
University of Louisville
ThinkIR: The University of Louisville's Institutional Repository

Electronic Theses and Dissertations

8-2017

Circuits for active vision : parallel
tectothalamocortical visual pathways in the mouse.
Na Zhou
University of Louisville

Follow this and additional works at: https://ir.library.louisville.edu/etd

Part of the Other Neuroscience and Neurobiology Commons

This Doctoral Dissertation is brought to you for free and open access by ThinkIR: The University of Louisville's Institutional Repository. It has been
accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of ThinkIR: The University of Louisville's Institutional
Repository. This title appears here courtesy of the author, who has retained all other copyrights. For more information, please contact
thinkir@louisville.edu.

Recommended Citation
Zhou, Na, "Circuits for active vision : parallel tectothalamocortical visual pathways in the mouse." (2017). Electronic Theses and
Dissertations. Paper 2782.
https://doi.org/10.18297/etd/2782

https://ir.library.louisville.edu?utm_source=ir.library.louisville.edu%2Fetd%2F2782&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.library.louisville.edu/etd?utm_source=ir.library.louisville.edu%2Fetd%2F2782&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.library.louisville.edu/etd?utm_source=ir.library.louisville.edu%2Fetd%2F2782&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/62?utm_source=ir.library.louisville.edu%2Fetd%2F2782&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.18297/etd/2782
mailto:thinkir@louisville.edu


 
 

CIRCUITS FOR ACTIVE VISION: PARALLEL TECTOTHALAMOCORTICAL 

VISUAL PATHWAYS IN THE MOUSE  

 

 

 

By 

 

 

 

Na Zhou 

B.S., Lanzhou University, China, 2010 

M.S., University of Louisville, 2014 

 

 

 

A Dissertation 

 Submitted to the Faculty of the  

School of Medicine of the University of Louisville  

In Partial Fulfillment of the Requirements  

For the Degree of 

  

 

 

Doctor of Philosophy in Anatomical Sciences and Neurobiology 

 

 

 

Department of Anatomical Sciences and Neurobiology,  

University of Louisville, School of Medicine 

Louisville, Kentucky 

 

 

 

August 2017 



 
 

 



ii 

CIRCUITS FOR ACTIVE VISION: PARALLEL TECTOTHALAMOCORTICAL 

VISUAL PATHWAYS IN THE MOUSE 

 

 

By 

 

 

Na Zhou 

B.S., Lanzhou University, China, 2010 

M.S., University of Louisville, 2014 

 

 

A Dissertation Approved on 

 

June 23, 2017 

 

 

By the following Dissertation Committee: 

 

 

________________________________________ 

Martha E. Bickford, PhD. 

Dissertation Director 

 

________________________________________ 

William Guido, PhD. 

 

_________________________________________ 

Heywood M. Petry, PhD. 

 

________________________________________ 

Robert F. Lundy, PhD. 

 

________________________________________ 

David SK. Magnuson, PhD. 

 

________________________________________ 

Jeffrey C. Petruska, PhD. 

 

 



iii 

To my parents 

Mrs. Jianhua Wang and Mr. Fengnian Zhou  

for their love and support to me 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



iv 

ACKNOWLEDGMENTS 

 

I would like to express my deepest gratitude to my mentor, Dr. Martha E. 

Bickford, for her continuous guidance, encouragement, caring and patience over the 

past six years. She has set an excellent role model for me to pursue my science career 

and to achieve my life goals. She has inspired my passion for science. I couldn’t 

forget those moments when she was hanging around expecting to see what would 

happen in my experiments and I also cherished those times when we tried all sorts of 

different experiments no matter whether it is a failure or not and no matter how late it 

gets. It is her never-give-up spirit that keeps me going and guide me through all 

obstacles on this road. I have enjoyed my past six years in her lab, and I have learned 

a lot. I thank her again here and hope she would like this dissertation. 

I would also like to thank my other committee members Dr. William Guido, 

Dr. Heywood M. Petry, Robert F. Lundy, David SK. Magnuson and Jeffrey C. 

Petruska for their guidance and help. I thank Dr. Guido for supporting me financially 

for a year and advice which pushed me digging deeper under the big picture. I am 

really grateful for his sharing equipment with us, especially for me to be able to use 

confocal microscopy and zoom scope. I thank Dr. Petry for mentored me for a 

semester on in vivo tree shrew studies that were carried in his laboratory; it was the



v 

first time in my life that I have met the magic creature-tree shrew. I thank Dr. Lundy 

for me rotating in his lab to learn how to conduct in vivo taste experiments in rats and 

for his kindness to let me use his montage epifluorescence microscope. I thank Dr. 

Magnuson for his suggestions on my experiments, and his good habit to make notes 

on individual students that he advises impressed me a lot. I thank Dr. Petruska for his 

suggestions and also his support for Sean and me learning his lab’s electrophysiology 

tricks from Kris. I thank Dr. Nigel G. Cooper, for him letting me rotating in his lab in 

my first semester and learned real time PCR technique and also his guidance on how 

to write research project report. 

Additionally, I would also like to thank my previous and current fellow lab 

mates, Dr. Haiyang Wei, Arkadiusz S. Slusarczyk and Dr. Sean P. Masterson for their 

knowledge and guidance for numerous lab techniques and tricks. I am very thankful 

for Sean’s contribution to all the maintenance and all the cells he recorded for my 

project. Thanks for Phillip S. Maire helping me manage the mice colony. Finally, I 

would like to thank all previous rotation lab members Xiangping Wang, Xiaohong Li 

and Yi Kang for teaching me their skills. I’m very grateful for the opportunity to be in 

such a wonderful research environment. 

Last but not least, I would like to thank my family and friends for mental 

supporting. Especially for my friends Judy C. Hollkamp and Yi Kang, I thank them 

for being there all the time for me, always caring me and guiding me through my 

frustrating times. 

 



vi 

ABSTRACT 

CIRCUITS FOR ACTIVE VISION: PARALLEL TECTOTHALAMOCORTICAL 

VISUAL PATHWAYS IN THE MOUSE 

Na Zhou 

June 23, 2017 

 

Vision is a critical sensation for the interaction between humans and their 

surrounding environment. The eyes connect with the brain via retinal ganglion cell 

axons, which transmit visual sensory information from the periphery into the central 

nervous system for further processing, eventually leading to visual perception and the 

visual guidance of movement. Two main targets of retinal axons are the superior 

colliculus (SC) and the dorsal thalamus. From the SC, visual information is conveyed 

to the dorsal thalamus, and from the dorsal thalamus visual information is conveyed to 

the cortex, striatum and amygdala. This dissertation is focused on the functional 

properties of two parallel pathways from the SC to the dorsal thalamus: a pathway 

from the SC to the retinorecipient dorsolateral geniculate nucleus (dLGN) to the 

cortex, and a pathway from the SC to the pulvinar nucleus to the cortex. 

The experiments described in this dissertation used viral vector injections, 

tract tracing, in vitro whole cell patch clamp, optogenetics, electron and confocal 

microscopy, transgenic mouse lines and immunohistochemical staining techniques to 
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elucidate the roles of the SC-dLGN-cortex pathway and SC-pulvinar-cortex pathway 

in visual coding. The first series of experiments revealed that SC and retinal inputs 

converge to innervate the proximal dendrites of cells in the dorsolateral shell of the 

dLGN that project to layer I of the striate cortex. The second series of experiments 

revealed the organization of subdivisions of the pulvinar nucleus in relation to inputs 

from the SC. The final series of experiments revealed the distribution and 

ultrastructure of pulvinocortical terminals, and identified the cell types activated by 

pulvinocortical synapses. Major targets of pulvinocortical terminals were identified as 

corticostriatal cells, suggesting that pulvinar acts as a hub connecting the SC, cortex 

and striatum.
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CHAPTER 1 

INTRODUCTION 

 

Vision is not a simple representation of the surrounding environment; it also 

plays a crucial role in guiding an organism’s interaction with the environment. Thus, 

vision includes two components, visual perception and visuomotor guidance. The 

classic primary visual pathway is from the retina to layer IV of the primary visual 

cortex (or striate cortex), via the dorsolateral geniculate nucleus (dLGN) of the dorsal 

thalamus (Diamond and Hall, 1969; LeVay and Gilbert, 1976; Peters and Feldman, 

1977). This pathway is critical for visual perception because patients do not perceive 

their environment following lesions of the striate cortex (Weiskrantz, 1986). The 

retina also sends axons to innervate many other subcortical nuclei, including the 

superficial layers of the superior colliculus (SC or optic tectum) in the midbrain. From 

the superficial layers of the SC, there are two parallel pathways to the dorsal 

thalamus. One tectothalamic pathway transmits visual information to the pulvinar 

nucleus, which is subsequently forwarded to the striate and extrastriate cortex, as well 

as the striatum and amygdala. The other tectothalamic pathway innervates subregions 

of the dLGN to form a component of the geniculostriate pathway (Diamond and Hall, 

1969; Schneider, 1969; Casagrande et al., 1972). These retino-tecto-thalamocortical 

pathways are known as secondary visual pathways,
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which are considered to play important roles in visual transmission that are 

independent of that served by the primary retino-geniculo-cortical pathway. 

However, the function of the secondary visual pathways is not fully 

understood. This dissertation focuses on the tecto-geniculo-cortical and tecto-pulvino-

cortical pathways, using the mouse as a model, with the goal of understanding the 

underlying synaptic features of these pathways. This information is a necessary first 

step toward a complete understanding of the functions served by these two parallel 

tectothalamic pathways. 

“Inner eye” 

Weiskrantz and his colleagues coined the term “blindsight” to describe the 

phenomenon that, in spite being unaware of visual stimuli, residual visual abilities are 

preserved in patients with damage to the visual cortex, and this residual vision can 

guide movements (Weiskrantz et al., 1974). Blindsight patients could discriminate 

simple properties such as small spots of light in their blind visual receptive field 

(reported via eye movements or pointing). They could also distinguish straight from 

curved lines, stimuli differing in color, or the orientation and spatial frequency of 

visual stimulus gratings (Weiskrantz, 1986). Furthermore, blindsight patients could 

also detect the emotional expression of faces (de Gelder et al., 1999; Van den Stock et 

al., 2011), rapidly moving stimuli, rapid changes in brightness, the onset of motion, or 

the direction and velocity of isolated moving targets (Weiskrantz, 1986). However, 

blindsight patients fail to identify the direction of motion of patterns composed of 

multiple components (Azzopardi and Cowey, 2001).  
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In addition to the visual capabilities demonstrated in human patients with 

striate cortex damage, experimental evidence indicates that in some species complete 

removal of the striate cortex (resulting in complete degeneration of the dLGN), does 

not impair discrimination of simple patterns, colors, or acuity (Snyder et al., 1966; 

Snyder and Diamond, 1968; Ware et al., 1972, 1974). These spared visual abilities are 

likely to rely on the secondary visual pathway from the SC to the pulvinar nucleus 

(Stoerig and Cowey, 1997). Thus, consciousness and unconsciousness visual 

functions may be served by the primary and secondary visual pathways respectively. 

However, the functions of tectothalamocortical pathways are still unclear. This 

dissertation examines the synaptic organization of these pathways in the mouse as a 

first step toward determining their function. 

The superior colliculus 

The SC is a highly-laminated area in all mammals. Regions of the SC that are 

primarily visually-responsive are the superficial layers, which include (from dorsal to 

ventral) the stratum zonale (SZ), the stratum griseum superficiale (SGS), and the 

stratum opticum (SO) (Dräger and Hubel, 1975). Retinotectal terminals are mainly 

located in the SZ and SGS; few are located in the SO (Schönitzer and Holländer, 

1984). The SC receives bifurcating projections from single retinal ganglion cells 

(RGC) that branch to the dLGN (Kondo et al., 1993, 1994; Dong et al., 1995; Ellis et 

al., 2016). It has been reported that almost all RGC types innervate the SC in rabbits 

and over 90% of RGC neurons directly project to the SC in rats (Vaney et al., 1981; 

Linden and Perry, 1983; Dean and Redgrave, 1984). In mice, functional 
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characterization of RGCs revealed that there are several classes of SC-projecting 

RGCs that avoid the dLGN, and these RGCs appear to exhibit more transient 

responses and respond best to small stimuli (Ellis et al., 2016).  

Retinal inputs first invade the SC as early as embryonic day 15 (E15) in the 

mouse (Edwards et al., 1986), and activity-dependent mechanisms establish a precise 

topography of retinotectal inputs (Chandrasekaran et al., 2005). The nasal retina of the 

contralateral eye and the temporal retina of both eyes innervate the SC (Rapaport and 

Wilson, 1983). The nasotemporal and ventrodorsal axes of the retina projects onto the 

caudorostral and mediolateral axes of the contralateral SC respectively (Sauvé et al., 

2001). The retinotopic organization of the SC has been reported to be consistent 

among different mammals, with the zero vertical meridian represented rostrally, and 

the most peripheral part of the contralateral visual field represented caudally; the 

upper visual field is represented medially/rostrally in the SC, and the lower visual 

field is represented laterally/caudally in the SC (Berman and Cynader, 1972; Cynader 

and Berman, 1972; Dräger and Hubel, 1975, 1976; Bickford et al., 2015).  

In vivo recording studies have shown that superficial SC cells exhibit antagonistic 

center-surround receptive fields, in which excitatory responses are evoked when 

stimuli are presented in the center region of the receptive field, whereas visual stimuli 

can cause surrounding suppression if they presented in the surround area. It has been 

suggested that secondary visual pathways, in comparison to the geniculostriate 

pathway, may provide a stronger representation of the peripheral visual field and are 

more sensitive to small transient visual stimuli (Dean and Redgrave, 1984). 
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In contrast to the superficial SC, the deep layers of SC are comprised of 

multisensory neurons and premotor neurons, which receive inputs from various 

nonvisual sensory structures and send descending/ascending projections to the 

brainstem, spinal cord, and thalamus. Ample evidence suggests that the deep layers of 

SC are involved in the translation of sensory signals into motor commands in order to 

orient eye, head, hand, trunk and pinnae movements (Sparks and Hartwich-Young, 

1989; Isa, 2002). Two studies in hamster found that following damage restricted to the 

superficial layers of SC, animals experienced a near loss of orienting to sunflower 

seeds in the upper and peripheral visual field, whereas if the damage also destroyed or 

undercut the deep layers of SC, the hamsters’ ability to orient was completely 

abolished (Finlay et al., 1980; Mort et al., 1980). Similarly, an early tree shrew study 

suggested that the superficial layers and deep layers of SC channel different functions, 

and the behavioral effects caused by lesions in the deep layers partially depended on 

the input from the superficial layers (Casagrande et al., 1972). However, how 

information is transmitted between the superficial layers and deep layers of SC is still 

largely unknown.  

The importance of the balance of activity across visual areas for proper 

visuomotor control was demonstrated by the phenomenon known as the “Sprague 

effect” (Sprague, 1966). Sprague found that in cats, unilateral visual cortex damage 

caused a “visual neglect” of one hemifield (detection, attention or orientation visual 

deficits in the lesioned visual hemifield), but subsequent lesions of the contralateral 
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SC relieved this neglect, and animals regained their ability to orient toward the 

previously neglected hemifield (Sprague, 1966).  

Tectothalamic cells 

A ubiquitous laminar segregation of SC neurons that project to the dLGN or 

the pulvinar (or lateral posterior nucleus, LPN) has been described in a number of 

species including cat (Straschill and Hoffmann, 1969; Kawamura et al., 1980), tree 

shrew (Albano et al., 1979; Graham and Casagrande, 1980), hamster (Rhoades and 

Chalupa, 1976; Mooney et al., 1988), rat (Donnelly et al., 1983), rabbit (Graham and 

Berman, 1981), squirrel monkey (Kadoya et al., 1971) and grey squirrel (Robson and 

Hall, 1977). Neurons that innervate the dLGN are always located in the upper one-

half of the stratum griseum superficiale (SGS) and the majority of these cells are 

narrow field vertical cells (NFV), whereas those neurons that project to the pulvinar 

are located in the lower half of the SGS and stratum opticum (SO), and the majority 

of these cells are wide field vertical cells (WFV) (Mooney et al., 1988; Chomsung et 

al., 2008; Fredes et al., 2012; Gale and Murphy, 2014). It has also been noted that the 

somata of tectopulvinar cells are larger than those of tectogeniculate neurons (Albano 

et al., 1979; Kawamura et al., 1980; Caldwell and Mize, 1981; Graham and Berman, 

1981; Harrell et al., 1982). NFV cells have narrow dendritic fields that extend dorsally 

and ventrally from their somata; these dendrites are oriented perpendicular to the 

dorsal surface of the SC. WFV or tectopulvinar cells have very wide dendritic fields 

that extend dorsally from their somata. The distal portions of these dendrites end 

either in the most superficial SGS, or in the middle of the SGS, and their tips exhibit 
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unique bottlebrush endings (arrays of spiny dendritic tufts).( Karten et al., 1997; 

Luksch et al., 1998; Major et al., 2000). WFV cells have large receptive fields and 

respond to small stimuli that move in any direction. In contrast, NFV cells may be 

specialized to code more detailed motion parameters based on their small receptive 

fields and strong direction selectivity (Gale and Murphy, 2014).  

Tectogeniculate Pathway 

SC input to the dLGN has been observed in 19 different mammalian species 

(Harting et al., 1991). In the primate, tectal inputs project to the koniocellular layers 

of the dLGN; these layers subsequently project to layer 1 of the striate cortex 

(Diamond et al., 1991; Harting et al., 1991). Likewise, in the tree shrew, tectal input 

innervates layers 3 and 6 of the dLGN and these dLGN layers project to supragranular 

layers in V1. In rodents, tectogeniculate inputs innervate the dorsolateral shell, a 

region located along a thin strip of the dLGN that runs adjacent and parallel to the 

optic tract (Reese, 1984; Harting et al., 1991; Grubb and Thompson, 2004). 

Interestingly, at least 3 classes of identified direction-selective retinal ganglion cells 

project to the dorsolateral shell, as well as to the SGS (Kim et al., 2008, 2010; 

Huberman et al., 2009; Kay et al., 2011; Rivlin-Etzion et al., 2011). A recent study of 

mouse NFV cells reported that all were direction selective (Gale and Murphy, 2014). 

Moreover, studies of the receptive field properties of mouse dLGN neurons have 

revealed that direction-selective cells are specifically located in the dorsolateral shell 

(Marshel et al., 2012; Piscopo et al., 2013). These studies suggest a possible 

convergence of projections from direction-selective NFV cells and direction-selective 
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ganglion cells within regions of the mouse dLGN that exhibit direction-selective 

responses. Chapter II of this dissertation will describe the underlying circuitry of this 

pathway as a first step toward understanding its function and roles in the visual 

system.  

Tectopulvinar Pathway  

In 1949, Rose and Woolsey proposed that the pulvinar and LPN are intrinsic 

thalamic nuclei, receiving information relayed by the dLGN (Rose and Woolsey, 

1949). However, Karten and Revzin described a projection from the tectum to the 

nucleus rotundus in birds via tract tracing techniques in 1966 (Karten and Revzin, 

1966), and subsequently in 1973 Harting confirmed that the pulvinar is heavily 

innervated by the SC instead of the dLGN using lesion techniques in tree shrews 

(Harting et al., 1973a, 1973b). Since these initial studies, various features of 

tectopulvinar pathways have been studied and these are reviewed in Chapter III of this 

dissertation. 

Terminal types in the dLGN 

In 1969, four basic terminal types were identified in the cat dLGN which were 

designated RLP, RS, F1 and F2 profiles (Guillery, 1969). RLP profiles (large profiles 

with round vesicles and pale mitochondria) are glutamatergic terminals that have been 

found to originate from the retina (Rafols and Valverde, 1973; Robson and Mason, 

1979; Rapisardi and Miles, 1984; Wilson et al., 1984). These large terminals contain 

mitochondria that have widened cristae, making them appear paler than surrounding 

mitochondria. RLP profiles form asymmetrical synapses, with more thickening of the 
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postsynaptic density relative to the presynaptic density. In the mammalian brain, most 

excitatory synapses are asymmetrical with round vesicles whereas most inhibitory 

synapses are symmetrical with flattened or pleomorphic vesicles. RS profiles (small 

profiles with round vesicles) are either glutamatergic terminals that originate from the 

cortex or cholinergic terminals that originate from the parabigeminal nucleus (PBG) 

or the pedunculopontine tegmentum (PPT), although some are noradrenergic or 

serotonergic terminals (Jones and Powell, 1969; Erişir et al., 1998). F1 profiles 

(originally named for their vesicles which flatten with certain fixation procedures) 

contain gamma aminobutyric acid (GABA) and densely packed vesicles, and form 

symmetric synapses. These terminals originate from the thalamic reticular nucleus 

(TRN), pretectum (PT) and dLGN interneuron axons and are strictly presynaptic 

(Ohara et al., 1980; Montero and Scott, 1981; Fitzpatrick et al., 1984; Wilson et al., 

1984; Hamos et al., 1985; Montero and Singer, 1985; Arcelli et al., 1997; Wang et al., 

2001, 2002; Li et al., 2003c). F2 profiles are GABAergic terminals that originate from 

the dendrites of dLGN interneurons and are both presynaptic and postsynaptic 

(Bickford et al., 2000, 2010). The vesicles in F2 profiles are more sparsely distributed 

than those contained within F1 profiles.  

In cat dLGN, axonal F1 terminals form simple, conventional synaptic contact 

onto the dendrites of thalamocortical cells; whereas the F2 dendritic terminals are 

both postsynaptic to various terminals and presynaptic to thalamocortical cells 

(Datskovskaia et al., 2001a; Dankowski and Bickford, 2003). There are many more 

F2 outputs per interneuron than F1 outputs (Sherman, 2004). 
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RLPs are associated with a remarkable synaptic arrangement called a 

glomerulus, which contains RLP terminals, F terminals (both F1 and F2), and RS 

terminals from the brainstem. Within these glomeruli, the RLP profiles often form 

triads in which the RLP profile contacts both a relay cell dendrite and an F2 profile, 

and this same F2 profile is also presynaptic to the same relay cell dendritic appendage 

or shaft that is contacted by the RLP profile. Subsequent investigations of the dLGN 

identified a 5th terminal type, designated RLD (round vesicles, large profile with dark 

mitochondria), which originates either from the axon collaterals of geniculocortical 

cells (Bickford et al., 2008) or the PPT (Erisir et al., 1997).  

Ultrastructure of “drivers” and “modulators” in the dLGN 

Even though the vast majority of synapses in the dLGN originate from non-

retinal inputs (Guillery, 1969; Wilson et al., 1984; Van Horn et al., 2000), the 

receptive field properties of dLGN relay cells have been found to be nearly identical 

to those of their presynaptic retinal inputs (Cleland et al., 1971). Thus, retinal inputs 

have been defined as the “drivers” of geniculate activity (Sherman and Guillery, 

1998), and inputs that exhibit similar features (i.e. large glutamatergic inputs that 

synapse on proximal dendrites) have also been classified as driving inputs (Sherman 

and Guillery, 1998). In contrast, corticogeniculate inputs have been found to have 

more subtle effects on dLGN neurons (Kalil and Behan, 1987; Sillito and Jones, 

2002), so these inputs have been classified as “modulators” of geniculate activity and 

inputs that exhibit similar features (smaller terminals that innervate more distal 

dendrites) are considered to exert more subtle effects on thalamic activity. Although 
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ultrastructure alone cannot determine the effect of input on its postsynaptic target, it 

provides a starting point for understanding its influence relative to other inputs. As 

described in Chapter II, the ultrastructure of tectogeniculate inputs was found to be 

correlated with their influence on geniculate neurons relative to retinal inputs.  

Categories of thalamic nuclei 

As proposed by Sherman and Guillery (1998), the thalamus contains two basic 

types of nuclei: first order nuclei and higher order nuclei, which are categorized based 

on the source of their “driver” inputs. First order nuclei receive their driving inputs 

from peripheral noncortical sources, whereas higher order nuclei receive their driving 

afferents from layer V cortical cells within the visual, auditory and somatosensory 

systems (Shepherd, 2004). At least some subdivisions of the pulvinar nucleus can be 

considered “higher order” because they receive input from layer V cells of the visual 

cortex (Purushothaman et al. 2012).  

Anatomical studies have shown that layer V neurons in the striate cortex form 

relatively large terminals in the pulvinar ,whereas neurons in layer VI of striate cortex 

form smaller terminals in the pulvinar nucleus (Trojanowski and Jacobson, 1977; 

Mason and Groos, 1981; Abramson and Chalupa, 1985; Bourassa and Deschênes, 

1995; Vidnyánszky et al., 1996; Feig and Harting, 1998). In general, the tectorecipient 

pulvinar subdivisions receive afferent projections that originate exclusively from layer 

VI of the extrastriate cortex (Kawamura and Diamond, 1978; Chomsung et al., 2010). 

These corticopulvinar synapses from extrastriate cortex have been found to be located 

distal to the tectopulvinar synapses on the dendritic arbors of pulvinocortical cells, 
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suggesting that the SC provides the “driving” input to the pulvinar neurons 

(Chomsung et al., 2010). However, as reviewed in Chapter III, Masterson et al. (2009, 

2010) proposed that tectorecipient subdivisions of the pulvinar nucleus should be 

considered as “second order” rather than “first order” or “higher order”, because tectal 

terminals do not exhibit the characteristic of either the “drivers” or “modulators” 

defined by Sherman and Guillery 1998. In addition, as described in Chapter II, certain 

regions of the dLGN also do not fit the criteria or first or higher order nuclei.  

Functional properties of the pulvinar nucleus 

The pulvinar nucleus is the largest thalamic nucleus in primates, accounting 

for a quarter of the total thalamic mass (Grieve et al., 2000). The pulvinar nucleus is 

composed of several subdivisions based on its inputs and outputs (details discussed in 

Chapter III) and therefore multiple pulvinar functions have been described such as 

higher-order visual and visuomotor transduction, organization of saccades (Robinson 

et al., 1986), visual attention (Van Essen, 2005) and visual salience (inhibition of 

inappropriate eye movements) (Robinson and Petersen, 1992). It has been shown that 

the pulvinar integrates object feature and spatial properties (Benevento and Port, 

1995) and damage of the pulvinar may elicit contralateral visual neglect (Wilke et al., 

2010).  

 The receptive field properties of neurons in pulvinar resemble those in the SC 

to a certain degree. Similar to neurons in SC, single neuron recording studies from 

awake monkey have shown that cells in inferior and lateral pulvinar (PI and PL) 

respond to stimulus movement over a wide range of speeds. PI neurons respond to 
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spots of light and inhibitory surrounds, possess relatively large receptive fields that 

increased with eccentricity and have minimal presaccadic activity (Robinson et al., 

1991; Berman and Wurtz, 2011). However, there are differences between the 

receptive fields of SC and pulvinar neurons. In cats, tecto recipient pulvinar neurons 

have large receptive fields which are twice the size of the average receptive fields 

recorded in the superficial SC. Most superficial SC cells in cats prefer a horizontal 

movement of visual targets, but pulvinar neurons do not have this preference. Some 

SC recipient pulvinar neurons show orientation selectivity, but this feature has never 

been seen in superficial SC (Mason, 1981; Chalupa and Abramson, 1988; 

Rauschecker, 1988). Responses of tectorecipient pulvinar cells are facilitated by 

binocular stimulation, but SC cells are not (Chalupa and Abramson, 1988).  

Studies of different primate species and humans have shown that there are two 

retinotopic maps within the inferior pulvinar (Gattass et al., 1978; Standage and 

Benevento, 1983; Li et al., 2013; Arcaro et al., 2015; Allen et al., 2016). In humans 

and macaque monkeys, these maps represent the contralateral visual field, with the 

lower visual field represented dorsally and the upper visual field represented ventrally. 

In macaque monkeys, there is an expanded representation of central vision located 

caudally within the crescent of the pulvinar, while peripheral vision is represented 

rostrally (Standage and Benevento, 1983). 

Pulvinocortical projections 

In 1949, Rose and Woolsey made significant progress in understanding the 

connections of the pulvinar nucleus using the Nauta degeneration method. With small 
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lesions in the extrastriate cortex, no apparent degeneration was found either in the 

dLGN or pulvinar. Surprisingly, with more extensive large lesions in the same region, 

they found only the pulvinar nucleus showed degeneration (Rose and Woolsey, 1949). 

Thus, extensive areas of the cortex in primates are connected to the pulvinar nucleus. 

It has been suggested that the higher order regions of the pulvinar play a 

potential role in transthalamic corticocortical communication (Sherman and Guillery, 

2011), while the second order tectorecipient pulvinar is involved in coordinating the 

appropriate motor reactions in response to visual signals (Day-Brown et al., 2010). In 

primates, the pulvinar neurons that project to that striate cortex are distinct from 

neurons that project to the extrastriate cortex, based on their different arbor sizes and 

terminal fields; this suggests that pulvinar projections to different cortical areas may 

have different functions (Florence and Casagrande, 1987). Chomsung et al (2010) 

provided first and the only morphological description of the synaptic connections of 

pulvinocortical terminals published to date; they found that pulvinocortical terminals 

originating from the tectorecipient zones of the pulvinar nucleus densely innervate 

layers of I-IV of the extrastriate cortex and synapse with spines that didn’t contain 

gamma amino butyric acid (GABA). It has been found that activation or inactivation 

of the pulvinar nucleus can increase or decrease overall cortical activity levels and 

alter the directional and/or orientation selectivity of cortical neurons (Soares et al., 

2004; Saalmann and Kastner, 2011; Purushothaman et al., 2012). However, it is 

currently unknown how the tectorecipient pulvinar affects cortical receptive field 
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properties. Its extensive input from superior colliculus may critically shape the 

functional organization of its output to the visual cortex. 

Extrastriate visual cortex 

Studies have suggested that there are at least 9 higher visual areas that exist in 

mouse and each area includes a distinct retinotopic representation and displays a 

unique combination of spatiotemporal features (Wang and Burkhalter, 2007; Marshel 

et al., 2011). These areas are known as posterior, postrhinal, lateromedial, and 

laterointermediate, anteriorlateral, rostrolateral, anterior, anteromedial, and posterior 

medial cortex: P, POR, LM, LI, AL, RL, A, AM, PM (Wang and Burkhalter, 2007). 

Relating these areas to previous nomenclature of extrastriate visual areas, PM and AM 

(Wang and Burkhalter, 2007) are equivalent to area V2ML (Franklin and Paxinos, 

2008) whereas V2L (Franklin and Paxinos, 2008) is broadly equivalent to areas RL, 

AL, LM, LI, P, and POR (Watson, 2012). However, this dissertation is going to focus 

on the lateral extrastriate cortex areas P, POR, LM and LI. Functional studies have 

shown that compared to neurons in V1, neurons in LI prefer higher spatial and 

temporal frequencies, whereas neurons in LM prefer up to three times faster temporal 

frequencies and significantly lower spatial frequencies than V1 (Marshel et al., 2011). 

It is widely known that the response properties in the rodent visual cortex have 

a dispersed “salt and pepper” organization, which is very different from the columnar 

organization of the primate cortex. In monkeys, it has been reported that the motion-

selective MT area is topographically organized with the pulvinar projection (in which 

retrograde tracers filled cells in the pulvinar nucleus were arranged correspondingly 
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with individual injection sites at different retinotopic locations in MT), with the lower 

visual field represented dorsally and the upper visual field represented ventrally 

(Standage and Benevento, 1983). Olavarria and Torrealba found that in rats, the 

receptive field properties in area 18a were relatively slightly affected with destruction 

of striate cortex (Olavarria and Torrealba, 1978). With the removal of the whole striate 

cortex, tree shrews retain the ability to discriminate between different patterns and 

different colors, but additional ablation of extrastriate areas 18 and 19 rendered tree 

shrews unable to discriminate between upright and inverted triangles (Snyder et al., 

1966; Snyder and Diamond, 1968). However, how the pulvinar influences cortical 

circuitry has not been explored. In all mammals, there are two main types of neurons 

in the neocortex, one type are the neurons which have spines on their dendrites and 

are excitatory (glutamatergic) and project both within and outside of the cortex, while 

the other type are neurons that have smooth dendrites, are inhibitory (GABAergic), 

and do not project outside of the cortex (interneurons). The experiments described in 

Chapter IV were designed to determine which types of cortical neurons are directly 

innervated by pulvinar and whether the pulvinar nucleus targets specific cortical 

output channels.  

Optogenetics and the mouse model 

Brain perturbation techniques have evolved from ablation or chemical lesions, 

to reversible chemical or cooling inactivation/electrical activation, to the current 

widely used optogenetic techniques. Optogenetics allows activation or inactivation of 

specific brain pathways using light. This enables experiments to address questions 
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that could not be accurately addressed before. The pathways studied in this 

dissertation could not be preserved in slices and therefore had not previously been 

studied using in vitro preparations. Thus, we adopted an optogenetic approach 

combined with in vitro whole cell recordings to address our questions. Due to the 

expanding research carried out using mice, the convenience and availability of 

transgenetic mouse lines, and the lack of information regarding the mouse pulvinar 

nucleus, all experiment were designed to utilize this model species.  

Outline of Chapters II-V  

As a first step toward understanding the role that the SC plays in the 

tectogeniculate pathway, I carried out a detailed comparison of the ultrastructural 

characteristics of tectal input, cortical input, and retinal input in the dLGN (Chapter 

II). To further understand the tectopulvinar pathway, I reviewed previous studies and 

added evidence from current mouse studies (Chapter III). Finally, in Chapter IV, I 

investigated the ultrastructure and synaptic characteristics of pulvinocortical 

connections, and also explored the cortical output channels affected by the pulvinar 

nucleus. In Chapter V, I summarized my findings and discussed the direction of future 

studies related to the exploration of tectothalamocortical pathways. 
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CHAPTER II 

RETINAL AND TECTAL “DRIVER-LIKE” INPUTS CONVERGE IN THE SHELL 

OF THE MOUSE DORSAL LATERAL GENICULATE NUCLEUS1 

 
Overview 

The dorsal lateral geniculate nucleus (dLGN) is a model system for 

understanding thalamic organization and the classification of inputs as “drivers” or 

“modulators.” Retinogeniculate terminals provide the primary excitatory drive for the 

relay of information to visual cortex (V1), while nonretinal inputs act in concert to 

modulate the gain of retinogeniculate signal transmission. How do inputs from the 

superior colliculus, a visuomotor structure, fit into this schema? Using a variety of 

anatomical, optogenetic, and in vitro physiological techniques in mice, we show that 

dLGN inputs from the superior colliculus (tectogeniculate) possess many of the 

ultrastructural and synaptic properties that define drivers. Tectogeniculate and 

retinogeniculate terminals converge to innervate one class of dLGN neurons within 

the dorsolateral shell, the primary terminal domain of direction-selective retinal 

ganglion cells. These dLGN neurons project to layer I of V1 to form synaptic contacts 

with dendrites of deeper-layer neurons. We suggest that tectogeniculate inputs act as

                                                             

1. Bickford ME, Zhou N, Krahe TE, Govindaiah G, Guido W. J Neurosci 35:10523-10534. 2015. DOI: 

10.1523/JNEUROSCI.3375-14.2015. 
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“backseat drivers,” which may alert shell neurons to movement commands generated 

by the superior colliculus. 

SIGNIFICANCE STATEMENT  

The conventional view of the dorsal lateral geniculate nucleus (dLGN) is that 

of a simple relay of visual information between the retina and cortex. Here we show 

that the dLGN receives strong excitatory input from both the retina and the superior 

colliculus. Thus, the dLGN is part of a specialized visual channel that provides cortex 

with convergent information about stimulus motion and eye movement and 

positioning. 

Introduction 

The concept of defining afferents as “drivers” or “modulators” has reshaped 

our current view of thalamic function. The dorsal lateral geniculate nucleus (dLGN), 

the principal relay of retinal information to the visual cortex, is widely accepted as a 

prototype for delineating the structural and functional organization of these two 

classes of inputs (Sherman and Guillery, 1998; Guillery and Sherman, 2002). While 

retinal inputs provide the primary excitatory drive onto thalamocortical (relay) cells in 

the dLGN, they comprise only about 10% of all synapses in this nucleus. Instead, the 

vast majority of synapses arise from nonretinal sources, such as projections from the 

visual cortex, brainstem, and thalamic reticular nucleus. These nonretinal inputs have 

been characterized as modulators because they have little impact on the receptive field 

structure of relay cells, but provide a powerful substrate for modulating the gain of 

retinogeniculate (RG) signal transmission in a state-dependent manner. 
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A projection from the superior colliculus (SC), or tectum, to the dLGN has 

been identified in a number of mammalian species (Harting et al., 1991), but 

remarkably, an understanding of how tectogeniculate (TG) input fits within the 

framework of thalamic function is lacking. In rodents, TG projections are confined to 

the dorsolateral shell, a thin lamina that resides just beneath the optic tract (OT; 

(Reese, 1988; Grubb and Thompson, 2004). This region is innervated by retinal 

ganglion cells that are sensitive to the direction of visual motion [direction-selective 

ganglion cells (DSGCs); Huberman et al., 2009; Kay et al., 2011; Rivlin-Etzion et al., 

2011; Dhande et al., 2013; Cruz-Martín et al., 2014] and also contains dLGN cells 

that exhibit direction-selective responses (Marshel et al., 2012; Piscopo et al., 2013; 

Scholl et al., 2013; Zhao et al., 2013). Such convergence suggests that TG projections 

participate in coding the direction of visual stimulus movement. This idea is further 

supported by the fact that TG cells are located in the most superficial regions of the 

SC stratum griseum superficiale (SGS; Mooney et al., 1988; Diamond et al., 1991). 

Like the dorsolateral shell of the dLGN, the SGS is innervated by DSGCs (Huberman 

et al., 2009; Kay et al., 2011; Rivlin-Etzion et al., 2011; Dhande et al., 2013a) and 

contains neurons that respond selectively to visual motion, some of which have been 

identified as TG cells (Mooney et al., 1985, 1988; Waleszczyk et al., 2004; Wang et 

al., 2010; Gale and Murphy, 2014; Inayat et al., 2015). Thus, the dorsolateral shell of 

the dLGN appears to receive two distinct sources of direction-selective signals, one 

from the retina and one from the SC. Surprisingly, we found that TG inputs display 

the signature characteristics of driver synapses. Moreover, TG and retinal inputs 
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converge to innervate a distinct class of relay cells that project to layer 1 of V1. 

Together our results provide further evidence for structurally and functionally distinct 

parallel visual channels within the mouse dLGN. 

Materials and Methods 

Animals 

All breeding and experimental procedures were approved by the University of 

Louisville and Virginia Commonwealth University Institutional Animal Care and Use 

Committees. Experiments were performed using mice, of either sex, of the following 

lines: C57/BLK6; mice that the express green fluorescent protein (GFP) in 

thyrotropin-releasing hormone receptor (TRHR)-expressing ganglion cells (Rivlin-

Etzion et al., 2011); the Cre driver line GAD2-ires-Cre (Jackson Labs, stock 

#010802); Gad2tm2(cre)Zjh/J (Taniguchi et al., 2011); and the GAD2-ires-Cre mice 

crossed with the Ai9 reporter line [Jackson Labs, stock #007900, strain B6.Cg-

Gt(ROSA)26Sortm9(CAG-tdTomato)Hze/J]. 

Biotinylated dextran amine injections 

To label TG or geniculocortical (GC) projections via anterograde transport, 

mice ranging in age between postnatal day 30 (P30) and P60 were deeply anesthetized 

with a mixture of ketamine (120–140 mg/kg) and xylazine (12–14 mg/kg) and placed 

in a stereotaxic apparatus (Angle Two Stereotaxic, Leica). An incision was made 

along the scalp, and a small hole was drilled in the skull above the SC or dLGN. A 

glass pipette (10 μm tip diameter) containing a 5% solution of biotinylated dextran 

amine (BDA; Invitrogen) in saline was lowered into the SC or dLGN, and BDA was 
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iontophoretically ejected using 3 μA continuous positive current for 20 min. After 

removal of the pipette, the scalp skin was sealed with tissue adhesive (n-butyl 

cyanoacrylate), and the animals were placed on a heating pad until mobile. After 

surgery, animals were carefully monitored for proper wound healing, and the 

analgesic buprenorphine (0.02 mg/kg) was administered every 12 h for 48 h. 

Cholera toxin subunit B injections 

To label TG cells via retrograde transport, P30–P60 wild-type or GAD2-cre-

Ai9 mice were prepared as described above. A glass pipette (10–20 μm tip diameter) 

containing a 0.2% solution of cholera toxin subunit B (CTB) conjugated to Alexa 

Fluor 488 (CTB-488) in PBS [0.01 m phosphate buffer (PB) with 0.9% NaCl] was 

lowered into the dLGN, and CTB was iontophoretically ejected using 3 μA 

continuous positive current for 15 min. After removal of the pipette, the wound was 

closed and the animals were treated during recovery as described above. 

Adeno-associated virus and CTB injections 

An adeno-associated virus (AAV; serotype 2/1) carrying a vector for the 

Channelrhodopsin variant Chimera EF with I170 mutation (ChIEF) fused to the red 

fluorescent protein, tdTomato, was injected into the SC of wild-type mice to label TG 

terminal arbors in the dLGN for light and electron microscopic analysis as well as to 

photoactivate TG terminals during in vitro physiology experiments (for production 

details, see Jurgens et al., 2012). For virus delivery, mice ranging in age between P22 

and P24 were deeply anesthetized with a mixture of ketamine and xylazine. An 

incision was made along the scalp, and a small hole created in the skull above the SC. 
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Virus was delivered via a 34 gauge needle attached to a Nanofil syringe inserted in an 

UltraMicroPump. Volumes of 100–200 nl were injected at a rate of 10 nl/min. 

In some animals, following virus injections in the SC, an additional hole was 

drilled in the skull above V1. The dura was carefully removed, and a small piece of 

filter paper that had been immersed in a 0.1% solution of CTB-488 in PBS was placed 

on the cortex surface to label geniculocortical cells by retrograde transport. The 

wound was then closed and the animal monitored during recovery as described above. 

Cre-dependent AAV injections in GAD2-Cre mice 

Flex-rev-oChIEF-tdTomato (plasmid 30541, Addgene) was packaged using 

AAV serotype 9. This viral vector was injected into the SC of GAD2-cre mice to 

examine GABAergic projections from this structure. For virus delivery, mice ranging 

in age between P25 and P36 were deeply anesthetized with a mixture of ketamine and 

xylazine. An incision was made along the scalp, and a small hole created in the skull 

above the SC. Virus was delivered via a 34 gauge needle attached to a Nanofil syringe 

inserted in an UltraMicroPump. Volumes of 60–75 nl were injected at a rate of 10–20 

nl/min. 

Slice preparation and in vitro recording 

At 8 to 12 d following injection of the AAV serotype 2/1, mice were deeply 

anesthetized with Avertin (0.5 mg/gm), rapidly decapitated, and brains were placed 

into cold (4°C), oxygenated (95% O2/5% CO2) slicing solution containing the 

following (in mm): 2.5 KCl, 26 NaHCO3, 2.5 KCl, 1.25 NaH2PO4, 10 MgCl2, 2 

CaCl2, 234 sucrose, and 11 glucose. Coronal slices (300 μm) were cut at the level of 
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dLGN and SC using a vibrating tissue slicer (Leica). Then slices were incubated in 

oxygenated (95% O2/5% CO2) artificial CSF (ACSF) [containing (in mm) 126 NaCl, 

26 NaHCO3, 2.5 KCl, 1.25 NaH2PO4, 2 MgCl2, 2 CaCl2, and 10 glucose] at 32°C 

for 30 min and later maintained at room temperature. 

Whole-cell recordings were obtained from dLGN neurons as described 

previously with minor modifications (Govindaiah et al., 2012). Briefly, individual 

brain slices were transferred to a recording chamber that was maintained at 32°C and 

continuously perfused with oxygenated ACSF (2.5 ml/min, 95% O2/5% CO2). 

Neurons were visualized on an upright microscope (Olympus BX51WI) equipped 

with both differential interference contrast optics and filter sets for visualizing CTB-

488 (Chroma 49002) or tdTomato (Chroma 49005) using a 10× or 60× water-

immersion objective (Olympus) and a CCD camera. Recording pipettes were pulled 

from borosilicate glass capillaries using a vertical puller (Narishige) and filled with an 

intracellular solution containing the following (in mm): 117 K-gluconate, 13.0 KCl, 1 

MgCl2, 0.07 CaCl2, 0.1 EGTA, 10 HEPES, 2 Na-ATP, and 0.4 Na-GTP. The pH and 

osmolality of internal solution were adjusted to 7.3 and 290 mOsm, respectively. 

Whole-cell recordings were obtained using a Multiclamp 700B amplifier (Molecular 

Devices). Data were filtered at 2.5 kHz, digitized at 10 kHz, and analyzed using 

pClamp 10 (Molecular Devices). In some experiments, data acquisition and analysis 

were accomplished using Strathclyde Electrophysiology Software (Whole Cell 

Analysis Program, version 3.8.2), and digitized at 10–100 kHz through an analog-to-

digital board (National Instruments, PCI-6221). A 10 mV junction potential was 
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subtracted for all voltage recordings. For voltage measurements, recordings were 

made from cells with a resting membrane potential between −55 and −75 mV, 

whereas membrane currents were obtained at −70 mV. Pipette capacitance, series 

resistance, and whole-cell capacitance were carefully monitored and compensated 

electronically during the recording. Only experiments in which series resistance 

remained relatively stable (20% change) were included for analysis. 

For photoactivation of tectogeniculate terminals, light from a blue light 

emitting diode (Prizmatix UHP 460) was reflected into a 4× or 60× objective. This 

produced a spot of blue light onto the submerged slice with an approximate diameter 

of 2.2 or 0.45 mm, respectively. Pulse duration and frequency were under computer 

control. For repetitive stimulation, pulse duration was between 2 and 7 ms. 

For electrical activation of retinogeniculate terminals, a monopolar electrode 

was placed in the OT. Synaptic responses were evoked with various intensities (25–

150 μA) and frequencies (1–100 Hz) at 10 s interstimulus intervals. EPSCs were 

evoked at a holding potential of −70 mV in the presence of the GABAA receptor 

(GABAAR) antagonist SR95531 (4-[6-imino-3-(4-methoxyphenyl) pyridazin-1-yl] 

butanoic acid hydrobromide; 10 μm). 

The peak amplitude of synaptic responses was measured from baseline values 

for three to five traces for each condition using pClamp 10 software (Molecular 

Devices). To quantify the degree of facilitation in responses evoked by repetitive 

trains of light or electrical stimulation, the amplitude of the second to tenth responses 

was divided by the amplitude of the initial response. The paired-pulse ratio (PPR) was 
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determined by dividing the amplitude of the second EPSC by the amplitude of the 

first EPSC. 

Histology 

At the conclusion of in vitro recordings, dLGN slices were placed in a fixative 

solution of 4% paraformaldehyde in 0.1 m PB. Slices were kept in this solution 

overnight at 4°C and then washed in PB. For labeling, slices were treated with 0.1% 

Triton X-100 and Alexa Fluor 633 conjugated to strepavidin (1:1000; Invitrogen, 

catalog no. S21374) in PBS for 24 h. Slices were then rinsed with PBS, mounted with 

Prolong Gold (Invitrogen, catalog no. P36930), and coverslipped. Images of filled 

cells were collected using a confocal microscope (Olympus, model no. 

FV1200BX61). 

Two days following injection of CTB-488, 7 d following injection of BDA, 10 

d following the injection of AAV 2/1 or AAV 2/1 and CTB-488, or 10–16 d after the 

injection of cre-dependent AAV9, mice were deeply anesthetized with Avertin (0.5 

mg/gm) and transcardially perfused with a fixative solution of 4% paraformaldehyde 

in 0.1 m PB, 2% paraformaldehyde and 2% glutaraldehyde in 0.1 m PB, or 4% 

paraformaldehyde and 2.5% glutaraldehyde in 0.1 m cacodylate buffer. Brains were 

removed from the skulls and 70-μm-thick coronal sections of cortex and thalamus 

were cut using a vibratome (Leica). Sections that contained tdTomato and/or CTB-

488 were mounted on slides and imaged using a confocal microscope (Olympus 

FV1200BX61). 
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Sections that contained CTB-488 injections in the dLGN and CTB-488-

labeled TG cells were incubated overnight in a rabbit anti-CTB antibody (Sigma, 

catalog #C3062; 1:10,000). For wild-type animals that received CTB injections, the 

following day, the sections were incubated in a 1:100 dilution of a biotinylated goat-

anti-rabbit antibody (1 h) followed by a 1:100 dilution of avidin and biotinylated 

horseradish peroxidase (ABC solution, Vector Laboratories; 1 h) and reacted with 

nickel-enhanced diaminobenzidine (DAB). The sections were then mounted on slides, 

and a Neurolucida system (MBF Bioscience) was used to plot the distribution of the 

CTB-labeled TG cells. The MBF Bioscience solid modeling extension module was 

then used to reconstruct the SC and view the distribution of TG cells across its dorsal 

surface. For GAD2-cre-Ai9 animals that received CTB injections, sections were 

incubated overnight in the rabbit anti-CTB antibody (1:10,000), and the following day 

the sections were incubated in a 1:100 dilution of a biotinylated goat-anti-rabbit 

antibody (1 h), followed by a 1:100 dilution of avidin conjugated to Alexa Fluor 488 

(Vector Laboratories). The sections were then mounted on slides and imaged using a 

confocal microscope. 

For ultrastructural analysis of tdTomato-labeled terminals following virus 

injections, the sections were incubated in a 1:1000 dilution of a rabbit-anti-DsRed 

antibody (Clonetech, catalog #632496) overnight. The following day, the sections 

were incubated in a biotinylated goat-anti-rabbit antibody, ABC solution, and reacted 

with DAB (as described above). To reveal the location of BDA, sections were 

incubated overnight in ABC solution and reacted the next day with DAB. 
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For electron microscopy, sections that contained DAB-labeled terminals were 

postfixed in 2% osmium tetroxide, dehydrated in an ethyl alcohol series, and flat 

embedded in Durcupan resin between two sheets of Aclar plastic (Ladd Research). 

Durcupan-embedded sections were first examined with a light microscope to select 

areas for electron microscopic analysis. Selected areas were mounted on blocks, 

ultrathin sections were cut using a diamond knife, and sections were collected on 

Formvar-coated nickel slot grids. Selected sections were stained for the presence of 

GABA, as described previously (Chomsung et al., 2010). Briefly, we used a rabbit 

polyclonal antibody against GABA (Sigma, catalog #A2052; used at a dilution of 

1:1000–1:2000) that was tagged with a goat-anti-rabbit antibody conjugated to 15 nm 

gold particles (GE Healthcare). The sections were air dried and stained with a 10% 

solution of uranyl acetate in methanol for 30 min before examination with an electron 

microscope. 

Results 

Organization of the dorsolateral shell 

Figure 1 depicts the structural composition of the dorsolateral shell of the 

dLGN in a mouse line (TRHR) that expresses GFP in DSGCs that respond to 

posterior motion (Rivlin-Etzion et al., 2011). GFP-labeled retinogeniculate projections 

in these mice terminate in a thin band that corresponds to the dorsolateral shell (Fig. 

1A–F, green). To examine the relationship between DSGC terminal domains and TG 

input, virus injections were placed in the SC (Fig. 1C, inset) to induce the expression 

of TdTomato (Fig. 1A–D, red) in TG terminals (n = 2). As expected, TG projections 
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terminate in the dorsolateral shell and overlap with DSGC projections throughout the 

rostrocaudal extent of the dLGN (Fig. 1A–C). To quantify the distribution of TG 

terminals relative to TRHR terminals, we calculated the number of red pixels 

contained within the region of GFP-labeled terminals and divided this by the number 

of red pixels within the borders of the dLGN (n = 5 sections). This analysis revealed 

that 95.67 ± 3.7% of labeled tectogeniculate terminals were located in the dorsolateral 

shell, as defined by the presence of GFP-labeled TRHR terminals. 

To examine the type of dLGN cells that receive input from these two sources, 

we made in vitro whole-cell recordings in the dorsolateral shell of TRHR mice and 

filled recorded cells with biocytin (Fig. 1E, F). Confocal reconstructions of biocytin-

filled cells revealed that relay neurons residing in GFP-labeled terminal domains (n = 

12) had a hemispheric dendritic architecture resembling “W-like” cells (Krahe et al., 

2011). In fact, recordings restricted to this region in wild-type mice, showed that all 

filled cells (n = 32) were W-like (Figs. 1, 4, 7). Using our previously reported Scholl 

ring analysis (Krahe et al., 2011), all filled cells in the dorsolateral shell (n = 12 in 

TRHR and n = 32 in wild type) exhibited direction of orientation index values of 0.5–

0.79. The overlap of tectal terminals and W-like cells in the mouse is consistent with 

the pattern seen in the carnivore C laminae and the primate koniocellular layers of the 

dLGN (Stanford et al., 1981; Harting et al., 1991; Lachica and Casagrande, 1993), 

suggesting that across species, the tectogeniculate pathway is a component of a 

distinct visual channel. 
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Tectogeniculate topography 

To examine the distribution of TG cells, small iontophoretic injections of the 

retrograde tracer CTB were confined to different regions of the dLGN in wild types (n 

= 8). These injections labeled cells in restricted regions of V1 and the SGS of the SC. 

Following injections in the lateral dLGN (Fig. 2A, injection site photo; F, injection 

site reconstructed in red), corticogeniculate (CG) cells were labeled in rostral V1 (A), 

and TG cells were confined to lateral regions of the SGS (D, labeled TG cells, red 

arrow; G, full distribution of TG cells, red dots), whereas injections in the medial 

dLGN (C, injection site photo; F, injection site reconstructed in green) labeled CG 

cells in caudal V1 (B) and TG cells in the medial regions of the SGS (E, labeled cells, 

green arrow; G, full distribution of TG cells, green dots). These results indicate that 

TG projections are organized in a topographic manner. Comparison of the distribution 

of TG cells labeled by retrograde transport to the organization of visual receptive 

fields in the mouse SGS (Dräger and Hubel, 1976) suggests that TG projections to the 

medial or lateral dLGN represent the upper/nasal and lower/temporal visual fields, 

respectively (Fig. 2G). Together, these results indicate that CG and TG projections are 

in register with the visual field representation in V1 (Dräger, 1975) and the dLGN 

(Piscopo et al., 2013). 

The vast majority of tectogeniculate projections are non-GABAergic 

To determine whether TG projections contain GABA, we performed two 

different experiments. First, we iontophoretically injected CTB-488 into the dLGN of 

GAD2-cre-Ai9 mice (in which tdTomato is expressed in GABAergic neurons) to label 
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TG cells by retrograde transport, as described and illustrated above (n = 3). A one in 

two series of sections from each case was mounted on slides, and all SC sections that 

contained CTB-labeled cells were imaged using a confocal microscope using 2 μm 

optical sections (Fig. 3A). In each imaged section, the number of CTB-labeled cells 

within the SGS that did (Fig. 3B, C, arrow) or did not (asterisks) contain TdTomato 

were counted. This analysis revealed that very few TG cells contained TdTomato 

(case 1, 19 of 497 TG cells, or 3.82%; case 2, 36 of 629 TG cells, or 5.72%; case 3, 9 

of 226 TG cells, or 3.98%; three cases combined, 64 of 1352 TG cells, or 4.73%), 

indicating that 95% of TG cells are non-GABAergic cells. 

Next, we injected a cre-dependent virus in the SC of GAD2-cre mice (n = 8; 

Fig. 3D) to label GABAergic cells in the SC and their axons projections with the red 

fluorescent protein tdTomato. The tdTomato-labeled axon projections of GABAergic 

SC neurons were densely distributed within the ventral lateral geniculate nucleus and 

pretectum. Sparse projections could also be detected in the dLGN (Fig. 3E), as 

described previously (Gale and Murphy, 2014). Together, these experiments 

demonstrate that a small population of TG cells are GABAergic and sparsely 

innervate the dLGN. 

TG terminals: a new class of dLGN synaptic profile 

The majority of cells in the mouse SGS prefer relatively small stimuli (6–10°), 

although this varies widely with cell type (Wang et al., 2010; Gale and Murphy, 

2014). In the dLGN, direction-selective cells prefer larger spot sizes (17.2 ± 3.66°; 

Piscopo et al., 2013), potentially due to convergence of retinogeniculate and/or TG 
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inputs on their widespread dendritic arbors (Fig. 1F; Krahe et al., 2011). To determine 

how TG projections are distributed on the dendritic arbors of the W-like cells in the 

dorsolateral shell, we next examined the ultrastructure of TG synaptic terminals and 

their postsynaptic dendrites and compared these projections to those formed by RG 

and CG projections. 

Four major types of terminals have been found to make up the neuropil of the 

dLGN (Guillery, 1969; Bickford et al., 2010): (1) large glutamatergic terminals that 

contain round vesicles and distinctive mitochondria with widened cristae that make 

them appear pale relative to surrounding mitochondria (RLP profiles), identified as 

RG terminals (Robson and Mason, 1979; Fig. 4G,J,K, red); (2) small glutamatergic 

terminals with round vesicles and dark mitochondria (RS profiles; Fig. 4G, blue), 

which primarily originate from the cortex (Erisir et al., 1997); (3) profiles that contain 

GABA within densely packed flattened or pleomorphic vesicles (F1 profiles), 

contributed by the thalamic reticular nucleus, pretectum, or interneuron axons (Wang 

et al., 2001, 2002); and (4) interneuron dendritic terminals (Hamos et al., 1985) that 

contain GABA and loosely packed vesicles (F2 profiles). 

To examine the ultrastructure of TG terminals, we first placed injections of 

BDA in the mouse SC to label terminals by anterograde transport, and then stained 

dLGN sections containing labeled terminals with an antibody against GABA. We 

found that three types of terminals were labeled: (1) RLP profiles, (2) F1 profiles, and 

(3) non-GABAergic profiles that contained round vesicles and dark mitochondria but 

that were larger than RS profiles (RM profiles; Fig. 4A–F, J, K). 
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We interpret the BDA-labeled RLP profiles as retinal terminals originating 

from axons that branch to innervate both the dLGN and SC (Tamamaki et al., 1995); 

we demonstrated previously in cats that SC BDA injections can be used to label the 

geniculate branches of retinotectal axons (Datskovskaia et al., 2001). The BDA-

labeled F1 profiles originate either from the SC (based on the results described above) 

or from other sources, such as GABAergic pretectal cells that innervate the dLGN 

(Cucchiaro et al., 1991; Bickford et al., 2000; Wang et al., 2002) and SC (Baldauf et 

al., 2003). We interpret the BDA-labeled RM profiles as TG terminals that originate 

from the non-GABAergic TG cells described above. 

To quantify TG terminal morphology without the complications of uptake by 

fibers of passage, we injected an AAV into the SC to induce the expression of the red 

fluorescent protein tdTomato in SC neurons and their axon projections (Fig. 1A–D). 

Using an antibody to detect the tdTomato, we then examined the ultrastructure of the 

virus-labeled terminals. It is important to note that none of the virus-labeled TG 

terminals contained pale mitochondria, indicating that TG terminals can be 

distinguished from RG profiles based on the ultrastructure of their mitochondria 

(Robson and Hall, 1977). We also found that virus-labeled TG terminals were 

significantly smaller than RLP profiles (Fig. 4H; one way ANOVA, p < 0.0001). 

Moreover, TG terminals were significantly larger than CG terminals, which we 

labeled by injecting BDA in V1 (Fig. 3G; one way ANOVA, p < 0.001). Thus, TG 

terminals constitute a new class of dLGN synaptic profile. 
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Finally, we examined the size of the dendrites postsynaptic to RG terminals 

(identified by their ultrastructure; n = 179), virus-labeled TG terminals (n = 108), and 

BDA-labeled CG terminals (n = 87). As described previously for other species 

(Wilson et al., 1984; Li et al., 2003a), mouse RG terminals contact significantly larger 

(more proximal) dendrites compared to the dendrites contacted by CG terminals (Fig. 

4I; one way ANOVA, p < 0.0001). Surprisingly, we detected no significant difference 

in the size of dendrites contact by TG and RG terminals. This suggests that RG and 

TG terminals both innervate the more proximal dendrites of dLGN neurons. In fact, 

we noted that in some cases TG terminals contacted dendrites that were also contacted 

by RLP profiles (Fig. 4J, K), indicating convergence of TG and RG inputs onto single 

neurons of the dorsolateral shell. 

TG responses are “driver-like” and converge with RG inputs 

To examine the postsynaptic responses in the dLGN elicited by activation of 

TG inputs, we injected an AAV carrying the coding sequence for TdTomato and the 

channel rhodopsin variant Chimera EF with I170 mutation (Jurgens et al., 2012). This 

induced the expression of TdTomato/ChIEF in TG terminals within the dorsolateral 

shell (Fig. 1A–C). Whole-cell recordings of dLGN cells were obtained with biocytin-

filled pipettes within regions of the dorsolateral shell that contained labeled TG 

terminals (Fig. 5A). Blue light stimulation of these regions (1–100 ms duration) 

evoked large and reliable EPSPs that were capable of eliciting trains of action 

potentials that faithfully followed the duration and temporal frequency of stimulation 

(Fig. 5B–D). At hyperpolarized membrane potentials, light-activated EPSPs could 
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also evoke low-threshold Ca2+ spikes and burst firing (Fig. 5B). These light-evoked 

responses were unaffected by bath application of the GABAA receptor antagonist 

bicuculline (10 μm), were reduced in amplitude by bath application of the NMDA 

antagonist AP5 (50 μm), and completely abolished with the subsequent addition of the 

AMPA receptor antagonist DNQX (10 μm; Fig. 5C, D). Gale and Murphy (2014) 

demonstrated previously that inhibitory postsynaptic potentials can be elicited in 

dLGN cells when the GABAergic TG projections are isolated for activation using 

optogenetic techniques in transgenic animals. However, our experimental protocols 

did not detect this minor projection. Reconstructions of biocytin-filled cells that were 

activated by blue light (n = 32) indicated they all displayed W-like morphology (Fig. 

5A; dendritic orientation index, 0.5–0.79; Krahe et al., 2011). Together, our 

anatomical and physiological results indicate that the vast majority of TG terminals 

are glutamatergic and contact the proximal dendrites of W cells in the dorsolateral 

shell of the dLGN. 

Voltage-clamp recordings to pairs (Fig. 6A) or trains (B) of repetitive pulses of 

blue light revealed a strong synaptic depression. Paired-pulse stimulus presentation 

(100 ms interstimulus interval) showed an approximately twofold reduction in EPSC 

amplitude between the initial (EPSC1) and second response (EPSC2; PPR mean, 

0.56; n = 15; Fig. 6A). A similar form of paired-pulse depression was observed with a 

20 Hz train of light, with response amplitudes of subsequent EPSCs showing no 

further reduction (Fig. 6B; n = 12). To compare this feature of TG responses to those 

of simultaneously recorded retinogeniculate synaptic responses, we electrically 
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stimulated the OT to activate RG terminals. We found that neurons that exhibited a 

light-evoked TG response were also activated by electrical stimulation of the OT (Fig. 

7; n = 6). Both sets of responses were large in amplitude (mean ± SEM; RG = 601 ± 

58.8 pA; TG = 238 ± 34.1 pA, both n = 6; paired t test indicates significant difference 

at p = 0.002), blocked by glutamate antagonists (n = 3; Fig. 6, inset), and showed 

paired-pulse depression. At shorter interstimulus intervals (50 ms vs 500 ms), PPR 

values reflected a greater form of depression for TG to compared to RG stimulation 

(paired t test, p < 0.001). Such excitatory convergence is consistent with our 

ultrastructural results (Fig. 4J, K). The differences in overall EPSC amplitudes and 

PPRs of these two terminal types may reflect the smaller terminal profiles of TG input 

(Fig. 4H) and/or the complement of presynaptic proteins that regulate the synaptic 

vesicle cycle (Kielland et al., 2006; Wei et al., 2011). 

Neurons postsynaptic to TG terminals contact non-GABAergic dendrites in V1 

layer I 

In primates, TG projections are confined to the koniocellular layers of the 

dLGN (Harting et al., 1991), which project to the superficial layers of V1 (Hendry 

and Yoshioka, 1994; Casagrande et al., 2007). Similarly, W cells in the tectorecipient 

layers of the cat dLGN project primarily to the superficial layers of V1 (Anderson et 

al., 2009). To test whether a similar organization is found in the mouse, we combined 

retrograde tracing techniques with viral vector injections. To label dLGN cells that 

project to layer I, we placed small pieces of filter paper infused with CTB-488 on the 

surface of V1 (Fig. 8A); in the same animals, we placed virus injections in the SC 
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(Fig. 8B) to label TG terminals. In cases in which there was no damage to the cortex 

surface and the placement of the tracer was confined to the most superficial layers 

(Fig. 8A), dLGN cells labeled by retrograde transport were confined to the 

dorsolateral shell, overlapping the distribution of TG terminals (Fig. 8C). This 

corresponds with a previous study in which tracer or virus injections confined to the 

superficial layers of V1 labeled cells in the dorsolateral shell (Cruz-Martín et al., 

2014). To determine whether layer I projecting cells receive direct input from the SC, 

we repeated these dual tracing experiments and then prepared the tissue for acute in 

vitro electrophysiology. Using only cases in which we confirmed that the cortex was 

not damaged by our CTB placement, we targeted our recordings to CTB-488-labeled 

dLGN cells using epifluorescence to guide the placement of our pipettes and then 

activated the TG terminals using blue light pulses. As expected, layer I projecting 

cells displayed W-like morphology (Fig. 8D) and responded to light activation of TG 

input (E). 

Finally, to identify the V1 synaptic targets of TG-recipient neurons, we placed 

BDA injections in the dLGN (Fig. 9A, inset) to label geniculocortical terminals (A) 

and examined the layer I projections (A, arrows; B) in tissue processed for electron 

microscopy. This tissue was also stained with an antibody against GABA. Although 

layer I contains a high density of GABAergic neurons (Ma et al., 2014), virtually all 

dLGN projections within layer I of V1 contacted non-GABAergic dendrites (85 of 87 

synaptic contacts, or 98%; Fig. 9C). Thus, TG projections likely influence the activity 
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of lower-layer excitatory spiny cells, which extend their apical dendritic tufts within 

layer I of V1. 

Discussion 

The mouse dLGN contains at least two functional subdivisions: the core and 

its surrounding dorsolateral shell (Dhande and Huberman, 2014). Our results, 

combined with those of previous studies, indicate that the circuits formed by these 

two zones are fundamentally different (Fig. 10). Within the core, neurons exhibit X- 

or Y-like morphology (i.e., biconical or symmetrical dendritic fields; Krahe et al., 

2011) and project to layer IV of V1, whereas neurons in the shell exhibit W-like 

morphology (hemispheric dendritic arbors) and project to layer I of V1 (Krahe et al., 

2011; Cruz-Martín et al., 2014). Moreover, although both core and shell neurons 

receive cortical input on their distal dendrites, the innervation of their proximal 

dendrites is quite distinct. The proximal dendrites of core neurons are innervated by 

non-direction-selective ganglion cells (Huberman et al., 2008; Bickford et al., 2010; 

Kim et al., 2010; Kay et al., 2011), which drive center-surround receptive field 

properties (Piscopo et al., 2013). In contrast, the proximal dendrites of shell neurons 

receive convergent input from both direction-selective ganglion cells (Huberman et 

al., 2009; Kay et al., 2011; Rivlin-Etzion et al., 2011; Dhande et al., 2013; Cruz-

Martín et al., 2014) and the SC. Presumably, the integration of these two inputs 

underlies emergent direction-selective properties of dorsolateral shell neurons 

(Marshel et al., 2012; Piscopo et al., 2013; Scholl et al., 2013; Zhao et al., 2013). 
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The concept of driver inputs was defined based on the properties of RG 

terminals in regions homologous to the core of mouse dLGN (i.e., the A laminae of 

the cat dLGN; Sherman and Guillery, 1998). Inputs that can be classified as drivers 

are (1) large terminal profiles that synapse on proximal dendrites, (2) inputs that elicit 

fast primarily ionotropic glutamate transmission, and (3) inputs that when stimulated 

repetitively exhibit a high probability of glutamate release and synaptic depression 

(Guillery and Sherman, 2002; Li et al., 2003a, b). TG inputs exhibit many features of 

driver terminals. We found that these inputs are relatively large profiles that are 

located on proximal regions of the dendrites and display robust, fast excitatory 

transmission and synaptic depression. The similarities between RG and TG inputs 

suggest that in the dorsolateral shell, two driver-like inputs converge on single 

thalamocortical relay cells. 

However, we use the term “driver-like” to describe converging TG and RG 

inputs with the proviso that such convergence contradicts the idea that each thalamic 

neuron is driven by one source of input, while all remaining inputs modulate this 

primary response (Sherman and Guillery, 1998). Similar examples of driver-like 

convergence illustrate the complexity of thalamic organization. The dorsal thalamus 

may be divided not only into “first order” (driven by ascending peripheral input) or 

“higher order” (driven by descending cortical input) nuclei (Guillery and Sherman, 

2002), but also “second order” nuclei driven by convergent, ascending inputs (Kelly 

et al., 2003; Smith et al., 2007; Chomsung et al., 2008; Masterson et al., 2009, 2010), 

or nuclei that contain unique combinations of ascending and descending driver-like 
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inputs (Baldauf et al., 2005; Rovo et al., 2012; Groh et al., 2014). Such diversity may 

dramatically increase the computational capabilities of the thalamus, reflecting its 

essential roles in sensory, motor, and sensory-motor circuits. 

In the dLGN shell, the convergence of RG and TG inputs may be necessary to 

calculate the trajectory of visual stimuli in relation to movement of the eyes. In vitro 

studies of the SC indicate that tectothalamic cells in the superficial layers of the SC 

are disynaptically inhibited by deeper-layer premotor cells that innervate intrinsic 

GABAergic interneurons (Phongphanphanee et al., 2011). This circuit has been 

proposed to underlie “saccadic suppression,” the attenuation of visual signals that 

occurs during the execution of eye or body movements to prevent blurring of the 

visual field. Alternatively, we suggest that this circuit could be used to adjust TG 

signals to reflect the direction and amplitude of impending body movements. In other 

words, TG inputs could be thought of as “backseat drivers” that alert shell neurons to 

movement commands generated by the superior colliculus. The resultant changes in 

the amplitude and/or timing of TG inputs could alter the response properties of 

dorsolateral shell neurons to reflect the contributions of self-generated and externally 

generated movement (for discussion of similar circuits, see Sommer and Wurtz, 

2008). Thus, while silencing TG inputs in anesthetized animals may have relatively 

subtle effects on the receptive field properties of dLGN neurons (Xue et al., 1994), we 

predict that in behaving animals, TG inputs may strongly influence the manner in 

which neurons in the dorsolateral shell respond to moving visual stimuli. 
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Using calcium imaging techniques, Cruz-Martín et al. (2014) demonstrated 

that geniculocortical axons in the superficial layers of mouse V1 exhibit direction-

selective responses, and our study indicates that these axons synapse on non-

GABAergic dendrites. This arrangement suggests that tectorecipient dorsolateral shell 

neurons target the apical dendrites of neurons located in the deeper cortical layers of 

V1 (Fig. 10). Thus, V1 neurons may inherit direction selectivity not only via DSGCs 

(Cruz-Martín et al., 2014), but also from a driver-like circuit that originates in the SC. 
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Figure 1. Components of the dLGN dorsolateral shell 

In TRHR mice, in which GFP is expressed in direction-selective retinogeniculate 

terminals (green), virus injections were placed in the SC (inset in panel C) to induce 

the expression of TdTomato in tectothalamic terminals (red). A caudal (A) to rostral 

(C) series of sections illustrates the overlap of tectogeniculate and TRHR 

retinogeniculate terminals in the dorsolateral shell of the dLGN (also shown at higher 

magnification in panel D). Cells filled with biocytin in TRHR animals exhibit “W 

cell” morphology (E, arrow indicates cell shown at higher magnification in F). Scale 

bars: C = 100 µm and also applies to A and B, D = 20 µm, E = 100 µm, F = 25 µm. 
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Figure 2. Tectogeniculate (TG) topography 

Small iontophoretic injections of CTB in the lateral dLGN (A, coronal section, F, 3D 

reconstruction of dLGN, red) labeled corticogeniculate cells in layer VI of rostral V1 

and the lateromedial (LM) cortex (A), and TG cells in the lateral stratum griseum 

superficiale (SGS) of the SC (D, coronal section, red arrow, G, 3D distribution, red 

dots). Small iontophoretic injections of CTB in the medial dLGN (C, coronal section, 

F, 3D reconstruction of dLGN, green) labeled corticogeniculate cells in layer VI of 

caudal V1 (B) and TG cells in the medial SGS (E, coronal section, green arrow, G, 3D 

distribution, green dots). Based on the SC receptive field positions mapped by Dräger 

and Hubel (1976), TG projections to the medial and lateral dLGN likely represent 

upper and visual fields respectively (schematically indicated in G). Scale bars: A = 

500 µm and applies to B and C. D = 250 µm and also applies to E. Orientation of 3D 

reconstructions in F and G indicated by arrows, D, dorsal, L, lateral, C, caudal. 
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Figure 3. Tectogeniculate projections are primarily nonGABAergic 

Injections of CTB-488 were inotophoretically injected into the dLGN of GAD2-cre 

mice crossed with Ai9 reporter mice. These injections labeled cells in the SGS (A, 

confocal 6 µm optical image) by retrograde transport (green cells) that were largely 

non-overlapping with the population of GABAergic neurons labeled with tdTomato 

(red cells). The rectangle in A indicates the region shown in 2 µm optical images at 

higher magnification in B (CTB and tdTomato-labeled cells) and C (tdTomato only). 

Most CTB-labeled neurons did not contain tdTomato (asterisks), but tdTomato could 

be detected in 5% of CTB-labeled cells (e.g. cell indicated by the arrows). Large 

injections of cre-dependent virus into the SC of GAD2-cre mice (D, pseudocolored 

green) labeled sparse projections in the dLGN (E, green). Scale bars: A = 50 µm, B = 

25 µm and also applies to C, D = 100 µm and also applies to E. 
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Figure 4. Ultrastructure of tectogeniculate (TG) terminals 

TG terminals (dark reaction product A-F, J, K) are significantly larger than 

corticogeniculate (CG) terminals (blue, G), and significantly smaller than 

retinogeniculate terminals (red, G, J, K) identified by their pale mitochondria (*) as 

RLP profiles. The cumulative distribution of terminals sizes is illustrated in panel H. 

RLP, TG and CG terminals primarily contact (arrows) nonGABAergic relay cell 

dendrites (green). GABAergic profiles are identified by a high density of overlying gold 

particles (purple). The cumulative distribution of postsynaptic dendrite sizes is 

illustrated in panel I.  CG terminals contact dendrites that are significantly smaller than 

the dendrites contacted by TG and RLP terminals. RLP and TG converge to innervate 

larger caliber dendrites (J, K). Scale bar = 1 um and applies to A-G, J, K.  
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Figure 5. Light-evoked tectogeniculate (TG) responses 

Confocal image of a coronal section of the dorsal lateral shell of the dLGN depicting 

a W-like biocytin-filled relay neuron (green) and tectogeniculate axons (red) 

expressing tdTomato following a virus injection in the SC (A). Whole cell current-

clamp recording showing large postsynaptic excitatory responses of a dLGN cell 

evoked by blue light stimulation (200ms pulse) of tectogeniculate terminals 

expressing ChIEF. Responses recorded at different holding potentials (B). Optically 

evoked postsynaptic responses of the same cell before and during bicuculline (BIC, 

25 μM), d(–)-2-amino-5-phospho-pentanoate (AP5, 50μM), and 6,7-

dinitroquinoxaline-2,3-dione (DNQX,10μM) application. BIC and AP5 had little to no 

effect to synaptic response whereas DNQX application completely abolished it (C). A 

similar effect could be observed when the cell was stimulated by a train of light pulses 

(20 pulses at 10 Hz; D). 
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Figure 6. Synaptic depression of tectogeniculate (TG) responses 

A) Representative voltage-clamp recording of postsynaptic responses in dLGN 

evoked by paired-pulse light stimulation (100ms interstimulus interval) of ChIEF 

expressing SC terminals (average of 10 responses; top). Summary plot depicting the 

paired pulse ratio (EPSC2/EPSC1) for 15 relay cells evoked by the same stimulus 

conditions (bottom). Gray symbols represent PPR of individual cells and the black 

symbol represents the mean and S.E.M. PPRs reflect strong synaptic depression. B) 

Representative recording showing TG synaptic responses evoked by a 20 Hz train of 

light (average of 10 responses, top). Summary plot showing the degree of depression 

of light evoked EPSCs as a function of stimulus number for 12 neurons (bottom). To 

calculate percent depression the amplitude of the nth response was divided by the first 

response and multiplied by 100. 
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Figure 7. Functional convergence of TG and RG inputs 

A, top: Schematic diagram showing whole-cell recordings from a dLGN relay neuron 

following electrical stimulation of RG axons in the optic tract, and photostimulation 

of TG terminals in the dorsolateral shell. Beneath are EPSCs recorded in a single cell 

evoked by repetitive activation (20 Hz) of RG (red traces) and TG (black traces) 

inputs. Both sets of responses showed synaptic depression. Red and blue ticks indicate 

corresponding stimulus protocols. A, Inset: Expanded traces of the first 2 RG (red) 

and TG (black) responses under control conditions. Superimposed gray traces depict 

responses following bath application of DNQX and CPP; these glutamate receptor 

antagonists abolished both sets of responses. B, Examples RG (red) and TG (black) 

EPSCs evoked by paired pulse stimuli (50 and 500 ms inter-stimulus intervals). C, 

Summary plot showing the mean and S.E.M. (n = 6) of PPRs for RG (red) and TG 

(black) EPSCs at 50 and 500 ms interstimulus intervals. At 50 ms, the TG PPR was 

smaller indicating greater synaptic depression. Asterisk depicts p < 0.001.   
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Figure 8. Tectorecipient dLGN neurons project to V1 layer I 

Cholera toxin subunit B conjugated to Alexafuor 488 (CTB-488)-infused filter paper 

applied to layer I of V1 (A) paired with viral vector injections in the superior colliculus 

(SC, B) resulted in the retrograde labeling of dorsal lateral geniculate nucleus (dLGN) 

cells (green, C) in regions of the dLGN innervated by tectal terminals (red, C). CTB-

labeled cells (green, D) filled with biocytin (red, D) responded to photoactivation of 

surrounding tectogeniculate terminals with large amplitude EPSCs that exhibited 

frequency-dependent depression (E). LPN, lateral posterior nucleus, OT, optic tract, SC, 

superior colliculus. Scale bars: A-C = 100 µm, D = 20 µm. 
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Figure 9. Synaptic targets of dLGN projections to V1 layer I 

Injections of biotinylated dextran amine (BDA) in the dLGN (A, inset) labeled 

terminals that were distributed primarily in layer IV of V1 (A), but also innervated layer 

I of V1 (A, arrows, panel B). Electron microscopic analysis of BDA-labeled 

geniculocortical terminals in layer I of V1 indicated that the majority (98%) of these 

terminals contact (C, arrows) nonGABAergic dendrites (C, pink). LPN, lateral posterior 

nucleus, OT, optic tract, SC, superior colliculus. Scale bars: A = 100 µm, A inset = 100 

µm, B = 10 µm, C = 0.5 µm. 

 

  



59 

 

  



60 

Figure 10. Distinct functional circuits in the dLGN core and shell 

The summary diagram depicts the circuits of the dLGN shell revealed in the current 

study on the left side, and the circuits of the dLGN core revealed in previous studies on 

the right side.  

Core: The core contains cells that display “X-like” and “Y-like” morphology (Krahe et 

al., 2011). These neurons receive input from V1 (gray, RS) on their distal dendrites and 

input from non-direction-selective (non-DS) retinal ganglion cells (green, RLP) on their 

proximal dendrites, which drive center-surround receptive field properties (Bickford et 

al., 2010; Huberman et al., 2008; Kay et al., 2011; Kim et al., 2010; Piscopo et al., 

2013). Core cells project to layer IV of VI (Cruz-Martín et al., 2014).  

Shell: The shell contains cells that display “W-like” morphology. Like core neurons, 

shell neurons receive input from the cortex (gray, RS) on their more distal dendrites, 

but their proximal dendrites are innervated by convergent input from direction-selective 

(DS) retinal ganglion cells (blue, RLP; Cruz-Martín et al., 2014), as well as the superior 

colliculus (red, RM). Presumably, the integration of DS retinal and SC inputs underlies 

emergent direction-selective properties of dorsolateral shell neurons (Marshel et al., 

2012; Piscopo et al., 2013; Scholl et al., 2013; Zhao et al., 2013). Shell neurons project 

to layer I (current results as well as those of Cruz-Martin et al., 2014), where they 

contact the dendrites of nonGABAergic pyramidal cells.  
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CHAPTER III 

THE MOUSE PULVINAR NUCLEUS: ORGANIZATION OF THE 

TECTORECIPIENT ZONES2 

  

Overview 

Comparative studies have greatly contributed to our understanding of the 

organization and function of visual pathways of the brain, including that of humans. 

This comparative approach is a particularly useful tactic for studying the pulvinar 

nucleus, an enigmatic structure which comprises the largest territory of the human 

thalamus. This review focuses on the regions of the mouse pulvinar that receive input 

from the superior colliculus, and highlights similarities of the tectorecipient pulvinar 

identified across species. Open questions are discussed, as well as the potential 

contributions of the mouse model for endeavors to elucidate the function of the 

pulvinar nucleus. 

The pulvinar nucleus is considered one of the most enigmatic thalamic regions. 

Factors that contribute to its mystery are the vast array of anatomical connections that 

involve the pulvinar nucleus, its reduced activity in anesthetized or restrained animals, 

and the resulting difficulties in determining the circuits and stimuli that contribute to its 

receptive field properties. Additionally, although the pulvinar is commonly considered 

a single thalamic nucleus, it contains a number of distinct subregions which may be 

                                                             

2. Zhou N, Maire PS, Masterson SP, Bickford ME. Vis Neurosci. Published online: 27 June 2017. DOI: 

https://doi.org/10.1017/S0952523817000050. 
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differentially involved in the various functions ascribed to the pulvinar (e.g. visual 

attention, decision making, motor planning, perceptual suppression, synchronization of 

cortical activity, detection of faces or fearful stimuli; Dominguez-Vargas et al., 2017; 

Grimaldi et al., 2016; Van Le et al., 2014; Le et al., 2014, 2016; McFadyen et al., 2017; 

Soares et al., 2017; Wilke et al., 2009, 2010, 2013; Zhou et al., 2016). In order to 

understand how the pulvinar contributes to these various tasks, the synaptic circuits 

within each subregion must first be defined. 

This review focuses on circuits of the mouse lateral posterior nucleus (LPN), a 

region considered to be the homologue of the primate pulvinar nucleus (Harting et al., 

1972). As schematically illustrated in Figure 11, this homology is based to a large extent 

on commonalities in the projections of the superficial (visual) layers of the superior 

colliculus (SC), or optic tectum, to the primate pulvinar nucleus, rodent/carnivore LPN, 

and avian nucleus rotundus (Harting et al., 1973b; Robson and Hall, 1977; Berson and 

Graybiel, 1978; Mooney et al., 1984; Takahashi, 1985; Abramson and Chalupa, 1988; 

Luppino et al., 1988; Hutsler and Chalupa, 1991; Villeneuve and Casanova, 2003; Kelly 

et al., 2003; Chomsung et al., 2008; Masterson et al., 2009, 2010; Baldwin et al., 2011; 

Wei et al., 2011b; Fredes et al., 2012; Baldwin et al., 2013). Because of these similarities, 

we will refer to this region of the mouse thalamus as the pulvinar nucleus. We hope that 

this nomenclature will assist in comparative studies that may contribute to our 

understanding of the organization and function of the pulvinar nucleus across species, 

including that of humans. In order to most explicitly relate the organization of the 

mouse pulvinar to that of other species, this review emphasizes the regions that receive 
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input from the SC. Although the size of the tectorecipient zones relative to the entire 

extent of the pulvinar nucleus varies across species, there are a number of similarities 

in the organization of these zones as discussed below.  

Tectopulvinar cells 

The SC projections to the pulvinar nucleus originate from a unique class of cells, 

termed widefield vertical (WFV) cells (Figure 12). WFV cells have been identified in 

a variety of species (chicken, pigeon, mouse, rat, ground squirrel, gray squirrel, tree 

shrew; (Mooney et al., 1988; Karten et al., 1997b; Luksch et al., 1998, 2001; Major et 

al., 2000; Marín et al., 2003; May, 2006; Chomsung et al., 2008; Endo et al., 2008; Isa 

and Hall, 2009; Kaneda et al., 2011; Fredes et al., 2012; Gale and Murphy, 2014); in 

each case these cells display very large dendritic fields that cover significant regions of 

the SC or optic tectum.  Based on the configuration of their dendritic arbors, and 

interaction with retinotectal inputs in vitro (Luksch et al., 2001; Endo et al., 2008), 

WFV cells have been referred to as motion detectors (Major et al., 2000). This concept 

has been corroborated in vivo in the mouse, where it has been demonstrated that WFV 

cells respond best to a small visual stimulus moving in any direction within a large 

visual field (Gale and Murphy, 2014, 2016). 

In the ground squirrel, two types of WFV cells have been identified. Type I 

WFV cells extend their dendrites to the most superficial extent  of the SC (within the 

most dorsal regions of the stratum griseum superficiale, or SGS), while type II WFV 

cell dendrites end in the middle of the SGS (Major et al., 2000). These two cell types 

have been found to project to different regions of the pulvinar nucleus (Fredes et al., 
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2012; described in more detail below). Similar to type I and type II WFV cells, the 

dendrites of type I and type II tectorotundal cells end in different lamina of the chick 

optic tectum (Luksch et al., 1998), and each type responds differentially to electrical 

stimulation of retinal input (Luksch et al., 2001).  

In the mouse, WFV cells have not been subdivided. However, the availability 

of transgenic mouse lines (e.g. Byun et al., 2016; Gale and Murphy, 2014, 2016) may 

help to facilitate the categorization of these cells. If subclasses of WFV cells exist in 

the mouse, those that extend dendrites most superficially within the SC (Figure 12C) 

could potentially be innervated by populations of retinal axons that are restricted to 

the most superficial regions of the SGS (e.g. those that originate from direction-

selective ganglion cells; Rivlin-Etzion et al., 2011). Future studies in mice may take 

advantage of ganglion cell-specific transgenic lines to determine whether WFV cells 

are innervated by single ganglion cell subtypes (to form dedicated parallel channels of 

information flow to the pulvinar) or whether they receive convergent input from 

multiple classes of ganglion cells.  

Tectopulvinar projection patterns 

The projections of WFV cells target specific subregions of the pulvinar. In the 

mouse, the caudal medial pulvinar (Pcm) receives bilateral input from WFV cells and 

the lateral pulvinar (Pl) receives input from ipsilateral WFV cells (Figure 13). Similar 

projection patterns have previously been identified in the rat (Takahashi, 1985), and 

these two subdivisions can be distinguished with a variety of immunocytochemical 

markers (Nakamura et al., 2015). In the mouse, the Pcm contains a dense population 
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of terminals that contain substance P (Figure 14). Similarly, the primate posterior 

(PIp) and central medial (PIcm) subdivisions of the inferior pulvinar (Figure 11) also 

contain a dense population of terminals that stain for substance P (Stepniewska et al., 

2000). The mouse Pcm can also be defined based on cells that contain both the 

calcium-binding protein calretinin and express the substance P receptor neurokinin 1 

(NK1, Figure 13); in contrast, the Pl does not stain with antibodies against substance 

P, NK1, or calretinin (Figures 13 and 14).   

The organization of tectorecipient zones in the mouse pulvinar is very similar 

to that identified in the ground squirrel, where the caudal pulvinar receives bilateral, 

nontopographic SC projections that originate from type I WFV cells, while the rostral 

pulvinar receives topographic, ipsilateral SC projections that originate from type II 

WFV cells (Fredes et al., 2012). As illustrated in Figure 11, two types of tectopulvinar 

projections, nontopographic or “diffuse” projections and topographic “specific” 

projections, have also been identified in gray squirrels (Baldwin et al., 2011), tree 

shrews (Chomsung et al., 2008; Luppino et al., 1988), and galagos (Baldwin et al., 

2013). In the tree shrew, the nontopographic tectal projections are highly convergent. 

These tectopulvinar terminals form dense clusters that surround and synapse on single 

pulvinar dendrites. In contrast, the topographic projections are less convergent and 

form smaller, more discrete, synaptic clusters (Chomsung et al., 2008; Wei et al., 

2011b). These two tectopulvinar innervation patterns have been revealed across 

species using antibodies against the type 2 vesicular glutamate transporter (vGLUT2, 

contained in tectopulvinar terminals; Wei et al., 2011b); vGLUT2 staining is very 
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dense in regions of the pulvinar that receive convergent tectal input, and lighter in 

regions that receive topographic tectal projections (Chomsung et al., 2008; Baldwin et 

al., 2011, 2013). Multiple tectopulvinar pathways that originate from separate SC cell 

types have also been identified in the cat (Abramson and Chalupa, 1988; Kelly et al., 

2003), and in the pigeon, a unique interdigitated pattern of tectorotundal projections 

originate from separate optic tectum cell types (Marín et al., 2003).  

The precise organization of tectopulvinar projections has not been studied in 

mice. Tracing the axonal projections of single WFV cells would facilitate our 

understanding of the organization and potential topography of this pathway. 

Monosynaptic circuit tracing (Wickersham et al., 2007) in transgenic mice (e.g. 

calretinin-cre mice), could also help to determine whether subclasses of WFV cells 

target distinct pulvinar subdivisions. In many species, the pulvinar has been 

subdivided using histochemical staining for the enzyme acetylcholinesterase and/or 

immunohistochemical staining for the neuromodulator substance P (Graybiel and 

Berson, 1980; Abramson and Chalupa, 1988; Luppino et al., 1988; Hutsler and 

Chalupa, 1991; Stepniewska et al., 1999; Kelly et al., 2003; Chomsung et al., 2008; 

Baldwin et al., 2011, 2013; Fredes et al., 2012). Where examined, these two stains 

overlap to a great extent, perhaps due to involvement of acetylcholinesterase in the 

hydrolysis of substance P (Goebel and Pourcho, 1992). Studies in the cat and rat 

suggest that the expression of substance P in tectopulvinar pathways is 

developmentally regulated, and influenced by visual input (Miguel-Hidalgo et al., 

1990, 1991; Behan et al., 1993). The mouse is an ideal model to further define the role 
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of substance P in tectopulvinar pathways by using transgenic lines, optogenetics, 

and/or designer receptors exclusively activated by designer drugs (DREADD) to 

manipulate substance P pathways and characterize any resulting behavioral effects.  

Synaptic properties of tectopulvinar terminals 

Tectopulvinar terminals have consistently been found to form clusters of 

relatively large terminals that surround and synapse on the proximal dendrites of 

pulvinar neurons (Partlow et al., 1977; Robson and Hall, 1977; Crain and Hall, 1980a; 

Kelly et al., 2003; Chomsung et al., 2008; Masterson et al., 2009; Wei et al., 2011b; 

Bickford, 2015); tectopulvinar terminals in the mouse exhibit similar characteristics 

(Figure 15B). In vitro slice studies in the rat and tree shrew have demonstrated that 

multiple tectopulvinar axons can converge on single cells (Masterson et al., 2010; Wei 

et al., 2011b), presumably contributing to the large receptive fields of pulvinar neurons 

(Chalupa et al., 1983; Mooney et al., 1984; Chalupa and Abramson, 1988; Casanova et 

al., 2001; Dumbrava et al., 2001; Berman and Wurtz, 2011a; Roth et al., 2016).  

Tectopulvinar terminals release glutamate to activate ionotropic glutamate 

receptors on postsynaptic neurons (Masterson et al., 2010; Wei et al., 2011c). 

Stimulation of tectopulvinar terminals at frequencies of up to 20Hz elicits 

postsynaptic responses that maintain relatively stable amplitudes (unlike the 

frequency-dependent amplitude changes demonstrated in other thalamic pathways; for 

review see Bickford, 2016). This frequency-independence may be due to the synaptic 

arrangements of these terminals and/or the presynaptic proteins contained within them 

(synapsin I and synapsin II; Wei et al., 2011b). Another unique feature of 
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tectopulvinar terminals is that stimulation at 100Hz can elicit their release of 

substance P which, through activation of neurokinin 1 receptors, can boost 

tectopulvinar responses (Masterson et al., 2010). 

Again, the mouse is an ideal model to study further details of the synaptic 

properties of tectopulvinar terminals. These terminals can be specifically activated 

using optogenetic techniques (Maire et al., 2015) and transgenic lines (e.g. mice that 

lack synapsins; Kielland et al., 2006; Song and Augustine, 2015) can potentially be 

used to determine the mechanisms that underlie their unique frequency-independence. 

Studies in mice may also reveal whether substance P is contained in all tectopulvinar 

projections, or confined to those originating from specific WFV subclasses. Our 

previous in vitro studies in the rat suggested that all tectopulvinar projections contain 

substance P (Masterson et al., 2010). However, our investigation was limited to the 

caudal most regions of the pulvinar (likely corresponding to the mouse Pcm; Figure 

14).  

Retinal innervation and plasticity of pulvinar pathways 

Tecto-pulvinar pathways have often been cited as the substrate mediating 

“blindsight”: the ability, in the absence of visual perception, to navigate using visual 

cues and respond to negative or fearful facial expressions (Leopold, 2012; Schmid 

and Maier, 2015).  However, it has recently been demonstrated that during 

development, the pulvinar transiently receives substantial direct input from the retina, 

which diminishes to sparser levels in adults.  This pathway shows considerable 

plasticity: in situations where V1 is lost at an early age, this retinopulvinar pathway 
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does not regress, and may account for the preservation of vision when lesions to V1 

occur during infancy (Warner et al., 2012; Kaas, 2015; Bridge et al., 2016).  

In the mouse, it has been demonstrated that at least some of the retinopulvinar 

projections arise from intrinsically photosensitive (melanopsin-containing) ganglion 

cells, and a portion of pulvinar neurons are functionally influenced by melanopsin-

derived signals (Allen et al., 2016). A melanopsin-dependent light aversion response 

in neonatal mice activates pulvinar cells, as well as cells in the amygdala (which as 

discussed below, receives input from the pulvinar; Delwig et al., 2012). Perhaps, as in 

primates, direct retinopulvinar projections in the mouse are also more robust during 

development and function to initiate basic movements in response to light. However, 

it is still unknown how direct retinopulvinar versus indirect retino-tecto-pulvinar 

pathways contribute to melanopsin-dependent pulvinar responses, and motor 

behaviors.  

Lesion studies in the hamster demonstrated that terminals originating from the 

retina, SC and cortex all compete for territory in the developing pulvinar nucleus; 

retinopulvinar terminations expand after SC lesions and/or combined SC and cortex 

lesions (Crain and Hall, 1980, 1981). Further investigations in mice may help to 

define mechanisms underlying the developmental competition between 

retinopulvinar, tectopulvinar and corticopulvinar projections, and how this might 

correlate with transitions from the simple light-aversive movements of neonates to the 

more complex visually-guided escape, freezing or prey capture behaviors of adult 

mice (Yilmaz and Meister, 2013; De Franceschi et al., 2016; Hoy et al., 2016).  
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The striate-recipient zones of the pulvinar 

Across mammalian species, the pulvinar also contains zones that are 

innervated by the striate cortex (cat; Berson and Graybiel, 1983; Guillery et al., 2001; 

Huppé-Gourgues et al., 2006; rat; Li et al., 2003c; macaque; Ogren and Hendrickson, 

1979). In rodents, terminals that originate from V1 innervate the Pl, as well as more 

rostral thalamic regions (the rostral medial pulvinar, Prm, and lateral dorsal nucleus, 

LD; Bourassa and Deschenes 1995; Rubio-Garrido et al 2009). These more rostral 

regions are well segregated from the tectorecipient zones. However, the mouse Pl 

shows considerable overlap in the distribution of terminals originating from the SC 

and V1 (Figure 16L, 17B). The striate- and tectorecipient zones of the pulvinar are 

also well segregated in other species, but may contain some zones of overlap (e.g. the 

cat LPl-2; Abramson and Chalupa, 1988; Chalupa and Abramson, 1989; Huppé-

Gourgues et al., 2006; Kelly et al., 2003). 

The striate-recipient zones of the mouse pulvinar form reciprocal connections 

with V1, with pulvinocortical projections to V1 ending primarily in layers I and V 

(Figure 18B; Herkenham, 1980; Roth et al., 2016). Retrograde tracing studies in the 

mouse indicate that the pulvinocortical projections to V1 are organized in a roughly 

topographic manner, but this organization is clearly different from the precise 

topography of connections between V1 and the dorsal lateral geniculate nucleus 

(dLGN; Roth et al., 2016).  In addition, tracing of single axons in the rat indicates that 

individual pulvinar cells that project to V1 also send projections to various areas of 

the extrastriate cortex, as well as the striatum (Nakamura et al., 2015).  
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V1 projections to the pulvinar have been shown to arise from cells in layer V, 

as well as cells in lower layer VI (cat; Abramson and Chalupa, 1985; rat; Bourassa 

and Deschênes, 1995; galago; Conley and Raczkowski, 1990; macaque; Lund et al., 

1975; mouse; Roth et al., 2016).  The terminals that arise from layer V cells are 

significantly larger than corticogeniculate terminals or tectopulvinar terminals (rat; 

Bourassa and Deschênes, 1995; tree shrew; Chomsung et al., 2008; Day-Brown et al., 

2017; cat; Guillery et al., 2001; Kelly et al., 2003; Huppé-Gourgues et al., 2006; rat; 

Li et al., 2003c; Masterson et al., 2009), and similar large V1 corticopulvinar 

terminals are found in the mouse (Figure 15A, 17A).  

Extrastriate connections of the mouse pulvinar nucleus 

Visual areas of the mouse cortex have been defined on the basis of 

corticocortical connections with V1 (Wang and Burkhalter, 2007). In this way nine 

distinct visual areas that surround V1 have been identified: posterior (P), postrhinal 

(POR), lateromedial (LM), laterointermediate (LI), anterolateral (AL), rostrolateral 

(RL), anterior (A) anteromedial (AM), and posterormedial (PM). All of these 

extrastriate visual areas are reciprocally connected to the mouse pulvinar nucleus 

(Tohmi et al., 2014), and also innervate the superior colliculus (Wang and Burkhalter, 

2013). The tectorecipient zones of the pulvinar are primarily connected with the 

lateral extrastriate cortex (LES, Figure 16C, G; primarily areas P, POR, LM and LI). 

These connections are roughly topographic, with the Pcm forming reciprocal 

connections primarily with more ventral regions (P and POR) and the Pl primarily 

forming connections with more dorsal regions adjacent to V1 (LM and LI; Figure 18, 
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9; Tohmi et al., 2014). However, given the widespread projections of single 

pulvinocortical axons identified in the rat (Nakamura et al., 2015), the exact 

organizational scheme of pulvinocortical projections remains an open question.  

Within the extrastriate cortical areas connected with the tectorecipient pulvinar, 

pulvinocortical terminals are concentrated in layer IV, and corticopulvinar cells are 

concentrated in layer VI (Figure 18D; Abramson and Chalupa, 1985; Chomsung et al., 

2010; Herkenham, 1980; Masterson et al., 2009; Nakamura et al., 2015; Roth et al., 

2016). Cortical terminals that innervate the tectorecipient zones of the pulvinar nucleus 

primarily form smaller terminals that innervate smaller, distal dendrites (Figure 15C; 

Chomsung et al., 2010; Masterson et al., 2009; Robson and Hall, 1977). Electrical 

stimulation of corticopulvinar terminals in tectorecipient zones of the rat initially elicits 

small amplitude glutamatergic excitatory postsynaptic potentials (EPSPs), but 

repetitive stimulation rapidly increases EPSP amplitudes in a frequency-dependent 

manner (Masterson et al., 2010). This contrasts with electrical activation of 

corticopulvinar terminals in more rostral regions of the rat pulvinar nucleus, where a 

second type of large amplitude EPSP can also be elicited, which exhibits a frequency-

dependent decrease in amplitude (Li et al., 2003b). These two types of EPSPs, which 

presumably result from the activation of terminals that originate from layer V or layer 

VI corticopulvinar cells, also differ in the degree of convergence onto single pulvinar 

neurons. Electrical stimulation of layer VI corticopulvinar axons with increasing 

current levels results in a graded increase in the amplitude of postsynaptic responses, 

demonstrating that many terminals converge on postsynaptic neurons. In contrast, 
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electrical stimulation of layer V corticopulvinar axons with increasing current levels 

results in “all or none” changes in the amplitude of postsynaptic responses, 

demonstrating that each postsynaptic neuron receives input from only a few of these 

axons (Li et al., 2003b; Masterson et al., 2010).  

The function of layer V versus layer VI corticopulvinar projections is still 

unclear. It has been proposed that layer V corticopulvinar projections function to 

transfer signals from one cortical area to another (Guillery and Sherman, 2002). It has 

also been suggested that layer V corticothalamic projections could function to detect 

the relative timing of sensory events and ongoing cortical activity (Groh et al., 2008). 

Experiments in mice could be designed to specifically manipulate the activity of layer 

V versus layer VI corticopulvinar projections to determine the effects on pulvinar 

activity, cortical activity and/or behavior. Such experiments would be particularly 

important for testing the hypothesis that layer V corticopulvinar projections are the 

primary determinant (“drivers”) of pulvinar neuron receptive field properties 

(Sherman and Guillery, 1998).  

Pulvinar projections to the striatum and amygdala 

The tectorecipient zones of the pulvinar also project to the striatum and lateral 

amygdala (Takahashi, 1985; Harting et al., 2001; McHaffie et al., 2005; Day-Brown et 

al., 2010; Nakamura et al., 2015; Roth et al., 2016), suggesting pulvinar involvement 

in the visual guidance of movement. Recently, activation of the mouse SC-pulvinar-

amygdala pathway has been shown to elicit freezing responses, while inactivation of 

this pathway inhibits the innate freezing response to overhead looming stimuli (Wei et 
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al., 2015). Similar pathways have been implicated in visually-triggered fear responses 

across species (Carr, 2015).  

In the tree shew, pulvinar-amygdala cells are concentrated in the regions of the 

pulvinar that receive the non-topographic projections from the SC (Pd, Figure 1, Day-

Brown et al., 2010). Likewise, mouse pulvinar-amygdala cells appear to be 

concentrated in the Pcm (Wei et al., 2015). In the rat, SC contacts on pulvinar-

amygdala cells have been identified (Linke et al., 1999), and cells in regions 

corresponding to the Pcm branch to innervate the ventral temporal cortex and 

amygdala (Doron and Ledoux, 2000), or caudal striatum (Nakamura et al., 2015). 

Thus, the bilateral SC-pulvinar-amygdala pathway (Figure 19A) may primarily 

function to activate freezing or escape responses. Mice could be used for future 

studies to determine whether the unilateral SC-pulvinar-striatum projections (Figure 

19B) trigger distinct motor responses, such as prey capture (Hoy et al., 2016).  

Cell types within the pulvinar nucleus 

Our understanding of the organization of the dLGN was greatly advanced by 

the identification of morphological cells types that correlate with functional cell 

classes (e.g. Friedlander et al., 1981); identification of structure/function correlations 

for pulvinar neurons is expected to similarly advance our understanding of this 

nucleus. The pulvinar contains projection cells (Figure 17C; Nakamura et al., 2015), 

GABAergic interneurons (Figure 17D; Carden and Bickford, 2002; Chomsung et al., 

2008; Li et al., 2003c), and a dense population of glial cells (glial to neuron ratio of 

approximately 3:1 in the tree shrew pulvinar; Wei et al., 2011a). In the rat, the axons 
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of individual projection cells have been shown to innervate multiple cortical areas, 

multiple cortical lamina, as well as the striatum and amygdala (Nakamura et al., 

2015). Evidence in the cat and primate also suggests that pulvinar axons innervate 

widespread cortical areas (Kaufman et al., 1984; Baleydier and Mauguière, 1987; 

Rockland, 2002). Therefore, the subdivision of pulvinar neurons based on projection 

targets is not straightforward. 

In addition, the dendrites of pulvinar neurons are not restricted to specific 

input zones (Figure 17C, D; Ogren and Hendrickson, 1979; Imura and Rockland, 

2006; Nakamura et al., 2015). The widespread distribution of pulvinar dendritic 

arbors may explain why SC cells are transynaptically labeled after pseudorabies virus 

injections in the middle temporal cortical area (Lyon et al., 2010), even though 

tectopulvinar terminals do no overlap the distribution of pulvinar somata labeled by 

retrograde tracer injections in the same cortical regions (Stepniewska et al., 1999). 

The distribution of pulvinar neuron dendritic arbors suggests that a substantial 

integration of inputs may occur even when the distributions of pulvinar afferents are 

largely segregated. For example, the dendritic fields of individual mouse pulvinar 

neurons can extend across both the Pcm and Pl (Figure 17C, D), potentially receiving 

input from bilateral and ipsilateral tectopulvinar projections (Figure 13A, D), V1 

(Figure 16K, 7A), as well as extrastriate cortical areas (Figure 16C, G). Therefore, it 

may be challenging to identify subclasses of pulvinar neurons based on presynaptic 

inputs.  
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Comparison of neurons recorded within tectorecipient and striate-recipient 

zones of the cat pulvinar complex have revealed differences in receptive field sizes, 

direction- and orientation selectivity (Chalupa et al., 1983; Abramson and Chalupa, 

1988; Chalupa and Abramson, 1988, 1989). However, analysis of spatiotemporal 

receptive field properties in these two zones using white noise and reverse correlation 

analysis suggests a significant integration of V1 and SC inputs across subdivisions 

(Piché et al., 2015). Furthermore, as discussed above, retrograde tracing techniques 

demonstrated that mouse pulvinocortical projections to V1 are coarsely topographic 

(Roth et al., 2016). However, this same study revealed that individual pulvinocortical 

boutons are activated by widely dispersed locations across the visual field, suggesting 

that while pulvinocortical axon projections may be aligned with the retinotopic 

organization of V1, they can contribute a surround modulation of cortical neurons that 

extends well beyond what their anatomical topography might imply.  

Again, the mouse may be a useful model to dissect potential structure/function 

relationships within the pulvinar. Transgenic mouse lines (e.g. calretinin-cre) may 

provide a starting point for subdividing neuron groups, and whole cell recordings may 

identify differences in membrane properties (Monckton and McCormick, 2002; Li et 

al., 2003a; Ramcharan et al., 2005; Wei et al., 2011a). However, perhaps the most 

important step in this process is the characterization of pulvinar receptive field 

properties in moving animals, as discussed below.  

Pulvinar activity and visual context 
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In the anesthetized mouse, spontaneous activity in the pulvinar is significantly 

lower than that recorded in the dLGN (Roth et al., 2016), and even in awake but 

inactive primates, the spontaneous activity of pulvinar neurons is less than half that of 

dLGN neurons (Ramcharan et al., 2005). In addition, in anesthetized mice the 

proportion of pulvinar neurons that respond to simple visual stimuli is approximately 

half that of dLGN neurons (Allen et al., 2016). These differences in activity 

levels/visual responsiveness likely reflect functional distinctions between these two 

visual pathways. Recently, imaging studies in actively-moving mice have 

demonstrated that pulvinocortical projections to V1 signal discrepancies between 

optic flow and running speed (Roth et al., 2016). A similar role for the pulvinar in 

visuomotor coupling is supported by primate studies, where inactivation of the 

pulvinar nucleus disrupts the planning of visually-guided eye and hand movements 

(Wilke et al., 2010). Thus, the activity of the pulvinar nucleus reflects vision in the 

context of movement, and this activity appears to be critical for the subsequent 

planning and execution of appropriate visually-guided action.  

Given this evidence, it appears to be essential to characterize pulvinar 

receptive field properties in the context of movement. To accomplish this, 

experiments must be carried out in awake behaving animals. While across-species 

comparative studies are needed, mice can be used to efficiently address a number of 

initial open questions. For example, what is the source of the motor signals in the 

pulvinar nucleus? It has been established that premotor cells in the deep SC provide 

corollary discharge signals to the mediodorsal nucleus to signal impending 
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movements (Bickford and Hall, 1989; Sommer and Wurtz, 2002; Wurtz et al., 2011). 

In vitro slice studies have shown premotor cells in the deep layers of the SC can affect 

the activity of tectothalamic cells in the superficial layers (Phongphanphanee et al., 

2011); in this way WFV cells could potentially provide contextual signals to the 

pulvinar nucleus. Recordings from WFV cells in awake behaving mice could 

determine whether internally-generated movement commands modify their responses 

to moving visual stimuli.  

The pulvinar projects directly to the striatum and amygdala (discussed above), 

and preliminary studies indicate that pulvinocortical terminals target corticostriatal 

and corticoamygdala cells (Zhou et al., 2016). Thus, the pulvinar is at the center of a 

hub connecting the cortex, striatum and amygdala (Figure 19). The interconnected 

nature of these circuits (as well as their potential influence on SC circuits via the 

substantia nigra and/or zona incerta; Bickford and Hall, 1992; Kim et al., 1992; 

McHaffie et al., 2005), suggests that the pulvinar actively participates in the dynamic 

coordination of body movements with the perception of visual signals. However, it is 

still unclear how activity levels in the striatum and amygdala might affect pulvinar 

activity. Recording visual receptive field properties of pulvinar neurons during 

optogenetic manipulation of the amygdala (Tye et al., 2011; Wei et al., 2015), or 

subpopulations of striatal projection cells (Kravitz et al., 2012), may help to reveal 

mechanisms that impart context to pulvinar signals.  
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Summary 

Many similarities have been identified in the organization of the pulvinar 

nucleus across species, and the mouse provides a very useful model to continue to 

unravel the function of this puzzling structure. The tectorecipient pulvinar forms 

interconnected loops with the cortex, striatum and amygdala, and emerging evidence 

suggests that these circuits may be designed to code visual signals in the context of 

ongoing movement. Thus, the pulvinar nucleus may play a key role in the planning and 

execution of appropriate visually-guided movements, which require the precise 

coordination of perception and action. Future studies designed to manipulate circuits 

may shed light on the repertoire or behaviors mediated by the pulvinar nucleus, and 

mechanisms underlying their selection. In this way, the mouse model may be a 

particularly useful tool to inform and guide our understanding of the human pulvinar 

nucleus.  
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Figure 11. The pulvinar nucleus contains two tectorecipient zones  

Schematic illustrations indicate regions of the pulvinar nucleus in the mouse, squirrel, 

tree shrew, galago and macaque monkey that have been shown to receive dense 

convergent input (brown) or less dense topographic projections (peach) from the 

superior colliculus. The non-tectorecipient zones of the pulvinar are indicated in blue, 

and the location of the dorsal lateral geniculate nucleus (dLGN, gray) is indicated for 

reference. Illustrations are not to scale (adapted from Stepniewska et al., 2000; 

Chomsung et al., 2008; Baldwin et al., 2011, 2013; Day-Brown et al., 2017). 

Subdivisions for Mouse: Pcm, caudal medial pulvinar, Pl, lateral pulvinar, Prm, 

rostral medial pulvinar, Squirrel: C, caudal pulvinar, RL, rostral lateral pulvinar, 

RLm, medial rostral lateral pulvinar, RLl, lateral rostral lateral pulvinar, RM, rostral 

medial pulvinar, Tree shrew: Pc, central pulvinar, Pd, dorsal pulvinar, Pv, ventral 

pulvinar, Galago and Macaque: PIcm, central medial inferior pulvinar, PIcl, central 

lateral inferior pulvinar, PIp, posterior inferior pulvinar, PIpl, posterior lateral inferior 

pulvinar, PL, lateral pulvinar, PM, medial pulvinar, Macaque: PIm, medial inferior 

pulvinar. 
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Figure 12. Widefield vertical (WFV) cells project to the ipsilateral and 

contralateral pulvinar 

Panel A illustrates an injection of a retrogradely transported virus (MIT viral vector core: 

hEF1α-EYFP-IRES-cre) in the pulvinar (PUL) of a wild type mouse that induced the 

expression of yellow fluorescent protein (YFP, green) in WFV cells of the superior 

colliculus (SC). Cells labeled by this injection are illustrated in panel B in a contralateral 

SC section that was stained with an antibody against calretinin (purple), which 

delineates the stratum griseum superficiale (SGS). The WFV tectopulvinar cells are 

located in the stratum opticum (SO) and lower SGS and extend dendrites to the surface 

of the SC, where they end in complex dendritic tufts (panel C). Panels D and E illustrate 

WFV cells labeled by injections of retrogradely transported cre-dependent viruses 

(MIT-viral vector core: hEF1α-LS1L-mCherry and hEF1α-LS1L-EYFP) in the left and 

right pulvinar of a substance P-cre mouse (Jackson Labs stock number 021877) to 

induce the expression of either YFP (green, left pulvinar injection) or mCherry (purple, 

right pulvinar injection) in cre-expressing neurons. Many WFV cells expressed both 

YFP and mCherry (white), demonstrating that a subpopulation of WFV cells bilaterally 

innervate the pulvinar, and that WFV cells express substance P. Scale bars: A and B = 

100 µm, C = 10 µm, D = 50 µm and also applies to E. dLGN, dorsal lateral geniculate 

nucleus, PT, pretectum, OT, optic tract. Virus injection methods as in Bickford et al. 

(2015). 
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Figure 13. Caudal medial pulvinar (Pcm) cells express calretinin (CR) and 

neurokinin 1 (NK1) and align with bilateral superior colliculus (SC) projections 

Confocal images illustrate ipsilateral (A, C, green) and contralateral (D, F, green) 

projections to the pulvinar that were labeled by a unilateral virus injection in the SC. 

These sections were also stained with antibodies against CR (B, E, purple) to define the 

Pcm (which contains CR) and the lateral pulvinar (Pl, which does not contain CR).  

Adjacent sections (C, F) stained for CR (purple) and NK1 (green) illustrate that CR-

positive Pcm cells express NK1. This expression pattern is shown at higher 

magnification in half micron optical sections in panels G (CR, purple), H (NK1, green) 

and I (CR, purple, and NK1, green, asterisks indicate cells labeled with both antibodies). 

Scale in A = 50 µm and applies to A-F. Scale in G = 10 µm and applies to G-I.  dLGN, 

dorsal lateral geniculate nucleus, OT, optic tract, PT, pretectum. Methods as in Bickford 

et al. (2015) and Masterson et al. (2010). 
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Figure 14. The Pcm contains a dense population of terminals that contain 

substance P 

A-C) Caudal to rostral sections stained with an antibody against substance P (visualized 

with a diaminobenzidine reaction). Staining is densest in the caudal and medial pulvinar 

(Pcm). Little staining is observed in the lateral pulvinar (Pl). Scale = 100 µm and applies 

to all panels. dLGN, dorsal lateral geniculate nucleus, MGN, medial geniculate nucleus, 

OT, optic tract, PT, pretectum. Methods as in Masterson et al., 2010. 
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Figure 15. Ultrastructure of cortical and tectal terminals in the mouse pulvinar 

Terminals labeled by the anterograde transport of biotinylated dextran amine injected 

in V1 (A), superior colliculus (B) or the posterior/postrhinal cortex (C) contact (white 

arrows) the proximal (A, B) and distal (C) dendrites of pulvinar neurons (green 

overlay). Sections were additionally stained with gold particles to reveal the 

distribution of GABA. This indentifies two types of GABAergic terminals (purple 

overlay) in the mouse pulvinar: F2 profiles (B) contain a low density of vesicles and 

F1 profiles (C) contain a high density of vesicles. Scale = 600 nm and applies to all 

panels. Methods as in Li et al. (2003c). 
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Figure 16. Tectopulvinar and corticopulvinar terminals overlap in the caudal 

medial (Pcm) and lateral (Pl) subdivisions of the mouse pulvinar 

This overlap is demonstrated via dual virus injections in the superior colliculus (SC) 

and lateral extrastriate cortex (LES, first 2 columns, A-D and E-H), or SC and V1 (last 

column, I-L). The Pcm and Pl subdivisions are defined using immunocytochemical 

staining for calretinin (CR, blue, first row, A, E, I). Virus injections were placed in the 

SC to induce the expression of yellow fluorescent protein (green, panels B, F, J), and 

in the cortex (V1 or LES) to induce the expression of TdTomato (red, panels C, G, K), 

Overlap of the CR and virus labeling patterns (panels D, H, L) show that the Pcm is 

innervated by the SC and LES, while the Pl is innervated by the SC, V1 and LES 

(panels D, H, L). Scale bar in D = 100 µm and applies to all panels. dLGN, dorsal 

lateral geniculate nucleus, PT, pretectum. Methods as in Bickford et al. (2015) and 

Jurgens et al. (2012).  
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Figure 17. Potential input integration in the mouse pulvinar 

Terminals labeled by a virus injection in V1 (green, A, B) and the ipsilateral SC 

(purple, B) overlap in the Pl. C) Two biocytin-filled pulvinar neurons (green) and 

surrounding tectopulvinar terminals (purple, labeled by a virus injection in the 

ipsilateral SC). The dendrites of the pulvinar neurons extend across subdivisions. D) 

Biocytin-filled pulvinar interneurons (purple) identified in a mouse line (Jackson 

Laboratories stock number 007677) that expresses green fluorescent protein in 

GABAergic neurons (green) extend dendrites across subdivisions. Scale bars = 20 

m. Methods as in Bickford et al., (2015). 
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Figure 18. The mouse pulvinar projects to the cortex, striatum and amygdala 

Injections of biotinylated dextran amine in the mouse pulvinar (A) label terminals in 

V1 (B) and extrastriate cortex regions including the posterior medial area (PM, panel 

B) and the lateral medial area (LM, panel D). Cells in the superior colliculus (C) and 

LM (D) are also labeled by retrograde transport. E) The pulvinar also projects to the 

caudate and putamen (CPu) and lateral amygdala (LA). Scale = 200 µm and applies to 

all panels. Methods as in Chomsung et al., 2010. 

 

  



96 

 

 

  



97 

Figure 19. The tectorecipient mouse pulvinar forms interconnected loops with 

the cortex, striatum and amygdala 

The schematic diagrams illustrate the main connections of the tectorecipient 

subdivisons of the mouse pulvinar. The caudal medial pulvinar (Pcm, red) receives 

bilateral input from widefield vertical (WFV) cells of the superior colliculus, and is 

reciprocally connected to the posterior (P) and postrhinal (POR) regions of the cortex, 

where it innervates layers I and IV-VI. Both the Pcm and P/POR project to the caudal 

caudate/putamen (CPu) and lateral amygdala (LA).  The lateral pulvinar (Pl, blue) 

receives ipsilateral input from WFV cells, and is reciprocally connected to V1 and the 

lateral medial (LM) and lateral intermediate (LI) regions of the cortex. Within V1, the 

Pl projects to layers I and Va. Within LM and LI, the Pl projects to layer I and IV. 

The Pl, LM and LI project to the middle regions of the CPu.   
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CHAPTER IV 

THE MOUSE PULVINAR NUCLEUS LINKS THE LATERAL EXTRASTRIATE 

CORTEX, STRIATUM, AND AMYGDALA: CELL TYPE-SPECIFIC 

THALAMOCORTICAL CIRCUIT FEATURES3 

 

Overview 

The pulvinar nucleus is a large thalamic structure involved in the integration 

of visual and motor signals. The pulvinar forms extensive connections with striate and 

extrastriate cortical areas, but the impact of these connections on cortical circuits has 

not previously been directly tested. Using a variety of anatomical, optogenetic, and in 

vitro physiological techniques in mice, we show that pulvinocortical terminals are 

densely distributed in the extrastriate cortex where they form synaptic connections 

with spines and small diameter dendrites. Optogenetic activation of these synapses in 

vitro evoked large excitatory postsynaptic responses in the majority of pyramidal 

cells, spiny stellate cells, and interneurons within the extrastriate cortex. However, 

specificity in pulvinar targeting was revealed when recordings were targeted to 

projection neuron subtypes. The neurons most responsive to pulvinar input were those 

                                                             

3. Zhou N, Masterson SP, Damron JK, Guido W, Bickford ME, submitted to Journal of Neuroscience 

5-10-17 
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that project to the striatum and amygdala (76% responsive) or V1 (55%), while 

neurons that project to the superior colliculus were rarely responsive (6%). Because 

the pulvinar also projects directly to the striatum and amygdala, these results establish 

the pulvinar nucleus as a hub linking the visual cortex with subcortical regions 

involved in the initiation and control of movement. We suggest that these circuits may 

be particularly important for coordinating body movements and visual perception, and 

disruption of this network in humans may lead to visual neglect symptoms.  

Significance Statement 

We found that the pulvinar nucleus can strongly influence extrastriate cortical 

circuits and exerts a particularly strong impact on the activity of extrastriate neurons 

that project to the striatum and amygdala. Our results call into question the 

conventional hierarchical view of visual cortical processing, and in addition establish 

the pulvinar nucleus as a hub linking the visual cortex with subcortical regions 

involved in the initiation and control of movement. The execution of visually guided 

movements may rely on this network, since damage to homologous regions in human 

patients can produce symptoms of visual neglect. 

Introduction  

Vision is a very active process in that we constantly scan our surroundings 

using eye and body movements. As a consequence, there must be a tight coordination 

between the visual and motor circuits of the brain. A variety of studies suggest that the 

dorsal thalamus is involved in this visuomotor coupling. For example, in the primate, 

inactivation of the pulvinar nucleus disrupts the planning of visually-guided eye and 
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hand movements (Wilke et al., 2010), and inactivation of the mediodorsal nucleus can 

both disrupt sequential saccadic eye movements, and shift visual receptive fields in 

the frontal cortex (Sommer and Wurtz, 2002, 2006). Most recently, projections to the 

striate cortex from the mouse pulvinar have been shown to signal discrepancies 

between optic flow and running speed (Roth et al., 2016). Therefore, pulvinar activity 

conveys visual information that relates to movement, and this activity appears to be 

crucial for the subsequent planning and execution of appropriate visually-guided 

actions. However, the synaptic mechanisms underlying these complex functions are 

currently unknown. 

In particular, the impact of pulvinar projections on cortical circuits has not 

been directly tested. In fact, conventional hierarchical views of cortical organization 

imply a relatively minor impact of pulvinar projections on activity in extrastriate 

regions (Van Essen, 2005). Instead, corticocortical transfer of visual information from 

V1 is thought to drive receptive field properties in extrastriate regions of the visual 

cortex, because lesions of the striate cortex greatly diminish visually-driven activity in 

these areas (Girard and Bullier, 1989; Girard et al., 1991, 1992; Kaas and Krubitzer, 

1992; Collins et al., 2003, 2005). Nevertheless, visually evoked activity can still be 

recorded in extrastriate areas following lesions or cooling of the striate cortex 

(Rodman et al., 1989; Girard et al., 1992; Azzopardi et al., 2003). Moreover, 

inactivation of the pulvinar nucleus can suppress visual activity within V1 

(Purushothaman et al., 2012). Thus, pulvinar projections could effectively regulate 

cortical processing.  
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In the current study, we sought to directly test the impact of pulvinar 

projections on cortical circuits by examining the synaptic properties of terminals that 

originate from this thalamic region. Using a combination of anatomical and 

optogenetic techniques, we found that the pulvinar nucleus can greatly impact the 

activity of the extrastriate cortex, and recordings targeted to specific projection neuron 

subtypes suggest that the pulvinar may act as a hub to dynamically coordinate body 

movements with the perception of visual signals. 

Materials and Methods 

Animals 

All breeding and experimental procedures were approved by the University of 

Louisville Institutional Animal Care and Use Committees. Experiments were carried 

out using mice, of either sex, of a C57/BLK6 line, or a line in which neurons that 

contain the 65KD isoform of glutamic acid decarboxylase (GAD65) express green 

fluorescent protein (GFP; López-Bendito et al., 2004). A calretinin-cre driver line 

(Calb2-IRES-Cre, Jackson Labs stock number 010774, B6(Cg)-Calb2tm1(cre)Zjh/J) was 

used to generate a map of pulvinocortical projections. 

Biotinylated dextran amine (BDA) injections 

To label thalamocortical axon projections via anterograde transport, 

C57/BLK6 mice ranging in age between postnatal day (P) 22-35 were deeply 

anesthetized with a mixture of ketamine (100-150 mg/kg) and xylazine (10-15 

mg/kg). The analgesic meloxicam (1-2 mg/kg) was also injected prior to surgery. The 

animals were then placed in a stereotaxic apparatus (Angle Two Stereotaxic, Leica, 
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Wetzlar, Germany). An incision was made along the scalp, and a small hole was 

drilled in the skull. A glass pipette (20-40 µm tip diameter) containing a 5% solution 

of biotinylated dextran amine (BDA, Molecular Probes) in saline was lowered into the 

dLGN (from Bregma: 2.14 posterior, 2.0 lateral, 2.89 ventral) or pulvinar (from 

Bregma: 2.11 posterior, 1.73 lateral, 2.73 ventral), and BDA was iontophoretically 

ejected using 3 µA continuous positive current for 20 minutes. After removal of the 

pipette, the scalp skin was sealed with tissue adhesive (n-butyl cyanoacrylate), 

lidocaine was applied to the wound, and the animals were placed on a heating pad 

until mobile. Post-surgery, animals were carefully monitored for proper wound 

healing, and oral meloxicam (1-2 mg/kg) was administered for 48 h. 

Cholera toxin subunit B (CTB) injections 

To label cortical projection cells via retrograde transport, P22-35 C57/BLK6, 

mice were prepared as described above. Either a glass pipette (20-40 µm tip 

diameter), or a Nanofil syringe with an attached 34 gauge needle, containing a 0.2% 

solution of cholera toxin subunit B conjugated to Alexafluor 488, 546 or 633 (CTB-

488, CTB-546, CTB-633) in phosphate buffered saline (PBS; 0.01M phosphate buffer 

with 0.9% NaCl) was lowered into cortical area V1 (from Bregma: 4.02 posterior, 2.5 

lateral, 1.81 ventral), striatum and/or amygdala (from Bregma: 1.55 posterior, 3.58 

lateral, 4.5 ventral) or superior colliculus (from Bregma: 4.09 posterior, 0.68 lateral, 

1.7 ventral). CTB was iontophoretically ejected using 3 µA continuous positive 

current for 15 or 30 minutes, or 100-210 nl was ejected at a rate of 25nl/minute using 



104 

an ultramicropump. After removal of the pipette or needle, the wound was closed and 

the animals were treated during recovery as described above. 

Herpes simplex virus (HSV) injections  

The HSV virus hEF1a-EYFP-IRES-cre (obtained from the Massachusetts 

Institute of Technology viral vector core) was injected into the striatum and/or 

amygdala to label projection cells in the LES via retrograde uptake. This virus 

induced the infected cells to express a yellow fluorescent protein (YFP). P22-60 

C57/BLK6 mice were deeply anesthetized and prepared as described above and a 

Nanofil syringe and ultramicropump were used to deliver volumes of 100-250nl at a 

rate of 10nl/minute. The wound was then closed, and the animals monitored during 

recovery as described above.  

AAV injections  

To label and activate the projections of the pulvinar, an adeno-associated virus 

(AAV) serotype 2/1 carrying a vector for the Channelrhodopsin variant Chimera EF 

with I170 mutation (ChIEF) fused to the red fluorescent protein, tdTomato 

(production details in Jurgens et al., 2012) was injected unilaterally or bilaterally into 

the pulvinar. To label projections from the pulvinar to subsequently construct a map 

of cortical areas in the coronal plane, a cre-dependent virus, Flex-rev-oChIEF-

tdTomato (Plasmid #30541, Addgene), packaged using AAV serotype 9, was injected 

unilaterally into the pulvinar of calretinin-cre mice. For virus delivery, P22-60 

C57/BLK6 or GAD65-GFP mice were deeply anesthetized with a mixture of 

ketamine and xylazine as described above. An incision was made along the scalp, and 
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a small hole created in the skull above the left and/or right pulvinar. Virus was 

delivered via a 34-gauge needle attached to a Nanofil syringe inserted in an 

ultramicropump. A volume of 75 nl was injected into each pulvinar at a rate of 

20nl/minute.  

AAV and CTB or HSV injections 

In some cases, in the same animals that received unilateral AAV injections in 

the pulvinar, an additional injection of CTB-488 or HSV-YFP was placed in the 

ipsilateral cortex, striatum/amygdala, or SC as described above. The wound was then 

closed, and the animals monitored during recovery as described above.  

Slice preparation and optogenetic stimulation 

Eight to 12 days following virus injections, mice were deeply anesthetized 

with avertin (0.5mg/kg). Mice used for slice preparation ranged in age from P29-P37 

(average age P31). Mice were either directly decapitated or transcardinally perfused 

with cold (4C), oxygenated (95%O2/5%CO2) slicing solution containing the 

following (in mM): 2.5 KCl, 26 NaHCO3, 2.5 KCl, 1.25 NaH2PO4, 10 MgCl2, 2 

CaCl2, 234 sucrose, and 11 glucose, before rapid decapitation (in mice older than 

P35). The brain was removed from the head, chilled in the cold slicing solution 

described above for 2 mins, and was quickly transferred into a petri dish with room 

temperature slicing solution to block the brain for subsequent sectioning. Coronal 

slices (300μm) were cut in room temperature slicing solution using a vibratome 

(Leica VT1000 S). Then slices were transferred into an incubation solution of 

oxygenated (95%O2/5%CO2) artificial cerebrospinal fluid (ACSF) containing (in 
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mM): 126 NaCl, 26 NaHCO3, 2.5 KCl, 1.25 NaH2PO4, 2 MgCl2, 2 CaCl2, and 10 

glucose at 32°C for 30 mins, and later maintained at room temperature.  

Individual slices were transferred into a recording chamber, which was 

maintained at 32°C by an inline heater and continuously perfused with room 

temperature oxygenated ACSF (2.5ml/min, 95%O2/5%CO2). Slices were stabilized by 

a slice anchor or harp (Warner Instruments 64-0252). Neurons were visualized on an 

upright microscope (Olympus BX51WI) equipped with both differential interference 

contrast optics and filter sets for visualizing CTB-488 and YFP (Chroma 49002) or 

tdTomato (Chroma 49005) using a 4x or 60x water-immersion objective (Olympus) 

and a CCD camera. Recording electrodes were pulled from borosilicate glass 

capillaries (World Precision Instrument Inc.) by using a MODEL P-97 puller (Sutter 

Instrument Co., Novato, CA). The electrode tip resistance was 4-6 M when filled 

with an intracellular solution containing the following (in mM): 117 K-gluconate, 

13.0 KCl, 1 MgCl2, 0.07 CaCl2, 0.1 EGTA, 10 HEPES, 2 Na2-ATP, and 0.4 Na2-GTP 

with PH adjusted to 7.3 with KOH and osmolarity 290-295 mOsm. Biocytin (0.5%) 

was added to this intracellular solution to allow morphological reconstruction of the 

recorded neurons.  

Whole-cell recordings were obtained from the LES regions of the cortex. For 

single injection experiments (in which only the pulvinar was injected with virus), cells 

in layers IV and V were targeted for recording within the pulvinar termination zones. 

For GAD65-GFP experiments, interneurons labeled with GFP with overlapping 

pulvinar terminals were targeted for recording. For double injection experiments (in 
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which the pulvinar was injected with virus and the SC, striatum or cortex were 

injected with CTB-488 or HSV-YFP to label LES projection cells via retrograde 

transport), labeled and unlabeled cells were targeted for recording with the pulvinar 

termination zones. Video images of the patched cell locations, and the CTB/YFP/GFP 

within patched cells, were recorded using the CCD camera.  

Recordings were obtained with an AxoClamp 2B amplifier (Axon Instruments, 

Foster City, CA) and a Digidata 1440A was used to acquire electrophysiological 

signals. The stimulation trigger was controlled by Clampex 10.3 software (Molecular 

Devices). The signals were sampled at 20 kHz and data were analyzed offline by 

pClamp 10.0 (Molecular Devices). Series resistance was compensated by a bridge 

protocol and only recordings with stable series resistance were included in the 

analysis. For current clamp recordings, voltage signals were obtained from cells with 

resting potential of -60mV to -75mV. For voltage clamp recordings, membrane 

currents were obtained at -65mV to -75mV.  

For photoactivation of pulvinocortical terminals, light from a blue light 

emitting diode (Prizmatix UHP 460) was reflected into a 60X water immersion 

objective. This produced a spot of blue light onto the submerged slice with an 

approximate diameter of 0.3 mm. Pulse duration and frequency were under computer 

control. For repetitive stimulation, pulse duration was either 1 or 10 ms. Synaptic 

responses were recorded using light intensities of 10-112 mW/mm2, and light pulse 

frequencies of 1Hz, 2Hz, 5Hz, 10Hz and 20Hz.  

To test whether the responses were monosynaptic, tetrodotoxin (TTX, 1M; 



108 

Alomone labs, catalogue # T-550) was added to the bath to block action potentials and 

4-aminopyridine (4-AP, 1mM; Sigma, catalogue #275875-5G) was added to augment 

depolarization of the terminals. In other experiments, 2-amino-5-phosphonovaleric 

acid (APV,10M; Sigma, catalogue #A-5282) and/or 6-cyano-7-nitroquinoxalene- 

2,3-dione (CNQX, 8M; Tocris, catalogue #0190)/ 6,7- dinitroquinoxaline-2,3-dione 

(DNQX, 80M; Sigma, catalogue #D0540-50MG) were added to the bath to block N-

methyl-D-aspartate (NMDA) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic 

acid (AMPA) receptors. Gamma amino butyric acid receptors (GABAA) were blocked 

via bath application of the antagonist 2-(3-carboxypropyl)-3-amino- 6-(4-

methoxyphenyl)-pyridazinium bromide (SR95531, 20M; Tocris, catalogue #1262).  

Processing of cells filled during physiological recording 

Following recording, slices were placed in a fixative solution of 4% 

paraformaldehyde in 0.1M phosphate buffer pH 7.4 (PB) for at least 24 hours. The 

sections were then rinsed in PB and incubated overnight in a 1:1000 dilution of 

streptavidin-conjugated to Alexafluor-633 (Invitrogen, Carlsbad, CA) in PB 

containing 1% Triton X-100. The following day the slices were washed in PB, pre-

incubated in 10% normal goat serum (NGS) in PB and then incubated overnight in a 

1:500 dilution of a rabbit anti-DSred antibody (Clonetech Laboratories, Inc. 

Mountainview, CA, catalogue #632496) in PB with 1% NGS. The following day the 

sections were rinsed in PB, and incubated for 1 hour in a 1:100 dilution of a goat-anti-

rabbit antibody conjugated to Alexafluor-546 (Invitrogen). The sections were then 

rinsed in PB and mounted on slides to be imaged with a confocal microscope.  
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Histology for tissue used for anatomical analyses 

For animals that were not used for physiological experiments, 2 days to 2 

weeks following injection of tracers and/or viruses, mice were deeply anesthetized 

with Avertin (0.5mg/gm) and transcardially perfused with a fixative solution of 4% 

paraformaldehyde, or 2% paraformaldehyde and 2% glutaraldehyde in PB. Additional 

C57/BLK6 or GAD65-GFP mice that were not injected were also perfused for 

immunocytochemistry. In each case, the brain was removed from the skull and 70 µm 

thick coronal sections were cut using a vibratome (Leica Microsystems, Buffalo 

Grove, IL). Sections that contained fluorescent labels were mounted on slides and 

imaged using a confocal microscope (Olympus FV1200BX61), or additionally stained 

using antibodies as described below. 

Selected sections were incubated overnight in antibodies against parvalbumin 

(made in mouse, Sigma, catalogue P3088, 1:2000) or calretinin (made in mouse, 

Millipore, catalogue MAB1568, 1:1000). The following day, the sections were 

incubated in a 1:100 dilution of a goat-anti-mouse antibody that was directly 

conjugated to fluorescent compounds (Alexafluor 488, 546 or 633; Invitrogen, 

Carlsbad, CA). The sections were then mounted on slides and imaged using a 

confocal microscope (Olympus).  

To label tissue for viewing in a transmitted light microscope or transmission 

electron microscope, sections that contained CTB-labeled cells were incubated 

overnight in a rabbit anti-CTB antibody (Sigma catalogue # C3062; 1: 10,000). 

Sections that contained TdTomato were incubated overnight in a rabbit anti-DSred 
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antibody (1:500). Sections that contained YFP or GFP were incubated overnight in a 

rabbit anti-GFP antibody (Millipore, Billerica, MA, catalogue #AB3080, 1:1000). 

Sections incubated in the antibodies, or sections that contained BDA were incubated 

in a 1:100 dilution of a biotinylated goat-anti-rabbit antibody (1 hour), followed by 

avidin and biotinylated horseradish peroxidase (ABC solution, Vector Laboratories, 1 

hour) and reacted with nickel-enhanced diaminobenzidine (DAB). The sections were 

then mounted on slides and imaged using transmitted light, or processed for electron 

microscopy as described below.   

Electron microscopy 

Sections that contained terminals labeled by the anterograde transport of BDA, 

or cells and terminals labeled with the GFP antibody, were postfixed in 2% osmium 

tetroxide, dehydrated in an ethyl alcohol series, and flat embedded in Durcupan resin 

between two sheets of Aclar plastic (Ladd Research, Williston, VT). Durcupan–

embedded sections were first examined with a light microscope to select areas for 

electron microscopic analysis. Selected areas were mounted on blocks, ultrathin 

sections (70-80 nm, silver-gray interference color) were cut using a diamond knife, 

and sections were collected on Formvar-coated nickel slot grids. Selected sections 

were stained for the presence of gamma amino butyric acid (GABA). A 

postembedding immunocytochemical protocol described previously (Chomsung et al., 

2008, 2010; Day-Brown et al., 2010) was employed. Briefly, we used a rabbit 

polyclonal antibody against GABA that was tagged with a goat-anti-rabbit antibody 

conjugated to 15-nm gold particles (BBI Solutions USA, Madison, WI). The sections 
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were air dried and stained with a 10% solution of uranyl acetate in methanol for 30 

minutes before examination with an electron microscope. 

Experimental design and statistical analyses 

Three general types of experiments were developed and reported in this 

manuscript: 1) electron microscopic analysis of labeled profiles, 2) in vitro 

electrophysiological analysis of responses to photoactivation of pulvinocortical 

terminals and 3) morphological analysis of cortical neurons filled with biocytin during 

recording.  

1) For electron microscopic analysis of tracer-labeled thalamocortical 

terminals and their postsynaptic targets (n = 7 animals), ultrathin tissue sections were 

examined using an electron microscope and every labeled terminal involved in a 

synapse was imaged (n = 501 terminals). The pre- and postsynaptic profiles were 

characterized on the basis of size (measured using Image J, RRID: nif-000-30467, 

Maxim DL © 5 software), and the presence or absence of synaptic vesicles. To 

analyze tissue from a GAD65-GFP mouse that was stained for GABA using 

postembedding immunocytochemical techniques, GFP-labeled profiles (n = 136) were 

imaged and the overlying gold particle density was quantified. One-way ANOVA with 

Tukey's multiple comparisons post-test were used for statistical analyses of 

ultrastructural data, and plotted as column box-and-whisker graphs using Prism 6.0. 

2) For in vitro electrophysiological analysis of responses to photoactivation of 

pulvinocortical terminals in labeled or unlabeled neurons, 108 animals of either sex 

were used and a total of 501 neurons were patched in slices of the cortex (4-5 cortical 
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slices were used per animal). The majority of recorded neurons (n = 425) were tested 

to determine their response to activation of surrounding pulvinocortical terminals. 

Baseline values were measured just prior to the onset of photostimulation and the 

amplitude of synaptic responses was measured from this baseline value. Further 

analysis was limited to neurons with response amplitudes > 7 times the standard 

deviation of the baseline (n = 278). Neurons below this conservative threshold were 

considered nonresponsive and excluded from further electrophysiological analysis. 

Electrophysiological measurements were tested for normality using the D'Agostino-

Pearson omnibus test and appropriate statistical analyses were chosen based on the 

Gaussian or non-Gaussian distribution of the data. For each variable, differences 

between the groups were assessed using nonparametric one-way ANOVA followed by 

Post-hoc Tukey’s multiple comparison test or nonparametric Kruskal-Wallis ANOVA 

test with Post-hoc Dunn’s multiple comparison test. All data were presented as 

meanSD except the vertical scatter plots which were plotted as meanSEM. 

Significance was set at α = 0.05 for all statistical tests. Prism 6.0 was used to generate 

vertical scatter plots, bar graphs, column mean  SD connected graphs or grouped 

interleaved bar graphs. 

3) Confocal images of labeled cells were categorized based on the following 

criteria: location of soma and dendrites relative to labeled thalamocortical terminals, 

location of the neuron within a map of the cortex (Figure 10), the presence or absence 

of an apical dendrite, or the presence or absence of markers in the soma (retrograde 

markers CTB or YFP, or GFP labeling in GAD65-GFP mice). A total of 356 cells 
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were recovered, and the labeling of 316 of these cells was sufficiently complete to 

categorize their morphology.   

Results 

Extrinsic projections of the mouse pulvinar: comparison with the dLGN  

Pulvinar and dLGN projections to V1 

Iontophoretic injections of BDA in the mouse dLGN or pulvinar label distinct 

bands of terminals in V1. Terminals labeled by injections in the dLGN are 

concentrated in layers IV and I, with sparser terminations located in layers II/III and 

VI (Figure 20A). Terminals labeled by injections in the pulvinar are concentrated in 

layers I and Va (Figure 20B), as previously described (Herkenham, 1980; Roth et al., 

2016). Electron microscopic analysis of labeled terminals involved in synapses 

(dLGN-V1 terminals in layer I n = 84, dLGN-V1 terminals in layer IV n = 94, 

pulvinar-V1 terminals in layers 1 and Va, n = 83) revealed that dLGN-V1 and 

pulvinar-V1 terminals contain densely packed synaptic vesicles, and make synaptic 

contacts on small dendrites and spines with thick postsynaptic densities (Figure 20D).  

Measurements of the size of pre- and postsynaptic profiles (Figure 20G and 

20H) established that dLGN-V1 terminals in layer IV are significantly larger (0.36 ± 

0.19 µm2) than dLGN-V1 terminals in layer I (0.28 ± 0.15 µm2; One-way ANOVA 

with Tukey's post-test, p < 0.05), and pulvinar-V1 terminals (0.25 ± 0.20 µm2) are 

significantly smaller than dLGN-V1 terminals in layer IV (p < 0.01). However, we 

found no significant difference in the size of profiles postsynaptic to each terminal 

type (dLGN to layer I: 0.19 ± 0.23 µm2, dLGN to layer IV: 0.14 ± 0.07 µm2, pulvinar 
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to layers I and Va: 0.14 ± 0.06 µm2).  

Pulvinar projections to LES 

In addition to V1, the pulvinar projects densely to the lateral extrastriate cortex 

(LES corresponding to the posterior, postrhinal, lateromedial, and laterointermediate 

cortex: P, POR, LM and LI, defined by Wang and Burkhalter 2007). Within the LM, 

LI regions, projections from the pulvinar are concentrated in layers IV and I (Figure 

20C). In fact, the laminar distribution of pulvinocortical terminals in the LM and LI is 

very similar to that of geniculocortical terminals in V1 (Figure 20A). Pulvinar 

projections are most densely distributed within the P and POR. In these cortical 

regions, projections from the pulvinar are concentrated in layers I and IV, but also 

extend into layers V and VI (Roth et al., 2016). The ultrastructure of labeled terminals 

involved in synapses (LM/LI n = 118, P/POR n = 122) was found to be similar to that 

of thalamocortical terminals in V1. In both LM/LI and P/POR, terminals that originate 

from the pulvinar contain densely packed synaptic vesicles, and make synaptic 

contacts on small dendrites and spines with thick postsynaptic densities (Figure 20E 

and 20F). Measurements of the size of pre- and postsynaptic profiles (Figure 20G and 

20H) established that the size of pulvinar terminals in the LM/LI (0.33 ± 0.20 µm2) 

and P/POR (0.35 ± 0.18 µm2) regions are not significantly different than that of 

dLGN-V1 terminals in layer IV. However, pulvinar-P/POR terminals contact larger 

postsynaptic dendrites (P/POR 0.21 ± 0.14 µm2) than either those contacted by layer 

IV dLGN-V1 terminals (p<0.01) or those contacted by pulvinar-V1 terminals 

(p<0.05). There is no significant difference between dendrites contacted by pulvinar-
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LM/LI and dLGN-V1 terminals (LM/LI 0.17 ± 0.10 µm2). Our ultrastructure 

measurements also showed that pulvinar-LES terminals are much larger than 

pulvinar-V1 terminals (P/POR: p<0.01; LM/LI: p<0.05).  

Optogenetic activation of thalamocortical terminals that originate from the 

pulvinar 

To activate thalamocortical terminals that originate from the pulvinar, viral 

vector injections were placed in the caudal and lateral parts of the pulvinar (Figure 

21A-B) to induce the expression of TdTomato and Chief in pulvinar cells and their 

axon projections; this resulted in a dense band of terminals in the LES and sparser 

terminations in V1 (Figure 21C-E), similar to the patterns observed following BDA 

injections in the pulvinar (Figure 20B-C). In coronal slices of the cortex containing 

V1 and LES, whole cell recordings were obtained from neurons in the regions 

innervated by the pulvinar (n = 501). The majority of these recorded neurons (n = 

425) were tested to determine their response to activation of surrounding 

pulvinocortical terminals. The remaining recorded neurons were simply filled with 

biocytin to augment our morphological analysis of cell types in the extrastriate cortex.  

Pulses of blue light (1 or 10 ms in duration) through the microscope objective 

were used to activate the light-sensitive channels expressed by the pulvinar terminals 

(Figure 21A). These induced robust responses, with short (< 6.5 ms), fixed latencies 

in the majority of neurons (278 of 425 or 65% of recorded neurons). The responses of 

neurons to activation of surrounding pulvinar terminals increased in amplitude as the 

intensity of the blue light pulses was increased (Figure 21F left), and action potentials 
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could be elicited in postsynaptic neurons with light intensities as low as (14 mW/mm2, 

Figure 21F left).  

To ensure that activation of pulvinar terminals elicited monosynaptic 

responses, the sodium channel blocker TTX was added to the bath to block action 

potentials, paired with the potassium channel blocker 4AP to enhance the 

depolarization of the terminals (n = 38). In the presence of TTX and 4AP, large 

amplitude responses could be elicited (Figure 21F right), which were abolished by 

subsequent application of the AMPA and NMDA receptor antagonists CNQX and 

APV (n = 12; Figure 21F right).  

Morphology and location of recorded cortical neurons 

Pipettes included biocytin so that the location and morphology of recorded 

cells could be established after recording (Figure 21G; 356 cells were recovered, and 

the labeling of 316 of these cells was sufficiently complete to categorize their 

morphology). We found that the majority of these (220 of 316 or 70%) were 

pyramidal cells, characterized by the presence of apical dendrites that extended from 

the soma toward the cortex surface (Figure 22C-E). Pyramidal cells were further 

subdivided based on the branching patterns of their apical dendrites. Most pyramidal 

cells had a single apical dendrite (157 of 220 or 71%). Other pyramidal cells had two 

or three apical dendrite branches, in which each branch made up greater than half the 

total length of the apical arbor (two branches, 58 of 220 or 26%, three branches, 5 of 

220 or 2%). The remaining recovered cells were either spiny stellate cells (51 of 316 

or 16%), characterized by radially oriented spiny dendrites (Figure 23C-E), 
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interneurons (24 of 316 or 8%), characterized by thin non-spiny dendrites, or cells 

that did not clearly fit into any of these categories (21 of 316 or 7%).  

The locations of morphologically categorized cells were plotted on coronal 

sections and these locations were transferred to a flattened representation of cortical 

areas as defined Wang and Burkhalter (2007; Figures 24 and 25). Recording sites 

were concentrated in the LM/LI and P/POR, where terminals originating from the 

pulvinar are most densely distributed. V1 recordings were limited to cases in which 

no spread of virus into the adjacent dLGN could be detected, and TdTomato-labeled 

terminals were confined to layers I and Va within V1. Of the morphologically 

categorized cells, similar proportions of pyramidal cells (Figure 25A) and spiny 

stellate cells (Figure 25B) were found across cortical areas (of 152 filled cells in 

P/POR 28 or 18% were spiny stellate and 100 or 66% were pyramidal; of 67 filled 

cells in LM/LI, 10 or 15% were spiny stellate and 51 or 76% were pyramidal; of 44 

filled cells in V1, 8 or 18% were spiny stellate and 28 or 63% were pyramidal).   

Cell types responsive to optogenetic activation of pulvinocortical terminals 

Optogenetic experiments were divided into 3 categories: 1) recordings from 

unidentified cells, 2) recordings specifically targeted to interneurons, and 3) 

recordings specifically targeted to cells with projections to the SC, V1, or striatum and 

amygdala.   

The majority (181 of 259 or 70%) of unidentified cells responded to activation 

of pulvinar input (as defined above). Cells within the P/POR region were found to be 

the most responsive to optogenetic activation of pulvinar terminals (107 of 136 or 
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79%). In the LM/LI region 33 of 50 (66%) were responsive to activation of pulvinar 

terminals, and in V1, 20 of 34 (59%) were responsive.  

Activation of pulvinar terminals with trains of light pulses (1, 2, 5, 10, 20 Hz) 

revealed an overall frequency-dependent depression of synaptic responses (Figure 

22A-B, 23A-B). This is illustrated by plotting the ratio of the amplitude of the second 

EPSP divided by the first EPSP (paired pulse ratio) or the average of the amplitudes 

of the 2nd-10th EPSPs divided by the amplitude of the first EPSP (Train/1st pulse ratio) 

(Figure 22F-G, 23F-G). In addition, membrane resistances were similar between all 

responsive pyramidal cells and spiny stellate cells (Figure 28A). 

Optogenetic activation of pulvinar terminals: effects on cortical interneurons  

To determine whether cortical interneurons receive input from the pulvinar, we 

used a transgenic mouse line in which GFP is expressed in a subset of GABAergic 

interneurons (GAD65-GFP). In this line, GFP is expressed in interneurons that 

contain the calcium-binding protein calretinin (Figure 26A-C) and/or other 

interneuron subtypes (López-Bendito et al., 2004), but GFP is not expressed in 

interneurons that contain parvalbumin (Figure 26D-F). Electron microscopic 

evaluation of GAD65-GFP-labeled profiles, in tissue additionally stained with a 

GABA antibody tagged with gold particles, revealed that GFP-labeled somata (Figure 

26G), and the majority of larger dendrites (Figure 26H) contained GABA (gold 

particle density overlying GFP-labeled profiles larger than 0.35 µm2 was 52.60 ± 

30.33 gold particles/µm2). However, GFP-labeled profiles within the size range of 

dendrites postsynaptic to pulvinar terminals (Figure 26I) were often devoid of any 
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overlying gold particles (no gold particles were found overlying 70 of 136, or 52%, of 

GFP-labeled profiles less than 0.35 µm2). This indicates that GABA is not 

consistently detectable in smaller dendrites using standard postembedding 

immunohistochemical techniques. For this reason, we were unable to determine 

whether pulvinar-cortex terminals contact GABAergic interneurons using anatomical 

techniques alone.  

Virus injections were placed in the pulvinar of GAD65-GFP mice and in 

subsequent slice experiments whole cell recordings were obtained from GFP-labeled 

neurons (Figure 27A-B, n = 34, locations plotted in Figure 25C), and surrounding 

pulvinar terminals were activated with blue light. The input resistance of responsive 

GFP-labeled interneurons (180.5± 85.34 mΩ) was significantly greater than that of 

responsive pyramidal cells (78.2± 36.63 mΩ) and responsive spiny stellate cells 

(96.8± 72.93 mΩ; Figure 28A), and the morphology of successfully-recovered 

biocytin-filled GFP-labeled cells (n = 24) was consistent with previous descriptions of 

interneurons (i.e. smooth dendrites; Figure 27C-E). We found that the majority (25/34 

or 74%; Figure 27H) of GFP-labeled cells responded to optogenetic activation of 

pulvinar terminals (1 or 10 ms duration, 10-112 mW/mm2 blue light pulses through 

the microscope objective) with large amplitude EPSPs or EPSCs (1.064-26.22 mV; 

35.72-699.7 pA), with short (< 4.6 ms), fixed latencies. Example responses are 

illustrated in Figure 25A-B. When pulvinar terminals were stimulated with train of 

light pulses, the interneuron responses generally exhibited frequency-dependent 

depression (Figure 27A-B). However, paired pulse ratio plots (Figure 27F) and 
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train/1st pulse ratio plots (Figure 27G) demonstrate the variability observed between 

neurons. Further demonstrating the involvement of interneurons in pulvinar-cortex 

circuits, application of a GABAA receptor antagonist (SR95531, 20M, n = 6) during 

photostimulation of pulvinocortical terminals increased the EPSPs up to 4 fold 

(Figure 28B, n = 2), or induced spikes (Figure 28C, n = 4). 

Optogenetic activation of pulvinar terminals: effects on cortical output neurons  

To determine whether terminals that originate from the pulvinar can directly 

influence the activity of cortical projection neurons, we paired pulvinar virus 

injections with CTB-488 or HSV injections in the ipsilateral SC, V1, or 

striatum/amygdala. The CTB or HSV injections labeled corticotectal, corticocortical 

or corticostriatal/amygdala cells, which we then targeted for recording using 

epifluorescent visualization of cortex slices maintained in vitro. Recordings were 

limited to cortical regions that contained overlapping distributions of CTB- or HSV-

labeled cells and TdTomato-labeled thalamocortical terminals originating from the 

pulvinar (Figure 29A-C), and in which responses could be evoked in non-CTB-

labeled cells within the same experiment. CTB or virus-induced labeling of recorded 

cells was confirmed by video recordings of the patched cells and/or subsequent 

imaging of CTB-488 or YFP within recovered biocytin-filled cells using a confocal 

microscope (Figure 29Ai-iii, Bi-iv and Ci-iv). 

The distribution of corticotectal cells was limited to layer V in V1 and the 

LES. Corticocortical cells projecting to V1 were distributed in layers V and VI of the 

LES (Figure 29Bi). Corticostriatal/amygdala cells were confined to layer V within 
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V1, but their distribution expanded in the more ventral and caudal regions of the LES; 

in the LM and LI, most corticostriatal/amygdala cells were confined to layer V, but 

within P and POR corticostriatal/amygdala cells were distributed throughout most 

layers (Figure 29Ci and Ciii). The increase in the density of corticostriatal/amygdala 

cells in ventral/caudal cortical areas mimicked the increase in the density of pulvinar 

projections in ventral/caudal cortical areas.  

Whole cell recordings were obtained from a total of 120 cells labeled by 

retrograde transport (31 corticotectal, 34 corticocortical and 68 

corticostriatal/amygdala cells; Figure 29F). Of these 3 cell groups, 

corticostriatal/amygdala cells were by far the most responsive group; 52 of 68 or 76% 

of corticostriatal/amygdala cells responded to activation of surrounding pulvinar 

terminals with short latency (≤ 5.7ms). Using these same criteria, 18 of 34 

corticocortical cells (55%), and 2 of 31 corticotectal cells (6%) were categorized as 

responsive. Comparison of the maximum EPSP or EPSC amplitudes elicited in these 

cell groups via activation of pulvinar terminals also revealed significant differences, 

with corticocortical cells exhibiting the most robust responses (Figure 29D-E).  

Activation of pulvinar input to projection cells with trains of light pulses 

revealed a frequency-dependent depression of synaptic responses (Figure 29G and H). 

Furthermore, in the presence of TTX and 4AP, large amplitude responses could be 

elicited (Figure 29I, corticostriatal/amygdala n = 10, corticocortical n = 5) which were 

abolished by subsequent application of the AMPA and NMDA receptor antagonists 

(Figure 29I, corticostriatal/amygdala, n = 4, corticocortical n = 1). The locations of all 
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recovered corticostriatal/amygdala cells were plotted (Figure 25D). Most responsive 

cells were concentrated in the P/POR region. The majority of corticostriatal/amygdala 

cells were pyramidal cells, but four were categorized as spiny stellate cells. 

Discussion 

We found that the mouse pulvinar projects densely to interconnected regions 

of the LES, striatum and amygdala. The laminar distribution and ultrastructure of 

pulvinocortical terminals in the LES was found to be nearly identical to that of 

geniculocortical terminals in V1, and optogenetic activation of pulvinocortical 

terminals strongly depolarized pyramidal cells, spiny stellate cells and interneurons in 

layers IV and V of the LES. Furthermore, recordings targeted to specific projection 

neuron subtypes within layer V revealed that the pulvinar strongly affects the activity 

of corticostriatal, corticoamygdala and corticocortical cells in the LES via direct and 

indirect synaptic contacts. This information coupled with the input and output 

organization of the pulvinar nucleus, suggest that the pulvinar is a pivotal component 

of circuits used for the visual guidance of movement. 

Morphology of thalamocortical terminals and their postsynaptic targets 

We compared the ultrastructure of thalamocortical terminals derived from 

either the dLGN or pulvinar nucleus of the mouse. We found that the sizes of 

pulvinocortical terminals in the extrastriate cortex were not significantly different than 

the sizes of geniculocortical terminals in layer IV of V1. Comparison of terminal 

types in the Galago demonstrated that pulvinocortical terminals are smaller than layer 

IV geniculocortical terminals originating from the magnocelllular layers of the dLGN, 
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but not significantly different from geniculocortical terminals originating from 

parvocellular layers (Marion et al., 2013). However in the tree shrew, pulvinocortical 

terminals are smaller than all layer IV geniculocortical terminals (Chomsung et al., 

2010; Familtsev et al., 2016), and other features, such as dendritic protrusions (Erisir 

and Dreusicke, 2005) are found within geniculocortical terminals, but not 

pulvinocortical terminals. The differences between these terminals types across 

species may be related to the distribution of spiny stellate cells which are densely 

packed in V1 layer IV of non-rodent species (Fitzpatrick, 1996; Callaway and Borrell, 

2011; da Costa and Martin, 2011; Muly and Fitzpatrick 1992).  

We found that terminals that originate from the mouse pulvinar nucleus 

contact spines and other small dendritic profiles, similar to pulvinocortical terminals 

in the tree shrew (Chomsung et al., 2010). In the tree shrew, it was concluded that 

pulvinocortical terminals contact pyramidal or spiny stellate cells based on the 

absence of detectable GABA within postsynaptic profiles. This is consistent with our 

identification of pyramidal and spiny stellate cells as postsynaptic targets or 

pulvinocortical terminals in the mouse. However, our optogenetic experiments in 

mice also identified interneurons as targets of pulvinocortical terminals, which 

prompted us to critically evaluate the ability to detect profiles that originate from 

cortical interneurons using postembedding immunocytochemical staining for GABA. 

By comparing GAD65-GFP-labeled elements with GABA-stained elements, we 

conclude that, in contrast to thalamic interneurons which release GABA from 

dendritic terminals (Govindaiah and Cox, 2004; Bickford et al., 2010), cortical 
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interneurons do not accumulate detectable levels of GABA within small diameter 

dendrites, presumably because they release GABA only from axon terminals 

(Nahmani and Turrigiano, 2014).  

Previous studies of the mouse somatosensory cortex have demonstrated that 

spiny stellate cells are a major target of thalamocortical terminals which form 

asymmetric axospinous synapses (White and Rock, 1979; Benshalom and White, 

1986). However, our study provides the first evidence in mouse that spiny stellate 

cells are also located in both V1 and the LES. In the ferret striate cortex, spiny stellate 

cells develop from pyramidal neurons by a visual experience-dependent process of 

apical dendrite pruning (Callaway and Borrell, 2011). It is possible that our detection 

of spiny stellate cells was facilitated by the fact that we used mice at older ages than 

previous studies of mouse V1 (e.g Kloc and Maffei, 2014). However, spiny stellate 

cells in the mouse somatosensory cortex exhibit their mature morphology by P5 

(Callaway and Borrell, 2011). Therefore, it is most likely that detection of spiny cells 

was simply the result of our large sample size (316 neurons with complete filling); in 

all visual cortical areas, spiny stellate cells made up only 15-18% of sampled neurons.  

Projection neurons of the mouse visual cortex 

Recently, 3 genetically-distinct types of layer 5 projection neurons were 

identified in V1 (Kim et al., 2015): 1) corticocortical (CC) neurons that project to the 

striatum and other cortical areas, 2) corticosubcortical (CS) neurons that project to the 

superior colliculus, thalamus, brainstem and striatum, and 3) corticocortical-

nonstriatal (CC-NS) neurons that project locally within the cortex, but not to striatum. 
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We find that pulvinocortical projections primarily target cortical cells in LES that 

project to the striatum/amygdala (76%) or to V1 (55%). Thus it is possible that 

pulvinocortical projections target a single class of cells that have branching 

projections to the striatum and V1. However, it is difficult to directly compare our 

results to those of Kim et al (2015). Monosynaptic circuit tracing from the 3 defined 

cells in V1 did not reveal a differential labeling of pulvinar neurons, but this 

experimental method does not reveal strength of synaptic input. Most importantly, we 

focused most or our recordings in extrastriate areas of the cortex. Since the genetic 

labeling patterns that classify cell types in V1 likely differ in extrastriate areas of 

cortex, it remains to be determined whether pulvinocortical terminals preferentially 

target a single genetically-defined cell type. Our study of the morphology and 

projection patterns of neurons targeted by the pulvinar nucleus lays the groundwork 

for further thalamocortical circuit analysis that includes genetically-defined cells 

types.  

The pulvinar nucleus and anesthesia 

We found that pulvinocortical projections can strongly impact the activity of 

neurons in the extrastriate cortex, supporting the view that visually-evoked activity in 

extrastriate areas may be primarily relayed via the pulvinar nucleus. However, this 

view is at odds with the conventional hierarchical view of the cortex in which the 

transfer of visual information to extrastriate cortical areas is considered to be 

primarily relayed from V1 via corticocortical connections (Van Essen, 2005). 

Anesthesia could at least partially account for these disparate views. Recordings in 
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anesthetized animals support a hierarchical view in that silencing V1 activity results 

in a profound depression of responses in extrastriate areas (Girard et al., 1992; Kaas 

and Krubitzer, 1992; Azzopardi et al., 2003). However, in anesthetized mice, 

spontaneous activity in the pulvinar nucleus is significantly lower than that recorded 

in the dLGN (Roth et al., 2016), and the proportion of pulvinar neurons that respond 

to simple visual stimuli is approximately half that of dLGN neurons (Allen et al., 

2016). Even in awake but inactive primates, the spontaneous activity of pulvinar 

neurons is less than half that of dLGN neurons (Ramcharan et al., 2005). Moreover, 

recordings in awake running mice have revealed that visual activity in V1 is affected 

by movement of the animal even though dLGN activity is unaffected (Niell and 

Stryker, 2010). These various pieces of evidence suggest that the full influence of 

pulvinocortical projections can only be assessed in awake, active animals.  

Is the pulvinar nucleus a hub for visually-triggered action selection?  

The mouse pulvinar nucleus receives dense input from wide-field-vertical 

(WFV) cells in the superior colliculus (Zhou et al., 2017).The large dendritic fields of 

WFV cells have been described as motion detectors (Major et al., 2000); they respond 

preferentially to small objects moving across the visual field in any direction (Gale 

and Murphy, 2014, 2016). Our results indicate that in addition to the direct projections 

of the pulvinar nucleus to the striatum and amygdala (Day-Brown et al., 2010), 

pulvinar projections to the cortex preferentially target corticostriatal and 

corticoamygdala cells. These input and output connections of the pulvinar nucleus 

suggest that it can be viewed as a hub involved in the initiation or alteration of the 
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appropriate actions in response to the detection of visual movement. Recent 

optogenetic studies support this idea. Activation of a SC-pulvinar-amygdala pathway 

has been shown to elicit freezing responses, whereas inactivation of this pathway 

inhibits innate freezing response elicited by overhead looming stimuli (Wei et al., 

2015). Given the large repertoire of behaviors that can now be quantified using mice 

(Yilmaz and Meister, 2013; De Franceschi et al., 2016; Hoy et al., 2016), future 

optogenetic and/or chemogenetic manipulations may help to unravel the specific 

contributions of the pulvinocortical circuits to the initiation of apt behavioral 

responses.  

The pulvinar and visual neglect 

Visual neglect syndrome causes human patients to ignore the visual field 

contralateral to lesions of the pulvinar nucleus, striatum, and/or extrastriate regions 

surrounding the temporal-parietal junction (Karnath et al., 2002; Smith et al., 2013). 

In particular, these patients make few eye or body movements directed toward the 

neglected space. Our results suggest that these particular lesion sites may disrupt a 

network of pulvinar connections that link the cortex and striatum. While the mouse of 

course is not an adequate model for all aspects of this human condition, it can inform 

and guide further studies of the pulvinar nucleus that may lead to therapeutic 

interventions.  
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Figure 20. Laminar distribution and ultrastructure of thalamocortical terminals 

originating from the dLGN and pulvinar 

A. In V1, thalamocortical terminals originating from the dLGN primarily innervate 

layers I and IV, and corticogeniculate cells are concentrated in layer VI. B. In V1, 

sparser thalamocortical terminals originating from the pulvinar innervate layers I and 

Va. C. In LM/LI, dense terminals originating from the pulvinar innervate layers I and 

IV. Corticothalamic cells that project to the pulvinar are seated in layer VI. D-F. 

Examples of thalamocortical terminal ultrastructure: D. dLGN terminal in V1 layer I. 

E. pulvinar terminal in LM/LI. F. pulvinar terminal in P/POR. D-F. Labeled terminals 

are dark gray, postsynaptic dendrites are light blue, and arrows indicate synapses. G-

H. Comparisons of the size of presynaptic thalamocortical terminals and their 

postsynaptic dendrites. The horizontal bar within each box indicates the mean 

terminal/dendrite size, the box boundaries indicate the lower and upper quartiles (25% 

and 75%, respectively), and the vertical lines (whiskers) indicate the full range of 

terminal/dendrite sizes. Significant differences in size indicated by * (P < 0.05, 1 way 

ANOVA, Post-hoc Tukey’s Multiple Comparison Test) or ** (P<0.01). Scale bar: A-C 

50μm, D-F 600nm. 
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Figure 21. Optogenetic activation of thalamocortical terminals that originate 

from the pulvinar 

A. Schematic illustrates the experimental protocol. Virus injections in the pulvinar 

induced expression of ChIEF and Tdtomato in pulvinar-cortex terminals (red). Ten 

days later, slices of the cortex were prepared for in vitro whole cell patch recordings 

in the area of labeled terminals. Biocytin (green) was included in the pipettes to fill 

cells while recording their responses to blue light pulses. B. Injection site in the 

pulvinar. C. Induced Tdtomato expression in pulvinar-cortex terminals in V1 and 

LES. D-E. Higher magnification of pulvinar terminals in V1 and LES. F. pulvinar-

LES responses were light-intensity dependent and could be elicited in the presence of 

1μM tetrodotoxin (TTX) when paired with 1mM 4-aminopyridine (4AP), and were 

blocked by the application of 80µM 6,7-dinitroquinoxaline-2,3-dione (DNQX) and 

10μM DL-2-amino-5-phosphono-valeric acid (APV), indicating that glutamate release 

from pulvinar terminals activates AMPA and NMDA receptors. G. Pyramidal cells 

(green) that responded to light activation of surrounding pulvinar-cortex terminals 

(red). Scale bars: B-C 250 μm, D-E 100μm, G 50μm. dLGN, dorsal lateral geniculate 

nucleus, PM, posteromedial cortex, PT, pretectum, vLGN, ventral lateral geniculate 

nucleus. 
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Figure 22. Pulvinar activation of pyramidal cells 

A. Responses of a pyramidal cell to photoactivation of pulvinar terminals. EPSPs (A) 

and EPSCs (B) were induced by a train of 10 light pulses (10ms duration, indicated by 

the blue bars) at 1HZ, 2HZ, 5HZ, 10HZ and 20HZ. C-E. Examples of biocytin-filled 

pyramidal cells that were recovered after recording. F-G. Plots of the ratio of the 

amplitude of the second EPSP divided by the first EPSP (paired pulse ratio, F), or the 

average of the amplitudes of the 2nd-10th EPSPs divided by the amplitude of the first 

EPSP (Train/1st pulse ratio, G) for 48 pyramidal cells. H. Of 174 recorded pyramidal 

cells, 118 (68%) responded to photoactivation of pulvinar terminals. Scale bar: C-E 

50μm. 
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Figure 23. Pulvinar activation of spiny stellate cells 

A, B. Responses of spiny stellate cells to photoactivation of pulvinar terminals. EPSPs 

(A) or EPSCs (B) were induced by a train of 10 light pulses (1-10 ms duration, 

indicated by the blue bars) at 1HZ, 2HZ, 5HZ, 10HZ and 20HZ. C-E. Examples of 

biocytin-filled spiny stellate cells that were recovered after recording. F-G. Plots of 

the ratio of the amplitude of the second EPSP divided by the first EPSP (paired pulse 

ratio, F), or the average of the amplitudes of the 2nd-10th EPSPs divided by the 

amplitude of the first EPSP (Train/1st pulse ratio, G) for 18 spiny stellate cells. H. Of 

46 recorded/recovered spiny stellate cells, 30 (65%) responded to photoactivation of 

pulvinar terminals. Scale bar: C-E 20μm. 
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Figure 24. Creation of flattened map from coronal sections 

Virus injections in the pulvinar label projections to V1 and extrastriate areas. A) A one 

in two series of sections through the caudal regions of cortex was processed to reveal 

the projections of the pulvinar with a diaminobenzidine reaction. B) The approximate 

location of each section is indicated in the flattened cortex map (modified from Wang 

and Burkhalter, 2007). A, anterior, AL, anterior lateral, AUD, auditory cortex, D, 

dorsal, L, lateral, LI, laterointermediate, LM, lateromedial, P, posterior, PM, posterior 

medial, POR, postrhinal, TeA, temporal association area, V, ventral. 
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Figure 25. Distribution of cells that activated by the pulvinar 

A-D. The distribution of recovered cells converted from coronal sections to a 

flattened cortex map based on Wang and Burkhalter (2007, J Comp Neurol 

502(3):339-57). Regions of interest are indicated with black lines. Dotted lines 

indicate coronal section spacing. Cells that responded to pulvinar innervation are 

indicated with red dots, unresponsive cells are indicated with green dots, and cells 

filled with biocytin but not tested for pulvinar input are indicated with black dots. A, 

anterior, anterior area, AL, anterolateral area, AM, anteromedial area, AUD, auditory 

cortex, D, dorsal, L, lateral, LI, laterointermediate area, LM, lateromedial area, P, 

posterior, area, PM, posteromedial area, POR, postrhinal area, RL, rostrolateral area, 

TeA, temporal association area, V, ventral. Scale bar: 1mm. 
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Figure 26. Characterization of GAD65-GFP cells in V1 

V1 sections that contain GFP-labeled interneurons (green, A, C, D, F) were stained 

with antibodies against calretinin (purple B, C), parvalbumin (purple E, F), or GFP 

(dark reaction product, G-I) and GABA (gold particles, G-I). GFP often co-localized 

with calretinin (white cells in C indicated by arrows) but rarely with parvalbumin (F). 

GFP-labeled somata (G) and larger dendrites (H) contained detectable levels of 

GABA (high density of gold particles), but GABA was often undetectable in smaller 

GFP-labeled profiles (I). Scale in C = 20 um and applies to A-F. Scale in I = 600 nm 

and also applies to G and H.  
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Figure 27. Pulvinar activation of GAD65 interneurons 

A. In GAD65-GFP transgenic mice, responses of an interneuron to photoactivation of 

pulvinar terminals. EPSPs (A) and EPSCs (B) were induced by a train of 10 light 

pulses (10ms duration, indicated by the blue bars) at 1HZ, 2HZ, 5HZ, 10HZ and 

20HZ. C-E. e Examples of GFP-labeled (green) biocytin-filled interneurons (red) that 

were recovered after recording. F-G. Plots of the ratio of the amplitude of the second 

EPSP divided by the first EPSP (paired pulse ratio, F), or the average of the 

amplitudes of the 2nd-10th EPSPs divided by the amplitude of the first EPSP (Train/1st 

pulse ratio, G) for 25 interneurons. H. Of 34 recorded interneurons, 25 cells (74%) 

responded to photoactivation of pulvinar terminals. Scale bar: C-E 50μm. 
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Figure 28. Interneuron properties 

A. The membrane resistance of interneurons is statistically bigger than both of spiny 

stellate cells and pyramidal cells. ***P=0.0003, ****P<0.0001, one-way ANOVA test 

(Kruskal–Wallis test with Dunn's multiple comparison post-hoc test). Mean ± SD: 

interneurons, 157.8 ± 91.06, n=34; spiny stellate cells, 72.95 ± 25.33, n=29; 

pyramidal cells, 74.6 ± 37.07, n=81). B. 6 interneurons have been tested with GABAA 

blocker SR95531, the amplitude of EPSP of all cells are increased after application of 

GABAA blocker, 4 of 6 are firing spikes, example is shown in C.  
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Figure 29. Pulvinar activation of extrinsic projection cells 

A-C. Schematics illustrate the experimental protocol. Virus injections in the pulvinar 

were paired with CTB-488 injections into superior colliculus, V1 or striatum to label 

corticotectal, corticocortical or corticostriatal cells for targeted recordings. Ai. 

Example of filled corticotectal cells. Aii-Aiii. Higher magnification of the CTB within 

the somata of the two cells biocytin-filled cells in Ai. Bi. Example of filled 

corticocortical cells. Bii-Biv. Higher magnification of the three cells in Bi. Ci and 

Ciii. Example of filled corticostriatal cells. Cii and Civ. Higher magnification of cells 

in Ci, Ciii, respectively. D-E. Maximum EPSP/EPSC amplitude for responsive 

corticotectal, corticocortical and corticostriatum cells. F. Of 31 tested corticotectal 

cells, 2 cells (6%) were responsive to pulvinar innervation. Of 33 tested coticocortical 

cells, 18 cells (55%) were responsive to pulvinar innervation. Of 68 corticostriatal 

cells, 52 cells (76%) were responsive to pulvinar innervation. G-H comparison of the 

paired-pulse ratio and Train/1st pulse ratio for 17 corticocortical cells, 44 cortico-

striatal cells and 25 interneurons. I. Responses of a corticostriatal cell to 

photoactivation of pulvinar terminals in the presence of TTX and 4AP. This response 

was blocked by the sequential application of APV and CNQX. Scale bar: Ai-Ci and 

Ciii 50μm; Aii-Aiii, Bii-Biv, Cii and Civ 10μm.   
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Figure 30. Summary of pulvinocortical circuits 

A. Schematic of cortical cell types targeted by the pulvinar. B. Projection cell types 

targeted by the pulvinar (color contrast was calculated based on the percentage of 

responsive cells). C. Schematic of the interconnected circuits that involve the pulvinar 

nucleus; the pulvinar may serve as a hub to coordinate body movements with the 

perception of visual signals. CC, corticocortical, CS, cortico-striatal, CT, corticotectal, 

solid arrows indicate excitatory connections, dashed arrows indicate inhibitory 

connections, LES, lateral extrastriate cortex, PUL, pulvinar, SGI, stratum griseum 

intermediale, SGS, stratum griseum superficiale, ST, striatum. 
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CHAPTER V 

CONCLUSIONS AND FUTURE DIRECTIONS 

 

Diamond et al. 1976 concluded that in all mammals there are two ascending 

visual pathways to the cortex: the retinogeniculostriate system and the 

tectopulvinocortical system (Diamond, 1976). However, these two systems are not 

completely separate from each other; in addition to the retinogeniculostriate system, 

both the tectogeniculate pathway and components of the tectopulvinar pathway 

project to the striate cortex. This dissertation focused on these two pathways from the 

superior colliculus to the thalamus, with the aim of understanding the synaptic 

organization of these parallel pathways. 

In the previous chapters, I described the ultrastructure of tectogeniculate 

synapses in the dLGN. The convergence of retinogeniculate and tectogeniculate 

terminals on single cells was confirmed with electrophysiological methods. These 

results suggested that the SC may serve as a “backseat driver” to alert the dLGN to 

movement commands originating in the SC. I also characterized subdivisions of the 

mouse pulvinar, reviewed studies of the tectorecipient pulvinar across species, and 

highlighted the ongoing open questions related to tectopulvinar pathways. In the last 

chapter, I explored how the mouse pulvinar affects extrastriate cortical circuits. The 
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results of these studies suggested that the pulvinar acts as a hub to link the extrastriate 

cortex with the striatum/amygdala to coordinate vision and body movement. 

Many important questions regarding the tectothalamic systems remain to be 

answered. A few examples are: 1) How does the tectogeniculocortical pathway affect 

V1 circuits? 2) Are specific cortical interneuron populations targeted by 

pulvinocortical terminals and how do these connections affect corticostriatal output? 

3) How does pulvinar input affect the receptive field properties in the LES? Below I 

outline the design of experiments that could address these questions.  

1) How does the tectogeniculocortical pathway affect V1 circuits? It has 

recently been shown that certain viral vectors can cross synapses to induce expression 

in postsynaptic neurons. Specifically, a AAV1-hSyn-cre (Zingg et al., 2017) has been 

found to cross synapses. To specifically induce the expression of Chief/tdtomato in 

dLGN neurons that receive tectal input, the AAV1-hSyn-cre virus can be injected into 

the SC and a cre-dependent ChIEF/tdtomato virus can be injected into the dLGN. 

Then experiments similar to those described in Chapter IV could be carried out in 

slices of V1.  

2) Are specific cortical interneuron populations targeted by pulvinocortical 

terminals and how do these connections affect corticostriatal output? To answer this 

question, an opto/chemogenetic technique could be utilized. Our initial preliminary 

data (Figure 31) show that cortical interneurons that contain calretinin may mainly 

affect the apical dendrites of pyramidal cells, whereas cortical interneurons that 

contain parvalbumin may primarily affect the somata of pyramidal cells. These 
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specific cortical interneuron populations could be silenced using transgenic mouse 

lines that express “designer receptors exclusively activated by designer drugs” 

(DREADDs). In calretinin-cre-DREADD-GFP, parvalbumin-cre-DREADD-GFP or 

GAD2-cre-DREADD-GFP mice, the AAV-ChIEF viral vector could be placed in the 

pulvinar nucleus and CTB-546 could be placed in the striatum to induce 

ChIEF/tdtomato expression in pulvinocortical terminals, and identify corticostriatal 

cells via retrograde transport. In slices of the LES, whole cell recordings could be 

obtained from CTB-546-labeled corticostriatal cells and surrounding pulvinocortical 

terminals could be activated using pulses of blue light. Then, pulvinocortical 

terminals can be activated while bath applying clozapine-N-oxide (CNO) to inactivate 

interneurons. Comparing pulvinocortical responses before and after CNO application 

can help to determine how interneurons shape the transfer of information from the 

pulvinar nucleus to the striatum.  

3) How does pulvinar input affect the receptive field properties in LES? To be 

able to answer this question, in vivo awake animal experiments need to be conducted, 

since previous studies have shown that anesthetics could reduce cortical cells 

responses and severely affect pulvinar function (Villeneuve and Casanova, 2003). 

Virus injections could be placed in the pulvinar nucleus to induce the expression of 

ARCH (a light activated hyperpolarizing proton pump, Chow et al., 2010) in 

pulvinocortical terminals. Extracellular recordings could then be obtained from cells 

in the LES using an “optrode” (a tungsten electrode with an attached fiber optic) and 

green light pulses (via an attached laser) could be used to silence surrounding 
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pulvinocortical terminals. Comparing cortical receptive field properties before and 

during green light inactivation of pulvinar input could help to determine how pulvinar 

input contributes to LES receptive field properties.  
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Figure 31. Distribution of calretinin and parvalbumin interneurons        Striate 

cortex sections were stained with an antibody against calretinin in A (purple) and an 

antibody against parvalbumin in B (green). A biocytin filled layer V pyramidal cell 

was placed in C (white). Calretinin expressed terminals were concentrated in layer I 

of striate cortex (A) where the apical dendrites of the pyramidal cell end at (C). By 

contrast, parvalbumin expressed terminals were completely absent at the distal 

dendrite of the pyramidal cell but form ring-like structure (B) around soma area of the 

pyramidal cell (C). 
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