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ABSTRACT 

BDNF-TRKB SIGNALING REGULATES ADULT TASTE BUD INNERVATION  

Tao Tang 

March 27th 2017 

Taste receptor cells transduce stimuli transmitting information to gustatory 

neurons that carry it to the brain. They turn-over continuously in adulthood, and 

must be constantly reinnervated, making the maintenance of innervation to taste 

buds an active process mediated by many factors, including brain-derived neu-

rotrophic factor (BDNF). Taste bud innervation (40%) is lost when Bdnf is re-

moved during adulthood, but it is unclear why remaining fibers were not lost. We 

found that some gustatory nerve fibers remained because they lack the TrkB re-

ceptor 55% of TrkB-labeled fibers were lost and fibers without TrkB remained fol-

lowing adult Bdnf gene recombination.  

It is unclear if BDNF has a direct function on the nerve fibers or could in-

fluence innervation indirectly by binding to taste bud cells, nor has it been deter-

mined which receptors mediate BDNF’s effects. BDNF functions through two re-

ceptors-TrkB and p75; furthermore TrkB has a truncated (TrkBT1) and full length 

form. Rt-PCR and immunohistochemistry determined that the full length TrkB re-

ceptor is expressed in the geniculate ganglion, but not in the taste buds, and both 

taste buds and the geniculate ganglion express TrkBT1 and p75. Furthermore, 

TrkBT1 was expressed in multiple types of taste bud cells. Finally, BDNF regu-
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lates TrkBT1 expression in the taste bud. We conclude that BDNF signaling via 

the full length TrkB receptor can only occur at nerve fibers, but BDNF could influ-

ence innervation indirectly via TrkBT1 or p75 expressed in taste receptors. 

Next we sought to determine whether BDNF functions through the full 

length TrkB receptor with a timing consistent with BDNF regulation of innervation 

during receptor cell turnover. A chemical genetic approach to block TrkB-

signaling was combined with genetic labeling of subset of TrkB+ fibers to exam-

ine branching patterns in the taste bud. After blocking TrkB signaling for 2 weeks 

fewer taste buds are innervated by labeled TrkB-positive fibers and there was 

less labeled TrkB+ innervation in taste buds. Blocking TrkB signaling reduced the 

numbers of branches, and some higher order branches also become shorter. We 

conclude that BDNF functions through TrkB, encouraging fiber growth and 

branching with a timing consistent with TrkB-regulation of innervation to new 

taste receptor cells during renewal.  
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CHAPTER I 

GENERAL INTRODUCTION 

1.1 The peripheral taste system 

There are five basic senses in vertebrate animals: taste, sight, smell, 

touch and hearing. Taste includes five basic taste qualities: sweet, umami, bitter, 

sour and salty, which are detected by taste buds. In mammals, taste buds are 

located in the specialized structures on the tongue, called papillae. Taste buds 

are also located in the nasoincisive papilla and eminences on the soft palate. 

There are three types of papillae on the tongue which are located in different re-

gions of the tongue surface. Fungiform papillae are located at the anterior two-

thirds of the tongue, foliate papillae are placed on the lateral margins of the 

tongue, circumvallate papillae are situated on the posterior part of the tongue 

(Hill, 2004; Krimm, 2007). Taste buds in the different types of papillae are inner-

vated by distinct nerves. Taste buds in the fungiform papillae are innervated by 

the chorda tympani nerve, whose cell bodies are located in the geniculate gan-

glion. Taste buds in the incisive papilla and soft palate are innervated by the 

greater superficial petrosal nerve, which also originated from the geniculate gan-

glion; The geniculate ganglion also provides somatosensory innervation to the 

skin of the external ear (Krimm, 2007). Taste buds in the circumvallate and foliate 

papillae are innervated by glossopharyngeal nerve, which has cell bodies
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located in the petrosal ganglion. The petrosal ganglion also contains other chem-

oreceptors such as baroreceptor neurons, which innervate the cardiac outflow 

tract to monitor blood pressure. Both geniculate and petrosal ganglia transmit 

taste information to the nucleus of the solitary tract (NST). Taste information is 

passed from the parabrachial nucleus (in rodents) into the thalamus, then the 

thalamus relays the information to the primary gustatory cortex in the insula 

(Carleton et al., 2010). 

Taste stimuli are detected by taste cells, which release neurotransmitters 

that transmit the taste information to nerve fibers. It have been shown that sever-

al neurotransmitters were found in the taste buds, including acetylcholine, Aden-

osine triphosphate (ATP), glutamate, serotonin (5-HT), γ-aminobutyric acid 

(GABA) (Nagahama and Kurihara, 1985; Nagai et al., 1998; Huang et al., 2007; 

Murata et al., 2010; Starostik et al., 2010). ATP is a key neurotransmitter in the 

taste system. Most geniculate neurons (98.4%) express one type receptor of 

ATP (P2X3) and more than half of geniculate neurons express another receptor 

of ATP (P2X2) (Ishida et al., 2009). Taste cells release ATP to activate P2X2 and 

P2X3 receptors on gustatory nerve fibers when taste cells received the taste 

stimuli (Finger et al., 2005). Double knockout of the P2X2 and P2X3 receptors 

eliminate taste responses from gustatory nerve fibers, but the responses to the 

temperature, menthol and touch remain (Finger et al., 2005). A recent study re-

ported that 5-HT released from type III cells also activates gustatory nerve fibers 

through 5-HT3 receptors (Larson et al., 2015). Specifically, taste nerve responses 

to acids and other taste stimuli are significant reduced when 5-HT3 receptors are 
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blocked or following genetic deletion of 5-HT3 receptors. Therefore, both ATP 

and 5-HT are important neurotransmitters connecting the taste cells to gustatory 

nerve fibers (Finger et al., 2005; Huang et al., 2007; Ishida et al., 2009; Murata et 

al., 2010; Larson et al., 2015). 

Taste bud cells have a plastic feature. Taste bud cells have a limited 

lifespan and continuously turn over throughout the animal’s life (Beidler and 

Smallman, 1965; Perea-Martinez et al., 2013). The functional connections be-

tween the cells and nerve fibers are lost when a taste cell dies. When new taste 

bud cells enter the taste buds, they must be innervated by nerve fibers and form 

new connections with gustatory neurons. Thus, there is an active process for 

maintaining innervation between taste buds and nerve fibers in adulthood. This 

process may retain many features of a developing system. However, it is unclear 

what the mechanism/s for the maintenance of innervation is, and which factors 

regulate the constant reinnervation of new taste cells by nerve fibers. It’s possible 

that neurotrophins may be involved in adult innervation of the taste bud, since 

neurotrophins have this role during the development.  

1.2 The cell types in the taste bud 

Taste buds are an onion-shaped end organ which contain 50-100 taste 

cells, depends on the species (Finger, 2005). Taste cells can be categorized into 

different cell types based on their function, ultrastructure or light microscope 

markers (Farbman, 1965; Murray et al., 1969; Kinnamon et al., 1985). Using ul-

trastructural criteria, taste cells are classified into various types, including undif-
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ferentiated peripheral cells, type I (“dark”) cells, type II (“light”) (receptor) cells, 

type III cells, type IV (basal) cells and intermediate cells.  

Type I (dark) cells are slender cells with moderately expanded nuclear re-

gions based primarily on the electron-density of the cytoplasm (Murray and 

Murray, 1967; Delay et al., 1986; Nelson and Finger, 1993; Pumplin et al., 1997). 

No synaptic connections associated with type I cells have been observed. Type I 

cells are also called “support cells”, because Type I cells are thought to have a 

glial like supportive function in taste buds, and may function to clear neurotrans-

mitters and ensheath other taste cells (Pumplin et al., 1997). They can be de-

tected by the expression of a glial glutamate/aspartate transporter (GLAST) and 

nucleoside triphosphate diphosphohydrolase 2 (NTPDase 2) (Bartel et al., 2006). 

Type II (light) (receptor) taste cells have a characteristic large, round nu-

cleus and electron-lucent cytoplasm (Pumplin et al., 1997). At the molecular level, 

a subset of Type II cells show immunoreactivity for the phospholipase C-β2 

(PLCβ2), a principal G protein-coupled receptors (GPCRs) effector, involved in 

intracellular signaling for transducing sweet, bitter or umami (Hoon et al., 1999; 

Miyoshi et al., 2001; Finger et al., 2005). It can be divided into multiple subtypes 

based on the stimuli they transduce (sweet, umami and bitter). These taste cells 

express the G-protein coupled receptors (TAS1R and TAS2R family) and share a 

common intracellular signal transduction pathway. Sweet taste is mediated by 

T1R2 and T1R3 (Li et al., 2002; Zhao et al., 2003), umami taste is detected by 

T1R1 and T1R3 (Li et al., 2002; Zhao et al., 2003), bitter taste is regulated by 

T2Rs family of receptors (Adler et al., 2000). After sweet, bitter, or umami stimuli 
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bind to G-protein couple receptors, phospholipase C-β2 (PLCβ2) is activated, 

Ca2+ is released from endoplasmic reticulum, and Ca2+ stores activate the 

TRPM5 channel. Activation of this pathway depolarizes the membrane resulting 

in ATP release by CALHM1 ion channel (Taruno et al., 2013a). Sweet, amino ac-

id and low- and midrange concentrations of bitter reception are abolished in 

PLCβ2 knockout mice (Zhang et al., 2003). But PLCβ2 knockout mice significant-

ly avoid licking higher concentrations of bitter compounds, which suggest that 

higher concentrations of bitter taste mediated by a PLCβ2-independent taste 

transduction pathway (Dotson et al., 2005). However, Type II cells do not form 

synapses onto nerve fibers (Clapp et al., 2004). It has been shown that Type II 

cells secrete ATP as a neurotransmitter onto sensory afferent fibers via voltage-

gated CALHM1-associated ion channels in their surface membrane (Taruno et al., 

2013b; Ma et al., 2017) 

Type III cells have a slender shape with a moderately electron-lucent cy-

toplasm. Type III cells are the only cell type forming synaptic contacts onto nerve 

processes in rodent taste buds (Takeda and Hoshino, 1975; Takeda, 1976). 

Type III cells do not secrete ATP, but release serotonin, norepinephrine, and 

GABA (Huang et al., 2007; Huang et al., 2008a; Dvoryanchikov et al., 2011; 

Huang et al., 2011). Type III cells do not express G-protein coupled receptors, 

but they do show the immunoreactivity for carbonic anhydrase 4 (Car4) 

(Chandrashekar et al., 2009), neuronal cell adhesion molecule (NCAM) (Nelson 

and Finger, 1993), presynaptic plasma membrane synaptosomal-associated pro-

tein 25 (SNAP25) (Yang et al., 2000), serotonin (5-HT) and voltage-gated calci-
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um channels (Medler et al., 2003). Type III cells exhibit responsiveness to sour 

taste stimuli (Huang et al., 2008b). Sour taste is mediated in part by two transient 

receptor potential (TRP) ion channel members, polycystic-kidney-disease 1L3 

and 2L1 (Huang et al., 2006; Ishimaru et al., 2006), and at least one unidentified 

mechanism, since only 25%-45% of sour taste responses are reduced in 

PKD2L1 and PKD1L3 gene double knockout mice (Horio et al., 2011). 

Type IV cells are located in the basolateral region of taste buds. These 

cells are small, irregular, and similar to peripheral cells in morphology. These 

cells are considered to be the precursor cells for other taste cell types in taste 

buds (Beidler and Smallman, 1965; Conger and Wells, 1969; Farbman, 1980). 

These populations are believed to provide new taste bud cells during the contin-

uous process of taste bud cell renewal. Type IV cells include the stem and pro-

genitor cells. Taste bud cells are thought to be derived from a common K14+ 

population of bipotential progenitor cells located outside the taste bud (Okubo et 

al., 2009). However, a recent study shows that some taste bud cells are derived 

from connective tissue cells which do not express K14 (Boggs et al., 2016). 

In addition to taste qualities, sweet, umami, bitter, and sour, salt taste is 

also detected by taste cells. Salt taste transduction also occurs through multiple 

known and unknown mechanisms including an ion channel, the epithelial sodium 

channel (ENaC) (Chandrashekar et al., 2010), which includes three subunit- α, β 

and γ, which taste receptor cells express this channel is unclear (Kretz et al., 

1999; Chandrashekar et al., 2010). A recent study shows that Angiotensin II 

modulates salt taste sensitivity, and it’s receptor, angiotensin II type 1 receptor 
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(AT1) are coexpressed with αENaC and type I cell marker GLAST in the taste 

bud (Shigemura et al., 2013). These finding suggests that some of type I cells 

may respond to salt stimuli.  

1.3 The role of neurotrophins in taste system development  

During geniculate ganglion development, neurons are produced and add-

ed quickly (Altman and Bayer, 1982), then neuron cell number is decreased from 

E12.5 to E14.5 in mice (Patel and Krimm, 2010). Thus, like most regions of the 

nervous system, the geniculate ganglion overproduces neurons first and then re-

duces the number by cell death (Carr et al., 2005). Once taste neurons of genicu-

late ganglion are differentiated, they project axons from geniculate neurons to the 

tongue surface by a restricted pathway (Mbiene and Mistretta, 1997). By E14.5, 

chorda tympani nerves reach the tongue epithelium and form a nerve ending in 

the developing taste buds (Lopez and Krimm, 2006b). Many molecular cues like-

ly regulate axon guidance of these neurons but only a few, such as Semin3A 

(Vilbig et al., 2004), have been identified. 

Among the many factors which play an important role during the taste 

neuron development are the neurotrophins. Neurotrophins regulate multiple de-

velopmental processes including neuron survival, differentiation, dendritic prun-

ing and patterning of innervation (Huang and Reichardt, 2001). There are four 

members of the neurotrophin family in mammals, nerve growth factor (NGF), 

brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), and neurotro-

phin-4 (NT-4) (Huang and Reichardt, 2001). The neurotrophins bind to two types 

of receptors, the p75 neurotrophin receptor and Trk receptors, which are tyrosine 
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kinases receptors. Specifically, all four neurotrophin ligands bind to p75 receptors, 

and NGF binds TrkA; BDNF and NT-4 bind TrkB; and NT-3 mainly binds TrkC 

(Huang and Reichardt, 2001). 

In the taste system, most of studies focus on BDNF and NT-4. The devel-

opment of the geniculate ganglion and the formation of peripheral connections 

are highly regulated by BDNF and NT-4 and its receptors (Fritzsch et al., 1997; 

Zhang et al., 1997; Krimm et al., 2001; Lopez and Krimm, 2006b; Ma et al., 2009; 

Patel et al., 2010; Patel and Krimm, 2010; Fei and Krimm, 2013; Fei et al., 2014; 

Huang and Krimm, 2014). BDNF and NT-4 play a critical role in regulating the 

number of geniculate neurons during development (Patel and Krimm, 2010, 

2012). Specifically, geniculate neurons are increased during development when 

mice overexpress BDNF or NT-4 (Lopez and Krimm, 2006b). Geniculate neurons 

are lost by about 50% during the development when Bdnf or Ntf4 are removed in 

mice (Patel et al., 2010; Patel and Krimm, 2010), but double mutants of Bdnf and 

Ntf4 lose about 90% geniculate neurons from E13.5- E18.5 (Patel et al., 2010). 

TrkB-/- mice lose approximately 95% of their geniculate neurons during develop-

ment (Fritzsch et al., 1997; Fei and Krimm, 2013). In addition, embryonic p75−/− 

mice lose geniculate ganglion neurons beginning on E14.5 (Fei et al., 2014). 

Taken together, these findings suggest that neurotrophins and their receptors are 

important for the development of geniculate neurons. 

In addition to regulation of neuronal survival, neurotrophins also mediate 

target innervation, axon elongation and synapse formation in many sensory sys-

tems (McCarty and Feinstein, 1998; Righi et al., 2000; Sommerfeld et al., 2000). 
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In the taste system, BDNF regulates taste nerve outgrowth and guidance to the 

final target during the development in vitro (Hoshino et al., 2010). In vivo, over-

expressing BDNF in non-taste epithelium results in non-taste filiform papillae be-

coming innervated by taste fibers, which indicate that BDNF is attracts the chor-

da tympani nerve to incorrect locations in the tongue (Lopez and Krimm, 2006b). 

Gustatory axons also fail to correctly innervate fungiform papillae after BDNF re-

moval during the development, which means that BDNF is necessary for normal 

targeting (Ma et al., 2009). In addition, embryonic p75−/− mice show reduced ge-

niculate ganglion axon branching and a lack of innervation in the mid-region of 

the tongue (Fei et al., 2014). In summary, BDNF is important for gustatory nerve 

outgrowth and guidance to the taste bud during development. 

During taste bud development, fungiform placodes (future fungiform papil-

lae) form on the tongue surface at E13.5 in mice and they are not yet innervated 

(Patel and Krimm, 2012). By E14.5, the chorda tympani reaches the fungiform 

papillae and penetrates the epithelium to form a nerve ending in the taste bud 

(Lopez and Krimm, 2006a). Gustatory nerve innervation is necessary for main-

taining fungiform papillae and taste buds during the development (Farbman and 

Mbiene, 1991; Sollars and Bernstein, 2000; Lopez and Krimm, 2006a). For ex-

ample, both fungiform papillae and taste buds are completely and permanently 

lost when the chorda tympani nerve is cut at an early stage (Sollars, 2005). The 

maintenance of gustatory innervation to fungiform papillae and taste buds is de-

pendent on neurotrophins and its receptors during the development (Nosrat et al., 

1997; Patel et al., 2010; Fei and Krimm, 2013). Specifically, both Bdnf-/-/Ntf4-/ - , 
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TrkB-/- and p75-/- mice had a significant reduction in the taste innervation within 

taste buds at P0 (Fei and Krimm, 2013; Fei et al., 2014). In conclusion, during 

development neurons require trophic factors from their target and fungiform pa-

pillae and taste buds depend on taste innervation for their survival.  

During development, taste bud number and size are decreased in mice 

when neurotrophins or their receptors are removed (Nosrat et al., 1997; Patel et 

al., 2010; Fei and Krimm, 2013; Fei et al., 2014). Specifically, more than half of 

the fungiform taste buds are lost and 60% of taste bud volume is reduced in 

Bdnf-/- mice (Nosrat et al., 1997; Mistretta et al., 1999; Patel et al., 2010). In p75-/- 

mice, 42% of taste buds are lost at P0 and 35% at P10 (Fei et al., 2014). In Bdnf-

/-/Ntf4-/- and TrkB-/- mice, both taste bud number and size are reduced at P0 (Fei 

and Krimm, 2013). In addition, taste buds are more sensitive to BDNF than NT-4 

deletion during development. Loss of BDNF  (Bdnf-/- mice) causes more mal-

formed taste buds and greater reduction in taste bud number compared with loss 

of NT4 (Ntf4-/- mice; (Patel et al., 2010). This finding indicates that BDNF is re-

quired for innervation to reach and successfully innervate taste buds. Therefore, 

unlike geniculate ganglion neurons which are equally dependent on BDNF and 

NT-4, taste buds in are more dependent on BDNF than NT-4. 

1.4 The expression and role of neurotrophins in the adult taste system 

Neurotrophic factors are expressed in many adult systems, including the 

somatosensory (Bergman et al., 2000), visual (Hirsch et al., 2000), auditory 

(Popper et al., 1999), and motor systems (Sartini et al., 2013). Neurotrophin fac-

tors are also expressed in the adult taste system (Huang and Krimm, 2010). For 
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example, BDNF is not only expressed in taste buds and geniculate ganglia dur-

ing the development (Nosrat and Olson, 1995; Nosrat et al., 1996; Huang and 

Krimm, 2010), but continues to be expressed in the adult geniculate ganglion, 

fungiform, foliate, and circumvallate taste buds (Biffo et al., 1995; Alderson et al., 

2000; Yacoubian and Lo, 2000; Yee et al., 2003; Huang et al., 2015). In adult 

taste buds, BDNF is co-expressed with the synaptic protein, SNAP-25 and Car4+ 

(Yee et al., 2003; Huang et al., 2015). BDNF’s major receptor, TrkB, is also ex-

pressed in the geniculate ganglion and taste bud cells of adult mice (Alderson et 

al., 2000; Yacoubian and Lo, 2000; Matsumoto et al., 2001). So it is possible that 

BDNF may continue to regulate taste bud innervation in the adult taste system. 

Indeed, taste bud innervation is lost when the Bdnf gene is removed from adult 

mice (Meng et al., 2015). Specifically, 40% of taste innervation and 30% of taste 

bud volume are reduced when the Bdnf gene is inducibly removed from all tis-

sues in adulthood (Meng et al., 2015). When the Bdnf gene is specifically re-

moved from the taste bud and lingual epithelium in adult mice, taste bud innerva-

tion is reduced, but there is no effect on the taste bud volume (Meng et al., 2015). 

However, there is also innervation remaining in the taste buds after BDNF re-

moval. These findings indicate that BDNF plays an important role in maintaining 

taste innervation in the adult taste system.  

1.5 The receptors for BDNF ligand and their functions. 

BDNF accomplishes its diverse functions by binding two receptors – the 

high affinity tyrosine kinase receptor, TrkB, and the low affinity pan-neurotrophic 

receptor p75 (Klein et al., 1991; Chao, 2003; Huang and Reichardt, 2003; 
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Kharebava et al., 2008; Nguyen et al., 2009). The TrkB receptor has multiple 

isoforms; a full length TrkB and the truncated TrkB receptors (Klein et al., 1990; 

Baxter et al., 1997; Stoilov et al., 2002; Luberg et al., 2010). Both full length TrkB 

and truncated TrkB receptors share the same extracellular domain (ECD) and 

transmembrane domain (TMD) (Rose et al., 2003; Ohira et al., 2005); however 

the full length TrkB receptor contains a complex intracellular domain with a tyro-

sine rich catalytic region and binding sites for Shc and PLCγ (McCarty and 

Feinstein, 1998; Huang and Reichardt, 2001). While truncated TrkB receptor has 

a short intracellular domain containing serine residue and the SNT (suc-

associated neurotrophic factor induced tyrosine phosphorylation target) activation 

sequence KFG (lysine-phenylalanine-glycine) (Baxter et al., 1997), but lacks the 

Shc, tyrosine kinase, and PLCγ regions (Luberg et al., 2010). There are three dif-

ferent truncated TrkB receptors in human and rat gene, including TrkBT1, 

TrkBT2 and TrkBT4 (TrkB-T-ShC) (Stoilov et al., 2002; Ohira et al., 2005). 

TrkBT1 and TrkBT2 have very short intracellular tails; however, TrkBT4 has a 

much longer intracellular domain than the other two truncated domains, which 

contains a putative internalization sequence (Rose et al., 2003). The primary 

truncated TrkB receptor in mice is the TrkBT1 receptor (Klein et al., 1989; Dorsey 

et al., 2006; Carim-Todd et al., 2009), such that no other mouse truncated se-

quences have been published. In addition the most abundantly expressed TrkB 

isoforms in the brain of all animals are the full length TrkB and TrkBT1 receptors 

(Klein et al., 1989; Stoilov et al., 2002; Luberg et al., 2010).  
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BDNF binds to three types of TrkB dimers, which are full length TrkB ho-

modimer, TrkBT1 homodimer and full length TrkB-TrkBT1 heterodimer (Friedman, 

2000). When BDNF binds to the full length TrkB homodimer, it can activate intra-

cellular signaling pathways through three different binding sites, which are PLCγ, 

PI3K, and Erk/MAPK pathways. BDNF-full length TrkB signaling through PLCγ 

pathway can induces neuronal survival and enhanced neuronal transmission 

(Huang and Reichardt, 2001). Specifically, activated PLCγ catalyzes the phos-

phatidylinositides (PIs) convert to IP3 and DAG. DAG can activate PKCs to in-

duce cell survival and enhance synaptic plasticity (Minichiello, 2009; Numakawa 

et al., 2010). IP3 regulates synaptic plasticity and enhances neurotransmission 

(Minichiello, 2009; Numakawa et al., 2010). The PI3K signaling pathway regu-

lates neurite outgrowth and neuron survival. Specifically, full length TrkB interacts 

with Shc to form a protein complex with GRB2, GAB1 and SOS to stimulate Ras 

(Huang and Reichardt, 2001). Ras activates PI3K to mediate neuronal survival 

via Akt signaling (Minichiello, 2009), and induce axonal growth with GSK3β 

(Yoshimura et al., 2005). PI3K/Akt/mTOR pathways regulate dendritic growth 

(Kumar et al., 2005). The full length TrkB receptor also activates Erk/MAPK sig-

naling to regulate neuronal survival through CREB activation of transcription fac-

tors (Numakawa et al., 2010). Erk/MAPK-induced phosphorylation of eIF4E and 

subsequent CAMKIIa activity mediates protein synthesis (Takei et al., 2001). The 

intracellular signaling pathways through the full length TrkB homodimer are com-

plex, because there crosstalk between the PLCγ, PI3K, and Erk/MAPK pathways 

to regulate the diverse functions BDNF-TrkB signaling on neurons. 
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The most characterized function of TrkBT1 is dominant negative inhibition 

of full length TrkB-signaling. TrkBT1 binds to and forms heterodimers with the full 

length TrkB receptor, TrkB heterodimerization inhibits full length TrkB receptor 

autophosphorylation and subsequent activation of PI3K, PLCγ, and MAPK sig-

naling pathways (Numakawa et al., 2010). Specifically, upregulation of TrkBT1 

stimulates heterodimerization with full length TrkB, resulting in decreased auto-

phosphorylation and inhibition of BDNF-mediated cell survival (Steinbeck and 

Methner, 2005). TrkBT1 also binds, internalizes and sequesters BDNF to neu-

rons (Biffo et al., 1995; Fryer et al., 1997; Alderson et al., 2000). In addition to 

binding to the full length TrkB receptor, TrkBT1 also binds to BDNF independent-

ly. It has been shown that TrkBT1 binds to BDNF independently to induce neurite 

outgrowth by an unknown mechanism (Yacoubian and Lo, 2000). Although 

TrkBT1 intracellular signaling pathway in neurons has not been identified, there 

is some evidence for intracellular signaling downstream of TrkBT1 in astrocytes 

(Rose et al., 2003; Ohira et al., 2005; Ohira et al., 2006; Cheng et al., 2007). 

Specifically, BDNF binds to TrkBT1 to induce G-protein and PKC activation, lead-

ing to cortical neural stem cells to adopt glial cell phenotypes (Cheng et al., 2007). 

G-protein also activates PLCγ pathways to regulate calcium release from the en-

doplasmic reticulum, which result in the rearrangement of the actin cytoskeleton 

(Rose et al., 2003). TrkBT1 also binds to RhoGDI1, which is a RhoGTPAse inhib-

itor. When RhoGDI1 is bound to TrkBT1, RhoGTPAse can activate ROCK, 

MAPK, and PAK pathways to induce cytoskeletal changes and potential cyto-

skeletal stability (Ohira et al., 2005; Ohira et al., 2006). 
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BDNF also binds to the low-affinity neurotrophin receptor p75, which is a 

member of the tumor necrosis factor receptor superfamily (Frade and Barde, 

1998). The cytoplasmic domain of the p75 receptor contains a “death” domain 

structurally similar to those in other members of this receptor family (Liepinsh et 

al., 1997). The p75 receptor can directly induce neuronal death through apopto-

sis (Frade and Barde, 1998; Friedman, 2000). Ligand engagement of p75 has 

been shown to promote survival of some cells and apoptosis of others (Bamji et 

al., 1998; Casademunt et al., 1999). P75-mediated signaling also affects axonal 

outgrowth both in vivo and in vitro (Lee et al., 1994; Walsh et al., 1999; 

Yamashita et al., 1999; Bentley and Lee, 2000). The p75 receptor can also cause 

axon degeneration by binding to neurotrophins in both developmental sympathet-

ic neurons and adult septal cholinergic neurons (Singh et al., 2008; Park et al., 

2010). 

1.6 Neurotrophin (BDNF) regulation of axon/dendritic branching 

Axon branching is a complex morphological process. Many factors known 

to be important for axon growth and guidance have emerged as key regulators of 

axon branching. The extrinsic factors implicated in axon branching including slits, 

semaphorins, and ephrins; neurotrophins such as BDNF; the secreted glycopro-

tein Wnt; the extracellular matrix protein anosmin-1 (Cohen-Cory and Fraser, 

1995; Yates et al., 2001; Krylova et al., 2002; MacColl et al., 2002; Ma and 

Tessier-Lavigne, 2007). In this study, we focus the role of neurotrophins (BDNF) 

in the control of axon branching. 
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In vitro, BDNF has been shown to regulate axon branching in different 

types of neurons. Specifically, 6 hours of exposure to BDNF significantly in-

creased dendritic length in E19 rat cortical neurons in culture (Takemoto-Kimura 

et al., 2007), however, at P7 BDNF treatment for 5 hours did not increase total 

dendritic length and number of branch points, but did increase the number of 

primary dendrites (Dijkhuizen and Ghosh, 2005). Activation of BDNF signaling 

increased the number of primary axonal branches in E18 mice cortical neurons 

(Jeanneteau et al., 2010). Together these studies demonstrate that BDNF pro-

motes distinct characteristics of both axon and dendritic branching at different 

ages of cortical neuron development. Exogenous addition of BDNF in vitro to 

E17-19 hippocampal neurons for 2 and 3 days significantly increased the number 

of branching points, but not the number of primary dendrites or total dendrite 

length (Cheung et al., 2007; Lazo et al., 2013; Yan et al., 2016). Most rat P0 cer-

ebral cortex neurons exhibit a significant increase in the number of dendrite 

branches and total dendritic length after BDNF-treatment in culture (Galati et al., 

2016). Overexpression of epitope tagged BDNF in individual ferret layer 2/3 py-

ramidal neurons increased the number of short, unbranched basal dendrites, 

while reducing the higher order branching of the original basal dendritic in cortical 

slice at P25-P28 (Horch et al., 1999). Mice P4 corticospinal motor neurons exhib-

ited elaborate branching and arborization, but not increased axon outgrowth 

when grown in the presence of BDNF in culture (Ozdinler and Macklis, 2006). 

Taken together, these results indicate that BDNF can promote different aspects 

of axon and dendritic branching in different ages, neurons, and animals in vitro.  
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BDNF also has been shown to mediate dendritic branching in vivo during 

development. For example, during visual system development, exogenous BDNF 

injected into the developing Xenopus retina at stage 38 reduced the number of 

primary dendrites and dendritic branch tips, total dendritic arbor length, while 

BDNF functional-blocking antibodies into the developing Xenopus retina in-

creased primary dendrites, dendritic branch tips and total dendritic arbor length 

(Lom and Cohen-Cory, 1999). Increasing BDNF levels in the optic tectum of live 

developing Xenopus tadpoles at stage 45 significantly increases the total branch 

number of retinal ganglion cell axons within 4 hours of treatment (Alsina et al., 

2001). Conversely, decreasing endogenous BDNF levels significantly decrease 

the total branch number of retinal ganglion cell axon (Hu et al., 2005). Those 

studies suggest that BDNF have the opposite roles in regulation of axon vs den-

dritic branching in Xenopus retinal ganglion cells at different developing ages. 

Transgenic overexpression of BDNF increases the number of dendritic branches 

in mice in ON retinal ganglion cells during postnatal development (P13), whereas 

decreased TrkB expression decreases them at P28 (Liu et al., 2007). TrkB-/- mice 

reveal a significant reduced number of axonal branches in mouse (P10-16) hip-

pocampus neurons during postnatal development (Martinez et al., 1998). Taken 

together, these studies indicate that either BDNF or TrkB play an essential role 

on the dendritic branching during development, but the function is different 

across neurons and across ages in the same neurons. 

In addition to its developmental role, BDNF also participates in the regula-

tion of dendritic branching in the adult brain. For example, conditional deletion of 
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BDNF by Cre-mediated recombination during embryogenesis in mice did not af-

fect the initially developed dendrite structure of visual cortical layer 2/3 neurons 

at P14, but significantly reduced both the number of primary dendrites and 

branch points per primary dendrite, and distal dendritic branching at P35 (Gorski 

et al., 2003). Transgenic mice expressing dominant negative TrkB-EGFP (which 

inhibits TrkB signaling) showed a reduction in the density of mushroom and stub-

by spines, and an increase in long and thin spines of primary visual cortex neu-

rons. But this inhibition only decreases the density of stubby spines, not the oth-

ers in CA1 pyramidal neurons (Chakravarthy et al., 2006). Conditional deletion 

BDNF or TrkB signaling in adult-born granule cells (GCs) significantly reduced 

total dendrite length and total number of branch points, but overexpressing BDNF 

significantly increased them (Bergami et al., 2008; Wang et al., 2015). The stria-

tum of postnatal forebrain-restricted BDNF mutant mice display fewer dendritic 

spines and thinner dendrites in striatum and medium spiny neurons in adulthood 

(Baquet et al., 2004). Collectively, in comparison to developmental studies, 

BDNF and the TrkB receptor exhibit similar roles on the regulation of axon 

branching across different systems, which is more frequently to promote the 

branching than inhibit it. 

However, it is still unknown whether either BDNF or TrkB regulates den-

dritic/axon branching in the taste system. Here, I plan to study how blocking TrkB 

signaling will affect axon branching in adult geniculate ganglion cells. Removal of 

BDNF in adulthood results in a reduction of innervation to the taste bud (Meng et 

al., 2015). In other systems, deletion of BDNF or TrkB signaling causes a loss in 
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the total dendrite length and total number of branch points. Therefore, I speculate 

that TrkB-signaling may regulate innervation to the taste bud by influencing 

branching. 
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CHAPTER II 

TASTE BUD-DERIVED BDNF MAINTAINS INNERVATION OF A SUBSET OF 

TRKB-EXPRESSING GUSTATORY NERVE FIBERS 

2.1 Introduction 

In the tongue, clusters of taste receptor cells organized into taste buds re-

spond to chemicals in food. Taste buds are innervated by neurons of the genicu-

late ganglion, which carry taste information to the brain. Taste receptor cells have 

a limited lifespan and continuously turnover (Beidler and Smallman, 1965; Perea-

Martinez et al., 2013). As taste receptor cells die, functional connections between 

taste receptor cells and nerve fibers are lost. When new taste receptor cells enter 

taste buds, they must become innervated by nerve fibers and form new connec-

tions with gustatory neurons. Thus, the maintenance of innervation within taste 

buds is an active process that likely depends on many molecular mechanisms. 

Clues as to the nature of these mechanisms could come from similar develop-

mental processes. In particular, brain-derived neurotrophic factor (BDNF) directs 

the innervation of newly formed taste buds during development (Ringstedt et al., 

1999; Krimm et al., 2001; Lopez and Krimm, 2006b; Ma et al., 2009). As BDNF is 

also expressed in adult taste buds (Yee et al., 2003; Huang et al., 2015), it could 

continue to maintain taste bud innervation throughout the taste cell’s lifespan. In
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deed, taste bud innervation is lost when the Bdnf gene is removed from adult an-

imals (Meng et al., 2015). Interestingly, however, considerable innervation to 

taste buds remains after BDNF removal.  

One possible explanation for this remaining innervation is that there are 

different “types” of gustatory neurons that vary in their BDNF dependence due to 

differences in receptor expression. By binding to TrkB receptors, BDNF initiates 

multiple signaling pathways that regulate neuronal survival, synaptic plasticity, 

and differentiation (Minichiello, 2009; Waterhouse and Xu, 2009; Numakawa et 

al., 2010). If not all nerve fibers express TrkB receptors, BDNF removal may only 

affect neurons that express this receptor. Consistent with this idea, only some 

geniculate ganglion neurons express TrkB receptors (Cho and Farbman, 1999; 

Farbman et al., 2004b; Farbman et al., 2004a; Yamout et al., 2005; Fei and 

Krimm, 2013). A second possible explanation is that BDNF was not completely 

removed from all taste receptors cells in this earlier study. 

The goal of the current study was to distinguish between these two possi-

bilities. First, we aimed to verify efficient Bdnf removal from taste buds and to de-

termine whether TrkB is expressed in a subset of innervating taste fibers in adult 

mice. Next, we examined whether TrkB-positive fibers are impacted by Bdnf re-

moval from the epithelium and taste buds. We also sought to determine whether 

taste bud-derived BDNF plays a role in maintaining taste bud size or taste recep-

tor expression, either of which could influence taste function. We found that Bdnf 

expression was efficiently eliminated from taste buds. Furthermore, BDNF sup-

ported a large subset of TrkB-expressing nerve fibers and not TrkB-negative 
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nerve fibers. Lastly, BDNF maintained expression of γ subunit of ENaC in taste 

buds. Thus, BDNF maintains taste bud innervation in adulthood of a particular 

subset of nerve fibers and regulates factors required for taste transduction. 

2.2 Materials and methods 

2.2.1 Animals 

Inducible Bdnf mutants were produced by breeding mice with floxed Bdnf 

alleles (Bdnflox/+; Jackson Laboratory, 002267) with mice with an inducible Cre-

mediated recombination system driven by a K14 promoter (K14-CreER; 

#005107, Jackson Laboratory). Gene recombination under control of the K14 

promoter results in successful gene recombination in cells that differentiate into 

taste buds (Vasioukhin et al., 1999; Okubo et al., 2009). These mice were bred 

with heterozygous Bdnf+/- knock-out mice (#002266, Jackson Laboratory) and 

mice in which a green fluorescent protein (GFP) cassette was inserted into the 

first coding exon of Ntrk2 (TrkBGFP/+) to visualize the cells in which TrkB is ex-

pressed (Li et al., 2011). Thus, mice used for anatomical analysis lacked a func-

tional Bdnf gene in one allele, Bdnf could be inducibly removed from the other 

allele and GFP is expressed in TrkB-positive neurons (K14-CreER:Bdnflox/-

:TrkBGFP/+). Three control genotypes were used for different purposes of compar-

ison. Bdnflox/+:TrkBGFP/+ mice (with tamoxifen) were used to exclude any effects of 

tamoxifen administration, and K14-CreER:Bdnflox/+:TrkBGFP/+ mice (without ta-

moxifen) were used to exclude the possibility of gene recombination in the ab-

sence of tamoxifen; both genotypes were expected to produce wild-type levels of 

BDNF. Bdnflox/-:TrkBGFP/+ mice (with tamoxifen) were used to control for any ef-
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fects of heterozygous Bdnf knock out. In addition, we bred K14-CreER and K14-

Cre mice with mice expressing tdTomato (#007914, Jackson Laboratory) to visu-

alize the effectiveness of tamoxifen-induced gene recombination. To measure 

Bdnf gene expression by real-time reverse transcription polymerase chain reac-

tion (RT-PCR), the same genotypes without TrkBGFP/+ were used. 

2.2.2 Tamoxifen administration 

Mice received tamoxifen (T5648, Sigma-Aldrich, St. Louis, MO; mixed in 

peanut oil, 188 ng/g body weight) once per day for 3 weeks by oral gavage. This 

dose was previously used for effective inducible gene recombination in adult 

mice (Ruzankina et al., 2007; McGraw et al., 2011; Meng et al., 2015). Tamoxi-

fen administrations were initiated in all mice around 60 days of age. Mice were 

euthanized 10 weeks after the final tamoxifen administration. 

2.2.3 Laser capture microdissection, RNA extraction, and cDNA amplification and 

purification 

Mice were euthanized by an overdose of 2.5% tribromoethanol (Avertin) 

i.p., (T48402, Sigma-Aldrich, St. Louis, MO; mixed in tert-amyl alcohol, then di-

luted in 1/40 PBS,). Taste buds were isolated using laser capture microdissection 

(LCM) as previously described (Huang and Krimm, 2010). The anterior part of 

the tongue was removed, rinsed with 0.1M PBS solution (pH 7.4), and cut in half 

under a microscope. Each half was placed into a disposable embedding mold, 

covered with OCT, and frozen immediately and stored at -80°C for future use. 

Identified taste buds were captured onto CapSure Macro LCM Caps (Molecular 
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Devices, Sunnyvale, CA). For each mouse, all captured samples were stored for 

RNA isolation. 

Total RNA was extracted from taste buds using an RNeasy micro kit ac-

cording to the manufacturer’s instructions (#74004, Qiagen, Germantown, MD). 

DNase I treatment was applied to eliminate traces of DNA during the procedure. 

Following isolation, RNA quality was analyzed using a Bioanalyzer 2100 (Agilent 

Technologies, Santa Clara, CA) and estimated by the RNA Integrity Number 

(RIN) and 28S/18S ratio. Only RNA samples with a 260/280 ratio ≥ 1.80 and RIN 

≥ 8.0 were used. Taste bud cDNA was synthesized from total RNA using random 

primers (Invitrogen, Carlsbad, CA). 

2.2.4 Real-time RT-PCR 

Real-time RT-PCR was performed using ABI PRISM/7900HT Sequence 

detection systems (Applied Biosystems, Waltham, MA, USA) with TaqMan Uni-

versal PCR kits (#4304437, Applied Biosystems) and oligonucleotide pri-

mer/probe sets, which were designed from sequences available in the GenBank 

Database using Beacon Designer software (Premier Biosoft International, Atlan-

ta, GA). When possible, primers were chosen to span an intron to avoid genomic 

DNA contamination (Table 1). TaqMan probes were labeled at the 5’ end with a 

fluorescent dye (fluorescein) and at the 3’ end with a quencher dye (carboxytet-

ramethylrhodamine). Real-time RT-PCR reactions were conducted using 10 μl 

1× Master Mix, 720/200 nm primer/probe sets (TaqMan PCR kit), and the same 

amount of target cDNA. For normalization of cDNA loading, all samples were run 

in parallel with 18S ribosomal RNA, mouse glyceraldehyde 3 phosphate dehy-
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drogenase (GAPDH), and cytokeratin 8 (K8). Each assay was carried out in trip-

licate. Amplification of cDNA was performed for 40 cycles of 95°C for 15 s and 

60°C for 1 min. 

2.2.5 Immunohistochemistry 

Mice were euthanized by an overdose (1 ml) of 2.5% of Avertin, transcar-

dially perfused with 4% paraformaldehyde (PFA), and post-fixed in 4% PFA for 2 

hours or immersion-fixed in 4% PFA overnight. The anterior part of the tongue 

was dissected and post-fixed overnight in 4% PFA. The tissue was transferred to 

30% sucrose at 4°C overnight, frozen in OCT, and stored at -80°C until sectioned 

on a cryostat. To visualize whole taste buds and their innervation, tongues were 

sectioned at 70 μm, and the sections were collected in 0.1M phosphate-buffered 

saline (PBS) and rinsed four times in PBS. Cryostat sections were blocked with 

3% normal donkey serum in 0.1M PBS containing 0.5% Triton X-100. The tissue 

was incubated with the following primary antibodies for 5 days at 4°C: rat anti-K8 

in PBS (1:50; Developmental Studies Hybridoma Bank, AB Registry ID: 

AB_531826, cat#: Troma-1-s, Iowa City, IA), goat anti-GFP (1:400; Novus, AB 

Registry ID: AB_10128178, cat#: NB100-1700, Littleton, CO), or rabbit anti-P2X3 

(1:500; Millipore, AB Registry ID: AB_11212062, cat#: AB58950, Billerica, MA). 

After incubation in primary antibodies and four rinses in PBS, sections were in-

cubated in the following secondary antibodies for 2 days: anti-rat Alexa Fluor 555 

(1:500; Jackson ImmunoResearch Laboratories, West Grove, PA), anti-goat 

Alexa Fluor 488 (1:500; Jackson ImmunoResearch Laboratories), or anti-rabbit 

Alexa Fluor 647 (1:500; Jackson ImmunoResearch Laboratories). The tissue was 
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then washed four times in 0.1M PBS, mounted onto slides, and cover-slipped us-

ing aqueous mounting medium (Fluoromount-G, SouthernBiotech, Birmingham, 

AL). 

2.2.6 Quantification of taste bud innervation and volume 

Taste buds from the tip of the tongue were imaged using a confocal mi-

croscope (Olympus, model no. FV1200BX61). During both image capture and 

analysis, the experimenter was blind to mouse genotype. Optical images were 

captured every 1 μm with a 60× oil immersion lens at a zoom level of 3.5 from 

the front one-third of the fungiform field (i.e., tongue tip). For each image, all 

three channels were taken separately using single-wavelength excitation and 

merged to produce a composite image. Imaris software (Bitplane, 

http://www.bitplane.com/contact) was used to rotate taste buds and determine 

whether the whole taste bud was captured. Innervation density in the first six 

whole taste buds imaged per mouse tongue was determined. For each optical 

section, taste buds were outlined using K8 labeling to define the perimeter. Next, 

the total taste bud volume, the volume occupied by the 647 label (representative 

of P2X3-labeled nerve fibers), and the volume occupied by the 488 label (repre-

sentative of TrkB-labeled nerve fibers) were measured separately using the 

masking feature in Imaris.  

2.2.7 Statistical analysis 

Results are expressed as mean ± standard error of the mean (SEM). For 

real-time RT-PCR results, the comparative 2-ΔΔCT method was used to quantify 

target gene expression (Livak and Schmittgen, 2001). The Shapiro-Wilk test was 

http://www.bitplane.com/contact
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used to assess whether data were normally distributed. One-way analysis of var-

iance (ANOVA) was used to test for differences between genotypes in mRNA 

levels, taste bud volume, and nerve fiber innervation. Two-way ANOVA was used 

to test for differences between genotypes in P2X3- and TrkB-labeled fibers. After 

significant overall ANOVAs, Student-Newman-Keuls post-hoc tests were used for 

pairwise comparisons. Statistical significance was set at p < 0.05.  

 

2.3 Results 

2.3.1 Taste bud innervation can be divided into TrkB-positive and TrkB-negative 

fibers. 

Although taste bud innervation is reduced when the Bdnf gene is removed 

from adult mice (Meng et al., 2015), a surprising amount of innervation remains. 

One possible explanation is that some fibers innervating taste buds are not re-

sponsive to BDNF because they do not express TrkB receptors. Therefore, we 

examined whether all taste fibers express the high-affinity BDNF receptor, TrkB, 

by labeling taste buds with anti-P2X3 (blue) and anti-GFP (green) in TrkBGFP/+ 

mice (Figure 1A-D). P2X3 is an ATP channel required for neuronal responses to 

taste stimuli (Finger et al., 2005), and its antibody labels taste fibers within taste 

buds. Anti-K8 was used to label taste buds (red). We found that many fibers were 

labeled with both anti-P2X3 and anti-GFP. However, some P2X3-positive fibers 

were not labeled with anti-GFP (arrows in Figure 1A-C). Therefore, some P2X3-

positive fibers did not express TrkB. 
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The cell bodies for nerve fibers that innervate fungiform taste buds are lo-

cated in the geniculate ganglion. To determine whether all geniculate ganglion 

neurons express TrkB, we double-labeled the geniculate ganglion from TrkBGFP/+ 

mice with anti-GFP and anti-P2X3 (Figure 1E-G) and determined the percentage 

of double-labeled cells. We found that 56 ± 7% of P2X3-positive neurons also 

expressed GFP. Together, these data indicate that not all gustatory neurons ex-

press TrkB during adulthood. Therefore, some nerve fibers may remain in taste 

buds after BDNF removal because they are not responsive to BDNF.  

2.3.2 BDNF was effectively and specifically removed from taste buds under con-

trol of the K14 promoter. 

To further examine why taste bud innervation remains after Bdnf removal, 

we re-evaluated the effectiveness of Bdnf removal from taste buds in K14-CreER 

mice. Although previous reports indicate that all types of taste bud cells arise 

from K14+/K5+ basal cells (Okubo et al., 2009; Gaillard et al., 2015), a recent 

study shows that a few taste bud cells may migrate from connective tissue 

(Boggs et al., 2016). We wanted to verify that taste receptor cell types that ex-

press BDNF (Car4+) undergo gene recombination. To examine what types of 

taste bud cells originate from K14+ progenitor cells, we bred K14-Cre mice with 

stop-floxed tdTomato (Ai14) mice (n=2). In these mice, the lingual epithelium and 

taste buds were brightly stained with tdTomato (red, Figure 2A). Moreover, all 

fungiform taste buds examined were completely labeled with tdTomato (Figure 

2B), indicating that all taste bud cells were derived from cells that at some point 

expressed K14. Taste bud cells labeled with anti-carbonic anhydrase 4 (Car4, 



2ф 

 

blue), which also expresses Bdnf (Huang et al., 2015), were also labeled with 

tdTomato (Figure 2C-D), indicating that they originated from K14+ progenitor 

cells. To visualize the effectiveness of K14-CreER-induced gene recombination, 

we bred K14-CreER mice with stop-floxed tdTomato (Ai14) mice. Ten weeks af-

ter tamoxifen administration ended (3 weeks), the fungiform papillae and taste 

buds were labeled with tdTomato (Figure 2E, n=3), and taste bud cells appeared 

to be derived from cells that underwent gene recombination (red, Figure 2F). 

Taste bud cells were double-labeled with anti-Car4 and tdTomato (arrow, Figure 

2F-H), indicating that taste buds cell types that expressed Bdnf underwent gene 

recombination.  

A previous study shows that Bdnf expression was decreased in the whole 

epithelium after 3 weeks of tamoxifen injections in K14-CreER:Bdnflox/- mice 

(Meng et al., 2015); however, Bdnf expression in taste buds was not specifically 

examined. One possible explanation for why innervation remains in taste buds 

after Bdnf gene recombination is that BDNF is more effectively removed from the 

epithelium than from taste buds. To assess whether Bdnf gene recombination 

changes Bdnf expression levels in taste buds, we isolated taste buds using LCM 

and performed real-time RT-PCR. We found that Bdnf was reduced to less than 

1% in K14-CreER:Bdnflox/-:TrkBGFP/+ mice (n=4) compared with three control gen-

otypes (Bdnflox/+:TrkBGFP/+, p < 0.01, (n=4); K14-CreER:Bdnflox/+:TrkBGFP/+, p < 

0.05, (n=4); Bdnflox/-:TrkBGFP/+, p < 0.05, (n=4); Figure 2I). This reduction was 

greater than that previously observed in the whole epithelium (Meng et al., 2015). 
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Therefore, it does not appear that nerve fibers remain because of inefficient gene 

recombination in taste buds. 

2.3.3 BDNF regulates TrkB-positive but not TrkB-negative innervation within 

taste buds.  

After demonstrating that remaining taste bud innervation is not due to in-

adequate Bdnf gene removal, we speculated that TrkB-negative fibers may not 

depend on BDNF during adulthood. To address this issue, we quantified TrkB-

positive innervation after Bdnf removal from taste buds by breeding mice in which 

Bdnf could be inducibly removed by tamoxifen with mice in which cells that ex-

press TrkB were genetically labeled (Li et al., 2011). Taste fibers were labeled 

with anti-P2X3 (blue, most gustatory innervation) and anti-GFP (green, TrkB-

positive innervation), and taste buds were labeled with anti-K8 (red). All three 

control genotypes (Bdnflox/+:TrkBGFP/+, (n=4), K14-CreER:Bdnflox/+:TrkBGFP/+, 

(n=4), Bdnflox/-:TrkBGFP/+, (n=4), Figure 3A-L) and mice in which Bdnf expression 

was reduced (K14-CreER:Bdnflox/-:TrkBGFP/+, (n=4), Figure 3M-P) had P2X3- and 

GFP-labeled innervation within taste buds. However, taste buds appeared to 

have less P2X3- and GFP-labeled innervation in mice with reduced Bdnf (K14-

CreER: Bdnflox/-:TrkBGFP/+) compared with control genotypes. No obvious differ-

ence in taste bud size was observed across genotypes. 

To quantify the effect of Bdnf gene removal on total innervation, we ana-

lyzed the volume of P2X3-positive and TrkB-positive innervation to taste buds. 

Ten weeks after tamoxifen administration, the volume of remaining P2X3-positive 

innervation differed among genotypes (F(3,12) = 10.8, p < 0.001). Specifically, 
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taste buds in K14-CreER:Bdnflox/-:TrkBGFP/+ mice showed 39% less P2X3-positive 

innervation than the three control genotypes (Bdnflox/+:TrkBGFP/+, p < 0.005; K14-

CreER:Bdnflox/+:TrkBGFP/+, p < 0.01; Bdnflox/-:TrkBGFP/+, p < 0.005; Figure 4A). 

Similarly, the volume of TrkB-positive innervation also differed among genotypes 

(F(3,12) = 35.4, p < 0.001). K14-CreER:Bdnflox/-:TrkBGFP/+ mice showed 55% less 

TrkB-positive innervation than the three control genotypes (Bdnflox/+:TrkBGFP/+, p 

< 0.001; K14-CreER:Bdnflox/+:TrkBGFP/+, p < 0.001; Bdnflox/-:TrkBGFP/+, p < 0.001; 

Figure 4A). There were no differences in the volume of P2X3-positive or TrkB-

positive innervation among the three control genotypes, indicating that neither 

tamoxifen nor elimination of a single Bdnf allele altered the amount of innervation 

within taste buds. Furthermore, removal of the Bdnf gene from the epithelium and 

taste buds caused a greater loss of TrkB-positive innervation than total (i.e., 

P2X3-positive) innervation (p < 0.001), suggesting that Bdnf gene removal pri-

marily affects TrkB-positive fibers. 

Using P2X3 as a marker for all gustatory innervation, we estimated the 

amount of TrkB-negative gustatory innervation by subtracting the amount of 

TrkB-positive innervation from P2X3-positive innervation for each taste bud. We 

found no difference in the volume of TrkB-negative innervation among the four 

genotypes (F(3,12) = 0.74, p = 0.546, Figure 4B), suggesting that TrkB-negative 

innervation was not affected by removal of the Bdnf gene.  

Previously, taste bud volume was reduced when the Bdnf gene was re-

moved from all tissue with a ubiquitous promoter but not when it was specifically 

removed from taste buds of adult mice (Meng et al., 2015). To confirm these find-
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ings, we quantified taste bud volume in Bdnflox/+:TrkBGFP/+ (n=4), K14-

CreER:Bdnflox/+:TrkBGFP/+ (n=4),  Bdnflox/-:TrkBGFP/+ (n=4) and K14-CreER:Bdnflox/-

:TrkBGFP/+ (n=4) mice. We found no genotype differences in taste bud volume 

(F(3,12) = 1.54, p = 0.26, Figure 4C), indicating that taste bud size is not affected 

when Bdnf is inducibly removed from taste buds.  

In summary, we found that the reduced taste bud innervation in mice lack-

ing Bdnf in the epithelium was due to a loss of TrkB-positive innervation and not 

TrkB-negative innervation. However, in addition to the TrkB-negative innervation, 

a surprising amount of TrkB-positive innervation remained in taste buds. Taste 

bud size was not affected by Bdnf gene removal or loss of innervation. 

2.3.4 BDNF removal reduced expression of the γ subunit of the ENaC receptor.  

Finally, we investigated whether BDNF signaling has a direct effect on the 

presence of transduction mechanisms in adult taste buds. Deactivation of specif-

ic TrkB signaling pathways (SHC and PLCγ) during development alters the ex-

pression of multiple taste transduction mechanisms in the whole tongue epitheli-

um (Koudelka et al., 2014). However, it is not clear whether this is strictly a de-

velopmental role or whether BDNF-TrkB signaling regulates transduction mecha-

nisms in adulthood. Therefore, we used RT-PCR to examine the expression of 

different taste receptors/channels that transduce taste stimuli in fungiform taste 

buds of K14-CreER:Bdnflox/- mice and three control genotypes. Salt taste on the 

front of the tongue is largely transduced by the amiloride-sensitive channel 

ENaC, which has three subunits. We found that the expression of the γ subunit of 

ENaC (Scnn1g) was significantly decreased in K14-CreER:Bdnflox/- mice (Figure 
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5A), whereas the expression of β and α subunits did not change (Figure 5B-C). 

We observed no changes in the other transduction mechanisms examined. Spe-

cifically, there were no differences in the expression of T1R1, T1R2, or T2R5 be-

tween K14-CreER:Bdnflox/- mice and the three control genotypes (T1R1, n = 4, , p 

= 0.9713; T1R2, n = 4, p = 0.8796; T2R5, n = 4, p = 0.2862), whereas the sour 

taste channel PKD2L1 was consistently below the detection threshold. These 

findings suggest that although the impact of BDNF-TrkB signaling on taste trans-

duction mechanisms may be largely developmental (Koudelka et al., 2014), salt 

taste transduction could be altered in the taste buds of adult K14-CreER:Bdnflox/- 

mice.  

2.4 Discussion 

Taste bud cells die and turnover continuously in adulthood, and new taste 

bud cells must be innervated by nerve fibers (Beidler and Smallman, 1965; 

Perea-Martinez et al., 2013). Thus, the maintenance of innervation to taste buds 

in adulthood is an active process that is likely regulated by multiple factors. In the 

absence of BDNF, taste bud innervation is reduced by 40% (Meng et al., 2015), 

indicating that BDNF is required to maintain some innervation to taste buds. 

However, 60% of innervation remains in taste buds after Bdnf gene removal. We 

speculated that a subset of taste nerve fibers expressing the BDNF receptor 

TrkB may be lost by adulthood, thus reducing taste bud innervation, which would 

be consistent with previous studies demonstrating that some adult gustatory neu-

rons do not express the TrkB receptor (Cho and Farbman, 1999; Matsumoto et 

al., 2001; Farbman et al., 2004a). We found that some taste nerve fibers do not 
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express the TrkB receptor, and more TrkB-positive innervation than total innerva-

tion was lost from adult taste buds after inducible Bdnf removal. Therefore, we 

conclude that taste bud-derived BDNF is specifically required to maintain a sub-

set of TrkB-positive fiber innervation to adult taste buds. 

Our results confirm and extend the findings of an earlier study examining 

BDNF support of gustatory innervation (Meng et al., 2015). In this earlier study, 

BDNF expression was measured in the whole lingual epithelium, including both 

epithelial cells and taste bud cells, making it unclear how much of the 80% reduc-

tion in Bdnf was specific to taste buds. This is particularly relevant because it is 

possible that not all taste bud cell precursors express K14 (Boggs et al., 2016), 

which could result in Bdnf remaining in taste buds. We found no taste receptor 

cells that failed to undergo gene recombination in K14-Cre:tdTomato mice, and 

only a few taste bud cells that failed to undergo gene recombination in adult K14-

CreER:tdTomato mice. Moreover, Bdnf mRNA level was reduced to less than 1% 

in taste buds of K14-CreER:Bdnflox/- mice compared to those of three control 

genotypes. This indicates that most Bdnf-expressing cells in taste buds success-

fully underwent gene recombination, and only a small proportion of taste bud 

cells continued to express Bdnf. Therefore, it is unlikely that innervation remains 

in the taste buds after Bdnf removal because Bdnf-induced gene recombination 

was not effective.   

We found that some fibers were TrkB-negative and not affected by Bdnf 

removal. Consistently, BDNF is expressed in some adult taste receptor cells but 

not others (Yee et al., 2003; Huang et al., 2015). This indicates that BDNF only 
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maintains a subset of the total fibers that innervate taste buds, perhaps specifi-

cally those fibers that innervate BDNF-expressing taste bud cells. Therefore, in 

addition to TrkB, another mechanism likely exists to support TrkB-negative inner-

vation. One possibility is that this role is served by another growth factor. For in-

stance, glial cell line-derived neurotrophic factor is expressed in a different sub-

set of taste bud cells than BDNF (Takeda et al., 2004; Suzuki et al., 2007), and 

its receptors are expressed in the geniculate ganglion (Farbman et al., 2004a; 

Yamout et al., 2005). However, many other factors could also play this role/s 

(McLaughlin, 2000; Suzuki et al., 2005; Takeda et al., 2005; Yee et al., 2005; 

Germana et al., 2006; Suzuki et al., 2007; Feng et al., 2014). 

Although TrkB-positive innervation is dramatically reduced by inducible 

Bdnf removal from the epithelium, 45% of TrkB-positive innervation remained in 

the taste buds. There are at least two possible explanations for this finding. First, 

not all BDNF-expressing cells may undergo gene recombination, thus some 

BDNF protein could still remain to support TrkB-positive fibers. However, given 

the small remaining amount of Bdnf expression, this explanation seems unlikely 

to account for all of the remaining TrkB innervation. Second, some TrkB-positive 

fibers may not express an isoform for TrkB allowing BDNF to signal; therefore 

BDNF may not support the maintenance of these fibers even though they ex-

press TrkB. The TrkB receptor consists of two isoforms: a full-length and a trun-

cated TrkB receptor (Klein et al., 1989; Klein et al., 1990; Middlemas et al., 

1991). Because the truncated isoform of the TrkB receptor is expressed in the 

geniculate ganglion (Farbman et al., 2004a; Yamout et al., 2005), it is possible 
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that some TrkB-positive fibers only express this isoform. The truncated isoform 

signals in some instances (Yacoubian and Lo, 2000; Ohira et al., 2005; Ohira et 

al., 2006; Cheng et al., 2007; Islam et al., 2009) but can also function as a domi-

nant-negative receptor that inhibits BDNF signaling (Fenner, 2012). Therefore, 

only a subset of TrkB-positive fibers may express the full-length receptor, and 

BDNF may only support this subset of innervation. 

Gustatory nerve fibers provide trophic signals that influence taste receptor 

cell maintenance. As TrkB-positive innervation was reduced after Bdnf removal, 

we investigated whether this had any impact on taste buds. We found no effect 

on taste bud size; however, earlier studies demonstrated a developmental impact 

of reducing TrkB signaling on the expression of receptors/channels required for 

taste transduction (Koudelka et al., 2014). We found that expression of the γ 

subunit of ENaC channel was reduced by Bdnf removal, whereas expression of 

other transduction mechanisms were unaffected. Because much of a rodent’s 

ability to transduce salt taste requires the ENaC channel (Chandrashekar et al., 

2010), and when all three (α, β and γ) subunits of ENaC are expressed together, 

its generated more than 100 fold amiloride-sensitive currents than αENaC or 

βENaC or γENaC  expressed alone (Canessa et al., 1994). So salt transduction 

may be altered in mice with reduced Bdnf. Our findings differ from those of earlier 

studies showing that disrupted TrkB-signaling resulted in an up-regulation of 

umami and bitter receptors and down-regulation of sour transduction mecha-

nisms (Koudelka et al., 2014). This difference between studies is likely due to 

developmental stage-dependent differences in the regulation of these transduc-
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tion mechanisms by BDNF-TrkB signaling. Interestingly, sodium deprivation, 

which reduces salt sensitivity, also impacts BDNF expression in taste buds 

(Huang and Stahler, 2009), implying a regulatory relationship between BDNF and 

ENaC expression. It is unclear whether reduction of BDNF directly influences 

γENaC expression or whether this is an indirect effect via taste nerve fibers. As 

TrkB-positive innervation is specifically lost after Bdnf removal, TrkB-positive fi-

bers could innervate and influence γ-ENaC expression in taste receptor cells that 

transduce salt taste stimuli.  

We showed that BDNF maintains innervation of a subset of taste fibers 

expressing the full-length TrkB receptor. However, precisely how BDNF-TrkB 

signaling maintains this innervation is unclear. Because a long time period is 

needed to observe the impact of Bdnf removal (Meng et al., 2015) on innervation, 

it seems unlikely that BDNF-TrkB signaling is required to maintain established 

connections. Instead, we propose that BDNF promotes new innervation to taste 

buds during taste receptor cell turn over. New BDNF-expressing taste bud cells 

could induce taste fiber branching and growth (Danzer et al., 2002; Horch and 

Katz, 2002; Dijkhuizen and Ghosh, 2005; Cheung et al., 2007; Lazo et al., 2013), 

recruiting innervation from full-length-expressing TrkB-positive nerve fibers. If so, 

this would indicate that neurons expressing the full-length TrkB receptor are a 

specific type or subtype of gustatory neurons. In this scenario, new taste receptor 

cells that normally do not express BDNF may recruit TrkB-negative fibers using 

an alternate mechanism. We propose that BDNF-TrkB signaling is one mecha-
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nism that coordinates innervation between specific types of taste receptor cells 

and specific types of neurons during taste receptor cell turnover. 
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Table 1. Sequences of primer pairs and probes used for real-time RT-PCR. 

________________________________________________________________ 

Gene                             

Fragment 

GenBack Accession #  Sequence 5’-3’        size (bp)           

________________________________________________________________ 

Bdnf (NM_007540)                110 

 Forward primer TGCAGGGGCATAGACAAAAGG 

 Reverse primer CTTATGAATCGCCAGCCAATTCTC 

 Taqman probe ACTGGAACTCGCAATGCCGAACTACCCA 

T2R5 (Tas2r105) (NM_020501)                                        107                        

 Forward primer    GGCTGGGAGTTTTAGGGAAC 

 Reverse primer    AGTTGCTAAGCCGATGAGAAG 

 Taqman probe    CACTGGTAAACTGCATGGACTGGGC 

Krt8 (NM_031170)                                                     130 

 Forward primer    TCTTCTGATGTCGTGTCCAAGTG 

 Reverse primer    GATCCTCGGACGGGTCTCTAG 

 Taqman probe     CCACTGAAGTCCTTGCCAGCCTGAGC 

GAPDH (NM_008084)                130 

 Forward primer AATGTGTCCGTCGTGGATCTG 

 Reverse primer CAACCTGGTCCTCAGTGTAGC 

 Taqman probe CGTGCCGCCTGGAGAAACCTGCC 

β-Actin (NM_007393)        144 
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  Forward primer  CTGGGACGACATGGAGAAGATC 

  Reverse primer  GTCTCAAACATGATCTGGGTCATC 

  Taqman probe  ACCTTCTACAATGAGCTGCGTGTGGCC 

Scnn1a (NM_011324)                                                    144 

   Forward primer  CCAAGGGTGTAGAGTTCTGTG  

   Reverse primer  AGAGCTTGTAGTTGGTCACAC  

   Taqman probe     TTCTCCAAGTGCAGGAAGCCGTG 

Scnn1b (NM_011325)                                                    147 

   Forward primer  CTCGAATATCACCCTGAGCAG  

   Reverse primer     CCCATCCAGAAGCCAAACT  

   Taqman probe   CCGTACCATTGAGGAATCTCCAGCCA 

Scnn1g (NM_011326)                                                    139 

   Forward primer   GGACCAAAGCCAGCAAATAAAC  

   Reverse primer   ACCAAAGTTAGACAGGAGCATC  

   Taqman probe     TCATGGAGAGCCCAGCCAACAGTAT 

T1R1 (Tas1r1) (NM_031867)                                              149 

   Forward primer      TGATAACACTGACCACGCTG 

   Reverse primer     CCTGGTACTTATCGCTGGG 

   Taqman probe     TGAGCCCTTTTCTGATGCCCCTG 

T1R2 (Tas1r2) (NM_031873)                                              128 

   Forward primer    AGAACCCCTTCCAAAGCATC 

   Reverse primer    AGGCTGGCAACTCTTAGAAC 

   Taqman probe  CCAACAACACGGTCCCCATATCCA 
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Pkd2l1 (NM_181422)                                                      143 

   Forward primer  GGTATACATAGTGTTCCTCGTGG 

   Reverse primer  TGCTGATGGTTTGGAAGGAG 

       Taqman probe  TGTTTCTACACACCCCATCCGACTCTG 

________________________________________________________________ 
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Figure 1. Not all P2X3-positive fibers are labeled with TrkB in fungiform taste 

buds. Representative fungiform taste bud labeled with anti-P2X3 (A, blue), anti-

GFP (B, green), and anti-K8 (C, red) in an adult TrkBGFP/+ mouse. Several fibers 

labeled with P2X3 (A, arrows) were not labeled with GFP (B, arrows), which is 

seen more clearly when the blue and green images are merged (C). K8 staining 

demonstrates that these fibers were within the taste bud (D). Representative ge-

niculate ganglion labeled with anti-P2X3 (E, blue) and anti-GFP (green, F) in a 

TrkBGFP/+ mouse. The higher magnification inset for each ganglion image illus-

trates a neuron labeled with P2X3 but not GFP (arrowhead). Scale bar in A = 10 

μm (applies to A-D); scale bar in E = 20 µm (applies to E-G); scale bar in inset = 

10 µm. 
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Figure 2. Bdnf gene expression in taste buds is reduced by inducible K14-

CreER-mediated gene recombination in lingual epithelial cells after 3 weeks of 

tamoxifen administration. (A-D) Representative confocal images showing fungi-

form taste bud staining with anti-PLCβ2 (blue) and anti-Car4 (green) in an adult 

K14-Cre:tdTomato mouse. (A) TdTomato (red) was observed in the epithelium of 

fungiform papilla. (B-D) All taste bud cells were bright red, indicating that they 

were all derived from K14+ precursors. (E) Representative confocal images 

showing the epithelia of fungiform papillae stained with anti-K8 (blue) and anti-
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Car4 (green) in an adult K14-CreER:tdTomato mouse 10 weeks after 3 weeks of 

tamoxifen administration. (F-H) Most cells within the taste bud were labeled with 

tdTomato (red), demonstrating effective gene recombination. Many taste bud 

cells labeled with anti-Car4 (green) were also tdTomato-positive, indicating that 

they underwent gene recombination. (I) Isolated taste buds from K14-

CreER:Bdnflox/- mice expressed significantly less Bdnf than the three control gen-

otypes. Bdnf expression was normalized to that in Bdnflox/+ mice. *p < 0.05, **p ≤ 

0.01. Scale bar in A = 10 µm (applies to A and E); scale bar in D = 10 µm (ap-

plies to B-D and F-H). 
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Figure 3. Fungiform taste buds appear to lose both P2X3-positive and TrkB-

positive innervation when Bdnf is inducibly removed from the adult l ingual epithe-

lium. Representative confocal images showing fungiform taste buds stained with 

anti-GFP (green, A, E, I, and M), anti-P2X3 (blue, B, F, J, and N), and anti-K8 

(red) in four different genotypes. In Bdnflox/+:TrkBGFP/+ (A-D), K14-

CreER:Bdnflox/+:TrkBGFP/+ (E-H), and Bdnflox/-:TrkBGFP/+ (I-L) control mice, taste 

buds had similar amounts of TrkB-positive (A, E, and I) and P2X3-positive (B, F, 

and J) innervation 10 weeks after tamoxifen injection. However, for mice in which 
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Bdnf expression was reduced (K14-CreER:Bdnflox/-:TrkBGFP/+, M-P) taste buds 

had less TrkB-positive (M) and P2X3-positive (N) innervation. Interestingly, at 

least some TrkB-positive innervation remained in taste buds even after 10 weeks 

of BDNF reduction. Scale bar in D = 10 µm (applies to all panels). 
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Figure 4. The total amount of innervation to taste buds is reduced due to a loss of 

TrkB-positive taste fibers. (A) The volume of P2X3-positive and TrkB-positive fi-



4у 

 

bers within taste buds was reduced in adult mice with reduced Bdnf expression 

(K14-CreER:Bdnflox/-:TrkBGFP/+) compared with three control genotypes (P2X3-

positive, Bdnflox/+:TrkBGFP/+, p < 0.005; K14-CreER:Bdnflox/+:TrkBGFP/+, p < 0.01; 

Bdnflox/-:TrkBGFP/+, p < 0.005; TrkB-positive, Bdnflox/+:TrkBGFP/+, p < 0.001; K14-

CreER:Bdnflox/+:TrkBGFP/+, p < 0.001; Bdnflox/-:TrkBGFP/+, p < 0.001). (B) The vol-

ume of TrkB-negative fibers was estimated by subtracting the volume of TrkB-

positive fibers from the total volume of fibers/taste buds. TrkB-negative innerva-

tion was not affected by Bdnf reduction (p > 0.05). (C) Taste bud volume was not 

affected by Bdnf reduction (p > 0.05). **p ≤ 0.01, ***p ≤ 0.001. 
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Figure 5. Inducibly removing Bdnf from the epithelium reduced expression of the 

γ subunit of the ENaC channel but did not affect expression of α and β subunits. 

Normalized expression of the γ (A), β (B), and α subunits (C) of ENaC (n = 4) in 

fungiform taste buds. (A) RT-PCR results show reduced expression of the γ sub-

unit of ENaC in K14-CreER:Bdnflox/- mice compared with Bdnflox/+ mice. (B-C) RT-

PCR results show similar expression of β and α subunits of ENaC expression 

across genotypes. * p ≤ 0.05, ** p ≤ 0.01. 
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CHAPTER III 

THE FULL LENGTH TRKB RECEPTOR IS EXPRESSED IN THE GENICULATE 

GANGLION NEURONS, BUT NOT IN TASTE BUDS 

3.1 Introduction 

The receptor cells within the taste bud detect various chemical stimuli and 

convey this information to ganglion neurons, which then carries it to the brain. 

The neurotrophin, brain-derived neurotrophic factor (BDNF) regulates both the 

targeting of innervation to the taste bud during development and maintenance of 

innervation with the taste bud in adulthood. (Ringstedt et al., 1999; Krimm et al., 

2001; Lopez and Krimm, 2006b; Ma et al., 2009; Meng et al., 2015). BDNF con-

tinues to be expressed in a subpopulation of adult taste receptor cells (Yee et al., 

2003; Huang et al., 2015) and BDNF is required to maintain normal amounts of 

innervation in the adult taste bud (Meng et al., 2015). These innervating fibers 

consist of TrkB-positive and TrkB-negative subpopulations and TrkB-positive in-

nervation was specifically reduced when BDNF was removed from taste buds in 

adulthood (Chapter II). While the source of BDNF is the taste bud, it is unclear if 

BDNF has a direct function on the nerve fibers or could influence innervation indi-

rectly by binding to taste bud cells, which then release another factor to influence 

innervation (Nosrat et al., 2012). 
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 BDNF accomplishes its diverse functions by binding two receptors – the 

high affinity tyrosine kinase receptor, TrkB, and the pan-neurotrophic receptor 

p75 (Klein et al., 1991; Chao, 2003; Huang and Reichardt, 2003; Kharebava et 

al., 2008; Nguyen et al., 2009). The TrkB receptor has multiple isoforms; a full 

length TrkB and a truncated TrkB receptor (Klein et al., 1990; Baxter et al., 1997; 

Stoilov et al., 2002; Luberg et al., 2010). The full length TrkB and TrkBT1 recep-

tors share the same extracellular domain (ECD) and transmembrane domain 

(TMD); however the full length TrkB receptor contains a complex intracellular 

domain with a tyrosine rich catalytic region with binding sites for Shc and PLCγ 

(Huang and Reichardt, 2001). TrkBT1 has a short intracellular domain and lacks 

the Shc, tyrosine kinase, and PLCγ regions (Luberg et al., 2010). The bulk of 

BDNF function is mediated by the full length TrkB receptor which is involved in 

neuronal cell survival, synapse formation and plasticity, differentiation, prolifera-

tion by activating PLCγ, PI3K, and Erk/MAPK pathways in different binding sites 

(Huang and Reichardt, 2003; Numakawa et al., 2010). The function of the Trun-

cated (TrkBT1) receptor is not well established. It has been shown that TrkBT1 

can sequester BDNF and present BDNF to the dimer of the full length TrkB re-

ceptor (Biffo et al., 1995; Eide et al., 1996; Fryer et al., 1997; McCarty and 

Feinstein, 1998; Alderson et al., 2000; Righi et al., 2000). The p75 receptor also 

binds to BDNF and is expressed in geniculate ganglion neurons, as well as in 

both fungiform and circumvallate taste bud cells (Fan et al., 2004; Krimm, 2006; 

Fei et al., 2014).  
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By adulthood, BDNF is expressed in a subset of taste receptor cells (Yee 

et al., 2003; Huang et al., 2015), but it is unclear which cell types contain the re-

ceptors for BDNF. The taste bud is made up of taste bud cells derived from epi-

thelia and nerve fibers. Taste bud cells can be classified into three morphologic 

cell types based on electron microscopy: type I, type II, and type III, by cell 

shape, structure and apical processes (Murray, 1993; Pumplin et al., 1997; Yee 

et al., 2001). Type I cells usually called “supporting cells”, may function to clear 

neurotransmitters and ensheath other taste cells (Pumplin et al., 1997). Type II 

cells express G-protein coupled receptors (TAS1R and TAS2R family) and share 

a common intracellular signal transduction pathway which includes phospho-

lipase C-β2 (PLCβ2). Type III cells have synapses and at least some respond to 

sour taste stimuli (Huang et al., 2008b) and express carbonic anhydrase 4, a gly-

cosylphosphatidylinositol-anchored enzyme, which functions as the principal CO2 

taste sensor (Chandrashekar et al., 2009). Salt taste transduction also occurs 

through multiple known and unknown mechanisms including an ion channel, the 

epithelial sodium channel (ENaC) (Chandrashekar et al., 2010), which includes 

three subunit- α, β and γ, which taste receptor cells express this channel is un-

clear (Kretz et al., 1999; Chandrashekar et al., 2010). The taste bud also con-

tains stem cells and precursor cells which are non-polarized undifferentiated 

cells.  

The cells on which BDNF is acting must express BDNF’s receptors and 

which receptors are expressed in each cell type provides clues for BDNF’s spe-

cific action in these cells. However, at this stage we do not know which tissues 
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(taste bud cells or nerve fibers) express each of these receptors. The goal of this 

study is to determine which cells or/and neurons express the BDNF receptors. 

We found that the full length TrkB receptor is expressed in the geniculate gangli-

on, but not in the taste buds, and both taste buds and geniculate ganglion neu-

rons express the TrkBT1 and p75 receptors. Furthermore, the TrkBT1 receptor is 

expressed in multiple types of taste bud cells. Finally, BDNF regulates the ex-

pression of the TrkBT1 receptor, but not the full length TrkB receptor in circum-

vallate taste buds. Thus, the conical pathway for BDNF should be through the 

full-length receptor on the nerve fibers, not the taste cells. 

3.2 Methods 

3.2.1 Animals 

Adult wild-type C57BL6/J mus musculus (n = 4) were used in real-time 

polymerase chain reaction (real-time PCR) experiments to determine the expres-

sion levels of BDNF receptors in fungiform and circumvallate taste buds and the 

geniculate ganglion. The K14-BDNF-OE mice were used in real time RT-PCR to 

measure receptor expression in the circumvallate taste buds. To visualize TrkB, 

the GFP cassette was inserted into the first coding exon of Ntrk2 (TrkBGFP/+). In 

addition, we bred TrkBCreER/+ mice with mice expressing tdtomato (Jax# 007914) 

or YFP(Jax# 014539) to visualize the TrkBT1 receptor in the taste bud. Mice 

were injected with tamoxifen (T5648, Sigma-Aldrich; mixed in peanut oil, 188 

ng/g body weight) once per day for 3 days (TrkBCreER:tdTomato or TrkBCreER:YFP 

) by oral gavage. 



5р 

 

3.2.2 Laser capture microdissection, RNA extraction, cDNA amplification and pu-

rification 

Mice were euthanized by overdose of 2.5% tribromoethanol (Avertin, 

T48402, Sigma-Aldrich, St. Louis, 4 mg/kg body weight). The geniculate ganglion 

was dissected and transferred into a tube containing RNAlater (Ambion). Taste 

buds in both anterior and posterior parts of tongue were isolated with laser cap-

ture microdissection (LCM) using the protocols described previously (Huang and 

Krimm, 2010). Briefly, the tongue was dissected and then sectioned (10-µm) and 

processed to visualize the taste buds. The identified taste buds were captured 

onto CapSure Macro LCM Caps (Molecular Devices, Sunnyvale, CA, USA). For 

each animal, all captured samples were stored at -80 °C for RNA isolation.  

Total RNA was extracted from geniculate ganglia, and fungiform and cir-

cumvallate taste buds using an RNeasy micro kit according to the manufacturer’s 

instructions (#74004; Qiagen, Germantown, MD, USA). DNase I treatment was 

applied to eliminate traces of DNA during the procedure. Following isolation, the 

RNA quality was analyzed using a Bioanalyzer 2100 (Agilent Technologies, San-

ta Clara, CA, USA). The RNA Integrity Number (RIN) and 28S/18S ratio were 

used to estimate the RNA quality. Only RNA samples with a 260/280 ratio ≥ 1.80 

and RIN ≥ 8.0 were used cDNA from taste buds and geniculate ganglia was syn-

thesized from total RNA using random primers (Invitrogen, Carlsbad, CA, USA). 

3.2.3 Real-time RT-PCR 

Real-time RT-PCR was performed by ABI PRISM/7900HT Sequence de-

tection systems (Applied Biosystems) using a TaqMan Universal PCR kit (Ap-
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plied Biosystems, Waltham, MA, USA, catalog #4304437), and oligonucleotide 

primer/ probe sets, which were designed from sequences available in the Gen-

Bank Database using Beacon Designer software (Premier Biosoft International, 

Atlanta, GA, USA). Primers for TrkB were designed from the extracellular domain 

(ECD), and transmembrane domain (TMD) which was shared by the full length 

TrkB and TrkBT1 receptors, and so measures all isoforms. Both full length TrkB 

and TrkBT1 primers were designed from their unique intracellular domain. When 

possible, primers were chosen to span an intron to avoid genomic DNA contami-

nation (Table 2). TaqMan probes were labeled at the 5’-end with a fluorescent 

reporter dye (fluorescein; FAM) and at the 3’-end with a quencher dye (carboxy-

tetramethylrhodamine; TAMRA). Real time-PCR reactions were conducted using 

10 μl with 1X Master Mix, 720/200 nm primer/probe sets (TaqMan PCR Kit), and 

the same amount of target cDNA. For normalization of cDNA loading, all samples 

were run in parallel with the housekeeping gene, 18S ribosomal RNA, mouse 

glyceraldehyde 3 phosphate dehydrogenase (GAPDH) and cytokeratin 8 (K8). 

Each assay was carried out in triplicate. Amplification of cDNA was performed for 

40 cycles of 95°C for 15 s and 60°C for 1 min. 

3.2.4 Immunohistochemistry 

Mice were perfused with 4% paraformaldehyde (PFA). The anterior and pos-

terior part of the tongue and geniculate ganglion were dissected and post fixed 

overnight in 4% PFA. The tissue was transferred to 30% sucrose at 4°C over-

night, then frozen in OCT and stored at -80°C until sectioned on a cryostat. To 

visualize TrkBT1 and total TrkB in the taste buds and geniculate ganglia, tongue 
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sections (70 μm) and whole mount ganglia were rinsed once in 0.1 M phosphate-

buffered saline (PB) and 4 times in PBS and then blocked with 3% normal don-

key serum in 0.1M PB containing 0.5% Triton X-100. Tongue sections were incu-

bated with the following primary antibodies for 5 days at 4°C: rat anti-cytokeratin-

8 in PBS (1:50; Developmental Studies Hybridoma Bank, Antibody Registry ID: 

AB_531826, Cat#:Troma-1-s, Iowa City, IA, USA), rabbit anti-TrkBT1 (1:50; San-

ta Cruz Biotechnology, Santa Cruz, CA, USA), goat anti-GFP (1:400; Novus, AB 

Registry ID: AB_10128178, Cat#:NB100-1700, Littleton, CO, USA). Geniculate 

ganglia were incubated in mouse anti-ISL1 (1:100), rabbit anti-TrkBT1, goat anti-

GFP. Tissues were then rinsed 4 times in PB, sections were incubated in the ap-

propriate secondary antibodies for two days: anti-rat Alexa Fluor 555 (1:500; 

Jackson ImmunoResearch Laboratories, West Grove, PA, USA), anti-goat Alexa 

Fluor 488 (1:500; Jackson ImmunoResearch Laboratories, West Grove, PA, 

USA) anti-rabbit Alexa Fluor 647 (1:500; Jackson ImmunoResearch Laborato-

ries, West Grove, PA, USA), anti-mouse Alexa Fluor 647 (1:500; Jackson Immu-

noResearch Laboratories, West Grove, PA, USA), and anti-rabbit Alexa Fluor 

555 (1:500; Jackson ImmunoResearch Laboratories, West Grove, PA, USA). 

Tissues were then rinsed 4 times in 0.1M PB, and mounted onto slides and cov-

er-slipped using aqueous mounting medium (Fluoromount-G, SouthernBiotech, 

Birmingham, AL, USA). To identify which type of taste cells express the TrkBT1 

receptor, the front two-thirds of the tongue containing fungiform taste buds was 

sectioned as described above. The sections were incubated with either: goat an-

ti-Car4 (1:500; R&D Systems, AF2414), and rabbit anti-Dsred (1:500; Clontech, 
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Catalog # 632496, Mountain View, CA, USA) or rabbit anti-PLCβ2 (1:500; Santa 

Cruz Biotechnology, sc-206, Santa Cruz, CA, USA) and goat anti-GFP for 5 days 

at 4°C. Then sections were incubated with secondary antibodies: anti-rabbit 

Alexa Fluor 555, anti-goat Alexa Fluor 488 and mounted on to slides for visuali-

zation. Optical sections of labeled taste buds were captured every 1 μm using a 

confocal microscope (FV1200, Olympus) under a 60X objective lens with a zoom 

level of 3.5. Each signal was collected separately using single-wave length exci-

tation and merged to produce a composite image. Six taste buds from the tongue 

were imaged from each animal for further analyses. 

3.2.5 Statistical analysis 

Data were expressed as mean ± SEM. For real-time PCR results, the target 

gene expression levels were quantified by the comparative 2-ΔΔCT method (Livak 

and Schmittgen, 2001). The Student Newman normality test was used to exam-

ine if data were normally distributed. For mRNA levels, one-way ANOVAs were 

used. Once the overall significance difference was determined, Student Newman 

post hoc tests were used to identify significant differences in pairwise compari-

sons when differences were found across genotypes. Statistical significance was 

set at p < 0.05.  

3.3 Results 

3.3.1 Both taste buds and geniculate ganglion expressed the TrkB and p75 re-

ceptors. 

BDNF can regulate the amount of innervation in the adult taste bud (Meng 

et al., 2015); however, it is still unclear where the receptors for BDNF are ex-
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pressed. So we don’t know on which cells BDNF could be acting directly. BDNF 

accomplishes its diverse functions by binding two receptors-TrkB and p75 recep-

tors. To determine where these receptors are expressed, we first measured TrkB 

and p75 receptor mRNA expression using real-time RT-PCR in fungiform taste 

buds, circumvallate taste buds, and geniculate ganglion neurons in wild type 

mice. We found that the TrkB and p75 receptors are expressed in both taste 

buds (Figure. 6A and B) and geniculate ganglia (Figure. 6C). However, the levels 

of expression were different among these regions (Figure. 6A-C). The TrkB re-

ceptor is expressed at higher levels than p75 in fungiform taste buds (p<0.05, 

Figure. 6A) and geniculate ganglion (p<0.05, Figure. 6C). In contrast, in the cir-

cumvallate taste buds, the TrkB receptor was expressed at approximately the 

same amount as the p75 receptor (p= 0.055, Figure. 6B).  

To confirm our real-time RT-PCR results, we labeled taste buds and ge-

niculate ganglion from TrkBGFP/+ mice with anti-GFP (green) while taste buds 

were visualized with anti-cytokeratin-8 (Figure. 6D-G), and neuron cell bodies 

with anti-Islet-1 (Figure. 6H and I). Consistent with the rt-PCR result, TrkB was 

present in taste nerve fibers in both fungiform and circumvallate taste buds (Fig-

ure. 6D and F), and also most of neurons in the geniculate ganglion (Figure. 6H). 

Therefore, the TrkB and p75 receptors are expressed in the geniculate ganglion 

and taste buds. 

 3.3.2 Both the full length TrkB and TrkBT1 receptors are expressed in geniculate 

ganglia, while only the TrkBT1 receptor is expressed in taste buds. 
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The TrkB receptor has two isoforms- the full length TrkB and the truncated 

receptor. BDNF activates intracellular signaling cascades through a full length 

TrkB receptor to induce differentiation, proliferation and survival (Numakawa et 

al., 2010). In addition to the full length TrkB receptor, BDNF can also function via 

truncated receptor isoforms. Since these different TrkB isoforms have different 

functions, we wanted to know whether taste buds and geniculate ganglion ex-

pressed both full length TrkB and truncated receptors. In the mouse, the primary 

truncated receptor is TrkBT1 (Carim-Todd et al., 2009), and only rat sequences 

for additional truncated receptors have been published (Armanini et al., 1995). 

Therefore, we measured the full length TrkB and TrkBT1 receptor mRNA expres-

sion by real-time RT-PCR in fungiform taste buds, circumvallate taste buds and 

geniculate ganglion neurons in the wild type mice. We found that the full length 

TrkB receptor mRNA is expressed in the geniculate ganglion (Figure. 7C), but 

not in fungiform and circumvallate taste buds (Figure. 7A and B). But the TrkBT1 

receptor mRNA is expressed in fungiform taste buds, circumvallate taste buds, 

and geniculate ganglion neurons (Figure. 7A-C).  

To confirm my real-time RT-PCR results, I labeled taste buds and genicu-

late ganglion neurons with anti-TrkBT1 in wild type mice. In both fungiform and 

circumvallate taste buds, anti-TrkBT1 weakly labeled both taste bud cells (arrow 

in Figure. 7 D and F), and nerve fibers. In geniculate ganglion neurons, anti-

TrkBT1 clearly labeled neurons (arrow in Figure. 7 H). This finding is consistent 

with our real-time RT-PCR results. Therefore, the TrkBT1 receptor is expressed 

in both taste buds and geniculate neurons.  
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3.3.3 The TrkBT1 receptor is expressed in multiple types of taste bud cells. 

We found that the TrkBT1 receptor was expressed in the taste buds, but 

taste bud cells exist as multiple different types and we sought to determine which 

type of taste bud cell/s express the TrkBT1 receptor. Since anti-TrkBT1 was only 

weakly labeled in the taste bud cells in wild type mice we used a genetic label 

(TrkB-CreER:tdTomato or TrkB-CreER:YFP) to determine which taste bud cell 

express TrkBT1. We injected 4mg of tamoxifen/day for 3 days in both transgenic 

mouse lines, then collected the tongue on day 4 and performed immunostaining. 

By examining the taste bud immediately after the tamoxifen injection we insured 

that the taste receptor cells that underwent gene recombination were still in the 

taste bud and the nerve fibers expressing TrkB would not yet be labeled. There is 

no full length TrkB receptor expressed in the taste buds; therefore, tdTomato and 

GFP labeled cells only express the truncated TrkB receptors. We labeled fungi-

form taste buds in TrkB-CreER:tdTomato mice with anti-dsred (red) and anti-

carbonic anhydrase 4 (Car4, green, a marker for Type II taste receptor cells; Fig-

ure. 3A-C). Some anti-Car4 positive taste receptor cells expressed dsred (arrow 

in Figure. 8A), indicating that these taste receptor cells also expressed the 

TrkBT1 receptor. We labeled fungiform taste buds in TrkB-CreER:YFP mice, with 

anti-GFP (green) and anti-phospholipase C subtype β2 (PLCβ2, red; a marker for 

Type II taste receptor cells; Figure. 8D-F), and found that some PLCβ2-positive 

taste cells expressed GFP (arrow in Figure. 8D), indicating that PLCβ2-positive 

taste cells also expressed the TrkBT1 receptor. Therefore, both Type II and Type 

III taste bud cells expressed TrkBT1 receptor. 
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3.3.4 BDNF regulates the expression of the TrkBT1 receptor, but not the full 

length TrkB receptor in the circumvallate taste buds. 

The full length TrkB receptor was found to be expressed in the circumvallate 

taste buds in mice overexpressing BDNF in the taste bud (Nosrat et al., 2012). 

However, we were unable to find the full length TrkB receptor in either fungiform 

or circumvallate taste buds of wild type mice. One possibility is that BDNF regu-

lates expression of its own receptor, such that it is increased to detectable levels 

only in BDNF-overexpressing mice. To address this possibility, we examined the 

total TrkB, full length TrkB, TrkBT1 and p75 receptor mRNA expression in cir-

cumvallate taste buds from both BDNF-overexpressing (K14-BDNF-OE) and wild 

type mice using real-time RT-PCR. Surprisingly, we found the full length TrkB re-

ceptor is not expressed in either K14-BDNF-OE or wild type mice (Figure 9). 

However, both total TrkB (p<0.05) and the TrkBT1 receptor expression (p<0.01) 

levels were significantly increased in the circumvallate taste buds of K14-BDNF-

OE mice compared to wild type mice (Figure 9). Therefore, the TrkBT1 receptor 

in cells within and around the taste bud is regulated by BDNF levels, and the full 

length TrkB receptor is simply not expressed in taste buds according to our de-

tection system, which contrary to the literature (Nosrat et al., 2012)  

3.4 Discussion 

The neurotrophin, brain-derived neurotrophic factor (BDNF) regulates 

TrkB-positive innervation to the adult taste bud (Chapter II). BDNF functions 

through its two receptors-TrkB and p75 receptor. However, it is unclear on which 

cells BDNF is having its actions or the receptors used by these cells. BDNF may 



6о 

 

have a direct effect on the nerve fibers; alternatively, BDNF could affect the 

nerve fibers indirectly by binding to receptors on taste bud cells who in turn influ-

ence nerve fibers. Furthermore, BDNF could have its action via any of 3 recep-

tors, p75, full-length TrkB, and truncated TrkB. To help figure out which was the 

case, we determined which cells within the taste bud express the BDNF recep-

tors. We found that the full length TrkB receptor mRNA is expressed in the ge-

niculate ganglion, not in taste buds. Furthermore, both taste buds and geniculate 

ganglion neurons express the TrkBT1 and p75 receptors, and the TrkBT1 recep-

tor is expressed in multiple types of taste bud cells. These data demonstrate that 

BDNF released from taste bud cells can only signal via the full length TrkB recep-

tor on nerve fibers of geniculate ganglion and not adjacent taste cells, but BDNF 

could influence innervation indirectly via TrkBT1 or p75 in adjacent taste receptor 

cells. 

Both BDNF and the truncated TrkB receptor are expressed in taste bud 

cells. Truncated TrkB can function as a dominant negative receptor that inhibits 

full length TrkB signaling (Fenner, 2012). The function of the truncated (TrkBT1) 

receptor is not well established. It has been shown that TrkBT1 binds to and 

forms heterodimers with the full length TrkB receptor to inhibit full length TrkB re-

ceptor autophosphorylation and pathway activation (Eide et al., 1996; McCarty 

and Feinstein, 1998; Righi et al., 2000). In addition, TrkBT1 binds and internaliz-

es BDNF in neurons (Biffo et al., 1995), and can sequester BDNF when in abun-

dance and re-release it when BDNF is depleted (Biffo et al., 1995; Fryer et al., 

1997; Alderson et al., 2000). TrkBT1 is expressed in epithelia, and in non-
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neuronal cells of the mammary gland where it functions to prevent BDNF-TrkB 

signaling in sensory axons and causes a developmental loss of mammary gland 

innervation in males (Liu et al., 2012). BDNF is expressed in a subpopulation of 

adult taste receptor cells, which are Type III taste cells (Car4 + taste cells) (Yee 

et al., 2003; Huang et al., 2015). We found that TrkBT1 is expressed in the Type 

II (Plcβ2+) and Type III (Car4+) taste receptor cells. These results indicate that in 

some taste cells the TrkBT1 receptor is co-expressed with BDNF, but other taste 

receptor cells only express TrkBT1. This suggests that BDNF release may not be 

specific to Type III cells, because Type II cells could sequester BDNF and rere-

lease it (Alderson et al., 2000). Our results also reported that there are many 

TrkBT1 receptors expressed on the connective tissue cells immediately sur-

rounding the taste bud, TrkBT1 in this location may function to bind and se-

quester BDNF to prevent BDNF spread to regions outside the taste bud. 

Both the full length TrkB receptor and the truncated receptors can regulate 

dendritic branching and neuron morphology in the central nervous system. How-

ever, they likely have opposite roles. For example, the TrkBT1 receptor regulates 

complexity of neurites of neurons in the basolateral amygdala, but not hippocam-

pus. Specifically, in TrkBT1 mutant neurons, there is a decrease in dendritic ar-

bor complexity and reduction in dendritic length in amygdala (Carim-Todd et al., 

2009). Interestingly TrkBT1 deletion rescues the effects of BDNF haplodeficiency 

suggesting that it inhibits BDNF function. TrkBT1 and full length TrkB can regu-

late distinct modes of dendritic growth in visual cortical neurons (Yacoubian and 

Lo, 2000). In our study, we found that both full length TrkB and TrkBT1 receptors 
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are expressed in the geniculate ganglion. Therefore, it is possible that both the 

full length TrkB receptor and the truncated TrkB receptor promote to regulate pe-

ripheral fiber branches in geniculate neurons, but they possibly function in differ-

ent neurons or branch types or with differential timing or modes of growth.  

We found that the full length TrkB receptor mRNA is not detected in cir-

cumvallate taste buds of K14-BDNF-OE mice. This result is different from an ear-

lier study demonstrating that the full length TrkB receptor is expressed in circum-

vallate taste buds of mice overexpressing BDNF under the control of the α-

gustducin promoter (Nosrat et al., 2012). It’s possible that our results differ from 

this earlier study because we used the K14 promoter to overexpress BDNF in-

stead of an α-gustducin promoter. The K14 promoter is efficient and results in 

BDNF expression in the tongue that is 70 times that of normal levels (LeMaster 

et al., 1999), and the α-gustducin promoter can only increase the BDNF expres-

sion to 7 times (Nosrat et al., 2012). Therefore, BDNF overexpression under the 

control of K14 should be more than sufficient to enhance expression of the full 

length TrkB receptor if its expression in relationship to BDNF expression is linear. 

It’s also possible that the BDNF regulation of full length TrkB receptor follows an 

inverted-U dose-response curve. If so, the lower BDNF overexpression could in-

duce the expression of the full length TrkB receptor, while the higher BDNF over-

expression may inhibit expression of the full length TrkB receptor. Another possi-

bility is that our primer was different from Nosrat et al., 2012, although both pri-

mers can detect the full length TrkB receptor. Lastly, α-gustducin-expressing 

cells are Type II taste receptor cells, which unlike K14+ taste cells do not normal-
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ly express BDNF (Huang et al., 2015). Therefore, this ectopic BDNF expression 

could induce full-length expression in the taste bud where it does not otherwise 

occur. We did find that the expression of the TrkBT1 receptor mRNA was up-

regulated in circumvallate taste buds of K14-BDNF-OE mice compare to wild 

type mice. Overexpression of BDNF may stimulate taste cells to produce more 

TrkBT1 receptor in order to bind and sequester BDNF. This would be consistent 

with the idea that TrkBT1 functions to bind and sequester BDNF to prevent 

BDNF spread to the outside of taste bud.  

 In addition to the TrkB receptor, p75 is another receptor which binds to 

BDNF. In the taste system, the p75 receptor regulates gustatory axon branching 

during development and is also required for maintaining a full complement of 

taste buds into adulthood (Fan et al., 2004; Krimm, 2006; Fei et al., 2014). The 

p75 receptor is expressed in ganglion neurons in both development and adult-

hood (Fei et al., 2014); however previous studies differ as to whether or not p75 

is expressed in taste buds (Fan et al., 2004; Krimm, 2006). In this study, we 

sought to resolve this discrepancy. We found that p75 receptor mRNA is ex-

pressed in fungiform and circumvallate taste buds, and geniculate ganglion neu-

rons by real time RT-PCR. P75 receptor expression in the geniculate ganglion is 

consistent with a previous immunostaining finding, but the p75 receptor was not 

previously found in the fungiform taste buds (Krimm, 2006). This may be be-

cause expression of the p75 receptor in fungiform taste buds is below detection 

levels for antibody staining. In conclusion, the p75 receptor was expressed in 

both taste buds and geniculate ganglion neurons, and so it may function to di-



6т 

 

rectly influence nerve fibers or could indirectly influence nerve fibers via taste re-

ceptor cells. 

In conclusion, the full length TrkB receptor mRNA is expressed in the ge-

niculate ganglion neurons, not in the taste buds. These findings suggesting that 

BDNF released from taste bud cells signal via the full length TrkB receptor on 

nerve fibers of geniculate ganglion and not adjacent taste cells. The TrkBT1 re-

ceptor is expressed in multiple types of taste bud cells where TrkBT1 may func-

tion to bind and sequester BDNF in the taste bud to prevent BDNF binding to the 

full length TrkB receptor. Consistent with this idea TrkBT1 is up-regulated by in-

creased BDNF levels. Finally, the p75 receptor is expressed in both taste buds 

and geniculate ganglion neurons which may bind the BDNF ligand to mediate 

geniculate ganglion axon branching in adulthood.  
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Table 2. Sequences of primer pairs and probes used for real-time RT-PCR 

________________________________________________________________________ 

Gene                              

Fragment 

GenBack Accession #      Sequence 5’-3’               size (bp) 

 

Total TrkB   (NM_001025074)                                                                   148                   

           Forward primer           ACCTGCAGATACCCAATTGTG 

           Reverse primer           GAAACCAAATTCCCAACGTCC 

           Taqman probe            TGACCCACTCCCCACCTTGTACTG 

P75 (AF105292)                                                                                          74                  

           Forward primer           GGGTGATGGCAACCTCTACAGT 

           Reverse primer           TGTCACCATTGAGCAGCTTCTC 

           Taqman Probe            CCTGCCCCTGACCAAGCGTGAGGA              

Full length TrkB (NM_001025074)                                                               86                  

          Forward primer            AAGGACTTTCATCGGGAAGCTG  

          Reverse primer            TCGCCCTCCACACAGACAC   

          Taqman Probe             CCAACCTCCAGCACGAGCACATTGTCAA 

 

TrkBT1 (NM_008745.3)                                                                               139           

          Forward primer               CTATTTCCTTGTCCTGGTCTCG  

          Reverse primer               AGTGTGGGTTTGGGAGTTG 

          Taqman Probe               TCACTGGCTACCCTGAAGTGTGAGTC  
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Krt8 (NM_031170)                                                                                           130            

         Forward primer               TCTTCTGATGTCGTGTCCAAGTG 

         Reverse primer               GATCCTCGGACGGGTCTCTAG 

         Taqman Probe                CCACTGAAGTCCTTGCCAGCCTGAGC 

GAPDH (NM_008084)                    130 

         Forward primer       AATGTGTCCGTCGTGGATCTG 

         Reverse primer       CAACCTGGTCCTCAGTGTAGC 

        Taqman Probe                  CGTGCCGCCTGGAGAAACCTGCC 

 

β-Actin (NM_007393)           144         

         Forward primer               CTGGGACGACATGGAGAAGATC 

         Reverse primer               GTCTCAAACATGATCTGGGTCATC 

        Taqman Probe               ACCTTCTACAATGAGCTGCGTGTGGCC 

________________________________________________________________________ 
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Figure 6. The TrkB and p75 receptors are expressed in the geniculate ganglion 

and taste buds. Relative expression of the TrkB and p75 receptors are measured 

by Real time RT-PCR in the fungiform taste buds (A), circumvallate taste buds 

(B) and geniculate ganglion neurons (C) in wild type mice. The expression of the 

TrkB receptor was significantly higher than the p75 receptor in the fungiform 

taste buds and geniculate ganglion neurons (p<0.05), but was not different in the 

circumvallate taste buds (p=0.055). A fungiform taste bud (E, F), and circumval-

late taste bud (F, G) were labeled with anti-GFP (green; E, G) and anti-

cytokeratin 8 (K8, red; D, F), and a geniculate ganglion (I) was labeled with anti-
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GFP and anti-Islet-1 (H, blue) in an adult TrkBGFP/+ mouse. The nerve fibers in 

the taste buds (E and G) and geniculate ganglion neurons (I) were strongly la-

beled with GFP. The scale bars in E =10 μm and apply to D-I. 
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Figure 7. Geniculate ganglia express both full length TrkB and TrkBT1 receptors, 

while taste buds only expressed the TrkBT1 receptor. Relative expression of the 

full length TrkB and TrkBT1 receptors are measured by Real time RT-PCR in 

fungiform taste buds (A), circumvallate taste buds (B) and geniculate ganglion 

neurons (C) in wild-type mice. A fungiform taste bud (D, E) and circumvallate 

taste bud (F, G) labeled with anti-TrkBT1 (E, G, green) and anti-cytokeratin 8 (D, 

F, K8, red) in an adult wild type mouse. Geniculate ganglion neurons are labeled 

with anti-TrkBT1 (I, red) and anti-Islet-1 (H, blue) from TrkBGFP/+ mouse. Anti-

TrkBT1 (arrow in A, C) weakly labeled taste cells in both fungiform and circum-
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vallate taste buds. Anti-TrkBT1 (arrow in E) clearly labeled geniculate ganglion 

neurons. The scale bars in D =10 μm and applies to D-I. 
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Figure 8. The TrkBT1 receptor is expressed in both Car4- and PLCβ2-positive 

taste bud cells. A fungiform taste bud (A-C) is labeled with anti-Car4 (B, green) 

and anti-Dsred (C, red) in an adult TrkB-CreER:tdTomato mouse. Arrows in A 

show Car4 cells labeled with Dsred (TrkBT1). A fungiform taste bud (D-F) is la-

beled with anti- PLCβ2 (E, red) and anti-GFP (F, green) in an adult TrkB-

CreER:YFP mice. An arrow in D shows PLCβ2 labeled cells are also labeled with 

YFP (TrkBT1). Thus, both Car4-positive and PLCβ2-positive taste receptor cells 

express TrkBT1. The scale bars in A =10 μm and apply to all. 
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Figure 9. BDNF regulates the expression of TrkBT1, but not the full length recep-

tor in the circumvallate taste buds. Relative expression of TrkB (total), the full 

length TrkB receptor, TrkBT1 and the p75 receptor in the circumvallate taste 

buds from both wild type and BDNF-overexpressing mice. The full length TrkB 

receptor was not expressed in the circumvallate taste buds of BDNF-

overexpressing mice, but circumvallate taste buds did express TrkBT1 and the 

p75 receptor. The expression of total TrkB (the full length and truncated recep-

tors combined) and TrkBT1 in the BDNF-overexpressing mice was significantly 

higher (Total TrkB, p<0.05; TrkBT1, p<0.01) than wild type mice, but the expres-

sion of p75 receptor was not different between wild type and BDNF-

overexpressing mice. 
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CHAPTER IV 

BLOCKING TRKB-SIGNALING DECREASES BRANCHES WITHIIN THE 

TASTE BUD WITHIN TWO WEEKS 

4.1 Introduction 

In the tongue, taste buds in the fungiform papillae are innervated by ge-

niculate ganglion neurons via chorda tympani nerve, which transmits information 

to the brain. During development the neurotrophin, brain-derived neurotrophic 

factor (BDNF), regulates the initial innervation to newly formed taste buds 

(Ringstedt et al., 1999; Krimm et al., 2001; Lopez and Krimm, 2006b; Ma et al., 

2009). BDNF continues to be expressed in subpopulation of taste receptor cells 

in adulthood (Yee et al., 2003; Huang et al., 2015), where it continues to maintain 

taste bud innervation in adulthood (Meng et al., 2015) (Chapter II). Specifically, 

55% of the TrkB-positive innervation within the taste bud was lost when Bdnf was 

specifically removed from taste buds and epithelium for 10 weeks in adulthood 

(Chapter II). The main function of BDNF is mediated by the full length TrkB re-

ceptor. The full length TrkB receptor is expressed in the geniculate ganglion neu-

rons, but not in the taste buds (Chapter III). Therefore, if BDNF maintains inner-

vation through the full length TrkB receptor, BDNF’s action is directly on nerve 

fibers. 
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Taste receptor cells have a limited lifespan and continuously turn over 

throughout life (Beidler and Smallman, 1965; Perea-Martinez et al., 2013). There-

fore, maintenance of innervation to taste bud is an active process, which may 

depend on BDNF. TrkB-positive innervation is reduced 10 weeks following Bdnf 

gene recombination in taste buds and epithelium (Chapter II). However, many 

taste receptor cells are replaced within 2 weeks (Beidler and Smallman, 1965; 

Perea-Martinez et al., 2013), which means some taste receptor cells may have 

been replaced several times by 10 weeks. Therefore, it is unclear whether BDNF 

supports taste bud innervation with timing consistent with BDNF support of new 

taste receptor cells.  

The current study had two goals. First to determine if BDNF signaling af-

fects the taste innervation via full the length TrkB receptor. Second, to determine 

whether blocking TrkB signaling can impact innervation to taste bud with timing 

consistent with regulation of innervation during receptor cell turnover. Because 

BDNF-TrkB signaling regulates branching during central nervous system devel-

opment and adulthood (Martinez et al., 1998; Gorski et al., 2003; Chakravarthy et  

al., 2006; Liu et al., 2007; Bergami et al., 2008; Wang et al., 2015), we wanted to 

use an approach that would permit the measure of specific branching character-

istics in the taste bud. Therefore, we combined a chemical genetic approach for 

blocking TrkB signaling with a sparse cell labeling approach in which only a sub-

set of TrkB-positive nerve fibers were labeled allowing branches of individual fi-

bers to be examined. We found that blocking TrkB-signaling resulted in a reduc-
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tion of the number of labeled fibers innervating the taste bud and also reduced 

branching of fibers within the taste bud.                                                                                                                                       

4.2 Methods 

4.2.1 Animals 

To block TrkB-signaling we used mice in which the TrkB allele harbors a sin-

gle point mutation by changing phenylalanine (F) to alanine (A) within the ATP 

binding pocket of kinase subdomain V (TrkBF616A), this modified TrkB gene is al-

so flanked by LoxP sequences (Chen et al., 2005).  The substitution of phenylal-

anine (F) with an alanine (A) in adjacent introns does not affect BDNF-dependent 

TrkB signaling, but does render the mutant TrkB receptor susceptible to inhibition 

by 1NM-PP1 (Chen et al., 2005). In order to visualize TrkB-positive nerve fibers, 

mice with-tdTomato and –YFP conditional alleles were bred with mouse lines 

containing an inducible Cre-recombinase driven by the TrkB promoter (TrkB-

CreER; #027214, Jackson Laboratory), the resulting offspring (TrkBCreER: 

YFP/tdTomato) had the STOP cassette deleted in Cre-expressing cells; resulting 

in expression of either tdTomato or YFP or both. Experimental and control mice 

were generated by crossing male (TrkBF616A/+; YFP) with female (TrkBCreE/+; 

tdTomato) mice. Thus, one set of experimental mice had a point mutation on one 

TrkB allele, allowing TrkB signaling to be blocked with 1NM-PP1 (TrkBCreER/F616A: 

YFP/tdTomato). The other set of experimental mice also had a point mutation on 

one TrkB allele, while without 1NM-PP1 injection (TrkBCreER/F616A: YFP/tdTomato 

without 1NM-PP1). Two control genotypes were used for different purposes of 

comparison. TrkBCreER/+: YFP/tdTomato without 1NM-PP1 are compared with 
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TrkBCreER/+: YFP/tdTomato with 1NM-PP1 to determine if 1NM-PP1 has any non-

specific effects on TrkB-positive innervation. TrkBCreER/+: YFP/tdTomato without 

1NM-PP1 are compared with TrkBCreER/F616A: YFP/tdTomato without 1NM-PP1 to 

determine if Tamoxifen has any effects on TrkB gene recombination in subset of 

TrkB-positive fibers. 

4.2.2 Tamoxifen and 1NM-PP1 administration 

Mice were injected with tamoxifen (T5648, Sigma-Aldrich, St. Louis, MO; mixed 

in peanut oil, 188 ng/g body weight) once per day for 5 days by oral gavage be-

ginning at day P35 Then two genotypes (TrkBCreER/F616A: YFP/tdTomato and Trk-

BCreER/+: YFP/tdTomato) were injected with 150 μl of 1NM-PP1 while two other 

genotypes (TrkBCreER/F616A: YFP/tdTomato and TrkBCreER/+: YFP/tdTomato) were 

injected with vehicle. 1NM-PP1 was mixed by dissolving 50mg into 1508 μl of 

DMSO to make a 100mM stock solution. For injections 12μl of the 1NMPP1 stock 

solution (1NMPP1 injections) or DMSO (vehicle injections) was diluted into 138μl 

of injection solution (0.9% NaCl and 2.5% Tween-20) (Johnson et al., 2008). All 

the mice were euthanized after two weeks of 1NM-PP1 or vehicle injections for 

anatomical analysis. 

4.2.3 Immunohistochemistry 

Mice were euthanized by an overdose of Avertin (4 mg/kg body weight), 

transcardially perfused with 4% paraformaldehyde (PFA), and post-fixed in PFA 

for 2 hours or immersion-fixed in 4% PFA overnight. The anterior part of the 

tongue was dissected and post-fixed overnight in 4% PFA. The tissue was trans-

ferred to 30% sucrose at 4°C overnight, frozen in OCT, and stored at -80°C until 
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used. To visualize taste buds and TrkB innervation, in thick floating sections, 

tongues were sectioned at 70 μm, and the sections were collected in 0.1M phos-

phate-buffered saline (PBS) and rinsed four times in PBS. Cryostat sections were 

blocked with 3% normal donkey serum in 0.1M PBS containing 0.5% Triton X-

100. The tissue was incubated with the following primary antibodies for 5 days at 

4°C: rat anti-K8 in PBS (1:50; Developmental Studies Hybridoma Bank, AB Reg-

istry ID: AB_531826, cat#: Troma-1-s, Iowa City, IA), goat anti-GFP (1:400; 

Novus, AB Registry ID: AB_10128178, cat#: NB100-1700, Littleton, CO), rabbit 

anti-Dsred (1:500; Clontech, Catalog # 632496, Mountain View, CA, USA). After 

incubation in primary antibodies and four rinses in PBS, sections were incubated 

in the following secondary antibodies for 2 days: anti-rat Alexa Fluor 647 (1:500; 

Jackson ImmunoResearch Laboratories, West Grove, PA), anti-goat Alexa Fluor 

488 (1:500; Jackson ImmunoResearch Laboratories), or anti-rabbit Alexa Fluor 

555 (1:500; Jackson ImmunoResearch Laboratories). The tissue was then 

washed four times in 0.1M PBS, mounted onto slides, and cover-slipped using 

aqueous mounting medium (Fluoromount-G, SouthernBiotech, Birmingham, AL). 

To visualize whole taste buds and quantify branching characteristics, we per-

formed whole mount staining of the entire lingual epithelium. The epithelium in-

cluding taste buds was excised from the tongue muscle. This was accomplished 

by first removing most of muscle from underneath of the tongue with scissors. 

The tongue epithelium with attached lamina propria frozen in OCT and the lami-

na propria was reduced in thickness by sectioning on the cryostat. The remaining 
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tongue epithelium was then processed for whole mount immunohistochemistry 

using the same protocol as described above. 

4.2.4 Quantification of the number of taste buds innervated by labeled TrkB-

positive fibers. 

The numbers of taste buds innervated by red, green and yellow labeled 

TrkB-positive fibers were counted in thick sections of the tongue using a Leica 

DMLB microscope. Specifically, in addition to determining if a taste bud is inner-

vated or uninnervated by TrkB-positive fibers, innervated taste buds were classi-

fied into those innervated by fibers of only color (red, green, or yellow –only) vs 

taste buds innervated by fibers with more than one color. The probability of an 

individual taste bud having fibers of multiple colors would be reduced as the 

number of fibers innervating each taste bud is reduced. 

4.2.5 Quantification of TrkB-positive fiber branching within the taste bud. 

Taste buds from the tip of the tongue were imaged by an Olympus 

Fluoview FV1200 Laser scanning confocal microscope. Optical images were 

captured every 0.47 μm with a 60× objective at a zoom level of 3.5 from the front 

one-third of the fungiform field (i.e., tongue tip). For each image, all three chan-

nels were taken separately using single-wavelength excitation and merged to 

produce a composite image. The first six taste buds identified containing TrkB-

positive fibers per mouse tongue were used for quantification. These taste buds 

were all taken from the tip of the tongue where taste bud density is high. All the 

taste bud images were deconvolved using Deconvolution Software (AutoQuant 

X, Media Cybernetics, MD, USA). Each labeled fiber was traced from where it 
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entered the taste bud (defined by keratin 8 labeling) using Neurolucida 360 soft-

ware (MBF Bioscience, Williston, Vermont, USA). The number of fibers entering 

the taste bud, fiber length, number of branch points, and branch ends were 

measured. 

4.2.6 Statistical analysis 

Results are expressed as mean ± standard error of the mean (SEM). One-

way analysis of variance (ANOVA) was used to test for differences between gen-

otypes for the percentage of taste buds that are innervated by labeled TrkB-

positive fibers, the percentage of taste buds are innervated by labeled fibers of 

two or more colors, total fiber length, total number of fibers, total branch ends, 

total branch points, percentage of fibers have secondary or higher branches, 

percentage of fibers have tertiary or higher branches, mean length of total branch 

fibers, mean length of primary branch fibers and mean length of secondary or 

higher order branch fibers. Two-way analysis of variance (ANOVA) was used to 

compare differences in the patterns within the histogram for branch length a two-

way analysis of variance (ANOVA) was used to compare the values at each in-

terval across genotypes, a significant difference in the interaction effect indicates 

differences in the pattern of these distributions. After significant overall ANOVAs, 

Student-Newman-Keuls post-hoc tests were used for pairwise comparisons. Sta-

tistical significance was set at p < 0.05.  

4.3 Results 



8о 

 

4.3.1 Fewer taste buds are innervated by labeled TrkB-positive fibers when TrkB-

signaling is blocked by 1NM-PP1. 

TrkB-positive innervation to the taste bud is reduced when the Bdnf gene 

is inducibly removed from the tongue epithelium and taste bud for 10 weeks in 

adult mice (Chapter II). Nerve fibers express the full length TrkB receptor, while 

taste buds do not (Chapter III). Since many taste receptor cells have been re-

placed by new cells within two weeks (Beidler and Smallman, 1965; Perea-

Martinez et al., 2013), I hypothesized that an effect could be seen in two weeks if 

BDNF-TrkB-signaling does regulate innervation to new taste receptor cells. We 

had two questions. First, we wanted to know if BDNF functions through the full 

length TrkB receptor to affect innervation to the taste bud. If so, this would mean 

the action of BDNF is directly on nerve fibers. Second, we wanted to know if the 

BDNF-TrkB signaling functions with a timing consistent with support of innerva-

tion to new taste receptor cells. To answer these questions, we blocked TrkB-

signaling using a chemical genetic approach where the TrkB gene was removed 

in a subset of neurons via gene recombination and then the remaining TrkB 

could be blocked with 1NMPP1 (TrkBCreER/F616A: YFP/tdTomato). These mice 

were compared to mice of the same genotype that underwent TrkB gene recom-

bination, but TrkB signaling was not blocked and a control genotype (TrkBCreER/+: 

YFP/tdTomato) both with and with 1NM-PP1. We also wanted to use a more 

sensitive method for quantifying innervation to the taste bud. Therefore, we used 

inducible genetic labeling to randomly label most TrkB-positive fibers with two 

markers - tdTomato and GFP. Because gene recombination is random this re-
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sulted in red (tdtomato-only), green (GFP-only) and yellow (tdtomato plus GFP) 

fibers. Taste buds were labeled with anti-cytokeratin-8 (Blue) (Figure10, A-P). 

Most of taste buds from control genotypes (TrkBCreER/+: YFP/tdTomato without 

1NM-PP1 is shown) are innervated by red, green, and yellow labeled TrkB-

positive fibers (Figure 10, A-D). When all three colors are present this indicated 

that the taste bud is innervated by 3 or more different neurons. In mice in which 

TrkB signaling was blocked (TrkBCreER/F616A: YFP/tdTomato) with 1NM-PP1, some 

of taste buds are uninnervated by TrkB-labeled fibers (Figure 10, E-H); other 

taste buds were innervated by only one color of TrkB-labeled fibers (Figure 10, I-

L). Unlike controls, some taste buds were innervated by one color of TrkB-

labeled fibers, but appeared to have reduced TrkB-labeled innervation (Figure 

10, M-P). Because the truncated TrkB receptor is expressed in lingual epithelium, 

some perigemmel cells were also labeled (arrows in the Figure 10).  

To examine the effect of blocking TrkB signaling on TrkB-positive innerva-

tion within taste buds, we counted the percentage of taste buds that were inner-

vated by TrkB-labeled fibers and taste buds are innervated by TrkB-labeled fibers 

of more than one different color, indicating that the taste bud is innervated by two 

or more TrkB-labeled neurons. Two weeks after 1NM-PP1 administration, the 

percentage of taste buds innervated by labeled TrkB-positive fibers was different 

across genotypes (F(3,11)= 27.290, p<0.001). Specifically, when TrkB signaling 

was blocked (TrkBCreER/F616A: YFP/tdTomato mice) with 1NM-PP1, the percentage 

of taste buds innervated by TrkB-positive fibers was decreased to 68% compared 

with two control genotypes (TrkBCreER/+: YFP/tdTomato without 1NM-PP1, 
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p<0.001; TrkBCreER/+: YFP/tdTomato with 1NM-PP1, p<0.001, Figure 11) and with 

sparse TrkB gene recombination alone (TrkBCreER/F616A: YFP/tdTomato without 

1NM-PP1, p<0.001, Figure 11). There was no difference in percentage of taste 

buds innervated by labeled TrkB-positive fibers among the other three genotypes 

(TrkBCreER/+: YFP/tdTomato without 1NM-PP1, TrkBCreER/+: YFP/tdTomato with 

1NM-PP1, TrkBCreER/F616A: YFP/tdTomato without 1NM-PP1), which was around 

98% of taste bud. This indicates that neither the 1NM-PP1 nor the floxed TrkB 

allele changed the number of TrkB-positive fibers innervating the taste bud. The 

percentage of taste buds innervated by multiple colors of labeled TrkB-positive 

fibers was also different across genotypes (F(3,11)= 118.588, p<0.001). Specifical-

ly, when TrkB-signaling was blocked (TrkBCreER/F616A: YFP/tdTomato) with 1NM-

PP1 fewer taste buds were innervated by labeled TrkB-positive fibers of more 

than one color compared with each of three genotypes (TrkBCreER/+: 

YFP/tdTomato without 1NM-PP1, p<0.001; TrkBCreER/+: YFP/tdTomato with 1NM-

PP1, p<0.001, TrkBCreER/F616A: YFP/tdTomato without 1NM-PP1, p<0.001, Figure 

11). There was no difference in the percentage of taste buds that were innervat-

ed by TrkB-positive fibers labeled by more than one color among the three other 

genotypes (around 72%). These data indicate that neither 1NM-PP1 nor a partial 

removal of TrkB changed the percentage of taste buds that were innervated by 

labeled TrkB-positive fibers of more than one color. As the number of labeled 

TrkB-positive neurons innervating the taste bud increases, the probability of have 

more than one color of labeled fiber also increases. Therefore, this is an indirect 

measure of the number of TrkB-positive neurons innervating the taste bud. 
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These data suggest that the number of TrkB-positive neurons innervating the 

taste bud was reduced by blocking TrkB signaling. 

4.3.2 Blocking TrkB signaling reduced both the number of separate TrkB-positive 

fibers entering and branch points within the taste bud. 

We wondered whether blocking TrkB-signaling would have an effect on 

the number of branches made by TrkB-positive fibers within taste buds. BDNF 

plays an important role in regulating the growth and branching of cortical and 

hippocampal neurons (McAllister et al., 1995; Niblock et al., 2000; Horch and 

Katz, 2002; Dijkhuizen and Ghosh, 2005; Cheung et al., 2007; Lazo et al., 2013). 

Mutant mice with an inducible deletion of TrkB receptors exhibit a significant re-

duction of dendritic arborization in cortical neurons (Xu et al., 2000). However, it 

is not clear whether BDNF-TrkB signaling could regulate the branching of taste 

neurons. To answer this question, we quantified the branching characteristics of 

TrkB-positive innervation within the taste bud of two experiment genotypes (Trk-

BCreER/F616A:YFP/tdTomato mice with 1NM-PP1, TrkBCreER/F616A: YFP/tdTomato 

without 1NM-PP1) and two control genotypes (TrkBCreER/+: YFP/tdTomato without 

1NM-PP1, TrkBCreER/+: YFP/tdTomato with 1NM-PP1). Because gene recombina-

tion is random and incomplete at lower doses of tamoxifen, tamoxifen injections 

resulted in TrkB-positive fibers that were labeled, red-only, green-only and both 

red and green (yellow). Using this type of visualization allowed individual fibers to 

be followed in the taste buds. Because gene recombination is random and some 

fibers were red-only, some green–only and others were both red and green.  
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Therefore, it was possible to trace each TrkB-positive fiber from the bottom of 

taste bud using Neurolucida 360 software (Figure 12).  

To quantify the different characteristics of TrkB-positive innervation, we 

analyzed the total fiber length, number of independent fibers entering the taste 

bud, total branch ends, and total branch points within the taste bud. The total 

length of TrkB-positive fibers within taste bud was different across the genotypes 

(F(3,11)=13.270, p<0.01). Specifically, taste buds from mice in which TrkB-

signaling was blocked TrkB-signaling (TrkBCreER/F616A: YFP/tdTomato with 1NM-

PP1) had a significant reduction in total fiber length compared with two control 

genotypes (TrkBCreER/+: YFP/tdTomato without 1NM-PP1, p<0.01; TrkBCreER/+: 

YFP/tdTomato with 1NM-PP1, p<0.01; Figure 13A) and mice that underwent 

gene recombination without blocking with 1NM-PP1 (TrkBCreER/F616A: 

YFP/tdTomato, p<0.01; Figure 13A). There was no difference in total TrkB-

positive fiber length among the other three genotypes, which indicates that nei-

ther 1NM-PP1 nor the point mutation on the TrkB allele altered total fiber length. 

The total number of fibers entering the taste bud was also different across the 

genotypes (F(3,11)= 6.911, p<0.05). Specifically, taste buds of mice in which TrkB-

signaling was blocked (TrkBCreER/F616A: YFP/tdTomato with 1NM-PP1) had a sig-

nificant decrease in the total number of fibers compared with the two control 

genotypes (TrkBCreER/+: YFP/tdTomato without 1NM-PP1, p<0.05; TrkBCreER/+: 

YFP/tdTomato with 1NM-PP1, p<0.05; Figure 13B). However, there was no dif-

ference with mice of the same genotype in which TrkB was not blocked (TrkBCre-

ER/F616A: YFP/tdTomato without 1NM-PP1, p=0.149). This means that mice un-
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derwent TrkB gene recombination also had fewer fibers entering the taste bud. 

There was no difference in total number of fibers in the two control genotypes, 

which means 1NM-PP1 had no effect on the total number of fibers within taste 

bud.  

In order to examine branching we measured the total branch points and 

branch ends within the taste bud. The total branch ends and total branch points 

within taste buds were also different across the genotypes (total branch ends, 

F(3,11)= 16.78, p<0.001; total branch points, F(3,11)= 34.02, p<0.001). Specifically, 

branching was reduced in mice in which TrkB-signaling was blocked (TrkBCre-

ER/F616A: YFP/tdTomato with 1NM-PP1) mice compared with the other three geno-

types (total branch ends, TrkBCreER/+: YFP/tdTomato without 1NM-PP1, p<0.001; 

TrkBCreER/+: YFP/tdTomato with 1NM-PP1, p<0.01; TrkBCreER/F616A: YFP/tdTomato 

without 1NM-PP1, p<0.05. total branch points, TrkBCreER/+: YFP/tdTomato without 

1NM-PP1, p<0.001; TrkBCreER/+: YFP/tdTomato with 1NM-PP1, p<0.001; TrkBCre-

ER/F616A: YFP/tdTomato without 1NM-PP1, p<0.01; Figure 13 C-D). However, in 

mice that underwent TrkB gene recombination such that the TrkB gene was re-

moved in some, but probably not most neurons (TrkBCreER/F616A: YFP/tdTomato 

without 1NM-PP1), both total branch ends and total branch points were de-

creased compare to one of the control groups (TrkBCreER/+: YFP/tdTomato without 

1NM-PP1, total branch ends, p<0.05. total branch points, p<0.05), but not the 

other (TrkBCreER/+: YFP/tdTomato with 1NM-PP1 mice; total branch ends, 

p=0.101. total branch points, p=0.131). There were no obvious differences be-

tween the two controls genotypes, indicating that 1NM-PP1 in the absence of the 
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point mutation has no impact on branching. These data indicate that partial re-

moval of the TrkB gene is sufficient to reduce the number of branch ends and 

branch points within the taste bud, and this effect is enhanced by blocking TrkB-

signaling.  

We wanted to know if branch ends were lost because the numbers of f i-

bers entering the taste bud were reduced, or if remaining fibers also lose branch 

ends. To address this question, we measured the percentage of fibers that have 

secondary or higher order branches and percentage of fibers have tertiary or 

higher branches within taste buds. We identified each branch from its entry into 

the taste bud to the first branch point as the primary branch, the first branch point 

to second branch point as a secondary branch, etc. The percentage of fibers that 

have secondary or higher branches and percentage of fibers have tertiary or 

higher branches are significantly reduced after blocking TrkB-signaling (TrkBCre-

ER/F616A: YFP/tdTomato with 1NM-PP1 mice) compared with the other three geno-

types (percentage of fibers have secondary or higher branches: TrkBCreER/+: 

YFP/tdTomato without 1NM-PP1, p<0.001; TrkBCreER/+: YFP/tdTomato with 1NM-

PP1, p<0.001; TrkBCreER/F616A: YFP/tdTomato without 1NM-PP1, p<0.001. per-

centage of fibers have tertiary or higher branches: TrkBCreER/+: YFP/tdTomato 

without 1NM-PP1, p<0.001; TrkBCreER/+: YFP/tdTomato with 1NM-PP1, p<0.001; 

TrkBCreER/F616A: YFP/tdTomato without 1NM-PP1, p<0.001; Figure 13 E-F). There 

were also no difference between the two control genotypes (TrkBCreER/+: 

YFP/tdTomato without 1NM-PP1, TrkBCreER/+: YFP/tdTomato with 1NM-PP1) and 

one that underwent limited TrkB gene recombination (TrkBCreER/F616A: 
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YFP/tdTomato without 1NM-PP1), which indicates that neither tamoxifen nor a 

point mutation on TrkB allele has an effect on the percentage of fibers with higher 

order branches. These data suggest that the remaining fibers have fewer 

branches when TrkB signaling is blocked. 

 In summary, we found that blocking TrkB signaling can cause a reduction 

in the total fiber length, total number of fibers, total branch ends, total branch 

points and percentage of fibers with higher order branches. These data indicate 

that innervation to the taste bud is reduced both because the number of separate 

fiber branches entering the taste bud is reduced and some higher order branches 

on the fiber branches remaining in the taste bud are lost. 

4.3.3 Primary branches become longer due to a loss of higher order branches 

when TrkB signaling is blocked. 

We wanted to know whether branch length was impacted by blocking 

BDNF-TrkB signaling. To address this question, we first analyzed the mean 

length of all fiber branches within the taste bud. We found that there are no sig-

nificant differences between mice in which TrkB-signaling is blocked (TrkBCre-

ER/F616A: YFP/tdTomato with 1NM-PP1) compared with the other three genotypes 

(F(3,11) = 3.278, p =0.08) (Figure 14A). When branch length was plotted on a his-

togram, there was no significant differences between the experiment and control 

genotypes (F(30,88)=0.898, p=0.62) (Figure 14B). These data suggest that 

branches are lost equally across the different lengths.  

If a fiber entering the taste bud consists of a single primary and two sec-

ondary branches, and one secondary branch is lost, the remaining of primary f i-
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ber will become longer. Therefore, it seemed likely that although there was no 

difference in mean fiber length, some branches become longer while others be-

come shorter. This would result in the same average branch length across geno-

types. To examine this possibility, we measured the mean length of primary and 

higher order branch fibers separately and found that the mean length of primary 

branches is not different between mice in which TrkB-signaling was blocked for 

two weeks (TrkBCreER/F616A: YFP/tdTomato with 1NM-PP1) compared with the 

other three genotypes (F(3,11) = 0.353, p =0.788) (Figure 14C). However, when 

branch length is plotted on a histogram, there were fewer short primary branches 

and more medium sized within the taste buds of mice with reduced TrkB-

signaling (TrkBCreER/F616A: YFP/tdTomato with 1NM-PP) compared with the other 

three genotypes (F(30,88)=1.615, p<0.05) (Figure 14D). Specifically, the primary 

branch fibers were shifted from shorter lengths to longer lengths compared with 

other three genotypes.  

For the higher order branch fibers, we found that the mean lengths of sec-

ondary or higher order branches were significantly decreased after two weeks of 

blocking TrkB-signaling (TrkBCreER/F616A: YFP/tdTomato with 1NM-PP1) compared 

with other three genotypes (F(3,11) = 6.172, p < 0.05) (Figure 14E). However, this 

decrease was roughly the same across the different lengths of these fibers 

(F(30,88)=0.916, p=0.60) (Figure 14F). Specifically, there is no difference on the 

frequency of short (0-15 um), medium (15-30 um) secondary or higher order 

branch fibers among those four genotypes. However, there was a loss of the 

longest branches in that the frequency of long secondary or higher order branch-
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es (>30 um) was decreased in the TrkBCreER/F616A: YFP/tdTomato with 1NM-PP1 

mice compared with other three genotypes. Taken together, these data indicate 

that when TrkB signaling is blocked, some short primary branches become long-

er because of a loss of higher or branches, while higher order branches decrease 

in length.  

 

4.4 Discussion 

Taste receptor cells turnover continuously and most of them have around 

a 2 week lifespan (Beidler and Smallman, 1965; Perea-Martinez et al., 2013). 

When new taste receptor cells enter the taste bud, they must be innervated by 

taste fibers. One possible factor regulating this continuous plasticity is the neuro-

trophin, BDNF. Consistent with this possibility, 40% of taste innervation and 55% 

of TrkB-positive innervation are lost from the taste bud when BDNF is inducibly 

removed for 10 weeks (Meng et al., 2015) (Chapter II). If BDNF does has this 

role its action in maintaining innervation to the taste bud would occur on nerve 

fibers. Consistent with a direct action on nerve fibers, I found that the full length 

TrkB receptor was expressed on the nerve fibers, and not in the taste buds 

(Chapter III). However, BDNF still could have its function directly on taste cells 

via other BDNF receptors (p75 and TrkBT1) which are expressed in the taste bud 

(Chapter III). To determine if the action of BDNF is via the full length TrkB recep-

tor we blocked BDNF-TrkB signaling through the full length TrkB receptor. We 

found that fewer taste buds were innervated by TrkB-positive fibers. In addition, 

innervated taste buds had reduced innervation primarily due to reduced branch-
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ing of fibers in the taste bud. We conclude that the action of BDNF occurs directly 

on nerve fibers,  

Taste bud innervation is lost when BDNF is inducibly removed for 10 

weeks (Meng et al., 2015) (Chapter II). So it seems likely that BDNF functions to 

maintain innervation to mature taste cells or recruit innervation to new taste re-

ceptor cells. However, many taste receptor cells are replaced within two weeks 

(Beidler and Smallman, 1965; Perea-Martinez et al., 2013), and in previous stud-

ies it took 70 days to observe an effect following BDNF removal; this timing is in-

consistent with this hypothesis. Because it is unclear when the BDNF is reduced 

to levels where it is likely to have an effect, it is difficult to know when BDNF re-

moval is first acting on taste bud innervation. To resolve this problem, we used 

chemical 1NM-PP1 to block TrkB-signaling for two weeks. We found that block-

ing TrkB-signaling reduces taste bud innervation within this time period, which is 

consistent with BDNF having a role regulating innervation to new taste receptor 

cells. 

Previous studies found that the volume of TrkB-positive innervation was 

reduced when BDNF was inducibly removed (Chapter II). In this study, all TrkB-

positive fibers are labeled in a single color, and the TrkB-positive fibers are 

densely packed within taste buds, such that single fibers cannot be analyzed. 

Thus, it is not possible to follow fibers individually as they course through the 

taste bud. Because of this limitation, this measure was likely less sensitive than 

examining single fibers required a larger difference to observe an effect. In addi-

tion, no information was provided concerning what aspect of innervation had 
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been altered. In this study, we combined sparse genetic labeling in multiple col-

ors to allow us to follow individual branches as they course through the taste bud. 

This technique provided a more sensitive measurement which allowed us to 

quantify branching characteristics of individual TrkB-positive fibers. Using this 

new measurement, we found that the number of fibers entering taste buds, the 

total fiber length and the number of total branch fibers were significantly de-

creased when BDNF is inducibly removed. This finding indicates that this new 

technique provides a much more detailed analysis of branching characteristics of 

TrkB-positive fibers, which could not be achieved with volume measurements. 

Although TrkB innervation is reduced when TrkB signaling is blocked for 2 

weeks, TrkB-positive fibers are not completely lost. One possible explanation for 

this finding is because the chemical 1NM-PP1 blocked the TrkBF616A autophos-

phorylation and signaling on full length TrkB receptor, not the truncated isoform 

(Chen et al., 2005). It is possible that some of TrkB-positive fibers only express 

the truncated isoform, but not full length TrkB receptor. This is consistent with our 

previous finding that some geniculate ganglion neurons express both the full 

length and truncated isoforms and some only express the truncated isoforms 

(Chapter III). A second possibility is that two weeks is not a sufficient time to see 

a full effect and that longer time periods on blocking TrkB-signaling would result 

in continued loss of some of this innervation These ideas are not mutually exclu-

sive and likely both are at play.  

The decreased innervation seen to the taste bud in this study can all be 

explained by a loss of branching at different levels. Reduction of branch points 
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outside the taste bud reduces the number of branches entering the taste bud and 

we also see a loss of branching within the taste bud. Consistently, BDNF-TrkB-

signaling regulates dendritic and/or axonal branching in cortical, hippocampal 

during development (Martinez et al., 1998; Liu et al., 2007) and in adulthood 

(Gorski et al., 2003; Chakravarthy et al., 2006; Bergami et al., 2008; Wang et al., 

2015). Many downstream signaling mediators of the BDNF/TrkB pathway are in-

volved in the control of dendritic branching, such as mTOR, PI3-kinase and 

MAPK (Dijkhuizen and Ghosh, 2005; Jaworski et al., 2005; Kumar et al., 2005; 

Jeanneteau et al., 2010), which indicates that deactivation of BDNF/TrkB signal-

ing alters axon and dendritic branching. In conclusion, BDNF/TrkB signaling 

regulates the branching of peripheral gustatory fibers within the taste bud. 

There was no difference in branch length when all the branches were con-

sidered. However, if a single terminal branch is lost from a bifurcating fiber within 

the bud this could result in a longer fiber. Therefore, we predicted that blocking 

TrkB signaling might differentially effect branch length depending on branch or-

der. When we just considered the length of the fiber branch entering the taste 

bud, before it branches the first time (primary branches) we found that there were 

fewer short primary branches and more medium to long branches. This is likely 

due to the loss the some higher order branches. Meanwhile, higher order branch 

length shifted such that there were fewer longer branches relative to shorter ones 

when TrkB-signaling was blocked. This occurred either because longer second-

ary branches were more likely to be lost or because longer branches became 



9с 

 

shorter or both. This finding indicates that BDNF-TrkB signaling is important for 

maintaining both the number and length of second order branches within the bud. 

Compared to previous findings that 55% TrkB-positive innervation are re-

moved when BDNF is inducibly removed for 10 weeks (Chapter II), our results 

show a surprisingly large effect on TrkB-positive innervation by blocking TrkB 

signaling within 2 weeks. While these effects are impossible to compare directly 

because only a portion of the innervation in this study was labeled and all taste 

buds had some innervation remaining, the effect was still much larger than we 

predicted. One possible explanation is that removing BDNF from taste buds and 

epithelium leads to removal of both BDNF/TrkB signaling and BDNF/p75 signal-

ing, but blocking TrkB signaling only remove BDNF/TrkB signaling while not 

BDNF/p75 signaling. According to previous studies, when neurotrophins bind to 

p75 receptor, it causes axon degeneration in both developmental sympathetic 

neurons and adult septal cholinergic neurons (Singh et al., 2008; Park et al., 

2010). It’s possible that pro-BDNF/p75 signaling also cause axon degeneration in 

adult geniculate ganglion neurons. This maybe the reason why blocking TrkB 

signaling within 2 weeks had larger effect than could be predicted from the ef-

fects of 10 weeks of BDNF removal.   

Taken together my data are consistent with the following role for 

BDNF/TrkB-signaling maintenance of innervation during adulthood. When the old 

taste receptor cell die, the fiber branches innervating this receptor cell likely re-

tract. When the new taste receptors enter into the taste bud, BDNF/TrkB signal-

ing may promote formation of a new branch from some of TrkB-positive fibers 
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and support fiber growth and targeting to newly differentiated taste receptor cells. 

The remaining TrkB-positive fibers which are not affected by BDNF/TrkB signal-

ing, may support the innervation of other taste cells through a different mecha-

nism, and could be inhibited by BDNF through p75. 
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Figure 10. Fungiform taste buds appear to have less TrkB-positive or no TrkB-

positive innervation when TrkB signaling is blocked by 1NM-PP1. Confocal im-

ages show fungiform taste bud staining with anti-GFP (green), anti-tdTomato 

(Red) and anti-cytokeratin 8 (keratin 8, blue) in one control and one experimental 

genotype/treatment group of mice. In the control animal TrkBCreER/+: 

YFP/tdTomato without 1NM-PP1 (A-D), taste buds were typically innervated by 

three different colors of TrkB-positive fibers- red (A), green (B) and yellow (C) 

(red and green). However, for mice in which TrkB signaling is blocked (TrkBCre-
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ER/F616A: YFP/tdTomato with 1NM-PP1), some of taste buds are uninnervated (E-

H), some of taste buds are innervated by one color of fibers (red; I-L) and some 

of taste buds are innervated fibers of all 3 colors (M-P), and yet still appeared to 

have less labeled innervation. The scale bar in D = 10 µm and applies to all. 
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Figure 11. TrkB-positive innervation to the taste bud decreases when TrkB sig-

naling is blocked. The percentage of taste buds that are innervated by TrkB-

positive fibers (gray bar) and more than one color of TrkB-positive fibers (white 

bar) were quantified in TrkBCreER/+:YFP/tdTomato without 1NM-PP1, TrkBCre-

ER/+:YFP/tdTomato with 1NM-PP1, TrkBCreER/F616A: YFP/tdTomato without 1NM-

PP1 and TrkBCreER/F616A: YFP/tdTomato with 1NM-PP1 mice. Fewer taste buds 

are innervated by TrkB-positive fibers in mice where TrkB-signaling is blocked 

(TrkBCreER/F616A:YFP/tdTomato with 1NM-PP1) compared with the other three 

groups (TrkBCreER/+:YFP/tdTomato without 1NM-PP1, p<0.01; TrkBCre-

ER/+:YFP/tdTomato with 1NM-PP1, p<0.01; TrkBCreER/F616A: YFP/tdTomato without 

1NM-PP1 p<0.01).  Also, the percentage of taste buds innervated labeled TrkB-

positive fibers of two or more colors was reduced with blocking TrkB-signaling 

(TrkBCreER/F616A:YFP/tdTomato with 1NM-PP1) compared with the other 3 geno-

types (TrkBCreER/+:YFP/tdTomato without 1NM-PP1, p<0.01; TrkBCre-

ER/+:YFP/tdTomato with 1NM-PP1, p<0.01; TrkBCreER/F616A:YFP/tdTomato without 

1NM-PP1 p<0.01).  Because the probability that a taste bud will be innervated by 
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different colored fibers increases as the number of independent neurons inner-

vating the taste bud increases, this means that fewer labeled TrkB neurons in-

nervate each taste bud. 
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Figure 12. Quantification of TrkB-positive fiber branching within taste buds.  Im-

ages show a keratin 8 labeled taste bud (blue; A) and the labeled TrkB-positive 

fibers (red, green yellow) innervating it (blue A, E). Neurolucida was used to draw 

each fiber within the taste bud from where it entered to the top of the bud. C  

Taste fibers are frequently flat, while the diameter of drawn fibers is a uniform 

thickness in each direction.  For this reason fiber or innervation volume cannot be 

measured using this approach, but branch lengths and branch points cand be 

measured.. The images illustrate one taste bud from a control genotype (TrkBCre-

ER/+: YFP/tdTomato without 1NM-PP1 (A-D)) and one from a mouse in which 

TrkB-signaling had been blocked (TrkBCreER/F616A: YFP/tdTomato with 1NM-PP1 

mice (E-H)). Each color fiber branch entering the taste bud was traced by a dif-

ferent color line. The scale bar in D = 10 µm and applies to all. 
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Figure 13. Innervation is lost in the taste bud with reduction of TrkB-signaling due 

to a loss of fiber branches. Quantification of total fiber length (A), total number of 

fibers (B), branch ends (C), branch points (D), the percentage of fibers that have 

secondary or more branches (E) and the percentage of fibers have tertiary or 

more branches (F) in TrkBCreER/+:YFP/tdTomato without 1NM-PP1, TrkBCre-
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ER/+:YFP/tdTomato with 1NM-PP1, TrkBCreER/F616A:YFP/tdTomato without 1NM-

PP1 and TrkBCreER/F616A:YFP/tdTomato with 1NM-PP1 mice. A, Measurement of 

the total TrkB fiber length within taste buds. The total TrkB fiber length was signif-

icantly reduced when TrkB-signaling was blocked (TrkBCreER/F616A:YFP/tdTomato 

with 1NM-PP1). B, The total number of separate fiber branches entering a taste 

bud were significantly decreased when TrkB-signaling was blocked (TrkBCre-

ER/F616A: YFP/tdTomato with 1NM-PP1) compared with two control groups, but 

there was no difference the other experimental group (TrkBCre-

ER/F616A:YFP/tdTomato without 1NM-PP1). The total number of branch ends with-

in taste buds (C) and total number of branch points within taste buds (D). Both 

number of branch ends (C) and branch points (D) were significantly decreased 

when TrkB-signaling was blocked (TrkBCreER/F616A:YFP/tdTomato with 1NM-PP1) 

compared with other three genotypes. Another experiment group (TrkBCre-

ER/F616A:YFP/tdTomato without 1NM-PP1) had a significant reduction on both 

number of branch ends and branch points compared TrkBCreER/+:YFP/tdTomato 

without 1NM-PP1 mice, but no difference with TrkBCreER/+: YFP/tdTomato with 

1NM-PP1 mice. Quantification of the percentage of fibers that have secondary or 

more branches within taste buds (E) and the percentage of fibers have tertiary or 

more branches within taste buds (F). Both percentages were significantly re-

duced when TrkB-signaling was blocked (TrkBCreER/F616A:YFP/tdTomato with 

1NM-PP1) compared with other three genotypes. The arrows in the cartoons 

show that the different characteristics of fibers are quantified. * p ≤ 0.05, **p ≤ 0.0 
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Figure 14. The longest secondary and tertiary branches were lost disproportion-

ately when TrkB-signaling is blocked. A, Quantification of the mean length of 

each fiber branch within taste buds. Blocking TrkB signaling did not alter the 
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mean lengthof all braches when clumped together. B, Histogram of frequency 

distribution of total branch fibers based on length. The distribution of the different 

branch lengths were unaffected by blocking TrkB-signaling.  C, Quantification of 

the mean length of primary branches within taste buds. There was no difference 

in the mean length of primary branches between TrkBCreER/F616A: YFP/tdTomato 

with 1NM-PP1 mice and other three genotypes. D, Histogram illustrating the fre-

quency distribution of primary fiber branch lengths. Many shorter primary branch 

fibers become longer in the TrkBCreER/F616A: YFP/tdTomato with 1NM-PP1 mice 

compared to the other three genotypes. E, Quantification of the mean length of 

secondary or higher order branch fibers within taste buds. The mean length of 

secondary or higher order branch fibers are significantly reduced in the TrkBCre-

ER/F616A: YFP/tdTomato with 1NM-PP1 mice compared to other three genotypes. 

F, Histogram of frequency distribution of secondary or higher order branch fibers 

based on length. There is no difference in the overall distribution of the various 

fiber lengths between TrkBCreER/F616A: YFP/tdTomato with 1NM-PP1 mice and 

other three genotypes. The reduction in the mean appears to be due to loss of 

the long fiber branches in the TrkBCreER/F616A:YFP/tdTomato with 1NM-PP1 mice. 

The arrows in the cartoons show that the different characteristics of branch fibers 

are quantified.  * p ≤ 0.05, **p ≤ 0.01. 
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 CHAPTER V 

SUMMARY AND DISCUSSION 

Taste bud cells turn over continuously in adulthood (Beidler and 

Smallman, 1965; Perea-Martinez et al., 2013), and new taste bud cells must be 

reinnervated by nerve fibers. Forty percent of the innervation is reduced when 

BDNF is removed from the taste buds and epithelium (Meng et al., 2015), while 

60% remains. It is unclear if the remaining taste bud innervation is due to insuffi-

cient BDNF removal or lack of BDNF dependence in the remaining fibers. My 

findings indicate that Bdnf expression was efficiently removed from taste buds 

using the K14 promoter ruling out insufficient BDNF removal. I found that taste 

fibers consist of TrkB-positive and TrkB-negative populations. Taste bud-derived 

BDNF supported a large subset of TrkB-expressing nerve fibers and not TrkB-

negative nerve fibers. Since TrkB-negative taste fibers are not affected by BDNF 

removal, they may be supported by some other factor/s. Not all TrkB-positive in-

nervation is lost after BDNF removal, so it is also likely that these fibers do not 

express an isoform for TrkB allowing BDNF to signal. Together these findings 

point to two types of innervation, TrkB-negative that does not respond to BDNF 

removal, and some of TrkB-positive that is lost with BDNF removal, while some 

does not. One possibility is that these different fibers innervate different
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types of taste receptor cells.  Consistently, BDNF is expressed in some adult 

taste receptor cells but not others (Yee et al., 2003; Huang et al., 2015). This 

may indicate that BDNF maintains a subset of TrkB-positive fibers that innervate 

BDNF-expressing taste bud cells. Interestingly these BDNF-expressing taste 

cells co-express Car4 (marker of sour taste cells), SNAP 25 (marker of taste re-

ceptor cells with synapses), but also αENaC (transduction mechanisms for salt).  

BDNF removal reduces γENaC expression in the taste bud. It is not clear if this is 

a direct effect of BDNF or an indirect of nerve fiber loss. However, it is possible 

that the nerve fibers are lost from the subset of taste receptor cells that transduce 

salt and sour and this influences gene expression in those taste cells. Together 

these findings suggest that BDNF functions to support taste innervation to specif-

ic cell types.  

BDNF maintains TrkB-positive innervation to the adult taste bud. However, 

it is unclear whether BDNF has a direct function on the nerve fibers or could in-

fluence innervation indirectly by binding to taste bud cells, which then release 

another factor to influence innervation (Nosrat et al., 2012). The cells on which 

BDNF is acting must express BDNF’s receptors. I found that the full length TrkB 

receptor is expressed in the geniculate ganglion, not in taste buds, and that 

BDNF maintains TrkB fibers by functioning through the full length receptor.  

Therefore, the primary function of BDNF occurs on nerve fibers, not taste buds. 

Alternatively, both taste buds and geniculate ganglion neurons express the 

TrkBT1 receptor, and the TrkBT1 receptor is expressed immediately surrounding 

the taste bud and is also up-regulated when BDNF is over expressed. These da-
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ta indicate that TrkBT1 functions to bind and sequester BDNF in the taste bud to 

prevent BDNF binding to full length TrkB receptor. In conclusion, my findings 

demonstrate that conical BDNF signaling via the full length TrkB receptor occurs 

at nerve fibers, and that TrkBT1 sequesters BDNF limiting its location and avail-

ability to nerve fibers. 

 BDNF could function to maintain innervation to mature taste cells or it 

could function to recruit innervation to new taste cells, or both. Given that during 

development BDNF regulates many of the same processes (i.e. target innerva-

tion, nerve fiber growth, fiber branching) that would be required for the innerva-

tion of new taste receptor cells, it seems reasonable that this may be the case. 

However, it took 70 days for an effect to be measured following removal of 

BDNF. Given that many taste receptor cells are replaced within two weeks, this 

timing is inconsistent with the idea that BDNF is required for innervation of new 

taste receptor cells. However, it is difficult to know the precise timing of BDNF 

removal and measurements of innervation were crude requiring a large effect be-

fore differences between groups could be measured. I resolved these issues by 

blocking TrkB signaling directly and measuring the effects of this blockade on 

nerve fiber branching within the taste bud. I found that fewer taste buds are in-

nervated by labeled TrkB-positive fibers, the numbers of branches entering the 

taste bud were reduced, and other fibers lose higher order branches, while some 

remaining higher order branches also become shorter after blocking TrkB signal-

ing. This data may suggest that TrkB signaling mediates terminal branch arbori-

zation of geniculate ganglion axons. In summary, my findings indicate that BDNF 
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from the taste bud maintains innervation by acting directly through the full length 

TrkB receptor. Blocking TrkB-signaling reduces taste bud innervation within two 

weeks; this timing is consistent with TrkB regulation of innervation to new taste 

receptor cells. Taste innervation is lost due to a reduction in branching. 

Overall, my data are consistent with the following role for BDNF-TrkB 

function in the taste bud. When an old BDNF-expressing receptor cell dies, the 

TrkB-positive fibers innervating this cell retracts from the taste bud, and branches 

within the taste bud are lost. When a new BDNF-expressing receptor cell enters 

into the taste bud, BDNF/TrkB signaling may stimulate TrkB-positive nerve fibers 

to produce a new branch which grows into and within the taste bud and likely 

branches several times within the taste bud (Figure 15). TrkBT1 receptor in 

BDNF-expressing receptor cell may sequester BDNF to prevent it from diffusing 

away from the new uninnervated cell and influencing innervation at a distance. 

The p75 receptor binding to pro-BDNF may function to inhibit growth of other fi-

bers preventing aberrant growth of the incorrect nerve fibers into the taste bud. 

The innervation of taste cells that do not express BDNF may be supported by 

TrkB-negative fibers through a different mechanism or in some cases TrkBT1 

could sequester BDNF and rerelease it to encourage innervation by TrkB-positive 

fibers.  

In the future studies, it would be interesting to figure out which type of 

taste receptor cells are connected by TrkB-positive fibers and how the fibers form 

a new connection with new taste receptor cells. First, to figure out when blocking 

TrkB signaling first has an effect on innervation. I will examine TrkB-positive fi-
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bers after blocking TrkB signaling for different times (2 days, 4 days, 1 weeks, 4 

weeks and 2 months). This should give me an idea when TrkB-positive innerva-

tion first effected and also how long is required for the maximal effect to occur. 

Then I will examine whether blocking TrkB signaling affects specific taste func-

tion by doing a behavior test and nerve recording. Finally, I plan to study which 

taste receptor cells are connected by TrkB-positive fibers by doing immunostain-

ing on whole mount taste buds. 
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Figure 15. A model illustrating how we think BDNF-TrkB signaling functions in the 

adult taste system. Old BDNF expressing taste cell (blue cell in A) are innervated 

by TrkB-positive fibers (Green in A). As old BDNF expressing taste cell die, some 

branches of TrkB-positive fibers are retracted back to the branch point of fibers 

(B). When a new BDNF-expressing cell (purple cell in C) enters the taste bud, it 

releases BDNF which binds to the full-length receptor on nerve fibers. This pro-

motes branch formation and growth of a new fiber branch into the taste bud that 

can then innervate this taste receptor cell. 
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