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ABSTRACT 

HUMAN OLFACTORY EPITHELIAL-DERIVED PROGENITORS: 
A POTENTIAL SOURCE FOR CELL THERAPY FOR PARKINSON'S DISEASE 

MengWang 

December 16th, 2011 

Human adult olfactory epithelium contains neural progenitors (hONPs) which replace 

damaged cellular components throughout life. Methods to isolate and expand the hONPs 

have been developed in our laboratory. In response to morphogens, the hONPs 

differentiate along several neural lineages. This study optimized conditions for the 

differentiation of hONPs towards dopaminergic neurons. The hONPs were treated with 

Sonic Hedgehog, in the presence or absence of Retinoic acid and/or forskolin. 

Transcription factors (Nurrl, Pitx3 and Lmxla) that promote embryonic mouse or 

chicken dopaminergic development were employed to determine if they would modulate 

lineage restriction of these adult human progenitors. Transcription factor expression and 

tyrosine hydroxylase, the rate-limiting enzyme in dopamine synthesis, were detected in 

the transfected cells after 4-month selection with G418, indicating transfected hONPs 

were stably restricted towards a dopaminergic lineage. Furthermore, enzyme 

immunoassay was employed to detect the synthesis and release of dopamine. The most 

efficient dopamine transfection paradigm was determined. Equivalent levels of several 

neurotrophic factors were detected in both the pre- and post-transfected hONPs which 
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have potential roles in the maintenance, survival and proliferation of dopaminergic 

neurons. 

This study engrafted cells modified by the most efficient transfection paradigm for 

dopamine formation into a unilateral neurotoxin, 6-hydroxydopamine (6-0HDA)-induced 

Parkinsonian rat model. Thirty-five percent of the animals engrafted with hONPs had 

improved behavioral recovery as demonstrated by the amphetamine induced rotation test 

as well as a comer preference and cylinder paw preference, over a period of more than 24 

weeks. No difference was observed between the pre- and post-transfected groups 

indicating that the host environment facilitated dopaminergic differentiation in situ. 

Human fibroblasts did not diminish the Parkinsonian rotational deficits at any point 

during the study. The engrafted hONP population remained intact and TH positive for a 

minimum of six months in vivo. Higher dopamine leveis were detected in the striatum of 

behaviorally recovered animals than in equivalent regions of their non-recovered 

counterparts. Throughout these experiments, no evidence of tumorigenicity was 

observed. These studies support our hypothesis that human adult olfactory epithelial­

derived progenitors represent a unique autologous cell type for a cell-based strategy for 

the treatment of Parkinson's disease. 

VI 



TABLE OF CONTENTS 

PAGE 

ACKNOWLEGEMENTS ................................... ···········································iv 

ABSTRACT ...................................................... ········································· .. v 

LIST OF TABLES AND FIGURES································································vii 

CHAPTER 

I. GENERAL INTRODUCTION···················· .. ····· .. · .. ········ .. ············· .. · .. 1 

A. Cell Replacement Therapy········· .... ··· .. ··· .. ··························· .. · ...... ····4 

B. Stem Cells····· ........................................ ··· .. ··· .. · .............. ····· .... ··· .. 5 

C. Human Adult Olfactory Epithelial 

Derived Neural Progenitors··· .. ··········· .. ················ .. · .... · .... ··· .. ········ .. ··8 

II. LINEAGE RESTRICTION OF ADULT HUMAN 

OLFACTORY EPITHELIAL DERIVED PROGENITORS TO 

DOPAMINERGIC NEURONS .. · .. · .. · .............. · ................ · .................... ·10 

A. Introduction ............................................................... ···· .... · ...... ··11 

B. Material and Methods .... · .. · ...... · .... · .... · .... · .. ········ .. · .. · .... ··· ............ ·14 

1. Cell Culture·· .. ··············· .. ···· .. ··············· .. ··········· .. ········· .. · .. ·· .. · .. 14 

2. Construction of expression plasmids···· .......................................... ·15 

3. Transfection and selection··························································· ·16 

4. Treatment with Morphogens ...... ·· ........ · .. ··· ...... · .............. · .... · ........ 16 

5. Immunocytochemistry····· ............................................... ·············17 

VB 



6. Western Blot Analysis ....................... ....................................... ·18 

7. Dopamine assay···· .. ······· ...... ······ .. ·············· .. ······· .. ·········· .. ·········19 

8. Neurotrophin Assay· .. · ...... · .... · ...... ····· .. ·· .... ·· .................. ·· ........ ···l9 

C. Results .................................................................................... 20 

1. Card Transfection of Olfactory-derived progenitors (hONPs) 

to achieve dopaminergic lineage restriction .................. · ................ · ...... 20 

2. Transfected hONPs remain restricted to dopaminergic lineage 

after removal from cryostorage···················································· ·27 

3. Lineage restricted hONPs produced and released dopamine ............ · .. ·30 

4. The effect of morpho gens on tyrosine hydroxylase (TH) expression, 

dopamine formation and release····················································33 

5. Stably transfected and pre-transfected hONPs produce 

neurotrophins (BDNF, CNTF and NT-3) at equivalent levels .............. ·39 

D. Discussion······························ .. ··· .. ·· .. ·· .. ··········· .. ·· .. ······ .. ····· .. ··· .. · ·42 

1. Pitx3 and nurrl induce the DA neuron maturation synergistically .......... 43 

2. Treatment ofhONPs with morpho gens enhances intracellular 

and extracellular dopamine levels······ .................. ···························46 

3. Lineage restricted hONPs retain their capability to 

produce neurotrophic factors······· ............................................... ····48 

III. PILOT STUDIES FOR ANIMAL MODELS OF PD ............................ 51 

A. Selection of injection sites ............ ··· ........ ····· ........................ ·53 

B. Determination of Cell Number for the Transplantation .................. ·57 

C. Complimentary Behavior Tests··· .... ··· .. ········· ............................. '63 

viii 



1. Adjusting stepping test······························································ '63 

2. Rope test .... · .. ··· .... ············· .. ························ .. ········ .. ··· ...... · .... · "63 

IV. TRANSPLANTATION OF HONPS IN A RAT MODLE OF PD ...... · .... ·65 

A. Introduction··· .. ··········································· .. · .. ··· .. ··· .... ······ .. ······ ·66 

B. Material and Methods ................................................................ "67 

1. Cell Preparation············· .. ··········································· .. ·· .... · .... ··67 

2. Animal Model and Cell Transplantation ............................. · ................ 68 

2.1. Establishment of Rotational Parkinsonian Rat Model·················· ·68 

2.2. Assignment of Experimental Groups·········································72 

2.3. Cell Transplantation··········· ...................................... ·············72 

3. Behavioral Analysis .................................................................. ·73 

3.1. Amphetamine-induced Rotation Test········································73 

3.2 Complementary Behavioral Tests .. ··· .. ··· .. · .. · .... ·· .......... ·· ...... · .... 73 

4. Immunohistochemistry································································74 

5. Dopamine assay ...................................................... ·············74 

C. Results .................................................................................. "75 

1. The Effect of cell engraftment on behavioral activity ................ · .... · .. ·75 

2. Transplanted hONPs Promote TH Expression 

in the Toxin-injured Sites ............................................................ ·77 

3. HONPs remain intact and TH positive for a minimum 

of 6 months after transplantation········ .......................................... ··87 

4. Analysis of the dopamine levels .. · .. · .................................. · .... · ...... 94 

D. Discussion···················································································97 

IX 



V. SUMMARY AND FUTURE DIRECTIONS .. ··································105 

REFERENCES···················································································115 

CURRICULUM VITAE··············································· ....................... '136 

x 



LIST OF FIGURES 

FIGURE PAGE 

Figure 1. Chemical formula and biosythesis for dopamine ···· .. ·· .. ·············· .... ········3 

Figure 2. Construction of Expression Plasmid .................................................... 15 

Figure 3. Immunocytochemical analysis of pre- and post-transfected hONPs ............ 22 

Figure 4. Western Blot of pre- and post-transfected hONPs ............ · ................ · .... 25 

Figure 5. Immunocytochemistry and western blot analysis of hONPs recovered from 

cryostorage .......................................................... ······ .. ·· .. ······ ...... ··· ...... 28 

Figure 6.Intrcellular and extracellular dopamine analysis of pre- and post-transfected 

hONPs in vitro·· .... · .. ·· .... ·· .. ··· .. ······· .. · ........ ····· .. ·········· .... ··· .. · ................ ·31 

Figure 7. HONPs treated in DFBNM with Shh ............................ ·· .................... ·34 

Figure 8. HONPs cultured in DFBNM supplemented with Shh, in the presence or 

absence of retinoic acid (RA) and forskolin (FN) ............................... ········ .. 37 

Figure 9. Neurotrophin levels in pre- and post-transfected hONPs··· .. ·····················40 

Figure 10. Injection points of 6-0HDA and for transplantation of pre- and post­

transfected hONPs, human fibroblast and medium .. · .. ···· .. · .. ········ .. ·················58 

Figure 11. Experimental equipment set-up and animal mounting·· ...... ····· .. ·· .. ···· .. · .. 70 

Xl 



Figure 12. Animal rotation test analysis" ......................................................... ·78 

Figure 13. Corner preference test and cylinder test analysis .................... · ............ ·80 

Figure 14. TH staining of neural toxin lesioned animal brain sections ............ · ........ 83 

Figure 15. TH staining of hONP, human fibroblast or medium implanted animal brain 

sections" ................................................................... ········ .. ········· ...... ··85 

Figure 16. Immunohistochemistry analysis of pre- and post-transfected hONPs twenty-

four weeks after transplantation'" ............................................................ ··88 

Figure 17. Pre- and post-transfcted hONPs migrate after transfection ...................... 90 

Figure 18. Dopamine analysis in animal brains .................................................. 95 

xii 



LIST OF TABLES 

TABLE 

Table 1. Qualifying model rate on different toxin injection sites········· ······· .. ··········55 

Table 2. Cell Transplantation and Rotation Analysis···· ........................... ············60 

Table 3. Cell counting analysis in the brain of the behavioral recovered or non­

recovered animals which received pre-and post-transfected hONPs···················92 

Xlii 



CHAPTER I 

GENERAL INTRODUCTION 
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Parkinson's disease (PD) remains one of the leading causes of chronic degenerative 

neurological disability, which affects more than 6,000,000 people world-wide, with 

approximately 60,000 new cases diagnosed each year in the United States 

(NationalParkinsonFounfdation, 2010). The incidence nses with age, being 

approximately 1: 1 000 overall and 1 % of the population over the age of 60 and 4% in 

those over 80 years. Unfortunately, the mortality rate of PD has increased steadily in 

recent years (de Lau and Breteler, 2006; Anderson and Caldwell, 2007) as the population 

longevity has increased (Savica et aI., 2010). One of the early stage symptoms is the loss 

of smell (Zucco et aI., 1991; Zucco et aI., 2001) and the later symptoms are movement­

related, including shaking, rigidity, slowness of movement and difficulty with walking 

and gait (Inoue et aI., 2007; Garcia-Ruiz, 2011). At more advanced stages of the disease, 

problems with dementia may commonly arise (Klassen et aI., 2011; Parekh, 2011). The 

cause of PD remains unknown and it is characterized by the extensive loss of 

dopaminergic (DA) neurons in the substantia nigra (SN) in the midbrain (Homykiewicz, 

1973b). 

Dopamine is a neurotransmitter that can function as a hormone which mainly inhibits 

the release of prolactin from the anterior lobe of the pituitary (Benes, 2001). Dopamine is 

synthesized in body first by the hydroxylation of the amino acid L-tyrosine to L-DOPA 

via the enzyme tyrosine hydroxylase (TH), which has been widely used as a marker for 

dopaminergic neurons (Sauer et aI., 1993; Takeuchi et aI., 2005; Redmond et aI., 2007). 

L-dopa is then decarboxylized by aromatic L-amino acid decarboxylase to the final 

product, dopamine (Figure 1) (Barger and Dale, 1910). Dopaminergic neurons are 

primarily found in the substantia nigra (SN) and the ventral tegmental area (Wise, 2004) 
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and they have many important roles in the brain, including voluntary movements, 

behavior and motivation (Vadasz et ai., 1992b, 1992a; Stoessl, 1996; Da Cunha et ai., 

2009). 

~ T~ahydro~ 
tJ .. ~~M 

~ Oiff)'oCi<'I;>­
ttCfA~n 

OH L· Tyrosine 

~"\ ~ 

If,i 

) TyrO$ine hydtoxy1ase 

HOX)" --- .1 OH I 'If ~ 
Q NH:c 

HO 

L-Olhydroxyphenyfafan'ne 
(L-OOPA) 

, ! 
\ DOPA deearboxytaso J AromatJc t·8~ acid deCafOO)(y~se 
JIll' 

Figure 1. Chemical formula and biosynthesis for dopamine. 
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Currently the principle treatment for PD is oral L-3,4-dihydroxyphenylalanine (L­

dopa) (Bidet-Ildei et aI., 2011), which is the precursor of dopamine that can pass the 

blood-brain-barrier (Hornykiewicz, 1973a). L-dopa promotes symptomatic relief. Patients 

who took L-dopa improved in their motor function, activities of daily living and quality 

of life of the patients (Evans et aI., 1980; Kalinderi et aI., 2011). However, with time the 

drug becomes less effective for two reasons: 1. During the progression of the disease the 

neurons become less sensitive to the drug (Callaway, 2011) and 2. L-dopa does not 

prevent or rescue the DA neurons from degeneration (Lang and Lozano, 1998; Sheng et 

aI., 2010). Furthermore, dyskinesia was eventually developed after several years of 

treatment with L-dopa (Friedman, 1985; Wedekind, 2005). Dyskinesia is characterized 

by twisting, jerking or dance-like movement, mostly of the arms and/or face. This 

symptom results from changes in striatal signaling after long-term pulsatile dopaminergic 

stimulation (Stacy and Galbreath, 2008). Clearly, an alternative treatment that can 

provide long-term recovery with no side-effects is needed. 

A. Cell Replacement Therapy 

The basic concept of cell replacement therapy is to restore function lost as a result of 

the disease in the central nerVous system (CNS) by replacing degenerating or lost cells 

with viable functional cells. Recent research has attempted to find cell populations that 

can be used to replace lost or degenerating dopaminergic neurons (Anderson and 

Caldwell, 2007; Parish et aI., 2008). Studies have employed neural cell grafts obtained 

from the fetal ventral mesencephalic (VM) dopaminergic neurons, and were able to 

successfully relieve the Parkinsonian symptoms following the embryonic tissue 

transplantation (Lindvall et aI., 1988; Madrazo et aI., 1988; Lindvall et aI., 1992; 
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Freeman et aI., 1995; Borlongan, 2000; Ganser et aI., 2010). However, this treatment 

frequently resulted in significant dyskinesia (Freed et aI., 2001; Olanow et aI., 2003; 

Barker and Kuan, 2010; Lane et aI., 2010). Even when positive clinical improvements 

were achieved in the absence of dyskinesia, the amount of tissue required for each PD 

patient necessitated a minimum of 4-5 fetal brains (Mendez et aI., 2005). This 

requirement increased the possibility of viral or bacterial infection and the lack of donor 

source has significantly limited the utility of this approach. In addition the number of 

surviving neurons was highly limited as the majority of the engrafted cells died in the 

initial days following transplantation (Borlongan, 2000; Barker and Kuan, 2010; Ganser 

et aI., 2010). The limited supply of fetal VM cells coupled with their poor graft viability 

severely limited the therapeutic utility of this population for the treatment of PD. 

Therefore, an alternate expandable source of dopamine cells has become a major research 

focus (Daadi, 2002; Doss et aI., 2004; Lindvall et aI., 2004; Xiong et aI., 2011). 

B. Stem Cells 

Stem cells are undifferentiated cells with an unlimited capacity for self-renewal and 

the potential for lineage restriction (maturation) into one or more specific cell types, 

depending on their origin and the micro-environmental signals that they receive (Lindvall 

et aI., 2004; Hwang et aI., 2010). These characteristics make stem cells an attractive 

target population for PD cell replacement therapy (Snyder and Olanow, 2005; Sonntag et 

aI., 2005; Kim, 2011; Tonnesen et aI., 2011). Recent studies also suggest that the 

engraftment of stem cells or progenitors can up-regulate or enhance existing endogenous 

progenitor populations (Redmond et aI., 2007; Abdel-Salam, 2011; Ruff et aI., 2011). 
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Stem cells can be divided into three major groups: embryonic stem cells, induced 

pluripotent somatic cells and adult human stem cells. Embryonic stem cells (ESC) 

originate from the inner cell mass of blastocysts (Thomson et aI., 1998). Mouse and 

porcine ESCs have been employed in cell replacement strategies for the treatment of PD 

animal models and behavioral improvements have been observed (Lonardo et aI., 2010; 

Yang et aI., 2010). However, a source of human cells is essential for clinical trials. 

Human embryonic stem cells were first isolated in 1998 from totipotent cells of the early 

mammalian embryo (Thomson et aI., 1998). This was a breakthrough in the stem cell 

research field for these cells maintained their capacity for stable developmental 

restriction to form derivatives of all three embryonic germ layers even after prolonged 

culture (Thomson and Marshall, 1998). Dopaminergic lineage restricted ESCs were 

transplanted into different kinds of PD models, such as the 1-methyl-4-phenyl-1,2,3,6-

tetrahydropyridine (MPTP) lesioned non-human primate model (Bjugstad et aI., 2008), or 

the 6-hydroxydopamine lesioned rodent model (Park et aI., 2003; Brederlau et aI., 2006; 

Geeta et aI., 2008). Parkinsonian deficits were greatly relieved in the models that received 

ESC engraftment. However, unfortunately 50% of these animals were found to develop 

tumors within 6-8 weeks after cell transplantation (Arnhold et aI., 2004; Hedlund et aI., 

2007). Furthermore, ethical concerns in using human embryos have limited the use of this 

cell source in clinical studies. 

Human induced pluripotent stem cells (iPSC) may also represent a promIsmg 

resource according to recent studies (Hargus et aI., 2010; Chang et aI., 2011; Soldner et 

aI., 2011). They can be isolated from a variety of tissues, such as human fibroblasts 

(Takahashi and Yamanaka, 2006; Takahashi et aI., 2007), human or rat primordial germ 
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cells (Shamblott et aI., 1998; Okita et aI., 2007; Hamanaka et aI., 2011), or mammalian 

embryos (Martin, 1981; Nichols et aI., 1998). These cells can be reprogrammed to an 

"embryonic-like" state by transfer of nuclear contents into oocytes or by fusion with ES 

cells after being obtained from adult human somatic cells (Takahashi and Yamanaka, 

2006). Human iPSCs are similar to hESCs in morphology, proliferation, surface antigens, 

gene expression, epigenetic status of pluripotent cell-specific genes, and telomerase 

activity (Takahashi et aI., 2007). Therefore, human embryonic stem cells (hESCs) 

(Brederlau et aI., 2006) and human induced pluripotent stem cells (iPSC) are both 

promising resources according to recent studies, with behavioral improvement in animal 

models of PD (Hargus et aI., 2010; Chang et aI., 2011; Soldner et aI., 2011). However, 

like the ESC transplantation studies, in many cases animals received iPSCs, tumors 

containing a variety of tissues from all three germ layers formed within 9 weeks 

following the stem cell engraftment (Takahashi and Yamanaka, 2006; Chang et aI., 

2011). This result severely limits the utility of these two cell sources. 

Collectively the studies illustrated above provide "proof of concept" that cell 

replacement therapy is a viable and hopeful therapeutic strategy for the treatment of 

individuals with PD. What is needed is a cell source to replace lost or damaged DA 

neurons which is stable, will not be tumorigenic, avoids the need for immunosuppressive 

agents, and eliminates the search for available donors as well as the ethical concerns 

associated with embryonic tissues. 

C. Human Adult Olfactory Epithelial Derived Neural Progenitors 

The olfactory epithelium is the only tissue in adult human that contains neural 

progenitors, which undergo neurogenesis throughout life without trauma (Sosnowski et 
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aI., 1995; Calof et aI., 1998; Zhang et aI., 2000). Therefore, it is considered a unique 

source for the development of adult human stem cells. Human olfactory epithelium­

derived progenitors (hONP) have been identified and successfully isolated in our 

laboratory (Roisen et aI., 2001). To date more than 150 patient-specific cell lines of 

human olfactory neural progenitors (hONPs) have been established from primary cultures 

of human adult olfactory epithelium isolated from cadavers (Roisen et aI., 2001) and 

patients undergoing endoscopic sinus surgery (Winstead et aI., 2005). This tissue is a 

unique source for neural progenitors that can be harvested by minimally invasive 

endoscopic nasal surgery without a craniotomy (Winstead et aI., 2005). This population 

is an autologous cell source which provides total histocompatability and thus eliminates 

the need for immunosuppressive therapy as well as the ethical concerns and long waiting 

lists for available matched tissue. 

Previously our laboratory has shown that the hONPs have the potential to 

differentiate along several neural lineages following exposure to environmental signals in 

vitro (Marshall et aI., 2005; Zhang et aI., 2006). Therefore, the present study was 

designed to determine: 1. If hONPs could be lineage restricted towards dopaminergic 

neurons with a proper local microenvironment; 2. To optimize the methodology for 

hONPs differentiation to dopaminergic neurons; 3. To determine if hONPs will function 

in a unilateral 6-hydroxydopamine (6-0HDA) lesioned rat model of Parkinson's disease 

(Wright et aI., 2009). 

In this dissertation, the second chapter will describe how the hONPs can be lineage 

restricted to dopaminergic neurons, with the method of genetic manipulation and 

morphogenic treatment. It will also be shown that the transfection did not alter the 
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capability of the hONPs to produce neurotrophic factors, which are essential in the 

development of dopaminergic neurons. The most efficient transfection paradigm will be 

discussed and further transplanted into an animal model of PD. Chapter III will address 

the pilot studies for the following in vivo studies: the ideal animal model and the proper 

engrafting cell number/concentration and site. In chapter IV, the in vivo studies utilizing 

transfected and non-transfected hONPs implanted into the striatum, as well as a 

population of human fibroblasts and the medium as controls will be described. The 

observed behavioral recovery following engraftment of transfected and non-transfected 

hONP will be presented. Since equivalent results were obtained with both the pre- and 

post-transfected hONPs, these studies suggest that the hONPs without genetic 

manipulation have a high potential in the treatment of PD models. It was also 

demonstrated that the dopamine levels in animal brains were related to their behavioral 

improvement. In the final chapters, evidence will be presented which support our 

hypothesis that hONPs may represent an ideal autologous population for cell therapy for 

Parkinson's disease. The future studies are discussed which aim to identify mechanism of 

hONPs action on behavioral improvement in the PD models and to increase the recovery 

rate. 
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CHAPTER II 

LINEAGE RESTRICTION OF ADULT HUMAN OLFACTORY 
EPITHELIAL DERIVED PROGENITORS TO DOPAMINERGIC 

NEURONS 

Meng Wang, Chenliang Lu, Hong Li, Mengsheng Qiu, Welby, Winstead 

and Fred J. Roisen 

Published in Stem Cell Discovery, 2011, VoU No.3 PP.29-43. 
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A. Introduction 

As it has been introduced in Chapter I, this study is aiming to find an ideal source for 

cell-mediated treatment for Parkinson's disease due to theirunlimited capacity for self­

renewal and the potential for lineage restriction (maturation) into one or more specific 

cell types, depending on their origin and the micro-environmental signals that they 

receive (Lindvall et aI., 2004; Hwang et aI., 2010). Stem cells are considered an attractive 

target population for PD cell replacement therapy (Snyder and Olanow, 2005; Sonntag et 

aI., 2005; Kim, 2011; Tonnesen et aI., 2011). Human embryonic stem cells (hESCs), 

lineage-restricted towards dopaminergic neurons when transplanted into a rodent model 

ofPD, provide a significant relief of symptoms (Schulz et aI., 2004). However, with time, 

animals engrafted with hESCs have frequently developed teratomas (Brederlau et aI., 

2006). Human induced pluripotent stem cells (iPSC) are promising resource according to 

recent studies (Hargus et aI., 2010; Chang et aI., 2011; Soldner et aI., 2011). These cells 

can be obtained from adult human somatic cells and reprogrammed to an "embryonic­

like" state by transfer of nuclear contents into oocytes or by fusion with ES cells 

(Takahashi and Yamanaka, 2006). Human iPSCs are similar to hESCs in morphology, 

proliferation, surface antigens, gene expression, epigenetic status of pluripotent cell­

specific genes, and telomerase activity (Takahashi et aI., 2007). Transplantation of iPSCs 

has been shown to diminish some of the Parkinsonian behavioral deficits in several 

rodent models ofPD; unfortunately in many cases similar to their embryonic counterparts 

the engrafted population formed, tumors containing a variety of tissues from all three 

germ layers (Takahashi and Yamanaka, 2006; Chang et aI., 2011). Collectively the 

studies illustrated above provide "proof of concept" that cell replacement therapy is a 
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viable and hopeful therapeutic strategy for the treatment of individuals with PD. What is 

needed is a cell source to replace lost or damaged DA neurons which is stable, will not be 

tumorigenic, avoids the need for immunosuppressive agents, and eliminates the search 

for available donors as well as the ethical concerns associated with embryonic tissues. 

The olfactory epithelium (OE) is a unique source for neural progenitors (multipotent 

neural stem cells) that can be harvested by minimally invasive endoscopic nasal surgery 

without a craniotomy (Winstead et aI., 2005a). Furthermore, since no demonstrable 

olfactory deficits result from OE biopsy, the tissue can be used to generate an autologous 

progenitor population from patients with PD (Winstead et aI., 2005a). An autologous cell 

source provides total histocompatability and thus eliminates the need for 

immunosuppressive therapy as well as long waiting lists for available matched tissue. 

Previously our laboratory developed methods for the isolation and culture of a 

neurosphere forming population of neural progenitors (Roisen et aI., 2001a). To date 

more than 150-patient-specific cell lines of human olfactory neural progenitors (hONPs) 

have been established from primary cultures of human adult olfactory epithelium isolated 

from cadavers (Roisen et aI., 2001a) and patients undergoing endoscopic sinus surgery 

(Winstead et aI., 2005a). Our studies have shown that the hONPs have the potential to 

differentiate along several neural lineages following exposure to environmental signals in 

vitro (Marshall et aI., 2005; Zhang et aI., 2006a). Therefore, with a proper local 

microenvironment, the hONPs have the potential to mature to dopaminergic neurons 

(Zhang et aI., 2006a). 

Molecular techniques were applied for the transfection of Nurrl (Perlmann and 

Wallen-Mackenzie, 2004b; Kim, 2011), Pitx3 (Maxwell et aI., 2005; Courtois et aI., 
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2010) and Lmx1a, transcription factors which promote dopaminergic differentiation. It 

has been reported that gene pitx3 and nurr1 are essential for the survival and 

differentiation of DA neurons in the striatum (Perlmann and Wallen-Mackenzie, 2004a; 

Maxwell et aI., 2005; Haubenberger et aI., 2011). Both transcription factors function as 

dopaminergic promoters in chick, mouse, or human embryonic cells (Saucedo-Cardenas 

et aI., 1997; Hwang et aI., 2003a; Courtois et aI., 2010; Katunar et aI., 2010), and we first 

demonstrated that they participate in dopamine production in adult human olfactory­

derived progenitors (Soldner et aI., 2011). Furthermore, the genes pitx3 and nurr1 were 

found to induce TH expression synergistically (Martinat et aI., 2006; Soldner et aI., 

2011). In these studies the hONPs were genetically modified by transfecting gene pitx3 

and nurr1, after which they were tyrosine hydroxylase (TH) positive even after four 

months of selection. The transfection effects of different paradigms were evaluated and 

compared. 

Several studies have shown that neurotrophic factors, such as brain-derived 

neurotrophic factor (BDNF), ciliary neurotrophic factor (CNTF), neurotrophin-3 (NT-3), 

etc. are important for the survival and function of dopaminergic neurons in CNS 

(Karamohamed et aI., 2005; Singh et aI., 2006; Li and Ding, 2010; Edalat et aI., 2011; 

Pessach and Notarangelo, 2011). Recent studies also indicate that the neurotrophins have 

the potential to optimize the local micro-environment of the damaged area, and thereby 

induce endogenous stem cells to replace or rescue degenerating neurons (Lindvall and 

Kokaia, 2010; Kassis et aI., 2011). HONPs derived from adult human olfactory 

epithelium have been shown to produce and release neurotrophins (Zhang et aI., 2000; 

Zhang et aI., 2003; Marshall et aI., 2006), which could further support their use in a cell-
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based therapy for PD. Therefore, this study also evaluated the ability of pre and post 

transfected hONPs to synthesize key neurotrophins. 

The 1 st objective of this study was to determine if hONPs could be lineage restricted 

towards dopaminergic neurons and if so to optimize the methodology, followed by 

determining and evaluating the function of IPN transfected and pre-transfected hONPs in 

a unilateral 6-hydroxydopamine (6-0HDA) lesioned rat model of Parkinson's disease 

(Wright et aI., 2009). 

B. Material and Methods 

1. Cell culture 

The two patient-specific olfactory progenitor lines used in this study were obtained from 

adult olfactory epithelium harvested from a 42-year-old female patient and a 20-year-old 

male via endoscopic biopsy (Roisen et aI., 2001 b). The tissues were cultured to allow the 

emergence and harvest of hONPs as previously described (Zhang et aI., 2004; Winstead 

et aI., 2005b). The hONPs were thawed from frozen stock that was maintained in liquid 

nitrogen and cultured in minimal essential medium (MEM) with 10% heat inactivated 

fetal bovine serum (FBS, GIBCO, Grand Island, NY) (lO%OE) for one week. The 

hONPs were adapted to serum-free growth media via serial dilution of serum every day 

for 4 days until the cells were finally cultured in DFBNM (DMEM/FI2 supplemented 

with 1% B27 and 0.5% N2 and 100 ~g/ml gentamycin (GIBCO, Grand Island, NY) 

(Zhang et aI., 2004). Parallel independent experiments were performed on hONP lines 

from the two different patient lines. Since equivalent results were achieved, data from 

only one line has been presented. 

2. Construction of expression plasmids (Figure 2) 
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The mouse nurri eDNA was cloned into the pLNCX2 expression vector (Clontech) 

between CIal. Similarly, the rat pitx3 and mouse lrnxia eDNA were inserted into 

pLNCX2 vector between Clal. For the nurri and pitx3 co-expression vector, nurri eDNA 

was cloned into pIRES (CIon tech ) between Xbal and Sail, and pitx3 was inserted 

between EcoRI. The pLNCX2 and pIRES expression vectors served as controls. All 

expression vectors were verified by extensive DNA sequencing. 

Pitx3+Mye 

PLNCX2-pitx3 

Lmxla+Myc 

PLNCX2-lmxla 

EeoRl 

EeoRl 

EcoRl 

Nurrl+Mye 

PLNCX2-nurrl 

PIRES-pitx3-nurrl 

Figure 2. Construction of Expression Plasmid 
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All plasmid constructs were introduced into the hONPs by liposomal transfection. 

The cells were plated on glass coverslips in six-well plates (5 x 104 cells per 35-mm well) 

in DFBNM without antibiotics 1 day before transfection. HONPs were transfected with 

each plasmid (4/-lg/well) for 24 hours according to the manufacture's protocol 

(Lipofectamine 2000, Invitrogen, Carlsbad, California). One day after transfection, the 

cells were fed with 10% FBS in MEM and selected with G418 (400/-lg/ml; Invitrogen, 

Carlsbad, California). The selection pressure was kept for up to 4 months to insure a 

purified stably transfected cell population. Immunocytochemistry and Western blot 

analysis were applied to detect several dopaminergic neuronal markers. After a four­

month selection, the transfected hONPs were frozen in liquid nitrogen for additional four­

six months of storage. After removal from cryostorage and several days' recovery in 

MEM with 10% FBS at 37°C, the dopaminergic lineage restriction was probed with 

immunocytochemistry and Western blot analysis. 

4. Treatment with Morphogens 

The hONPs were treated with Shh, in the presence or absence of RA (1/-lM) and/or 

FN (5/-lM) (Zhang et aI., 2004). Highly purified Shh (kindly provided under a Material 

Transfer Agreement with Curis and Wyeth, Inc.) was applied to hONPs and compared to 

a commercially available control sample obtained from Sigma to determine the extent to 

which purification of Shh can affect the expression of tyrosine hydroxylase (TH). The 

hONPs were plated on glass coverslips in six-well plates (5 x 104 cells/35mm well) in 

DFBNM and treated with medium containing various concentrations and combinations of 

RA, FN, and Shh for 7 days (C02 atmosphere at 5% and temperature of 37°C). Treatment 

with Shh included several concentrations; 0.25mg/ml (Shh0.25), O.lmg/ml (ShhO.l), 
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0.05mglml (ShhO.05), 0.025mg/ml (ShhO.025) in the presence or absence of retinoic acid 

1 J,lM RA (RAI) and/or forskolin, 5 J,lMFN (FN5). After treatment, the TH expression 

was determined at 1-7 days in vitro by immunocytochemical analysis. Once the 

optimized environment for inducing dopaminergic neurons was determined, the medium 

containing the optimized combination was applied to stably transfected hONPs to further 

improve the yield of these neurons. 

5. Immunocytochemistry 

The hONPs (5 x 104 cells/well) were plated on 35 mm round glass covers lips in six­

well plates (Becton, Dickinson and Co.) and incubated at 37 DC in 5% COz/95% air for 

24 hours and treated with RA, FN, and Shh or transfected and selected for different 

periods of time prior to fixation for immunofluorescence. 4, 6-diamidino-2-phenylindole 

dihydrochloride (DAPI) (1: 1 ,000, 2 mg/ml, Molecular Probes, Eugene, OR) was applied 

in culture for 30 minutes at 37 DC for vital nuclear staining. The coverslips were rinsed 

with cytoskeletal buffer (CB) twice and fixed in 3% paraformaldehyde in CB (10 

minutes). 0.2% Triton X-IOO (10 minutes, Sigma) in tris buffered saline (TBS) was 

applied and cells were incubated (1 hour) in 3% bovine serum albumin (BSA) in TBS. 

Primary antibodies were applied overnight (4 DC). After 30 minutes washing (10 minutes 

each, 3 times) in TBS, the cells were incubated with secondary antibodies: Texas-red 

conjugated goat anti-rabbit immunoglobulin G (IgG) , Texas-red-conjugated goat anti­

mouse IgG, Cy2-conjugated goat anti-mouse IgG and/or Cy2-conjugated goat anti-rabbit 

IgG (all diluted 1 :600, Cy2, Jackson Immunology Research Laboratories; Texas red, 

Molecular Probes). The coverslips were rinsed in TBS for 30 minutes (10 minutes each, 3 

times) and mounted on slides. The slides were examined with confocal microscopy. All 
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experiments were repeated a minimum of two times to ensure the specificity of staining; 

only one set of data has been presented since similar results were obtained. 

6. Western Blot Analysis 

Western blot analysis was used to further examme and confirm the 

immunofluorescence studies. Proteins from hONPs transfected with control vectors, as 

well as hONPs transfected with the vectors plus each combination of transcriptions 

factors (pLNCX2-pitx3, pLNCX2-nurrI, pLNCX2-lmxIa, pIRES-pitx3-nurrl), cultured 

in DFBNM, selected in all groups were collected in cell lysis buffer (Sigma, St. Louis, 

MO). After 15 minutes of incubation on ice, samples were centrifuged for 30 minutes 

(4°C) and the protein concentration of each supernatant was determined. The protein 

samples (20Ilg/well) were electrophoresed on 10% SDS-polyacrylamide gels along with 

standardized-molecular-size marker proteins in an adjacent lane and transferred from gel 

to nitrocellulose paper. Nonspecific binding was blocked (1 hour) with 5% nonfat dry 

milk in TBS-Tween (TBST) buffer. Blots were incubated (4°C overnight) in primary 

antibodies (anti-TH, MAB; anti-actin, MAB). Blots were washed three times for 10 

minutes in TBST, after which they were incubated (1 hour, room temperature) 

monoclonal horseradish peroxidase-labeled anti-mouse IgG (1:2,000). ECL Western 

blotting detection reagents (Amersham Biosciences) were used to identify bound 

antibodies. Densitometry of the protein bands was carried out on a high performance 

chemiluminescence film (Amersham Biosciences). Data was analyzed using the Image-J 

software programs supplied by the NIH official website (http://rsb.info.nih.gov/iil). 

7. Dopamine assay 
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Stably transfected hONPs were plated into flasks (25cm2
, Corning) at 105 per flask 

before they were adapted to the absence of serum via serial dilution of serum every day 

for 4 days until the cells were finally cultured in DFBNM, which was collected daily after 

the serum was totally eliminated from the medium. The DFBNM collected from each 

restricted NSFC line was then concentrated to 1150 volume respectively by centrifugal 

filters (Amicon Ultra-I5, Millipore). The differentiated hONPs were then collected and 

lysed (lysis buffer, Sigma). Dopamine expression was analyzed quantitatively in the 

concentrated medium as well as in the celllysates with a dopamine enzyme immunoassay 

kit (Dopamine EIA, Immuno Biological Laboratories, Inc.), according to the 

manufacture's protocol. 

8. Neurotrophin Assay 

Pre- and post-transfected hONPs were plated into flasks (25cm2
, Corning) at 5xI05 

per flask and cultured in 10% OE media for two days before they were adapted to the 

absence of serum via serial dilution of serum every day until they were finally cultured in 

DFBNM. The differentiated hONPs were then collected and lysed (lysis buffer, Sigma). 

Neurotrophins were detected in the extracted protein with different enzyme-linked 

immunosorbent assay (ELISA) kits (BDNF, Chemicon; CNTF, Quantikine; NT-3, 

Chemicon) respectively, according to the manufacture's protocol. The ELISA absorbance 

(OD) was obtained with a microplate spectrophotometer (Spectramax Plus), and the 

results were plotted and calculated with the compatible software (Softmax Pro). 
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C. Results 

Cryopreserved vials of the two representative hONP lines were obtained from storage 

and grown for 1-2 weeks prior to the start of these experiments to insure equivalent 

passage (4-8) and sufficient cell numbers for the following studies. 

1. Transfection of Olfactory-derived progenitors (hONPs) to achieve dopaminergic 

lineage restriction. 

1.1 HONPs were obtained from previously frozen stock with low passage number (4-

8) and maintained in MEMlO medium during their recovery period. These mitotically 

active cells divided every 18 - 20 hour which typically required passage three times per 

week as previously described. The heterogeneous nature of the hONP population prior to 

transfection was determined by immunocytochemistry. No reactivity was observed for 

pitx3, nurrl, lmxla with pre-transfected hONPs and only a few (5-10%) of them were 

positive for the dopamine precursor, TH, when treated conditionally (Zhang et aI., 

2006b). Low passages (Passage 4-8) of hONPs from 2 different patient-specific cell lines 

were employed in parallel transfection experiments. To examine the phenotypic 

expression of hONPs after transfection and selection, representative cultures as well as 

their respective pre-transfection controls were evaluated. Non-transfected hONPs or those 

transfected with lipofectamine alone died within 1 week after selection with 400j.lg/ml 

G418. In contrast, 30% of the transfected cells (both with the concerned genes and the 

control vectors) survived under the selection pressure. Transfection with control vectors, 

single genes, or pitx3-nurrl combined resulted in no morphologic changes compared to 

the typical pretreated hONPs. However, the transfected hONPs divided more slowly, with 

a new doubling time of three to four days, which required a feeding schedule of only 
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twice a week and necessitated passage every 9-10 days. Immunofluorescent analysis of 

the transfected populations demonstrated that hONPs were stably transfected and TH 

expressed. 

1.2 Human olfactory derived hONPs were transfected by pIRES-pitx3-nurrl to 

restrict them towards DA neurons. The vector alone was employed as a control. To obtain 

a purified population of restricted cells the transfected population was maintained in 

G418 for selection. Although only several weeks of selection produced relatively pure 

populations, an interval of four months was employed to insure stability and purity. 

HONPs remained TH positive after transfection of pIRES-pitx3-Nurl, whereas the 

transfection of control vectors exhibited no phenotypic changes, demonstrating that 

hONPs can be restricted towards dopaminergic neurons. (Figure3) 

1.3. HONPs were transfected with pLNCX2-nurrl, pLNCX2-pitx3, pLNCX2-lmxla 

or the vector alone as a control. The transfected cells were exposed to G418 for selection 

for periods up to 4 months. HONPs were TH positive after transfection ofpLNCX2-nurrl 

and pLNCX2-pitx3, whereas the transfection of control vectors resulted in no phenotypic 

changes. Therefore pLNCX2-nurrl or pLNCX2-pitx3 can be employed to lineage restrict 

the hONPs towards dopaminergic neurons. In contrast, the hONPs transfected with 

pLNCX2-lmxla remained unreactive for TH, although positive of myc, which 

demonstrated the successful incorporation of the plasmid. (Figure 3) 
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Figure 3. Immunocytochemical analysis. HONPs transfected with pIRES-Pitx3- Nurrl, 

pLNCX2- Pitx3 or pLNCX2-Nurrl were tyrosine hydroxylase (TH) positive after 4 

months selection with G418 (c, d, f, g), while the lines transfected with pIRES or 

pLNCX2 were TH negative (b, e). HONPs transfected with pLNCX2-Lmxla were Myc 

positive, demonstrating that the plasmid was transfected into the nucleus (h). 
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1.4. Western Blot analysis was employed to confirm quantitatively the 

immunocytochemical studies of the transfected NSFC populations. The following 

transfected lines were analyzed for TH expression: hONPs transfected with pIRES­

pitx3-nurrl, pLNCX2-nurrl, pLNCX2-pitx3 and pLNCX2-lmxla all of which were TH 

positive, which indicated their potential to release dopamine. In contrast, the hONP 

populations' transfected with the control vectors (pIRES and pLNCX2) did not exhibit 

TH expression. ~-actin, a protein that is widely expressed in all mammalian and avian 

cells was used as a reference protein for the comparison of TH expression by the various 

lines. Image-J was applied for the data analysis. Each curve from B to M in Figure 2 

illustrates the density of bands evident on the western gel (Figure4 A), and the area that 

each curve circles was measured. The bars in picture N represent the ratio of TH 

expression and ACTIN expression in the cell line. HONPs transfected with pIRES-pitx3-

nurrl exhibited the highest ratio for the TH and ACTIN expression, while the cells 

transfected with the control vector (pLNCX2 or pIRES) had the least TH staining (Figure 

4 B-N). These results demonstrate that individual transcription factors have unique 

abilities in promoting the dopaminergic restriction ofhONPs. 
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Figure 4 A. Western blot analysis. B-G. Scanning densitometry demonstrates ACTIN­

expression in a hONP line of pLNCX2, pLNCX2-pitx3, pLNCX2-nurrl, pIRES and 

pIRES-pitx3-nurrl respectively. H-M. Densitometry of TH-expression as shown in A. N. 

Histogram demonstrating the ratio ofTHI Actin produced by each population. 
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2. Transfected hONPs remain restricted to dopaminergic lineage after removal 

from cryostorage. 

After 4 month-selection, the dopaminergic lineage restricted cells were cryopreserved 

in liquid nitrogen for additional 4-6 months. Following their removal from cryostorage 

and several days' recovery in MEMIO at 37°C, all but one of the transfected hONP 

populations survived under the selection pressure of 400~glml G418, demonstrating that 

these cells were stably transfected and retained their potential for long term storage and 

clinical application. Immunocytochemistry and Western blot analysis was applied to 

these previously stored populations to examine their TH expression. The hONPs 

transfected with pLNCX2-pitx3, pLNCX2-nurrl and pIRES-pitx3-nurrl remained 

healthy and TH positive under the pressure of selection, while the pLNCX2-lmxla 

transfected line did not (Figure 5). 
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Figure 5. Immunocytochemistry (A-G) and western blot analysis (I) demonstrating that 

hONPs transfected with pLNCX2-pitx3, pLNCX2-nurrl and pIRES-pitx3-nurrl remain 

healthy and TH positive following removal from cryostorage under selection pressure (D, 

F, G). In contrast, the Lncx2-lmxla transfected line no longer expressed TH (H). 
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3. Lineage restricted hONPs produced and released dopamine. 

After removal from the cryostorage, dopamine production was detected in the hONP 

lines which were stably transfected with concerned genes, while the cells transfected with 

control vectors and the non-transfected hONPs didn't produce dopamine. The dopamine 

level of each sample was then divided by the concentration of protein in each specific 

hONP line to calculate the efficiency of dopamine production. Among all the 4 gene 

transfected lines, hONPs transfected with pIRES-pitx3-nurrl exhibited the most efficient 

dopamine formation (Figure 6). Spent medium was collected 4 days after culturing the 

lineage restricted hONPs. This medium was then concentrated to 1/50 volume respectively, 

and dopamine E.I.A. was applied to detect the dopamine release (extracellular levels). Data 

was calculated in the same manner as the intracellular dopamine analysis. Lower levels of 

dopamine were detected in the concentrated media compared to the corresponding analysis 

of the cell lysis. The greatest level of dopamine release was detected in pIRES-pitx3-nurrl 

transfected hONPs compared to the other restricted cell lines (Figure 6). 
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Figure 6. Histograms demonstrating the ratio of dopamine formation (pg/1 00111) to total 

protein concentration (mg/ml) of cells transfected with pIRES-pitx3-nurrl, pLNCX2-

pitx3, pLNCX2-nurrl, pLNCX2-lmxla, pIRES, pLNCX2 and non-transfected hONPs. 

HONPs transfected with pIRES-pitx3-nurrl exhibited the highest levels of intracellular 

and extracellular dopamine production. Dopamine production and release were enhanced 

in hONPs treated with the morpho gens. 
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4. The effect of morphogens on tyrosine hydroxylase (TH) expression, 

dopamine formation and release. 

4.1. HONPs were cultured in DFBNM along with RA (1~M), FN (5~M) and 

either of two different sources (purities) of Shh for four days. Both Shh treatments 

resulted in greater expression than in those cultured solely in DFBNM. TH expression 

was greater in the cells that were treated with highly purified Shh than the commercial 

product obtained from SIGMA when applied for same period oftime. (Figure 7). 
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Figure 7. HONPs treated in DFBNM with a highly purified Shh(C) exhibited greater 

reactivity to tyrosine hydroxylase (TH) than those treated with commercially available 

Shh (B) for 3 days in the presence ofRA and FN. 
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4.2. HONPs treated with RAIFNS and highly purified Shh expressed 

seemingly more intensive TH reactivity in the positive cells (Figure 7 A). Therefore, the 

concentration of Shh was reduced to determine the lowest concentration of Shh that could 

drive the hONPs towards dopaminergic neurons. In contrast to the response when a high 

level ofShh was applied, the reduction of the Shh to O.02Smg/ml applied with RA (lIlM) 

& FN (SIlM) did not produce an immediate response. The hONPs became TH positive 

only after 18 hours of treatment with highly purified Shh; however, they were healthy 

and maintained TH expression for longer periods. The application of RA and FN 

promoted an even greater expression of TH (Figure 8 A). Therefore, the optimal 

conditions for restricting the hONP lineage to dopaminergic neurons (under these defined 

conditions) was determined to be DFBNM supplemented with RAIFN5ShhO.025 (Figure 

8 B). 
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Figure 8. A. HONPs cultured in DFBNM supplemented with O.025mg/ml of Shh, in the 

presence or absence of retinoic acid (RA)(1IlM) and forskolin (FN)(5Ilm) for days 

indicated. B. HONPs were tyrosine hydroxylase (TH) positive following 7 days treatment 

with RAIFN5Shh. 
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4.3 Stably transfected hONPs were treated with a cocktail of RA1FNSShhO.02S to 

determine if a combination of genetic modification and morphogenic treatment would 

increase intracellular and intercellular dopamine levels. Spent medium was collected 4 

days after morphogenic treatment and concentrated to a 1iSO volume. The treated lineage 

restricted hONPs were also collected. Dopamine E.I.A. was applied to both cell lysis 

sample and concentrated medium. Dopamine formation efficiency was calculated as 

previously described. HONPs transfected with plRES-pitx3-nurrl were the most efficient 

population with respect to dopamine formation and release after morphogenic treatment 

(Figure 6 A & B). Compared to intracellular and extracellular dopamine levels of the 

lineage restricted hONPs in the absence of morphogens, dopaminergic expression was 

greatly enhanced in the stably transfected hONPs in the presence of the combination of 

Shh, RA and FN (Figure 6 A & B). These studies suggest that morphogenic treatment can 

play an important role in dopamine formation and release by the lineage restricted 

hONPs. 

5. Stably transfected and pre-transfected hONPs produce neurotrophins 

(BDNF, CNTF and NT -3) at equivalent levels 

The non- (pre )-transfected hONPs were found to produce neurotrophic factors such as 

BDNF (S6.09±1O.24 pg/ml), CNTF (18.72±1.43 pg/ml) and NT-3 (24.87±6.S3pg/ml). 

The stably transfected lines were examined to determine if lineage restriction to 

dopaminergic neurons alters the synthetic capacity and activity of these neurotrophins; no 

significant differences in intracellular neurotrophin (BD NF, CNTF, NT -3) levels between 

transfected and non-transfected hONP lines were observed (P>O.Ol), indicating that 

transfection did not alter neurotrophin synthesis. (Figure 9) 
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Figure 9. Histogram demonstrating the neurotrophin levels in hONPs (pg/ml) transfected 

with pIRES-pitx3-nurr1, pLNCX2-pitx3, pLNCX2-nurr1, pLNCX2-lmx1a, pIRES, 

pLNCX2 and non-transfected NSFCs. Lineage restriction did not alter neurotrophin 

production. 
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D. Discussion 

Parkinson's disease, as a neuronal degenerative disease, is characterized by loss of 

specific dopaminergic neurons in substantia nigra (Hornykiewicz, 1973). Although a 

variety of phannacological agents have been employed in the treatment of PD their 

effects are transient. "Proof of concept studies" with embryonic adrenal medulla cells 

(Fitzpatrick et aI., 2009) although ending in failure demonstrated the potential of a stem 

cell based therapy. Recently substantial effort has been devoted to the search for a 

suitable cell source for a cell replacement strategy for the treatment of PD. Many studies 

have focused on the use of embryonic stem cells; studies utilizing embryonic cells 

derived from mice or porcine were found to be functional in relieving PD like symptoms 

in PD animal models (Yang et aI., 2010; Tonnesen et aI., 2011), and positive results 

obtained from human oriented ES cells further advance the use and promise of stem cells 

as a potential source for cell therapy for PD (Tatard et aI., 2007; Arenas, 2010; Blandini 

et aI., 2010). However, these studies were all generally hampered by the significant side 

effects due to the transplantation of ES cells, such as dyskinesias and/or the fonnation of 

teratomas (Brederlau et aI., 2006; Arenas, 2010; Brundin et aI., 2010). Unfortunately, low 

cell viability following transplantation, tissue compatibility, a limited of source and 

ethical concerns further diminish the therapeutic utility of ES cells. In contrast, the use of 

adult human olfactory epithelium derived progenitors, as a unique autologous cell 

resource, which can be obtained with minimally invasive surgery can avoid these 

negative factors and also eliminate the need for immunosuppression. The studies 

described in this manuscript demonstrate that hONPs can be stably lineage restricted 

under an optimized paradigm, so that they produce and release dopamine, which makes 

42 



them potential candidates for cell-based therapy for PD. Additionally, the genetic 

modification didn't alter the capability ofhONPs to produce and release key neurotrophic 

factors, which have the potential to support neuronal survival, as well as rescue 

degenerating neurons. These factors can also provide permissive micro-environments that 

may induce endogenous stem cell generation and differentiation. (Torp et aI., 2006; Hess 

and Borlongan, 2008; Bao et aI., 2011). 

In the present study, several factors have been observed to optimize the environment 

for hONPs and facilitate their differentiation to dopaminergic neurons, including genetic 

modification and morphogenic treatments, along with another emphasis, the capability of 

hONPs to produce neurotrophic factors, which will all be discussed individually below. 

1. Pitx3 and nurrl induce the DA neuron maturation synergistically. 

The pitx3 gene belongs to the Pitx family of transcription factor genes and has been 

shown to be required for the expression of TH, the precursor of dopamine, both in vitro 

and in mice from EII.5 (Maxwell et aI., 2005). It has been reported that pitx3 is crucial 

to the formation of SN and the specification and/or the survival of the subpopulation of 

the DA neurons in striatum (Cazorla et ai., 2000; Haubenberger et aI., 2011; Reddy et aI., 

2011). The earlier studies suggest that pitx3 increased TH promoter induction in mouse 

and rat cell lines, but not in human cell lines (Cazorla et aI., 2000; Lebel et aI., 2001). 

However, human embryonic stem cells were employed in experiments to demonstrate the 

regulation of TH expression by pitx3 (Hwang et aI., 2003b; Martinat et aI., 2006; Liu et 

aI., 2009). These studies suggested that pitx3 is a key transcriptional regulator of genes 

required specifically for the mesencephalic dopaminergic (mesDA) phenotype (Smidt et 

aI., 1997; Liu et aI., 2009) and for TH expression (Maxwell et aI., 2005; Reddy et aI., 

43 



2011). Nurr1 is a member of the nuclear receptor super family of transcription factors 

that is expressed in both developing and mature dopaminergic neurons in the central 

nervous system in mice (Saucedo-Cardenas et ai., 1997). Previous studies have shown 

that nurr1 is essential to both survival and differentiation of the ventral mesencephalic 

dopaminergic precursor neurons (Smits et aI., 2003; Kim, 2011). Nurr1has also been 

reported to be essential in the expression of TH, which is required for DA synthesis; and 

for vesicular monoamine transporter 2 (VMA T2), which is related to DA storage; and 

dopamine transporter (DAT), which is crucial for DA re-uptake (Smits et aI., 2003). In 

addition, a recent study has shown that Nurr1 plays a previously unexpected role in 

protecting TH positive neurons from neurotoxicity (Winner, 2008). Furthermore, nurr1 is 

the only known transcription factor that is associated with the dopaminergic 

neurotransmitter identity in mesDA neurons (Saucedo-Cardenas et aI., 1997). Therefore, 

both pitx3 and nurr 1 have been shown to be crucial to the formation of SN and the 

specification and/or the survival of the DA neurons in midbrain in rodents (Perlmann and 

Wallen-Mackenzie, 2004b; Simeone, 2005; Krasnova et aI., 2011). The results obtained 

in the present study indicate that overexpression of pitx3 and/or nurr1 promotes the 

expression of DA neuron marker, TH in human adult olfactory epithelial-derived 

progenitors in vitro. HONP lines that were stably transfected with pitx3 and/or nurr1 and 

selected for 4 months, remained healthy and TH positive following 6 months cryostorage 

in liquid nitrogen. Furthermore, the direct detection of dopamine production was also 

evaluated. Lysates ofpitx3 or nurr1 transfected hONPs were dopaminergic as determined 

by dopamine E.I.A. These results suggest that the transcription factors, pitx3 and nurr1, 

not only function as a dopaminergic promoters in chick, mouse, or human embryonic 

44 



cells (Saucedo-Cardenas et aI., 1997; Hwang et aI., 2003b; Courtois et aI., 2010; Katunar 

et aI., 2010), but also participate in dopamine production in adult human olfactory­

derived progenitors. Based on previous studies which focused on the regulatory function 

ofpitx3 and nurrl in dopaminergic neuron promotion (Smidt et aI., 1997; Cazorla et aI., 

2000; Hwang et aI., 2003b; Smits et aI., 2003; Simeone, 2005; Vazin et aI., 2009) and the 

studies described in this manuscript, we hypothesized that pitx3 and nurr1 may 

collaborate to induce a higher efficiency of dopamine production in midbrain DA neuron 

maturation. Previously a synergistic effect between pitx3 and nurrl on TH expression has 

been reported, which appeared to be species dependent occurring in human but not in 

embryonic murine stem cells (Lebel et aI., 2001; Martinat et aI., 2006; Messmer et al., 

2007). The current studies demonstrate that the simultaneous transfection of pitx3 and 

nurrl into the hONPs produced higher levels of TH expression and dopamine production 

than transfection of either of the individual genes. We evaluated the effect oftransfection 

on the level of the precursor (TH) and final intracellular and extracellular dopamine 

levels to confirm and compare the efficiency of the different transfected hONP lines. 

Therefore, our data, in combination with published reports in rodents (Zetterstrom et aI., 

1997; Nunes et aI., 2003) and with human embryonic stem cells (Martinat et aI., 2006; 

Jacobs et aI., 2009), indicate that pitx3 and nurrl cooperatively induce the maturation of 

DA neurons. We extend the previous studies to show the feasibility of genetic 

modification of adult human olfactory-derived progenitors to promote the generation of 

DA neurons. These studies strongly suggest that the co-expression ofpitx3 and nurr1 will 

enhance significantly the lineage restriction of adult human progenitors toward 
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dopaminergic neurons which can be employed in cell-replacement paradigms for the 

treatment of PD. 

2. Treatment of hONPs with morpho gens enhances intracellular and extracellular 

dopamine levels. 

Human adult derived progenitors have the potential to differentiate along several 

neural lineages in response to morphogenic signals in vitro (Zhang et aI., 2005). For 

example, 11.6 (± 1.5) % of hONPs expressed TH following a 7 day treatment of 

RAIFN5Shh (lflM RA, 5flM FN and 15nM Shh), indicating that a dopaminergic lineage 

can be driven by exposure to these morphogens (Zhang et aI., 2006b). Sonic hedgehog 

(Shh), (RA) and Forskolin (FN) have all been shown to be crucial developmental factors 

that regulate neuronal specification and differentiation (Roisen et aI., 1972a; Roisen et aI., 

1972b; Ericson et aI., 1997; Novitch et aI., 2003; Kurauchi et aI., 2011; Trzaska and 

Rameshwar, 2011). Shh has been shown to be required for the generation of ventral 

midbrain motor neurons (Wichterle et aI., 2002; Ko et aI., 2009) as well as dopaminergic 

neurons in rodents (Arenas, 2010; Blandini et aI., 2010; Krasnova et aI., 2011) and chick 

embryos (Brundin et aI., 2010). This study suggests that Shh increases the expression of 

TH and that the purity of Shh is an important determinant of TH expression. RA regulates 

neuronal differentiation in embryonic stem cells (Bibel et aI., 2004; Moliner et aI., 2008) 

and adult human neuronal progenitors (Hsieh et aI., 2004; Cooper et aI., 2010). RA has 

several pathways through which it can effect cellular differentiation (Canon et aI., 2004; 

Fathi et aI., 2010). FN is an adenyl cyclase activator that increases intercellular levels of 

cAMP that can stimulate axonal elongation (Roisen et aI., 1972a; Roisen et aI., 1972b) 

and induce embryonic rat/mouse motor neuron survival (Hanson et aI., 1998; Kobayashi 

46 



et aI., 2011). Following the treatment of RA and FN, the progenitor nature of hONPs is 

diminished, as characterized by a loss of nestin expression, and the presence of more 

mature neuronal markers. In this study, a combination of highly purified Shh, RA and FN 

was applied to the lineage restricted hONPs. The intracellular level of dopamine was 

demonstrated to be significantly increased by this treatment. This result confirms and 

extends the published data by showing that these morpho gens can increase TH expression 

by progenitors obtained from adult humans (Zhang et aI., 2006b). Furthermore, following 

a 4 day treatment of RAIFN5Shh, the dopamine level of the spent conditioned medium 

was significantly enhanced, indicating that the morpho gens promoted the release of 

dopamine, which is important for future studies transplanting lineage restricted hONPs 

into PD animal models. Among all 4 lineage restricted hONP lines, those cells 

transfected with pIRES-pitx3-nurrl produced and released the highest levels of dopamine 

in the presence of Shh, RA and FN. This result is consistent with the analysis of the 

lineage restricted cells in the absence of treatment with the morpho gens. This data further 

supports the conclusion that hONPs transfected with pIRES-pitx3-nurrl are the most 

efficient line in dopamine production studies to date, and therefore are likely candidates 

for engraftment into an animal model of PD. Shh is secreted by the notochord and floor 

plate at early stage of development (Echelard et aI., 1993), RA is detectable in the 

midbrain of chick and mice embryos (Maden, 2002), and FN is highly concentrated in the 

rat substantia nigra (Gehlert, 1986). The local distribution of these morphogens in situ 

should influence the engrafted hONPs and may further support their survival and 

dopamine release following transplantation. The higher level of dopamine released 

following Shh, RA and FN treatment suggests their potential utility for cell-replacement 
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therapy for PD. Previous studies on the non-human primate PD models, demonstrated 

that the transplanted responsive human embryonic progenitor cells were still capable of 

differentiation to DA phenotype within the micro-environment around the lesioned adult 

host SN, an unexpected finding was that the engraftment also up-regulated an 

endogenous progenitor population (Redmond et aI., 2007). The results of our studies 

utilizing a paradigm that combines transfection and morphogen induced lineage 

modulation highlight the potential therapeutic utility of olfactory epithelial-derived neural 

progenitors as an autologous cell source for cell-based replacement strategies for patients 

with Parkinson's disease. 

3. Lineage restricted hONPs retain their capability to produce neurotrophic factors 

It's been reported that neurotrophins such as BDNF, CNTF and NT -3 are crucial in 

the recovery of primate and rodent models of Parkinson's disease (Redmond et aI., 2007; 

Yoneyama et aI., 2011). BDNF is a member of the neurotrophin family which support the 

maturation and survival of dopaminergic neurons in substantia nigra (Singh et aI., 2006; 

Maia et aI., 2011). In the presence of BDNF, more TH positive cells can be found in 

cultures of ventral mecensephalic tissue than in the absence of the neurotrophin (Braun et 

aI., 2011; Maia et aI., 2011). NT-3 belongs to the same family ofneurotrophins as BDNF, 

and has been shown to play a protective role in the degeneration of adult central 

noradrenergic neurons in vivo (Sadan et aI., 2009; He et aI., 2010). CNTF has been 

reported to rescue the degenerating striatal neurons in primate and rodent models (Fu et 

aI., 2010; Edalat et aI., 2011). Furthermore, the absence of CNTF leads to the apoptosis of 

motor neurons in adult mice (von Bohlen und Halbach and Unsicker, 2009; Li and Ding, 

2010). Collectively these studies strongly suggest an important role for these 
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neurotrophins in future therapeutic strategies for neurodegenerative diseases, including 

PD, Alzheimer's disease and Huntington disease. Therefore, a cell population that can 

produce neurotrophins could be an ideal source for cell therapy for these diseases. They 

can provide protective micro-environments in vivo and prevent, rescue and or replace 

neuronal degeneration. The pre-transfected hONPs were found to produce several 

neurotrophins including BDNF and NT-3 when in a serum enriched medium (Marshall et 

aI., 2006). The stably transfected lines were examined to determine if lineage restriction 

to dopaminergic neurons or absence of serum alters the synthesis of these neurotrophins 

since they play a role in neuronal survival, differentiation and maturation. As shown in 

the results, the transfection of hONPs did not alter trophin production. The post­

transfected hONPs produce BDNF, NT -3 and CNTF at equivalent levels with the pre­

transfected progenitors. Therefore, genetically modified hONPs can not only serve as 

replacements of the dead or dysfunctional dopaminergic neurons but also can provide 

protective micro-environments to help rescue dying or damaged neurons from further 

degeneration and to enhance the endogenous progenitor populations. The stably lineage 

restricted hONPs are unique populations with high potential for cell transplantation for 

animal models of Parkinson's disease. 

The long term goal of this study is to develop restricted hONP lines that will have 

therapeutic utility in cell replacement strategies for patients with PD. The in vivo viability 

and stability are important variables, especially considering the likelihood that with time 

the engrafted population may die and require replacement. Therefore, experiments were 

undertaken to determine the stability and viability of frozen stocks of transfected cells. 

HONPs survived under the pressure of selection after removal from cryostorage and 
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retained their ability to express TH, as well as produce and release dopamine and 

neurotrophins, which further demonstrates the unique potential of these progenitors to 

perhaps serve as an autologous cell source for cell-based strategies for the long-term 

treatment of Parkinson's disease. 
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CHAPTER III 

PILOT STUDIES FOR THE EVALUATION OF THE IN VIVO 
EFFECTS OF HONPS IN A PD ANIMAL MODEL 
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Chapter II identified the most efficient dopamine-producing paradigm. This Chapter 

described pilot studies that were undertaken to evaluate an animal model of PD in which 

the in vitro results could be validated in vivo. Currently, there are two widely used 

animal models of PD: the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine induced model 

(MPTP) (Chang et aI., 2011; Yasuda et aI., 2011) and unilateral 6-hydroxydopamine (6-

OHDA) lesioned model of Parkinson's disease (Cai et aI., 2010). Studies with MPTP 

involve mainly although not exclusively on primates (Hakura et aI., 1988; Burov Iu et aI., 

1995; Oiwa et aI., 2006). In contrast, the 6-0HDA model has been more popular in the 

rodents (Matsukawa et aI., 2007; Cai et aI., 2010). Both models have been well 

established and work equivalently in developing animal models of PD. The principal 

advantage of using 6-0HDA for these studies is that this neural toxin is very sensitive to 

dopamine agonists (Reyhani-Rad S., 2011). Since we had already determined the most 

efficient dopamine-producing paradigm (Chapter II), we designed the studies to evaluate 

the action of engrafted transfected hONPs on the 6-0HDA model of PD, along with the 

cellular and medium controls. Initially, a toxin injection equivalent to a total of 20 ~g 

(Azzouz et aI., 2004; Massie et aI., 2010; Danielyan et aI., 2011) was employed. At this 

level most of the animals started to exhibit Parkinsonian deficits within 3 weeks 

following the injection; however, some of the animals behaviorally recovered with no 

treatment as time progressed. This could be because not all of the dopaminergic neurons 

degenerated or were severely damaged in response to the toxic injection, and spontaneous 

recovery occurred. Therefore, in later experiments an increased toxin dosage was used to 

make sure that no spontaneous recovery would occur. The total free base 6-0HDA 

hydrochloride (Sigma H116) was increased to 28 ~g (dissolved to the concentration of 
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3.51lg/IlI, with a total of 81l1, at 4 individual injection sites). As anticipated, no 

spontaneous behavioral improvement was observed up to 27 weeks after the toxin 

injection. 

A. Selection of injection sites 

The next step was to determine which location would be the most ideal area for the 

neurotoxin injection, among the three most widely used sites: the Medium Forebrain 

Bundle (MFB) (Zhang et aI., 2007), Substantia Nigra (SN) (Dymecki and Freed, 1989), 

or the striatum (Danielyan et aI., 2011). 

One hundred and thirty-eight female Spraque Dawley rats (Charles River, 

Wilmington, MA, USA; 200-250g) were maintained under a 12-h light/dark cycle with 

constant temperature and humidity. Food and water was available ad libitum. Twenty­

four hours prior to surgery, animals were weighed and assigned to individual groups 

(Striatum, MFB, SN) with ID numbers. 

Prior to surgery the animals are anesthetized using ketamine (Hospire Inc. Lakeforest, 

IL 60045) / xylazine (Ben Venue Lab. Bedford, OH 44146) 37.7mg/5mg/kg, 

(O.lmlllOOg, IP). After anesthesia and 30 minutes before lesion, Desipramine (Sigma 

D3900; 25mg/kg, 1M) was given to protect noradrenergic neurons from 6-0HDA 

toxicity, and Pargyline (Sigma P8013; 50 mg/kg, 1M) to inhibit endogeneous monoamine 

oxidase. A prophylactic dose of general antibiotics, penicillin (Butler, Dublin, OH 43017; 

100,000 units/kg, 1M) was given to prevent infection. Twenty-eight micrograms of free 

base 6-0HDA hydrochloride (Sigma H116) was injected into the animal brains according 

to the three groups. Injection sites were located from the Bregma: 

Striatum: AP: -1.3 mm, L: 2.6 mm, D: 5 mm; 
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AP: -0.4 mm, L: 3.0 mm, D: 5 mm; 

AP: 0.4 mm, L: 4.2 mm, D: 5 mm; 

AP: 1.3 mm, L: 4.5 mm, D: 5 mm. 

Medium Forebrain Bundle: AP: -4.4 mm, L: 1.2 mm; D: 7.8mm 

Substantia Nigra: AP: -5.0 mm, L: 2.0 mm; D: 7.8 mm 

Five milliliters of 0.9% saline was given to counteract any fluidlblood loss. Penicillin 

(Butler, Dublin, OH 43017; 100,000 units/kg, 1M) and Buprenorphine (Bedford Lab, 

Bedford, OH 44146; 0.02 mg/kg, 1M) were administrated for post-operation care for an 

additional 2 days after surgery. 

Three weeks after toxin injection, all animals were examined by using a rotation test 

that is widely employed as a standard for evaluation of Parkinson's disease models 

(Nikkhah et aI., 1993; Lei et aI., 2011). In the rotation test, amphetamine as a stimulant 

was injected intraperitoneally, and rotation numbers were evaluated 15 minutes after the 

injection. Three 15 minute segments were evaluated for a total of 45 minutes. Among 

these three groups, the SN-injured model was eliminated because lower percentage of 

animals were considered "qualified" models (over 6 turns in rotation test (described in 

Chapter IV)) from this group, compared to the animals having received their toxic 

injection in either the MFB or the striatum. The striatum was eventually selected as our 6-

OHDA injection site because multiple points of injections lead to more complete neural 

degeneration. The striatum is a larger area, compared to the MFB, which will allow for a 

more accurate placement of multiple injections. 
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Table 1. Qualifying Model Rate 

Qualifying Model Rate (>6 turns/min in Rotation 

Test) 
6-0HDA Lesion Site 

20flg 6-0HDA 28flg 6-0HDA 

MFB 9/24 (37.5%) 21128 (75%) 

SN 116 (16.67%) 6/14 (42.85%) 

Striatum 21/38 (55.26%) 20128 (71.42%) 
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Table 1. Three weeks after the 6-0HDA injection, the animals received 

intraperitoneal amphetamine injection at 0.35mg/l00g body weight for rotation test. 

The qualified rats (more than 6 turns/minute) will be utilized for the cell 

transplantation and control animals., Three different toxin injection sites (MFB, SN, 

and Striatum) were tried initially with the total of 20llg 6-0HDA. Only up to 55% of 

the animals (Striatum group) exhibited qualifying rotation numbers. When the 6-

OHDA was increased to 281lg, more than 70% of the animals achieved qualification ( 

more than 6 turns / minute) in two regions, MFB and striatum, while only 43% 

reached this level of deficit in the SN group. Therefore the SN as a neurotoxin 

injection site for establishing the animal PD model was not utilized .. 
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B. Determination of Cell Number for the Transplantation 

Pilot studies were initialed to determine the optimal number ofhONPs for injection to 

achieve the maximum recovery rate. PlRES-Pitx3-Nurrl transfected hONPs, which 

previously (Chapter II) had been shown to be the optimized dopamine formation 

paradigm, were transplanted to the qualified PD models, at their striatum: AP: -0.8 mm, 

L: 2.8 mm, D: 5 mm; AP: 0 mm, L: 3.6 mm, D: 5 mm; AP: 0.8 mm, L: 4.4 mm, D: 5 mm 

(Figure 9). Four different numbers of cells (5k, 10k, 15k, 50k) in six microliters DFBNM 

were injected into the rats, which were then maintained for 16 weeks. One third of the 

15k hONP-injected animals recovered in the behavioral tests, which was the highest level 

of recovery, compared to the other concentrations (20% for 5k, 0 for 10k and 18% for 

50k hONP transplanted animals). Therefore, it was determined that the striatum was the 

optimal site of toxin injection for zero spontaneous recovery over time, and the most 

ideal transplanted cell number for enhanced recovery was determined to be 15k. 
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..-.... l ell Transplantation Points 

{

AP:+o.8mm, ML:+2.8mm, DV:+5.0mm 

AP:+O.Omm, ML:+3.0mm, DV:+5.0mm 

AP:-O.8mm, ML:+4.4mm, DV:+5.0mm 

6-0HDA Injection Sites: 

AP:+1.3mm, ML:+2.6mm, DV:+5.0mm; 

AP:+O.4mm, ML:+3.0mm, DV:+5.0mm; 

AP: -O.4mm, ML:+4.2mm, DV:+5.0mm; 

AP: -1.3mm, ML:+4.5mm, DV:+5.0mm 
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Figure 9. The four 6-0HDA toxin injection points were distributed both anterior and 

posterior to the bregma, at: AP:+1.3mm, ML:+2.6mm, DV:+5.0mm; AP:+OAmm, 

ML:+3.0mm, DV:+5.0mm; AP: -OAmm, ML:+4.2mm, DV:+5.0mm; AP: -1.3mm, 

ML:+4.5mm, DV:+5.0mm. The three hONPs transplantation points were located in 

between the toxic injury sites, at: AP:+O.8mm, ML:+2.8mm, DV:+5.0mm; AP:+O.Omm, 

ML:+3.0mm, DV:+5.0mm; AP:-O.8mm, ML:+4Amm, DV:+5.0mm 
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Table 2. Cell Transplantation and Rotation Analysis 

6-01IDA 
Injected CeO 

Rotation Numbers Recovery 
Injection 3w after toxin 16w after CeO 

Site 
Number 

Injection Engraftment 
Rate 

5k 904 865 

5k 873 1204 
1 out of5 

5k 1733 464 
20% 

5k 726 1024 

5k 752 824 

10k 1006 1568 

10k 1391 1470 

10k 1175 408 0 

10k 1251 1487 

10k 382 1344 

15k 864 720 

15k 1378 548 2 out of4 

15k 1518 716 50% 
MFB 

15k 897 647 

50k 502 1303 

50k 714 1107 
lout of5 

50k 1491 1632 
20% 

50k 689 1367 

50k 897 455 

Medium Control 1172 719 

Medium Control 654 454 

Medium Control 1317 880 

Medium Control 965 968 0 

Medium Control 1385 1182 

Medium Control 583 1047 

Medium Control 604 1088 
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15k 1058 1374 

15k 13842 2383 

15k 1235 500 
2 out of7 

15k 1500 399 
28.57% 

15k 1279 1619 

15k 466 1133 

15k 1039 612 

50k 721 1647 

50k 600 1282 

50k 1563 1953 lout of6 
Striatum 

50k 938 1144 16.67% 

50k 747 348 

50k 1469 1766 

Medium Control 639 1052 

Medium Control 760 1500 

Medium Control 621 1493 

Medium Control 1834 1531 0 

Medium Control 512 977 

Medium Control 741 1432 

Medium Control 1060 682 
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Table 2. HONPs were transplanted into the qualified PD models. Different cell 

concentrations were engrafted. A concentration of 15k hONPs produced the most 

recovery as determined by the rotation test, compared to the other doses evaluated 

Therefore 15k hONPs was used for the studiesdecribed in Chapter IV.. Red text 

indicates the reduced rotation numbers after cell transplantation. 
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B. Complimentary Behavior Tests 

Most standard evaluation assays for 6-0HDA PD models rely primarily on the 

rotation test. To supplement this evaluation we explored the utility of several 

complimentary behavior tests including comer preference test, cylinder vertical climbing 

test, stepping test and rope test, The comer preference test and cylinder vertical climbing 

test will be further described and discussed in Chapter IV since they were adapted for the 

in vivo studies. 

1. Adjusting Stepping Test 

Adjusting stepping test has been employed by some research groups to evaluate the 

Parkinsonian symptoms in rat models (Olsson et aI., 1995; Kim et aI., 2002). The hind­

limbs and one of the fore-limbs of animals were held by the investigator, with the other 

forelimb exposed to a 90 cm rough wood board. The animal was moved slowly sideways 

(5 seconds for 90 cm), twice in the forehand direction. The number of adjusting steps was 

counted for both paws, and analyzed by comparing the left versus right limb usage along 

within the distance along the board. A baseline study was performed and the normal rats 

used both forelimbs equivalently when side-walking on the board, before the rats 

received toxic injuries in their brains. This test was eliminated because this model seemed 

less sensitive to this specific test than the other methods. The animals which showed 

behavioral differences in other tests after toxin or cell injection did not exhibit an obvious 

contrast in adjusting stepping test. 

2. Rope Test 

The animals were allowed to hang on a rope (diameter 3cm) through the use of their 

fore-limbs and the time that they were able to remain hanging was recorded with the 
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protection of a large basin underneath the animals. Most normal rats were able to hang on 

with their fore-limbs for a relatively long time (over 1 minute). In contrast, the toxin 

injured animals were too weak to support their body weight and fell into the protecting 

basin within a few seconds after they were placed on the rope. However, several weeks 

after this test was initiated, some animals started to learn how to pull themselves up and 

they would stand on the rope instead of hanging with two limbs. This capability varied 

between animals and was not related to the treatment group which made it difficult to 

count or calculate the hanging time. Therefore, the rope test was eliminated from the 

experiment as well because of the lack of consistent response within a given treatment 

group. 

Based on the pilot studies described above, we determined that the neural toxin, 6-

OHDA, would be injected at four points in the animal striatum, and 15k IPN transfected 

hONPs would be transplanted thereafter. Besides the main standard for PD models, 

amphetamine-induced rotation test, complimentary corner preference and a cylinder 

vertical climbing test would be employed and further discussed in Chapter IV. 
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CHAPTER IV 

TRANSPLANTATION OF hONPs IN A RAT MODEL OF PD 
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A. Introduction 

Parkinson's disease (PD) is a major worldwide neurodegenerative disease whose 

incidence has been steadily rising as the population longevity increases (Savica et aI., 

2010). PD is characterized by the extensive loss of functional dopaminergic (DA) 

neurons in substantia nigra (SN) within the midbrain (Homykiewicz, 1973). This study 

is to determine the therapeutic utility of hONPs in cell-based treatment for PD. In this 

study, the hONPs were genetically modified by transfecting gene pitx3 and nurrl, after 

which they were tyrosine hydroxylase (TH) positive even after four months of selection. 

The pIRES-pitx3-nurrl (lPN) transfected hONPs can be cryo-stored in liquid nitrogen for 

a minimum of six months, and retain their ability to produce and release dopamine, and 

therefore have the distinct advantage of serving as stable resource for cell therapy for 

Parkinson's disease (Soldner et aI.). Furthermore, the pre-transfected and post-transfected 

hONPs have equivalent capacity to produce neurotrophins including brain-derived 

neurotrophic factor (BDNF), ciliary neurotrophic factor (CNTF), neurotrophin-3 (NT-3), 

etc., all of which are important for the survival and function of dopaminergic neurons in 

the CNS (Soldner et al.) (Singh et aI., 2006; Pessach and Notarangelo, 2011). Recent 

studies also indicate that the neurotrophins have the potential to optimize the local 

microenvironment of the damaged area, and thereby induce endogenous stem cells to 

replace or rescue degenerating neurons (Lindvall and Kokaia, 2010; Kassis et al., 2011). 

Therefore, genetically modified, as well as the non-transfected hONPs have a duel 

potential to serve as replacements for dead or dysfunctional dopaminergic neurons and 

also provide protective permissive microenvironments which can rescue dying or 
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damaged neurons from further degeneration while simultaneously having the potential to 

activate endogenous progenitors. 

The object of the following study was to determine and evaluate the function of IPN 

transfected and pre-transfected hONPs in a unilateral 6-hydroxydopamine (6-0HDA) 

lesioned rat model of Parkinson's disease (Wright et aI., 2009). This model was 

established in 1970 (Ungerstedt and Arbuthnott, 1970) and is widely used in the studies 

related to Parkinson's disease (Hargus et aI., 2010; Rauch et aI., 2010; Danielyan et aI., 

2011). The human fibroblasts served as cellular controls, while the culture media alone 

was employed as a vehicle control. In the pilot studies, two models with two different 

toxin injection sites: the medium forebrain bundle (MFB) (Zhang et aI., 2007) and the 

striatum (Danielyan et aI., 2011) were evaluated. Both models performed equivalently; 

the striatum was selected as our injection site for the data shown in this manuscript. 

Different cell numbers/ and vehicle volumes were transplanted into the animal models in 

the initial studies and only the optimized concentration was applied in the experiments 

discussed in this manuscript. 

B. MATERIAL AND METHODS 

1. Cell Preparations 

plRES-Pitx3-Nurrl transfected and pre-transfected hONPs from the same patient­

specific cell line were thawed from frozen stock that was maintained in liquid nitrogen 

and cultured in minimal essential medium (MEM) with 10% heat inactivated fetal bovine 

serum (FBS, GIBCO, Grand Island, NY) (10%OE) for one week, as described and 

developed previously (Roisen et ai., 2001; Wang, 2011). Human skin fibroblasts (ACTT 

crl-1836) were cultured under the same conditions. The hONPs were adapted to serum-
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free growth media via serial dilution of serum every day for 3 days until the cells were 

finally cultured in DFBNM (DMEM/FI2 supplemented with 1% B27 and 0.5% N2 and 

100 J..lg/ml gentamycin (GIBCO, Grand Island, NY)) on the day of engraftment. Cells 

were detached and suspended in DFBNM and viability of the cells was analyzed using 

0.4% trypan blue stain (GIBCO, 15250) according to manufacturer's protocol. Only 

healthy living cells were counted and a concentration of 2500 cells/J..ll was prepared and 

kept on ice. 

2. Animal Model and Cell Transplantation 

All animal care and surgical interventions were undertaken in strict accordance with 

the Public Health Service Policy on Human Care and Use of Laboratory Animals, and 

with the approval of the University'S Institutional Animal Care and Use Committee and 

Institutional Biosafety Committee. The harvest of hONP was approved by the University 

Institutional Review Board - IRB 521.01. An informed consent form was approved by 

the IRB. 

2.1. Establishment of Rotational Parkinsonian Rat Model 

Female Spraque Dawley rats (Charles River, Wilmington, MA, USA; 200-250g) were 

maintained under a 12-h light/dark cycle with constant temperature and humidity. Food 

and water was available ad libitum. Twenty-four hours prior to surgery, animals were 

weighed and assigned ID numbers. 

Prior to surgery the animals were anesthetized usmg ketamine (Hospire Inc. 

Lakeforest, IL 60045)1 xylazine (Ben Venue Lab. Bedford, OH 44146) 37.7mgl5mg/kg, 

(O.lmlllOOg, IP). After anesthesia and 30 minutes before lesion, Desipramine (Sigma 

D3900; 25mg/kg, 1M) was given to protect noradrenergic neurons from 6-0HDA 
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toxicity, and Pargyline (Sigma P8013; 50 mg/kg, 1M) to inhibit endogeneous monoamine 

oxidase. A prophylactic dose of general antibiotics, penicillin (Butler, Dublin, OH 43017; 

100,000 units/kg, 1M) and was given to prevent infection. 

Animal hair was shaved and the skin prepared w/betadine solution (Purdue Products 

L.P. Stamford, CT 06901) at the surgical site. Animals were mounted in stereotaxic 

apparatus, and the scalp was opened. A small burr hole was drilled into the skull with a 

dental drill. For striatum injection, 28 Ilg of free base 6-0HDA hydrochloride (Sigma 

H116) was dissolved immediately before use, in 8 III sterile saline containing 0.01 % 

ascorbic acid and injected into the right striatum at the coordinates given by the brain 

atlas of Paxinos and Watson (Paxinos and Watson, 1996). Injection sites were located 

from the bregma: AP: -1.3 mm, L: 2.6 mm, D: 5 mm; AP: -0.4 mm, L: 3.0 mm, D: 5 mm; 

AP: 0.4 mm, L: 4.2 mm, D: 5 mm; AP: 1.3 mm, L: 4.5 mm, D: 5 mm. Two III of 6-

OHDA solution was dispensed into each point with G#31 needle at a rate of21ll Iminute. 

The needle was left in place for an additional 2 minutes to prevent backflow and then 

slowly removed. The burr hole was filled with a piece of gel foam and the scalp was 

closed. Five mL of 0.9% saline was given to counteract any fluidlblood loss. Penicillin 

(Butler, Dublin, OH 43017; 100,000 units/kg, 1M) and Buprenorphine (Bedford Lab, 

Bedford, OH 44146; 0.02 mg/kg, 1M) were administrated for post-operative care for an 

additional 2 days post-surgery. 
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Figure 11. Experimental equipment set-up and animal mounting. The surgery was 

performed under the scope and the animal was mounted on the stereotaxic apparatus. The 

6-0HDA solution was dispensed with G#31 needle in a 1 Dill syringe. 
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2.2. Assignment of Experimental Groups 

The rotation test (described below) was the standard behavioral test used to evaluate 

the performance of the rat models. Grouping of the qualified rats (2:6 rotations/min on 

average, based on a total of 542±270 turns for 45 minutes) was performed before cell 

engraftment. Animals were distributed to one of four groups with equivalent rotation 

numbers. Three groups received unilateral (right, same side with 6-0HDA diffusion) cell 

transplantation (IPN (N=39), pre-transfected hONPs (N=30), Human Fibroblast (N=7) 

and one group received a vehicle injection (N =30). A separate group was designed as a 

sham group, which was not administered anything throughout 24 weeks post toxin injury 

(N=14). 

2.3. Cell Transplantation 

The rats were anesthetized, prepared and mounted in the same way as they were for 

the surgery for toxin administration. A small burr hole was drilled into the skull with a 

dental drill. Fifteen thousand cells in a total volume of 6 III were implanted into the 

striatum of the animal in three specific locations (AP: -0.8 mm, L: 2.8 mm, D: 5 mm; AP: 

o mm, L: 3.6 mm, D: 5 mm; AP: 0.8 mm, L: 4.4 mm, D: 5 mm). The injection in each 

point was administered for 1 minute and the syringe was allowed to remain in place for 

an additional 2 minutes after which it was withdrawn slowly to prevent reflux of the 

solution. At the surgery site the skin was sutured with 5-0 silk stitches and 5ml 0.9% 

saline was given intradermally. Penicillin (Butler, Dublin, OH 43017; 100,000 units/kg, 

1M) and Buprenorphine (Bedford Lab, Bedford, OH 44146; 0.02 mg/kg, 1M) were 

administered for post-operation care for an additional 2 days after surgery. Cyclosporine 

(Bedford Lab, Bedford, OH 44146) was injected intramuscularly at the dosage of 
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10mg/kg body weight every other day for at least 10 weeks starting from the day of 

transplantation. All cellular control and non-engrafted animals received the same dosage 

of cyclosporine at the same frequency. 

3. Behavioral Analysis 

3.1 Amphetamine-induced Rotation Test: 

Three weeks after the initial 6-0HDA injections, the rats were stimulated with 

amphetamine (3.0 mg/kg, IP, 3.0mg/ml, O.lmlllOOg.rat; Sigma A5880). A determination 

of the number of rotations began 15minutes after drug injection to allow for drug 

diffusion and continued for 45 minutes (recorded in a 3 x 15 minute pattern) afterwards. 

On average, only the rats that rotated 6 or more turns per minute (for a total of 270 

rotations in 45 minutes) were utilized for the remainder of the experiment. Those rats 

were assigned randomly into controls or cell engrafted groups as described above. After 

cell engraftment, the rotation test was preformed once every two weeks starting from the 

3rd week, until 6 months. 

3.2 Complementary Behavioral Tests: 

Corner Test: Rats were placed in a right-angle corner of a box with the forelimbs 

raised off the floor of the box. The direction that the rat turned to leave the corner was 

recorded for 8 consecutive times. The number of left turns out of 8 trials were 

summarized and averaged in each group. 

Limb-use Asymmetry (Cylinder) Test: Rats were placed in a clear glass cylinder (30 

cm tall by 22cm diameter). The number of wall contacts, made by their forelimbs (left, 

right or both), was recorded for 3 minutes. The ratio of left/right usage was calculated 

and averaged in each group. 
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These complementary behavioral tests were performed once before the neurotoxin 

injection for baseline and were continued once every week starting from the 2nd week 

post treatment until 6 months after cell transplantation or medium administration. 

4. Immunohistochemistry 

Animals were deeply anaesthetized with ketamine/xylazine administered 

intraperitoneally and perfused transcardially with a phosphate buffered saline (PBS) wash 

followed by a 4% buffered paraformaldehyde (Sigma, P-6148) fixative. Brains were 

removed and cryoprotected overnight in a 4% buffered paraformaldehyde fixative 

followed by 20% sucrose (Sigma, S9378) at 4·C. The striatum of the animal was located 

and dissected with a rat brain cutting block (slicer) and mounted in frozen Optimal 

Cutting Temperature compound (Sakura, Torrance, CA). Coronal sections (12 

micrometers) were cut on a sliding microtome (Leica, CM3050S). One out of six sections 

were collected and stored serially at -80·C if not stained immediately. Sections were 

reacted with an antibody against tyrosine hydroxylase (TH, Monoclonal, Sigma) using 

the ABC method (Elite, PK-6100), with DAB (Vector, SK-4100) staining, passed 

through an alcohol/xylene series and coverslipped with Permount (Fisher Scientific, 

SP15-100). Some sections were employed for the immunofluorescence staining for 

double labeling ofTH expression and anti-human localization. 

S. Dopamine assay 

The rats were terminated with an over dose of ketamine/xylazine 4 months after cell 

or medium injection, and brains were removed immediately. The striatum of each rat 

brain was dissected with a rat brain slicer and lysed in RIP A buffer (Sigma, R0278) with 

a tissue grinder (Kimble Chase, 101020), in the presence of protease inhibitor (Sigma, 
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P8340). Total protein of each sample was collected and dopamine production was 

analyzed quantitatively with a dopamine enzyme immunoassay kit (Dopamine EIA, 

Immuno Biological Laboratories, Inc.), according to the manufacture's protocol. 

RESULTS 

1. The Effect of cell engraftment on behavioral activity 

Animals receiving hONPs exhibited reduced Parkinson-like behavioral deficits 

following the engraftment of IPN-transfected and the matched pre-transfected cells into 

the striatum of animals treated for over 3 weeks with 6-0HDA. In contrast, animals 

transplanted with the medium vehicle or human fibroblasts remained unchanged from 

neurotoxin-treated controls. Twenty-four weeks after engrafiment and 27 weeks after the 

6-0HDA lesion, approximately 36% (14 out of 39) of the engrafted animals in IPN­

transfected group exhibited improved behavioral recovery in a rotation test. The 

transfection of gene Pitx3 and Nurr 1 initiated the dopaminergic differentiation of the 

hONPs and resulted in positive improvements which could be detected by the 6th week 

post cell transplantation. On the other hand, 33% (10 out of 30) of the pre-transfected 

hONPs, which were originally employed as a cellular control group, also had a reduced 

rotation activity although the improvement required a longer post-engraftment period. 

The IPN transfected animals initially exhibited improvement in week six post 

engraftment, while the pre-transfected animals did not show any signs of behavioral 

improvement until 12 weeks after transplantation. However, at the conclusion of these 

experiments (27 weeks) no significant difference in level or degree of recovery was 

detected between pre-transfected and post-transfected groups (P>0.05). Furthermore the 

improved rotation levels were reduced to 43% of the initial levels in both the pre-
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transfected and post-transfected improved animals. Human fibroblasts were employed as 

a cellular control to evaluate further the specific role of the hONPs in cell replacement 

therapy for the 6-0HDA Parkinson model. Animals that received the fibroblasts had no 

improvement in behavioral activity for the duration of this experiment which was 18 

weeks post-engraftment. The recovery rate of the fibroblast engrafted animals was 

significantly different from the IPN-transfected or pre-transfected hONP group (P<O.05); 

there was no difference between the media control or fibroblast engrafted animals 

(P>O.05). The medium controls never exhibited improved rotational deficits throughout 

the 24 weeks following their treatment. In contrast, a significant difference was observed 

between the hONPs (pre-andlor post-transfected) animals and the medium only control 

andlor fibroblast engrafted groups (P<O.OI) (Figure 12 A, B). 

Furthermore, the corner preference tests and cylinder vertical climbing tests were 

performed for comparison with the rotational results. Baseline studies were performed 

before the animals received their toxin lesion. The normal animals tended to turn left and 

right equivalently in the corner test, while the injured animals, those receiving the 

unilateral 6-0HDA turned toward the toxin injected side (right side in this study) much 

more frequently than to the left. In contrast, the corner preference test demonstrated that 

those animals that exhibited obvious reduction in the rotation test had reduced preference 

and turned to both the left and right when faced into a corner. However, animals that had 

no rotational improvement similarly had an overwhelmingly corner preference to the 

right. In contrast, the fibroblast engrafted and the medium only control animals 

continued their right preference, turning to toward the right 7 times more than left (Figure 
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13 A). In the cylinder vertical climbing test normal animals used their right and left front 

paws equally against the glass wall as they reached for the top of the cylinder, while the 

toxin injured animals had a strong preference to use their right more than their left front 

paws. In this study, the animals that exhibited improved rotational deficits also had 

improvements in cylinder vertical climbing test. Their left/right paw usage increased 

from 0.1 to 0.4 over 24 weeks following engraftment, which was three times greater than 

the human fibroblast transplanted or medium only treated controls (Figure 13 B). 
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Figure 12. Thirty-five percent of the animals engrafted with transfected hONPs and 

thirty-three percent of the animals engrafted with pre-transfected hONPs (non-transfected) 

exhibited reduced rotation under the same level of amphetamine stimulation. In contrast, 

animals in the control groups that received only the medium or human fibroblasts had no 

reduction in rotational activity (A). A significant difference was observed between the 

hONP engrafted (transfected or non-transfected) and medium control group (P<O.OI). In 

contrast, there was no significant difference between the transfected and non-transfected 

engrafted groups, nor was there a difference between the fibroblast and the medium only 

control groups (P>O.05) (B). Error bars indicate standard deviation. 
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Figure 13. The comer preference test (A) and the cylinder vertical climbing test (B) 

showed consistent results with the amphetamine induced rotation test. The animals which 

reduced in rotation numbers also exhibited behavioral improvements in comer and 

cylinder tests. In the comer test, the left tum numbers tended to be 50%, meaning 

equivalent left versus right preference when randomly facing a right comer in the pre­

and post-transfected hONP il1iected animals. In contrast, in the medium and the fibroblast 

controlling group, the animals will mostly tum to the toxin injected side (right side in this 

study). In the cylinder vertical climbing test, the hONP transplanted animals use their left 

paws three times more than the medium or fibroblast implanted animals. Error bars 

indicate standard deviation. 
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2. Transplanted hONPs Promote TH Expression in the Toxin-injured Sites 

Unilateral treatment of the rat striatum with the neurotoxin 6-0HDA destroyed all TH 

positive cells after three weeks as demonstrated by the lack of immunoreactivity in the 

area of treatment. Furthermore, no detectable spontaneous recovery of TH positive cells 

occurred throughout 24 weeks post-neurotoxin injection nor was TH positive 

immunoreactivity observed in the toxin treated regions of the sham operated 

controls.(Sham group, Figure 14 A-D) nor was it detected in the human fibroblast or 

medium only injected control groups (Figure 15 C, D). The left sides of the brains, which 

did not receive the toxin injury, expressed TH in the striatum, while the right side 

striatum did not demonstrate any TH regeneration over 27 weeks after the toxin injection, 

nor did it restore any in the cellular or medium controls. In contrast, both the pre- and 

post-transfected hONP engrafted animals, which improved in the behavior tests, 

exhibited greater TH expression in sections of their striatum, compared to the controls 

(Figure 15 A, B). 
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Figure 14. Dopaminergic neurons degenerated in the 6-0HDA lesioned side (right) of 

the animals throughout the time line, and did not recover spontaneously (A-D). TH 

expression started to be dismissed since the 3rd week after 6-0HDA injection, and there is 

no spontaneous restoration ofTH up to 24 weeks after toxic injury. 
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Figure 15. More dopaminergic neurons were found in the lesioned sites of animals 

engrafted with transfected and non-transfected hONPs (A, B), while the medium or 

human fibroblast injected controls had a significant deficit of dopaminergic neurons (C, 

D). 
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3. HONPs remain intact and TH positive for a minimum of 6 months after 

transplantation 

Twenty-four weeks after engraftment, dopaminergic neurons were detected in the toxin­

injured striatum of the hONP transplanted animals (Figure 16 A, B). The engrafted hONP 

population remained intact and TH positive for a minimum of six months in vivo. These 

cells strongly resembled multipolar neurons which were characterized by long processes 

that frequently passed out of the plane of focus. (Figure 16 C, F). Furthermore, TH 

positive processes were found well beyond the injection sites (Figure 17 A, B). Cell 

bodies and processes that expressed TH were detected 800llm away from the initial 

implantation area. As stated above, about 36% of the animals, that received hONP 

injection, recovered in both post-transfected and pre-transfected groups. A quantitative 

study was performed and significant differences in TH positive cell numbers were 

detected between transfected recovered (T-Recov) and transfected non-recovered (T­

NoRecov) animals (P<O.05) and between pre-transfected recovered (PreT-Recov) and the 

pre-transfected non-recovered (NoPreT-NoReov) animals (P<O.05). No significant 

differences between the recovered transfected and recovered pre-transfected animals 

were observed (P<O.05). Similarly no differences were found between the non-recovered 

animals of these two groups (P>O.05) (Table 1). No TH positive cells were observed in 

the toxin-injured striatum of the human fibroblast, the medium only injected, or the sham 

controls. Human fibroblast cells were not detectable 4 months after transplantation. 
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Figure 16. IPN-Transfected hONPs (A,-C) and the pre-transfected hONPs (D-F) were 

intact and TH positive 24 weeks after the cell engraftment. High magnification confocal 

microscopy reveals that both the transfected and non-transfected hONPs had TH positive 

processes (C, F). 
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Figure 17. IPN-Transfected hONPs (A) and the pre-transfected hONPs (B) were 

observed intact and TH positive 24 weeks after the cell engraftment, 800llm beyond the 

initial injection sites. 
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Table 3. P values of the comparison of the cell numbers in animal striatum 

P Value TRecov TNoRecov PreTRecov PreTNoRecov 

TRecov 0.008 0.63 

TNoRecov 0.08 0.11 

PreTRecov 0.63 0.009 

PreTNoRecov 0.11 0.009 
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Table 3. There was no significant difference in cell numbers between the recovered 

transfected and the non-transfected hONP engrafted animals (P>O.l) or between the non­

recovered transfected and non-transfected hONP transplanted animals, (P>O.l), However, 

there was a significant difference between the behaviorally improved and the 

nonrecovered animals (P<O.05). Definition of abbreviations TRecov: Transfected 

Recovered; TNoRecov: Transfected Non-recovered; PreTRecov: Pre-transfected 

Recovered; PreTNoRecov: Pre-transfected Non-recovered. 
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4. Analysis of the dopamine levels. 

Dopamine enzyme immunoassay was employed 4 months after toxin injury to detect the 

dopamine level in the striatum sections of half brains. The left half brains that never 

received 6-0HDA injuries contained 1.44±0.68 dopamine (pg)/total protein (ig) (D/TP), 

which is fourteen times greater than the toxin injured and medium only injected brains 

(0.11 0.04 D/TP ). The recovered animals from pre-transfected and post-transfected 

groups had D/PT levels of 0.27±0.07 (pg/ig) and 0.41±O.l1 (pg/ig) respectively. The 

D/PT levels of pre-transfected non-recovered animals averaged at 0.11±0.03 (pg/ig), 

while the post-transfected non-recovered averaged level was 0.13±0.03 (pg/ig). The 

behaviorally improved animals exhibited higher levels of dopamine compared to the non­

recovered or the medium only controls. The dopamine level in the left side brains, which 

never received toxin injection, was significantly higher than all the right sides. There was 

no significant difference (NS) between the transfected recovered and non-transfected 

recovered, or the transfected non-recovered and non-transfected non-recovered animals. 

However, the dopamine levels in the treated brains of recovered and non-recovered 

animals were statistically different from each other (Figure 18). 
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Figure 18. The left side of the brain that never received the toxin injection retained the 

highest dopamine level and was significantly different from all right side brain levels. 

Significant difference was observed between the recovered and non-recovered the 

animals (P< 0.05, **). However, There was no significant difference (P>O.l, NS) 

between transfected recovered and non-transfected recovered, or transfected non­

recovered and non-transfected non-recovered animals. 
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C. DISCUSSION 

Currently, the etiology and cure for Parkinson's disease remam unknown 

(Hornykiewicz, 1973). Although the disease is characterized by the degeneration of 

dopaminergic neurons in a region of the midbrain known as the substantia nigra, the 

underlying mechansisms have been elusive. Pharmacological agents, although widely 

used, only transiently relieve symptoms, losing their effectiveness with prolonged use 

(Lloyd and Hornykiewicz, 1973; Sharpe et aI., 1973). A considerable level of proof of 

concept research aimed at developing a cell replacement therapy is ongoing (Anderson 

and Caldwell, 2007; Parish et aI., 2008). Early studies included the transplantation of 

embryonic tissues such as mesencephalic tissue (Piccini et aI., 2000; Freed et aI., 2001), 

fetal nigral cells (Nikkhah et aI., 1994; Kordower et aI., 1998), or ventral midbrains 

(Mendez et aI., 2005). With the relief of Parkinsonian symptoms, these trials raised 

several concerns: 1. The lack of donor tissue; each patient receiving this surgery required 

3-5 fetal brains (Freed et aI., 2001), which increased the risk of bacterial or viral 

infection. 2. Even with well-experienced surgical team, the outcome varied with each 

individual. 3. Dyskinesia eventually occurred in a significant proportion of patients 

(Barker and Kuan, 2010; Lane et aI., 2010). Therefore, an alternate expandable source for 

dopaminergic cells has been a major research focus (Daadi, 2002; Lindvall et aI., 2004). 

Stem cells represent a potential population for cell-replacement treatment of Parkinson's 

disease due to their capacity for self-renewal and ability to differentiate into other cell 

types (Lindvall et aI., 2004). Human embryonic stem cells were one ofthe first stem cell 

populations employed in a PD model, and significant decrease in rotation tests from pre­

transplantation levels following cell transplantation have been reported (Bjorklund et aI., 
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2002; Correia et aI., 2005; Brederlau et aI., 2006). A large number of studies focused on 

iPSCs, which were derived from human fibroblasts (Takahashi and Yamanaka, 2006; 

Takahashi et aI., 2007), human or rat primordial germ cells (Shamblott et aI., 1998; Okita 

et aI., 2007; Hamanaka et aI., 2011), or mammalian embryos (Martin, 1981; Nichols et 

aI., 1998). These cells promoted behavioral recovery when transplanted into 

Parkinsonian animal models (Hargus et aI., 2010). However, like embryonic stem cells, 

in most cases (50% or more) they generated teratomas within 6 weeks (Arnhold et aI., 

2004; Hedlund et aI., 2007; Chang et aI., 2011). 

The long-term goal of the present study was to find a stable, non-tumorigenic cell 

source that could be used in a cell-based therapy for Parkinson's disease. Our lab 

developed methods to isolate and expand neural progenitors from human adult olfactory 

epithelium (31). The epithelial tissue was obtained via endoscopic biopsy from the 

olfactory region of the nasal cavity without invasive surgery or significant injury to the 

donor. The cells were then cultured for 8-12 weeks until the progenitors (hONPs) were 

obtained as previously described (Kordower et aI., 1998; Winstead et aI., 2005). The use 

of hONPs that can be obtained from the patient and then returned to the patient would 

eliminate ethical concerns as well as the need for immunosuppressive agents since they 

would be autologous. Previous studies demonstrated that hONPs can differentiate into 

neurons in response to their local environment (Zhang et aI., 2005; Zhang et aI., 2006). 

The hONPs were lineage restricted to dopaminergic neurons by transfection with the 

Nurrl and Pitx3 genes, which worked synergistically in this process (Wang, 2011). 

Furthermore, hONPs produce a variety of neurotrophic factors in vitro (Marshall et aI., 

2005) and in vivo following their engraftment (Lu et aI., 2011). Recent studies have 
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shown that hONPs can act as biological mini pumps releasing neurotrophic factors that 

create a permissive environment for regeneration (Lu et aI., 2011). Furthermore, several 

of the released neurotrophins including BDNF CNTF and NT -3 have been shown to be 

crucial in the recovery of primate and rodent models of Parkinson's disease (Redmond et 

aI., 2007; Yoneyama et aI., 2011). The pre-transfected hONPs were found to produce 

many of these essential neurotrophins including BDNF and NT-3 even when in a serum 

enriched medium (Marshall et aI., 2005). In this study transfection ofhONPs did not alter 

neurotrophin production. The post-transfected hONPs produce BDNF, NT-3 and CNTF 

at levels equivalent to the pre-transfected progenitors. Therefore, genetically modified 

hONPs can not only serve as replacements for the dead, dying or dysfunctional 

dopaminergic neurons but they also have the potential to provide a protective premissive 

microenvironment to help rescue dying or damaged neurons from further degeneration 

and to enhance the endogenous progenitor populations. Transfected and pre-transfected 

populations support a dual mechanism of synthesis and release of both dopamine and 

neurotrophins which collectively have the capacity to enhance the deteriorating, non­

permissive environment created by the 6-0HDA administration in the Parkinsonian rat 

model. In contrast, the fibroblast engrafted cellular controls and those animals that 

received medium only as a vehicle control showed no improvement which reflected the 

non-permissive environment created by the neurotoxin. The amphetamine-induced 

rotation test was applied as the main standard. This procedure has been widely used to 

evaluate this Parkinsonian model (Nikkhah et aI., 1993; Lei et aI., 2011). However, a 

comer preference and vertical climbing assessment were used to further support the 

results of the rotational studies. Once the rotation numbers decrease consistent with the 
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literature improvement in Parkinsonian deficits were noted (Anderson and Caldwell, 

2007; Vidailhet, 2011). Furthermore, when the rotations were reduced to half of the 

starting level, the rat was operationally considered partially recovered. We predicted that 

animals that received IPN-transfected cells would recover behaviorally, while the non­

transfected hONPs implanted animals would not recover, or at best would have less 

recovery compared to the transfected group, because the non-transfected hONPs 

produced less dopamine than the transfected hONPs in vitro. However, as described 

above, 35% of the animals that received IPN-transfected cells behaviorally recovered 

according to the rotation test. Surprisingly, 33% of the animals engrafted with non­

transfected hONPs exhibited reduced rotation numbers equivalent to those engrafted with 

the IPN-transfected cells. There was no significant difference in the final level of 

recovery between the two groups. The difference between the two groups was that the 

non-transfected cell-injected animals exhibited a rotational reduction 6 weeks later than 

the IPN-transfected progenitor-implanted rats on average. This might reflect the time 

required for the non-transfected hONPs to differentiate into dopaminergic neurons and or 

to affect the local micro-environment and thereby stimulate autologous stem cell 

populations to form dopaminergic neurons. It has been reported that the trophic factors 

act neuroprotectively in Parkinson's disease models (Torp et aI., 2006; Kong et aI., 2008). 

We therefore hypothesized that the neurotrophins produced by transfected and non­

transfected hONPs would play an essential role in recovery from Parkinson's disease. 

Thus neurotrophic molecules could have a dual role; "cellular protection" in addition to 

cellular replacement for the dopaminergic cells. 
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Behavioral recovery has also been reported in Primate Parkinson's models in 

response to the human neural stem cell transplantation; these animals exhibited 

behavioral improvement during a 60 day period after stem cell transplantation.(Redmond 

et aI., 2007; Redmond et aI., 2010). The authors of these studies suggested that the 

Parkinsonian primate CNS may benefit from replacement of degenerating DA neurons by 

differentiated human stem cells, and/or the trophic, protective, and guidance effects of 

stem cell-derived progeny which is consistent with our results. Other studies employing 

human embryonic (Redmond et aI., 2010) or adult (Bjugstad et aI., 2008) stem cells in the 

6-0HDA rat model also reported some behavioral recovery of the Parkinsonian deficits 

following cell transplantation. These authors suggested that it was likely that the grafted 

human stem cells may be protective against the toxicity from the 6-0HDA in rats' 

striatum. Collectively these support our hypothesis that the behavioral recovery in the 

hONP transfected animals may be the result of two separate but complimentary actions: 

the trophin-enriched protective microenvironment and or the replacement dopaminergic 

neurons. 

A series of control groups were included to demonstrate that the behavioral recovery 

was specifically due to the engrafted pre- and post-transfected hONPs rather than the 

toxin-Iesioned environment alone, with the medium or with the injection of a non hONP 

cell types. A sham group was included with the same dosage and location of 6-0HDA 

injection, and evaluated for the entire 27 weeks. Immunohistochemistry was employed to 

determine if the DA neurons would be restored in the sham, medium, or cellular control 

groups. No TH expression was detected in any of the control groups, 24 weeks after 

cell/medium engraftment, which was 27 weeks after the toxin injection, indicating that 
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the microenvironment of the lesioned sites can only support DA neuron development 

induced by the hONPs. Therefore, the hONPs represent a unique cell type for cell­

mediated therapy of Parkinson's disease, with the ability to differentiate into 

dopaminergic neurons and to stimulate the microenvironment for host stem cell 

activation in situ. 

Immunohistochemistry demonstrated that both the transfected and non-transfected 

hONPs survived and remained TH positive for the duration of the experiment (a 

minimum of 24 weeks after transplantation, indicating that these cells have the long-term 

potential to provide dopamine and neurotrophin rich environments. In contrast, the 

human fibroblasts were not detected 24 weeks after the engraftment which further 

demonstrates the specific stability and utility of the hONP population. Furthermore, the 

TH positive hONPs were observed as far as 800 /lm from their engraftment site, 

demonstrating that hONPs can migrate in the local environment of the 6-0HDA lesioned 

striatum which is essential to cell intergration. Similar results were reported by other 

groups using human embryonic stem cells and iPSCs (Svendsen et aI., 1997; Bjugstad et 

aI., 2008; Zhu et aI., 2009; Wolff et al., 2011), which survived and promoted 

improvement in the behavior tests in the animals with Parkinsoian symptoms. Bjugstad et 

ai. reported that the neural stem cells isolated from the human fetal telencephalon 

migrated along the nigrostriatal pathway 4 months after transplantation in an adult 

monkey in an alternate, I-methyl 4-phenyl 1,2,3,6-tetrahydro pyridine (MPTP) model of 

Parkinson's disease. More cells were detected along the pathway 3 months post 

engraftment, demonstrating that after transplantation, the hNSCs did not remain entirely 

in the injection site, but migrated along certain pathways (Bjugstad et aI., 2008). Studies 
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with iPSCs engraftment in a MPTP lesioned mouse model demonstrate that these cells 

also migrate from the site of transplantation in the striatum, to the site of lesion, 

localizing in the substantia nigra (Wolff et aI., 2011). Collectively these studies are in 

agreement with the present study and demonstrate significant cell migration after 

transplantation, although different species and models were employed. 

It has been reported that the PD models which were transplanted with ESCs or iPSCs 

eventually developed teratoma and died within 6 weeks for ESCs (Freed et aI., 2001; 

Arnhold et aI., 2004; Hedlund et aI., 2007), and 7-9 weeks for iPSCs (Kong et aI., 2008; 

Hwang et aI., 2010) after transplantation. In the present study with hONPs, no tumor 

formation was detected 24 weeks after cell transplantation, indicating that the hONPs 

represent a more stable, lineage committed population and thus are more suited for cell 

replacement-therapy for Parkinson's disease. Furthermore, the hONPs can be cryostored 

in liquid nitrogen without loss of viability for future engraftment should serial treatments 

become necessary (Wang, 2011). 

Dopamine EIA was applied to detect the dopamine level in animal brains. It has been 

shown that the brains of Parkinsionian models have decreased dopamine levels. 

(Santaniello et aI., 2010). In the hONPS engrafted brains the dopamine levels in the 

behaviorally recovered animals were higher than in animals without behavioral 

improvement suggesting that the hONPs were functional and that the recovery was in 

part the result of the increased dopamine levels. Other groups also reported that 

intracranial transplantation with iPSCS resulted in a significant improvement of striatal 

concentrations of dopamine in the behaviorally recovered MPTP mouse model of PD as 

measured by high-performance liquid chromatography (HPLC) (Wolff et aI., 2011) 
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which further supported the likelihood that the observed behavioral improvement was the 

result of the increased dopamine as well as neurotrophin support provided by the 

engrafted hONPS. 
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CHAPTER V 

GENERAL DISCUSSION, 

SUMMARY AND FUTURE DIRECTIONS 
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Parkinson's disease (PD) is one of the leading neurodegenerative disorders in the 

world (Anderson and Caldwell, 2007); as the population longevity increases the 

incidence will further expand. (Savica et aI., 2010). It is believed that the cause of PD is 

related to the loss of dopaminergic neurons in Substantia Nigra (SN), a small area in the 

midbrain (Hornykiewicz, 1973b). This degeneration results in less dopamine, which 

functions as a neurotransmitter, in the nigrostriatal pathways (Hornykiewicz, 1973a). 

Lower levels of dopamine result in a variety of movement disorders (Herrero et aI., 2011). 

Dopamine, when given as a medication, is not able to pass the blood brain barrier. 

Therefore the oral L-dopa, a precursor in dopamine synthesis, can pass the blood-brain­

barrier and has served as the principle and traditional treatment for PD (Bidet-Ildei et aI., 

2011). However, L-dopa does not provide long-term relief because: 1. The patient 

become less sensitive to the medicine over time (Callaway, 2011); 2. The L-dopa does 

not prevent degeneration of the dopaminergic neurons (Lang and Lozano, 1998; Sheng et 

aI., 2010); 3. It usually leads to severe dyskinesia after several years of use (Friedman, 

1985; Wedekind, 2005). Therefore, an alternative therapy is definitely needed. 

Cell replacement therapy has become a major focus with promise for a future 

treatment of patients with Parkinson's disease. The concept of this strategy is to replace 

the degenerated or unhealthy neurons (dopaminergic neurons) with the new functional 

cells. Therefore, many researchers are involved in the search for an ideal cell source for 

transplantation into PD models (Lindvall et aI., 1990; Olanow et aI., 2001). Early studies 

that employed neural cell grafts obtained from the human fetal ventral mesencephalic 

(VM) dopaminergic neurons, successfully relieved the Parkinsonian symptoms following 

transplantation (Lindvall et aI., 1988; Madrazo et aI., 1988; Lindvall et aI., 1992; 
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Borlongan, 2000; Ganser et ai., 2010). However, treatment of a single patient with this 

procedure required 4-5 fetal brains, because of the low neuronal viability of these fetal 

cells once they were transplantation (Mendez et ai., 2005). Furthermore, this treatment 

required immunosuppressive therapy because of the numerous donor tissues (Lindvall et 

ai., 1990). In comparison even significantly lower numbers (15 K vs lOOK) of 

transplanted hONPs can be detected 24 weeks after engraftment; the cells remain TH 

positive indicating their high viability and health in vivo. More importantly, the hONPs 

are unique having an autologous source (Roisen et ai., 2001), which means that the PD 

patient can be both the donor and the recipient. This tissue source also eliminates the 

ethical concerns associated with the use of fetal tissue, the long waiting list for a matched 

donor and the need for immunosuppressive procedures. The hONPs are stably isolated 

progenitors and can be stored in liquid nitrogen for years, or cultured in vitro for over 200 

passages (2 years) no matter the gender or age of the patient. The telomerase activity of 

hONP cultures remained relatively constant over an in vitro period of 6 weeks to 2 years 

which corresponded to several hundred passages (P>0.05). The hONPs exhibit a 

relatively consistent level of metabolic activity as well; no differences (P> 0.05) in 

ornithine decarboxylase activity were found irrespective of the donor age, sex or the time 

in culture (Marshall et ai., 2005). The high stability of these cells makes them an ideal 

source for experimental and clinical trials since they can be obtained from any patient. 

The hONPs can be lineage restricted to dopaminergic neurons by genetic 

modification with gene Pitx3 and Nurr1, as well as the treatment with a combination of 

morphogens (RA, FN and Shh). When transfected with double genes Pitx3 and Nurrl, 

which have been shown to be essential in survival and development of dopaminergic 
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neurons in embryonic mouse/chicken (Saucedo-Cardenas et aI., 1997; Cazorla et aI., 

2000; Haubenberger et aI., 2011; Reddy et aI., 2011), higher TH expression and increased 

dopamine production were observed compared to the non-transfected or the results 

obtained with the single gene transfected paradigm. This observation is consistent with 

reports from other groups that report a synergistic effect between Pitx3 and Nurr1 on TH 

expression in embryonic human or embryonic murine stem cells (Martinat et aI., 2006). 

However, this is controversial in human or murine embryonic stem cells with some other 

groups claiming the opposite conclusion (Messmer et aI., 2007). Our results suggested a 

synergetic effect of Pitx3 and Nurr1 in development of dopaminergic neurons in adult 

human stem cells. The transfected hONPs were cultured under the pressure of G418 

selection for an extensive 4 months after the transfection to ensure the pure transfected 

populations were obtained. After the initial four month-selection, the transfected hONPs 

were stored in liquid nitrogen for an additional four to six months after which they were 

found to remain TH positive and to produce dopamine when removed from the 

cryostorage. This result suggested that the hONPs were stably transfected and 

continuously remained the dopaminergic in nature. This level of stability will allow the 

option of multiple injections over time in future studies should they become necessary 

when hONPs are employed in clinical trials. Furthermore, dopamine production by 

hONPs has been shown to increase when treated with a combination of morphogens 

(Zhang et aI., 2006; Wang, 2011). Sonic hedgehog (Shh), (RA) and Forskolin (FN) have 

all been shown to be crucial developmental factors that regulate neuronal specification 

and differentiation (Roisen et aI., 1972a; Roisen et aI., 1972b; Ericson et aI., 1997; 

Novitch et aI., 2003; Kurauchi et aI., 2011; Trzaska and Rameshwar, 2011). A 
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combination of 0.025 mg/ml highly purified Shh applied with RA (lflM) and FN (5flM) 

increased the TH expression and dopamine production maximally indicating that the 

morpho gens promoted the release of dopamine, which is important to note when planning 

future transplantation studies into PD models with morphogen treated and lineage 

restricted hONPs. 

Some neurotrophic factors, such as BDNF, CNTF and NT-3, have been shown to be 

essential to the behavioral recovery in the primate and rodent models of Parkinson's 

disease (Redmond et aI., 2007; Y oneyama et aI., 2011). Therefore, a cell population that 

can produce these neurotrophins could be an important source for cell therapy for this 

disease. They can provide protective micro-environments in vivo and, rescue and/or 

provide a population to replace lost or degenerating neurons. Pre-transfected hONPs were 

found to produce several neurotrophins including BDNF and NT-3 when in a serum 

enriched medium (Marshall et aI., 2006). In a previous study we demonstrated that 

transfection did not alter the capability ofhONPs to produce these neurotrophins (Wang, 

2011). Therefore, the Pitx3 and Nurrl transfected hONPs can not only serve as 

replacements of the dead or dysfunctional dopaminergic neurons but also can provide 

protective micro-environments that may help rescue dying or damaged neurons from 

further degeneration and to enhance the endogenous progenitor populations. The 

multiphasic action of transfected hONPs could allow them to function as an ideal source 

for cell therapy for the treatment of PD. 

There are as many research groups usmg stem cells as there are different 

transplantation sources, including embryonic stem cells (ESCs) (Lonardo et aI., 2010; 

Yang et aI., 2010) and induced pluripotent stem cells (IPSCs) (Hargus et aI., 2010; Chang 
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et aI., 2011). Stem cells are an attractive potential source because of their unlimited 

capacity for self-renewal and the potential for lineage restriction (maturation) into one or 

more specific cell types, in response to their origin and the micro-environmental signals 

that they receive (Lindvall et aI., 2004; Hwang et aI., 2010). Positive behavioral 

improvements with PD animal models have been achieved with transplantation of both 

ESCs and IPSCs, however, more than half of the animals that received either the ESCs or 

IPSCs eventually developed teratomas within 9 weeks post transplantation (Arnhold et aI., 

2004; Takahashi and Yamanaka, 2006; Hedlund et aI., 2007). In our study, the animals 

were maintained as long as 24 weeks after the cell engraftment and no tumorgenesis was 

observed. It has been reported that the risk of tumor formation can be reduced by pre­

differentiation of the stem cells in vitro, before the transplantation (Brederlau et aI., 2006; 

Li et aI., 2008). However, it has been demonstrated that pre-differentiated stem cells are 

more difficult to adapt to the host environment, and will therefore more likely to be 

rejected by the host (Dressel, 2011). This conflict highlights a bottle neck in stem cell 

transplantation strategy. In the present study, hONPs were shown to be unique because 

the undifferentiated pre-transfected cells were as effective as their lineage restricted 

counterparts, indicating that no genetic manipulation was needed for hONPs to serve as 

an effective source for a cell based therapy for PD. As previously discussed several 

additional benefits are also gained through the use of hONPs including the elimination of 

the ethical and practical concerns due to transfection of animal genes into human cells. 

Furthermore, the number of cells needed when either ESCs or IPSCs sources were used 

in PD animal models (100,000-160,000) (Arnhold et aI., 2004; Brederlau et aI., 2006; Cai 

et aI., 2010; Hargus et aI., 2010) was eight times greater than the number of hONPs 
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(15,000) required to achieve a positive behavioral recovery, which further supports the 

unique advantage of hONPs over other cell types and opens the possibility of multiple 

injections over time should they become necessary. 

Immunohistochemical localization of both the transfected and non-transfected hONPs 

demonstrated intact and TH positive cells in the behaviorally improved animals 24 weeks 

after the transplantation. Significant fewer cells were observed in the non-recovered 

animals in both groups compared to the animals with improved behavioral tests. In the 

future it will be essential to define the time course of the degeneration of engrafted 

hONPs so that it can be minimized or followed with a series of serial injections. One way 

that this could be determined would employ the unilateral 6-0HDA lesioned rat model. 

HONPs could be implanted into the striatum 3 weeks after the toxin injection. The 

animals could be terminated at various intervals (3 wk, 5 wk, 7 wk and 9 wk) after 

engraftment. Once the animals were perfused, the immunohistochemistry could be 

employed to detect the number and locations of the transplanted cells to accurately track 

cell migration and degeneration. This study would provide data showing the cell fate: the 

location of the hONPs at a specific time. It is reported that the hESCs will migrate along 

the striatal-nigral pathway after transplantation (Burnstein et aI., 2004; Mukhida et aI., 

2008). Therefore, the hypothesis is that the engrafted hONPs may also migrate along 

specific pathways. By determining the location at each time point, the migration would 

be demonstrated and perhaps hONPs undergo a specific degeneration when they reach a 

specific site. Therefore additional cell engraftment at the site of degeneration could be 

aimed to overcome this limitation and thereby increase the recovery rate among the 

animals. 
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In this study, EIA was applied to detect the dopamine levels in animal brains. In the 

hONPS engrafted brains the dopamine levels in the behaviorally recovered animals were 

higher than in animals without behavioral improvement suggesting that the hONPs were 

functional and that the recovery was in part the result of the increased dopamine levels. 

Similarly, it has been reported that intracranial transplantation with iPSCS resulted in a 

significant improvement of striatal concentrations of dopamine in the behaviorally 

recovered MPTP mouse model of PD as measured by high-performance liquid 

chromatography (HPLC) (Wolff et aI., 2011). That study used 105 adult human 

endometrial derived stem cells (HEDSC) engrafted 5 days after the MPTP lesion in the 

mouse model. The study demonstrated mean DA concentrations were significantly 

higher in MPTP lesioned mice after HEDSC compared to MPTP lesioned mice treated 

with sham phosphate buffered saline (PBS) transplant. This further supports the 

likelihood that the observed behavioral improvement was the result of the increased 

dopamine as well as neurotrophin support provided by the engrafted hONPs. To evaluate 

this further in a future study, another control group could be included: the dopamine 

transporter (DAT) can be blocked by an inhibiter, such as 4-Hydroxy-l-methyl-4-(4-

methylphenyl)-3-piperidyl 4-Methylphenyl Ketone, or clinically used drugs, such as 

benztropine and mazindol (Zahniser et aI., 1999; Wang et aI., 2000). If none of the 

animals recover in the following behavioral tests after cell transplantation, it would 

support the conclusion that behavioral improvement is directly related to the dopamine 

level in animal brains; if some, but fewer animals recover from the Parkinsonian deficits, 

it could mean or indicate that the neurotrophic factors produced by the hONPs provide a 

microenvironment that can partially protect the dopaminergic neurons from degeneration 
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or stimulate an endogenous stem cell formation; and if the same recovery rate is 

observed, which is unlikely, it would suggest that the behavioral improvement is not 

related to the dopamine levels in striatum. On the other hand, it has been reported that 

neurotrophins are crucial in the behavioral recovery of PD models (Singh et aI., 2006). 

Therefore it is possible that 6-0HDA lesioned animals could be treated solely with the 

trophic factors like BDNF (Sadan et aI., 2009; Ahlskog, 2011), GDNF (Georgievska et 

aI., 2002; Azzouz et aI., 2004), or CNTF (von Bohlen und Halbach and Unsicker, 2009) 

with some success. In which case, it would also be important to determine the optimized 

combination of the trophic factors that could be an efficient supplemental treatment 

aiding behavioral recovery in the PD models. 

In conclusion, human adult olfactory epithelial-derived neural progenitors have a 

great potential as a population for cell-based therapy for Parkinson's disease because of 

their capacity to survive, produce dopamine and provide neurotrophic support while 

simultaneously not becoming tumorigenic in the toxin-lesioned environment of the 

striatum as well as the neurotoxic environment of the Parkinsonian brain. Furthermore, 

hONPs have a significant advantage since they can be harvested from the patient's 

olfactory epithelium without highly invasive surgical procedures and thus represent an 

autologous cell source where the patient is both the donor and the recipient. This benefit 

would eliminate the need for waiting lists for histocompatible tissues as well as the use of 

immunosuppressive agents typically applied following cell engraftment. Finally these 

studies demonstrate that genetic engineering (transfection) is not required for an effective 

dopaminergic formation but that the microenvironment of the substantia nigra can 

modulate hONPs to become functional, stable, dopamine releasing cells that can offer 
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long-term survival following their engraftment without tumor formation. Future studies 

are needed to determine if the benefits of hONPs described in this thesis will also apply 

in the clinic. 
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