alternation was 

not perturbed (p=0.08; B.P. test). (g) No differences were observed in the 

hindlimb:forelimb stepping index (p=0.86, two-sample t-test). (h) Left-right hindlimb 

alternation persisted during swimming (n=80 stroke cycles/time point; p=0.20, B.P. 

test). 
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Figure 8 

 

Figure 8. Silencing L2-L5 Interneurons Partially Uncouples The Hindlimbs, 

Significantly Increasing The Step-By-Step Variability In Left-Right 

Coordination.  

(a) Coupling and complete uncoupling schematics (white inset=normal variability 

observed at control time points). (b) Silencing L2-L5 interneurons significantly 

decreased phases concentrated at alternation during hindlimb stepping as 

compared to Control (Baseline + Pre-DOX1; ***p<0.001; U2=0.59762; Watson’s 

U2 test). Forelimb stepping (c) and hindlimb swimming (d) remained clustered at 

alternation (see Supplementary Tables 1-2) (n=84 steps/time point or n=80 
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strokes/time point). (e) Example of swing-stance graph illustrating analysis of 

consecutive strides within one locomotor bout to determine the step-by-step 

(absolute) change in left-right coordination (*reference). Individual bars represent 

|change| in left-right coordination, per step, for each animal across all time points 

(right panel, e.g. Baseline, |change| in coordination between steps 1-to-2 and 2-to-

3 highlighted in green and blue, respectively). Shaded region indicates per step 

changes in coordination beyond control variability. (f, top panel) Silencing L2-L5 

interneurons significantly increased step-by-step variability in hindlimb 

coordination (Baseline+Pre-DOX1 vs DOX1ON, n=3/80 vs 38/136; DOXOFF+Pre-

DOX2 vs DOX2ON, n=2/53 vs 21/100; ***p<0.001, B.P. Test; group data shown 

[N=6]). The hindlimbs stepped with relatively consistent stride durations (bottom 

panel).
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Figure 9 

 

Figure 9. Silencing L2-L5 Interneurons Disrupts Hindlimb Alternation 

Independent Of Speed And Step Frequency While Preserving Salient 

Features That Govern Locomotion.  

(a) Schematic illustrating the general relationship between speed/step frequency 

and locomotor gaits. Dashed gray line indicates reported transition between the 

alternating trot and asynchronous gallop in the adult rat. (b) Silencing-induced 

changes in hindlimb coordination did not correlate with increased speed (Control, 

rS=-0.01; DOXON, rS=0.13, Spearman Rank; see Figure 14) nor increased step 

frequency (c, Control: rS=0.04; DOXON: rS=0.33). (d,g) Schematics indicating the 

general relationship between speed and various spatiotemporal gait indices. 

Silencing L2-L5 interneurons does not affect these stereotypic associations, 

including speed vs step frequency (e, CON rS=0.87; DOX rS=0.83), stride length 
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(f, CON rS=0.81; DOX rS=0.78), stride time (h, CON rS=-0.87; DOX rS=-0.83), and 

the relative decrease in stance duration (i, Control vs DOXON: *p<0.05, **p<0.01, 

independent t-test; DOXON speed comparisons: **p<0.01, ***p<0.001, paired t-

test) (red=phases ≤2 S.D. control mean; yellow=phases >2 S.D. control mean; 

Control: n=336 steps; DOXON: n=420; shaded region=95% prediction interval for 

control; group data shown [N=6]).
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Figure 10 

 
Figure 10. eTeNT.EGFP+ Putative Terminals And Anatomical 

Characterization Of The L2-L5 Interneurons. 

(a-b) Volumetric three-dimensional renderings show eTeNT.EGFP+ terminals 

closely apposed to somata and primary dendrites (#,* indicate same neuron 

rotated, xyz axes shown in gray/magenta/blue; scale=10 µm). (c) Isotype control. 

(d) Light sheet fluorescence microscopy experimental design with representative 

L5 injection site shown in (e). (f) Retrogradely-labeled L2-L5 interneurons in 

isolated and cleared L2 segment (C.C. = central canal; R-C = rostral-caudal). (g) 

100 µm cross-section. (h) Absolute counts of ipsi- and contralateral L2-L5 

interneurons (h, p=0.47; independent t-test; see Figure 15). (i) Experimental 
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design to quantify L2-L5 local projections with representative injection sites shown 

in (j,k, *tracer bolus). (l,m) Confocal images of double-labelled L2-L5 interneurons 

(d-m, co-localization in orthogonal xz/yz, scale=100 µm). (o-r) Quantification of 

L2-L5 projections shown in (n) (**p≤0.01; ***p≤0.001; one-way ANOVA with 

Tukey’s HSD; data are mean ± S.D.; N=5). 
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Figure 11 

 

Figure 11. Silencing L2-L5 Interneurons Does Not Affect Hindlimb Range-Of-

Motion.  

The excursion of the left (a) and right (b) distal hindlimb joint angles (hip-ankle-toe, 

HAT) at control time points was not significantly different from DOXON. Right 

hindlimb HAT excursion at DOXOFF was significantly increased compared to Pre-

DOX1 (*p<0.05; mixed model ANOVA and Bonferroni post hoc t-test). There was 

no change in the (c) left or (d) right proximal hindlimb joint angular excursion (iliac 

crest-hip-ankle, IHA) (black lines denote mean joint excursion). 
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Figure 12 

 

Figure 12. Silencing L2-L5 Interneurons Partially Uncouples The Hindlimbs 

During Stepping While Forelimb Stepping And Hindlimb Swimming Remain 

Intact.  

(a) Schematics illustrating phase dispersion (r) and circular variance (dashed-

arrows). Circles represent individual step or swim cycles. (b, left panel) Silencing 

significantly increased dispersion (r=0.94 vs 0.73; **p<0.01) and variance (±20.51º 

vs ±45.92º; ***p<0.001; All control, n=336 steps; All DOXON, n=420 steps; group 

data shown [N=6]). Stereotypic forelimb stepping (middle panel, r=0.96 vs 0.95, 

variance=±17.20º vs ±18.89º; each p>0.5) and hindlimb swimming (right panel, 

r=0.97 vs 0.98, variance=±15.06º vs ±12.76º; each p>0.5; Control [Baseline, PD1, 

DOXOFF], n=320 strokes; All DOX1ON, n=240 steps) remained intact (averages 

analyzed using one-way ANOVA followed by Tukey’s post hoc t-test; see Table 4 

for non-parametric two-sample U2 comparisons). Group data shown (N=6). 
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Figure 13 

 

Figure 13. Conditional Silencing Did Not Alter Step-By-Step Changes In 

Forelimb Coordination Nor Stroke-By-Stroke Changes In Hindlimb 

Coordination.  

(a) Representative examples of step-by-step changes in hindlimb coordination (i-

iii, blue lines) from one animal (data previously shown in Figure 8). (b) Silencing 

L2-L5 interneurons does not affect the variability in the step-by-step forelimb 

coordination (Control [BL, PD1, DOXOFF]: 93.1% vs DOX1ON: 94.4%, p=0.48, 

Binomial Proportion Test). (c) Similar results were found for stroke-by-stroke 

changes in hindlimb coordination during swimming (Control [BL, PD1, DOXOFF]: 
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94.7% vs DOX1ON: 97.9%; p=0.10) (shaded region denotes step-by-step changes 

>2 S.D. from respective control means). 
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Figure 14 

 

Figure 14. Silencing-Induced Changes In Hindlimb Coordination Did Not 

Correlate With Speed Nor Gait-Related Indices.  

(a) Left panel shows the frequency distribution of hindlimb coordination values 

within the control variability (right inset; 0.50-0.63) that occurred at ≤90 

centimeters/second, a locomotor velocity where the limbs typically alternate in a 

walk or trot gait. Right panel shows the frequency at which phases >0.63, including 

synchrony at 1.0, occur at a speed where alternation usually prevails (shaded 

region denotes phases beyond control variability). (b) Frequency distribution of 

hindlimb phases at gallop-to-bound speeds (>90 cm/sec). (c) Summary of Pearson 

correlations between averaged phase vs speed, per time point (Bonferroni 

adjustment for multiple comparisons was performed to reduce the likelihood of 

Type I errors). (d,g) Inter-relationship between various gait indices. (e,f) Step 
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frequency-phase relationship (white circles) mapped onto speed contour plot (see 

methods for detail). Silencing-induced changes in hindlimb coordination did not 

correlate with increased step frequency. (h) Similarly, changes to hindlimb 

coordination did not correlate with increased stride length (Control, rS=-0.068 in 

dashed white line; DOXON, rS=-0.125 in dashed red line; Spearman Rank 

correlation) nor decreased stride time (i, Control rS=-0.036; DOXON rS=-0.338). 
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Figure 15 

 

Figure 15. The Majority Of L2-L5 Interneurons Lack Local Projections In The 

Rostral Lumbar Spinal Cord.  

(a) Data shown are absolute cell counts and percent total of L2 interneurons with 

ipsilateral or contralateral projections to spinal L5 following bilateral injections of 

FluoroEmerald (F.E.) and FluoroRuby (F.R.). No significant difference was found 

between ipsi- and contralateral L2-L5 interneurons (total ipsilateral vs total 

contralateral: p>0.4; independent t-test between means of equal variance). (b,c) 

Summary of the L2-L5 projection patterns observed following triple tracer (CTB) 

injections. Of the total L2-L5 interneurons labelled at L2 following bilateral L5 

injections, approximately 80% did not have local projections within one (rostral) 

segment of their cell body (dark gray, 81.49±2.36%). Almost 20% of the L2-L5 
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interneurons had projections within one segment of their cell body (18.51±2.36%). 

Of this proportion, approximately 12.5% had direct projections between the left and 

right sides of the spinal cord (c, red, blue, and green). Data shown represents the 

proportions of projection patterns observed relative to percent total L2-L5 

interneurons that were labelled. 
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Table 3. Silencing L2-L5 Interneurons Functionally Uncouples The Left And Right Hindlimbs During 

Overground Stepping.  

Using the non-parametric two-sample U2 test, we tested the null hypothesis that the two samples (e.g. Baseline vs 

DOX1ON-D5) came from two populations with the same directions (in other words, degree of concentration or 

dispersion). This is an indication of whether the limbs are coupled (phases concentrated in same direction) or 

uncoupled (phases are dispersed). Silencing the L2-L5 interneurons significantly decreased the concentration of the 

phase values (reduced clustering at 0.5) and caused an increased dispersion throughout the coordination range. 

This suggests the hindlimbs became functionally uncoupled during overground locomotion. (Critical value of 

Watson’s U2
(0.05,∞,∞) = 0.1869; Appendix D, Table D.44)19.  

 

  p value U2 value 

Baseline vs 

Pre-DOX1 p>0.50 -0.13369 

DOX1ON-D3 0.05<p<0.10 0.16895 

DOX1ON-D5 0.002<p<0.005 0.33339 

DOX1ON-D8 0.10<p<0.20 0.13157 

All-DOX1ON p<0.001 0.56176 

DOXOFF p>0.5 0.07047 

Pre-DOX1 vs 

DOX1ON-D3 0.20<p<0.50 0.08912 

DOX1ON-D5 0.01<p<0.02 0.24507 

DOX1ON-D8 0.02<p<0.05 0.21514 

All-DOX1ON p<0.001 0.59762 

DOXOFF p>0.50 0.00498 

Pre-DOX2 p>0.50 0.01499 

Baseline + 
Pre-DOX1 vs 

All-DOX1ON p<0.001 0.59762 

Pre-DOX2 vs 

DOXOFF p>0.50 0.07400 

DOX2ON-D3 0.002<p<0.005 0.31224 

DOX2ON-D5 p<0.001 0.39267 

All-DOX2ON p<0.001 1.29965 

Table 3 

6
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Table 4. The Conditional Silencing Of L2-L5 Interneurons Does Not Uncouple The Forelimbs During Stepping 

Nor The Hindlimbs During Swimming.   

Following methods described above, the null hypothesis was not rejected for time point comparisons of forelimb 

stepping and hindlimb swimming. Silencing the L2-L5 interneurons did not change the concentration of the phase 

values at 0.5. Note that in hindlimb swimming, Baseline was significantly different from DOXOFF wherein the phases 

were more clustered at 0.5. (Critical value of Watson’s U2
(0.05,∞,∞) = 0.1869; Appendix D, Table D.44)19.  

 

  p value U2 value 

Forelimb 
stepping 

Baseline vs 

Pre-DOX1 p>0.50 0.01735 
DOX1ON-D3 p>0.50 0.03821 
DOX1ON-D5 p>0.50 -0.03716 
DOX1ON-D8 p>0.50 0.06999 
All-DOX1ON p>0.50 0.00771 
DOXOFF p>0.50 0.02585 

Pre-DOX1 vs 

DOX1ON-D3 p>0.50 0.02560 
DOX1ON-D5 p>0.50 0.03907 
DOX1ON-D8 p>0.50 0.02254 
All-DOX1ON p>0.50 0.07072 
DOXOFF p>0.50 0.03725 

Hindlimb 
swimming 

Baseline vs 

Pre-DOX1 p>0.50 0.02585 
DOX1ON-D3 p>0.50 -0.96664 
DOX1ON-D5 p>0.50 -0.54443 
DOX1ON-D8 p>0.50 -0.48521 
All-DOX1ON p>0.50 -1.62815 
DOXOFF 0.02<p<0.05 0.20163 

Pre-DOX1 vs 

DOX1ON-D3 p>0.50 -1.3616 
DOX1ON-D5 p>0.50 -0.79496 
DOX1ON-D8 p>0.50 -0.92183 
All-DOX1ON p>0.50 -2.69285 
DOXOFF p>0.50 0.07581 

 

Table 4 
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Table 5. Disruption In Hindlimb Phase Did Not Correlate With Speed-Related Gait Parameters.  

Time point comparisons showed hindlimb phase did not significantly correlate with speed-associated gait measures 

such as stance, swing, and stride time as well as stride distance. All phase values >2 S.D. also did not significantly 

correlate with speed-related gait measures (averaged data; Pearson correlation with the Bonferroni adjustment for 

multiple comparisons to reduce the likelihood of Type I errors).  

 

 

 

 

 

 

 

 

 

 

 

 

  p value U2 value 

Forelimb 
stepping 

Baseline vs 

Pre-DOX1 p>0.50 0.01735 
DOX1ON-D3 p>0.50 0.03821 
DOX1ON-D5 p>0.50 -0.03716 
DOX1ON-D8 p>0.50 0.06999 
All-DOX1ON p>0.50 0.00771 
DOXOFF p>0.50 0.02585 

Pre-DOX1 vs 

DOX1ON-D3 p>0.50 0.02560 
DOX1ON-D5 p>0.50 0.03907 
DOX1ON-D8 p>0.50 0.02254 
All-DOX1ON p>0.50 0.07072 
DOXOFF p>0.50 0.03725 

Hindlimb 
swimming 

Baseline vs 

Pre-DOX1 p>0.50 0.02585 
DOX1ON-D3 p>0.50 -0.96664 
DOX1ON-D5 p>0.50 -0.54443 
DOX1ON-D8 p>0.50 -0.48521 
All-DOX1ON p>0.50 -1.62815 
DOXOFF 0.02<p<0.05 0.20163 

Pre-DOX1 vs 

DOX1ON-D3 p>0.50 -1.3616 
DOX1ON-D5 p>0.50 -0.79496 
DOX1ON-D8 p>0.50 -0.92183 
All-DOX1ON p>0.50 -2.69285 
DOXOFF p>0.50 0.07581 
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Table 6. Hindlimb Phase Versus Gait After Controlling For Speed.  

Part correlations were performed, where the relationship between phase and gait (e.g., stance time) was measured 

after controlling for the effect of speed on that gait variable. Hindlimb phase significantly correlated with stride 

distance at DOX1ON-D5 only. This represents approximately 2.8% of the total phase versus gait comparisons 

analyzed. All hindlimb phase values >2 S.D. did not significantly correlate with gait (averaged data; Part correlation 

with Bonferroni correction for multiple comparisons).  

Table 6 

 

  

 Stance time Swing time Stride time Stride length 

 
ry(2·1) 

value 
p value 

ry(2·1) 

value 
p value 

ry(2·1) 

value 
p value 

ry(2·1) 

value 
p value 

Baseline 0.663 0.223 0.766 0.131 0.862 0.060 0.842 0.073 
Pre-DOX1 -0.414 0.323 0.645 0.051 0.306 0.487 0.246 0.582 

DOX1ON-D3 0.025 0.965 -0.544 0.274 -0.801 0.342 -0.753 0.071 
DOX1ON-D5 -0.700 0.110 -0.809 0.261 -0.858 0.054 -0.867 0.027 
DOX1ON-D8 -0.961 0.072 -0.463 0.430 -0.669 0.215 -0.809 0.095 

DOXOFF -0.327 0.488 0.014 0.978 -0.284 0.553 -0.267 0.579 
Pre-DOX2 0.633 0.206 0.045 0.939 0.599 0.241 0.534 0.312 

DOX2ON-D3 -0.966 0.072 -0.557 0.329 -0.852 0.067 -0.883 0.423 
DOX2ON-D5 -0.915 0.243 -0.744 0.146 -0.840 0.072 -0.930 0.180 

All phases 
>2 S.D. 

-0.039 0.827 -0.258 0.148 -0.140 0.436 -0.162 0.368 
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CHAPTER III 

 

LONG ASCENDING PROPRIOSPINAL NEURONS: A FLEXIBLE, CONTEXT-
SPECIFIC INTER-ENLARGEMENT NETWORK FOR LEFT-RIGHT 

ALTERNATION 

 

Introduction 

Locomotion is a fundamental behavior that allows animals to move in order 

to satisfy their needs, whether it is searching for food, escaping predators, or 

simply traversing through various environments. While the expression of 

locomotion starts within supraspinal centers, it is the spinal circuitry that ultimately 

effects patterned limb movements21. Indeed, the isolated spinal cord devoid of all 

supraspinal and sensory inputs can produce motor patterns indicative of 

stepping115.  

Stepping is defined by two principal features: rhythm and pattern25. Rhythm 

is the master regulator of locomotion, defining the underlying frequency at which 

all movements occur116. Pattern is the expression of this rhythm, taking the form 

of both intralimb and interlimb coordination25. Together, these core features of 

locomotion are produced by neuronal networks that are collectively called the 

central pattern generator (CPG)25. Within the spinal cord, the cervical and lumbar 

enlargements serve as CPG hubs that govern fore- and hindlimb stepping,
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respectively110,115,117. Therefore, it is the neural circuitry within these enlargements 

that expresses patterned limb movements that are indicative of the locomotor 

gaits17. In addition to coordinating the actions at each girdle independently, 

quadrupedal mammals must also coordinate between them118-120. Two intraspinal 

pathways are anatomically well-suited to facilitate forelimb-hindlimb coordination: 

the long descending and long ascending propriospinal neurons115,118,119,121,122.  

Long descending propriospinal neurons (LDPNs) reside within the cervical 

enlargement and send projections caudally to innervate the lumbar 

enlargement123-126. Initial electrophysiological studies performed in the cat 

suggested that this descending system is critically involved in postural control as 

it relays proprioceptive inputs from the head and neck down to the hindlimb motor 

pools125. A recent study by Ruder and colleagues further elaborated on these 

findings127. Here, they showed that the selective ablation of cervico-lumbar 

projections resulted in diminished “coherent locomotion.” Specifically, animals had 

postural instability, a reduction in the maximum speed during overground stepping, 

and impaired interlimb coordination at increased velocities on the treadmill127. 

These studies suggest that the descending, inter-enlargement system is primarily 

involved in maintaining postural control, and to some extent interlimb coordination, 

but perhaps only when the animal is pushed to step faster. 

Long ascending propriospinal neurons (LAPNs) are the “reciprocal” 

pathway to LDPNs with their cell bodies residing in the lumbar enlargement and 

their terminal field throughout the cervical enlargement123,126,128. This 

heterogeneous pathway is comprised of ipsilateral and commissural projections 
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that provide excitatory as well as inhibitory inputs onto neurons throughout the 

cervical gray matter, including motor neurons121,123,126,129-131. What role this 

pathway plays during locomotion remains unknown. Here, we set out to determine 

the consequences of silencing this ascending inter-enlargement network during 

overground locomotion in the alert and behaving adult rat. In light of the anatomical 

underpinnings of this neural circuit, we hypothesized that silencing LAPNs would 

disrupt hindlimb-forelimb coordination during overground locomotion.  

Materials and methods 

Experiments were performed in accordance with the Public Health Service 

Policy on Humane Care and Use of Laboratory Animals, as well as the Institutional 

Animal Care and Use and Institutional Biosafety Committees at the University of 

Louisville. These experiments utilized the Kentucky Spinal Cord Injury Research 

Center Neuroscience core facilities that are supported by P30 GM103507. 

A total of N=37 adult, female, Sprague-Dawley rats (200-220g) were used 

in this study. Animals were housed two per cage under 12 hour light:dark cycle 

with ad libitum food and water. Power analysis of previous silencing experiments 

revealed that N=6 was sufficient to detect a significant difference with 90-99% 

power. Data shown represent two separate experiments, each N=6 and N=7. 

Experiments were performed in a staggered fashion separated by one month. 

Therefore, while the first group was undergoing DOX2 testing the second group 

was performing DOX1 testing. No significant differences were detected between 

the two groups. Data shown are from the total N=13.  
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Viral vector production 

Dr. Tadashi Isa and colleagues generously provided the plasmid vectors80. 

The HiRet-TRE-EGFP.eTeNT and AAV2-CMV-rtTAV16 viral vectors were built 

following previously described methods89,90 with viral titers of 1.6x107 vp/ml and 

4.8x1012 vp/ml, respectively.  

Intraspinal injections to double infect L2-C6 interneurons 

N=13 rats were anesthetized with sodium pentobarbital (50 mg/kg, i.p.) and 

received a C6-C7 laminectomy to expose spinal C6. Clamps were applied to the 

spinous processes to stabilize the vertebral column. Intraspinal injections were 

performed following previously described methods123. A total of four HiRet-TRE-

EGFP.eTeNT injections were performed. Injections were bilateral with 0.5 µl per 

site, separated by1.5 mm rostrocaudally. Each injection targeted the intermediate 

gray matter (0.6 mm mediolateral, 1.3 mm dorsoventral) and were given in two, 

0.25 µl boluses. Three minute incubations after each injection were allotted to 

facilitate viral uptake. After the last injection, the incision site was sutured in layers 

with surgical staples applied to close the wound. Animals received standard post-

operative care, including gentamicin (20 mg/kg, s.c.), glycopyrrolate (0.02 mg/kg, 

s.c.), and lactated Ringer’s solution (10 c.c, s.c.). Prophylactic doses of gentamicin 

continued for 7 days and buprenorphine was given every 12 hours for the first 48 

hours post-surgery for pain management (10mg/kg, s.c.). Voluntary bladder 

control recovered within 24 hours post-surgery. 

One week later, animals were re-anesthetized with ketamine:xylazine (80 

mg/kg:4 mg/kg, i.p.) and received a T12 laminectomy to expose spinal L2. 
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Following the injection protocol used at the cervical spinal cord, animals received 

four injections of AAV2-CMV-rtTAV16 (0.6 mm mediolateral, 1.5 mm dorsoventral). 

After the incision site was closed, Yohimbine was given to reverse the effects of 

xylazine (0.1 mg/kg; i.m.). Standard post-operative care was followed with staples 

removed 7-10 days post-surgery. Post-surgery baseline testing began one month 

later.  

Experimental timeline  

Doxycycline hydrochloride (DOX, 15 mg/ml) was dissolved in sucrose water 

(3%) and provided ad libitum for 5-8 days. Approximate consumption volumes 

were recorded and replenished daily. Behavioral testing was performed prior to 

intraspinal injections (Baseline), post-surgery/pre-DOX administration (Pre-

DOX1), during DOX (DOX1OND1-D8), and one week post-DOX (DOXOFF). Testing 

was repeated one month later (Pre-DOX2, DOX2OND1-D5) to assess the 

reproducibility of functional changes. N=6 animals underwent vehicle control 

testing as well (4 days of sucrose water followed by behavioral testing). ControlAll 

reflects the combined data from the following time points: Baseline, Pre-DOX1, 

DOXOFF, and Pre-DOX2. Although no significant differences were detected 

between the Sugar control and all other control time points, we excluded this time 

point from the ControlAll grouping as the drinking solutions were different. DOXAll 

reflects the combined data from the following time points (unless otherwise noted): 

DOX1OND3, -D5, -D8 and DOX2OND3, and -D5.  

Animals were acclimated to stepping walkway prior to Baseline acquisition. 

All stepping behavior analyzed was spontaneous and volitional. Animals did not 
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receive positive or negative reinforcement training. The order in which animals 

were tested was random. It was impossible to fully blind experimenters to the study 

due to the overt changes in behavior during control versus DOXON time points. 

However, raters were blinded to animal-specific behavior across time points and 

behavioral tasks.  

Each animal served as its own control throughout the study. The justification 

for this approach are as follows: (1) surgeries are unique for each animal with 

regard to proportion of total L2-C6 interneurons silenced, (2) the silencing 

technique endows inherent variability in transgene expression across animals, and 

(3) each animal has unique behavioral characteristics (ipso facto, inter-animal 

variability). Data shown are control versus experimental (DOXON) time point 

comparisons for the total N=13. 

Three-dimensional hindlimb kinematics and intralimb coordination 

Hindlimb kinematic analyses were performed following previously described 

methods92,132. To summarize, prior to Baseline we marked the skin overlying the 

anterior rim of the pelvis (iliac crest; I), head of the greater trochanter (hip; H), 

lateral malleolus of the ankle (A), and the metatarsophalangeal joint of the toe (T). 

This allowed us to describe hindlimb movements with three segments (I-H, H-A, 

A-T) and two angles (I-H-A, H-A-T). High speed (100 frames/second) video 

recordings were performed as animals freely stepped in a custom built plexiglass 

walkway tank. Videos were acquired from two sagittal and one ventral viewpoints. 

Recordings were analyzed using MaxTraq, MaxMate, and MaxTraq3D software 

(Innovision Systems; MI, USA).  



 

78 
 

A minimum of two stepping passes (8-10 stride cycles) per hindlimb (left 

and right) were analyzed for each animal across all time points. Locomotor bouts 

that were analyzed met the following criteria: (1) animals stepped for approximately 

three-fourths the length of the tank, which is one meter, (2) animals stepped 

continuously with no distracted behavior, (3) there were minimal lateral deviations 

during stepping, and (4) were representative of each animal’s overall behavior at 

that specific time point.  

The mean peak, trough, and excursions of the proximal (iliac crest-hip-ankle 

angle, IHA) and distal (hip-ankle-toe angle, HAT) hindlimb segments were 

analyzed for each limb, respectively, across all time points. Data shown in Figure 

22 are the mean ± S.D. for N=13 at ControlAll and DOXAll time points, respectively. 

Individual time point data is shown in Figure 30 (supplementary to Figure 22). To 

calculate intralimb coordination between the two joint angles, the time of peak IHA 

was divided into the peak-to-peak HAT cycle time. These values (ranging from 0 

to 1) were plotted on a circular graph (Figure 22) wherein 0 denotes normal 

coordinated movements between the limb segments.  

Volitional overground gait analyses  

The timing of paw contacts and lift offs were analyzed from ventral 

recordings. Following the previously defined criteria, a minimum of four passes (or 

approximately 8 step cycles) were analyzed per animal across time points.  

To quantify interlimb coordination, the initial contact time of the one limb 

was divided into the length of time for one complete stride cycle of a reference 

limb. This coordination (or phase) value, which ranges from 0 to 1, describes the 
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temporal relationship between the limbs. Phase values are plotted on a circular 

graph wherein 0/1 indicates in-phase (synchrony) movements while 0.5 denotes 

out-of-phase (alternation). For example, hindlimb coordination was calculated by 

dividing the time of left limb initial contact into the right limb stride cycle duration. 

Similar approaches were taken to calculate left-right forelimb coordination (right 

reference), ipsilateral hindlimb-forelimb coordination (hindlimb reference), and 

diagonal hindlimb-forelimb coordination (hindlimb reference).  

Freely stepping animals present with two main concerns regarding analysis 

of interlimb coordination. First, there is inter- and intra-animal variability in lead limb 

during stepping. To account for these variances, we normalized the circular 0-1 

phase data by transforming it to a linear scale. For limbs that typically move in-

phase during the walk-trot gait (e.g. diagonal hindlimb-forelimb), coordination 

values >0.5 were converted to the reciprocal <0.5. Limbs that typically move out-

of-phase (e.g. left-right hindlimbs), coordination values <0.5 were converted to the 

reciprocal >0.5. Therefore, limb pairs that stereotypically move simultaneously are 

now plotted on a scale of 0.0 (normal in-phase) to 0.5 (out-of-phase) and pairs that 

move alternatingly are now on a scale of 0.5 (normal out-of-phase) to 1.0 (in-

phase).  

The second concern regarding freely stepping animals is the natural 

variability in relative “accuracy” or precision of coordination. To quantify silencing-

induced changes in interlimb coordination beyond this normal variability observed, 

we calculated the average coordination value for all control time points for each 

limb pair. From this value we next set a control threshold (average + 2 standard 
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deviations). Any value that is below this threshold can be attributed to normal 

variability observed during overground stepping while any value above is 

considered “irregular” or altered. The proportion of phases beyond this control 

threshold were compared across time points for the limb pairs.  

To determine the magnitude change in interlimb coordination during 

silencing (Figure 18), we first calculated each animal’s number of altered steps (>2 

S.D. beyond control average) for ControlAll and DOXAll time points for the following 

limb pairs: right and left forelimb, right and left hindlimb, right homolateral limb pair 

(hindlimb-to-forelimb), and right hindlimb-left forelimb pair (note: only DOX data is 

shown). After calculating the total number of altered steps for each animal, we then 

calculated each animal’s percent of total disrupted steps that were observed in left-

right limb pairs or hindlimb-forelimb. 

The group peak effects were calculated as follows. First, we determined the 

DOXON time point that each animal showed peak changes to interlimb 

coordination. Thereafter, we stratified the animals into either DOX1 or DOX2 

categories and then performed the comparisons (see statistics section below). One 

animal did not show changes in left-right hindlimb coordination (Figure 18, black 

circles), but did have silencing-induced perturbations to left-right forelimb and 

contralateral hindlimb-forelimb coordination.  

To determine if there was a “preferred” altered coupling pattern expressed 

during silencing (Figure 26), we calculated the frequency of disrupted steps for the 

whole group that fell within discrete ranges of left-right coordination values (e.g., 

[≤0.05], [>0.05,≤0.10], [>0.10, ≤0.15], etc; raw 0-1 phase values). The frequency 
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is expressed as a percent of the total altered coupling patterns observed (top 

panel: forelimbs; bottom panel: hindlimbs). We then calculated the regression of x 

(binned phase ranges) on y (frequency of observation for each bin) to determine 

the line of best fit and compare the slopes between the “forelimb quadrants” (top 

lefts versus right slopes) and “hindlimb quadrants” (bottom left versus right slopes). 

There was no preferred coupling pattern in the altered hindlimb steps. The 

forelimbs did have two preferred coupling patterns during silencing. These 

preferred patterns were closely juxtaposed to the control threshold ([>0.40, ≤0.45], 

[>0.65, ≤0.70]) and were not significantly different from each other.  

Per-step changes in interlimb coordination were calculated from raw 0-1 

phase values (Figure 19). These data reflect the absolute difference in 

coordination with each step for all animals across all time points. Any value >2 S.D. 

from the control mean change is plotted in the shaded area (hindlimb mean=0.043, 

S.D.>0.113; forelimb mean=0.066; S.D.>0.131). To determine the proportion of 

steps that had per-stride changes of ≤0.1 versus >0.1, we first calculated each 

animal’s total number of steps where the per-step change in coordination was 

between 0.0-0.10 or >0.10 (ControlAll and DOXAll, respectively). Then, from each 

animal’s grand total of steps analyzed, we determined what percent had per-step 

changes in coordination that were ≤0.1 or >0.1. Data shown are comparing the 

group averages ± S.D. (bars) with individual averages overlaid on top (circles). The 

ratio of hindlimb-to-forelimb steps taken was calculated following previously 

described methods133. Data shown are from calculating each animal’s stepping 

index at ControlAll and DOXAll time points, respectively.  



 

82 
 

Phase-frequency polar plots were created in SigmaPlot (Figure 20) with 

each concentric circle set to 2 Hz increments (inner most: 0 Hz, outer most: 10 

Hz). All steps analyzed (ControlAll, N=480; DOXAll, N=600) were plotted for the raw 

left-right coordination value and its associated step frequency value. The dashed 

circle denotes a 5 Hz threshold at which virtually all ControlAll steps fell within 

(forelimbs: 99.8% all steps; hindlimbs: 100%). Yellow circles denote individual 

steps that deviated beyond control variability for the forelimbs and hindlimbs, 

respectively. Data were compared for the circular dispersion as described below 

(statistics section).  

The underlying rhythm indices were analyzed as follows (Figure 20). For 

the mean stride frequency and durations, we first established that there was no 

significant side effects during ControlAll and DOXAll time points, respectively. 

Thereafter, we calculated each animal’s ControlAll and DOXAll average stride 

duration and frequency to then between the time points for the fore- and hindlimbs, 

respectively. We also compared between the limb pairs for ControlAll and DOXAll 

as well (bars: group mean ± S.D.; circles: individual means). Regression and slope 

analyses were also performed (comparing CON vs DOX) on the following 

comparisons: left versus right forelimb stride duration, left versus right forelimb 

stride frequency, left versus right hindlimb stride duration, left versus right hindlimb 

stride frequency, forelimb versus hindlimb stride duration, and forelimb versus 

hindlimb stride frequency. The inter-girdle comparisons had the left and right limb 

pairs averaged together before hindlimb versus forelimb analyses.  
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We also calculated each animal’s average stance and swing durations as 

well as stride length for the left and right limb pairs (fore- and hindlimbs, 

respectively) across all time points. Group comparisons were made for ControlAll 

versus DOXAll with and without speed as a co-variate (Figure 21). Regression and 

slope analyses were performed as described above. To compare the proportion of 

steps that occurred at speeds ≤90 cm/s versus >90 cm/s, we binned the steps into 

speed ranges and calculated each animal’s average for all DOXON steps as well 

as for the altered steps alone. 

Balance, posture, and trunk control assessments 

Base of support 

We assessed balance, posture, and trunk control through a series of 

“intensity” graded tasks. First, we analyzed the base of support during overground 

locomotion. We focused our analyses to the hindlimbs alone as this is where the 

major propulsive forces for locomotion are generated. To do this, we used a three-

point angle analyses to quantitatively describe the rotation of the hind paws at 

initial contact (point 1: area between shoulder blades, 2: groin, 3: hind paw position 

at initial contact). We chose to use the initial contact instead of lift off as there is 

some normal rotation of the paw as weight is differentially transferred to the 

hindlimb throughout the stance phase. To quantitatively describe paw rotations on 

a step-by-step basis, digitized all three points (1 [between shoulder blades] – 2 

[groin] – 3 [base of paw]) thereby creating an angle. The degree of paw rotation 

could then be used to quantitatively describe the base of support. The left and right 

hindlimbs were analyzed individually.  
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Ladder 

Next, we quantified the animals’ ability to effectively traverse a ladder with 

fixed-spacing rungs (Columbus Instruments)134,135 (Figure 23). Behavioral testing 

was performed at Baseline, Pre-DOX1, DOX1ON-D4, DOX1ON-D8, DOXOFF, Pre-

DOX2, DOX2ON-D4, and DOX2ON-D5. Each animal received five stepping trials. 

The total number of footfalls were calculated for the left and right hindlimbs, 

respectively, for each animal across the time points. We then calculated the each 

animal’s average number of foot slips during the Control and DOX time points 

listed above. After determining no statistical difference between the left and right 

hindlimbs, we combined the trials for the left and right limbs and determined each 

animal’s average for Control and DOX, respectively. Statistics were performed on 

the group means (bars: average ± S.D.; circles: individual means overlaid). There 

was one outlier in the data set (red circle; >4 S.D.). Excluding the outlier from 

analyses did not change the results (Control mean: 3.33±2.4 with outlier, 

2.70±1.02 without outlier; both p<0.001 when compared to DOX [1.09±0.54]).  

Beam  

We also assayed each animals’ ability to maintain balance, posture, and 

trunk control while stepping on a 1.8 cm wide beam136 (Figure 23). Animals 

traversed the beam for three trials during the following time points: Baseline, Pre-

DOX1, DOX1ON-D3, DOX1ON-D5, DOX1ON-D8, DOXOFF, Pre-DOX2, DOX2ON-D3, 

and DOX2ON-D5. We calculated the total number of foot slips from each trial per 

animal per time point for the left and right hindlimbs, respectively. After detecting 

no significant difference between the left and right sides, we combined the trials 
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for both hindlimbs and calculated the average for Control and DOX, respectively, 

for each animal. Statistics were performed on the group means. There were three 

outliers in the data set (one animal at Control and DOX, a second animal at DOX). 

When we excluded these animals from the beam dataset, we saw similar results 

(including outliers: ControlAll: 4.38±3.07 vs DOXAll: 5.46±3.38; p=0.27; excluding 

outliers: 3.55±2.34 vs 4.4±2.54; p=0.41).  

Spontaneously-evoked rearing events  

Sagittal recordings of animals in the stepping chamber were analyzed for 

volitional rearing (Figure 23). We defined rearing as when the animal fully 

supported itself on its hindlimbs only (grooming events excluded). We defined the 

onset of rearing as when the animal removed its last forepaw from the ground 

(removal of all digits). The completion of the rearing event was defined as when 

the forepaw returned to the ground. As such, we quantified all spontaneously 

expressed rearing events based on both frequency and duration. To stratify the 

rearing events based on the level of forepaw support, we documented the onset 

times of when the forepaw contacted the side of the plexiglass chamber, came into 

visual focus, and demonstrated weight bearing through spreading of fingertips and 

postural adjustments. The completion of forepaw support was defined as when the 

paw was removed from the glass as seen by postural movements, blurring of the 

hand, and narrowing of the fingertips. As such, we could define the degree of 

forepaw support by both frequency and duration of the events. Any event where 

the forepaws were out the field of view were excluded from analysis. 
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Trunk angle during swimming 

In what we consider to be the most challenging task for maintaining trunk 

control, we assessed the angle at which the animals held their bodies relative to 

the water (this principal is illustrated in Figure 23). Using four-point angle analysis, 

we were able to measure the angle of the trunk on a stroke-by-stroke basis 

throughout the swimming pass (points 1 and 2: water surface [left and right 

extremes of the videos], 3: iliac crest; 4: hip). Data shown from Pre-DOX1 and 

DOX1ON-D5 with a total of N=3,892 and 3,981; N=4,866 and N=5,654 trunk angles 

analyzed, respectively, for left and right sides. Data shown are the group means ± 

S.D. 

Quantitative analyses of volitionally-expressed locomotor gaits 

In order to interpret our silencing data with respect to the traditional 

locomotor gaits, we had to devise a strategy that would allow us to record and 

quantify animals that volitionally expressed the higher frequency gaits (e.g., gallop, 

bound) during overground stepping. To do this, we built a custom “long tank” with 

the following dimensions (length x width x height): 305 cm, 30.5 cm, and 14 cm. 

The tank was supported by three A-frame sawhorses. Four high speed video 

cameras (200 Hz) were evenly spaced below the tank, all mounted to a wooden 

block.  

N=12 naïve adult female Sprague Dawley rats (200-220 g) were used to 

generate normal gait data. Animals were handled by the experimenters (“gentling”) 

and exposed to food reward three to four days before being introduced to the tank. 

After the initial introduction phase where the animals explored the tank, they 
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underwent positive reinforcement training to ensure that they consistently and 

repeatedly stepped across the entire length of the track (no pauses, hesitations, or 

bouts of exploration). Animals were trained twice a day for one week and once a 

day for the following week prior to the start of video acquisition. To train the 

animals, we performed the following regimen. First, two experimenters were 

positioned at either end of the tank. To start, one trainer would create a sound 

(gently tapping the side of the tank or lightly rubbing two gloved fingers back and 

forth). Animals typically stepped towards the side of the stimuli where they received 

a food reward. Thereafter, the second experimenter would provide auditory stimuli 

and the animal would turn around to fully traverse the tank again to receive another 

food reward. No food reward was given if the animal did not successfully complete 

one pass start to finish.  

Data shown are from seven separate recording sessions that were spread 

out over a fourth month period. Food rewards were not given during the video 

recording sessions. However, the experimenters did provide the auditory stimuli 

that the animals were accustomed to during training. Videos were acquired at 200 

frames per second with approximately four to six stepping passes recorded per 

animal per time point. In order to “stitch” together the multiple cameras such that 

all steps could be accounted for across the length of the tank, we used the following 

strategy. First, we arranged the cameras such that the fields of view (FOV) 

overlapped (e.g. camera 1-2, 2-3, 3-4). We placed two markers (between the first 

and second as well as the third and fourth cameras) to use as points of reference 

during video analysis. These points were copied to all videos such that the 
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stepping coordinates were integrated across the four individual files acquired (one 

per camera). Using these strategies, we had no missing frames or steps when 

animals stepped between the different FOVs. In order to prevent or “subtract out” 

digitization of steps that fell within two FOVs, we created a series of inter-camera 

markers throughout the length of the tank. We measured the distance between the 

start of the tank to each of these markers and quantified these points during video 

analysis. Thereafter, we developed a custom macro that would detect these 

digitized inter-camera markers to then filter out the “extra digitizing” between two 

overlapping FOVs. These processes were also repeated for cameras three and 

four. Each camera has a 5 cm scale visible, allowing us calibrate the video files 

using the MaxTRAQ scale feature. Within our macro, we created a pixel-to-cm 

conversion factor that allowed us to reliably measure the various spatiotemporal 

indices of locomotion. Altogether, this experimental design allowed us to stitch 

together multiple videos for seamless step analyses.  

Our silencing experiments were performed separate from the long tank, 

stereotypic gait study. There are two key justifications for performing these studies 

separately. First, in the long tank paradigm, we used food reward as a tool to 

encourage the animals to volitionally express the faster gaits. These gaits are 

volitional in the sense that the animals are not placed on a treadmill and “forced” 

to step a fast rates of speed. During silencing, we did not want to confound our 

results by “encouraging” the expression of distinct coupling patterns. Instead, we 

wanted to assess how the nervous system would intrinsically respond to the 

functional loss of LAPNs without influence from the experimenters. Second, it is 
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unknown if the underlying neural circuitry that governs the two behavioral 

conditions (normal expression without training versus positive reinforcement 

training via food reward) are similar or different. How could we interpret the 

silencing-induced changes in interlimb coordination if the animals also received 

training to express different coupling patterns (e.g. gaits)? Therefore, we opted to 

keep the two groups separate (silencing group vs long tank gait group). Instead, 

we used the long tank stereotypic gait data as a conceptual framework to help us 

interpret our silencing dataset.  

Our defining criteria for the distinct locomotor gaits are based off of 

previously described coupling patterns17.  In our analyses, we did not distinguish 

between the two alternating gaits: walk (three limbs in contact with the ground) and 

trot (two limbs in contact with the ground at any moment). 

Swim phase analysis 

After stepping assessments, the walkway tank was filled with 7-8 inches of 

water and swim assessments were performed following previously described 

methods93. Briefly, a high-speed camera was placed 18 inches in front of the tank 

to record animals as they swam towards an exit ramp. A minimum of 4 passes per 

side (left and right) were analyzed per animal per time point following criteria 

described above. Each pass was approximately 6 complete stroke cycles. To 

determine the hindlimb phase relationship during swimming, peak downward 

extension of the left and right hindlimb toes were digitized. The time of peak 

downward extension of the left toe was divided into the length of time for one 

complete stroke cycle of the right hindlimb (refer to Figure 31). These values, 
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ranging from 0 to 1, were transformed as described above and the proportion of 

phase values >2 S.D. from the control threshold were compared across time 

points.  

Viral tissue processing and EGFP.eTeNT immunohistochemistry 

Following terminal assessments, animals were sacrificed at DOX2ON-D5 

with an overdose of sodium pentobarbital. Animals were transcardially perfused 

with 0.1 M PBS (pH 7.4) followed by 4% paraformaldehyde (PFA). Thereafter, 

spinal cords were dissected, post-fixed in 4% PFA for 1 to 3 hours, and transferred 

to 30% sucrose for 3-4 days at 4ºC. The cervical and lumbar injection sites were 

dissected, embedded in tissue freezing medium, cryosectioned at 30 µm in 5 sets, 

and stored at -20ºC. 

Immunofluorescent detection of EGFP.eTeNT-positive terminals at C6 was 

performed following previously described methods137. Antibodies used include the 

following: rabbit anti-GFP (abcam ab290, dilution of 1:5,000) and guinea pig anti-

NeuN (Millipore ABN90P, dilution of 1:500). Negative controls include non-immune 

sera matched for protein concentration and dilution (donkey anti-rabbit IgG; 

Jackson ImmunoResearch #711-005-152, dilution of 1:5,000). Secondary 

antibodies were used at a dilution of 1:200 and included the following: anti-rabbit 

AlexaFluor 488 and -guinea pig AlexaFluor 594 (Jackson Immunoresearch). 

Images were captured on an Olympus FluoView 1000 confocal microscope using 

the oil immersion 100x objective with 488, 594, and 647 lasers. Z-stacks acquired 

ranged from 53-68 slices with each optical step 0.4 µm in depth. Raw .oif files were 

imported into Amira 3D software for volumetric rendering and three-dimensional 
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rotation to assess density and distribution of EGFP.eTeNT-positive terminals 

throughout the gray matter.  

Neurons were detected using the Millipore IHC Select DAB kit (DAB500, 

Millipore). The protocol designed for the kit was followed apart from the following 

modifications. Slides were warmed at 66ºC for 30 minutes, post-fixed in 4% PFA 

for one hour at 4ºC, and then briefly rinsed in 0.1 M PBS. The blocking, secondary 

antibody, and streptavidin HRP steps were 30 minutes in duration. The chromagen 

reaction lasted 10 minutes. Primary antibodies used included rabbit anti-GFP at 

1:40,000 to amplify endogenous eTeNT.EGFP signal and a concentration and 

dilution-matched isotype control (donkey anti-rabbit IgG; Jackson 

ImmunoResearch #711-005-152, dilution of 1:40,000). Images were taken on a 

Nikon Eclipse microscope using a Spot RT CCD digital camera with the DIA-ILL 

filter at 4x, 10x, 20x, and 40x magnifications.  

Statistical analyses 

Statistical analyses were performed using the SPSS v22 software package 

from IBM. Additional references for various analyses were also used103-107,138. 

Differences between groups were deemed statistically significant at p≤0.05. Two-

tail p values are reported. 

The Binomial Proportion Test was used to detect significant differences in 

the proportion of coordination values beyond control threshold for the raw (not 

shown) and transformed interlimb coordination data of various limb pairs. It was 

also used to detect a significant group peak effect (DOX1 vs DOX2), per-step 

changes in left-right coordination and stride durations (beyond control thresholds), 
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the interaction between altered coupling patterns, testing for the preferred “altered” 

forelimb coupling pattern during silencing, and the stroke-by-stroke changes in 

hindlimb coordination as well as stroke cycle durations (beyond control variability).  

Circular statistics performed on the stepping inter- and intralimb 

coordination datasets as well as the swimming hindlimb coordination data103. We 

primarily used the non-parametric two-sample U2 test for the following rationale. 

Typically, parametric tests are performed to determine whether the data has a 

uniform distribution103,138. Importantly, these analyses are based on strict 

assumptions that the distribution is restricted to two patterns: uniform or 

unimodal103,138. Our data do not fit these criteria (e.g. differences in lead limb and 

natural intra- and inter-animal variability in interlimb coordination). Moreover, the 

various control time points (Baseline, Pre-DOX1, DOXOFF, Pre-DOX2) do not have 

unimodal distributions with the exact same degree of concentration. Therefore, we 

used non-parametric two-sample U2 test. This tests the null hypothesis that two 

time points have the same concentration (or phasic direction). The length of vector 

r denotes the amount of concentration of phases in a single direction37. The 

average r value was calculated for all control and DOXON time points, respectively, 

and compared using the independent t-test between means of equal variance. This 

approach was also used to detect significant differences in the amount of circular 

variance in the coordination date (angular deviation, value s).  

Spearman Rank correlations were performed on the speed versus 

spatiotemporal gait indices for the forelimbs and hindlimbs during ControlAll and 
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DOXAll, respectively. These comparisons included speed versus stance, swing, 

and stride durations as well as the stride length and frequency.  

Regression analyses to compare the slopes for the lines of best fit were 

performed on the speed versus spatiotemporal gait indices datasets (ControlAll vs 

DOXAll for forelimbs and hindlimbs, respectively, as well as between the limb pairs). 

Regression and slope analyses were also performed to test for preferred coupling 

patterns in the altered stepping datasets as well as comparing the left versus right 

fore- and hindlimb step frequency and durations as well as comparing between the 

two girdles. 

Mixed model analysis of variance (ANOVA) Bonferroni post hoc t-tests were 

used to detect a significant difference in the peak, trough, and excursion of the 

proximal and distal hindlimb segments for range-of-motion analyses.  

Repeated measures ANOVA with speed as a co-variate were used when 

comparing ControlAll vs DOXAll stride, swing, and stance durations for the fore- and 

hindlimbs as well as between the girdles. Sidák post hoc t-tests were used when 

appropriate. 

Multivariate analysis of variance (MANOVA) with speed as a co-variate 

followed by Sidák post hoc t-tests were used when comparing the mean stride 

frequencies and durations for ControlAll vs DOXAll for the fore- and hindlimbs as 

well as between the two girdles. These analyses were also used when comparing 

the average stride durations of the left and right forelimbs and hindlimbs, 

respectively, over time (9 total time points, excluding Sugar control) as well as 

within the individual time points.  
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Repeated measures ANOVA without speed as a co-variate were performed 

when comparing the mean stride durations between the fore- and hindlimbs within 

the individual time points.  

Paired t-tests were used to detect significant differences in: (1) the 

magnitude change in interlimb coordination during silencing, (2) the proportion of 

steps with per-stride changes that were ≤0.1 or >0.1, (3) the hindlimb:forelimb step 

index, (3) when comparing the percent of DOXON steps that were ≤90 cm/s versus 

>90 cm/s as well as (4) for the altered steps alone, (5) when comparing the base 

of support, (6) average number of foots slips on the ladder (7) and beam (8), (9) 

the frequency and (10) duration of spontaneously expressed rearing events, (11) 

the trunk angle during swimming, and (12) when comparing the swing-stance 

durations within speed categories of ≤90 cm/s or >90 cm/s for the fore- and 

hindlimbs, respectively, at ControlAll and DOXAll. 

Levene’s Test for Equality of Variances were performed to test for a normal 

distribution within the interlimb coordination datasets. Notably, at control time 

points (e.g. Baseline) the coordination data has a non-normal distribution as phase 

values will naturally concentrate towards one value (e.g. 0.5 for left-right alternation 

in the hindlimbs).  
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Results 

Silencing LAPNs selectively disrupts contralateral hindlimb-forelimb 

movements while preserving ipsilateral hindlimb-forelimb coordination 

during overground locomotion 

To test this hypothesis, we used a dual virus system originally developed 

by Dr. Tadashi Isa and colleagues that permits the functional dissection of 

anatomically-defined pathways independent of cell-specific promoters80. Using this 

system, we targeted both ipsilateral and commissural LAPNs for conditional 

silencing in the adult rat spinal cord. We performed bilateral injections of HiRet-

TRE-eTeNT.EGFP (“eTeNT”) and AAV2-CMV-rtTAV16 at the caudal cervical and 

rostral lumbar enlargements, respectively (Figure 16a). In double infected 

neurons, ad libitum doxycycline (DOX) induces eTeNT expression within the cell 

body (Figure 16b). eTeNT is then anterogradely transported to the terminal field 

where it suppresses neurotransmission through the blockade of synaptic vesicle 

exocytosis (Figure 16b, bottom panel). Longitudinal assessments were performed 

over three and a half months (Figure 16c) with a total of five control time points 

(gray) and two rounds of conditional silencing (red) that were separated by a one 

month washout period. We also performed a vehicle control to account for the 

effects of sucrose water consumption on locomotor behaviors (DOX is dissolved 

in 3% sucrose solution; “Sugar control,” SC). A total of N=13 female Sprague 

Dawley rats were used in this silencing study with each animal serving as its own 

control (see methods for rationale).   
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Before we begin to tease out the effects of silencing LAPNs on hindlimb-

forelimb coordination, we first need to consider the normal temporal relationship 

between the pelvic and shoulder girdles during stereotypic locomotion. There are 

two patterns of hindlimb-forelimb movements: ipsilateral and contralateral. 

Ipsilateral hindlimb-forelimb coordination describes movements of limbs on the 

same side of the body (Figure 17a, e.g. red=right hindlimb-forelimb movements). 

Contralateral hindlimb-forelimb movements describe the diagonal stepping 

patterns observed across the two girdles (e.g., blue=left hindlimb-right forelimb). 

Together with the left-right movements observed at each girdle, these coordination 

patterns are the defining features of the classic locomotor gaits (Figure 17a-c) 

(Figure 24, supplementary to Figure 17). 

Interlimb coordination is expressed as a ratio and is calculated by dividing 

the initial contact time of one limb by the stride time of a reference limb17. For 

example, to measure ipsilateral hindlimb-forelimb coordination, the initial contact 

time of the right forelimb (Figure 17a, RFL, dashed red line, open red triangle) is 

divided by the stride time of the right hindlimb (RHL, filled red triangles=start/end 

of one complete stride cycle). These phase values, which range from 0 to 1, are 

plotted on a circular graph to illustrate the interlimb coordination for distinct limb 

pairs (Figure 17a-c, circular graphs). In the slower gaits such as walk and trot, 

ipsilateral hindlimb-forelimb movements are out-of-phase, or alternating (Figure 

17a, circular graph, red near 0.5; Figure 24, supplementary to Figure 17). 

Conversely, contralateral hindlimb-forelimb movements are in-phase, or 

synchronous (Figure 17a, blue near 0/1). As animals increase their speed and 
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switch from a walk-trot to gallop gait, contralateral hindlimb-forelimb movements 

undergo a phase shift to where the limbs are moving with increased overlap 

(Figure 17b, dashed blue box, phase plot=0.25/0.75; Figure 24, supplementary to 

Figure 17) as compared to strict out-of-phase movements. Ipsilateral hindlimb-

forelimb movements continue to move out-of-phase (red at 0.5). At maximal 

speeds animals switch to the full bound wherein both ipsi- and contralateral 

hindlimb-forelimb movements are out-of-phase (Figure 17c, circular plot, 

red/blue=0.5; Figure 24, supplementary to Figure 17).  

In this study, we focused on exploring the functional consequences of 

silencing LAPNs during overground locomotion. This task presents with unique 

challenges, including but not limited to inter- and intra-animal differences in 

preferred lead limb as well as intrinsic variability in interlimb coordination12. 

Therefore, to determine how silencing affects hindlimb-forelimb coordination 

beyond these normal variances, we performed a series of phase transformations 

and control thresholding. First, to account for the influence of differing lead limbs, 

we transformed the raw ipsilateral and contralateral hindlimb-forelimb phase 

values (Figure 17d, f). As ipsilateral hindlimb-forelimb movements are typically out-

of-phase, we converted any phase value that was from 0 to 0.5 to its reciprocal 0.5 

to 1 value (Figure 17d). Therefore, interlimb coordination values concentrated at 

0.5 indicate normal alternating movements while values at 1 denote synchronous 

stepping of the ipsilateral limbs, a trait of the pacing or racking gait119. The 

converse phase transformation was performed for the contralateral hindlimb-

forelimb movements such that phase values range from 0 (normal, in-phase 
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movements for the walk-trot gait) to 0.5 (out-of-phase movements for the bound 

gait) (Figure 17f). After controlling for the variability in preferred lead limb, we next 

wanted to define a set of criteria upon which we could decipher between normal 

variability associated with overground stepping and the silencing-induced 

changes. To do this, we calculated the average coordination value of the four 

control time points (BL, PD1, DOFF, PD2) for each limb pair, respectively. 

Thereafter, we set the coordination value that was two standard deviations beyond 

this mean as the “control threshold.” Any phase value that is below this threshold 

represents steps that fell within normal variability associated with overground 

locomotion (Figure 17d-g, plotted in white regions). Phase values above this 

threshold, which are plotted in the shaded region, indicate that the stepping 

behaviors observed deviated beyond normal behaviors observed at control time 

points.  

At control time points, we saw that the ipsilateral and contralateral hindlimb-

forelimb pairs were moving in stepping patterns indicative of the walk-trot gait 

(Figure 17e,g) (Video 3). This is shown by the preponderance of steps that were 

out-of-phase for the ipsilateral limbs (Figure 17e, steps at 0.5 and within control 

variability) and the in-phase movements of the contralateral limbs (Figure 17g, 

steps at 0.0 and within control levels). When we silenced LAPNs, the locomotor 

walk-trot gait was disrupted. Instead, we saw the emergence of a spectrum of 

stepping behaviors that ranged from mild perturbations in hindlimb alternation to 

synchronous-like movements at the fore- and hindlimbs, respectively (Video 4).  
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Interestingly, these overt changes in the stepping behaviors explicitly 

affected one form of hindlimb-forelimb coordination. Apart from one stepping pass 

were we saw evidence of pacing (DOX1ON-D5 [D1D5], red circles near 1.0), 

silencing LAPNs did not affect the out-of-phase ipsilateral hindlimb-forelimb 

movements (Figure 17e). This is shown schematically in Figure 17i (red triangles). 

In contrast, we saw a significant disruption in contralateral hindlimb-forelimb 

movements (Figure 17g, right hindlimb-left forelimb shown). Instead of the limbs 

moving in-phase or at a slight phase-shift (within control variability), we saw a 

range of coordination values that encompassed in-phase movements, to 

asynchronous gallop-like movements (Figure 17b, blue = 0.25/0.75), all the way to 

out-of-phase movements (Figure 17c, 0/1) which were reflective of bounding 

(Figure 17i, blue triangles). These perturbations were observed for both pairs of 

contralateral hindlimbs and forelimbs (data not shown for the left hindlimb-right 

forelimb pair). Removing DOX from the drinking water restored normal 

contralateral hindlimb-forelimb movements and silencing one month later 

reproduced the effects (Figure 17g, DOFF through D2D5). Notably, giving animals 

sucrose water (vehicle control) did not change their interlimb coupling patterns, 

indicating that the changes observed are attributed to the silencing of LAPNs. 

Collectively, these data suggest that silencing ipsi- and commissural LAPNs 

selectively disrupts one pattern of hindlimb-forelimb coordination (contralateral) 

while preserving the other (ipsilateral).  
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Silencing LAPNs profoundly affects left-right alternation as compared to 

hindlimb-forelimb coordination 

Although silencing LAPNs did alter hindlimb-forelimb coordination, it is clear 

that left-right alternation of the fore- and hindlimbs was profoundly affected (Video 

5). Therefore, we set out quantify these perturbations observed within each girdle, 

respectively.  

During control time points, left-right alternation predominated at the 

shoulder (Figure 18b, forelimbs) and pelvic (Figure 18c, hindlimbs) girdles (gray 

circles concentrated at 0.5 and within control variability). This is indicative of a 

walk-trot gait where the two limbs are moving out-of-phase relative to one another 

(Figure 18a, bottom panel) (Figure 24, supplementary to Figure 18). Silencing 

LAPNs significantly disrupted this stepping pattern. Once again, we saw a 

spectrum of coordination values where the left-right fore- and hindlimbs were 

moving out-of-phase (alternation, 0.5) all the way to in-phase synchronous 

stepping (0/1) (Figure 18b,c). Together with changes observed in hindlimb-

forelimb coordination, it is clear that silencing LAPNs leads to the emergence of 

an interlimb coupling continuum. These data suggest that reversibly removing this 

pathway from the otherwise intact system unmasks incredible freedom to the 

locomotor circuitry, allowing the limbs to adopt a breadth of coupling patterns.  

To tease out which coupling pattern was most affected, we compared the 

magnitude of silencing-induced changes between the various limb pairs. It is clear 

that silencing LAPNs profoundly affected left-right movements at each girdle as 

compared to hindlimb-forelimb coordination (Figure 18d). Furthermore, when we 
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examined the interaction of all affected coupling patterns, we saw that the 

significant majority of disrupted hindlimb-forelimb movements were associated 

with left-right perturbations, but not vice versa (Figure 25, supplementary to Figure 

18). These results suggest that the primary consequence of silencing this inter-

enlargement pathway was the disruption to intra-girdle coupling, not the 

anticipated inter-girdle movements.  

Another surprising result was that it appears as though the silencing effects 

become more pronounced over time. When we identified the specific DOXON time 

point at which each animal showed peak changes in interlimb coordination, we 

saw that the significant majority had maximal disruption to left-right hindlimb 

stepping during the second round of silencing (DOX2, one month after DOX1) 

(Figure 18e). Similar trends were observed in both left-right forelimb and 

contralateral hindlimb-forelimb coordination, although they did not reach 

statistically significant levels. Complementary to this “additive” effect we observed 

when comparing DOX1ON to DOX2ON, we also observed a “ramping up” effect. 

Specifically, the proportion of altered steps significantly increased from one time 

point to next (e.g., DOX2ON-D3 to DOX2ON-D5; p<0.01).  

Together, these data reveal that silencing LAPNs profoundly affects left-

right coordination. Due to these overt changes, we believe that the disruptions to 

hindlimb-forelimb coordination are likely a “byproduct” of the affected left-right 

movements. Moreover, the effects of silencing LAPNs did not “wash out” over time. 

Instead, the disruptions became more severe. This suggests that the locomotor 
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circuitry could not compensate for the functional loss of LAPNs as if it could, then 

the effects would have been masked.  

The emergence of an apparent coordination continuum raises an interesting 

question: are these new coupling patterns the result of spontaneously-evoked 

shifts in left-right coordination? Or do they represent stable, albeit altered patterns 

of stepping that are now possible due to the limbs no longer being “fixed” in 

alternation?  

The silencing-induced perturbations to interlimb coordination represent 

stable, albeit irregular coupling patterns that are expressed within a fixed 

locomotor cycle  

To answer this question, we explored the dynamic coordination between 

the limbs on a step-by-step basis (Figure 19a-b, untransformed data). Within each 

individual stepping pass, we first determined the phase relationship between the 

left and right limbs for each stride taken (Figure 19a, step cycles 1-3 with right limb 

as reference). Thereafter, we calculated the absolute change in phase between 

two successive steps taken (Figure 19b, absolute changes shown in red and blue). 

These step-by-step changes in left-right coordination were then plotted for each 

step taken, per animal, across all time points. Any per-step change in coordination 

that deviated beyond control variability is plotted in the shaded region. The results 

shown are from left-right forelimb and hindlimb coordination, respectively (similar 

results were found for hindlimb-forelimb, data not shown).  

Prior to silencing, we saw small fluctuations in step-by-step coordination 

(Figure 19c,e, black vertical bars). This indicates that the limbs were stepping with 
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relatively high fidelity, indicative of a steady-state coupling pattern (left-right 

alternation). Surprisingly, the silencing-induced disruptions to left-right alternation 

were not due to spontaneous shifts in coordination. This is shown by the apparent 

lack of overt changes in step-by-step coordination (red bars within control 

variability). Instead, we saw that the significant majority of DOXON steps actually 

had very minor (≤0.1) per-step changes in left-right coordination, for both the 

forelimbs (Figure 19d) and hindlimbs (Figure 19f), respectively. Not only were 

these per-stride changes in coordination minor, but so were the step-by-step 

changes in stride duration, an indicator of the underlying locomotor rhythm (Figure 

19c,e, bottom panels).  

When we looked at the stepping relationship between all four limbs (Figure 

19g, hindlimb:forelimb step index), we saw that silencing did not alter this salient 

feature of locomotion (Figure 19h). All limbs stepped equally within one stride cycle 

(no double or missteps). Therefore, despite the significant perturbations silencing 

introduced to the left-right forelimb, left-right hindlimb, and contralateral hindlimb-

forelimb movements, the overall locomotor cycle remained in a fixed 1:1 

relationship.  

Altogether, these data suggest that silencing LAPNs “releases the system” 

from strict alternation, allowing the limbs to express a breadth of coupling patterns 

that are maintained with great fidelity. Importantly, these diverse coupling patterns 

do not affect a principle feature of locomotion, the hindlimb:forelimb relationship. 

This raises a key question: is the master regulator of stepping, the rhythm 
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generator, similarly impervious to the profoundly altered interlimb coupling 

schema?  

The underlying locomotor rhythm remains intact during silencing-induced 

disruptions to interlimb coordination 

Rhythm generation can be described by two underlying features of 

locomotion: stride duration and step frequency116. Moreover, these features are 

inextricably associated with interlimb coordination17. When animals switch from a 

walk-trot gait (alternation coupling pattern) to that of gallop-bound (synchrony), 

there is a concomitant increase in the underlying step frequency and decrease in 

stride duration17 (Figure 28, supplementary to Figure 20). Therefore, do the 

perturbations we observe in interlimb coordination cause overt changes to step 

frequency as well? This would indicate that not only does silencing LAPNs disrupt 

the locomotor pattern (interlimb coordination), but it also affects the rhythm.  

To address this question, we plotted the interlimb coordination data against 

the corresponding step frequency for all steps analyzed (N=480 for Control, N=600 

for DOX). The yellow circles denote the silencing-induced “irregular” coupling 

patterns expressed in the forelimbs and hindlimbs, respectively.  

At Control time points, both the left-right forelimbs and hindlimbs primarily 

stepped in an alternating pattern (Figure 20a-b, left panels, circles concentrated at 

0.5). These steps almost exclusively occurred within a 2-5 Hz frequency range. 

The conditional silencing of LAPNs functionally uncoupled the limbs at each girdle 

respectively, as seen by the significant increase in phasic dispersion around the 

polar plot (Figure 20a-b, right panels; refer to Table 7 for summary of individual 
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time point comparisons). Interestingly, even though silencing “released the 

system” from strict left-right alternation, the overwhelming majority of steps still fell 

within the 2-5 Hz frequency range (N=555/600 and N=572/600 for forelimbs and 

hindlimbs, respectively). Even when we compared the mean frequencies of the 

“normal” DOX steps to that of the altered we saw no significant difference (data 

not shown). Once again, it appears as though the underlying rhythm persists, 

regardless of the coupling patterns expressed. This led us to systematically 

examine both stride frequency and duration, our two indices for the underlying 

rhythm generation during overground locomotion.  

We first set out to determine if the overall stride frequency and duration were 

different between ControlAll and DOXAll time points for the fore- and hindlimbs, 

respectively (Figure 20c,g). When we compared the mean stride frequency 

between ControlAll and DOXAll at each girdle (Figure 20c, top=forelimbs, 

bottom=hindlimbs), we saw no significant difference. Moreover, there was no 

significant difference between the girdles, indicating that the step frequencies of 

the hindlimbs were not different from that of the forelimbs. Comparing the overall 

stride durations yielded the same results (Figure 20g; refer to Figure 27, 

supplementary for Figure 20, for individual time point comparisons). These 

comparisons were performed with speed as a co-variate as it has a predictable 

influence on our indices of interest. When we ran all these analyses without 

controlling for the effects of speed, we again saw no significant differences (Figure 

27, supplementary for Figure 20). Together, these data reveal that the overall fore- 
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and hindlimb stride frequency and duration, with and without controlling for the 

effects of speed, were not affected during silencing. 

To increase the resolution of our analyses, we gated our comparisons to 

the individual limbs at each girdle, respectively (Figure 20d-e, h-i). We plotted the 

rhythm indices of the left limb against that of the right for all steps taken as well as 

the average of each animal across the four control and five silencing time points. 

After performing regression analyses and comparing the slopes of the lines-of-

best-fit between ControlAll and DOXAll (left versus right forelimb, left versus right 

hindlimb), we saw no significant differences. Similarly, no differences were 

detected when we compared between the two girdles (hindlimb versus forelimb, 

Figure 20f) as well as when we focused our analyses on the irregular steps alone 

(Figure 27, supplementary for Figure 20). To conclude, silencing LAPNs disrupts 

the pattern, but the rhythm persists. If one principal feature of locomotion continues 

despite the altered coupling patterns, do other salient features of locomotion 

prevail as well?  

Silencing LAPNs reversibly disrupts temporal limb coupling while 

preserving the fundamental relationship between speed and the 

spatiotemporal features of limb movements 

Locomotion is characterized by coordinated limb movements through both 

space and time. These spatiotemporal parameters, which include the rhythm 

indices, stride length, as well as stance and swing durations, change with speed 

in a stereotypic, well-defined manner12,13,109 (Figure 28, supplementary to Figure 

21). This relationship is a central feature that governs locomotion. Therefore, we 
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set out to determine if the silencing LAPNs altered this relationship as a 

consequence of the significant disruptions to interlimb coordination.  

First, we plotted the various spatiotemporal indices against speed for the 

fore- and hindlimbs respectively (Figure 21, forelimbs top row; hindlimbs bottom). 

We then performed regression analyses to compare the slopes for the lines of best 

fit between ControlAll and DOXAll. Similar to the preservation of the underlying 

rhythm, the fundamental relationship between speed and stride duration, 

frequency, and length remained intact. We did notice a slight, but significant 

change in slope between ControlAll and DOXAll for the speed versus stride length 

comparisons of fore- and hindlimbs, respectively (each p<0.05). Notwithstanding, 

the trend line is still linear indicating that the association persists. Similar results 

were found when we analyzed the stance and swing durations (Figure 29, 

supplementary for Figure 21). 

In addition to comparing the dynamic relationship between speed and the 

spatiotemporal indices, we also compared the mean stride, stance, and swing 

durations between ControlAll and DOXAll for the fore- and hindlimbs, respectively 

(Figure 21d). The silencing-induced disruptions to interlimb coordination did not 

affect these underlying features of the step cycle. Moreover, there were no 

differences observed between the hind- and forelimbs as well. Collectively, these 

data suggest that the defining features of the step cycle persist, a result that makes 

sense in light of the intact locomotor rhythm.  

One of the primary functional consequences of ablating cervico-lumbar 

projections was the inability to step at faster rates of speed127. Clearly, silencing 
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LAPNs does not recapitulate that finding as our animals have the capacity to step 

at speeds upwards of 150 cm/s (Figure 21a-c). In addition to the reduced maximum 

speeds, a second key finding from the irreversible ablation of cervico-lumbar 

projections was that the expression of impaired interlimb coordination required 

faster rates of speed during treadmill stepping. Here, we show that the significant 

majority of DOXON steps were at speeds ≤90 cm/s during overground locomotion. 

Moreover, if we analyzed the silencing-induced “irregular” steps alone, we saw that 

increased speed was not a requirement for the expression of the altered coupling 

patterns (Figure 21f). These data illustrate that silencing LAPNs reversibly disrupts 

interlimb coordination independent of speed, speed-dependent spatiotemporal 

indices, and the underlying locomotor rhythm. 

Altogether, we have shown that we can selectively manipulate one defining 

feature of central pattern generation: interlimb coordination. Moreover, this 

manipulation is incredibly discrete as all other spatiotemporal aspects of limb 

movement appear to be inextricably intact. However, there is another form of 

patterned limb movement that is also governed by the central pattern generator: 

intralimb coordination. Therefore, does silencing LAPNs disrupt both patterns of 

limb movement (inter- and intra-) or is it exquisitely tuned to one (interlimb)? 

Intralimb coordination persists during silencing-induced perturbations to 

interlimb coordination 

To answer this question, we focused on two key features of intralimb 

coordination: range-of-motion and temporal coordination between the proximal 

and distal limb segments. We gated these analyses to the hindlimbs as this is 
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where the major propulsive forces for locomotion are generated27-29 and where 

silencing LAPNs exerted its most profound effects (data not shown).  

First, we marked the skin overlying the iliac crest, hip, ankle, and toe in order 

to describe the hindlimb movement using three segments (illustrated in Figure 22a) 

and two angles (Figure 22c). At Control time points, animals stepped with normal 

coordinated flexor-extensor actions across the joints as shown by the 

characteristic excursions of the limb segments (Figure 22ai-ii, refer to Figure 30, 

supplementary for Figure 22, for quantitation). Silencing LAPNs caused a slight, 

but significant change in the overall peak-to-trough excursion of the proximal-to-

distal hindlimb segments, likely due to the biomechanics of the hindlimbs moving 

in synchrony as illustrated in Figure 22bi (e.g., lift off to weight acceptance) and 

kinematically in Figure 22bii.  

We next examined the coordination between the proximal and distal 

hindlimb joint angles on a step-by-step basis during locomotion (Figure 22c-f). To 

do this, we analyzed the time of peak proximal angular excursion (Figure 22d, blue) 

with respect to peak-to-peak distal angular excursion cycle time (Figure 22d, 

purple). These values, ranging from 0 to 1, are then plotted on a circular graph 

wherein 0 indicates normal, coordinated movements between the limb segments. 

Here, we saw that silencing LAPNs did not disrupt this temporal coordination for 

both the left and right hindlimbs (Figure 22e-f). Together, these data show that in 

spite of the significant perturbations to interlimb coordination, intralimb movements 

remain intact.  
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Silencing LAPNs does not affect the capacity to maintain balance, posture, 

and trunk stability  

Ruder and colleagues showed that ablating cervico-lumbar projections in 

the mouse spinal cord resulted in postural instability during overground locomotion, 

uneven stepping routes, shorter distances per locomotor bout, and reduced 

maximum speeds (as described above)127. To draw further parallels between these 

two inter-enlargement studies, we set out to determine if silencing LAPNs similarly 

affected balance and postural control.  

First, we examined the base of support during overground locomotion by 

measuring the external rotation of the hind paws on a step-by-step basis (see 

methods for detail). Animals typically have a relatively narrow base of support 

(illustrated in Figure 23a). In conditions with increased postural instability (e.g. 

spinal cord injury), the paws become externally rotated and the base of support 

widens139. Conditional silencing of LAPNs did not affect this postural index (Figure 

23b).  

We next challenged the animals’ ability to maintain balance and posture by 

testing them on the ladder and beam walk tasks (Figure 23c). Here, animals must 

maintain effective postural control in order to accurately place their limbs on fix-

spaced rungs or traverse a narrow beam that is 1.8 cm wide. Once again, we saw 

no impediments to balance and posture during silencing as the average number 

of footfalls was not significantly greater during silencing.  

A task that is likely more challenging is rearing. Here, the animals must have 

sufficient balance and postural control such that when they plant their hindlimbs, 
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they are able to elevate their trunk and upper body safely (Figure 23d). The efficacy 

of this action can be stratified further by the amount of forepaw support required to 

maintain balance (0 forepaws=”high” control, 2 forepaws=”low” control). Silencing 

LAPNs did not affect the overall frequency of spontaneously-evoked rearing events 

(Figure 23e). We even saw a significant increase in the duration at which the 

animals stood on their hindlimbs alone, highlighting the overall stability these 

animals maintained during silencing (Figure 23f).  

Finally, we asked whether animals could maintain effective trunk control 

when all limbs were fully unloaded during swimming. In this bipedal task, the body 

is almost parallel to the surface of the water. The head, neck, and proximal portion 

of the back remain above water while the distal body and tail are just below140. To 

quantitatively describe the body angle relative to the water surface, we performed 

a four-point angle analysis using the positional markers shown in Figure 23g. Using 

this approach to measure postural stability on a stroke-by-stroke basis, we saw no 

silencing-induced defects in the animals’ ability to maintain an acute trunk angle 

(Figure 23g, right panel). From this this series of stability-challenging tasks, it is 

clear that silencing LAPNs does not affect the overall balance and postural control. 

These data reveal an interesting dichotomy between what role the lumbo-cervical 

and cervico-lumbar projection pathways might play in motor behaviors.  

Within the vein of functional dichotomies, our swimming analysis revealed 

a striking result: the silencing-induced perturbations to left-right coordination during 

stepping were unequivocally abolished when the animals swam (Video 6). 
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Therefore, not only does silencing LAPNs disrupt interlimb coordination, but it 

might do so in a task-dependent manner.  

Discussion 

Long ascending propriospinal neurons: a flexible, task-specific inter-

enlargement network for quadrupedal alternation  

Here, we have shown that silencing LAPNs significantly disrupts three 

patterns of interlimb movements: left-right forelimb, left-right hindlimb, and 

contralateral hindlimb-forelimb coordination. What emerged from these 

perturbations was a coordination continuum that spanned from out-of-phase limb 

movements (alternation) all the way to strict in-phase synchrony. When we 

examined how these altered coordination patterns were dynamically expressed, 

we saw that they reflected stable, steady-state coupling mechanisms between the 

various limb pairs. Moreover, these newly expressed coupling patterns occurred 

independent of the underlying rhythm, intralimb coordination, speed, and speed-

dependent spatiotemporal gait indices. It appears as though by silencing LAPNs, 

we have released the constraints of the system such that it no longer strictly 

adheres to rhythmic, left-right alternation. Instead, the limbs were able express a 

breadth of coupling patterns with incredible fidelity, but all within the confines of a 

stable locomotor rhythm. Strikingly, when the behavioral context is changed 

(stepping to swimming) the silencing-induced effects are immediately abolished. 

Therefore, the functional importance of this pathway is likely gated towards the 

task at hand. 
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The immutable ipsilateral actions  

Interestingly, it appears as though ipsilateral movements were impervious 

to silencing as homolateral hindlimb-forelimb coordination as well as intralimb 

coordination were unaffected. The lack of changes in intralimb coordination are not 

entirely surprising as this patterned movement is likely secured through segmental 

interneuronal networks25. However, the persistence of the stereotypic, out-of-

phase movements of the homolateral limb pairs was surprising. This was the only 

coupling pattern that escaped silencing-induced perturbations. Interestingly, 

similar results were found when the cervico-lumbar projections were ablated127. 

What makes this even more intriguing is that there is a well-documented, 

“substantial” ipsilateral ascending projection that interconnects the lumbo-cervical 

circuitry121,129,130. Moreover, electrophysiological interrogations of inter-CPG 

coupling mechanisms reveal that it is primarily through the ipsilateral, excitatory 

projections that the lumbar CPG entrains the cervical115. In an effort to better 

understand how the homolateral limb pairs typically perform, we referred back to 

our long tank, normal gait data. Here, it is clear that the ipsilateral limb pairs simply 

do not adopt an in-phase coupling relationship, even at speeds upwards of 300 

cm/s (Figure 28). Perhaps this patterned movement is “hard-wired” through the 

intervening thoracic circuitry in addition to long spinal projections. This could help 

“lock” the limbs in an out-of-phase (or slight phase-shift) relationship to secure 

dynamic stability across the girdles. Indeed, the pacing (or racking) gait where the 

limbs step in lateral couplets is rarely expressed119,141, plausibly due to these 
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stabilization issues. Notwithstanding, it is clear that silencing the ipsilateral LAPNs 

does not influence the ipsilateral hindlimb-forelimb movements.  

The functional dichotomy of reciprocal inter-enlargement pathways   

While the cervico-lumbar projection pathways investigated by Ruder et al 

and the lumbo-cervical pathway studied here can be considered “anatomical 

reciprocals,” current evidence suggests they are not functional reciprocals127. It is 

important to note that these disparate results could be attributed to the 

fundamental differences in the two approaches. Here, we conditionally and 

reversibly silenced anatomically-defined long ascending projections in naïve adult 

rat. By contrast, Ruder and colleagues investigated the functional role of 

transcriptionally-specified neurons that have cell bodies in the cervical 

enlargement and projections throughout the lumbar segments through irreversible 

genetic ablations127. After taking into account these distinct differences in 

experimental approach, what does this functional dichotomy mean with regard to 

how the inter-enlargement system effects locomotion?  

Perhaps the LDPNs are involved in discrete forms of locomotion that require 

more supraspinal influence. In support of this notion, these cervico-lumbar 

projection neurons have also been shown to have ascending supraspinal 

projections142. Interestingly, the LDPNs receive reciprocal synaptic inputs from 

these higher motor centers in return127. It is clear that this pathway also densely 

innervates the intervening thoracic circuitry127, likely a contributing factor to the 

issues with postural control following their selective ablation. Moreover, Ruder et 

al showed that when you push the animal to step faster, perhaps beyond its 
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comfort or capacity due to their postural deficits, then the stepping pattern breaks 

down. Therefore, it is likely that LDPNs participate in a more meticulous form of 

stepping wherein they operate within a supraspinal feedback loop to then distribute 

patterned information throughout the entire neuraxis. 

LAPNs, on the other hand, clearly do not contribute to maintaining postural 

control and they profoundly lack lumbar and thoracic projections (data not shown). 

Instead, they appear to project directly to the cervical enlargement. Therefore, it 

makes sense that these neurons are a key pathway in distributing left-right, 

temporal information from the hindlimbs to secure forelimb coordination. It is the 

hindlimbs that generate the major propulsive forces during locomotion27-29. As 

such, perhaps LAPNs function as primary pattern distributing network when the 

hindlimbs are required to generate locomotor behaviors immediately and 

powerfully. Therefore, it is through this inter-enlargement network that both 

precision and power are endowed to quadrupedal stepping. 
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Figure 16 

 

Figure 16. Experimental design to conditionally silence long ascending 

propriospinal neurons (LAPNs) in the adult rat spinal cord.  

(a) In the spinal cord of N=13 adult female Sprague Dawley rats, bilateral injections 

of HiRet-TRE-eTeNT.EGFP (“eTeNT”) and AAV2-CMV-rtTAV16 (“rtTAV16”) were 

performed in the caudal cervical enlargement (C6) and rostral lumbar enlargement 

(L2), respectively. (b) Ad libitum doxycycline (DOX) induces eTeNT expression to 

suppress neurotransmission at the terminal field in double-infected long ascending 

propriospinal neurons. (c) Functional testing was performed prior to injections 

(BL=Baseline), post-injections (PD1=Pre-DOX1), during one week of DOXON 

silencing (D1D3, D1D5, D1D8=DOX1ON-D3, -D5, -D8), and one week post-DOX 

(DOFF=DOXOFF). Testing was repeated one month later (PD2=Pre-DOX2, D2D3, 

D2D5=DOX2ON-D3, -D5). In N=6 animals, a vehicle control was performed (“Sugar 

control”,S.C.). ControlAll=BL, PD1, DOFF, and PD2. DOXAll=D1D3, D1D5, D1D8, 

D2D3, and D2D5. 
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Figure 17 

 

Figure 17. Silencing LAPNs Selectively Disrupts Contralateral Hindlimb-

Forelimb Coordination While Preserving Ipsilateral Hindlimb-Forelimb 

Alternation.  

(a-c) Stereotypic locomotor gaits with representative swing-stance graphs and 

interlimb coordination patterns (0/1=in-phase/synchronous limb movements; 

0.5=out-of-phase/alternating movements). Red triangles denote one step cycle for 

ipsilateral right hindlimb-forelimb (stance=filled; swing=open). Dashed blue boxes 

highlight contralateral hindlimb-forelimb movements for the various gaits (a, 
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overlap=in-phase/synchrony; b, partial overlap=phase shift/asynchronous; c, out-

of-phase/alternation). (d) Transformation of interlimb coordination values to control 

for lead limb and natural variability in coordination during stepping (convert 0-0.5 

to 0.5-1.0). White area denotes normal variability observed at control time points. 

Shaded region indicates variability beyond control levels. (e) Silencing LAPNs did 

not disrupt ipsilateral hindlimb-forelimb alternation during overground locomotion. 

(f) Contralateral hindlimb-forelimb coordination values were transformed from 0-1 

to 0.0-0.5. (g)  Silencing LAPNs significantly disrupted contralateral hindlimb-

forelimb coordination. This effect was reversible upon DOX removal (DOFF) and 

reproducible one month later (PD2, D2D3, D2D5). (h-i) Schematics illustrating 

stepping behaviors observed at control time points and during DOXON silencing of 

LAPNs. Red=ipsilateral hindlimb-forelimb; blue=contralateral hindlimb-forelimb. 

Filled triangles=stance; open triangles=swing. (N=120 steps/time point; S.C. 

N=60). 
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Figure 18 

 

Figure 18. Silencing LAPNs Disrupts Left-Right Alternation At The Pelvic And 

Shoulder Girdles.  

(a) Gait-associated coupling patterns for left-right forelimb (green) and hindlimb 

coordination (red). Silencing LAPNs disrupts left-right forelimb (b) and hindlimb 

alternation (c), respectively. (d) The disruption to left-right alternation (fore- and 

hindlimbs) was significantly greater than that of hindlimb-forelimb (ipsi- and 

contralateral) coordination (73.8±11.8% vs 26.2±11.8% of all irregular steps; 

p<0.001, paired t-test). (e) Significantly more animals had peak disruptions to 

hindlimb alternation during DOX2 as compared to DOX1 (23.08% vs 76.92%; 

p=0.0012, B.P. test; bars=percent of total group; circles=individual percent). While 

more animals showed peak disruption to contra hindlimb-forelimb and left-right 

forelimb movements during DOX2 (61.5%; N=8/13), it was not statistically 
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significant as compared to DOX1 (38.5%; N=5/13; p=0.20). Shaded circle denotes 

animal that did not show changes beyond control variability in hindlimb 

coordination (albeit 10% change in contralateral hindlimb-forelimb and 22.2% 

change in left-right forelimb coordination).  
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Figure 19 

 

Figure 19. The Silencing-Induced Perturbations To Left-Right Coordination 

Reflect Altered, Albeit Steady-State Coupling Patterns That Are Expressed 

Within A Fixed Locomotor Cycle.  

(a) Example of swing-stance graph demonstrating the analysis of consecutive step 

cycles within one locomotor bout to calculate absolute step-by-step change in left-

right coordination (*reference limb). Individual bars (b, right panel) represent per 

step change in coordination (left, e.g. 0.05, 0.07). (c) Silencing LAPNs did not 

significantly increase the step-by-step variability in left-right forelimb coordination 

beyond control levels (BL+PD1: n=110/110 vs DOX1All: n=163/165; p=0.16, 

z=1.42; DOFF+PD2: n=95/95 vs DOX2: n=94/95; p=0.31, z=1.01; B.P. test). (d) The 
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significant majority of per-step changes for ControlAll and DOXAll fell within 0.10 as 

compared to >0.10 (ControlAll: 87.51±15.84% vs 12.49%±15.84%, p=1.96e-06; 

DOXAll: 82.86±8.84% vs 17.14%±8.84%, p=1.40e-08, paired t-test; bars=group 

mean; circles=individual mean). There was no significant difference between 

ControlAll and DOXAll for phase changes ≤0.10 or >0.10, respectively (each 

p=0.44). (e) Similarly, silencing did not affect the per-step variability in hindlimb 

coordination beyond control levels (BL+PD1: n=114/114 vs DOX1All: n=165/166; 

p=0.32, z=1.00; DOFF+PD2: n=108/108 vs DOX2: n=84/84; p=0.31, z=1.01; B.P. 

test) with the significant majority of steps falling within ≤0.10 as compared to >0.10 

for both ControlAll (f, 88.55±9.05% vs 11.45%±9.05%, p=2.96e-09) and DOXAll 

(81.45±9.05% vs 9.89%±9.05%, p=7.98e-08). No significant difference was 

detected between the ControlAll and DOXAll time points for phase changes ≤0.10 

or >0.10, respectively (each p=0.06). Per-step changes in stride duration were 

similarly not affected (c,e). (g) The changes observed in contralateral hindlimb-

forelimb, left-right forelimb, and left-right  hindlimb coordination (g, top panel) did 

not affect the overall ratio of hindlimb-to-forelimb steps taken (g, bottom panel; h, 

ControlAll: 1.008±0.009 vs DOXALL: 1.008±0.016; p=0.97, paired t-test; bars=group 

mean ± S.D.; circles=individual mean). 
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Figure 20 

 

Figure 20. Silencing LAPNs Uncouples The Left-Right Stepping Pattern 

Separate From The Underlying Locomotor Rhythm.  

(a,b) Phase-frequency polar plots for the fore- and hindlimbs at ControlAll and 

DOXAll, respectively. Each concentric circle=2Hz (dashed line=5Hz). 

Yellow=DOXON irregular steps. Silencing LAPNs significantly increased the 

dispersion of left-right phase data for the fore- (a, U2=0.672; ***p<0.001, Watson’s 

non-parametric two-sample U2 test) and hindlimbs (b, U2=1.446; ***p<0.001) as 

compared to ControlAll. (c) No differences were detected when comparing mean 

stride frequencies between ControlAll and DOXAll for the fore- and hindlimbs, 

respectively (top=FLs, ControlAll: 3.39±0.22Hz vs DOXAll: 3.65±0.45Hz, p=0.98; 

bottom=HLs, ControlAll: 3.39±0.19Hz vs DOXAll: 3.65±0.42Hz, p=0.92, mixed 
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model ANOVA with speed as a co-variate, Sidák post hoc t-tests). (g) Similar 

results were found when comparing mean stride durations (FLs: ControlAll: 

0.31±0.02s vs DOXAll: 0.29±0.03s, p=0.52; HLs: ControlAll: 0.30±0.01s vs DOXAll: 

0.29±0.03s, p=0.52; ControlAll FLs vs HLS: p=0.34; DOXAll FLs vs HLs: p=0.10). 

DOXAll stride frequency slopes (dashed red line) were not significant different from 

ControlAll (black) when comparing left vs right forelimb (d, CON: 0.98 vs DOX: 0.90, 

t=-1.31 and p=0.19) and hindlimb (e, CON: 0.99 vs DOX: 0.94, t=-1.17 and p=0.24) 

as well as between the two girdles (f, CON: 0.917 vs DOX: 0.921, t=-1.06 and 

p=0.29). DOXAll stride duration slopes were not significant different from ControlAll 

when comparing left vs right forelimb (h, CON: 0.91 vs DOX: 0.99, t=1.56 and 

p=0.12) and hindlimb (i, CON: 0.96 vs DOX: 0.94, t=1.06 and p=0.29) as well as 

between the two girdles (j, CON: 0.93 vs DOX: 0.91, t=1.09 and p=0.28) (d-j, 

statistics reported from averaged datasets, which are shown superimposed onto 

raw data). 
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Figure 21 

 

Figure 21. Silencing LAPNs Disrupts Alternation At The Shoulder And Pelvic 

Girdles While Preserving Key Stepping Features That Are Fundamental To 

Locomotion.  

(a-c) The relationship between speed and spatiotemporal parameters remained 

intact during silencing, albeit with a slight but significant change in stride length 

(dashed line=transitional zone between trot and gallop) 1. (a-i,ii, speed vs stride 

duration: ControlAll: 0.032 vs DOXAll: 0.034; t=-1.68, p=0.09) (a-iii,iv, ControlAll: 

0.031 vs DOXAll: 0.032; t=-1.64, p=0.10) (b-i,ii, speed vs stride frequency: 

ControlAll: -6.95E-3 vs DOXAll: -5.75E-3; t=-0.34, p=0.74) (b-iii,iv, ControlAll: -

7.53E-3 vs DOXAll: -5.99E-3; t=-0.75, p=0.46) (c-i,ii, speed vs stride length: 

ControlAll: 0.126 vs DOXAll: 0.097; t=2.18, p=0.03) (c-iii,iv, ControlAll: 0.126 vs 

DOXAll: 0.107; t=2.42, p=0.02). Slopes [lines of best fit] were compared after 

calculating the regression of x on y. (d) Silencing LAPNs did not significantly 

change mean forelimb stride duration (i, ControlAll vs DOXAll, p=0.41; repeated 
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measures ANOVA with speed as a co-variate), stance duration (ii, p=0.60), or 

swing duration (iii, p=0.32). Similar results were found at the hindlimbs (iv, p=0.38; 

v, p=0.14; vi, p=0.78). No significant differences were detected between the fore- 

and hindlimbs for each measure, respectively (FL vs HL: stride, p=0.64; stance, 

p=0.15; swing, p=0.48; limb*time: stride, p=0.22; stance, p=0.56; swing, p=0.34). 

(e) The significant majority of DOXON steps taken by the forelimbs (solid bars) and 

hindlimbs (shaded) were at speeds ≤90 cm/s (FLs: ≤90cm/s [82.70±16.18%] vs 

>90cm/s [17.30±16.18%], p=9.63E-06; HLs: ≤90cm/s [81.30±16.97%] vs >90cm/s 

[18.70±16.97%], p=2.35E-05; both speeds, FL vs HL: p=0.14; paired t-tests). (f) 

Analyzing the silencing-induced altered steps alone revealed that they did not 

predominantly occur at these faster speeds (FLs: ≤90cm/s [63.90±34.02%] vs 

>90cm/s [36.10±34.02%], p=0.17; HLs: ≤90cm/s [63.59±28.87%] vs >90cm/s 

[36.41±28.87%], p=0.12; both speeds, FL vs HL: p=0.92). (bars=group mean ± 

S.D.; circles=individual mean). 
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Figure 22 

 

Figure 22. Intralimb Coordination Persists Despite The Significant Disruption 

To Interlimb Coordination.  

Illustrations of stepping behaviors at control time points (ai) and during silencing 

(bi) with hindlimb movements shown in red. The kinematic stick figures of ai and 

bi are shown in aii and bii, respectively. (c-d) Per-step, onset times of peak IHA 

excursion (blue) relative to duration of peak-to-peak HAT excursions (purple) were 

used to calculate intralimb coordination. Values were plotted on circular graph 

(right panel) wherein 0 denotes normal, in-phase coordination of the proximal and 

distal limb segments. Silencing LAPNs did not disrupt intralimb coordination of the 

left (e, p>0.5, U2=-0.0595, Watson’s non-parametric two-sample U2 test; N=166 

intralimb cycles from Baseline+Pre-DOX1) or right hindlimbs during stepping (f, 

p>0.5, U2=0.0039; N=178 intralimb cycles DOX1; critical U2=0.1896). 
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Figure 23 

 

Figure 23. Silencing LAPNs Does Not Affect The Animal’s Capacity To 

Maintain Balance, Posture, And Trunk Stability.  

(a) Three-point angle analysis to measure base of support of the hindlimbs (point 

1: area between shoulder blades; 2=groin; 3=hind paw position at initial contact). 

(b) Silencing LAPNs did not increase external rotation in the left (LHL: 20.23±3.00° 

vs 19.13±3.38° for Baseline [N=166 angles] and D1D5 [N=178], respectively; 

p=0.31) and right hindlimbs (RHL: 19.76±4.19° vs 20.37±3.39°; p=0.62). No 

significant differences were observed between the left-right hindlimbs (CON, 

p=0.72; DOX, p=0.39). (c, top panel) Average number of foot slips during ladder 

stepping is significantly reduced during silencing (ControlAll: 3.33±2.4 vs DOX 

[D1D4/D1D8/D2D4/D2D5]: 1.43±1.33; p=0.0002). (c, lower panel) There was no 

significant change in the average number of foot slips on the 1.8 cm wide beam 

(ControlAll: 4.38±3.07 vs DOXAll: 5.46±3.38; p=0.27). Excluding the outliers (red 

circles) yielded similar results (see methods). Spontaneously expressed rearing 

was analyzed, including the extent of forepaw support (0, 1, or 2 paw contacts). 
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(e) There was no difference in the average frequency of rearing events between 

ControlAll and DOXAll (7.62±4.89 vs 9.46±4.74, p=0.29). (f) The average duration 

of rearing was significantly greater during DOXAll (1.92±0.47s vs 1.56±0.31s, 

p=0.045). (g, left) Schematic illustrating the four-point angle analysis (points 1 and 

2=water surface; point 3=iliac crest; point 4=hip) used to measure trunk angle 

during swimming. Silencing did cause trunk instability during swimming (PD1: 

10.23±2.87° vs D1D5: 9.49±3.78°; p=0.18). Angles were calculated throughout the 

stroke cycle (N=7,873 total at PD1 10,520 at D1D5; left and right hindlimbs 

combined). (h) Silencing did not disrupt left-right hindlimb alternation during 

swimming (N=130 stroke cycles/time point; ControlAll [N=518/520 normal stroke 

cycles] vs DOXAll [N=650/650], p=0.16, Binomial Proportion test. All data shown 

had no side differences detected. Average of left and right hindlimbs shown for 

N=13 at time points specified unless otherwise stated. Paired t-tests were used in 

(b,c,e-g). Circles=individual means. Bars=group mean ± S.D. 
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Figure 24 

 

Figure 24. Traditional Coupling Patterns For Volitionally-Expressed, Speed-

Dependent Gaits.  

Data shown are from N=12 naïve, adult, female Sprague Dawley rats that 

volitionally stepped overground in a custom-built long tank runway (see methods 

for detail). The coupling patterns for the various limb pairs (column 1: forelimbs; 2: 

hindlimbs; 3: ipsilateral hindlimb-forelimb; 4: contralateral hindlimb-forelimb) are 

shown for the stereotypic locomotor gaits (a, walk-trot; b, gallop; c, half-bound; d, 

full-bound). In-phase, synchronous movements have a coupling index of 0 or 1 

while strict, out-of-phase movements have a coordination value of 0.5 (top right 

panel). (e) The coupling patterns observed at the hindlimbs and forelimbs are 

plotted against each other to demonstrate the linear relationship of gait switches 

with increasing speed (refer to Figure 28). 
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Figure 25 

 

Figure 25. The Silencing-Induced Defects In Contralateral Hindlimb-Forelimb 

Movements Are Likely A Byproduct Of The Overt Changes To Left-Right 

Alternation At The Pelvic And Shoulder Girdles, Respectively.  

(a) The interaction between different coupling patterns was examined to determine 

if the silencing-induced perturbations in one limb pair were associated with altered 

stepping at another (e.g., i, changes in contralateral hindlimb-forelimb coordination 

were concomitant with changes in left-right forelimb coordination). A positive 

association (shaded region) indicates that changes observed at the limb pairs of 

interest occurred concomitantly within one complete locomotor step cycle (all four 

limbs stepped once). A negative association (white region) denotes no association. 

Data shown are focused on the silencing-induced irregular stepping patterns. (i) 

The significant majority of irregular contralateral hindlimb-forelimb steps were 
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concomitant with irregular left-right forelimb steps (66.0% [68/103] vs 34.0% 

[35/103]; p<.001; z=4.85, Binomial Proportion [B.P.] test). Similar results were 

found when we examined left-right hindlimb coordination (ii, 75.7% [78/103] vs 

24.3% [25/103]; p<.001; z=8.61) as well as changes observed in left-right forelimb 

coordination that were concomitant with changes in left-right hindlimb (iii, 67.7% 

[90/133] vs 32.3% [43/133]; p<0.001; z=6.16). There was no significant difference 

in the preponderance at which the various irregular coupling pattern interactions 

occurred (top bracket, comparing shaded insets, [i] vs [ii], p=0.12, z=1.54; [i] vs 

[ii], p=0.79, z=0.27; [ii] vs [iii], p=0.17, z=1.38). Examining the inverse relationship 

for the various limb pairs (e.g. iv, changes in left-right coordination that were 

concomitant with changes in contralateral hindlimb-forelimb coordination) revealed 

no significant differences (bottom pie charts, [iv], 51.1% vs 48.9%; p=0.71; [v], 

48.6% vs 51.4%; p=0.60; [vi], 51.4% vs 48.6% p=0.60). Once again, there was no 

significant difference in the preponderance at which the various irregular coupling 

pattern interactions occurred (bottom bracket, data not shown). 
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Figure 26 

 

Figure 26. Silencing LAPNs Functionally Uncouples The Left-Right Limb 

Pairs At The Girdles, Allowing The Hindlimbs To Adopt Any Coupling Pattern 

While The Forelimbs Maintain A Preferred, Albeit Altered Phase 

Relationship. 

(a) Schematics illustrating steady coupling patterns (concentrated) vs variable 

(dispersed). Silencing LAPNs functionally uncouples the left-right forelimbs (b; left 

panel: Baseline+Pre-DOX1 vs DOX1All; p<0.001, U2=0.4255; right panel: 

DOFF+Pre-DOX2 vs DOX2All; p<0.001, U2=0.5621; Watson’s non-parametric two 

sample-test) and left-right hindlimbs (c, left panel: p<0.001, U2=05533; right panel: 

p<0.001, U2=1.4458), transforming the steady stepping pattern (phases clustered 

at 0.5 and within control variability [white inset]) into a variable one (spread from 

0-1 [shaded region]). (d) Frequency of irregular left-right forelimb (top) and left-

right hindlimb (bottom) coupling patterns (phase range 0-1, 0.05 bin increments; 

e.g. frequency of [0 to ≤0.05], [>0.05 to ≤0.10], etc). Regression analyses revealed 

the presence of “preferred” irregular forelimb coupling patterns (reject null 

hypothesis that slope for line of best fit was flat) (top left: p=0.0049, t=4.049; right: 

p=0.0030, t=-4.820). The two predominant irregular forelimb coupling patterns (X, 
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Y; both juxtaposed to the control threshold) were n.s. from one other (p=0.22; 

z=1.22; B.P. test). There was no preferred irregular hindlimb coupling pattern 

(bottom left: p=0.38; t=0.937; right: p=0.31; t=-1.114). 
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Figure 27 
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Figure 27. Silencing LAPNs Does Not Affect The Forelimb, Hindlimb, Nor The 

Hindlimb-Forelimb Stride Durations During Overground Locomotion.  

(a) The mean stride duration of the forelimbs (average of left and right) was not 

altered during conditional silencing of LAPNs (multivariate analysis of variance 

[MANOVA] with speed as co-variate; bars=group predicted means ± S.D.; 

circles=individual means). (b) While there was a slight, but significant increase in 

hindlimb mean stride duration at DOFF as compared to BL (p=0.027; MANOVA 

with Sidák post hoc t-test), no significant differences were detected during DOX 

silencing of LAPNs. (c) When comparing the mean stride durations between the 

fore- and hindlimbs within time points, no significant differences were observed. 

(d) Similar results were obtained when the effects of speed on fore- and hindlimb 

stride durations were not controlled (repeated measures ANOVA). (e) Forelimb vs 

hindlimb stride duration (left panel) and frequency (right panel) for all analyzed 

steps are shown, including ControlAll (gray), DOXAll (red), and DOX-induced 

irregular steps as defined by an altered phase relationship (yellow). 
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Figure 28 
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Figure 28. Speed-Spatiotemporal Index Relationships For Stereotypic 

Locomotor Gaits.  

The fundamental relationship between speed and the various spatiotemporal gait 

indices are shown for the forelimbs (left column) and hindlimbs (right column), 

respectively. The relationships analyzed include speed versus stance duration (a), 

swing duration (b), stride duration (c), stride frequency (d), and stride length (e). 

We did not distinguish between the walk gait (three limbs in contact with the 

ground) and that of trot (two limbs in contact with ground at any moment)17. Dashed 

vertical line denotes transitional zone between trot and gallop1 while the shaded 

region indicates speed ranges not observed in the silencing experimental group. 
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Figure 29 

 

Figure 29. The Silencing-Induced Perturbations To Interlimb Coordination 

Do Not Affect The Underlying Relationship Between Speed And Swing-

Stance Durations, Principle Features That Govern Locomotion.  

A central aspect of locomotion is that as animals increase their stepping speed, 

the relative stance duration will decrease7. Swing duration will also decrease, but 

to a considerably lesser extent7. Silencing long ascending propriospinal neurons 

did not disrupt this characteristic feature as stance time predictably decreased as 

speed increased for both the forelimbs and hindlimbs, respectively (a, Forelimbs: 

[i] ControlAll rS=0.87, R2=75.69%; [ii] DOXAll rS=0.87, R2=75.69%; Hindlimbs: [iii] 

ControlAll rS=0.87, R2=75.69%; [iv] DOXAll rS=0.87, R2=75.69%; Spearman Rank 

correlation). When we compared the slopes for the lines of best fit after calculating 

the regression of x on y, we saw no significant difference between ControlAll and 

DOXAll for the fore- and hindlimbs, respectively (data not shown). As anticipated, 

speed weakly correlated with swing time (b, Forelimbs: [i] ControlAll rS=-0.43, 

R2=18.2%; [ii] DOXAll rS=-0.59, R2=35.3%; Hindlimbs: [iii] ControlAll rS=-0.39, 

R2=15.1%; [iv] DOXAll rS=-0.53, R2=27.7%). Notwithstanding, the slopes were not 

different when comparing ControlAll vs DOXAll for the fore- and hindlimbs, 

respectively (data not shown). (c) The relative percent of swing (light gray) and 
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stance (dark gray) durations were analyzed as they relate to speed. The following 

comparisons were made for the forelimbs: (i) ControlAll ≤90 cm/s vs >90 cm/s; (ii) 

DOXAll ≤90 cm/s vs >90 cm/s; and ControlAll vs DOXAll at ≤90 cm/s (left panel of [i] 

vs [ii]). Not all animals stepped at speeds >90cm/s. Statistical comparisons were 

performed on a subset of the total group (as indicated) wherein animals stepped 

at >90cm/s for at least two DOXON time points. The results as follows: (i) ControlAll 

forelimb relative %stance [N=7/13]: 48.35±1.49% at ≤90 cm/s vs 37.49±1.85% at 

>90cm/s; p=1.67E-05; %swing: 51.65±1.49% at ≤90 cm/s vs 62.51±1.85% at 

>90cm/s; p=1.67E-05. (ii) DOXAll forelimb relative %stance 

[N=10/13]:45.69±2.24% at ≤90 cm/s vs 37.12±2.24% at >90cm/s; p=1.25E-06; 

%swing: 54.31±2.24% at ≤90cm/s vs 62.83±2.24% at >90cm/s; p=1.25E-06. (i vs 

ii) The %stance and %swing for ControlAll vs DOXAll at ≤90cm/s were significantly 

different (p=0.01, respectively). Comparisons were performed in the hindlimbs as 

well with the following differences detected: (iii) ControlAll hindlimb relative 

%stance [N=7/13]: 46.56±2.12% at ≤90 cm/s vs 36.95±1.82% at >90cm/s; 

p=0.0002; %swing: 53.44±2.12% at ≤90 cm/s vs 63.05±1.82% at >90cm/s; 

p=0.0002. (iv) DOXAll hindlimb relative %stance [N=9/13]:45.75±2.08% at ≤90 

cm/s vs 36.51±1.54% at >90cm/s; p=9.27E-09; %swing: 54.24±2.08% at ≤90cm/s 

vs 63.49±1.54% at >90cm/s; p=9.27E-09. (iii vs iv) The %stance and %swing for 

ControlAll vs DOXAll at ≤90cm/s were not significantly different (each p=0.25; paired 

and independent t-tests were performed for within and between time point 

comparisons, respectively). (yellow=phases >2 S.D. control mean; Control: n=336 

steps; DOXON: n=420). **p≤0.01, ***p≤0.005, ****p≤0.001). 
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Figure 30 

 

Figure 30. Hindlimb Range-Of-Motion Is Preserved During Conditional 

Silencing Of LAPNs.  

(a,b) Peak-to-trough excursion of the proximal hindlimb segments (iliac crest-hip-

ankle angle, IHA) is not profoundly affected by the conditional silencing of LAPNs. 

The excursion of the proximal left hindlimb segments was slightly, but significantly 

reduced at D1D3 (58.59±7.93°) as compared to DOFF (64.98±3.84°) (p=0.004). No 

changes were observed in the right hindlimb. (c) Similarly, a slight but significant 

decrease was observed in the excursion of the distal left hindlimb segments (hip-

ankle-toe angle, HAT) at D1D5 (52.42±6.45°) as compared to BL (62.53±4.65°) 

(p=0.007). (d) No changes were observed in the distal segments of the right 

hindlimb. Data shown are mean peak-to-trough excursions of the proximal and 

distal limb segments ± S.D. Mixed model ANOVA with Bonferroni post hoc t-tests 

were performed. 



 

142 
 

Figure 31 

 

Figure 31. Silencing LAPNs Does Not Disrupt Left-Right Hindlimb 

Coordination During Swimming.  

(a) Schematic illustrating left-right hindlimb coordination during swimming. Peak-

to-peak downward extension of the hindlimb (filled triangles) determined the stroke 

cycle duration. The latency within this reference stroke cycle that the opposite 

hindlimb had peak downward extension (open triangle) was used to determine the 

left-right coordination value on a stroke-by-stroke basis. (b) Hindlimb swim phase-

frequency circular plots for Control (BL+PD1) and DOX1All, respectively. Silencing 

LAPN did not cause significant dispersion in the left-right phase relationship (U2=-

24.1698; p>0.5 with Watson’s non-parametric U2 test). (c) The stroke-by-stroke 

change in left-right hindlimb coordination and stroke cycle duration were not 

affected by LAPN silencing. 
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Figure 32 

 

Figure 32. Immunohistochemical Detection Of Silenced LAPNs.  

(a) Within the intermediate gray matter of the C6 segment (inset, upper right), 

putatively silenced eTeNT.EGFP+ terminals were amplified with anti-GFP (green). 

Arrow denote axonal branches. Asterisk denotes “ghost border” where neuron 

would reside. (b) Enlargement of (a), showing co-localization of eTeNT.EGFP with 

synaptophysin shown in red (x,y cross-sections). (c) Negative control showed little-

to-no staining (note some endogenously-expressed, non-amplified eTeNT.EGFP 

will be present). (e) Putatively silenced LAPNs (black triangles) are detected at L2 

in the intermediate gray matter (DAB-amplified anti-GFP). (f-g) Emerging axon 

from eTeNT-expressing LAPN that projects to white matter (black triangles). Non-

double infected resident neurons do not express eTeNT.EGFP (white triangles). 

(h-i) Isotype control shows little-to-no eTeNT.EGFP expression.
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Table 7. Silencing LAPNs Functionally Uncouples The Left And Right Limb Pairs At Each Girdle While 

Preserving Hindlimb-Forelimb Coordination.   

To determine whether silencing functionally uncouples the limb pairs, we performed Watson’s non-parametric two-

sample U2 tests103. The null hypothesis is that two samples (e.g. BL vs D1D8) came from two populations with the 

same direction (the degree of concentration of dispersion in the coordination data)103. Silencing LAPNs significantly 

decreased the concentration of the left-right forelimb and left-right hindlimb phase data (reduced clustering at 0.50), 

indicating the limbs became functionally uncoupled. Ipsilateral hindlimb-forelimb movements remained functionally 

coupled. Contralateral hindlimb-forelimb movements were primarily unaffected, apart from a significant effect 

detected at DOX2ON-D5 (D2D5) as compared to Pre-DOX2 (PD2). (Critical value of Watson’s U2
(0.05,∞,∞) = 0.1869; 

Appendix D, Table D.44). 

Table 7  1 

  
Left-right Forelimbs Lef-right Hindlimbs 

Contra Hindlimb-
Forelimb 

Ipsi Hindlimb-
Forelimb 

  p value U2 p value U2 p value U2 p value U2 

BL vs 

PD1 0.1<p<0.2 0.1199 p>0.5 -0.0759 p>0.5 0.0176 0.2<p<0.5 0.0103 

D1D3 0.01<p<0.02 0.2654 0.1<p<0.2 0.1298 p>0.5 0.0638 0.2<p<0.5 0.0125 
D1D5 0.02<p<0.05 0.2073 0.02<p<0.05 0.2262 0.05<p<0.10 0.1696 p>0.5 -0.0423 
D1D8 0.001<p<0.002 0.3615 0.02<p<0.05 0.1906 p>0.5 0.0678 p>0.5 -0.0302 
DOX1 p<0.001 0.9516 p<0.001 0.5622 p>0.5 -0.6823 p>0.5 -0.6392 
DOFF p>0.5 0.0387 p>0.5 -0.1514 0.2<p<0.5 0.1092 p>0.5 0.0488 
SC p>0.5 0.0145 p>0.5 0.0259 p>0.5 -0.0362 p>0.5 0.1228 

PD1 vs 

D1D3 p>0.5 -0.0049 0.05<p<0.1 0.1716 p>0.5 0.0312 p>0.5 -0.0438 
D1D5 p>0.5 0.0183 0.02<p<0.05 0.1987 0.2<p<0.5 0.1040 p>0.5 -0.0902 
D1D8 0.2<p<0.5 0.0897 0.01<p<0.02 0.2507 p>0.5 0.0557 p>0.5 -0.0499 
DOFF p>0.5 0.0469 0.02<p<0.05 0.2235 p>0.5 0.0394 p>0.5 0.0274 

BL + 
PD1 vs 

DOX1 p<0.001 0.4255 p<0.001 0.5533 p>0.5 -0.1901 p>0.5 -0.8575 

PD2 vs 
D2D3 0.1<p<0.2 0.1400 p<0.001 0.4337 0.1<p<0.2 0.1335 p>0.5 -0.0626 
D2D5 0.1<p<0.2 0.1473 0.01<p<0.02 0.2399 0.05<p<0.10 0.1656 p>0.5 -0.1099 
DOX2 0.02<p<0.05 0.1973 p<0.001 0.4881 0.002<p<0.005 0.3370 p>0.5 -0.2236 

1
4

4
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CHAPTER IV 

 

DISCUSSION 

 

Salient findings from spinal interneuron silencing 

L2 projection pathways: left-right pattern distributors  

While previous studies suggest that L2-L5 interneurons facilitate crossed 

flexor-extensor coordination57,59 and LAPNs likely mediate hindlimb-forelimb 

coordination during locomotion115,121,131,143, it is clear that the primary role of these 

L2 projection pathways is the distribution of left-right temporal information. The 

striking similarities in silencing these two pathways is very intriguing as they project 

to incredibly disparate parts of the spinal cord. Even their cell bodies are closely 

intermingled, but anatomically distinct. This is especially clear when we 

retrogradely labeled both pathways and visualized the entire L2 segment using 

light sheet fluorescence microscopy (unpublished data, Error! Reference source 

ot found.). What is it about L2 that makes these distinct pathways key contributors 

in the distribution of temporal coordination?

 L2 is one of the rostral segments within the lumbar enlargement, which has 

been shown to contain the necessary neuronal circuitry to produce hindlimb 

stepping7. As such, the hindlimb central pattern generating circuitry is often thought 
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to lie within the lumbar spinal cord. However, the specific rostrocaudal distribution 

throughout this caudal neuraxis has been greatly contested25.  

Two hypotheses have been put forth as it relates to the specific location of 

the hindlimb CPG: (1) the functional rhythm generating networks are distributed 

throughout the lumbar spinal cord, but with a rostrocaudal excitability gradient31-39 

or (2) the primary rhythmogenic core is confined to the rostral segments 

alone110,144. Regardless of where the hindlimb stepping rhythm is produced, it is 

clear that the proximal lumbar segments play a key role in generating hindlimb 

movements145,146. The cell bodies of our L2-L5 interneurons and LAPNs both 

reside within this critical area.  

Thankfully, there appears to be little disagreement as to where within the 

gray matter the CPG-related neurons reside25. Activity-labeling, 

electrophysiological, and microlesion studies all show that this circuitry is 

concentrated in the intermediate and ventral gray matter (laminae VII, VIII, and 

X)33,37,40-43. Once again, our pathways of interest reside primarily within these 

laminae123,128,147. 

In light of the critical role the rostral lumbar circuitry plays in the expression 

of hindlimb stepping and the anatomical underpinnings of the pathways studied 

here (L2 resident cell bodies that are concentrated in the intermediate gray matter), 

we propose that these L2 projection pathways distribute temporal information 

necessary for interlimb coordination during overground locomotion. Specifically, 

we propose that these pathways are constituents of interlimb pattern formation 
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layer, distinct from intralimb and separate from the rhythm generation, within the 

lumbar central pattern generating circuitry.  

Silencing left-right pattern distributors leads to a coordination continuum 

Alternation is the preferred coupling pattern during locomotion. It is the 

default mode for many species1-7. Here, when we silence key distributors of that 

temporal information, the pattern changes. But do the observed coupling continua 

reflect the pattern “breaking down” or does silencing “release the temporal 

constraints” such that the limbs can now express new patterns? Or does the 

continua reflect an incomplete “knockout” of all L2-L5 interneurons or LAPNs? This 

“differential knockout” is discussed in detail in the Limitations and Alternative 

Approaches section of Chapter Four.  Here, I will focus on discussing two plausible 

mechanisms for the coupling continuum: a broken pattern or released constraint.  

The coupling continuum: a broken pattern 

If we entertained the idea that the left-right pattern “breaks down” during 

silencing, then we would anticipate seeing corrective responses from the otherwise 

intact circuitry. From a teleological perspective, the locomotor circuitry “wants to 

fix what is broken.” This could account for the strikingly disparate results we 

observed in the step-by-step changes in left-right coordination between the two 

studies (Figure 34). When we silenced L2-L5 interneurons, we saw large changes 

in per-step coordination (Figure 34, bottom panel, red spikes). However, silencing 

LAPNs did not influence this dynamic coordination. While we put forth the idea that 

these changes in per-stride coordination indicate spontaneous shifts in left-right 

coupling, it could also reflect the spinal circuitry attempting to “fix” or compensate 
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for the irregular patterns. In support of this concept are two observations. First, the 

forelimbs continued to alternate throughout the expression of these irregular 

hindlimb coupling patterns. Therefore, these animals are actively stepping with 

normal, left-right forelimb alternation but highly atypical hindlimb coupling. And 

when you watch these animals step, the only word that comes to mind when 

describing their behavior is “awkward” (Video 7). If not awkward, then surely 

“effortful” as it seems like the animal is “trying to fix” these strange stepping 

patterns expressed in the hindlimbs. Our second piece of data that supports the 

idea that silencing L2-L5 interneurons “breaks down" the left-right pattern is that 

silencing-induced perturbations to hindlimb coordination are attenuated one month 

later during DOX2. As such, the otherwise intact circuitry could compensate for or 

“fix” these patterns. Repeated silencing of LAPNs, on the other hand, makes the 

perturbations to interlimb coordination more profound.  

Therefore, if the left-right coupling continuum observed is due to a “broken pattern,” 

then it appears as though only L2-L5 interneuron silencing supports this 

hypothesis. 

The coupling continuum: released temporal constraints   

An alternative consideration for the underlying mechanism of the coupling 

continuum is a “released constraint” from the alternating, left-right pattern. 

Released constraint, but still within the boundaries of maintaining a stable 

locomotor rhythm. In support of this hypothesis is data generated from silencing 

LAPNs. Here, there appears to be no attempt to “fix” or compensate for the altered 

stepping patterns expressed. Indeed, the changes become more profound over 
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time and the relative fidelity with which these patterns are expressed on a step-by-

step basis suggests they are a steady-state coupling pattern. However, it is clear 

that data generated from the L2-L5 study does not fully support this hypothesis.  

Altogether, it seems likely that there are disparate mechanisms of action 

going on. If the L2-L5 continuum is the reflection of a “broken pattern” that the 

locomotor circuitry is actively trying to fix, then this could signify functional 

redundancy within the lumbar neural circuitry. Therefore, L2-L5 interneurons 

constitute one of many lumbar-enriched pathways that contributes to left-right 

coordination during stepping. Alternatively, it appears as though the coupling 

continuum observed from silencing LAPNs reflects the release of the left-right limb 

pairs from strict, out-of-phase movements. Therefore, silencing this ascending 

inter-enlargement network endows the circuitry with the flexibility and freedom to 

express a breadth of coupling patterns with great fidelity. Peculiarly, the overall 

changes from silencing LAPNs are more profound than that of the L2-L5 

interneurons, but the animals actually appeared “more coordinated.” To conclude, 

even though the end result of silencing is a left-right coordination continuum, it is 

likely due to a differential response of the nervous system to the manipulation.  

Silencing task-dependency: context is key 

While the majority of our analyses focused on quantifying changes 

observed during overground locomotion, it became clear to us that there was a 

second story building, one that was more nebulous, but very intriguing. Throughout 

our studies, we saw that the “behavioral context” exerted a profound influence on 

the expression of the silencing phenotype. Specifically, it appears as though 



 

150 
 

certain tasks overrode the silencing effects. In this section, I will highlight two 

conditions where we saw apparent context-dependent modulation of the silencing 

phenotype. At the end, I will briefly discuss how these task-dependent 

observations feed into our emerging hypothesis of the multifunctional 

reorganization of the lumbar central pattern generator.    

Stepping versus swimming  

The most striking result from our studies is also our strongest argument for 

how the behavioral context appears to gate the expression of the silencing 

phenotype. Regardless of the pathway we silenced, the disruptions to interlimb 

coordination during stepping were immediately abolished when the animals swam. 

What is it about swimming that modulates the silencing effects we observed 

overground so profoundly?  

To address this question, we first need to consider the fundamental 

differences between stepping and swimming. The obvious disparity between the 

two is the environment in which these behaviors are expressed. During stepping, 

the limbs are actively loaded throughout discrete phases of the step cycle148. It is 

this sensory and proprioceptive feedback (in conjunction with inputs from the 

muscle spindles about dynamic changes in muscle length) that powerfully 

modulates the transitions between swing and stance during stepping. Swimming, 

on the other hand, has drastically reduced load applied to the limbs due to the 

animal’s inherent buoyancy in water112. Therefore, the overall contributions from 

load sensors (group Ib, Golgi tendon organs) to patterned limb movement is 

profoundly different from that in stepping113.  
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While these two behaviors are fundamentally different, swimming is often 

thought to be a “simpler” form of locomotion149 that shares both similarities and 

differences with stepping112. Akin to stepping, there are two phases in the hindlimb 

swim cycle: the power stroke and return stroke112. Power stroke is “equivalent” to 

the stance phase where limb extensors are active. However, unlike stepping, the 

limb extensors are maximally driven in a single, synchronous burst (co-activation 

of hip, knee, and ankle extensors)112. These peak forces, along with full extension 

of the knee and ankle (due to no opposing ground reaction forces), increases the 

relative surface area of the hindlimb that can be used to generate thrust for forward 

propulsion. There is no equivalent for this motor action in normal stepping112. 

Moreover, while return stroke shares a similar pattern of limb flexor burst duration 

and latency to that of swing phase during stepping112, the muscle groups are 

activated in a sequential manner such that one flexor group is recruited throughout 

the entire swim cycle. This feature is qualitatively distinct from patterns of activation 

observed during overground locomotion112. Therefore, while both behaviors will 

take the form of rhythmic left-right alternation in the hindlimbs, the underlying 

neural mechanisms that govern it are strikingly different. Whether or not there is 

differential involvement of supraspinal centers between the two tasks is unknown. 

Therefore, it comes as no surprise regarding the difficulties we faced in 

reconciling the disparate effects silencing had on stepping versus swimming. 

Nonetheless, there are three plausible mechanisms of action that could explain 

these results. First, these pathways are weakly involved in left-right coordination 

during swimming, potentially due to cutaneous and/or load-related inputs gating 
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their involvement. A second, albeit parsimonious, explanation is that swimming 

could have a fundamentally different neuro-ensemble from stepping such that the 

L2 projection pathways are not active during the task. And finally, perhaps these 

pathways are active during swimming, but other neural circuitry compensates 

thereby masking the effects. It is particularly challenging to interpret the 

involvement of LAPNs in swimming as forelimbs (and therefore hindlimb-forelimb 

coordination) are not involved in this task apart from occasional steering. What role 

would an inter-enlargement pathway serve when the task is almost entirely 

bipedal? To begin to address these questions, we must first determine whether or 

not these pathways are even active during swimming. This could be addressed 

through a relatively straightforward experiment where L2-L5 interneurons and 

LAPNs are first retrogradely labeled with fluorescent tract tracers. After retrograde 

transport to back-label the neurons, animals would then receive multiple swim 

sessions immediately before sacrifice. The post hoc detection of the labeled 

neurons that co-express c-fos, an immediate early gene that denotes cellular 

activity, could help determine whether or not the neurons are active during the 

task150. Until then, we have no way of knowing whether L2-L5 interneurons or 

LAPNs are a part of the “hindlimb swim ensemble” for left-right alternation.  

Despite our inability to fully interpret these data, the swimming phenotype 

was very intriguing to us. Unlike stepping, swimming simply “looked automated.” 

There seemed to be a “preset” frequency and phase relationship at which the 

hindlimbs cycled. It was as if the locomotor circuitry underwent a profound 

functional reorganization, switching from the flexible, dynamic system we observed 
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during overground locomotion to a fixed motor ensemble. This was not the only 

instance where we saw an apparent functional reorganization of the locomotor 

circuitry. Indeed, even the “type” of stepping behavior profoundly shaped the 

silencing phenotype.  

“Going from A to B” leads to C, the coordination continuum 

  We realized very quickly during our studies that not all stepping behaviors 

are alike. For example, if an animal appeared to step in a “directed” mode (“going 

from A to B”), we saw significant perturbations to limb coupling. This is clearly 

demonstrated in videos where the initiation of locomotion is captured on camera 

(Video 8). In these examples, you can see the animal initially look around, turn its 

head towards the end tank, and then start stepping with a significantly altered 

coupling pattern. However, if that same animal locomoted in an outwardly 

“exploratory,” non-directed mode (e.g. snout-down) then the silencing phenotype 

was essentially abolished (Video 9).  

We attempted to quantify these apparent behavioral differences by 

analyzing overt exploratory passes in which the animals stepped continuously with 

minimal-to-no hesitations while its snout was pointed towards the ground. These 

preliminary results revealed that when an animal was “snout-down stepping” 

(“exploring”), then the silencing phenotype was reversed (Figure 35). The animals 

essentially reverted back to the normal coupling patterns observed at control time 

points. While intriguing, we fully acknowledge the tenuous nature of these 

analyses, especially with regards to the relatively subjective definition of 

exploratory behavior as well as the influence speed could have on shaping the 
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phenotype (e.g., non-exploratory stepping could be faster than exploratory, thus 

leading to a change in coupling patterns). Therefore, we analyzed both modes of 

stepping (exploratory vs non-exploratory) at a fixed speed range of 23-90 cm/s 

(max snout-down stepping was 92 cm/s) (Figure 36). Even after we took into 

account the speed at which the animals stepped, we still saw a difference between 

the two stepping modes and whether or not silencing had an influence of hindlimb 

coordination. While these data are preliminary and require additional analyses, it 

appears as though the “type” or apparent mode of stepping also modulates the 

silencing phenotype. Why would this snout-down, exploratory stepping behavior 

mask the silencing-induced effects? 

We do not know what the animal is actually doing during these “snout-down” 

stepping events. Are they actively whisking and/or sniffing? Whisking is an 

interesting sensory-motor task where the facial vibrissae rhythmically move back 

and forth to spatially and tactilely explore objects and surfaces151. During 

locomotion, the vibrissae essentially scan ahead of the animal152,153, establishing 

localization in the forward direction but not the transverse154,155. Widespread neural 

activity throughout various cortical structures suggests this task has high cognitive 

drive. Indeed, the following structures have been shown to be active: the trigeminal 

ganglion, posterior medial nucleus of the thalamus, primary vibrissa 

somatosensory cortex, and primary vibrissa motor cortex156-161. And while whisking 

behaviors concomitantly emerge with locomotion during development, how these 

two systems are fundamentally interconnected still remains poorly understood151. 

Therefore, I will focus this discussion on the dynamic interactions between the 
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olfactory and locomotor systems as the integration of these modules has been 

mapped out in greater detail.  

If the animals truly are sniffing during these snout-down locomotor bouts, 

then this could reflect a functional reorganization of the network to where an 

olfactory-motor circuit drives the spinal locomotor circuitry. This sensory-motor 

functional ensemble is not unheard of. It is widely recognized that animals will 

express motor behaviors in response to an odor stimulus. This phenomena has 

been documented in fish162, lamprey163, rats164, and even humans165. Moreover, 

this olfactory-motor response is expressed incredibly early in life. Hours old rat 

pups could elicit rhythmic, locomotor-like movements when presented with a piece 

of home-cage bedding while suspended in a sling164. Most surprising was that 

these locomotor-like movements were in an alternating pattern with a 1:1 or 1:2 

fixed relationship.  

The apparent conservation and fidelity of these olfactory-motor responses 

led Dubuc and colleagues to identify the underlying neural mechanisms that 

govern this sensory-motor behavior166,167. Specifically, what pathways link the 

olfactory system to that of the locomotor? Using the sea lamprey model, they 

revealed that olfactory input is relayed from the medial olfactory bulb to the 

posterior tuberculum, a structure in the caudal diencephalon that is exquisitely 

involved in sensory-motor control168. Projections from the posterior tubercle are 

then relayed to the mesencephalic locomotor region, or “the locomotor command 

center”168,169. From here, mesencephalic locomotor neurons project to the reticular 

formation, where they activate reticulospinal neurons to then drive the spinal 
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circuitry. Not only could these snout-down locomotor bouts implicate an olfactory-

motor relay onto the spinal circuitry, but there could also be modulatory effects 

through the vestibulospinal tract. Here, the vestibulospinal system (medial and 

lateral projections) collectively modulates muscle tone, balance and posture, head 

and eye coordination, as well as spatial orientation170. This system influences the 

spinal circuitry through direct projections onto neurons residing in the intermediate 

gray matter (medial tract innervates cervical segments, lateral tract runs along the 

entire length of the spinal cord)170. These studies, as well as others, highlight how 

various supraspinal centers, as well as the dynamic interactions between them, 

can powerfully shape and modulate spinal generated locomotion.  

These “snout-down” observations were just one example of an apparent 

“top-down” behavior that reversed the stepping perturbations. We also noticed that 

the silencing effects were masked when animals were actively looking about their 

environment while they stepped. Again, whether this is due to the speed at which 

the animals stepped or if it reflected another “top-down” behavior where the animal 

was forming an internal map of its external environment (active involvement of the 

ventral hippocampus and nucleus accumbens) remains unknown171-174. 

Nonetheless, it appears as though there are differential gating mechanisms at play. 

Ones that endow the expression of the silencing phenotype as well as override its 

effects. What could account for these intriguing “context is key” observations?  
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The multi-functional reconfiguration of the central pattern generator: “top-

down versus bottom-up” locomotion 

We propose that conditional silencing has unmasked a context-driven, top-

down bottom-up reconfiguration of the lumbar central pattern generator. These 

effects are revealed through silencing L2 projection pathways as they likely 

operate at the interface between the two modules (Figure 37).  

First, let us consider the “bottom-up” context. From our observations, if an 

animal “wanted to go from A to B,” left-right coordination was significantly 

disrupted, but only during conditional silencing of the L2 projection pathways. What 

does this “directed, A to B” stepping indicate about the status of underlying neural 

circuitry that governs this particular behavior? We propose that in this specific 

context, the CNS calls upon these L2 projection pathways immediately, and 

robustly, to effect the desired action. The “functional demand” is high for L2-L5 

interneurons and/or LAPNs to distribute the temporal information throughout the 

neuraxis (Figure 37, panel bi). Therefore, when these neurons are not functionally 

available to do so, the consequences are profound (Figure 37, panel bii). On this 

conjecture, the L2-L5 interneurons and LAPNs receive direct, monosynaptic input 

from supraspinal structures. Indeed, the ventral gray matter is known to receive 

dense supraspinal input175. As such, it is no surprise that when we mapped the 

known terminal innervation zones of various supraspinal centers onto where the 

L2-L5 and LAPN cell bodies reside, we see potential overlap between the two 

(Figure 38). Therefore, there could be a direct link between the descending 

command signals for “go” and the L2 temporal distribution networks studied here.  
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However, when the context changes, such as the sensory-driven locomotor 

behaviors during “snout-down” stepping, the neural circuitry functionally 

reorganizes into a “top-down module.” Here, the functional demand for L2-L5 

interneurons and/or LAPNs is much lower as the task does not demand for the 

immediate distribution of temporal information throughout the neuraxis. As such, 

the functional loss of the L2 projection pathways does not affect the expression of 

the desired behavior as these pathways contributed very little to its expression in 

the first place (or many other pathways are involved in the task, thus offsetting the 

silencing effects) (Figure 37, panel c). Or perhaps the L2 projection pathways are 

not involved in expressing the desired action at all, a potential explanation as to 

why silencing an inter-enlargement pathway (LAPNs) does not influence a purely 

bipedal task (swimming, Figure 37, panel d).  

We do not suggest that these “top-down” and “bottom-up” functional 

modules are mutually exclusive. Instead, we believe these context-dependent 

observations highlight how the locomotor network reconfigures itself to fit the 

needs of the task. This concept is within the vein of the modular organization 

hypothesis for left-right coordination, where discrete pathways are recruited in a 

speed-dependent manner to secure alternation. Here, we show that the 

reorganization is likely not dependent on speed, but instead the task at hand.  

To conclude, the locomotor circuitry could be considered a “hard-wired” 

system based on the discrete anatomical interconnections between various 

neurons176. However, at any given time the strength of these connections can be 

modulated through changes in synaptic strength and/or cellular excitability. This 



 

159 
 

salient feature endows the entire system with flexibility to reconfigure itself, 

allowing different neuronal ensembles to be recruited in order to express the broad 

repertoire of motor behaviors. Moreover, the dynamic inputs from proprioceptive 

and/or exteroceptive sources can powerfully modulate the system, even on 

“functional ensembles” that are otherwise unchanging/intact. We believe our data 

from the conditional silencing of L2 projection pathways nicely illustrates this 

principle. 

Limitations and alternative approaches 

In this section, I will address four key limitations in our study. First, I will 

discuss the likely incomplete penetrance of silencing all L2-L5 interneurons and all 

LAPNs from a technical and functional perspective. Next, I will address the issues 

we had in detecting the absolute number of neurons that were double infected. 

Thereafter, I will outline the inherent limitations in dissecting the role of all 

ipsilateral versus all commissural projections as well as the excitatory versus 

inhibitory subtypes. To conclude, I will highlight how poorly we understand where 

these networks fit into the overall locomotor connectome and why this knowledge 

is key for interpretation of our data. Throughout these sections, I will put forth 

several experiments that could potentially address these limitations.  

Incomplete penetrance in the conditional silencing of L2-L5 interneurons 

and LAPNs 

Technical considerations  

From a purist perspective, to truly appreciate the functional significance of 

a discrete pathway all of its neural constitutents should be manipulated 
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(genetically, virally, or otherwise). As such, one major criticism of our work is that 

the approach used here does not permit a systematic dissection of the L2-L5 and 

LAPN pathways. Specifically, we cannot conditionally silence all L2 neurons that 

have L5 projections or all LAPNs whose cell bodies in the lumbar cord have 

cervical projections. And while we have replicability across time points (DOX1 vs 

DOX2) and between animals for the behavioral phenotype, an issue that is often 

raised is what proportion of the total pathway we ultimately infected.  

Studies previously performed in our laboratory have shown that following 

cervical injections (at different levels) with retrograde tract tracers, LAPNs were 

distributed throughout the entire lumbar neuraxis123. If the cervical injections were 

performed more rostrally, then the relative distribution and number of LAPNs 

labeled was different. Anatomical studies performed in the cat showed similar 

results128. Therefore, despite the somewhat diffuse nature of these nuclei the 

preponderance of LAPNs appears to reside in the rostral segments123,128. This was 

the rationale behind our targeted injections at spinal L2. Surprisingly, the 

rostrocaudal spread of L2-L5 interneurons remains unknown in the adult rat, 

although studies in embryonic rats indicate they are relatively confined to the 

rostral segments52,54.   

Therefore, to target the “entire” pathway we would have to perform bilateral, 

serial injections along the entire length of the lumbar spinal cord (LAPNs) or 

confined to the rostral segments (L2-L5 interneurons). To compound the issue 

further, we do not know to what extent the AAV2 viral vector spreads 

rostrocaudally. Answering this question requires in situ hybridization to detect 



 

161 
 

rtTAV16 expression. This proved impossible as not only do we not have the probes 

designed to detect rtTAV16, but also due to the fact that our spinal cord tissue was 

cryosectioned at 30 µm. in situ hybridizations usually requires sections of 8 to 10 

µm thick177. As such, the number of injections required for sufficient infection could 

be relatively few (virus has diffuse spread) or considerably high (restricted spread). 

Therefore, not only could animals require a substantial volume of virus that would 

likely cause a profound immune response178, but the laminectomy and injections 

themselves could cause irreversible locomotor deficits as the lumbar spinal cord 

has been shown to be critically involved in generating hindlimb stepping146.  

It seems improbable that the TetOn technique will allow us to have complete 

penetrance such that all neurons that comprise our pathways of interest are 

double-infected. The only approach that likely affords greater penetrance would be 

to genetically ablate these neurons in the mouse spinal cord (see “Bridging the 

gap” section of Discussion). 

Functional considerations   

The fact that we cannot unequivocally silence all L2-L5 interneurons or all 

LAPNs raises a serious question: does this incomplete penetrance account for the 

phasic dispersion we observed in interlimb coordination (the “left-right coordination 

continuum)? Alternatively, are the changes observed a “byproduct” of the 

incomplete penetrance or the true functional readout, regardless of the relative 

proportion we silenced? While directly answering this question is likely impossible, 

generating the following data would provide more context such that we could better 

interpret the results generated from our studies.  
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If we graded the penetrance we achieved from silencing L2-L5 interneurons 

and LAPNs as “medium,” then one might speculate that we observed a spectrum 

of coupling patterns because we did not “knockout” enough of the pathway. 

Therefore, the animals could not default (or switch) to the more conventional 

coupling patterns (e.g. gallop, bound) and instead were left with adopting a “hybrid” 

or spectrum of left-right phase relationships. If this is true, then silencing a 

significantly greater (or lesser) proportion of the pathway would tip the balance 

such that animals defaulted to more typical coupling patterns (Figure 39). These 

data would suggest that L2-L5 interneurons and LAPNs do play gait-specific roles 

in locomotion, a significant deviation from our emerging hypotheses.  

To address this issue, we would keep the lentiviral vector injections 

consistent across all groups. However, we would then vary the number of AAV2 

injection sites in an attempt to gate the relative proportion of neurons that are 

silenced (Figure 39). Data shown in this dissertation were generated from animals 

that received two sets of bilateral injections (a total of four injections) that were 

separated by 1.5 mm rostrocaudally. As such, the “low” silencing effects group 

would receive one set of injections (bilaterally) while the “high” effects group would 

receive three to four sets of injections. If the magnitude and pattern of silencing-

induced changes observed was not different between the groups (especially the 

“medium” versus “high”), this would support our idea that the changes we observed 

were the true functional readout and not a byproduct of a differential “knockout.” 

However, if these proposed experiments reveal silencing-affected steps that 

cluster at discrete coupling patterns (such as gallop or bound for the “high” effects 
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group), this would suggest that the coupling continua we observed were likely a 

byproduct of an incomplete knockout. And while increasing the number of injection 

sites could effectively reduce the variability observed in interlimb coordination (e.g., 

steps concentrated at gallop or bound), this approach could also yield infections of 

“off-target, non-specific” neurons. Moreover, these infected neurons could be 

functionally unrelated to our L2 projection pathways of interest thereby 

confounding our interpretation of the perceived consequences from silencing.  

Ultimately, it is likely that we did not silence all L2 interneurons that project 

to L5 or C6. Therefore, under these conditions of “incomplete” silencing we 

observed a breadth of coupling patterns in interlimb coordination. Despite this 

incomplete silencing, these data are still interpretable based on three key findings. 

First, the effects were highly specific as we observed no overt changes to intralimb 

coordination (L2-L5 and LAPN studies), no perturbations to ipsilateral forelimb-

hindlimb movements (LAPN), and the silencing effects were clearly context-

specific (L2-L5 and LAPN studies). Second, all animals showed a silencing-

induced phenotype from both studies (N=19 animals). Third, the silencing-induced 

changes to interlimb coordination were reversible and reproducible one month 

later. These robust observations detected across both studies provides strong 

support that we can still appreciate the functional significance of these pathways 

during overground locomotion, even if there was incomplete penetrance of 

conditional silencing. 
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What proportion of the total pathway did we conditionally silence? 

In the vein of incomplete penetrance, another major criticism of our studies 

is that we currently do not know the absolute number of L2-L5 interneurons and 

LAPNs that we silenced. Ideally, we would know how many neurons were silenced 

in each animal such that we could correlate the magnitude of phenotypic changes 

observed to the number of neurons silenced. The TetOn constructs are designed to 

address this as any neuron that expresses eTeNT.EGFP can be detected post hoc 

using immunohistochemical techniques80. However, this was exceptionally 

challenging. The technical issues described below have greatly impacted the 

fidelity with which we believe absolute counts of eTeNT.EGFP-expressing spinal 

neurons could be performed.  

One plausible explanation for our technical issues was that viral titers we 

produced were lower as compared to that used by the developers of the TetOn 

system80. Here, we produced the lenti- and adeno-associated viral titers of 1.6 x 

107 viral particles (vp)/ml and 4.8 x 1012 vp/ml, respectively. Alternatively, Kinoshita 

and colleagues produced titers as high as 7.5 x 1011 copies/ml and 2.0 x 1013 

vp/ml80. Our lower titers could have affected the overall expression of 

eTeNT.EGFP that was induced in vivo, thereby making post hoc detection of the 

fusion protein more difficult in the spinal cords. 

Another key technical issue that still needs to be resolved is developing an 

optimal protocol for tissue preservation to detect eTeNT.EGFP consistently and 

reproducibly. In the L2-L5 interneuron study, we processed the tissue following our 

normal protocol where the animals were transcardially perfused with phosphate-
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buffered saline (PBS, pH 7.4) followed by 4% paraformaldehyde (PFA). The 

harvested spinal cords were then post-fixed overnight in 4% PFA followed by 

cryopreservation in 30% sucrose solution. However, this protocol made the 

histological detection of eTeNT.EGFP-positive neurons problematic. When we 

attempted to amplify the eTeNT.EGFP signal by staining for GFP, it became clear 

that our signal-to-noise ratio was poor. We could not reliably identify double-

infected neurons above the background noise, potentially due both low transgene 

expression as described above and/or excessive cross-linking of the antigenic 

sites such that the anti-GFP antibody could not effectively bind to its epitope179. In 

support of the latter, we were able to detect double-infected cell bodies with greater 

resolution with we adopted a “light fixation” protocol (LAPN study) wherein the 

spinal cords were briefly post-fixed for one to three hours followed by 

cryopreservation. Using heat-induced epitope retrieval techniques improved the 

antigenicity of our L2-L5 spinal cord tissue, but not to the level at which absolute 

counts could be performed definitively. Interestingly, our immunohistochemical 

detection of putatively silenced terminals was considerably less cumbersome by 

comparison, potentially due to the high concentration of eTeNT.EGFP signal in a 

small cellular structure.  

Finally, the buffers and detergents used during immunohistochemical 

detection of eTeNT.EGFP also proved to be an issue. Our routinely used buffer 

and detergent for staining is Tris-buffered saline (TBS) as well as Triton x-100 in 

concentrations ranging from 0.1%-0.3%. Through innumerable trial and error 

sessions, it became apparent that TBS and triton are counter-productive for our 
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staining needs. Instead, it appears as though PBS in combination with or complete 

absence of more gentle detergents such as Tween-20 or saponin (0.05-0.1%) 

yielded more consistent and reliable results.  

Should robust immunohistochemical detection of the double-infected cell 

bodies prove to be technically unfeasible, one might postulate that an 

approximation of the number of neurons silenced could be inferred through 

intraspinal tract tracing experiments. To do this, the lenti- and AAV2 injection 

protocols would be repeated, but using fluorescent tracers instead of the viral 

vectors such that any neuron that co-expresses both tracers would “mimic” a 

double-infected cell body. But even this relatively simple approach has a significant 

limitation: the uptake mechanisms and diffusion properties between fluorescent 

tracers and viral vectors are profoundly different. The lentivirus is a pseudotyped 

HIV-1 vector designed for enhanced uptake at the terminal field (via its fusion of 

rabies virus glycoprotein [extracellular and transmembrane domains] with 

cytoplasmic domain of vesicular stomatitis virus)80-83. Alternatively, the 

fluorescently-conjugated cholera toxin beta subunit tracer is taken up by binding 

to the monosialoanglioside receptor (GM1)180. The AAV2 virus is neurotropic and 

infects the cell bodies through cell surface glycan binding (heparin sulfate 

proteoglycan for serotype 2)181 while the anterograde tracer biotinylated dextran 

amine (BDA ) labels cell bodies through an unknown mechanism, although it is 

likely endocytotic in nature182. Due to the disparate nature between viral infections 

and tracer uptake, using tracer data as a “stand in” or approximation for double-

infected cell bodies is non-ideal, if not inappropriate.  
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In light of these technical issues regarding tissue preservation, epitope 

detection, the inability to reliably approximate viral infection numbers through tract 

tracing, and the desire to have absolute counts to correlate back to behavior, it is 

unequivocally essential to develop an optimal protocol for tissue processing and 

immunohistochemistry. Performing a pilot study where fixation (e.g. PFA, 

glutaraldehyde, formalin, fresh-frozen), buffers (PBS or TBS of varying acidities), 

detergents (Tween-20, Triton x-100, digitonin, or saponin of varying percentages), 

and primary antibodies (mouse, rabbit, chicken, goat anti-GFP of varying 

concentrations) are systematically tested is required, at a minimum, to address this 

issue. In hindsight, these conditions should have been standardized before 

behavioral experiments were performed. However, our initial proof-of-concept 

study was silencing L2-L5 interneurons. As such, we did not have the opportunity 

to determine the optimal conditions before functional testing.  

What are the functional contributions of the pathway subtypes: ipsilateral 

versus commissural, excitatory versus inhibitory?  

Silencing data from both studies revealed an intriguing dichotomy: 

contralateral limb movements (left-right fore- and hindlimbs, diagonal hindlimb-

forelimb) are selectively impaired while ipsilateral movements (intralimb 

coordination, homolateral limb pairs) are unaffected. This raises an interesting 

question: what functional roles do the commissural versus ipsilateral 

subpopulations play during locomotion, in particular the ipsilateral pathways?  

At first blush, addressing these questions appears relatively straightforward. 

Unilateral viral vector injections would silence the ipsilateral pathways while 
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bilateral injections would target the commissural subpopulations (Figure 40). 

However, only one set of the ipsilateral (e.g. left L2 interneurons that project to left 

L5) or commissural (e.g. left L2 interneurons that project to right L5) subtypes can 

be studied. In these experiments, we would effectively be studying a subset (left 

L2-L5 interneurons) of a subset (ipsilateral L2-L5 interneurons, left and right sides). 

Because we would be silencing a considerably small fraction of neurons in the 

otherwise intact locomotor circuitry, the potential for functional compensation is 

likely high. Indeed, even Kinoshita et al showed compensatory effects mediated 

through indirect, intact circuits using the same TetOn system used here80. 

Therefore, it is likely that the effects of silencing “one subset of a subset” could be 

masked by the intact, complementary subset or through other relevant circuits.  

Therefore, to address what role the ipsilateral or commissural pathways 

play, we would need to combine the TetOn system with another technique that 

endows pathway-specific manipulations independent of cell-specific promoters. 

One approach would be to combine TetOn silencing with DREADDS, which are 

“Designer Receptors Exclusively Activated by Designer Drugs”183,184. This is a 

chemogenic approach where proteins are engineered to interact with non-

endogenous, small, drug-like compounds. These “designer drugs” act as chemical 

actuator that can be programed to increase or decrease neural activity remotely184. 

As such, we could employ a Cav-Cre mediated approach wherein we induce 

recombination to express DREADD inhibitors on one side of the spinal cord in 

conjunction with TetOn silencing on the opposite side (Figure 40c, left; refer to 

Figure 41 below for detail on Cav-Cre). Apart from concerns regarding differential 
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“silencing” mechanisms, there is an insurmountable issue with this approach: we 

would essentially produce “hybrid commissural” neurons that express a 

combination of both systems (Figure 40c, right). What impact this could have on 

cell viability or functionality is unknown. It seems impossible, at the moment, to 

silence all ipsilateral (or commissural) projections. Moreover, there is no way for 

us to determine the functional role of excitatory versus inhibitory L2-L5 

interneurons and LAPNs in adult rats. These questions would have to be 

addressed in the transgenic mouse model. Ultimately, the best approach would be 

to computationally model these networks. Using this technique, one could “reverse 

engineer” the in vivo observations by differentially removing the excitatory and 

inhibitory inputs (both ipsi- and commissural) to determine which permutations 

mimicked the phenotype. 

How do L2-L5 interneurons and LAPNs fit into the overall locomotor 

circuitry?  

Anatomy of the L2-L5 interneurons and LAPNs in the adult rat are poorly 

understood  

  While we have explored in some detail the anatomical underpinnings of the 

silencing effects, the precise projection patterns of these neurons in the adult rat 

are still unknown. This is a serious concern because any terminal, regardless of 

its location, will have eTeNT-mediated VAMP2 cleavage to prevent 

neurotransmission. How can we interpret the functional consequences of silencing 

a “L2-C6” pathway if these neurons also have projections throughout the lumbar 

and thoracic neuraxis in additional to cervical segments? A rigorous anatomical 
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study is required to understand “the full scope” to which L2-L5 interneurons and 

LAPNs integrate into the nervous system.  

Dissecting the complexity of the pathway projections in the rat spinal cord 

is technically challenging, but potentially feasible using a combinatorial viral vector 

approach optimized for synaptic labeling (Figure 41, refer to legend for simplified 

and detailed workflows). First, we would need to retrogradely deliver Cre 

recombinase to our neurons of interest using Cav-Cre viral constructs185. In this 

system, Cre is retrogradely delivered to neurons through the canine adenovirus 

(serotype 2) which efficiently transduces axon terminals185-187. Therefore, Cav-Cre 

would be injected at L5 to retrogradely infect L2-L5 interneurons and at C6 for the 

LAPNs. Thereafter, at the level of the Cre-infected cell bodies we would perform 

injections using the AAV2-flex-SynTag viral constructs127. This construct has 

double-inverted-orientation-LoxP flanked sites that expression of fluorescently-

tagged synaptic proteins following Cre-mediated recombination. Studies show that 

efficient Cre-mediated recombination to induce the expression of fluorescently-

tagged synaptic proteins originating from the double-infected neurons takes 

approximately two weeks127. Using this approach, we would be able to detect both 

the synaptic arborization profiles and axonal projection patterns throughout the 

entire neuraxis for each pathway. Therefore, we could determine whether these 

neurons project to various motor neuron pools, other spinal segments, or 

supraspinal centers. 
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Anticipated projection patterns of L2-L5 interneurons 

Based on our initial triple-tracer anatomy experiments, we do not anticipate 

seeing dense terminal innervation within the rostral lumbar segments derived from 

L2-L5 interneurons. However, the dual-virus technique described here affords 

superior resolution in uncovering projection patterns. If we did observe L2-L5 

interneuron collaterals throughout the rostral lumbar segments this would greatly 

influence the interpretation of our functional data. We propose that left-right 

coordination is disrupted during silencing due to the loss of rostro-caudal 

distribution of key temporal information. If L2-L5 interneurons do have dense 

collaterals locally, then this could be the primary mechanism as to why left-right 

coordination was disrupted as the rostral lumbar segments are profoundly involved 

in central pattern generation25. Nonetheless, we anticipate these anatomy 

experiments will reveal dense synaptic innervation throughout the caudal lumbar 

segments. 

Anticipated projection patterns of LAPNs 

Following a series of unpublished double-tracer experiments, we revealed 

that LAPNs appear to lack local projections throughout the lumbar enlargement 

(Figure 42). These results are unexpected as this pathway plays a key role in 

coordinating temporal information between left-right hindlimbs and left-right 

forelimbs. The apparent lack of dense innervation throughout the lumbar spinal 

cord makes reconciling the changes to left-right hindlimb coordination challenging. 

Moreover, disparate from the apparent dense innervation long descending 
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propriospinal neurons provide throughout the thoracic segments127, we show that 

long ascending neurons appear to not have substantive projections here.  

We did not observe double-labeled neurons following dual tracer injections 

at the cervical and thoracic segments, respectively (Figure 42). It is important to 

note that these were not systematic dissections and that using the more sensitive 

dual virus technique could reveal projection patterns that were otherwise below the 

threshold for detection with standard fluorescent tracers. If the proposed 

experiments uncover projection patterns throughout the lumbar segments, this 

could account for the profound effects silencing had on hindlimb coordination. 

However, if they also revealed synaptic projections throughout the thoracic 

segments then this raises interesting questions as to why balance, posture, and 

trunk stability were not affected during silencing. Nonetheless, we anticipate that 

these experiments will uncover dense innervation throughout the cervical 

segments onto neurons in laminae VII, VIII, and X.  

How do L2-L5 and LAPNs fit into the locomotor connectome?  

We frequently emphasize that our functional data are interpreted with 

respect to “the otherwise intact locomotor circuitry.” However, the anatomical 

integration of these pathways into the locomotor connectome, both on a 

macrocircuit and microcircuit scale, is unknown. Not only could this information 

provide great anatomical context as to why we observed the silencing phenotypes, 

but it could also provide information as to why certain tasks were amenable to 

disrupted coordination while others were not (e.g., non-exploratory vs exploratory 

behavior). Deciphering where L2-L5 interneurons and LAPNs fit with the locomotor 



 

173 
 

macrocircuit would require the use of trans-synaptic tracers (e.g. pseudorabies 

virus), a technique that is notoriously challenging for interpretation188. Therefore, I 

will focus this discussion on how to dissect the microcircuit architecture of both 

pathways.  

To probe the microcircuit integration of L2-L5 interneurons and LAPNs, we 

need to dissect their input-output organizational structure. This is possible using 

the TRIO approach (“tracing the relationship between input and output”)185,188, a 

technique that is illustrated in Figure 43. Using this tracing technique, we could 

map the inputs of neurons from “region 1” that synapse onto L2 neurons in “region 

2” which then project to “region 3” (Figure 43a). 

First, we would need to create “starter” neurons. Starter cells gate the 

selective infection and monosynaptically-restricted spread of glyco-deleted rabies 

virus. Here, our starter cells would either be the L2-L5 interneurons or the LAPNs 

(Figure 43b). To create these starter cells, we would need to double-infect the 

neurons with two Cre-dependent AAVs. The first is AAV2-FLExloxP-TC (Figure 43b, 

red construct). “TC” denotes the TVA-mCherry fusion protein189. The second Cre-

dependent construct is AAV-FLExloxP-G (Figure 43b, light green construct). This 

construct encodes for the rabies G-protein, a requirement for trans-synaptic 

spread. Therefore, our starter “L2” neurons would be dually infected with two Cre-

recombinase-activated constructs. The transgenes (TVA-mCherry; G-protein) 

would only be expressed following Cre-loxP driven FLEx-switch recombination.  

The next step is where we would decide which pathway, L2-L5 or L2-C6, 

we wished to focus on for dissecting the input-output architecture. This is due to 
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the fact that we would deliver Cav-Cre at the level of the terminal field. Cav-Cre 

would then retrogradely transported back to the double-infected cell body where it 

would induce FLEx-switch Cre-recombination. Therefore, if we wanted to dissect 

the L2-L5 microcircuit, we would inject Cav-Cre at L5. If we wanted to dissect the 

LAPN microcircuit, we would inject at C6 (shown in Figure 43c). In the dual-

infected L2 starter neurons, Cre would now be expressed. This would lead to FLEx 

switch recombination which would produce both TVA-mCherry and rabies G-

protein (Figure 43d).  

In the final step, we would target the starter neurons with a rabies virus that 

is EnvA-pseudotyped (envelope protein from avian ASLV type A virus), 

glycoprotein-deficient (requires trans-complementation), and GFP expressing 

(“RVdG”) (Figure 43e). The EnvA-pseudotyping selectively targets the infection 

only to starter L2 neurons that express the TVA receptor. As such, our L2 neurons 

would now express mCherry and GFP (ultimately fluoresce yellow). Because these 

starter neurons express rabies G-protein, the RVdG virus can replicate and spread 

trans-synaptically (“trans-complementation”). Therefore, input neurons that 

synapse onto the starter neurons would be infected and express GFP. However, 

these input neurons do not express the rabies G-protein (were not infected with 

AAV-FLExloxP-G). As such, the rabies spread would be restricted to monosynaptic 

connections only. Therefore, using this technique, we could tease out the input 

pathways onto our pathways of interest was well as where they project to and 

synapse on.  



 

175 
 

Despite the relative elegance of this system, working with viral tracers 

presents unique technical limitations. Most obvious is that rabies virus expression 

will ultimately kill the neurons. Studies show that following neuronal infection, the 

cells are still detectable for up to 14 days post-injection190. However, their viability 

as assessed by electrophysiological techniques becomes questionable after 12 

days191. The second most important limitation relates to the overall efficiency of 

the labelling. Notably, under most conditions only a fraction of the “true” total inputs 

onto starter neurons will be labelled188. As outlined by the developers of the 

system, this could be due numerous reasons, including: (1) poor expression levels 

of the rabies G-protein in the starter neurons, (3) an insufficient number of 

pseudotyped-rabies virus particles that ultimately infect the starter neurons, or (3) 

the length of time required for monosynaptic spread before the neuron starts to 

die188. Notwithstanding, this is currently the only technique that allows us to map 

out the local microcircuit of these neurons.  

Bridging the gap: the deep divide between developmental and functional 

modules 

The genetic models of locomotor circuitry have identified key pathways that 

secure left-right coordination in a speed-dependent manner61. So, where does our 

silencing data fit within this framework? Simply put: it does not. In this section, I 

will re-address the genetically-dissected functional organization of the left-right 

coordinating circuitry, illustrate why our data does not fit easily into this model, put 

forth “plausible” experiments that could bridge this gap, and conclude with a 

functional model that could account for our data with respect to the genetic studies. 
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The V0 class: primary mediators of left-right alternation 

Initial studies that investigated the role of V0 interneurons involved the 

deletion of Dbx1 (developing brain homeobox 1), which is the fate-determining 

transcription factor expressed in the progenitor pools that ultimately give rise to V0 

interneurons75,192. Therefore, in these mice, the loss of the Dbx1 gene prevents 

the development of all types V0 interneurons (note, three subtypes have been 

identified thus far). In the isolated neonatal spinal cords of these Dbx1-null mice, 

drug induced locomotor-like activity produced periods of left-right synchronous 

activity interspersed with normal alternation68 (Figure 44b). Kiehn extended these 

findings, showing these synchronous events were also observed in vivo when V0 

interneurons were selectively ablated early in development through the expression 

of diphtheria toxin A (Dbx1-DTA mice; V0-deleted mice)17. Bound was the only gait 

these animals could express across all speeds analyzed17. However, what roles 

do the excitatory and inhibitory subtypes play during locomotion? Talpalar and 

colleagues demonstrated that it the excitatory subtype (V0v) governs alternation 

at high frequencies. When this subclass is removed, the trot gait is abolished while 

the slower alternating gait (walk) and the more synchronous gaits (gallop, bound) 

are preserved (Figure 44c)17,69. Therefore, the inhibitory V0d interneurons secure 

left-right alternation at lower frequencies. Computational modelling supports the 

notion that inhibitory V0d and excitatory V0v interneurons are recruited in an 

ascending order as the stepping speed increases74. However, the V0 interneurons 
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are not the only class that have been implicated in securing left-right coordination 

during locomotion. 

The V2a subclass: a facilitator of fast-paced alternation 

Of special interest is the work from the Harris-Warrick group. In their 

transgenic mouse model (strain: ICR/BL6/129), the wild-type mice trot at all speeds 

and step frequencies (Figure 44d)66,67. Therefore, these mice normally do not 

gallop or bound. This is not uncommon as certain strains of mice do not deviate 

beyond an alternating gait14. When Crone et. al. ablated the excitatory V2a 

interneurons, the mice could no longer preserve left-right alternation at high rates 

of speed and step frequencies (Figure 44e). As such, removing these neurons from 

the spinal cord caused the animals to gallop where they would normally alternate. 

Interestingly, these V2a neurons project ipsilaterally onto the excitatory V0v 

interneurons66,193-195. The anatomical underpinning of this pathway suggests that 

while they likely contribute to alternation at all speeds, the V2a-V0v circuit drives 

left-right alternation at higher frequencies. This hypothesis has been 

computationally validated74. 

The genetic model for left-right coordination 

These studies, along with extensive computational modelling74,196-198, have 

led to the modular organization hypothesis illustrated in Figure 44 (panel f). Here, 

V0d neurons secure left-right alteration of the limbs at reduced speeds and step 

frequencies. Therefore, this pathway is recruited during the walking gait, where 

animals are stepping slowly with three limbs in contact with the ground at any given 
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moment17. As speed increases, the V0v-V2a circuit is recruited to secure the limbs 

in the trot pattern where they act as struts with only two pairs contacting the ground 

at any given moment. Together, these are the alternation networks that secure left-

right coordination at low-to-moderate speeds and step frequencies. The molecular 

identity of the gallop or bound pathways, ones that synchronize the left and right 

sides of the body, are unknown61, but the hypothesis is that these alternation 

networks are either suppressed or overridden during these tasks.  

The division: reconciling our data with the genetic models 

It is quite challenging trying to reconcile our data with that of the genetic 

literature, both from the technical approaches used (refer back to Chapter One for 

detail), functional readouts (in vitro versus in vivo, overground stepping versus 

treadmill-based locomotion), and underlying anatomy of the pathways that were 

investigated. Nonetheless, let us highlight the similarities and differences between 

the two. 

Similar to that described in the V0-null mice, we observed synchronous or 

synchronous-like movements at speeds and step frequencies where these 

patterns are normally not expressed. However, unlike the V0-nulls, we did not 

observe a “switch” or “default” to the synchronous patterns. Instead, we observed 

a spectrum of left-right coordination values, which could be due to a differential 

“knockout” of the pathways we silenced (see Limitations section for more detail) 

(Figure 45b). When we compare our results to that of the V2a literature, there are 

similarities in that ablating the V2a neurons endows the locomotor system with 
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“new” coupling patterns it normally would not express (mice that could only 

alternate at all speeds can now gallop at fast-paced locomotion). However, the 

expression of the gallop gait was predicated on the animals stepping at fast rates 

of speed, a phenomenon we did not observe in either of our studies. Indeed, we 

saw coupling patterns indicative of a full bound at 60 cm/s when rats typically 

bounded at over 200 cm/s (long tank study). Moreover, how can we reconcile the 

V2a data in light of the fact that these mice normally do not express gallop or bound 

when those are a part of our rats’ normal gait repertoire?  

Both approaches present with unique technical considerations when 

interpreting the functional consequence of the manipulations performed (refer back 

to Chapter One for genetic pitfalls). It is also important to note that we have not 

directly tested whether silencing L2-L5 interneurons or LAPNs affects the 

expression of the faster gaits. As such, we do not know if silencing these pathways 

results in the “loss” of gallop or bound at speeds at which they normally should 

occur (Figure 45c). To do this, we would need to train the animals to volitionally 

express these gaits during overground stepping. What effects a positive 

reinforcement training paradigm could have on the neural ensembles involved in 

the normal expression of locomotion (e.g. context is key), let alone during 

silencing, could prove to be challenging in interpretation. Where does that leave 

us in our reconciliation of the silencing data with that of the genetic literature? 

There is a pressing need to fit our data within these current models. What 

experiments do we need to perform in order to bridge this divide? 
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Building the bridge 

To bridge this gap, we would first have to “unequivocally” demonstrate 

which genetically-encoded V-class series the mature L2-L5 interneurons and 

LAPNs represent in the adult mouse spinal cord. While this idea is simple in 

conception, its poses incredible technical challenges. 

The genes that mark the various spinal progenitor domains and/or early 

post-mitotic V-class subtypes are quickly downregulated during embryogenesis199. 

Therefore, the litany of transcription factor-specific Cre-driver lines are unusable 

postnatally. To circumnavigate this issue we would have to use a combinatorial 

approach developed by Arber and colleagues, making use of both genetic and viral 

technologies200 to “lock” the expression of these transient markers in post-natal 

neurons.  

First, we would breed our “transcription factor of interest” Cre-line with a 

transgenic mouse whose pan-neuronal Tau locus conditionally expressed Flp 

recombinase (Taulox-STOP-lox-FLP-INLA)200. The progeny from this breeding pair would 

have permanent expression of both nls-LacZ and Flp recombinase in neurons that 

were born from the progenitor domain of interest.  

Next, in the double transgenic mice, we would perform intraspinal injections 

of a double-inverted-orientation-FRT-flanked adeno-associated virus127. The 

delivery of this virus induces expression of green fluorescent protein in the Cre-

positive neurons whose transient transcription factors were permanently “locked.” 

Therefore, any mature neuron derived from the progenitor domain of interest is 
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now green.  Not only would we have to perform intraspinal AAV injections to induce 

recombination for LacZ expression, but this must be combined with a fluorescently-

tagged retrograde tracer. Because our pathways of interest are anatomically-

defined through tract tracing, we must also retrogradely-label the neurons and look 

for co-expression of both the tracer and LacZ. Thankfully, Ruder et. al. revealed 

that the lumbo-cervical projection neurons (a plausible correlate for the long 

ascending propriospinal neurons) are primarily derived from the V0-Dbx1 and/or 

V2-Shox2 progenitor domains127. Therefore, we would only have to perform the 

aforementioned experiments for the L2-L5 pathway alone. However, these 

experiments are purely anatomical and do not address any functional role(s) the 

pathway could play during locomotion. Separate experiments would be required to 

address this question.  

Ultimately, the interpretation of these experiments is predicated on two key 

assumptions. First, that developmental modules specify functional modules. 

Second, there is a discrete transcription factor that specifies every L2 neuron that 

projects to either L5 or C6. Ruder et. al. clearly demonstrated that lumbo-cervical 

neurons (a likely corollary of LAPNs) are not derived from one genetically-encoded 

domain127. Moreover, studies have shown there are clear differences in 

developmental versus functional modules of select, genetically-encoded 

neurons77,78. Taken together, it is obvious that any approach to functionally 

manipulate discrete circuits comes with inherent limitations. 
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Finding a happy medium 

Clearly, the lengths to which we would need to go in order to bridge this 

divide are insurmountable, at least for the unforeseeable future. Even if our data 

do not fit into the current genetic frameworks, we believe we have exposed a very 

complementary feature to this fixed (modular) system: intrinsic flexibility.  

A modular system where specific coupling patterns are expressed at 

relatively fixed ranges of speeds and step frequencies makes perfect sense from 

an energy economy standpoint. Rhythmic, left-right alternation is incredibly 

efficient at conserving energy during locomotion1. During the first half of the stance 

phase when the animal is slowing down and rising up, forward kinetic energy is 

converted to potential energy. When the animal then begins to “fall” and speed up 

during the latter half of the stance phase, the potential energy is converted to 

forward kinetic energy201. This “alternating” energy transfer reduces the energetic 

costs of locomotion by up to 75%1,202. Therefore, it comes as no surprise that 

alternation is the most commonly expressed coupling pattern across numerous 

species, ranging from insects to mammals1-7. Consequently, when animals step at 

increasing rates of speed, not only do the interlimb coupling patterns change but 

the overall biomechanics of locomotion will adjust as well in order to conserve 

energy. These adjustments include stride lengthening due to movements of the 

torso as well as the incorporation of aerial phases into the stride cycle (no limbs in 

contact with ground)1, a mechanism animals to increase their speed even further. 

Therefore, it makes sense that the limbs would be moving in synchrony as the 
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animals are effectively springing from their hindlimbs onto their forelimbs with 

incredible force at high rates of frequency. When these synchronous movements 

are coupled with the underlying biomechanical adjustments, animals are able to 

convert and recover their forward kinetic energy from both elastic strain (muscles) 

and gravitational potential energies (bound through the air)201. 

From our work, we believe we have uncovered the intrinsic capacity of the 

spinal cord to express a key complementary feature to this fixed, modular system: 

inherent flexibility and adaptability. Pattern generating circuits have been shown to 

be capable of “extreme reorganization,” a property nicely illustrated in the 

stomatogastric network of decapod crustaceans203,204. Studies show that this 

circuitry can be reorganized to produce a breadth of different behaviors, but 

variations of the same type of behavior can also be expressed through network 

reconfigurations. This parallels nicely with our “context is key” findings, where 

silencing affects left-right alternation during “directed” stepping but not during 

exploratory locomotion or swimming.  

Therefore, perhaps the modular organization of locomotor circuitry is key 

for how stepping patterns are initiated, and perhaps to some extent maintained. 

However, it is the flexible system that regulates stepping on a moment-by-moment 

basis. Indeed, the flexibility of control is “the basis for decision-making in the 

nervous system…the very essence of what animals must do throughout their daily 

lives”204. We do not believe these fixed and flexible coupling systems are mutually 

exclusive (Figure 46). Instead, we suggest they are both key regulators for 



 

184 
 

effective locomotion. Together, they endow the spinal cord with incredible 

precision, efficiency, and adaptability in how it orchestrates locomotion, both at its 

onset and on a moment-by-moment basis.  

Clinical significance 

We have shown that the L2-L5 interneurons and LAPNs participate in one 

fundamental aspect of locomotion: interlimb coordination. But do these pathways 

sub-serve any meaningful role in bipedal locomotion for humans? Before 

discussing the translational implications of these findings, we must first address 

one fundamental question: are the neural control mechanisms of interlimb 

coordination in human locomotion similar to that of a quadrupedal mammal? While 

directly answering this question is impossible, several studies have provided 

evidence which suggests that the functional organization of bipedal interlimb 

coordination is similar to that of the quadrupedal mammal205. The pertinent results 

of these studies are summarized below. 

Interlimb coordination of the lower extremities 

Much like quadrupedal mammals, bipedal stepping requires exquisitely 

timed coordination between muscles of the left and right lower extremities205 such 

that the initiation of swing in one limb is predicated on the other limb being in 

stance206-210. This coordination between the left and right lower extremities is tightly 

regulated such that if a perturbation to gait occurs, there is an immediate bilateral 

response211. The short latency of these bilateral electromyography (EMG) 

responses suggests that this coordinating action between the two limbs is secured 
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at the level of the spinal cord. Although these features are tightly controlled, they 

are also flexible such that when stepping on a split-belt treadmill of two different 

speeds the lower extremities will still perform in a “cooperative manner”205. 

Therefore, even though the activity of one limb will influence the spatiotemporal 

stepping features of the other, effective stepping persists212-215.  

Interlimb coordination of the upper and lower extremities 

Similar to quadrupedal mammals, humans also have long projection 

neurons that couple the cervical and lumbar enlargements216,217. While the upper 

extremities are typically not involved in producing the forward motions required for 

bipedal stepping, they are still temporally coordinated with the lower extremities as 

seen during swimming, crawling, and walking218. The expression of these 

coordinated movements is similar between infants208,209,212, adults206,207, and 

quadrupedal mammals7, suggesting a common neuronal control mechanism 

between bipedal and quadrupedal locomotion205. Indeed, numerous limb reflex 

facilitation/inhibition and EMG studies have demonstrated plausible neuronal 

coupling between the two spinal enlargements in humans219-221. 

Although arm swing is temporally coordinated with the legs during stepping 

(e.g., right leg in stance, left arm swung forward), the current hypothesis is that this 

is primarily facilitated through passive forces222. From this perspective, arm swing 

acts as an “elastic linkage” between the shoulder and pelvic girdles, regulating the 

dynamic stability of the whole body and dampening trunk torsion during 

locomotion223,224.  



 

186 
 

Context-specific gating of interlimb coordination 

Interestingly, it appears as though this functional coupling between the 

cervical and lumbar enlargements is task-specific205. When a mechanical impulse 

is applied to one leg, either at the middle or end of the stance phase while walking, 

a bilateral arm response is evoked in the deltoid and triceps muscles, 

respectively205,225. Electrical stimulation of the distal tibial nerve, a mixed fiber that 

innervates the skin and plantar foot muscles, also evokes similar responses in the 

arm muscles during stepping225. However, if the same mechanical stimulus is 

applied to the leg during sitting (while writing) or standing (with volitional arm 

swinging), no responses in the arms could be evoked. These results suggest that 

this ascending inter-enlargement pathway becomes “gated by the activity of the 

central pattern generator during walking,” indicating that the coupling mechanisms 

between the two enlargements are flexible and context-specific205. From this 

perspective, bipeds can effectively switch from global motor actions such as 

stepping to more refined tasks like writing225.  

Collectively, these studies suggest that some of the underlying neural 

mechanisms that secure interlimb coordination for bipedal locomotion are likely 

shared with quadrupeds205,226. If these neural mechanisms are indeed conserved, 

what role could L2-L5 interneurons and LAPNs serve in bipedal locomotion?  

Putative functional role(s) of L2-L5 interneurons in bipedal locomotion  

While most quadrupedal mammals have a repertoire of gaits with various 

coupling patterns (e.g. left-right alternation for walk-trot, left-right synchrony for 
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bound, etc), humans essentially have two alternating gaits, walking and running227. 

As such, the significance of maintaining well-organized coordination between the 

left and right legs cannot be understated. Any deficit could have profound effects 

on locomotion. And while the walking and running gaits are both characterized by 

out-of-phase coupling between the left and right legs, there are still underlying 

changes between the spatiotemporal gait indices and speed similar to what we 

observe in the quadrupeds. Specifically, with increasing speed the stance duration 

decreases and the stride length increases, all while the limbs continue to step 

alternatingly227,228. Therefore, not only does bipedal locomotion require effective 

left-right coordination for the walking and running gaits, but also across the full 

spectrum of speed-spatiotemporal relationships. We speculate that a “bipedal 

correlate” of L2-L5 interneurons could constitute one pathway in a repertoire of 

lumbar networks that governs left-right coordination of the lower extremities. Our 

results indicating that this lumbar pathway helps secure left-right coordination 

across a range of speed-spatiotemporal relationships provides some support for 

this idea.  

Putative functional role(s) of LAPNs in bipedal locomotion  

Speculating on the functional significance of LAPNs in normal bipedal 

locomotion is considerably more interesting. We showed that silencing this 

ascending inter-enlargement pathway in quadrupedal mammals significantly 

affects three patterns of interlimb coordination: left-right hindlimbs, left-right 

forelimbs, and contralateral hindlimb-forelimb movements. Therefore, in a context 
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where all four limbs are engaged in providing forward propulsive movements, 

distributing left-right temporal information from the hindlimbs to the forelimbs by 

way of LAPNs appears to be a key requirement for normal locomotion. We 

speculate that this ascending, inter-enlargement pathway facilitates these coupling 

patterns in bipeds as well, but in a highly task-specific manner.  

First, we propose that LAPNs could participate in interlimb coordination 

during developmental stages prior to acquisition of bipedal stepping. Because 

babies are crawling on all four limbs, we propose that this pathway might play 

similar roles as to what we observed in our quadrupedal animal model. Therefore, 

coordination between the left-right lower and upper extremities, respectively, as 

well as between the contralateral limb pairs could be facilitated through these 

neurons. This idea is supported by the fact that the basic coordination patterns 

observed between infants and quadrupedal mammals are very similar (diagonal 

interlimb coupling between the girdles)229,230. Moreover, this pathway could also 

contribute to the expression of quadrupedal crawling behaviors in adult bipeds.  

Following the transition from quadrupedal crawling to bipedal stepping, 

what functional role(s) could LAPNs serve? It is clear that “uncoupling” the two 

girdles (bind the arms to prevent their coordinated swing with the legs) does not 

perturb the coordination of the legs during stepping231. However, preventing this 

coupling between the arms and legs comes at the cost of increased trunk rotation 

and horizontal displacement of the limbs as well as an overall increase in the 

energy expenditure231,232. As such, LAPNs could plausibly help secure 
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coordination between the upper and lower extremities in order to facilitate a more 

energy efficient form stepping in the non-disabled populations.  

Role of propriospinal neurons in functional recovery following spinal cord 

injury  

Spinal cord injury (SCI) is a devastating neurological condition where 

communication between the spinal cord and supraspinal centers are profoundly 

altered. To date, exogenous approaches used to restore severed connections 

have had very limited success233. It appears as though the injured central nervous 

system has a poor regenerative capacity234,235. Therefore, there has been a push 

to explore for endogenous approaches to enhance functional recovery, primarily 

through spared pathways that could serve as potential neural substrates for 

functional recovery236. 

Since the 1960’s and 1970’s, scientists have suggested that the 

propriospinal system could play an important role in functional recovery after 

SCI237,238. Propriospinal neurons, a term which loosely describes any neuron 

whose cell body and terminal field reside entirely within the spinal cord, are an 

ideal candidate system to promote functional recovery due to their sheer number, 

location, inter-segmental projection patterns, as well as their ability to activate and 

coordinate the locomotor circuitry236. Both the L2-L5 interneurons and ascending 

inter-enlargement neurons studied here are propriospinals.  

Particular interest has been focused on the long propriospinal systems as 

the axons of these pathways reside in the lateral most quadrants of the white 
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matter, an area often spared following contusive spinal cord injury239. Indeed, 

Stelzner and colleagues have shown through a series of anatomical tract tracing 

experiments that long descending propriospinal neurons survive post-SCI240,241. 

We also found that the axons LAPNs were spared following a mid-thoracic 

contusive injury (unpublished data, Figure 47), an anatomical finding substantiated 

by previous work done in our lab that illustrates these ascending projections 

remain functional as assessed by electrophysiological interrogations (described in 

“LAPNs and locomotor recovery following SCI”)242. While both inter-enlargement 

systems appear to be spared following SCI, the significant majority of studies have 

focused on the long descending projections, in part due to the landmark paper 

described below. 

In 2004, Bareyre and colleagues showed that spared long descending 

propriospinal neurons are involved in the formation of de novo circuits that facilitate 

transmission caudal to spinal lesions243. Following a thoracic hemisection, severed 

corticospinal tract axons formed new synapses onto resident long descending 

propriospinals. These neurons, whose axons were spared, bypassed the lesion 

and synapsed onto motor neurons. Moreover, any synapses that formed onto 

propriospinal neurons which did not span the lesion were ultimately lost, 

suggesting that these de novo bridges are maintained through an activity-

dependent mechanism. Courtine et al extended these results, showing that 

locomotor recovery could occur if rostrocaudal staggered spinal lesions occurred 

at temporally-distinct times, but not when the lesions were simultaneous244. This 
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suggests that the propriospinal neurons within the intervening segments of the 

staggered hemisections can undergo functional plasticity to facilitate locomotor 

recovery, but only if given the time to do so. Together, these studies illustrate that 

the propriospinal circuitry is an effective substrate for functional recovery, but in an 

activity- and time-dependent fashion. This leads us to our next question: what 

role(s) could L2-L5 interneurons and LAPNs play in functional recovery following 

spinal cord injury? 

L2-L5 interneurons and locomotor recovery following SCI  

Nearly 90% of all clinical cases of spinal cord injury occur above the level 

of the lumbar segments (National Spinal Cord Injury Statistical Center, the 

University of Alabama at Birmingham). Therefore, it is likely that the “human 

equivalent” of this pathway is spared in most patients. In animal models where the 

lumbar spinal cord is functionally isolated from the rest of the nervous system 

(complete thoracic transection), weight-supported hindlimb stepping can be re-

gained following intensive treadmill training245-247. Therefore, the lumbar circuitry 

has the intrinsic capacity to be retrained through activity-based therapies. We 

speculate that L2-L5 interneurons are likely a key pathway involved in the recovery 

of hindlimb stepping following SCI.  

LAPNs and locomotor recovery following SCI  

We have shown that the axons of this long projection pathway reside in the 

lateral most quadrants of the white matter funiculi123, an area that is often 

preserved following contusive SCI (Figure 47). As such, LAPN axons are likely 
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intact (Figure 47). Previous studies performed in our laboratory as well as others 

support this hypothesis. Using an electrophysiological assessment (magnetically-

evoked inter-enlargement response, MIER), bilateral EMG responses in the triceps 

muscles could be detected following stimulation of hip afferents post-SCI242,248. 

Therefore, not only are LAPNs likely spared anatomically, but also functionally. 

Altogether, these studies suggest that LAPNs likely pose as a neural substrate 

capable of facilitating functional recovery following SCI.  

It is clear from our silencing experiments that LAPNs are a key regulator in 

coordinating the actions of all four limbs. While the coordination of “all four limbs” 

is not critical for effective stepping in non-disabled populations (as they have the 

capacity to offset any torsional effects), it could play a profound role in patients 

whose balance and posture are severely impaired249. Indeed, studies have shown 

that active incorporation of arm swing during treadmill training actually enhances 

the muscle activity in the legs250,251.  

The intrinsic capacity for functional recovery after spinal cord is thought to 

be possible through the engagement of the central pattern generating 

circuitry252,253. Here, we have identified two key pathways within that circuitry that 

profoundly influence interlimb coordination and are anatomically positioned to be 

spared in the significant majority of clinical SCI cases. As such, these L2 projection 

pathways likely represent key substrates for recovery. Ongoing studies are directly 

testing this hypothesis. We believe that with the TetOn silencing system used here, 

we can now systematically identify the key neural substrates of functional recovery. 
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With this knowledge, activity-based therapies can be designed to engage these 

substrates not just for improving locomotion, but also quality of life.
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Figure 33 

 
Figure 33. L2-L5 interneurons and LAPNs are anatomically-distinct pathways that distribute left-right 

patterning information.  

(a) Retrograde tracer labelling of L2-L5 interneurons (green) and LAPNs (magenta) followed by (b) light sheet 

fluorescence microscopy reveals that (c) both pathways have cell bodies at L2 that are intermingled with one another, 

but anatomically distinct. 
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Figure 34 

 

 

Figure 34. Comparing the functional consequences of silencing L2-L5 

interneurons versus LAPNs in left-right hindlimb coordination.  

Comparison of changes in left-right hindlimb coordination observed during (a) L2-

L5 silencing and (b) LAPN silencing with per-step changes in coordination shown 

below.  
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Figure 35 

 

Figure 35. Silencing LAPNs disrupts interlimb coordination during select 

“modes” of stepping.  

(a) “Non-exploratory stepping” is defined as the animal stepping with its “snout up.” 

(b) Alternatively, “exploratory stepping” is defined as stepping where the animal’s 

snout is pointed downwards (“snout-down”). During non-exploratory stepping, 

silencing LAPNs disrupts (c) left-right forelimb, (d) left-right hindlimb, and (f) 

contralateral hindlimb-forelimb coordination during locomotion. (e) Ipsilateral 

hindlimb-forelimb coordination was not affected by silencing. 
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Figure 36 

 

Figure 36. At speeds less than 90 cm/s, the silencing-induced effects on 

hindlimb coordination are still modulated by the apparent stepping mode.  

Steps that occurred under 90 cm/s were analyzed for changes in interlimb 

coordination during (a) Control non-exploratory stepping, (b) DOXON non-

exploratory stepping, and (c) DOXON exploratory stepping. Even after taking into 

account the speeds at which the animals stepped, the apparent stepping mode 

appears to still modulate the silencing effects. 
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Figure 37 

 

Figure 37. Schematic illustrating the principles behind a multifunctional 

reconfiguration of the central pattern generating circuitry.  

Within the lumbar CPG (a), a collection of various neural pathways are likely 

involved in the expression of a particular behavior (e.g. left-right alternation). Here, 

each color represents a different pathway with red denoting the L2-L5 interneurons 

and LAPNs. The vertical scale denotes the perceived relative contribution or 

“functional importance” of each pathway to effect its physiological role during select 

behavioral contexts. (b-d) Multifunctional reorganization of the lumbar CPG in 

three behavioral contexts: directed/non-exploratory stepping (b), exploratory 

stepping (c), and swimming (d). The black traces denote the overall “functional 

landscape,” which is determined by the physiological demand of the various color-

coded pathways. During non-exploratory, directed stepping at Control time points 
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(bi), the L2-L5 interneurons and LAPNs are key contributors to controlling left-right 

alternation (asterisk, high red peak). As such, during DOXON silencing (bii), the 

functional loss of these pathways profoundly changes the “functional landscape” 

leading to significant disruptions to interlimb coordination. During exploratory 

stepping (ci), the functional demand for L2-L5 interneurons and LAPNs is minor 

(asterisk, moderate peak). Therefore, during silencing (cii), the functional loss of 

these pathways does not profoundly change the functional landscape as the key 

pathways that secure left-right coordination in this task are intact (yellow 

pathways). (d) During swimming, the involvement of L2-L5 interneurons and 

LAPNs could be negligible (asterisk, small peak). Therefore, their functional loss 

during silencing (dii) does not affect left-right coordination as other pathways are 

the primary facilitators for hindlimb alternation (purple, blue pathways). Ultimately, 

we do not suggest that the neural pathways that participate in the expression of 

the various behaviors (directed versus exploratory stepping, swimming) are 

mutually exclusive from one another. (e) Moreover, we propose that the perceived 

multifunctional reconfiguration likely reflects the modulatory effects derived from 

supraspinal, spinal, and sensory sources. 
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Figure 38 

 

Figure 38. L2-L5 and LAPN cell bodies reside within laminae that receive 

direct supraspinal innervation.  

Schematics illustrating the documented terminal innervation zones from 

supraspinal centers throughout the lumbar gray matter175. Black circles denote 

location of L2-L5 and LAPN cell bodies. Overlaying the location of these cell bodies 

onto the terminal field map suggests that L2-L5 and/or LAPNs are positioned to 

potentially receive direct supraspinal input. 
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Figure 39 

 

Figure 39. Experimental design to gate the relative “penetrance” of L2 spinal 

neuron silencing in order to determine its role in the expression of the left-

right coordination continuum.  

(a) Example experiments designed for silencing LAPNs. (b) The C6 lenti-eTeNT 

injections will be identical across all groups, thereby infecting a similar proportion 

of LAPNs throughout the lumbar cord (c). This distribution of lent- eTeNT infected 

LAPNs will be differentially targeted for double-infection with AAV2-rtTAV16 (low, 

medium, high double-infection groups). (d) Low silencing effects group as defined 

by one set of AAV2-rtTAV16 injections (top panel) to double infect a smaller portion 

of the pathway (middle panel). The anticipated results would be very mild 

perturbations to left-right coordination (bottom panel, increased variability about 

0.5, which denotes alternation). (e) Medium silencing effects group, which is 

defined by two sets of injections at L2 (top panel) to doubly-infect “half” of the L2 
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projection pathways (middle panel). If half of the pathway is silenced, then this 

could yield differential coupling patterns (bottom panel). (f) High silencing effects 

group, which is defined by multiple (3-4) sets of injections throughout rostrocaudal 

L2 (top panel) to double infect all L2 projection pathways (middle panel). If the 

coupling continuum observed is due to a differential “knockout” of L2 pathways, 

then the “high” effects group should not show a continuum. Instead, the limbs 

would “switch” or “default” to other coupling patterns (bottom panel). 
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Figure 40 

 

Figure 40. Experimental design to determine the functional role(s) of ipsilateral versus commissural L2 

projection pathways.  

Unilateral injections of eTeNT and rtTAV16 will double infect only one subset of ipsilateral L2-L5 interneurons (a, left 

panel, red projection) or LAPNs (b, left panel, red). Similarly, only one subset of commissural projections can be 

targeted (a,b, right panels, red projections). To study the effects of functionally removing all ipsilateral projections, a 

combinatorial approach is required (c, left panel, e.g. DREADDs with TetOn). A consequence of combining two 

techniques are “hybrid” neurons that will be infected with both viral systems (c, right panel).

2
0

3
 



 

204 
 

Figure 41 

 

Figure 41. Dual virus approach to detect LAPN or L2L5 (shown) synapses throughout the neuraxis.  

Simplified workflow: To detect the projection profile, we will double infect L2-L5 interneurons with two constructs. 

(1) A synapse-labeling (GFP) construct is injected into the cell bodies. Synapses cannot be labeled until the construct 

is “activated” by Cre-recombinase (inverted “SynTag”). (2) A second construct that expresses Cre-recombinase is 

delivered at the terminal field. Cre-recombinase is retrogradely transported to the cell body. In the now double 

infected neurons, Cre activates the synapse-labeling construct (3, FLEx activation). Synaptic projections derived 

from this double infected neuron will now express GFP (right panel). Detailed workflow: (1) First, at the level of the 

2
0

4
 



 

205 
 

cell bodies, the AAV2-FLExloxP-SynTag construct is injected (green). “SynTag” is a 

synaptophysin-GFP fusion protein that will be expressed following recombination. 

(2) Next, at the level of the terminal field the second construct is injected: Cav-Cre 

(purple). “Cav” is a canine adenovirus (serotype 2) that is designed for terminal 

uptake. (3) In doubly-infected neurons, FLEx switch recombination occurs (two 

part system consisting of inversion [3a] followed by excision [3b] for stable 

recombination [3c]; black and white triangles denote orthogonal recombination 

sites, loxP and lox2272)254. The justification for FLEx-mediated inversion and 

excision is as follows255. “Typical” DNA inversion is based on site-specific 

recombination between antiparallel oriented loxP sites. However, inversion can be 

unstable, causing a mixture of forward and reverse configurations thereby reducing 

transgene expression. In FLEx switch recombination, two sets of heterotypic, 

antiparallel loxP-type recombination sties undergo inversion of the coding 

sequence (3a to 3b). Following coding sequence inversion, the two sets of 

antiparallel loxP sites undergo excision (3b-3c). The end result will produce 

orthogonal recombination sites that are in opposite orientation, preventing further 

recombination (3c, black and white triangles). Constructs adapted from Atasoy et 

al 2008. 
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Figure 42 

 

Figure 42. LAPNs appear to lack lumbar as well as thoracic projections in the spinal cord.  

(a) Preliminary data shown from retrograde labeling of LAPNs (FluoroRuby) followed by injections at (b) T12, (c) L1, 

or (d) L2 with a second tracer (FluoroEmerald). Double labeling would indicate that LAPNs had local or thoracic 

projections in addition to the cervical. (e) Representative image highlighting the salient finding from all double-tracing 

experiments. No double-labeled LAPNs were detected. Panels (f,g) are close-up of (e). Yellow triangles emphasize 

that LAPNs do not co-localize with white arrows (green=resident neurons following L1 injection).   
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Figure 43 

 

Figure 43. Experimental design to map the input-output microcircuit 

architecture of the LAPNs.  
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Simplified workflow: The goal is to detect the input neurons (a, green, “input”) 

onto LAPN neurons (a, black) and what neurons LAPNs synapse onto (a, purple, 

“output”). (b) First, LAPNs must be double-infected with two constructs (both 

inactive until Cre is delivered). After Cre, one construct will produce TVA (avian 

viral receptor that is conjugated to mCherry fluorophore, red). The second will 

produce glyco-protein (“G” protein needed for monosynaptic spread of rabies to 

label input neurons, green). (c) At terminal field, Cre is delivered. (d) In triple-

infected LAPNs, Cre activates TVA and G protein expression. TVA receptor is now 

expressed on LAPN cell surface. G protein expressed in cell body (lower panel, 

“Post-Cre”). (e) Modified rabies is injected into triple-infected LAPN. Modified 

rabies does not express G-protein (cannot spread like “traditional rabies”). 

Modified rabies is also coated with protein that binds specifically to TVA receptor 

(envelope protein A; EnvA). (ei) Only LAPNs with TVA receptor bind to and pick 

up modified rabies (TVA-EnvA binding). (eii) LAPN is now infected “fully 

complemented” rabies. The G protein (green circles) that LAPN expresses (from 

steps b-d) complements the G-deleted rabies virus. (eiii) “Complemented rabies” 

trans-synaptically spreads, labeling input neurons. (eiv) Input neuron does not 

express G-protein (empty circles). G-deleted rabies cannot spread further (mono-

synaptic restriction). End result: LAPNs will be yellow (TVA-mCherry/rabies-

GFP). Input neurons onto LAPNs will be green (rabies-GFP). Target (output) 

neurons of LAPN projections will have yellow synapses. For detailed workflow, 

refer to FLEx recombination description in Figure 41 legend. 
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Figure 44 

 

Figure 44. Simplified schematics illustrating the salient findings from 

genetic-based dissection of alternation networks.  

(a) A conceptual framework for the association between increasing speed/step 

frequency, interlimb coupling patterns expressed, and the locomotor gaits that are 

described by these patterns. (b) The deletion of excitatory and inhibitory V0 

interneurons results in left-right synchrony across all speeds and step frequencies. 

Bouts of alternation (*) are still observed68. (c) Deleting the excitatory V0 

interneurons alone abolishes the trot gait while preserving walk, gallop, and 

bound17. (d) In the V2a wild-type mice, only the walk and trot gaits are normally 

expressed across all speeds and frequencies67. (e) The conditional deletion of V2a 
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interneurons caused the limbs to adopt gallop-like coupling patterns at increased 

speed67. (f) Schematic illustrating the modular organization hypothesis for the 

spinal circuitry that governs left-right alternation. 
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Figure 45 

 

Figure 45. Salient findings from spinal neuron silencing: a left-right coupling 

continuum.  

(a) Schematic illustrating the genetically-defined modular organization hypothesis. 

The V0 and V2a interneurons are recruited in a speed-dependent manner to 

secure the limbs in left-right alternation. (b) Visual representation of the salient 

findings from silencing L2 projection pathways. Here, the left-right limb pairs can 

express coupling patterns from alternation to synchrony independent of speed or 

frequency. (c) Whether or not such flexibility in left-right coupling occurs at 

increased speeds and frequencies (e.g., domains where gallop or bound are 

expressed) remains unknown. 
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Figure 46 

 

Figure 46. Fixed, yet flexible organization of the left-right circuitry.  

(a) Modular organization hypothesis for left-right coordination as defined by genetic 

studies. (b) Flexible, left-right coordination continuum as revealed through 

reversible silencing of L2 spinal pathways. (c) Combined model to account for the 

fixed, yet flexible expression of interlimb coupling patterns with respect to speed 

and step frequency. 
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Figure 47 

 

Figure 47.  Acute sparing of LAPN axons following a mid-thoracic spinal cord injury.  

(a) LAPNs were retrogradely labeled with FluoroRuby prior to a mild-moderate spinal cord injury at mid-thoracic 

levels (T9, 12.5 gcm contusion). (b,c) At the injury epicenter 7 days post-SCI, putatively spared LAPN axons can be 

detected in the ventrolateral white matter. (d) The lateral-most regions of the white matter funiculi are often spared 

chronically post-SCI, as shown by eriochrome cyanine staining for intact myelin (10 weeks post-injury). 
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