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ABSTRACT 

IMPLICA TION OF TISSUE RESPONSE TO ISCHEMIA GRADIENT IN RABBIT 
EAR ON CHRONIC WOUND HEALING 

Abhijit P. Mahalingashetty 

April 13,2009 

Ventral ear skin of the rabbit is a commonly used model for wound/ulcer studies; 

however the gradient effects of vascular ligation on epidermal stability has not been 

reported. In this study ischemic effects were studied after ligation of the central feeding 

vessel in one ear, while the other ear served as control. Three or six days later 9 full-

thickness skin circular punches (6 mm, numbered 1-9) were removed from both ears, 

equidistant from each other with a proximal-distal and medial-lateral orientation. 

Samples were prepared for light microscopy and immunohistochemistry examinations. 

Quantitative analysis showed that normal and ischemic tissue differ minimally on day 3 

but significantly by day 6 with respect to proximal-distal locations as well as medial and 

lateral locations. These findings suggest that the widely used 4-hole rabbit ear model 

may be well suited for studying ischemic wound healing. However, randomization of 

treatment placements among the four corners of the ear is necessary to reduce sample 

biases. 
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INTRODUCTION 

The rabbit ear wound model has become a staple in wound healing experiments 

over the last decade. The use of this model, in its various forms, is broad ranging from 

normal wound healing to those concerning more detailed aspects of skin wounds such as 

hypergranulation and hypertrophic scars. Recently, the ear model has been used to study 

ischemia in wounds. The problem, though, with the current rabbit ear ischemic wound 

model is the lack of detailed understanding of the ear tissue reaction to ischemia. The 

rabbit ear is highly vascular and although ischemia is induced via minimal invasive 

surgery, no report has established to show how revascularization and in turn the healing 

is affected by an ischemic gradient. 

To better treat patients, greater understanding of non-healing and chronic wounds 

is needed. Normal healing proceeds in a stepwise fashion requiring cascade sequences 

and interactions at the cellular level to promote and regulate healing in a time dependent 

fashion (1-3). Clinically, disruption of these sequences of events, especially relating to 

reepithelialization, neovascularization, and oxygen perfusion, results in non-healing 

wounds that cause significant increases in patient morbidity and healthcare costs (4-14). 

Particularly, the need of oxygen for substantive healing is a well documented fact; 

disruption of cellular oxygen results in impaired healing as seen in diabetic wounds and 

other chronic wounds and ulcers. Although hypoxia is unavoidable in wounded tissue 

primarily because of increased cellular metabolism and damage to local blood vessels 

(15-19), normal healing allows for oxygen reperfusion by establishing collateral 
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circulation via migratory and/or proliferating vessels in the newly formed granulation 

tissue (20). The inability of tissue to reestablish oxygen perfusion and hence remain 

hypoxic results in the development of chronic wounds; thus, all chronic wounds are 

inherently ischemic. Yet, there are currently few animal models that mimic ischemia seen 

in clinical chronic wounds (17). Considering the economic impact of chronic wounds 

(mainly diabetic leg ulcers, ischemic ulcers, pressures sores, and venous leg ulcers) is 

estimated to be around $9 billion annually (4), it is imperative that animal models be 

established that closely mimic such wounds. 

This issue is being addressed using various animals including the rabbit ear. In 

such models, the goal is to prolong ischemia in the wound bed. A rabbit ischemic ear 

model using circumferential incision ( open surgery) was developed in 1990 by Ahn and 

Mustoe (21) and has been used for wound studies since. The rabbit ear ischemic wound 

model by minimally invasive technique was developed by Chien in 2007 (22) and is the 

model used for this investigation. Ligation of the vessels only serves to render the ventral 

skin ischemic until collateral circulation from the dorsal ear and the cranium are 

established (around two to three weeks) (23); although, it has been suggested that re

ligation of the vessels may stimulate chronically ischemic wounds (17). Yet, ligation of 

the vessels is only one aspect of the rabbit ear model. The more important aspect is the 

circumferential tissue disruption at the ear base. 

In animal wound study, rodents are still used most often due to their low cost. 

However, rodent wound model has several disadvantages and is extremely difficult to 

render ischemic. The rabbit ear offers advantages over the nude mice and other murine 

models. While the costs of maintaining a Jarge population of rabbits over long periods of 
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time is substantially more when compared to rats or mice (17), the healing process 

observed in the rabbit ear model does more closely resemble that seen in humans. Due to 

loose skin, small animals experience rapid epithelial closure with healing occurring 

mainly by contraction rather than reepithelialization (24, 25). This lack of wound tension 

is minimal in the rabbit ear and thus healing proceeds much more slowly than most small 

mammal models-an advantage in similarity to human skin and for use in prolonged 

wound studies (17, 24, 26, 27). In addition, the rabbit ear has an avascular cartilage (as 

long as the perichondrium is removed) wound bed, helping to avoid vascular growth or 

migration from this location (17). Due to the size of the ear, multiple wounds can be 

placed on each ear (17). Further, the ventral surface of the rabbit ear is relatively free of 

hair and thus adjacent hair follicles playa lesser role in reepithelialization than in other 

small mammals (nude mice being exceptions) (17, 24). 

Animals such as the pig have skin more similar to humans than rabbits. Evidence 

documents the similarities of the pig and human skin. For example, unlike small animals 

including the rabbit, pig and human skin have thick epidermis, dermal collagen is 

relatively similar, and porcine dermis is closer in elasticity to human dermis than other 

animals (28). While all this remains true, wounds in pigs are extremely prone to infection 

and the economics of maintaining pigs for long term wound healing experiments is 

impractical for smaller, resource starved labs (17, 24, 26-28); the rabbit model in 

comparison becomes more practical. 

While it is commonly understood that there exists a vascular gradient in the rabbit 

ear, no study of this gradient and how it is affected by ischemia has been reported to the 

author's knowledge. This study looks to evaluate the different regions on the rabbit ear in 
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order to better understand the relationship among the vascular supply, skin histology, and 

ischemia on the ventral surface of the New Zealand white rabbit ear. 

Typically, experiments using the rabbit ear model use 4-hole standardized 

excisional full-thickness wounds. This standardized model places the four-holes at the 

four corners of the rabbit ear (Figure 1). No study, to the author's knowledge, has been 

conducted on elucidating the role of vascular supply and ischemic gradient in the rabbit 

ear at these four locations. In view of the growing popularity of the 4-hole rabbit ear 

model, a new 9-hole model (Figure 2) was developed to study the ear in greater detail. 

Nine holes were chosen to allow for maximizing coverage of the ventral ear. This 

arrangement allowed for gradient analysis using both micro- and macro-analysis of the 

ventral ear. Micro-analysis was conducted using the individual positions as standalones in 

comparisons among the positions on the ear, i.e. 1 vs. 2; 1 vs. 3, 1 vs. 9, etc. Such an 

analysis would allow us the better locate skin wounds in the future studies while also 

allowing for randomization of wound placements-something that is taken for granted in 

current studies. However, it is also useful to see the larger picture of the gradient within 

the rabbit ear. For this purpose, the macro-analysis was conducted, in which each row 

and column was grouped to evaluate the proximal-distal and medial-lateral aspects of the 

gradient within the ear. To further analyze the gradient, the positions were used for 

comparative purposes in ischemic and non-ischemic control ears. Due to the source of the 

vascular supply, the null hypothesis predicted proximally positioned wounds would have 

thicker ventral skin compared to distally located wounds for both control and ischemic 

biopsies; and overall, ischemic biopsies will have thinner skin than paired controls. 

4 



METHODS & MATERIALS 

Animals 

Six young adult (8-10 week old) male New Zealand White rabbits, weighing 

between 1.60 kg and 1.87 kg, were obtained from Myrtle's Rabbitry (Myrtle's Rabbitry 

Incorporated, TN.). All procedures used in this study were in compliance with the 

National Institutes of Health guidelines and were approved by the Institutional Animal 

Care and Use Committee of the University of Louisville. All animals were housed in 

University of Louisville Research Resource Center (RRC) for this study. The rabbits 

were caged individually with food and water supplied and subjected to 12: 12 hour light

dark cycle. 

Rendering rabbit ears ischemic 

The left ear on each rabbit was rendered ischemic while the right ear served as a 

paired normal, non-ischemic control. The ischemic ear model was created using a 

minimally invasive technique as reported by Chien (22). Rabbits were anesthetized using 

50mg/kg, IP of Sodium Pentobarbital. The ears were then shaved, sterilized, and draped. 

To create the ischemic ear, 3 small vertical incisions (1-2 cm) were made on the vascular 

pedicles of the rostral, central, and caudal vessels at the base of the ear. The rostral and 

central arteries were divided and ligated. However, the caudal artery and all three veins 

were preserved. A circumferential subcutaneous tunnel was made through the 3 incisions 

(Figure 2). All the subcutaneous tissues, muscles, nerves, and small vascular branches 
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were discontinued to the level of the cartilage (minimally invasive). The skin incisions 

were closed with 4-0 or 5-0 prolene. A Duragesic patch (Sadox, Inc. Broomfield, CO) 

was attached to the back skin for releasing Fentayl (25ug/hour) to reduce possible pain. 

Rabbit wound model 

Three rabbits were euthanized each on day 3 and day 6. After the rabbits were 

euthanized, nine circular full-thickness wounds were biopsied on the ventral side of each 

ear with a 6-mm stainless steel punch. Samples' were numbered 1-9 and were taken 

equidistant from each other with a proximal-distal and medial-lateral orientation. The 

circular tissue disks were removed and immersed in 4% formaldehyde buffer overnight. 

The circular disks were bisected and one half was embedded in paraffin for light 

microscopic and immunohistochemistry examination. The paraffin blocks were cut in 6-

[.tm and the slides were used for H&E staining and immuno-staining. The other half of 

the tissue was submitted for transmission electron microscope processing, which was 

thinly sliced into 3 mm3 blocks for plastic embedding after postfixation in 2% osmium 

tetraoxide and dehydration. The polymerized blocks were cut at I-micron thickness, 

toluidine stained, cut at 800 D thickness, collected on copper grinds, and stained with 

lead citrate and urinal acetate, before they were examined on a CM 10 Philips electron 

microscope (North American Philips, Co., Mahwah, NJ). 

Tissue preparation for microscopy use 

Tissue was dehydrated using increasing concentration of ethanol (30% to 100%) 

and 100% propylene oxide. After dehydration, tissue was infiltrated in a mixture of 

propylene oxide and araldite before embedded in Araldite 502 for light microscopy use. 

6 



This plastic was created from mixing DDSA (Dodecenyl Succinic Anhydride) (Electron 

Microscopy Sciences, Hatfield, PA) and Araldite 502 Resin (Electron Microscopy 

Sciences, Hatfield, PA). 

Proliferating Cell Nuclear Antigen (PCNA) Immunohistochemistry 

Rabbit ear tissue was sectioned at 40 microns using a Vibratom (Electron 

Microscopy Sciences, Hatfield, PA). Sections were washed with PBS and blocked using 

5% normal goat serum in 0.1 % Triton X-lOO/PBS. PCNA mouse IgG2a mAb (Santa 

Cruz Biotechnology, Inc., Santa Cruz, CA), the primary antibody, was administered at 4 

°C overnight at a dilution of 1: 100. Secondary antibody, goat anti-mouse IgG biotin 

(Santa Cruz Biotechnology, Inc., Santa Cruz, CA) was administered at a dilution of 

1:200. Samples were washed with PBS, treated with ABC reagent (Vector Laboratories, 

Inc., Burlingame, CA) and allowed for DAB reaction (Vector Laboratories, Inc., 

Burlingame, CA) for roughly 7 minutes. Following a rise with dH20, tissue was 

embedded for microscopy observations and study (See Appendix for Protocol). The cross 

reactivity of the mouse IgG2a and the dilution of both the primary and the secondary 

antibodies was tested prior to the experiment. Slides were counterstained with Toluidine 

blue and mounted with aqueous medium. 

Semi-quantitative analysis of ventral ear thickness, epidermis, and keratinocyte 

nuclei 

Initially, biopsy tissue was cut into four sections that were then sectioned and 

embedded onto slides. Two sections were selected randomly and were captured at 40x 

magnification using a Spot CCD camera (Diagnostic Instruments, Inc., Sterling Heights, 
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MI). Quantitative analysis of the ventral ear thickness was performed on captured images 

for both ischemic and control tissues using NIS Elements Basic Research imaging 

software (Nikon Instruments Inc. Americas, Melville, NY). The ventral skin thickness 

measurements were made by using a tracing tool and recorded as an area (squared 

microns). To ensure consistency, a width of 1.75 microns was used for all traced samples. 

The areas were then determined by measuring varying heights that were determined by 

measuring the distance from the cartilage (perichondrium) to edge of the epidermis. Each 

sample section provided three measurable areas, from left to right, equidistant from one 

another (3.50 microns apart). An average of 6 areas was measured for each biopsy. Data 

were collected for statistical analysis. 

Epidermis thickness was measuring using a similar method. Epidermis layer was 

captured using the Spot CCD camera at 1000x magnification. Six area measurements 

were measured per section for a total of 12 area measurements for each biopsy. The width 

was held constant at 0.150 microns while the height was measured from the basal layer to 

the beginning of the stratum corneum. Measurements were taken left to right equidistant 

from one another (0.180 microns apart). Within each measured area, the number of 

keratinocyte nuclei was counted and data was collected for statistically analysis. 

Statistical Analysis 

All data are expressed as the mean plus or minus the standard error of the mean 

(mean ± SEM). Data was analyzed using either paired or independent T-tests and analysis 

of variance (ANOV A) followed by a post hoc multiple comparison tests using 

commercially available statistical software (SPSS Inc., Chicago, IL). A P value of:S 0.05 
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was considered significant for all cases. Graphs were made using GraphPad Prism 5.0 

(GraphPad Software, Inc., La Jolla, CA). 
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RESULTS 

Skin Temperature 

The skin temperature difference between the normal and ischemic ear ranged 

from 0.9 °C to 5.8 0c. The lowest average difference (1.32 ± 0.16 °C) occurred on the 

day of surgery (day 0). A large increase was seen one day postop (3.28 ± 0.35 °C) and 

this was statistically significant (p < 0.005) and this difference remained throughout the 

examined days (3.83 ± 0.32 °C, on average). Day 3 mean temperature was significantly 

different compared to day 0 mean (p < 0.001). Day 6 mean temperature was significantly 

different compared to day 0 mean (p < 0.005). (Figure 3) 

General Histology 

Ventral skin was seen to be more compact compared to dorsal skin of the ear and 

composed of thin skin with stratified squamos epithelium. Unlike the dorsal skin, the 

ventral skin showed few samples with adipose tissue in the hypodermis; instead, tissue 

was seen extending to the perichondrium and cartilage. In general, microscopic 

observations of normal and ischemic tissue were similar; observations seen in normal 

tissue were also seen in ischemic tissue. The epidermis contained stratified squamos 

epithelium and was highly cellular containing numerous keratinocytes in various maturity 

stages extending from the basal layer near the basement membrane to the shedding 

stratum corneum. Larger numbers of keratinocyte were observed at the basal layer, 

stratum basale, compared to apical portions of the epidermis. The number of keratinocyte 
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layers, those in the stratum spinosum, was observed to be varied depending on location 

and tissue sampled. Ventral skin was observed to have a dermal layer that was 

predominantly acellular; contained occasional hair follicles with accompanying arrector 

pili muscle; sebaceous glands located near hair follicles or extending from the dermis to 

the epidermis; and abundant neurovascular bundles. Nerve bundles ranged in size 

(observations not quantified) and contained both myelinated and unmyelinated fibers

myelinated fibers stained more intensely than unmyelinated fibers. Microvasculature 

contained capillaries extending through the dermis as well as one to three cell layer 

arterioles adjacent to numerous smaller venules. (Figure 4) 

Immunohistochemistry 

Proliferating cell nuclear antigen (peNA) stains revealed greater number of 

stained nuclei in ischemic tissue compared to normal tissue; however, difference was not 

measured quantitatively and no statistical significance test was conducted. Positively 

stained nuclei were found in keratinocytes of the epidermis and some spindle-shaped 

nuclei in the dermis. Proliferating keratinocyte nuclei were positively stained in the 

epidermis (Figure 5) of both control and ischemic tissue. Most epidermal positive 

staining occurred at the basal layer. Within the dermal layer, many endothelial nuclei 

were found stained. The labeled nuclei lined microvessels; yet, not all nuclei surrounding 

the same vessels stained positive. More often, it was observed that nuclei on one side 

were stained while those on the opposite were not (Figure 6). 

Ventral Skin Thickness Measurements 

Day 3 
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Comparing normal skin tissue at different positions with one another revealed a 

pattern that was slightly different in ischemic skin. Positions 1, 2, 3, and 5 were 

significantly different compared to positions 4, 6, 7, 8, and 9 in normal skin. In ischemic 

skin, positions 1,2,3,4, and 5 were significantly different compared to positions 6, 7, 8, 

and 9. Comparing day 3 normal and ischemic skin thickness, results differed significantly 

at positions 1,3,4,8, and 9 (p < 0.05 for 1,4,8, and 9; p < 0.005 for 3). On average, the 

thickness deviation between distal positions, like those proximally, were minimal for 

both normal and ischemic tissue. It was the middle positions, as stated previously, that 

were different; positions 4 and 6 were thicker than 5 for both tissue types (Figure lO). 

There was a significant difference between proximal, middle, and distal located positions 

(7.64 ± 0.287 !lm2
, 6.40 ± .266 !lm2

, and 4.33 ± 0.161 !lm2
, respectively) for control 

tissue and (9.06 ± 0.390,6.70 ± 0.454, and 5.02 ± 0.249 !lm2
, respectively) for ischemic 

tissue (Figure lO). When compared, control and ischemic tissue were significantly 

different at distal and proximal locations (p < 0.05 and < 0.005, respectively). On 

average, centrally located positions are thinner than medial and lateral positions for 

control and ischemic tissue (Figure 7). 

Comparing day 6 normal positions revealed more complexity and variation than 

day 3 normal positions. Normal skin thickness was consistently thinner than ischemic 

tissue. Positions 1,2,3,5, and 6 are significantly different from positions 4, 7, 8, and 9 

for normal skin. However, no significant difference was found for ischemic positions 

when compared to each other. Comparing day 6 normal and ischemic skin revealed 

greater difference in ventral skin thickness than seen in day 3 samples. Ischemic positions 
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1, 2, 3, 4, 5, and 9 are all significantly different (p < 0.05 for positions 1, 2, 5, and 9; p < 

0.005 for positions 3 and 4) than their paired controls (Figure 11). Thickness varied 

proximally to distally (7.68 ± 0.305 [!m2
, 5.78 ± .190 [!m2

, and 5.13 ± 0.169 [!m2
, 

respectively) for control tissue with only proximal tissue being significantly different 

from distal tissue. For ischemic tissue, thickness again varied proximally to distally (8.46 

± 0.419,8.11 ± 0.359, and 7.74 ± 0.405 [!m2
, respectively), but without significance. 

Comparing ischemic tissues with their paired controls, distal and middle locations were 

significantly different (p < 0.001 for both); day 3 difference was seen in distal and 

proximal locations (Figure 9). By day 6, centrally located positions are statistically no 

different when compared to medial and lateral locations (Figure 8). 

Day 3 v. day 6 

To determine the difference between the two time points, normal and ischemic 

skin thickness data was compared for day 3 and day 6. Results indicate that only 

positions 3, 6, and 8 were significantly different (p < 0.005 for 3 and 6; p < 0.05 for 8) for 

normal skin (Figure 12) and positions 1,2, and 5 were different (p < 0.005 for all) for 

ischemic skin (Figure 13). 

Epidermis Thickness 

Comparing day 3 epidermal thickness in normal and ischemic tissue showed that 

positions 1,3,4, 7, and 9 were significantly different (p < 0.05 for 7; p < 0.01 for 3; p < 

0.005 for 3; p < 0.001 for 1 and 9) (Figure 14). Day 6 normal and ischemic thickness 

revealed positions 1 through 6 and position 9 were significantly different (p < 0.001 for 

all) (Figure 15)-these same positions were also significantly different in full thickness 
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comparisons (Figure 10). Comparing day 3 normal epidermal thickness to day 6 revealed 

that positions 1, 3, 6 and 7 were significantly different (p < 0.05 for 3 and p < 0.005 for 1, 

6, and 7) (Figure 16). Days 3 and 6 ischemic epidermis comparisons revealed positions 1, 

2,3,5, and 6 as being significantly different (p < 0.001 for 3; p < 0.005 for 1,2, and 5; p 

< 0.05 for 6) (Figure 17). 

Keratinocyte Nuclei Density 

Increased nuclei density in all tissue was found to be correlated with increased 

keratinocyte layers in the epidermis. Positions 2, 3, 7, and 9 nuclei density were 

significantly different (p < 0.05 for 2 and 3; p < 0.005 for 7 and 9) for day 3 normal 

versus ischemic tissue (Figure 18). For day 6, positions 1,2,4,5,6, and 9 were 

significantly different (p < 0.005 for 2; p < 0.001 for 1,4,5,6, and 9) (Figure 19). 

Comparing normal tissue nuclei density for days 3 and 6 revealed that positions 1, 4, 5, 6, 

and 7 were significantly different (p < 0.005 for 1,4, and 6; p < 0.05 for 5 and 7) (Figure 

20). Comparing ischemic tissue nuclei density between the days revealed that positions 1, 

2, and 5 were significantly different (p < 0.005 for 1 and 2; P < 0.04 for 5) (Figure 21). 
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DISCUSSION 

Studies to evaluate ischemia in the rabbit ear either have not been conducted or 

have not been reported. However, few articles relating to the ventral ear skin discuss 

regenerative capabilities of the rabbit. In their discussion of the rabbit's ability to fully 

regenerate ear tissue after full thickness wounds were placed on the ear, Goss and Grimes 

(1975) and Williams-Boyce and Daniel, Jr. (1980 and 1985) show that wounds on the ear 

show discriminate healing. In their evidence, these authors show that males tended to 

heal more successfully than females and juveniles more quickly than adults; pregnant 

females regenerated much more quickly than non-pregnant females or males; skin 

thickness was also greater in males than females; proximal wounds regenerated faster and 

more successfully than middle locations and these faster than distally placed wounds; and 

proximal tissue also tended to be thicker compared to more distal locations in both males 

and females (29-31). These findings suggest that there are similarities in cartilage 

regeneration and wound healing, however, their results should be taken cautiously 

because this experiment did not look at the regenerative capacity of the rabbit cartilage. 

No recent studies were found relating to this topic. Further, reports concerning wound 

healing have not reported on any recovery differences in proximally placed wounds and 

those placed distally. Despite the evident lack of recent literature, the rabbit ear model 

seems well suited for studying normal and ischemic wound healing. 
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The hypothesis had predicted that proximal placed biopsies would be thicker 

compared to more distally placed wounds in both normal and ischemic tissue. The results 

indicate that this is true for normal tissue at both days examined and ischemic tissue at 

day 3. However, at day 6, ischemic tissue biopsies showed a consistent thickness at 

proximal, middle, and distal locations (Figure 9). This study suggests that normal ear skin 

follows a natural gradient in which thickness varies proximal to distal (thicker to thinner, 

respectively). It is possible that this thickness gradient correlates to the vascular supply of 

the ear; the vascular pedicles serve as the major entry point for the vessels supplying the 

ear (17, 23). Williams-Boyce and Daniel, J r. suggest that the differences seen in 

proximo-distal orientation may stem from differences in innervation and vascularity in 

addition to cartilage thickness differences-proximal cartilage tends to be thicker than 

distal cartilage (30). The second part of the hypothesis had predicted that ischemic tissue 

would be thinner than paired controls. The results indicate that thickness variations are 

dependent on position, but results, particularly, for day 6 suggests that this part of the 

hypothesis needs to be rejected. Ischemic tissue is consistently thicker than normal paired 

tissue at day 6. 

Normal skin, unlike ischemic skin deviates less from average thickness among the 

positions and contains uniformity among positions in proximal, middle, and distal 

orientations. Ischemic tissue showed greater variability (Figures 7 & 8). Further, skin 

thickness varies little in the normal skin with only minor changes documented between 

days 3 and 6; thickness gradient was still observed. However, ischemia seems to dislodge 

this gradient. By day 6, ischemic positions at the distal and middle locations gained in 

thickness and were comparable in thickness to proximal positions that remained largely 
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unchanged compared to day 3. Moreover, thickness in centrally placed positions (2, 5, 8) 

seem also to be enhanced after ischemia. To better understand this thickness change, the 

epidermis was measured. It seems that thicker ventral skin correlates to having a thicker 

epidermis by day 6; this is especially true for ischemic tissue. Results suggest that the 

time between days 3 and 6 is one of increased keratinocyte turnover in ischemic tissue 

compared to normal tissue. On average, nuclei density per area increased by day 6 

compared to day 3 in ischemic tissue. The layers of keratinocytes in the epidermis 

increased but were not significant. The reasons behind the increased thickness in 

ischemic tissue could be accounted for-but not limited to-in multiple ways including 

hypoxia induced angiogenesis, neovascularization, or migration of endothelial cells and 

ischemia caused epithelial activity. 

Collateral circulation 

Rendering the rabbit ear ischemic by ligating two of the three arteries renders the 

ear ischemic for two to three weeks at which point collateral circulation is established 

(17). PCNA evidence suggests that proliferating vasculature maybe helping reestablish 

circulation in ischemic tissue. Collateral circulation may enhance positions 4 and 6 

(closest to neighboring vessels) and this may account for their increased thickness 

compared to adjacent positions. Increase cellular metabolic activity can be managed for a 

short time in the absence of oxygen, but prolonged absence cannot supply the necessary 

energy needed for favorable outcomes (32). Proliferation of endothelial cells and in turn 

microvasculature suggests that perfusion is being established quickly in this model, but 

the extent of neovascularization and areas of proliferation within the tissue were 

undetermined. Understanding the early response to ischemia by the ear skin tissue should 
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reveal greater details to how wounds respond. For example, wounds by nature are 

hypoxic and as a result, their need for oxygen helps to initially increase the rate of 

proliferation and growth of vessels and other angiogenic factors in the insulted region 

(10, 19). However, when the tissue is ischemic to begin with, wounds should place an 

extra burden on tissue response. Inability to establish and maintain nutrient, oxygen, and 

adequate blood supply in the skin tissue is one the main reasons for the occurrence of 

chronic wounds (l, 10, 19). The early proliferation of vasculature in the rabbit ear might 

minimize the oxygen debt experienced by the wounded tissue. Nevertheless, ischemia in 

this model is significant and prolonged compared to rat models and does allow for 

repeated and continuous testing at the wound sites (21, 33). Temperature differences 

between normal and ischemic ears also seem to support the presence of ischemia. The 

initial increase in the temperature difference and the subsequent maintenance of this 

difference throughout the days examined indicates that blood flow has not fully recovered 

in any of the ischemic rabbit ears. 

Growth factor synthesis and secretion seem to be reduced in chronic wounds (34) 

and evidence suggest that upregulation of factors such as insulin like growth factor-I 

(IGF-l) (35) and keratinocyte growth factor-I and 2 (KGF-l and KGF-2) (34) in addition 

to other fibroblast growth factor family members may have positive outcomes in 

ischemic wounds (36). For example, IGF-l deficiency has been shown to delay healing in 

ischemic wounds; increasing IGF-I levels seem to increase collagen synthesis and cell 

proliferation by various cells in ischemic tissue (35). Several growth factors, however, 

are stimulated naturally due to loss of homeostasis in injured tissue. The result is 

increased levels of growth factors such as transforming growth factor beta-l (TGF-~ 1), 
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tumor necrosis factor alpha (TNFa), epidermal growth factor, keratinocyte growth 

factors, basic fibroblast growth factor (bFGF), platelet-derived growth factor (PDGF), 

vascular endothelial growth factor (VEGF) (20, 37, 38) associated particularly with 

angiogenesis. 

The proliferation of endothelial cells and vessels as evidenced from peNA 

positive stains suggest that there may be reestablishment of vascular supply. If so, some 

of the factors listed above may playa significant role during ischemia. Ischemia is 

believed to be a strong stimulus for neovascularization because the need for restoring 

oxygen delivery to wounded sites is so great (39). In fact, high level of VEGF has been 

reported in both uninjured ischemic tissue and injured ischemic tissue (37) and evidence 

suggests that it plays a more prominent role in ischemic tissue than other factors such as 

bFGF (37, 40). Urbich and Dimmeler have reported that VEGF was shown to induce 

differentiation of adult progenitor populations to endothelial cells in ex vivo culture 

assays and in ischemic tissue (41). VEGF seems to promote neovascularization of 

ischemic tissue by vasculogenesis rather than angiogenesis (39). It is also possible that 

ear tissue was experiencing angiogenesis in addition to vasculogensis in certain regions 

of the era. Angiogenesis occurs mainly by sprouting of new capillaries from existing 

vasculature (20, 38) rather than induction of progenitor cells as seen in vasculogenesis. 

This is possible in this experiment since the caudal artery was left intact. Migration of 

sprouting capillaries into the ischemic tissue could easily explain the proliferation of 

vessels seen in the vicinity of the artery. 

Epidermis and Ischemia 
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The epidermis is the outermost layer of the skin varying in thickness depending 

on location. Our results indicated that in the ventral rabbit ear, the epidermis is quite 

uniform in normal tissue varying slightly in the proximal locations but not significantly. 

Ischemia seems to disrupt this uniformity, especially by day 6. Thickness is significantly 

enhanced at distal and middle locations compared to day 6 normal tissue and day 3 

ischemic tissue. It is known that the epidermis is constantly turning over new cells, but 

how this affects epidermal thickness is unclear. By day 6, epidermis seems to be affected 

by ischemia. Keratinocyte nuclear density was found to be increased in day 6 ischemic 

tissue compared to day 6 normal and day 3 ischemic tissues. Keratinocytes, which are the 

dominant cell within the epidermis, are maintained by undifferentiated stem and 

progenitor cells in the proliferative basal layer (42). These progenitor cells constantly 

renew keratinocyte populations that are lost at the stratum corneum allowing the skin to 

maintain a strong barrier against the environment (43). While the role of epidermal cells 

in ischemic conditions is being currently researched, there is growing evidence that 

epidermal progenitor cells (EpPCs) playa large role in wound healing, especially in 

ischemia (41, 42). 

Basal progenitor cells were once thought to be unipotent giving rise to only new 

keratinocytes; however, research has provided evidence of mUltipotency. The potential 

for epidermal progenitor cells to be multi potent rather than unipotent has been seen as a 

possible venue for chronic wound treatment (42, 44, 45). Keratinocytes and EpPCs at the 

chronic ulcer edges have been shown to be highly proliferative, induce granulation tissue 

in ischemic dermal wounds, accelerate blood flow in diabetic ischemic limbs, increase 

migration and proliferation of endothelial cells, increase vascularity in injured tissue, and 
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increase the proliferation rates of new keratinocyte in epithelial gap closure (36, 42-44, 

46). The increase seen in both epidermis thickness and the nuclei density by day 6 in 

ischemic tissue might indicate increased activity by EpPCs and keratinocytes. EpPCs 

have been shown to incorporate into the endothelium of capillaries after induction of 

ischemia resulting in neovascularization and it has also been suggested that progenitor 

cells actively recruit endogenous cells to form new vessels in ischemic tissue (42). Given 

PCNA positive stained endothelial nuclei findings from this study, it is possible that 

EpPCs might have played a role in enhancing blood supply to ischemic tissue. Ischemia 

seems to stimulate keratinocyte growth factor-2 (KGF-2) in wounded tissue. KGF-2 has 

been shown to increase both epithelium thickness and migration; KGF-2 treated ischemic 

wounds were shown to have increased wound healing in young and aged rabbits (34). 

Changes in ventral skin thickness and accompanying increases in epidermis 

thickness and keratinocyte population density demonstrate ischemia does alter the tissue 

histology. However, the exact mechanism has yet to be determined. The finding that 

normal ear skin adheres to a decreasing proximal to distal thickness gradient that is 

altered with ischemia suggests more detailed experiments should be conducted. Dermal 

and epidermal cell population dynamics, growth factor regulation, and progenitor cell 

activity should also be examined in future studies using this model. PCNA evidence 

suggests that proliferation of various cells is occurring in both normal and ischemic 

tissue; however, the cell types were not determined. Spindle shaped nuclei suggest that 

some of these positively stained cells could be fibroblasts. Dermal fibroblasts are actively 

involved in wound healing through the deposition of new collagen and ECM. Dermal

epidermal interactions are well documented and while, this experiment did not look at the 
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roles collagen and extracellular matrix play in ischemia, future studies should not ignore 

this aspect because wounds cannot heal properly without adequate collagen deposition, 

nor can they achieve structural integrity in ischemia as evidenced by diabetic, pressure, 

and venous ulcers. Future experiments should consider examining the role of 

angiogenesis and vasculogensis in ischemic tissue and attention should be paid to dermal 

dynamics as well. While, this experiment has shown evidence of endothelial proliferation 

in the ischemic tissue, blood flow and oxygen perfusion should be measured to properly 

assess the recovery from ischemia. 

Implication for wound healing research 

The results of this experiment suggest that tissue responds to ischemia differently 

at days 3 and 6. Depending on location of the wounds, tissue also reacted differently. 

From this experiment, it was shown that ischemia affected the tissue at proximal and 

lateral positions differently than other positions. It was shown that full thickness results 

of ischemic tissue were significantly different at position 1,3,4,8, and 9 compared to 

normal tissue at day 3. Additionally, positions 1,3,4, 7, and 9 for epidermis thickness 

and 2, 3, 7, and 9 for corresponding keratinocytes were also significantly different at day 

3. Remembering that positions 1,3, 7, and 9 correspond to the four-hole models, it 

becomes apparent that the four corners react more to ischemia at day 3 compared to the 

other positions. This has implications for wound healing studies that look to study early 

. phases of wound healing. Since tissue responds differently at the four corners compared 

to the other locations, randomizing positions for acute and inflammatory studies is 

recommended. Positions 2, 4, 6, and 8 seem the logical choices. Altering the four corner 

model with a model that uses 2, 4, 6, and 8 may help to achieve a more detailed 
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understanding of the healing process in the early stages while avoiding the inherent 

biases that seem present at the corners. Additionally, the nine-hole model used in this 

study is maybe well suited for future studies as well. The information gathered from 

using the nine-hole model will be greater than the four-hole model and using the nine

hole model rather than the four-hole model can eliminate the need for randomizing the 

wounds. However, nine holes do increase the resources needed to conduct studies and 

additionally how skin healing occurs in such a model is unknown. For wound studies 

looking at longer time periods, the four corner model seems adequate. 

Ischemic tissue by day 6 was found to respond to ischemia more so than by day 3. 

Yet, the reaction of the tissue is uniform throughout the examined ear. Ischemic tissues at 

positions 1, 2, 3,4, 5, and 9 all are significantly thicker than paired control tissue. 

Positions 7 and 8, while not significantly different from paired control, have similar full 

thickness, epidermis thickness, and nuclei counts compared to all other positions. 

Additionally, no significant difference was observed for tissue at distal, middle, and 

proximal. A uniform reaction suggests that choosing any of the nine positions would be 

well representative of overall tissue reaction at day 6. Maintaining the four corner model 

would be the recommended option. How exactly the rabbit ventral ear tissue reacts to 

ischemia past day 6 is unknown. The granulation phase or the second phase of healing 

tends to last until the wounds are covered. Past studies using the rabbit ischemic model 

suggest that re-epithelization and wound closure usually occurs within the first two to 

three weeks of injury while full healing is prolonged in ischemic wounds (21,47). 

Assuming that ischemic tissue is in the second phase of healing by day 6, tissue reaction 

23 



for days following 6 should be similar to that seen in day 6. If this is the case, then the 

four corner model maybe sufficient. 
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SUMMARY AND CONCLUSIONS 

The results of this experiment comply with the first prediction made by the 

hypothesis-ventral skin has a decreasing proximal to distal thickness gradient. Proximal 

skin tissue is consistently thicker compared to more distal skin tissue. However, the 

hypothesis also predicted that ischemic tissue would be thinner than normal control 

tissue. This was not the case. Day 6 ischemic tissue had increased thickness at all 

positions examined indicating that ischemia with time plays a role in altering the 

thickness gradient. In addition to changes in the whole skin thickness, the finding that the 

epidermis thickness and corresponding keratinocyte population density are altered as a 

result of ischemia is important. The epidermis plays an important role in establishing the 

barrier needed to protect the body from the environment. How exactly this skin thickness 

gradient and the epidermis are altered should be the focus of future experiments. The 

purpose of this experiment, however, was to outline the tissue response to ischemia and 

how this may affect chronic wound healing. Chronic wounds by nature are ischemic and 

our finding that the rabbit ear shows changes after being rendered ischemic is important. 

Creating new chronic ear wound models that closely resemble those seen in clinical 

settings is vital to gaining more knowledge about possible future treatments. The nine

hole ear model designed for this experiment can be an useful tool for elucidating 

information concerning the overall tissue dynamics after ischemia as well as a model for 

future wound healing studies that look to study the initial inflammatory stage or acute 

responses after injury. Although the use of nine holes increases the time and costs of 
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conducting research, the results obtained are more detailed than comparative four-hole 

studies. Yet, as discussed, researchers studying the immediate and acute responses of 

injury should consider either using the nine-hole model or a four-hole model that 

randomizes the positions of the wounds to avoid biases observed at the comers. Tissue 

response to ischemia by day 6 is more uniform compared to day 3 and thus researchers 

interested in a more long term study of ischemic wound healing can use the four-comer 

model without alternating wound positions. Whether deciding to use either the four-hole 

or the nine-hole wound model, attention should be paid to the inherent thickness gradient 

present in the skin. 
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FIGURES 

Figure 1. Four-hole ear wound model. A gross image of the ventral ear skin with four 6-
mrn circular wounds. 
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Figure 2. Nine-hole rabbit wound and rabbit ear ischemic model. Current four hole 

models place wounds at the four corners, this model aims to look at other regions of the 
rabbit ear in addition to the four corners. Left ears of each rabbit were rendered ischemic 
by ligating two of the three arteries supplying the ear--the caudal artery and all three 
veins were preserved. Right ear of each rabbit served as controls. 
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Figure 3. Temperature difference between ears. Difference in temperature significantly 
increased (p < 0.005) after ears were rendered ischemic (1.32°C ± 0.39 °C on day 0 to 
3.28°C ± 0.86 °C on day 1 postop). While, the rate of difference decreased as the days 
progressed, an average difference of 3.84 °C ± 0.85 °C was observed over remaining days 

post surgery for all animals. Mean temperatures for days 3 and 6 were significantly 
different (p < 0.001 and < .005, respectively) compared to day O. 
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a 

b 

Figure 4. General histology of the rabbit ventral skin. Ventral skin extends from the 
cartilage (HC) and the perichondrium (PC) to the shedding stratum corneum (SC). 
Epidermis (E) thickness varies according to location and is usually several cell layers 
thick. No observable difference was seen between normal tissue (a) and ischemic tissue 

(b) . Dermis (D) contained neurovascular bundles (*) and were predominantly acellular. 
Occasional hair follicles (HF) and sebaceous glands (SG) were observed. Magnification 
200x and scale bar equals 0.1 mm. 
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Figure 5. peN A staining of the epidermis. Positively stained keratinocytes were found 

predominantly in the basal layer. Positive stains were seen in both ischemic tissue and 
normal tissue-no quantification was conducted. Magnification lOOOx. 
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Figure 6. peNA staining of the dermis. Positive staining nuclei were observed to be 

spindle-shaped and were present in both normal and ischemic tissue. Positive endothelial 
nuclei reveals proliferation of vasculature within ischemic and normal tissues. Notice in b 
and d that positive stained nuclei do not always surround the vessel; rather they constitute 
one side of the vessel. Magnification lOOOx. 

32 



Day 3 Skin Thickness 
12· 

* • Normal Medial 
...-... ** ,.., E 10· 

,.., 
~ Ischemic Medial 

:::t 
---- 0 Normal Central en 8 en 

~ Ischemic Central Q) .. 
iI c 

..::£ 6· ** == () ,.., EJ Normal Lateral .. .... 

:.c ~ 
.. 

I- 4· nm Ischemic Lateral 
c r:-: .. 

ctI *p < 0.05 
Q) 

~ 2· .. .. **p < 0.005 
.. 

.. 

O· 
Distal Middle Proximal 

Location 

Figure 7. Day 3 overall skin thickness trends. For normal tissue and ischemic tissue, 
distal located positions tend to be thinnest compared to middle and proximal locations. 
Centrally located positions tend to be thinner than lateral and medial locations. The 
overall thickness gradient in both normal and ischemic tissue is one in which thickness 
decreases as you move away from the base of the ear (proximal to distal). Note 
Orientations: Positions 1,4, 7 are medial positions; 2, 5, 8 are central positions; and 3, 6, 

9 are lateral positions. Positions 1,2,3 are distal positions; 4, 5, 6 are middle positions; 
and 7, 8,9 are proximal positions. Each bar on the above graph corresponds to one 
position, i.e. medial distal corresponds to position 1, central middle corresponds to 
position 5, etc. Results are shown as mean plus/minus SEM. 
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Figure 8. Day 6 overall skin thickness trends. By day 6, ischemic tissue is consistently 
thicker than normal tissue at distal and middle locations indicating thickness at these 
locations increased from day 3 and compared to normal tissue. Results are shown as 

mean plus/minus SEM. 
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Figure 9. Ventral skin thickness gradient. Looking just at the proximal, middle, and 
distal locations, the gradient becomes clear. Distally located normal and ischemic tissue 
for day 3 are significantly different compared to middle and proximal locations. Only 

proximal located positions are significantly different compared to distal located positions 
for day 6 normal tissue. No significant difference was found for day 6 ischemic tissue. 
Day 6 ischemic tissue is more uniform in thickness. Results are shown as mean 
plus/minus SEM. 
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Day 3 Normal v. Ischemic Ventral Skin Thickness 
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Figure 10. Day 3 Normal v. ischemic skin thickness. Results are shown as mean plus 
standard deviation. In day 3 tissue, positions 1, 3,4,8, and 9 were significantly different 
between normal and ischemic tissue. Notice the thickness gradient increases as you move 
closer towards proximal positions (7, 8, and 9). Results are shown as mean plus/minus 
SEM. 

36 



Day 6 Normal v. Ischemic Ventral Skin Thickness 
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Figure 11. Day 6 nonnal v. ischemic skin thickness. By day 6, normal and ischemic 
tissues vary more compared to day 3. Statistically significant positions are 1, 2, 3, 4, 5, 
and 9. Unlike normal tissue, which seems to still have that inherent thickness gradient, 

ischemic tissue seems to have lost this gradient by day 6 as thickness has leveled out at 
the different locations. Results are shown as mean plus/minus SEM. 
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Figure 12. Day 3 v. day 6 normal skin thickness. Comparing normal skin thickness 
between days 3 and 6 reveals that differences are minimal. Only positions 3, 6, and 8 are 

significantly different. Notice the presence of the thickness gradient in both days. Results 
are shown as mean plus/minus SEM. 
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Day 3 v. Day 6 Ischemic Skin Thickness 

,-ctl 8 
Q) .... 
ctl 

~ 
Q) 
C 

.:£ 

.2 

..c -c 
ctl 
Q) 

:2 

6 i-

4 ,-

2 :-

o 

* 
* 

* 

1 2 345 6 7 8 9 

Positions 

o Day 3 
m Day 6 

*P < 0.005 

Figure 13. Day 3 v. day 6 ischemic skin thickness. Comparing ischemic tissue for days 3 
and 6 reveals that positions located distally have increased thickness while those 
proximally have remained relatively the same. Although there is a general lack of 
variation among the means, we see that positions 1,2, and 5 are significantly different. 
Notice the thickness gradient is visible in day 3 tissue but this gradient is lost by day 6. 
Results are shown as mean plus/minus SEM. 
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Day 3 Normal v. Ischemic Epidermal Thickness 
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Figure 14. Day 3 normal v. ischemic epidermal thickness. At day 3, normal epidermis 
thickness does not seem to follow the overall thickness gradient; rather there is an 
observed uniformity for distal, middle and proximal positions. Ischemic tissue, however, 
has greater variability in thickness. Comparing normal and ischemic tissue reveals 
positions 3, 7, and 9 were significantly different. Results are shown as mean plus/minus 
SEM. 
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Day 6 Normal v. Ischemic Epidermis Thickness 
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Figure 15. Day 6 normal v. ischemic epidermal thickness. Day 6 epidermal comparisons 
reveal a greater difference between normal and ischemic skin. The same positions that are 
significantly different in full skin thickness are also significantly different for epidermis 
thickness suggesting that by day 6, difference in skin thickness may be in part due 
changes in the epidermis. Like full thickness measurements, positions 1,2,3,4,5,6, and 
9 are significantly different. Results are shown as mean plus/minus SEM. 
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Day 3 v Day 6 Normal Epidermal Thickness 
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Figure 16. Day 3 v. day 6 normal epidermal thickness. Comparing normal epidermal 

thickness for days 3 and 6 reveals that positions 1, 3, 6, and 7 are significantly different. 

Similar comparisons of normal full skin thickness showed that positions 3, 6, and 8 were 

significantly different. Results are shown as mean plus/minus SEM. 
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Day 3 v Day 6 Ischemic Epidermal Thickness 
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Figure 17. Day 3 v. day 6 ischemic epidermal thickness. Comparing ischemic epidermal 
thickness for days 3 and 6 reveals that positions 1, 2, 3, 5, and 6 are significantly 
different. Similar comparisons of ischemic full thickness skin showed that positions 1, 2, 

and 5 were significantly different. These results suggest that the epidermis is also 
responding to ischemia. Results are shown as mean plus/minus SEM. 
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Day 3 Normal v. Ischemic Nuclei Density 
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Figure 18. Day 3 normal v. ischemic keratinocyte nuclei density. The finding about the 
epidermis prompted a closer look at the epidermis in which keratinocyte nuclei per area 
of measured epidermis was examined. Comparing nuclei density in day 3 normal and 
ischemic epidermis reveals that positions 2, 3, 7, and 9 are statistically significant. Notice 
the lack of a proximal-distal gradient. Results are shown as mean plus/minus SEM. 
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Day 6 Normal v. Ischemic Nuclei Density 
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Figure 19. Day 6 normal v. ischemic keratinocyte nuclei density. Day 6 comparisons 
reveal a similar trend we have seen in analysis of ventral skin thickness and epidermal 
thickness. Positions 1, 2,4, 5, 6, and 9 are all significantly different. Increased 
keratinocyte population accompanies increased thickness in ischemic epidermis. Results 
are shown as mean plus/minus SEM. 
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Figure 20. Day 3 v. day 6 normal keratinocyte nuclei density. Normal nuclei density 
comparisons for days 3 and 6 reveal that positions 1,4,5,6, and 7 are significantly 
different. Results are shown as mean plus/minus SEM. 
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Day 3 v Day 6 Ischemic Nuclei Density 
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Figure 21. Day 3 v. day 6 ischemic keratinocyte nuclei density. Ischemic nuclei density 
comparisons for days 3 and 6 reveal positions 1,2, and 5 are significantly different. 
Results are shown as mean plus/minus SEM. 
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APPENDICES 

PCNA monoclonal antibody 

Tissue: Normal & Ischemic rabbit ear (in 1XPBS) 

Section: EMS Vibratom sectioned at 40um in lXPBS 

Incubation: 96-well strip plate 

Protocol: 

1. 1 X PBS wash 

3. 1 X PBS wash 

Smin x 2 

Smin x 2 

4. Blocking: S% Normal Goat serum in 0.1 % Triton X-I 00/ PBS I.Shr@RToC, 
shaking 

S. IX PBS wash Smin 

6. 1 ° AB: (1: 100, diluent by blocking solution (S%NGS in 0.1 % Triton X-lOOIPBS)]) 
O/N(16 hrs), 4°C, shaking 

PCNA mouse IgG2a mAb 

(Santa Cruz, Cat#sc-S6) 

7. IX PBS Smin x 3 

8. 2° Ab: (1 :200 diluent by blocking solution (S%NGS in 0.1 % Triton X-lOO/PBS)]) 

Goat Anti-mouse IgG biotin(200ug / O.Sml) 

(Santa Cruz, Cat#sc-2039) 

9.1XPBS 

10. "ABC" Reagent 

(Keep at RToC for 30min before use) 

11. IXPBS 

54 

Ihr@ RToC, shaking 

Smin x 3 

Smin x 3 



12. DAB Reaction 

13. Rinse with dH20 

14. Follow Embedding protocol 

-7 min 

(Observe under microscope for reaction time) 

2min x 2 
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