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Reproducibility of Exercise Testing in Patients with Pulmonary Arteriovenous 
Malformations 
 
Bolin Niu, Walter Li, Katharine Henderson, Veronika Northrup, Jeffery S. Pollak, 
Terence Trow, John Fahey, and Robert I. White, Jr.  Department of Diagnostic 
Radiology, Yale University, School of Medicine, New Haven, CT. 
 

Patients with pulmonary arteriovenous malformations (PAVMs) are at risk for 
complications, hemorrhagic and neurological, and therefore require close follow-up.   

The primary hypothesis of this project poses that the exercise stress test (EST) 
and 6-minute walk test (6MWT) are reproducible and reliable in patients with PAVMs.  
Secondarily, if these tests are shown to be reproducible, they may become a surrogate 
follow-up tool for patients with PAVMs after quantification with non-contrast CT and 
may replace contrast echocardiography in asymptomatic children under age 12. 
 Twenty-two patients with PAVMs, most of whom had hereditary hemorrhagic 
telangiectasia (HHT), participated in a Human Investigations Committee-approved 
protocol. Patients ranged from 9 to 74 years of age (mean 28) and had a broad spectrum 
of anatomic subtypes of PAVMs, including focal and diffuse. Standard 6MWT and cycle 
ergometry EST were both performed twice with adequate rest between tests. Heart rate 
(HR) and oxygen saturation were measured at the beginning and end of each test. 
Distance walked and maximum resistance were also recorded. The intraclass correlation 
coefficients (ri) at the end of 6MWT were as follows: HR (ri = 0.940; 95% CI = 0.863-
0.975), post test oxygen saturations (ri = 0.973; 95% CI = 0.933-0.989), distance walked 
(ri = 0.942; 95% CI = 0.867-0.975).  The ris at the end of EST were as follows: HR (ri = 
0.941; 95% CI 0.865–0.975), oxygen saturation (ri = 0.993; 95% CI 0.982–0.997), and 
maximum resis- tance (ri = 0.941; 95% CI 0.864–0.975). 6MWT and EST were 
reproducible measures of exercise capacity and oxygen saturation and are potential 
adjunct tests in the follow-up assessment for patients with PAVMs. 
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Introduction 

Background on pulmonary arteriovenous malformations 

 Pulmonary arteriovenous malformations (PAVMs) were first described by 

Churton in 1897 (1).  PAVMs are abnormal thin-walled vascular communications 

between pulmonary veins and arteries.  As thin-walled vascular dilations, PAVMs may 

rupture and cause pulmonary hemorrhage (2,3).  PAVMs are extracardiac right-to-left 

shunts, allowing blood to bypass the capillary filtration system in the lungs.  PAVMs are 

a route that allows the passage of paradoxical emboli into the systemic circulation.  

Neurologic consequences such as transient ischemic attack, cerebrovascular accident, and 

cerebral abscess occur as a result of PAVMs (4). 

Historical evidence and experience at the Yale Hereditary Hemorrhagic 

Telangiectasia (HHT) Center shows greater than 70% of patients with PAVMs have 

underlying HHT (2,5,6).  An autosomal dominant genetic disease with mutations in the 

protein endoglin (type 1) and activin receptor-like kinase (type 2), HHT involves many 

organ systems through arteriovenous malformations in the lungs (7), brain (8), liver (9), 

GI tract (10), and uncommonly in the retina (11).  The phenotypic manifestations of HHT 

may prompt the clinician to investigate the possibility of PAVMs and vice versa.  In fact, 

PAVMs are the leading cause of morbidity and mortality among patients with HHT (12).   

 

Current guidelines on treatment of pulmonary arteriovenous malformations 

 Treatment of PAVMs has three main goals: 1) prevention of paradoxical 

embolization, 2) prevention of consequences of pulmonary hemorrhage such as 

hemothorax or hemoptysis, and 3) improving symptomatic dyspnea or exercise 
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intolerance.  

The “International Guidelines for the Diagnosis and Management of Hereditary 

Hemorrhagic Telangiectasia” published in 2011 recommends transcatheter embolization 

as primary treatment for PAVMs as it has been shown to be efficacious and safe with rare 

complications (2,13–17).  The selection of PAVMs for embolization is based on feeding 

artery diameter, generally 3mm or greater due to neurologic complications associated 

with paradoxical emboli (14,18).  The HHT center at Yale reported on a series of 415 

PAVMs occluded in a period of three years (14).   Clinical and imaging follow-up were 

available in all patients.  Radiographic imaging showed pulmonary AVM involution in 

97% of embolized lesions (14).  

Albeit rare at 2%, the procedure of transcatheter embolotherapy comes with some 

complications as well, including angina, transient ischemic attack, and pleurisy 

(14,19,20).  In addition, reperfusion of PAVMs may recur after transcatheter 

embolization (14). 

 

Current guidelines on screening and follow-up of pulmonary arteriovenous 

malformations 

 The current guidelines recommends using transthoracic contrast 

echocardiography as initial screening test for PAVMs (17).  Contrast echocardiography 

has been demonstrated to be reliable as a predictor of PAVMs, and a correlation has been 

shown to exist between contrast echocardiography grade and probability of PAVMs (19).  

Positive screening with contrast echocardiography is followed by unenhanced 

multidetector thoracic CT with thin-cut reconstructions (17).  However, the choice of 
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screening tests is unclear in children.  Current recommendations leave the decision to the 

clinician on a case by case basis.  From parent reports at our institution, children with 

HHT often receive chest CTs in place of detailed history and physicals at outside 

hospitals and emergency departments especially.   

 The guidelines also recommends long-term follow-up for patients with PAVMs to 

detect growth of untreated PAVMs and any reperfusion of treated ones (17).  There is no 

recommendation for methods of follow-up for children with untreated PAVMs.  For 

adults, the follow-up schedule after transcatheter embolization includes an unenhanced 

CT at 6 months and then every 3 years after embolization (17).  Transthoracic contrast 

echocardiography has been shown to not be useful after embolization, as it remains 

positive in 90% of patients post-repair (20). 

 

Exercise testing for patients with diffuse pulmonary arteriovenous malformations 

Pulmonary arteriovenous malformations can be grouped into similar categories 

depending on distribution in the lungs.  The anatomy of PAVMs is crucial in its 

involution because successful elimination of the PAVM requires embolization of all 

feeding arteries.   

A simple PAVM involves one or branches from the same pulmonary segmental 

artery, whereas a complex PAVM involves contributing branches from more than one 

segmental artery.  Diffuse disease is signified by an entire segmental artery having small 

PAVMs diffusely (21).  Approximately 55% of patients have simple PAVMs, 40% have 

complex and simple, and 5% have diffuse disease involvement (22).  Diffuse disease may 

have unilateral or bilateral involvement of the lung (21,23).  Patients with a diffuse 
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pattern of involvement have a higher incidence of complications including brain abscess 

compared to patients with focal disease (21).   

Initially, non-contrast CT was used as the main method to identify large focal 

PAVMs that occurred in some diffuse patients.  Diffuse patients with large focal PAVMs 

need to be treated with transcatheter embolization to prevent complications from 

paradoxical emboli and hemoptysis.  These patients with a high-risk natural history need 

yearly follow up (23).  Unenhanced CT was not as useful in follow-up imaging to detect 

changes of diffuse PAVMs (21,23).   

Six years ago, frustrated by the inability of unenhanced CT to define progression 

or predict deterioration, the Yale center examined exercise testing data from 40 diffuse 

patients.  Serendipitously, the results showed stability of exercise tolerance from year to 

year in patients who were evaluated with exercise stress test with increasing interval 

resistance cycle ergometer (23,24).  Patients exhibited a change in their exercise test 

results only when symptoms deteriorated with enlargement of PAVMs; they showed an 

increased fall in oxygen saturation during exercise (24). 

Therefore, our institution began evaluating both those with diffuse and focal 

PAVMs with cardiorespiratory exercise using a cycle ergometer. We have established 

exercise stress testing (EST) as a safe and non-invasive method to monitor patients with 

diffuse PAVMs (24).  Serial EST showing increasing oxygen desaturation during 

exercise correlates with decreased functionality (24). 

 

Previous literature on exercise stress test (EST) and 6-minute walk test (6MWT)  

Intrapulmonary shunts allow cyanotic blood to return to systemic circulation 
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deoxygenated.  PAVMs are a form of intrapulmonary shunts due to abnormal vessel 

formations between the pulmonary arteries and veins that bypass the pulmonary capillary 

bed and allow right to left shunting of blood.  The degree of cyanosis varies with the 

amount of right-to-left shunt through intrapulmonary shunts.  When the flow of blood 

through intrapulmonary shunts is a small fraction of the total cardiac output, the cyanosis 

may not be significant at rest.   

However, strenuous exercise will result in lowering the systemic venous oxygen 

content further and, thus, the systemic oxygen saturation.   When the returning systemic 

mixed venous oxygen content is decreased further in exercise, the cyanosis will be 

worsened.  As opposed to patients with chronic lung disease, exercise tolerance is 

relatively well-maintained (70% of predicted maximum heart rate) in PAVM patients, 

and no complications have previously been reported in adult PAVM patients undergoing 

EST (25).   

6MWT has been shown to be a reliable and valid functional test for assessing 

exercise tolerance and endurance in a study of 78 Chinese secondary school students 

(26).  While studies of reliability and validity of exercise testing have been shown in 

healthy children and adults (26,27), there has not been a demonstration of the 

reproducibility of 6MWT in patients with PAVMs.   

Another study assessed exercise tolerance and oxygen saturation in severely ill 

children awaiting heart-lung or lung transplantation by comparing the 6MWT and EST 

results (28).  The results showed close correlation of the minimum oxygen saturations 

during the 6MWT and EST (28).   Furthermore, reduced muscle mass in patients who are 

chronically ill may lead to early thigh muscle fatigue, which limits their ability to 
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overcome pedal resistance (28).  Whereas, walking uses overall muscle mass and shows 

less localized muscle fatigue (28).  The study concluded that the 6-minute walk test 

provides an alternative method for measuring functional capacity in chronically ill 

children with limited exercise tolerance (28).  In short, the 6MWT has the added 

advantage of simplicity to administer, less expense, and avoidance of patient fatigue, all 

of which are of great benefit for our elderly and more ill patients with PAVMs.   

Various case studies have observed the increase in oxygen saturation during 

exercise of patients after repair of pulmonary arteriovenous fistulas (29,30).  One such 

study of a 16-year-old girl, who had a 2cm long fistulous connection between the right 

intermediate pulmonary artery and the right upper pulmonary vein that varied with a 

diameter of 6-13mm, was treated with transcatheter embolization of the fistula and 

exercise testing thereafter (30).  At EST before the procedure, her oxygen saturation was 

92% and decreased to 79% with exercise (30).  At follow-up six months after 

embolization, her oxygen saturation was 99% and decreased to 97% with exercise (30).  

In a 2002 study, EST was used before and after transcatheter embolization in 

patients with PAVMs.   Patients reported an improvement after embolization in exercise 

capacity in daily living (31).  The study reported a median increase of 3.5% in the oxygen 

saturation at maximal exercise after PAVM repair compared to before (31).  This study 

shows the growing interest in using exercise testing to monitor patients with PAVM, and 

it mimics our observations that elimination of right-to-left shunting results in higher 

oxygen saturations and more efficient gas exchange during exercise.   

Nevertheless, EST and the standard 6MWT have not been shown to be 

reproducible in patients with PAVMs.   
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Statement of Purpose and Hypothesis  

PAVMs are the leading cause of morbidity and mortality among patients with 

hereditary hemorrhagic telangiectasia (12,32).  The overall degree of shunting from 

PAVMs depends on hemoglobin level, vascular resistance of the PAVM and pulmonary 

arterioles, and systemic mixed venous oxygen saturation.  Therefore, patients may or may 

not show signs of cyanosis or clubbing despite having PAVMs; nevertheless, they remain 

at risk for morbid conditions such as stroke, brain abscesses, hemothorax, and 

hemoptysis. 

Previous reports from the Yale HHT center showed that arterial oxygen saturation 

often decreases during EST, most likely due to increased extraction of oxygen and 

decrease in systemic mixed venous oxygen content (24).  However, the reliability and 

reproducibility of EST and 6MWT have yet to be demonstrated. 

The primary hypothesis of this project is that the exercise stress test (EST) and 6-

minute walk test (6MWT) are reproducible and reliable in patients with PAVMs.  

Secondarily, if both of these standard tests are shown to be reliable and reproducible in 

patients with all types of PAVMs, then EST and 6MWT: 

1) may become a surrogate for adolescent and adult patients with small PAVMs 

after quantification with non-contrast CT, 

2) may replace contrast echocardiography in asymptomatic HHT children under 

12 or if parents are concerned since the data on contrast echocardiography 

indicates grade 1 or less would not warrant treatment. 

3) If serial EST and 6MWT demonstrate no worsening of shunts after a patient's 
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PAVMs are repaired, EST and 6MWT could be used as routine follow-up 

tools for the assessment of PAVM recurrence or enlargement.   

Thus, this could lead to reduction of the use of chest CT and, ultimately, decrease 

the financial and radiation burden on individual patients while continuing to monitor for 

the presence of clinically significant PAVMs in HHT patients and providing reassurance 

to their families.  The reason for validating two different exercise tests is because the 

6MWT is familiar to adult pulmonologists and often used for adult pulmonary disease, 

whereas, the cycle ergometry EST is frequently employed by pediatric cardiologists.  

Therefore, patients may be seen by a pulmonologist or a cardiologist for follow-up. 

 

Subjects and Methods 

Subject selection 

Twenty-two subjects were included in this study.  All patients at the Yale HHT 

center undergoing either evaluation before transcatheter embolotherapy or follow-up after 

transcatheter embolotherapy for previously identified PAVMs were offered participation 

in the study.  A detailed history of present illness, past medical history, family history, 

and physical exam were performed in office.  Physical exam findings that were noted 

include telangiectasias, clubbing, and/or cyanosis.  Standing oxygen saturations were 

obtained by finger clip blood oxygen sensor at the initial office visit. 

Most patients in the study have at least one prior unenhanced chest CT for 

confirmation of PAVM.  In addition, some have contrast echocardiography performed at 

Yale and interpreted into grades 1 to 4 by experienced readers.  Some patients also have 

pulmonary angiography from their transcatheter embolization on file.  A few patients also 
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have MRIs with gadolinium of the brain with note of any aneurysms.  Patients were 

evaluated for HHT status through genetic testing.  Results of positivity and HHT type 

were recorded.   

Each patient performed one EST followed by one 6MWT after 30 minutes of rest.  

The second 6MWT followed after another 30 minutes of rest.  Lastly, patients performed 

one more EST following the second 6MWT and another 30 minutes of rest.   Therefore, 

in total, patients performed two EST and two 6MWT on the same day in the order of first 

EST, first 6MWT, second 6MWT, and second EST. 

Participating patients were all in stable clinical condition and were New York 

Heart Association class I.  A physician was present at all times during the exercise 

studies.  This research protocol was approved by the Yale-New Haven Hospital Human 

Investigation Committee.  

 

6-minute walk test protocol 

6MWT was conducted under direct physician supervision and according to the 

guidelines published by the American Thoracic Society and the American Heart 

Association (33).  The 6MWT is a practical test that requires a 30-meter long, flat, 

straight, enclosed, hard-surfaced hallway but no exercise equipment or advanced training 

for technicians.  The test is self-paced and assesses functional capacity.  Patients choose 

their own intensity of exercise and allowed to stop and rest during the test, though none 

of the subjects in this study chose to do so.   

Before the test began, patients sat at rest in a chair located near the starting 

position.  There was no “warm-up” period before the test.  At the start of the test, resting 
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heart rate and oxygen saturation were measure using a Nellcor N-20 pulse oximeter 

(Nellcor Puritan Bennett LLC, Boulder, CO), which was placed on the patient’s index 

finger.  The monitor was then removed to prevent inaccurate readings due to considerable 

motion artifact during the walk.  In addition, patients were asked to rate their baseline 

dyspnea and fatigue on the Borg scale (34).  As the timer for six minutes starts, patients 

were instructed to walk as much as they can up and down the 30-meter hallway.  No one 

walked with the patient, and patients were not coached during the test. 

After six minutes, patients were instructed to stop.  At this time, heart rate and 

oxygen saturation were measured once again using a Nellcor N-20 pulse oximeter placed 

on the index finger.  The total distance walked was recorded.  In addition, patients were 

asked to rate their post-test dyspnea and fatigue on the Borg scale (34). 

 

Exercise stress test protocol 

EST was conducted under direct physician supervision in the Yale-New Haven 

Hospital Pediatric Cardiology Exercise Laboratory and in accordance with the consensus 

statement by the American College of Cardiology (35).   

Patients were instructed to wear or bring comfortable exercise clothing, preferably 

shorts, T-shirt, and athletic shoes.  In preparation for the test, the patient is fitted with 10 

electrodes so that a continuous 12-lead ECG tracing can be obtained during testing.  

Before the test begins, resting heart rate was measured by electrocardiographic 

monitoring, and oxygen saturation was measured using Nellcor OxiMax N-600 oximeter 

with Max-Fast adhesive forehead reflectance sensor with headband (Nellcor).  

Participants underwent continuous electrocardiographic, oxygen saturation, and heart rate 
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monitoring while undergoing cycle ergometry (Marquette Electronics, Milwaukee, WI) 

with step-wise increases of 30 watts of resistance every 2 minutes while maintaining a 

continuous cadence of 60–65 revolutions per minute.    

EST was concluded when participants experienced leg fatigue, shortness of 

breath, or reached 85% of their predicted maximum heart rate.  At EST conclusion, 

patient heart rate and oxygen saturation were measured, and cycle ergometry resistance 

was decreased to 15 watts. Participants were instructed to peddle slowly until their heart 

rate reached within 10% of baseline. 

 

Statistical analysis 

Descriptive statistics were listed as means with standard deviations. Intraclass 

Pearson correlation coefficients (ris), with 95% confidence intervals (CIs) were calculated 

to assess test–retest reliability for the following variables for the 6MWT and EST 

respectively:  

1. Baseline heart rate, 

2. Post test heart rate, 

3. Baseline oxygen saturation,  

4. Post test oxygen saturation, 

5. Difference between baseline and post test oxygen saturation. 

In addition, the level of resistance in watts on the cycle ergometer that the patient was 

able to achieve by the end of EST was recorded as well.  

Bland–Altman plots were used to assess agreement between 6MWT and EST at 

baseline and at the end of each test for oxygen saturation.  Oxygen saturation changes 
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during 6MWT and EST were compared with a repeated-measures analysis (adjusted for 

patient age, sex, weight, and height) and listed as means with standard errors. 

Significance was established with alpha < 0.05.  Data were analyzed using Microsoft 

Excel 2008 for MAC version 12.0 (Microsoft, Seattle, WA) and SAS 9.2 (Cary, NC). 

 

Results 

Patient Characteristics 

Twenty-two patients were recruited for the study (Table 1).  There were 16 

females and 6 males, corresponding to previous literature regarding the female 

predominance of HHT.  We tested both children and adults, with the oldest patient at 74 

years of age.  8 patients were under the age of 18.  The average resting oxygen saturation 

among all patients was 93.9%.   

With the exception of two patients who had only positive contrast 

echocardiograms, all other patients had positive chest CT findings for PAVMs.  PAVM 

status among this cohort included the following: 10 focal (<4 PAVMs), 4 multifocal, 4 

diffuse, and 10 previously embolized.  All participants completed both sets of 6MWT and 

EST without adverse events, and all participants reached 85% of their predicted 

maximum exercise tolerance on EST, independent of their baseline and peak exercise 

oxygen saturation status.   

 

Reproducibility of 6MWT 

 The reproducibility of 6MWT was determined by examining intraclass correlation 

coefficients with 95% confidence intervals (Table 2).  All patients performed two 6MWT 
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during the day.  With the exception of oxygen saturation difference ri = 0.659 (95% CI 

0.346-0.841), all parameters including baseline heart rate, post test heart rate, baseline 

oxygen saturation, post test oxygen saturation, distance walked showed reproducibility 

significance (p < 0.05) as seen by high intraclass correlation coefficients (ri).  

 The mean baseline heart rates for all patients were 94.5 and 95 respectively in the 

two 6MWTs.  The ri for baseline heart rate was 0.829 (95% CI = 0.630-0.925).  The 

mean post test heart rates were 108.3 and 106.5 respectively, with an ri of 0.940 (95% CI 

= 0.863-0.975).  The mean baseline oxygen saturations were 93.9% and 94.3%, with an ri 

of 0.989 (95% CI = 0.975-0.996).  The post test oxygen saturations were 92.2% and 

93.0%, with an ri of 0.973 (95% CI = 0.933-0.989).  The differences in oxygen saturation 

between the baseline and post test values were calculated to determine how much 

desaturation occurred with exercise.  The values are 1.7% and 1.2% respectively for the 

first and second 6MWT, with ri of 0.659 (95% CI = 0.346-0.841).  The 6MWT distance 

walked was similar between the two tests at 471.1 and 477.5 meters, with ri of 0.942 

(95% CI = 0.867-0.975). 

Reproducibility can also be seen on Bland-Altman plot of the parameters of the 

6MWT.  The plot compares exact same parameters between the first and second 6MWT 

for each patient.  Each patient appears as a point on the graph.  The point (x, y) uses the 

average of two post test oxygen saturations for each patient for the x-grid point and the 

difference between them as the y-grid point.  The primary application of the Bland-

Altman plot is to compare two measurements, and the limits of agreement is specified as 

average difference ± 1.96 times standard deviation of the difference.   

For instance, the graph of end oxygen saturation of 6MWT compares the values 
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of each individual patient’s oxygen saturation at the end of the 6MWT from the first test 

to that of the second test (Figure 2).  Almost all points are within limits of agreement for 

end oxygen saturation.   

In addition, the Bland-Altman plot of decrease in oxygen saturation in the two 

6MWTs shows good correlation with all but one point inside the limits of agreement 

(Figure 3). 

 

Reproducibility of EST 

 In addition to the 6MWT, reproducibility was investigated for EST also by 

examining intraclass correlation coefficients with 95% confidence intervals (Table 3).  

Patients performed two EST; therefore, each patient possesses two distinct values for 

each parameter.   All measurements from the EST showed significant reproducibility (p < 

0.05) including baseline heart rate, post test heart rate, baseline oxygen saturation, post 

test oxygen saturation, the difference between oxygen saturations pre and post test, and 

work in watts on the ergometer. 

 The mean baseline heart rates for all patients were 90.5 and 91.8 respectively, 

with ri of 0.871 (95% CI = 0.717-0.944).  The mean post test heart rates were 159.0 and 

158.5 respectively, with an ri of 0.941 (95% CI = 0.865-0.975).  The mean baseline 

oxygen saturations were 95.3% and 95.1%, with an ri of 0.979 (95% CI = 0.950-0.991).  

The post test oxygen saturations were 91.8% and 92.3%, with an ri of 0.993 (95% CI = 

0.982-0.997).  The difference in oxygen saturations between the baseline and post test 

values were 3.5% and 2.9% respectively for the first and second ESTs, with ri of 0.836 

(95% CI = 0.647-0.928).  The work in watts that patients were able to pedal to were 
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114.5 and 113.2 respectively, with ri of 0.941 (95% CI = 0.864-0.975). 

Bland-Altman plots for end oxygen saturation of EST is shown comparing the 

values of each individual’s oxygen saturation at the end of the first EST to that of the 

second EST (Figure 4).  All except two points lie within the limits of agreement, which is 

the mean difference ± 1.96 times standard deviation of the difference.   

Furthermore, decreases in oxygen saturation from each EST is also shown on a 

Bland-Altman plot with limits of agreement (Figure 5).  Only one patient representation 

point is outside the limits of agreement for the decrease in oxygen saturation in EST. 

 

Comparison of 6MWT and EST 

The 6MWT and EST parameters were compared with each other.  For each 

patient, the oxygen saturation at the end of the first 6MWT was compared to the oxygen 

saturation at the end of the first EST (Figure 6).  The mean of all differences between 

each set of two numbers was 0.4, and the standard deviation was 2.5.  The limits of 

agreement are 5.4 and -4.5.  The Bland-Altman is shown with all points lying between 

the limits of agreement, showing consistent correlation of the 6MWT and EST. 

The second parameter that was compared between the two exercise tests was 

decrease in oxygen saturation during the tests (Figure 7).   The mean difference was 1.8, 

and the standard deviation was 2.2, with limits of agreement at 6.1 and -2.4.   Once again, 

all patient data points were between the limits of agreement, exhibiting high correlation 

of the EST and 6MWT. 

Lastly, the average of all baseline oxygen saturations and end oxygen saturations 

were compared between the two tests (Figure 8).  The average change in oxygen 
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saturation for 6MWT was -1.5 with a standard error of 0.7.  For EST, the average change 

in oxygen saturation from beginning to end of exercise was -3.3 with a standard deviation 

of 0.7.   A larger drop in oxygen saturation occurred during EST than during 6MWT. 

 

Discussion 

Current study shows reproducibility of exercise testing 

 All twenty-two patients recruited for the current study completed all 

testing, including two 6MWTs and two ESTs, without complications.  For the 6MWT, 

distance walked, heart rate at baseline, heart rate at end of test, and oxygen saturations at 

the beginning and end were all reproducible as shown by high Pearson correlation 

coefficients.  For the EST, heart rate at beginning and end of test, oxygen saturations at 

the beginning and end of test, and maximum resistance achieved by the patient were all 

reproducible as well.  Therefore, we have shown that in patients with known PAVMs the 

6MWT and EST provide reliable measurements of physiologic parameters by comparing 

the test to itself in the same patients.  Both tests are physiologic measures of shunt 

fractions.  Importantly, while not diagnostic of the presence or absence of shunting, the 

previous results from Murphy et al. using the EST in patients with diffuse PAVMs 

indicated stability of exercise testing mirrored clinical status.  Those who had 

enlargement of PAVMs exhibited a change in their exercise study or showed new 

symptoms such as fatigue and dyspnea.  

When comparing the two tests, all parameters across the two were highly 

correlated with large correlation coefficients as well as Bland-Altman plots.  When 

examining oxygen saturation changes during EST and 6MWT, it appears that oxygen 
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saturation decreased more during EST than 6MWT (Figure 8).  This is likely due to EST 

causing more oxygen extraction during exercise as it is a more strenuous test, where 

patients move against increasing resistance.  

 There were some limitations to this study.  First, the sample size was small though 

enough power was obtained through statistical measures with significance.  Secondly, 

testing was obtained during routine outpatient clinic visits, and 6MWT and EST were not 

correlated with chest CT, pulmonary angiography, or contrast echo results.  Some 

patients were returning for follow-up after their transcatheter embolization, and some 

have not had repair of their PAVMs.  Furthermore, some patients had focal PAVMs 

while others had diffuse disease.  A strength of the study was that it demonstrated 

reliability in patients with treated and untreated, focal and diffuse PAVMs.  This has led 

to our hypotheses, not yet proven, about the potential value of exercise testing above.   

 

Future directions 

The next stage in this investigation may include examining longitudinal changes 

in oxygen saturation measurements on EST and 6MWT for each patient; in essence, 

using the patient as his or her own control to evaluate the use of exercise testing in 

follow-up of PAVMs.  The hypothesis would be that once a baseline exercise test has 

been performed, any further decreases in exercise tolerance and oxygen saturation may 

predict recurrence or enlargement of clinically significant PAVM.  At that point, a chest 

CT would be performed.  This obviates radiation exposure due to CT scans up to once or 

twice a year for some patients.  Hence, the radiation burden and increased cancer risk 

may be decreased in this population that has relied heavily on imaging thus far.  
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Furthermore, the exercise test parameters, namely oxygen desaturation amount, may be 

correlated to the number of unrepaired or newly diagnosed PAVMs.   

Ultimately, this study has demonstrated that EST and 6MWT are reliable 

measures of exercise capacity, oxygen saturations, and oxygen decreases during the tests 

in patients with existing PAVMs.  Benefits of exercise testing include non-invasiveness 

and low radiation exposure, especially important in children.  Reproducibility of both 

tests means HHT patients may seek care from pulmonologists or cardiologists, who are 

familiar with each of these respective tests.  In addition, the 6MWT is a less strenuous 

test, which may be useful for the elderly or severely ill patient who cannot perform the 

EST due to fatigue.  In short, exercise testing may become an important surrogate for CT 

in the continued follow-up of 1) asymptomatic pediatric patients, 2) adult patients with 

small PAVMs not requiring embolotherapy, and 3) patients post-embolotherapy after CT 

has demonstrated involution of the treated PAVM.  

 

Importance of screening and follow-up in patients with PAVMs 

 Patients may present to an HHT center through a variety of routes.  They may 

have already experienced one of the complications of HHT, including stroke, brain 

abscess, hemoptysis, hemothorax, gastrointestinal bleeding, and so on (36).  They may 

also have shown persistent symptoms common in HHT, including epistaxis, clubbing, 

dyspnea on exertion, and cyanosis (6,37,38).   

In the 1990s, various genetic mutations have been shown to exist in HHT.  

Endoglin and activin receptor-like kinase proteins, ENG and ACVRL1 genes 

respectively, have been described in HHT type 1 and type 2 (39,40).  In addition, Smad4 
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protein mutations cause an overlap syndrome of juvenile polyposis and HHT (41).  In 

addition to those, hundreds of other genetic mutations have been described in HHT (42).  

After one family member has been diagnosed with HHT, he or she should receive testing 

to identify the proband.  After the family’s particular genetic mutation is initially 

identified, other members can be tested (43).  Therefore, many pediatric patients may 

present to HHT centers after DNA testing. 

The value of screening for PAVMs lies in the prevention of potential 

complications that may occur.  Currently, patients may receive grade-based contrast 

echocardiography to determine their probability for having PAVMs (44).  After contrast 

echocardiography is shown to be positive, many patients will undergo a non-contrast 

chest CT to detect PAVMs (45).  The unenhanced chest CT provides information on the 

number and location of PAVMs, the size of feeding arteries for each PAVM, and whether 

the PAVMs are diffuse or focal (46).  

Patients may require follow-up once diagnosed for many reasons.  First of all, 

patients who have received transcatheter embolotherapy must follow-up 6 months after 

treatment with a chest CT to ensure involution of the PAVM.  Secondly, patients with 

PAVMs with feeding arteries less than 3mm in diameter are not recommended for 

embolotherapy because complications have known to occur in PAVMs with larger 

feeding arteries (14,18).  These patients with unrepaired PAVMs require follow-up in 

case of enlargement of the malformations.  This is especially true in the pediatric 

population because growth of PAVMs is known to occur during puberty and pregnancy 

(47).  Due to the availability of genetic mutation testing, patients may be completely 

asymptomatic but harbor the gene for HHT.  These patients, whether adults or children, 
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may benefit from non-invasive follow-up methods without radiation exposure. 

 

Treatment of PAVMs in children 

 No current guidelines exist regarding treatment and follow-up of PAVMs in 

children.  There are a number of reasons behind the reservations for treating children with 

PAVMs, including both reperfusion after and complications during transcatheter 

embolotherapy.  

 Observations suggest high degree of reperfusion post-therapy in children, 

irrespective of device and approach.  Extensive studies have found and categorized the 

causation of reperfusion following embolotherapy (13,48–51).  Most studies have found 

persistence or reperfusion of embolized PAVMs in a small numbers of patients and 

lesions, typically from 0% to 10% (13,48–51).  In a Yale series examining 393 treated 

PAVMs, reperfusion was identified in 2.8% or 11 out of 393 PAVMs (14).  Reasons for 

the residual embolized PAVMs included recanalization (n = 7), accessory feeding artery 

(n = 1), collateral perfusion of distal feeding artery from small pulmonary artery branches 

(n = 1), and systemic bronchial artery collateral perfusion (n = 2) (14).  This series was 

comprised of 155 patients, with a mean age of 45, and only 7 patients were children 

younger than 18 years of age (14).   

Studies show the higher reperfusion rate in children as an estimated 15% most 

likely due to the higher rate of collateral perfusion development in the pediatric 

population (52).  In a pediatric series of the 23 children who experienced reperfusion, 

collateral perfusion (n = 12), recanalization (n = 11), and missed accessory (n = 8) were 

contributing factors (52).  Collateral perfusion occurs in a growing lung and resembles 
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the collateralization in high flow peripheral arteriovenous malformations.  

In addition to reperfusion, some rare complications estimated at 2% can happen 

during transcatheter embolotherapy (14,53,54).  Complications include angina, transient 

ischemic attack, and pleurisy (14,53).  A meta-analysis of PAVMs in 130 children 

between 1966 and 2000 showed that complications from PAVMs did not occur in 

children under 12 years of age who were not cyanotic or clubbed (55).  Clinical features 

indicative of sizable PAVMs in children can appear as cyanosis, growth failure, 

pseudoasthma, or pulse oximetry consistently below 97%.   

Because of this higher reperfusion rate and rare procedural complications along 

with the lack of complications in those without symptoms, many asymptomatic children 

may be followed conservatively.  In recent years, the approach for diagnosis in children 

has veered away from blood gases and shunt studies toward standing pulse oximetry and 

contrast echocardiography.   

 

Screening for PAVMs 

Since the majority of patients with PAVMs have HHT and are at risk of 

developing new PAVMs throughout their lifetime, the search for a sensitive and safe 

screening tool is critical and ongoing.  At present, several screening tests are used to 

detect the presence of PAVMs.  The initial screenings tests include transthoracic contrast 

echocardiography (Figure 1) and unenhanced spiral chest computed tomography.  Three-

dimensional helical CT permits a detailed evaluation of PAVMs without contrast 

injection, thus preventing accidental intravenous air entry as well.   In a series of 37 

PAVMs, analysis of the angioarchitecture of 28 PAVMs (76%) was provided by 3D 
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reconstructions, while addition of transverse sections to the interpretation led to accurate 

evaluation of 35 PAVMs (95%) (56).  Other benefits of unenhanced CT over pulmonary 

angiography include its noninvasive nature and no contrast requirement.   

In recent years, contrast echocardiography has been compared to unenhanced 

spiral CT.  Agitated saline solution transthoracic contrast echocardiography was shown to 

have a sensitivity of 92% to 100% in the detection of PAVMs (57,58).  In comparison to 

the unenhanced CT, contrast echocardiography is much more sensitive; in fact, it is the 

most sensitive test for detection of PAVMs (57,58).  It requires minimal invasiveness in 

terms of intravenous saline injection but does not expose patients to radiation.  In 

addition, increased shunt grade seen as microbubbles seen in the left ventricle after a 

certain number of cardiac cycles can be used to predict the probability of PAVMs (19).   

Four HHT centers, including ones in Italy, Spain, Toronto, and the Netherlands, 

have validated the contrast echocardiography in its predictive value of PAVMs (45,58–

60).  In the initially validation study at the Toronto center, the positive predictive value of 

grades 1, 2, 3, and 4 for the presence of a PAVM were determined to be 0.02, 0.25, 0.56, 

and 1.0 respectively (19).  The Dutch HHT center investigated echocardiography only in 

three grades with the positive predictive value of shunt grade for the presence of PAVMs 

on chest high-resolution CT scans as 0.229 for grade 1, 0.348 for grade 2, and 0.830 for 

grade 3 respectively (59).  Lastly, the Italian center showed an extensive quantitative 

analysis of shunt size according to contrast echocardiography degree of opacification of 

the left chambers of the heart (45).  The overall diagnostic performance of contrast 

echocardiography had sensitivity of 1.00, specificity of 0.49, positive predictive value of 

0.32, and negative predictive value of 1.00 (45).  The positive predictive value for the 
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different grades was 0.00 for grade 1, 0.56 for grade 2, 1.00 for grade 3 (45).  The 

negative predictive value of grade 0 was 1.00 (45).    

However, contrast echocardiography is not useful after treatment due to positivity 

after repair.  In a prospective study, 29 patients underwent contrast echocardiography 

prior to and after transcatheter embolization (20).  In all patients, contrast echo was 

positive prior to therapy.  After all PAVMs with feeding vessels greater than 3 mm were 

successfully occluded based on completion angiography, 48% of patients showed no 

detectable residual PAVMs while others had PAVMs smaller than 3 mm remaining (20).   

After repair, 90% of patients showed positive contrast echo results (20).  In the subset of 

patients with no remaining PAVMs on angiography, 80% continued to show positive 

echo results (20).  This indicates residual PAVMs too small to be seen on angiography.  

The persistence of positive contrast echo results has important implications for the 

follow-up and management of HHT patients. 

Current international guidelines for the diagnosis and management of HHT 

recommends either transthoracic contrast echocardiography at a center of excellence with 

expertise in reading echocardiography studies or unenhanced multidetector thoracic CT 

with thin-cut of 1–2mm reconstructions (17).  While the contrast echocardiography does 

not expose patients to radiation, it only provides the probability of PAVM existence in a 

patient.  The unenhanced chest CTs exposes patients to radiation, which for pediatric 

patients can accumulate to a high amount over the years (61).   There have not been clear 

guidelines for safe and effective screening in the pediatric population.  Therefore, HHT 

centers employ a combination of clinical evaluation, supine and upright pulse oximetry, 

contrast echocardiography, or unenhanced CT.  
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Effects of radiation exposure from imaging techniques 

 In the past few years, the risk of radiation from diagnostic imaging has been 

increasingly studied.  Because of the ease of use, CT scans have increased dramatically.  

An estimated 62 million CT scans are now completed annually in the United States 

compared to 3 million in 1980 (61).  The postulated mechanism of biological damage is 

through formation of hydroxyl radicals from x-ray interactions with water molecules, and 

these radicals may interact with nearby DNA causing strand breaks or base damage (61).  

 In a study of nearly 1 million nonelderly adults in the United States, 

approximately 70% of the population underwent at least one medical imaging procedure 

with radiation exposure in the three-year study period (62).  This resulted in mean 

effective doses double what would be expected from natural sources.  Generalized to the 

population, an estimated 4 million Americans receive effective doses that exceed 20 mSv 

per year (62).   

 Much of the epidemiological data regarding radiation exposure comes from the 

cohort of atomic bomb survivors (63–65).  The mean dose in this subgroup was about 40 

mSv, almost tantamount the organ dose from a typical CT scan involving two to three 

scans in an adult (65).  In addition, radiation-induced cancer risks have been shown in a 

large-scale 15-country study of 400,000 radiation workers in the nuclear industry (66,67).  

The workers sustained an average of 20 mSv (66).  A significant association was found 

between mortality from cancer in both these cohorts (64,67).  Through epidemiologic 

extrapolation, 1.5 to 2.0% of cancers in the United States today may be caused by 

radiation from CT studies (61). 
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 Because of they carry the diagnosis of HHT, patients and their families have 

reported countless instances of receiving CT scans at outside hospitals, most often in the 

emergency department.  The importance of radiation exposure is paramount in the 

pediatric population as cancer risk increases with lower age of exposure due to the 

latency periods for solid tumors are typically decades (61) (Figure 9).  Children have 

more dividing cells and are therefore more radiosensitive, and this is very important for 

our pediatric HHT population as they may receive multiple chest CTs to follow PAVMs. 

Exercise testing obviates radiation exposure risks associated with CT scans. The 

HHT center at Yale piloted exercise testing in the diffuse PAVM group.  Annual exercise 

testing was found to be a reasonable method to follow this high risk group of patients.  

The pilot study also exhibited the safety of performing EST in patients with PAVMs (24).  

Having a large pediatric population in our HHT center and having shown the 

reproducibility of EST and 6MWT, we hope to use these exercise methods to follow 

asymptomatic pediatric patients and assure parents regarding their children’s exercise 

capacity.  Exercise testing can also be used in adults who are post-repair or have small 

PAVMs that have not been treated.   

 

Manifestations of PAVMs in children with HHT 

 Children who have complications resulting from PAVMs often show clinical 

signs of cyanosis, clubbing, or dyspnea on exertion.  In a complete literature review of 

130 children under age 18 with PAVMs from 1966 to 2000, some patients experienced 

complications of hemoptysis or hemothorax (14/130), cerebral abscess (7/130), and 

stroke (5/130) (55).  However, no child under age 12 had serious complication unless he 
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or she was showing signs of cyanosis or clubbing (52).  

 In a literature search of reports since 2000, two main case series were found.  In 

one long-term study over 16 years, eight children with PAVMs from age 1 day to 12 

years were included (68).  The most frequent presenting symptoms were pulmonary (n = 

6), including dyspnea on exertion and hemoptysis.  The others showed neurologic 

complications at initial presentation.  The complications from PAVMs included 

hemoptysis/hemothorax (n = 6), cerebral abscess (n = 5), and stroke (n = 1).  Importantly, 

on clinical examination, all children showed signs of cyanosis (n = 8).  Some showed 

dyspnea on exertion (n = 6) and/or clubbing (n = 3).  Their measured oxygen saturations 

ranged from 59% to 80%.   

 In a separate case series, six children under 12 years old were reported (69).  Five 

of these patients initially presented with cyanosis and were treated with transcatheter 

embolotherapy.  One patient presented with hemoptysis, though oxygen saturation and 

other clinical signs of low oxygen were not reported.  In summary, all children under 12 

years of age that have had complications showed signs of cyanosis, clubbing, or dyspnea 

on exertion.  The clinical characteristics of 149 children under age 18 reported in 

literature until 2007 have been summarized (Table 4). 

 

Cerebral manifestations of HHT in children 

 Children from families with HHT are screened for existence of PAVMs, and 

conversely children with PAVMs should be screened for HHT.  The hereditary aspect of 

HHT means family members of those with HHT also need screening for HHT.  Although 

PAVMs cause morbidity and mortality, many other organ systems are also affected by 
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HHT. 

Cerebral arteriovenous malformations (CAVMs) occur in the brain with a 

prevalence of 5% to 20% in adults and children affected by HHT (8,70).  Morgan et al. 

reported on several cases of intracranial hemorrhage secondary to CAVMs in infants and 

children (70).  None of the nine children, who presented with intracranial hemorrhage 

secondary to cerebral AVM, were suspected of having HHT before the hemorrhage 

despite family history of the disease (70).  All cases were confirmed through autopsy, 

imaging studies, or surgery to have been CAVMs causing intracranial hemorrhage (70).  

The youngest of these children was a neonate born at 38.5 weeks with low Apgar scores 

and dilated pupils, and he was found to have a massive left parietal occipital hemorrhage 

(70).  In six of nine families, the endoglin mutation for HHT type 1 was found (70).  The 

other three children came from families containing relatives with HHT diagnoses using 

the Curacao criteria (70).  No clinical indications of CAVM existed prior to intracranial 

hemorrhage, which resulted in death of five children, cognitive and motor impairment in 

three, and hemiparesis in one (70). 

In the series from Yale, five of 34 children showed a CAVM on brain imaging 

(55).  Two of five were treated with surgery (55).  Eight children were not screened (55).  

Of these, two developed intracranial hemorrhage, resulting in one with hemiparesis and 

one who fully recovered (55). 

Most often patients are asymptomatic before intracranial hemorrhage occurs.  If 

symptomatic, patients may experience migraine headaches, visual changes, mental status 

changes, seizures, intracranial hemorrhages, transient ischemic attacks, and strokes (70–

73).  Intracranial hemorrhages from CAVMs are devastating and have been reported as 
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the leading cause of death in the pediatric HHT population (74).  If the patient survives, 

he or she may suffer from significant neurological deficits in later life (70).  Infants and 

children with a family history of HHT are at risk for sudden and catastrophic intracranial 

hemorrhage.   

The prevalence of CAVMs larger than 10 mm in diameter is estimated to be 12% 

and 11% by two respective studies by Willemse et al. and Fulbright et al (8,75).  

Although the risk of massive hemorrhage in children with HHT is uncertain, some 

estimates from 2% to 4% per year in the pediatric populations affected by HHT (70).  A 

prevalence rate of greater than 10% for larger CAVMs along with a risk of hemorrhage 

support the screening for CAVMs in all patients with HHT in order to help identify and 

prevent severe sequelae.  One standard gadolinium-enhanced brain MRI is used to screen 

the presence of CAVMs in HHT patients.  

 

Gastrointestinal manifestations of HHT in children 

 Fewer than two percent of HHT patients present with gastrointestinal symptoms 

prior to 30 years of age (76).  Gastrointestinal bleeding usually appears in 20% of HHT 

patients at a mean age of 50-60 (76–79).  Gastrointestinal manifestations are the initially 

presentation of HHT in less than 1% of HHT patients (76).  Bleeding is often painless 

and may arise from arteriovenous malformations or telangiectasias throughout the GI 

tract.  Bleeding from telangiectasias has been reported in four children from 1 to 5 years 

of age (80).   

In addition, hemobilia is rare in children; however, Bross et al. reported on a 21-

month-old child who presented with gastrointestinal bleeding due to hemobilia secondary 
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to hepatic and biliary arteriovenous malformations (81).  A 14-year-old girl with an HHT 

positive family history was reported to have persistent bright red blood per rectum (76).  

No findings were evident on colonoscopy and esophagastroduodenoscopy (76).   A right-

sided ileocolectomy was performed, and typical lesions were found on pathology (76).  

Endoscopic findings typically include multiple well-defined erythematous flat nodules in 

the stomach, duodenum, small bowel, or colon that may require eletrocoagulation, which 

is not helpful in the long-term (81–83). 

Previously, juvenile polyposis (JP) and HHT were considered clinically very 

distinct diseases caused by mutations in SMAD4 and BMPR1A, for JP, and endoglin and 

ALK1, for HHT (47,84–86).  Recently, a combined syndrome of JP-HHT was described 

that is also caused by mutations in SMAD4 (87).  Any mutation in SMAD4 can cause JP-

HHT (88).  Therefore, any JP patient with a SMAD4 mutation is at risk for GI 

manifestations of HHT and any HHT patient with SMAD4 mutation is at risk for early 

onset gastrointestinal cancer (87,88).   In short, a patient who tests positive for a SMAD4 

mutation should be monitored accordingly with regard to risks for the combined JP-HHT 

syndrome. 

  

Yale algorithm for children under 12 

 The evidence from extensive review of all pediatric cases at Yale prior to the year 

2000 and review of literature on pediatric HHT cases post 2000 shows that no 

asymptomatic child under 12 years of age has had a complication from PAVM 

(52,55,68,69).  Children who have had complications showed signs of low oxygenation 

whether cyanosis or low pulse oximetry (52,55,68,69).   
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 The Yale algorithm for children with HHT was developed based on previous 

literature and past experience at our center.  All patients are given an initial 90-minute 

history and physical clinical appointment, during which careful examination for 

telangiectasia is performed along with a standing pulse oximetry.  Patients are 

recommended for genetic testing as PAVMs occur in all genotypes associated with HHT.  

The crucial piece of imaging that all children and adults need is a brain MRI with 

gadolinium.  Brain MRI is performed due to the silent nature of CAVMs as previously 

mentioned, and patients may develop an intracranial bleed at any age (70). 

Next, an exercise test is performed to obtain baseline oxygenation during activity.  

If patients show a standing pulse oximetry above 98% with no symptoms of dyspnea, 

cyanosis, clubbing, and no desaturation is observed during the exercise test, then further 

investigation including contrast echocardiography and unenhanced CT would be 

discouraged.  Sometimes, at the insistence of parents, contrast echocardiography would 

be performed.   

However, if desaturation occurs or the patient shows symptoms of low 

oxygenation, a contrast echo is warranted.  If contrast echocardiography reveals grade 2 

or above, an unenhanced chest CT would be performed to search for PAVMs.  In the case 

of a family member having recent brain abscess, contrast echocardiography would be 

recommended to an asymptomatic child.  With a grade 1 echo result, no further 

investigation is warranted.  Due to the rarity of GI manifestations in children, it is not part 

of the algorithm to screen for arteriovenous malformations in the GI tract or liver. 

Once again, there are no guidelines for screening and follow-up in the pediatric 

HHT population.  Our center proposes to expand exercise testing and encourage 
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participation from other centers in the validation and use of the exercise protocols shown 

to be reproducible here. 
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Figure 1. Contrast echocardiography grading scale for PAVMs.  
Echocardiography grading shows increased shunt grade seen as microbubbles in the left 
ventricle after a certain number of cardiac cycles can be used to predict the probability of 
PAVMs (19). 
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Figure 2.  Oxygen Saturation at End of 6MWT. 
The Bland-Altman plot of oxygen saturation at the end of both 6MWTs with limit of 
agreement defined as mean ±1.96 SD is presented here.  The mean difference (solid line) 
was -0.8, and the standard deviation was 2.0.  Therefore, the limits of agreement (dotted 
lines) are 3.2 and -4.8.  
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Figure 3.  Decrease in Oxygen Saturation during Six Minute Walk Test. 
The Bland-Altman plot of decrease in oxygen saturation during 6MWTs with limits of 
agreement defined as mean ±1.96 SD is presented here.  The mean difference (solid line) 
was -0.5, and the standard deviation was 1.7.  Therefore, the limits of agreement (dotted 
lines) are 3.0 and -3.9.  
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Figure 4. Oxygen Saturation at End of Exercise Stress Test. 
The Bland-Altman plot of oxygen saturation at end of ESTs with limits of agreement 
defined as mean ±1.96 SD is presented here.  The mean difference (solid line) was -0.5, 
and the standard deviation was 1.0.  Therefore, the limits of agreement (dotted lines) are 
1.5 and -2.4.  
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Figure 5. Decrease in Oxygen Saturation During EST. 
The Bland-Altman plot of decrease in oxygen saturation during ESTs with limits of 
agreement defined as mean ±1.96 SD is presented here.  The mean difference (solid line) 
was -0.6, and the standard deviation was 1.9.  Therefore, the limits of agreement (dotted 
lines) are 3.1 and -4.3.  
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Figure 6. Oxygen Saturation Measured at End of 6MWT and EST. 
The Bland-Altman plot of oxygen saturation at the end of 6MWT compared with end of 
EST with limits of agreement defined as mean ±1.96 SD is presented here.  The mean 
difference (solid line) was 0.4, and the standard deviation was 2.5.  Therefore, the limits 
of agreement (dotted lines) are 5.4 and -4.5.  
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Figure 7. Decrease in Oxygen Saturation During 6MWT and EST. 
The Bland-Altman plot of the decrease in oxygen saturation during 6MWT compared 
with during EST with limits of agreement defined as mean ±1.96 SD is presented here.  
The mean difference (solid line) was 1.8, and the standard deviation was 2.2.  Therefore, 
the limits of agreement (dotted lines) are 6.1 and -2.4.  
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Figure 8. Response of Oxygen Saturation to 6MWT and EST. 
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Figure 9.  Estimated Dependence of Lifetime Radiation-Induced Risk of Cancer Versus 
Age at Exposure (61). 
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0.4% of all cancers in the United States may be 
attributable to the radiation from CT studies.2,34 
By adjusting this estimate for current CT use 
(Fig. 2), this estimate might now be in the range 
of 1.5 to 2.0%.

Conclusions

The widespread use of CT represents probably the 
single most important advance in diagnostic radi-
ology. However, as compared with plain-film 
radiography, CT involves much higher doses of 
radiation, resulting in a marked increase in radia-
tion exposure in the population.

The increase in CT use and in the CT-derived 
radiation dose in the population is occurring just 
as our understanding of the carcinogenic poten-
tial of low doses of x-ray radiation has improved 
substantially, particularly for children. This im-
proved confidence in our understanding of the 
lifetime cancer risks from low doses of ionizing 
radiation has come about largely because of the 

length of follow-up of the atomic-bomb survivors 
— now more than 50 years — and because of 
the consistency of the risk estimates with those 
from other large-scale epidemiologic studies. 
These considerations suggest that the estimated 
risks associated with CT are not hypothetical — 
that is, they are not based on models or major 
extrapolations in dose. Rather, they are based di-
rectly on measured excess radiation-related cancer 
rates among adults and children who in the past 
were exposed to the same range of organ doses 
as those delivered during CT studies.

In light of these considerations, and despite 
the fact that most diagnostic CT scans are as-
sociated with very favorable ratios of benefit to 
risk, there is a strong case to be made that too 
many CT studies are being performed in the 
United States.35,36 There is a considerable litera-
ture questioning the use of CT, or the use of 
multiple CT scans, in a variety of contexts, includ-
ing management of blunt trauma,37-40 seizures,41 
and chronic headaches,42 and particularly ques-
tioning its use as a primary diagnostic tool for 
acute appendicitis in children.14 But beyond these 
clinical issues, a problem arises when CT scans 
are requested in the practice of defensive medi-
cine, or when a CT scan, justified in itself, is re-
peated as the patient passes through the medical 
system, often simply because of a lack of com-
munication. Tellingly, a straw poll35 of pediatric 
radiologists suggested that perhaps one third of 
CT studies could be replaced by alternative ap-
proaches or not performed at all.

Part of the issue is that physicians often view 
CT studies in the same light as other radiologic 
procedures, even though radiation doses are typi-
cally much higher with CT than with other radio-
logic procedures. In a recent survey of radiolo-
gists and emergency-room physicians,43 about 
75% of the entire group significantly underesti-
mated the radiation dose from a CT scan, and 
53% of radiologists and 91% of emergency-room 
physicians did not believe that CT scans increased 
the lifetime risk of cancer. In the light of these 
findings, the pamphlet “Radiation Risks and 
Pediatric Computed Tomography (CT): A Guide 
for Health Care Providers,” 44 which was recently 
circulated among the medical community by the 
National Cancer Institute and the Society for Pe-
diatric Radiology, is most welcome.

There are three ways to reduce the overall ra-
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Figure 4. Estimated Dependence of Lifetime Radiation-
Induced Risk of Cancer on Age at Exposure for Two  
of the Most Common Radiogenic Cancers.

Cancer risks decrease with increasing age both because 
children have more years of life during which a poten-
tial cancer can be expressed (latency periods for solid 
tumors are typically decades) and because growing 
children are inherently more radiosensitive, since they 
have a larger proportion of dividing cells. These risk 
estimates, applicable to a Western population, are from 
a 2005 report by the National Academy of Sciences25 
and are ultimately derived from studies of the survivors 
of the atomic bombings. The data have been averaged 
according to sex.
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Table 1. Patient characteristics. 
Data for twenty-two patients who participated in this study is presented with average sex, 
age, weight, height, and resting oxygen saturation levels shown.  (a) In parentheses, the 
minimum and maximum numbers are entered for each category. 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

However, PAVMs can recur [3, 17], and these patients

require yearly follow-up.
Yearly CT is often used for PAVM screening but

imparts a significant radiation burden [2, 13]. Our institu-

tion began using exercise stress testing (EST) to assess
exercise tolerance and oxygen saturation as markers of

PAVM in these patients. We previously reported that

arterial oxygen saturation often decreases during EST,
presumably due to increased extraction of oxygen and

further decreases in systemic mixed venous oxygen content
in response to exercise. However, the reliability of oxygen

saturation measurement during EST and 6-minute walk

test (6MWT) is unknown. The purpose of this study was
to assess the reproducibility of 6MWT and EST in the

detection of low oxygen saturation in HHT patients with

PAVMs. A secondary hypothesis was that the decrease in
oxygen saturation would be greater during EST than during

6MWT.

Materials and Methods

Our institution’s Human Investigation Committee approved

this research protocol. Patients with HHT and PAVMs

confirmed from previous no-contrast chest CT and/or pul-
monary angiography from a single center were invited to

participate. Participants were all in stable clinical condition

and were New York Heart Association class I.
Patients had detailed histories taken and underwent

physical examinations. One set of 6MWT and EST was

performed, separated by 30 min of rest. At least 4 h later
during the same day, patients performed a second set of

6MWT and EST, again separated by 30 min of rest.

6MWT was conducted under direct physician supervi-
sion and according to the guidelines published by the

American Thoracic Society and the American Heart Asso-

ciation [1]. Resting heart rate and oxygen saturation were
measured using a Nellcor N-20 pulse oximeter (Nellcor

Puritan Bennett LLC, Boulder, CO), which was placed on

he patient’s index finger. Participants were instructed to
walk a 30 m track in a long, flat, straight, enclosed, hard-

surfaced corridor at their own pace for 6 min but were not

coached during the test. Immediately after taking the
6MWT, patient heart and oxygen saturation were remea-

sured. The total distance walked was also recorded.

EST was conducted under direct physician supervision
in the Pediatric Cardiology Exercise Laboratory and in

accordance with the consensus statement by the American

College of Cardiology [11]. Resting heart rate was mea-
sured by electrocardiographic monitoring, and oxygen

saturation was measured using Nellcor OxiMax N-600

oximeter with Max-Fast adhesive forehead reflectance
sensor with headband (Nellcor). Participants underwent

continuous electrocardiographic, oxygen saturation, and

heart rate monitoring while undergoing cycle ergometry
(Marquette Electronics, Milwaukee, WI) with step-wise

increases of 30 W of resistance/2 min while maintaining a

continuous cadence of 60–65 revolutions/min. EST was
concluded when participants experienced leg fatigue,

shortness of breath, or reached 85% of their predicted

maximum heart rate. At EST conclusion, patient heart rate
and oxygen saturation were measured, and cycle ergometry

resistance was decreased to 15 watts. Participants were
instructed to peddle slowly until their heart rate reached

within 10% of baseline.

Descriptive statistics were listed as means with SDs.
Intraclass correlation coefficients (ris), with 95% confi-

dence intervals (CIs) were calculated to assess test–retest

reliability for the following variables: oxygen saturation,
heart rate, distance traveled on 6MWT, and work level at

end of EST. Bland–Altman plots were used to assess

agreement between 6MWT and EST at baseline and at the
end of each test for oxygen saturation. Oxygen saturation

changes during 6MWT and EST were compared with a

repeated-measures analysis (adjusted for patient age, sex,
weight, and height) and listed as means with SEs. Signif-

icance was established with alpha\0.05. Data were ana-

lyzed using Microsoft Excel 2008 for MAC version 12.0
(Microsoft, Seattle, WA) and SAS 9.2 (Cary, NC).

Results

Twenty-two patients were recruited for the study. Patient
characteristics are listed in Table 1. PAVM status among

this cohort included the following: 10 focal (\4 PAVMs), 4

multifocal, 4 diffuse, and 10 previously embolized. All
participants completed both sets of 6MWT and EST

without adverse events, and all participants reached 85% of

their predicted maximum exercise tolerance on EST,
independent of their baseline and peak exercise oxygen

saturation status. With the exception of oxygen saturation

difference for 6MWT (ri = 0.66, 95% CI 0.35–0.84), all
parameters measured for both 6MWT and EST were

reproducible, as indicated by high ri values. Results are

listed in Tables 2 and 3. Bland–Altman plots for the

Table 1 Patient characteristics

Sex (F/M) 16/6

Age (y) 28.2 (8.8, 74.3)a

Weight (kg) 64.8 (29.0, 133.8)a

Height (m) 1.6 (1.3, 1.9)a

Resting oxygen saturation (%) 93.9 (63, 100)a

a Range (minimum, maximum)

Pediatr Cardiol (2011) 32:590–594 591
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Table 2. Mean values with standard deviations (SD) and intraclass correlation 
coefficients (ri) with 95% confidence intervals (CI) for 6MWT. 
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Table 3. Mean values with standard deviations (SD) and intraclass correlation 
coefficients (ri) with 95% confidence intervals (CI) for EST. 
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Table 4. Clinical Characteristics of 144 Children with PAVMs Reported in Literature 
under age 18. 
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