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ABSTRACT  

TRANSIENT RECEPTOR POTENTIAL CATION CHANNEL, SUBFAMILIES V, 

MEMBER 1 (TRPV1) AND M, MEMBER 1 (TRPM1) CONTRIBUTE TO NEURAL 

SIGNALING IN MOUSE RETINA 

  

Jennifer Noel 

July 07, 2016 

 The retina processes light information through parallel pathways in order 

to extract and encode the visual scene. Light information is transmitted to the 

brain through approximately 30 ganglion cells (GCs), the retinal output neurons. 

Trp channels modulate the responses of retinal neurons within specific pathways. 

The study of the expression and function of the majority of Trp channels in the 

retina is largely in its infancy. My dissertation first investigated the expression 

and function of the transient receptor potential vanilloid-1 (TRPV1) 

receptor/channel in the retina. TRPV1, the first cloned and most highly studied 

Trp channel in the peripheral nervous system, is a non-selective cation channel 

with an affinity for Ca2+. The channel can be activated by capsaicin, acid, 

endovanilloids, noxious heat or pressure (Moreira et al., 2012). Located on the 

peripheral and central terminals of nociceptive fibers in the PNS and in limited 

areas of the CNS (Cavanaugh et al, 2011b). TRPV1 plays a role in inflammation, 

chronic pain, nociceptor sensitization and desensitization, long-term depression 
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and potentiation, and apoptosis. The role of TRPV1 in the retina is not known. 

Using the electroretinogram (ERG), a mass potential that assesses the function 

of photoreceptors and bipolar cells, the TRPV1 knockout mouse appears normal. 

However, TRPV1 is thought to play a role in calcium regulation and glaucoma 

(Sappington et al., 2009 & Leonelli et al., 2010) so we investigated its role in 

normal visual transduction in the inner retina. To investigate TRPV1 modulation, I 

recorded GC spiking responses to light stimuli from mice which either express or 

lack TRPV1 protein. I found that TRPV1 is critical for: 

1.  GC responses to dim light. 

2. Sustained responses to light  

3. Surround suppression of GCs to large spots.  

 Further, I investigate the specific retinal cells that express TRPV1. I used 

TRPV1cre mice with genetic or viral methods to fluorescently label neurons that 

express TRPV1. I determined TRPV1 is expressed in four classes of amacrine 

and three classes of ganglion cells in the inner retina. My results indicate 

TRPV1 activity in the amacrine cells enhances the sustained spiking responses 

in GCs. In this way, TRPV1 likely enhances the perception of subtle details in 

the visual world. TRPV1 also is expressed in subsets of intrinsically 

photosensitive GCs, which are known to play a role in circadian 

photoentrainment.  TRPV1 therefore has the potential to modulate circadian 

photoentrainment or other non-image forming visual functions as well.  

      The role of TRPM1 in the retina is well known. It is required for signaling 

through the ON pathway, which detects light increments. Responses through the 
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ON pathway are initiated by synapses between rod and cone photoreceptors with 

ON bipolar cells (BCs). The human disease, complete congenital stationary night 

blindness (cCSNB) results from a disruption in signaling within the ON BC 

mGluR6 G-protein coupled cascade, which culminates in the opening of the 

TRPM1 channel and signaling through ON BCs. I helped expand our 

understanding of the role of TRPM1 in the retina by investigating the expression 

and function of leucine rich repeat immunoglobulin like transmembrane protein 3 

(LRIT3), a novel protein component in the mGluR6-TRPM1 signalplex that was 

found mutated within cCSNB patients and a knockout mouse (Zeitz et al., 2013; 

Neuillé et al., 2014). The function of LRIT3 within the cascade remains unknown. 

To better understand the role of LRIT3, we examined retinal structure and 

function. We compared the structure of the pre and postsynaptic elements in the 

OPL of WT and Lrit3-/- mice using a variety of antibodies and with confocal 

microscopy. We assessed overall retinal function with ERG and GC spontaneous 

and visually evoked activity with single cell and multielectrode array recordings. 

The overall laminar structure of the Lrit3-/- retina is similar to WT. Consistent with 

published results and other cCSNB mouse models, Lrit3-/- mouse dark- and light-

adapted ERGs have a normal a-wave, but lack a b-wave. The dendritic terminals 

of Lrit3-/- ON BCs lack expression of nyctalopin and TRPM1. Lrit3-/- mice 

significantly differ from other cCSNB mutants. Cone ON BCs lack expression of 

mGluR6, GPR179 and RGS11, whereas rod BCs maintain expression of these 

proteins. LRIT3 is necessary for expression and localization of nyctalopin and 

TRPM1 to the ON BC dendrites. As expected there are no ON responses, but 
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surprisingly very few (~22%) Lrit3-/- GCs have even OFF responses. Lrit3-/- OFF 

BCs express functional kainate glutamate receptors. However, Lrit3-/- OFF BC 

and OFF GCs have significantly smaller response to light decrements than WT. 

Like all other mouse models of cCSNB, LRIT3 is critical to signaling in ON BCs, 

however, unlike all other cCSNB models, LRIT3 also has a trans-synaptic role in 

enhancing glutamate transmission from cones to BCs.  
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CHAPTER I 

INTRODUCTION 

I. The Retina 

1.  Structure of the retina 

 The retina is a neural structure lining the back of the eye (Fig. 1.1) 

containing photoreceptors that transduce light into electrical signals that encode 

the visual environment. This 

signal is the basis for all 

subsequent processing in the 

rest of the visual system.  

 The retina consists of 

three layers of cells and two 

plexiform layers, in which cells 

make synaptic connections 

(Fig. 1.2). The outer nuclear 

layer (ONL) is composed of 

photoreceptors. Light is 

transduced by photoreceptors 

via decreased glutamate release from their terminals. This initiates a response in 

bipolar cells (BCs) or horizontal cells (HCs) in the inner nuclear layer (INL). The 

 

Figure 1.1 Schematic of the eye. The retina lines 
the back of the eye. Light enters the eye through the 
cornea and pupil. The lens focuses the light on the 
retina which lines the back of the eye. (Phillips Eye 
Specialists, NJ) 
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output of the BCs drives both amacrine cells (ACs), and retinal ganglion cells 

(GCs). These INL cells integrate and modulate the primary excitatory signal  

from the photoreceptors through BCs to GCs in the ganglion cell layer (GCL). 

The axons of the GCs, which lie on the vitreal side of the GCL, form the nerve 

fiber layer and exit the eye to form the optic nerve (see Kolb 2011 for review of 

retinal anatomy). The optic nerve projects to specific subcortical nuclei including 

the lateral geniculate nucleus, superior colliculus, olivary pretectal nucleus and 

suprachiasmatic nucleus (Purves et al., 2001).    

2. The function of the retina 

2.1 The primary excitatory pathway 

 

Figure 1.2 Morphology of the retina A) A transverse section of the retina in which cell bodies 
are labeled with hematoxylin and eosin stain (“DeltaBase Histology Atlas,” 2000-2006). The retina 
is organized into three nuclear layers with two plexiform layers between where cells make 
synaptic connections B) The retinal pigment epithelium abuts the rod and cone PR outer 
segments. The outer nuclear layer is composed of rod and cone cell bodies. The inner nuclear 
layer is composed of horizontal cells, bipolar cells, amacrine cells, and Müller cells (MCs). The 
GCL is composed of GCs and displaced ACs (Kolb, 2011) 
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 2.1.1 Rod and cone photoreceptors initiate vision and establish parallel 

pathways 

Photoreceptors have distinct morphology related to their function. Their 

outer segments are comprised of stacked discs composed of membranes in 

which opsin molecules are embedded. The retinal chromophore is bound to 

opsin. When 11-cis-retinal absorbs a photon it isomerizes to the all-trans state. 

Individual photons absorbed by the opsin molecules cause a cis to trans 

conformational change in the retinol protein and subsequent g-protein 

transduction cascade activation (Hecht et al., 1942; Dowling 1987; Schneeweis & 

Schnapf, 1995; Hargrave and McDowell, 1992; Fu, 2010 for review). Unlike most 

typical neurons, the unstimulated photoreceptor is depolarized in the dark due to 

constitutively open cation channels in the outer segments. As a result, 

photoreceptors constantly release glutamate in the dark. Light results in 

hyperpolarization of the photoreceptor and a reduction in glutamate release 

(Chabre, 1985; Hargrave & McDowell, 1992; Kolb, 2011).  

The rod and cone photoreceptors establish the first parallel pathway through 

the retina to initiate signaling under low and high luminance conditions, 

respectively. There are on average 4.6 million cones and 92 million rods in the 

human ONL (Curcio et al., 1990). Cones are responsible for vision under high 

luminance conditions and mediate high resolution vision. In humans, the highest 

density of cones is found in the central fovea which is also devoid of rods and 

other cells. The high resolution vision that humans use for reading is enabled by 

the functional anatomy of the fovea and surrounding macular regions. A single 
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foveal cone sends information through the BCs in the INL to 1 to 3 ganglion cells 

(Ahmad et al., 2003) in a high resolution construct. In mice, the cones make up 

approximately 1% (Jeon et al., 1998) to 3% (Carter-Dawson & LaVail, 1979) of 

the photoreceptors and are evenly distributed across the central and peripheral 

retina (Carter-Dawson & LaVail, 1979). The rod pathway is responsible for our 

low resolution night vision. Rods saturate at lower light intensities (all rhodopsin 

becomes activated) than cones. A large number of rods converge onto each rod 

bipolar cell (RBC), several of which connect with a single GC. This convergence 

and the innate amplification properties of the G-protein-mediated cascade within 

the rods make the rod pathway highly sensitive (Stryer, 1991; Yau, 1994), but 

with poor spatial resolution. RBCs do not synapse directly onto GCs but transfer 

information through the AII AC to cone bipolar cell (CBC) terminals which 

synapse directly with GCs (Kolb & Famiglietti, 1974; Famiglietti & Kolb, 1975; 

Strettoi et al., 1990; Strettoi et al., 1992; Chun et al., 1993; Kim et al., 1998).   

 2.1.2. The Photoreceptor to Bipolar Cell Synapses establish parallel ON 

and OFF pathways 

In the mouse there are 10 morphological types of BCs – 1 RBC and 9 CBCs 

(Fig. 1.3; Ghosh et al., 2004). While rod photoreceptors hyperpolarize in 

response to light, RBCs and approximately half of the CBCs depolarize and are 

called ON BCs. This is due to the sign inverting synapse between the 

photoreceptor the ON BC. The G-protein coupled metabotropic glutamate 

receptor-6 (mGluR6) is expressed in the dendritic tips of the ON BCs (Fig. 1.4; 

Masu et al. 1995; Vardi et al. 2000). Binding of glutamate to mGluR6 activates 
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the Gαo g-protein mediated cascade. The activation of Gαo results in the closure 

of the ion channel, TRPM1 (Dhingra et al., 2000;  

Sampath and Rieke, 2004; Snellman et al., 2008; Bellone et al, 2008; Shen et al., 

2009; Morgans et al., 2009; van Genderen et al., 2009, Koike et al., 2010; 

Peachey et al., 2012).  In response to light, the photoreceptors hyperpolarize and 

reduce glutamate release and the subsequent activation of mGluR6. Gαo 

becomes inactivated and TRPM1 opens, resulting in depolarization of the ON-BC 

(Vardi et al. 1993; Dhingra et al. 2000). Gαo inactivation by hydrolysis of bound 

GTP is accelerated by Regulators of G-protein Signaling (RGS) 7 and 11 (Cao et 

al., 2012; Shim et al., 2012). GPR179 interacts with TRPM1 and is required for 

expression of RGS7 and RGS11 in the dendritic tips of ON BC (Orlandi et al., 

2012; Ray et al., 2014). In the absence of GPR179 the sensitivity of the cascade 

and TRPM1 is decreased. Nyctalopin and LRIT3 are both leucine rich repeat 

proteins which are necessary for the proper localization of TRPM1 in the 

dendritic tips of the ON BCs. In the absence of LRIT3, other significant cascade 

proteins are absent from the ON cone BCs as well. The unidentified protein on 

 

Figure 1.3 Bipolar Cell Morphology in the Mouse.  There are nine morphological classes of 
CBCs and 1 type of RBC in the mouse retina (Ghosh et al., 2004). OFF CBCs terminate in 
sublaminae 1-2 while ON CBCs and RBCs terminate in sublaminae 3 – 5. 



 

6 

 

the cone terminals which is labeled by peanut agglutinin (PNA) is also absent 

(Neuillé et al., 2015). We investigate the functional implications stemming from  

the loss of LRIT3. The Off 

pathway starts with the OFF 

BCs which express ionotropic 

glutamate receptors (iGluR) on 

AMPA/Kainate cation channels 

at the dendritic tips post-

synaptic to the cone terminals 

(Slaughter and Miller, 1985; 

Dowling, 1987). However, 

recent evidence suggests only 

Kainate receptor/channels are 

expressed in mouse OFF BCs 

(Borghuis et al., 2014). Since 

Kainate channels open directly 

in response to glutamate 

binding, these cells depolarize 

to light offset like the 

photoreceptors in a sign-

conserving mechanism 

(Werblin, & Dowling, 1969; 

Euler et al., 1996). ON CBCs 

terminate in the IPL closer to 

 

Figure 1.4 ON Bipolar Cell Signalplex. TRPM1 is 
associated with the metabotropic glutamate receptor 
mGluR6 and G-proteins Gαo and Gβγ. They and 
multiple accessory proteins form a signaling complex 
(signalplex) in ON BCs, which mediates transmission 
of visual signal at the synapse. In the dark, glutamate 
is continuously released from rod and cone 
photoreceptors and binds to the mGluR6 receptors on 
the post-synaptic ON BC dendrites. Once bound, a Go 
g-protein coupled cascade is activated, which, through 
an unknown process, closes the TRPM1 cation 
channel. In response to light, glutamate release is 
decreased and mGluR6 is inactivated. The regulator 
proteins Gβ5, RGS7 and RGS11, as well as GPR179 
and R9AP, mediate the rapid inactivation of the 
mGluR6 cascade and opening of the TRPM1 channel. 
Influx of Na+ and Ca2+ through the non-specific TRPM1 
cation channel depolarizes the ON BC. Accessory 
proteins nyctalopin and LRIT3 are critical for the proper 
localization TRPM1 in the tips of the ON BC dendrites. 
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the GCL (sublamina 3-5) than OFF CBCs, which terminate in sublamina 1 and 2 

close to the INL (Fig. 1.3).   

 2.1.3. Retinal Ganglion Cells integrate all retinal inputs and provide the 

basis for visual function 

 GCs are the output cells of the retina that send the coded information to 

the brain as action potentials or spikes (e.g., superior colliculus, lateral geniculate 

nucleus and other subthalamic nuclei) where the information is integrated and 

sent along to other visual areas or other sensory systems. GCs have been 

divided into 17-30 morphological classes in the mouse retina based on size and 

shape of their somata, dendritic structures and lamination pattern in the IPL (Sun 

et al., 2002; Badea & Nathans, 2004; Kong et al., 2005; Coombs et al., 2006). 

Functionally, GCs have been categorized in cat and primate retinas based on 

their light responses. Different ganglion cells extract distinct visual information. 

For example, GCs are classified as ON, OFF or ON/OFF, corresponding to the 

luminance step that produces their excitatory response (Enroth-Cugell & Robson, 

1966; Boycott & Wassle, 1974). In addition, GCs can respond either transiently to 

the onset or offset of the luminance step or in a sustained manner for the 

duration of the presence of the stimulus (Ikeda & Wright, 1972). In mice, 

genetically distinct GCs have been categorized morphologically and functionally 

(see Sanes and Masland, 2015 for a review). Approximately half of mice GCs 

have been classified in this way and evidence thus far shows a similar pattern to 

the cat and primate (Sagdullaev & McCall, 2005; van Wyk et al., 2009; Hong et 

al., 2011, Yee et al., 2012, Sanes and Masland, 2015).  
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2.1.4 Intrinsic photoreceptive retinal ganglion cells 

 There is another class of photoreceptors in the retina. A population of GCs 

expresses the photo pigment melanopsin, which makes them intrinsically 

photosensitive (ip) GCs (Foster et al., 1991; Provencio et al., 1998; Berson et al., 

2002). In the absence of rod or cone input, humans and mice detect irradiance 

through ipGCs which project to nuclei in the brain responsible for both non-image 

forming functions such as regulating circadian rhythms (Foster et al., 1991; 

Herzog, 2007; Czeisler et al., 1995) and pupil constriction, (Hattar et al., 2006) as 

well as image-forming functions for pattern vision (Hattar et al., 2006; Ecker et 

al., 2010; Schmidt et al., 2011). There are several morphological and functional 

classes of ipGCs. M1 GCs were the first discovered (Berson et al., 2002) and 

express the most melanopsin and subsequently have the largest melanopsin 

light responses. M1 GCs are divided into two classes based on expression or 

absence of the transcription factor Brn3b and their projections to either the 

suprachiasmatic nucleus (SCN) where they regulate circadian rhythms (Brn3b 

negative) or the shell of the olivary pretectal nucleus (OPN; Brn3b positive) 

where they regulate pupil constriction (Hattar et al., 2006). M2, ON GC with 

widespread sparse processes, project to the dLGN, SC, and core of the OPN. 

Three other classes of ipGCs have been identified to date, one bistratified (M3), 

and two ON (M4 and M5) all of which most likely project to the dLGN and SC 

(Schmidt et al., 2011).  

2.2. The primary inhibitory pathways 
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 γ-Aminobutyric acid (GABA) and glycine are the major inhibitory 

neurotransmitters of the central nervous system. Their release causes chloride 

channels to open and leads subsequently to membrane hyperpolarization. HCs 

and ACs are the major inhibitory cells in the retina.  

 

2.2.1. Amacrine Cells  

 There are 27 morphological types of ACs and these have been best 

characterized in the rabbit retina (MacNeil et al., 1999). Although the mouse 

retina is less well studied, it appears to share most, if not all, of the types 

described in the rabbit. ACs can be divided equally into cells that express GABA 

or glycine as their primary neurotransmitter (Pourcho & Goebel, 1983; Mosinger 

et al., 1986; Crooks & Kolb, 1992; Menger et al., 1998; Haverkamp and Wässle, 

2000). Certain types of ACs also contain other neurotransmitters or 

neuromodulators; for example, choline acetyl-transferase (ChAT) found in 

cholinergic cells or tyrosine hydroxylase (TH) found in dopaminergic cells can be 

used to label specific types of ACs (Versaux-Botteri, et al., 1984; Crooks & Kolb, 

1992). Also, antibodies to specific calcium binding proteins like calbindin, 

calretinin and parvalbumin label specific AC types (Fig. 1.5). These proteins and 

many others have been used to look at the organization of the IPL (Pochet, et al., 

1991; Haverkamp and Wassle, 2000).  

2.2.1.a Organization of the IPL 
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The axons of BCs terminate and form connections with GCs and ACs in 

specific strata within the IPL that are correlated with their visual response 

properties. Cells that stratify in lamina A and B respond to the offset and onset of 

 

Figure 1.5 Structure of the inner plexiform layer. Calbindin (red) 
and calretinin (green) expressing cells have processes that terminate 
in specific sublaminae of the IPL.  ACs in the INL and dACs and GCs 
in GCL terminate in three distinct layers, 2 in lamina A and 1 in lamina 
B.  GCs and BCs which terminate in lamina A and B depolarize to light 
decrements and increments respectively (Wassle, 2004) 

light respectively (Fig. 1.5). The IPL is further divided into 5 substrata with 1 and 

2 in the OFF lamina A and 3-5 in ON lamina B (Pochet, et al., 1991; Haverkamp 

and Wassle, 2000; Ghosh et al., 2004). Markers for specific cell types can be 

used to delineate the layers as shown with calretinin staining (Fig. 1.5; Wassle, 

2004). All functionally classified ON or OFF GCs are monostratified in lamina B 

or A respectively. All ON-OFF GCs are bistratified in both A and B sublamina. 

BCs can stratify in more than one sublamina, but only within the same lamina, 

which also corresponds to the visual responses. ACs can be mono-, bi-, or multi-

stratified and morphology and function are also correlated. 

2.2.1.b. AC morphology 

A 

B 

INL 

GCL 

IPL 

Calbindin Calretinin 

OPL 
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 ACs have been classified based on the neurotransmitter that they use 

(glycine or GABA) and the morphology of their dendrites. There are four main 

classes based on dendritic field diameter: narrow-field (30-150 um), small-field 

(150-300 um), medium-field (300-500 um) and wide-field (>500 um) (Kolb et al., 

1981). An extensive morphological survey of ACs has been conducted in the 

rabbit retina (MacNeil et al., 1999). The narrow-field ACs are the largest class 

and can be divided into the broadly or narrowly stratifying subclasses, which 

stratify in more than two or one to two sublaminae respectively. There are ACs in 

the GCL known as displaced ACs (dACs). Similarly, Müller et al., (2007) 

conducted a morphological survey and classified 10 types in the mouse: 4 

medium-field (50 - 200 µm) and 6 wide-field (> 1mm) and Lin and Masland 

(2006) conducted a survey of displaced amacrine cells in the mouse. 

2.2.1.c. AC function 

 ACs transmit inhibitory information primarily within the IPL of the retina, 

this input appears to modulate visual signals that are transmitted via the 

excitatory vertical pathways through the retina. The next sections discuss some 

of the ways ACs extract this information to create the GC neural code: 

 

i. Feedback and feedforward inhibition 

 Feedback inhibition is thought to decrease the amplitude and duration of 

GC receptive field (RF) center responses (Fig. 1.6; Zhang et al., 1997; Eggers et 

al., 2007). One such circuit involves the GABAc receptors located nearly  
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exclusively on the terminals of ON BCs (Lukasiewicz and Shields, 1998). 

Increments of light depolarize the ON BCs causing them to release glutamate.  

Synaptically connected GABAergic ACs are depolarized by glutamate and 

subsequently release GABA back onto the ON BC terminals, decreasing 

subsequent output to the ON GCs (Fig. 1.6; Zhang et al., 1997; McCall et al., 

2002). Subsequently, ON GCs in mice lacking GABAc receptors have increased  

spontaneous and light evoked spiking rates 

compared to WT (Lukasiewicz et al., 2004; 

Sagdullaev et al., 2006). GABAc mediated 

inhibition in the RBCs is larger and slower 

than GABAA mediated inhibition 

(Lukasiewicz et al., 2004). Therefore, 

GABAc mediated feedback inhibition onto 

the BC terminals shapes temporal 

components of ON GC responses as well 

(Dong and Werblin, 1998; Sagdullaev et al., 

2006).   

 Feedforward inhibition occurs when ACs 

are activated by release of glutamate from 

activated BCs and subsequently inhibit 

post-synaptic GCs (Fig. 1.6). Feedforward inhibition may aid in detecting fast 

changes in luminance values for high resolution vision (Russell and Werblin, 

2010). Feedforward inhibition can be mediated by both GABA and glycine 

(Nobles et al., 2012).   

 

Figure 1.6 Mechanisms of feedback 
and feedforward inhibition. ACs 
receive excitatory glutamate input from 
BCs and subsequently release inhibitory 
neurotransmitter back onto the BC 
terminal (feedback) or forward onto the 
post-synaptic GC (feedforward) to 
regulate spatial and temporal properties 
of GC responses 
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ii Center-surround inhibition   

  Lateral inhibition from cells outside the GC receptive field center is a type 

of feedforward inhibition. Inhibition from horizontal cells and ACs onto excitatory  

cells in both plexiform layers forms the center-surround organization of the 

receptive field (Fig. 1.7; Werblin & Dowling, 1969; Cook & McReynolds, 1998). 

Many neurons, including GCs have an RF center-surround organization. The RF 

is defined as the spatial area in which stimulation can elicit a response (Werblin 

& Dowling, 1969). The RF center size is correlated with the dendritic field of the 

cell and its excitatory inputs from the BCs. Stimulation of the entire RF field 

center evokes the largest excitatory response and stimuli smaller than the RF 

center evoke a proportionally smaller response. When the stimulus extends 

outside the dendritic field spread and activates neighboring inhibitory cells, the 

excitatory response due to RF center stimulation is diminished (Fig. 1.7; Barlow, 

1953, Rodieck & Stone, 1965; Enroth-Cugell & Lennie, 1975). Generally, the RF 

surround inhibition is shaped by GABA and the ACs that mediate it are the wide-

field ACs (Protti & Llano, 1998; Hartveit, 1999; Flores-Herr et al., 2001; O’Brien 

et al.,2003; Roska et al., 2006). In contrast, local feedforward inhibition onto the 

RF center is mediated by narrow-field glycinergic ACs (Menger et al., 1998; 

O’Brien et al., 2003; Nobles et al., 2012).  

The development of retinal morphology including the mosaic tiling of 

distinct GC classes is mature by eye opening, which is approximately P12-P14 in 

the mouse (Anishchenko et al., 2010). At P10, the retina has segregated into 

three neuronal layers and excitatory inputs, via the parallel ON and OFF  
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pathways to the GCs, 

are connected and 

functional. The GC 

RFs are established 

and, while their 

dendritic processes will 

expand laterally 

(Morgan et al., 2008), 

the functional RF 

center gets smaller 

and more 

synchronized by 

maturity  

(Anishchenko et al., 

2010; Cantrell et al., 

2010; Koehler et al., 

2011). Because the 

RF surround extends 

beyond the RF center, 

response suppression 

can be evoked and RF surround contributions isolated and measured using an 

annular stimulus (Fig. 1.7), which only stimulates the RF surround.  

iii. Cross-over inhibition  

 

 

Figure 1.7 Schematic of surround suppression. Inhibitory 
signal from AC and horizontal cell form the surround suppression 
of the GCs which can be isolated and analyzed using annular 
stimuli that stimulates only the surround. 
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RBCs do not make direct synaptic connections with GCs but synapse with 

AII ACs. These narrow field bistratified ACs then transfer the signal to ON CBC 

axon terminals through gap junctions (Fig. 1.8). AII ACs simultaneously inhibit  

OFF CBCs through 

glycinergic synapses on 

their axon terminals. 

Therefore, an increment 

of light causes an 

excitatory response in ON 

GCs and also causes a 

suppression of the 

response in OFF GCs 

from cross-over inhibition (Manookin et al., 2008; van Wyk et al., 2009; Chen et 

al., 2010; Liang and Freed, 2010). Cross-over inhibition can be initiated in ON or 

OFF lamina and provides inhibition to the opposite pathway. Glycinergic narrow-

field cells that are stratified in both ON and OFF sublamina mediate cross-over 

inhibition (Werblin, 2010). Cross-over inhibition is thought to enhance the GC 

evoked spiking activity by reducing inhibition on the GC (Zhang & McCall, 2012) 

iv. Serial inhibition  

ACs can also inhibit other ACs through serial inhibition (Fig. 1.9; Zhang et 

al., 1997; Eggers & Lukasiewicz, 2010; Russell & Werblin, 2010 Anderson et al., 

2011; Nobles et al., 2012). In this way, an increase in inhibitory neurotransmitter 

release from one cell will lead to a decrease in inhibitory neurotransmitter release 

in a serially connected cell. For example, the GABAc mediated feedback circuit 

 

Figure 1.8 Rod bipolar cell signaling. RBCs do not activate 
ON GCs directly but through the AII AC which is coupled to 
ON CBCs with gap junctions. AII ACs simultaneously inhibit 
OFF CBCs and GCs through glycinergic synapses 
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mentioned above is itself inhibited by a second AC that receives excitatory input 

from BCs and releases GABA onto the GABAA receptors of the feedback AC 

(Zhang et al., 1997). The feedback AC is subsequently inhibited from releasing  

GABA back onto the BC. The 

interplay of these inhibitory 

signals is thought to regulate 

the duration of the visual 

response – the feedback AC 

shortens the duration of the 

response and the serial AC 

prolongs it (Eggers & 

Lukasiewicz, 2010; Russell & 

Werblin, 2010; Nobles et al., 2012). Studies of cell networks in the retina reveal 

many concatenated circuits involving glycinergic and GABAergic ACs (Anderson 

et al., 2011). One well studied example of this is the RBC to A17 synapse.  RBCs 

form a dyad synapse with the glycinergic AII and GABAergic A17.  The A17 

forms a reciprocal feedback synapse onto the RBC, releasing GABA onto GABAc 

and GABAA receptors (Grimes et al., 2015).  This shapes the time course of 

glutamate release from RBCs (Dong & Hare, 2003; Singer & Diamond, 2003; 

Chavez et al., 2010). The A17 AC also receives GABAergic inhibition from a 

spiking wide-field AC which mediates serial disinhibition of the RBC (Zhang et al., 

1997; Roska et al., 1998; Eggers & Lukasiewicz, 2006, 2010). Serial inhibition 

may be activated by wide or full-field stimuli whereas direct inhibition is activated 

by narrow stimuli directly over the RBC (Eggers & Lukasiewicz, 2011).  Nobles 

 

Figure 1.9 ACs inhibit other ACs in serial 
inhibition. 
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and colleagues (2012) report a role for glycine receptors in mediating serial 

inhibition to ON BCs or GCs.      

2.3 Temporal parallel pathways (transient / sustained) 

The presence of a maintained light stimulus produces a sustained membrane 

hyperpolarization in rod and cone photoreceptors (Sampath et al., 1999; Fain et 

al., 2001) and leads to a sustained inhibition in glutamate release (Fig. 1.10; 

Chabre, 1985; Hargrave & McDowell, 1992). RBCs also show sustained  

depolarizations in the 

presence of a maintained 

light stimulus. In contrast, 

ON CBCs can be divided 

into those that are 

sustained and those that 

are transient (Awatramani 

and Slaughter, 2000). In 

ground squirrel there are 

three distinct functional 

types of OFF CBCs each 

with a different AMPA or Kainate ionotropic glutamate receptor. OFF CBCs with 

AMPA receptors have more transient responses to maintained light than the two 

types expressing kainate receptors (DeVries, 2000). However recent evidence 

suggests that in the mouse, OFF CBCs only have kainate receptors (Borghuis et 

al., 2014). ON and OFF GC responses can also be categorized as sustained or 

 

Figure 1.10 GCs can have sustained or transient 
responses. Sustained cells maintain an increased spike 
rate for the entire duration of a stimulus while transient cells 
return quickly to spontaneous rates.  Shown are spike trains 
to a stimulus, raster plots for 10 trials and average peri-
stimulus time histograms (PSTHs) showing spikes/sec over 
time in response to a 5 sec light spot. 
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transient. Sustained GCs have maintained EPSCs to steady state stimulus 

(Roska et al., 2000), and maintain an increased spike rate that matches the 

temporal profile of their stimulus (Werblin et al., 2001). Transient GCs respond 

with a short burst of excitatory activity that quickly returns to the spontaneous 

spiking level (Fig. 1.9). In the ground squirrel, transient OFF BCs terminate on 

transient OFF GCs (DeVries, 2000) and in salamander retina transient ON-OFF 

GCs are post-synaptic to transiently depolarizing CBCs (Awatramani and 

Slaughter, 2000). This suggests that the primary excitatory pathway is 

responsible for the response duration of GCs. AC inhibition also tunes the 

duration of GC responses. Dong and Werblin (1998) showed that feedback 

inhibition mediated by GABAergic AC connections at the BC terminal shortened 

the duration of glutamate release and resulted in transient GC responses. 

 Besides the lamination organization of ON and OFF pathways in the IPL, 

the level of stratification in the IPL also delineates temporal response properties 

(Fig. 1.11; tiger salamander - Awatramani and Slaughter, 2000; Ground squirrel – 

DeVries, 2000; Werblin et al., 2001; mouse - Van Wyk et al., 2009; Borghuis et 

al., 2013; Baden et al., 2013; see Euler et al., 2014 for a review). BCs and GCs 

that stratify towards the middle of the IPL (sublamina 2-3) respond more 

transiently whereas those stratifying at its outer edges (sublamina1 & 5) tend to 

be more sustained (Fig. 1.11; Werblin et al., 2001). Unlike the substantial 

literature on the morphological basis of ON and OFF pathway segregation, this 

idea of stratified temporal processing remains to be further tested.  
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In the mouse, the center-surround organization is established 

simultaneously with excitatory input at P10 (see Center-surround lateral 

inhibition). In contrast, GC lamination pattern of the dendritic processes in the IPL 

are immature at P10. Many 

GC dendrites are bistratified 

and have not yet segregated 

into their final sublamination 

patterns. Functionally the 

majority of cells have transient 

ON-OFF responses (Tian and 

Copenhagen, 2003). From P10 

to P30, there is gradual 

segregation of processes into proper IPL sublaminae and this process depends 

on light-evoked glutamate activity (GCs of dark reared mice do not segregate). 

By maturity only 20% of GCs have ON-OFF responses and bistratified 

morphology (Sun et al., 2002; Tian and Copenhagen, 2003). Aside from the 

reports of early ON/OFF responses, that by definition must be transient, the 

development of transient or sustained response properties has not been studied 

in any species.   

 

II. TRPV1 

1. TRP Channels 

 

Figure 1.11 Stratification depth in the IPL 
corresponds with temporal characteristics of GC 
spike rate in salamander retina. (Werblin et al., 
2001) 
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The most recently discovered family of ion channels are the transient 

receptor potential (TRP) channels. The discovery of the first TRP channel was in 

mutant drosophila (Cosens, 1969) which had transient retinal responses to 

maintained light stimulation. There are 28 known TRP channels in mammals 

which are divided into six sub-families: canonical (TRPC1-7), vanilloid (TRPV1-

6), melastatin (TRPM1-8), ankyrin (TRPA1), polycystin (TRPP1-3) and mucolipin 

(TRPML1-3) (Clapham et al., 2012). In the peripheral nervous system (PNS), 

TRP channels are involved in thermal sensation, nociception and tissue 

inflammation (Patapoutian et al., 2009 for review) but are also polymodal – 

responding to a variety of stimuli including temperature, osmolality, chemicals, 

protons, and pressure or force - and function in a variety of sensory receptors. 

TRP channels are widely distributed in the CNS but their function there is not well 

studied. Several are the activating channels linked to mGluRs, such as TRPM1 in 

the retina ([see introduction]; Moran et al., 2004; Ho et al., 2012). In the 

hippocampus, there is evidence that TRPs are involved in neurite growth (Greka 

et al., 2003). Gilliam and Wensel (2011) confirmed the mRNA from all 28 TRP 

channels in the retina, however the function of only TRPM1 is well-understood: it 

is the signaling channel of all signals in ON BCs (introduction) and mutations in 

the gene are responsible for some forms of the human disease complete 

congenital stationary night blindness (Bellone et al., 2008; van Genderen, 2009). 

TRPC6 and TRPC7 may transduce signals in melanopsin-expressing retinal 

ganglion cells (Sekaran et al., 2007). TRPM7 & TRPC1/3/6/7 channels are 

possible targets for regulating intracellular Ca2+ concentrations and subsequent 

neurotransmitter release from photoreceptors (Krizaj, 2012). TRPV4 activation by 
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increased pressure modulates spike rate and has been shown to initiate pressure 

induced apoptosis of GCs in glaucoma (Ryskamp et al., 2011). The majority of 

understanding about the role of TRPV1 comes from research in the PNS and its 

role in pain.  

2. TRPV1 in the Peripheral Nervous System 

 The peripheral nervous system (PNS) is comprised of the sensory and 

motor neurons that are not part of the brain and spinal cord. The sensory 

neurons of the PNS terminate in the skin and internal organs and have receptors 

that transduce a variety of external environmental stimuli into electrical activity, 

sometimes referred to as receptor potentials. Nociceptors convert painful or 

harmful stimuli and are found in nerve endings of large myelinated Aδ fibers and 

small unmyelinated c-fibers (Perves et al., 2008). In particular, the TRPV1 

receptors on the c-fiber afferents convey nociceptive signals to the spinal cord, 

which is transmitted to second order neurons in the spinal cord. These signals 

are then sent in specific pathways to the brain. Because c-fibers are small and 

unmyelinated, the conduction velocity is slow (2 m/s) and gives rise to slow, 

burning pain after the initial sharp pain (Perves et al., 2004). 

2.1. TRPV1 Expression during development 

Using two reporter mice, Cavanaugh et al. (2011a) showed TRPV1 

expression was highest during late embryonic development and subsequently 

declined in mature animals. In the dorsal root ganglion (DRG) which contains the 

cell bodies of the primary nociceptor afferents, TRPV1 expression reaches a 
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peak at embryonic day 14.5 (E14.5) when approximately 66% of primary 

afferents express TRPV1. By adulthood, approximately 33% of DRG cells 

express TRPV1 (Cavanaugh et al., 2011b). This observation of increased 

expression during development was confirmed in another TRPV1 reporter mouse 

line (Mishra et al., 2011).  

2.2. TRPV1 Function  

Activation of TRPV1 by capsaicin, noxious heat, or other stimuli opens a 

cation channel leading to depolarization, which causes the sensory neuron to 

spike. The brain interprets the signal as burning (Bevan & Szolcsanyi 1990; 

Holzer 1991). A secondary result of the activation of TRPV1 induces the release 

of chemokines: neurokinin A, substance P and calcitonin-gene-related-peptide 

(CGRP) that attract macrophages and bind to receptors in the surrounding tissue 

including endothelial cells and smooth muscle, leading to vascular dilation and 

leakage (Meng et al., 2009). This further increases the immune response, and 

induces swelling and redness that are hallmarks of the inflammatory response 

(Szallasi & Blumberg 1999; Richardson et al., 2002 for review). Feedback 

pathways also sensitize TRPV1, lowering the threshold of response and 

increasing the probability of reactivation. This is accomplished by cAMP 

dependent PKA or Ca2+ dependent PKC phosphorylation of TRPV1 at different 

sites (Mandadi et al., 2004; Liu et al., 2005; Mohapatra et al., 2005). This process 

is responsible for the increased sensitivity and burning in inflamed tissue, in 

sunburned skin for example. β-arrestin-2 mediated dephosphorylation of TRPV1 

results in desensitization (Por et al., 2012; Ho et al., 2012 for review). This 
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pathway is particularly interesting as it may be a therapeutic target of pain relief 

without the unwanted side effects of hyperthermia associated with blocking 

TRPV1.  

TRPV1 in the primary afferent central terminals (in the spinal cord) is also 

activated when the nociceptor is stimulated. Here it mediates Ca2+ influx and 

storage proportional to the size of the stimulus, thereby perhaps encoding 

nociceptive stimulus duration and intensity. This Ca2+ is stored in the 

mitochondria and slowly released into the intracellular solution, causing 

sustained calcium-dependent neurotransmitter release from the primary afferent, 

giving rise to postsynaptic asynchronous EPSPs that are maintained long after 

cessation of the stimulus (Medvedeva et al., 2009). Activation of TRPV1 leads to 

sustained neurotransmission in other systems and plays a role in chronic pain 

syndromes associated with arthritis, migraine and fibromyalgia (White et al., 2011 

for a review).  

3. TRPV1 in the Central Nervous System 

3.1. TRPV1 Expression  

Defining the expression of TRPV1 in the central nervous system (CNS) 

has been difficult due, in part, to its overall low level of expression. TRPV1nlacz-plap 

knock in reporter mice mentioned previously (Cavanaugh et al., 2011b) have 

been used to label cells that express TRPV1, using the reporter placental 

alkaline phosphatase (PLAP). This approach labels cells in nuclei that receive 

primary afferents from the spinal cord, such as the nucleus caudalis, solitary tract 

and nucleus ambiguus of the medulla, as well as the external lateral parabrachial 
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nucleus and olfactory bulb. Staining also has been observed in other brain 

regions including the periaquaductal gray, hippocampus and hypothalamus. 

Other reports using TRPV1 antibodies demonstrate TRPV1 expression in the 

dentate gyrus, striatum and nucleus accumbens (Musella et al., 2009; Grueter et 

al., 2010; Chavez et al., 2010; Bhaskaran et al., 2010). These areas are not 

labeled in the knock in reporter mice, but the discrepancy could be due to a lack 

of sensitivity in one or both approaches, a phenomenon recently reported for 

melanopsin expression in the retina (Estevez et al., 2012).  

3.2. TRPV1 Function  

TRPV1 is reported to play roles in learned fear, neuropathic pain and 

migraine (Caterina & Julius, 2001; White et al., 2011 for a review). At present, the 

majority of the work on TRPV1 function focuses on its role in coding noxious 

stimuli or in the regulation of pain in disease states. TRPV1 also has been 

proposed to play a role in memory formation via excitatory synapse formation in 

long-term potentiation (LTP) in the hippocampus (Chavez et al., 2010; Bhaskaran 

et al., 2010) and neurite pruning in long-term depression (LTD) in the retino-

collicular pathway and nucleus accumbens (Maione et al. 2009; Grueter et al., 

2010). In both LTP and LTD, TRPV1 increases intracellular calcium 

concentrations for extended periods of time, resulting in sustained transmitter 

release from presynaptic terminals.  

3.3. TRPV1 in the retina 
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 The transient receptor potential vanilloid 1 (TRPV1) is a non-specific 

cation channel that preferentially passes calcium ions. TRPV1 was first 

discovered as the receptor for capsaicin, the pungent oil in hot peppers. A few 

studies have looked at the localization of TRPV1 in the retina using antibodies, 

but results vary and although it is clear that TRPV1 mRNA and protein are 

present in the retina the specific cell types that express the TRPV1 remain 

unknown (Gilliam & Wensel, 2011). In goldfish, TRPV1-like channels are 

reported to be expressed in cone terminals (Zimov & Yazulla 2007). TRPV1 

protein expression has been observed in embryonic retinal development (E19 in 

rat) with the highest levels in the two plexiform layers (Leonelli et al., 2009). 

Maione and colleagues (2009) report transient expression of TRPV1 at the GC 

terminals in the superior colliculus during development, which is involved in 

pruning and refinement of neurites. TRPV1 has been hypothesized to play a role 

in pressure-induced apoptosis in adult rat GCs (Sappington et al., 2007; Leonelli 

et al., 2010). ERGs have been recorded to short (5ms) flashes of light in mice 

that lack TRPV1 protein (TrpV1-/-) and results were found to be similar to WT.  
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CHAPTER II 

EXPERIMENTAL MATERIALS AND METHODS 

I. Animals (Chapters III, IV & V) 

 Mouse strains used in electrophysiology experiments to investigate the 

function of TRPV1 in the retina (chapter III) include: C57BL/6J wild type (WT) 

mice and age matched B6.129X1-Trpv1<tm1Jul> (TrpV1-/-) mice (Jackson 

Laboratory). In order to assess TRPV1 expression (chapter III), a knock in mouse 

in which Cre was inserted into Exon 15 of TrpV1 (TRPV1Cre) was used. These 

mice have been used previously to examine expression in brain, DRG and spinal 

cord (Cavanaugh et al., 2011b; Jackson laboratories). TRPV1Cre mice were 

crossed to B6.Cg-Gt(ROSA)26Sor tm9(CAG-tdTomato)Hze/J (Ai9) in which the LoxP-

STOP-LoxP TdTomato construct is knocked in at the Gt(ROSA)26Sor locus 

(Madisen et al., 2010;Jackson laboratories). TRPV1cre/Ai9 mice express 

tdTomato in cells which have ever expressed TRPV1.  

 Mouse strains used in the investigation of the function and expression of 

LRIT3 in the retina (chapter V) include the Nyxnob and TrpM1-/- mice which have 

been described previously (Cao et al., 2012; Masu et al., 1995; Pardue, et al., 

1998; Peachey et al., 2012; Pearring et al., 2011). Trpm1-/- (Trpm1tm1Lex) mice 

were originally generated by Lexicon Genetics and can be obtained from the 

European Mouse Mutant Archive (emmanet.org). In thy1-mitoCFP-P (MitoP) 

https://www.jax.org/strain/003770
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mice, the thy1-promoter drives expression of CFP to label neuronal mitochondria 

(Misgeld et al., 2007). In the retinas of these mice, Type 1 OFF BCs are 

specifically labeled with CFP (Schubert et al., 2008). In VSX1-CFP mice, Type 1 

and 2 OFF BCs are fluorescently labeled with CFP (Gift from Rachel Wong). To 

record from labeled OFF BCs, MitoP or VSX-CFP mice were crossed then 

backcrossed to Lrit3-/- mice that we developed (see 2.1.2 Generation of Lrit3 Zinc 

Finger Nuclease (ZFN) knockout mice) to obtain MitoP/ Lrit3-/- experimental and 

MitoP/ Lrit3-/+ control mice. For all procedures, mice were anesthetized with a 

ketamine/xylazine solution (127/12 mg/kg, respectively) diluted in normal mouse 

ringers. All mice were maintained on a 12:12h light/dark schedule. All 

experimental procedures were conducted in accordance with regulations 

described for the ethical care and treatment of animals in the Society for 

Neuroscience Policies on the Use of Animals in Neuroscience Research and with 

the approval of the University of Louisville Institutional Animal Care and Use 

Committee. 

1.2 Generation of Lrit3 Zinc Finger Nuclease (ZFN) knockout mice (Chapter V) 

C3H/HeNTac/ 57BL/6NTac hybrid embryos (363) were injected with 10 ng/µl 

Lrit3 ZFN mRNA and 254 viable embryos were implanted into 9 Swiss Webster 

recipient mothers. Tail biopsies from offspring were collected and genomic DNA 

isolated using Direct Tail PCR solution (Thermo Scientific) supplemented with 0.2 

μg/ml proteinase K (Thermo Scientific). Primers 

(5'CTTTAAACGGAGTCTCGAAGC 3'; 5' CTGACCGCCTCGTTTGGCAC 3') 

were used to amplify the ZFN targeted region. PCR fragments were either 
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sequenced directly or ten fragments were cloned into the TopoBlunt vector 

(Invitrogen) and then sequenced.   

II. In Vitro Characterization of TRPV1 Expression and Function (Chapter 

III-IV) 

2.1 AAV Vector Construction 

 TdTomato expression in TRPV1Cre/Ai9 mice did not differentiate transient 

developmental from mature TrpV1 transcription. To assess TRPV1 expression in 

mature mice, we used adeno-associated virus (AAV, serotype1) to achieve 

expression of tdTomato in adult retinae. Virus was obtained from the Gene 

Therapy Program at the University of Pennsylvania. AAV1.CAG.Flex.tdTomato 

WPRE.bGH (AV-1-ALL864) was used to deliver a Flex-tdTomato construct to 

retinal cells. Virus was delivered by intravitreal injection (9.55e12 units/ml) in 1 to 

3 month old mice (n=9) as previously described (Jaubert-Miazza et al., 2005; Su 

et al., 2011). Briefly, mice were anesthetized by xylazine/ketamine injection (see 

2.3.1 Surgical Preparation). The sclera was pierced with a sharp-tipped glass 

pipette and excess vitreous was drained. Another pipette, filled with AAV in a 

sterile PBS and 5% glycerol solution was inserted into the hole made by the first 

pipette. The pipette containing the AAV solution was attached to a Picospritzer II 

(20 psi; Micro Control Instruments, East Sussex, UK) and a 10 msec puff injected 

2 to 4 µl of solution into the eye. To define TRPV1 expression at the time of 

sacrifice, mice were euthanized 2 to 4 weeks after viral injection, eyes removed, 

and retinas dissected for immunohistochemical analysis (see 2.4.2 
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Immunohistochemistry). Four out of nine TRPV1cre-AAV and 2 TRPV1cre/Ai9 mice 

were transcardially perfused with PBS and 4% paraformaldehyde, and brains 

were post-fixed in 4% paraformaldehyde for 12 hours. Coronal sections (100 μm) 

were obtained using a vibratome (Leica, model# VT1000S) and mounted in 

ProLong Gold with DAPI (ThermoFisher Scientific, Cat# P36931). Retinal 

projection images were acquired on an Olympus confocal microscope using 

Fluoview software (see 2.4.3 Confocal Image Acquisition and Morphological 

Analysis).  

2.2 Immunohistochemistry 

2.2.1 Tissue preparation  

 Retinas were prepared for whole mount and frozen section 

immunohistochemistry as previously described (Nobles et al., 2012). The eyes 

were enucleated and the retinas removed from the eyecup. Isolated retinas are 

fixed in 4% paraformaldehyde for 15 min followed by three washes 0.1M PB for 

10 min each. Retinas intended for whole mount immunohistochemistry were 

adhered to nitrocellulose paper (Millipore). Retinas intended for frozen sections 

were incubated in a series of sucrose solutions of increasing concentration (5%, 

10%, 15% and 20%; Barthel and Raymond,1990) for one hour in each 

concentration. Retinas were then incubated in OCT:20% sucrose (2:1; Sakura 

Finetek) for one hour. Knockout and WT control retinas were stacked together in 

the same mold and frozen in the OCT:20% sucrose solution. Twenty-five µm 

transverse sections were made using a Leica CM1850 Cryostat and mounted to 
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slides. Cryo-sections were dried 30 to 45 min at 37oC then incubated in PBS for 

10 min prior to immunohistochemistry.  

2.2.2 General Immunohistochemistry  

 Wholemount and cryo-sectioned retinas were incubated in 0.5% Triton X-

100 in 0.1M PB (PBX) for 1h, followed by incubation for 1h in a blocking solution 

of PBX/ 10% NGS or NDS. Retinas were incubated in primary antibody in 

blocking solution for 1 day (slices), 2 days (wholemount GCL label) or 7 days 

(wholemount INL label) at 4oC then washed 6 times in PBS for 10 min each 

wash. Retinas were incubated in the appropriate Alexa conjugated secondary 

antibody overnight in the dark at 4oC. A list of the primary and secondary 

antibodies that were used is in Table 2.1. Retinas were washed and whole 

retinas were mounted on slides. All slides were covered with Vectashield 

immuno-mount (Vector Labs, cat# H-1000). A coverslip was placed over the 

tissue and sealed with clear nail polish. In some retinas, Choline Acetyl 

Transferase anti-body (CHAT; 1:1000 anti-goat) was used to label cholinergic 

ACs in whose processes define the inner and outer sublaminae of the inner 

plexiform layer for easy identification of OFF and ON processes. After 

electrophysiological recordings TRPV1cre/Ai9 GCs labeled with neurobiotin and 

Lucifer Yellow (LY) were reacted with streptavidin-Cy2 (1:200, Jackson Immuno 

cat# 016-220-084) or antibodies to LY, respectively, to assess their morphology. 

For all immunohistochemistry experiments looking at the expression of TRPV1, 

similarly processed dorsal root ganglia which highly express TRPV1 were used 
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as positive controls. Tissue processed identically but without primary antibody 

was used as negative control.  

 

Table 2.1. Antibodies used to label specific proteins in the retinas of reporter mice. Primary 
antibody targets include TRPV1and fluorescent proteins to label cells in reporter mice. The 
appropriate secondary to targets the IgG from the host species in which the primary was raised.  
Primary Antibodies 

Antibody target Host species Concentration Company 

TRPV1 Guinea Pig 1:1000 

EMD Millipore, 
Darmstadt, 
Germany. 

TRPV1 Guinea Pig 1:500 
Gift from David 
Julius 

TRPV1 Rabbit 1:5000 
Alamone Labs, 
Jerusalem, Israel 

TRPV1 Rabbit 1:50 & 1:500 
Neuromics, Edina 
MN 

TRPV1 Goat 1:500 

Santa Cruz 
Biotechnology, 
Dallas TX 

ChAT Goat 1:1000 

EMD Millipore, 
Darmstadt, 
Germany. 

RFP Rabbit 1:1000 
Invitrogen, Waltham 
MA 

GFP Chicken 1:1000 
Invitrogen, Waltham 
MA 

Melanopsin Rabbit 1:10,000 
Gift from Ignacio 
Provencio 

Brn3b Rabbit 1:500 
Gift from Tudor 
Badea 

vGlut3 Guinea Pig 1:5000 
Gift from Rebecca 
Seal 

GABA Rabbit 1:1000 Gift from David Pow 

Glycine Rat 1:1000 Gift from David Pow 

Lucifer yellow Rabbit 1:1000 
Invitrogen, Waltham 
MA 

Secondary antibodies 

Antibody target Host species Concentration Conjugation 

Rabbit Goat 1:1000 Alexa 488 or 546 

Guinea Pig Goat 1:1000 Alexa 488 

Mouse Goat 1:1000 Alexa 488 or 546 

Rat Goat 1:1000 Alexa 546 

Chicken Goat 1:1000 Alexa 488 or 546 

Goat Donkey 1:1000 
Alexa 488 or 546 
or 647 

Rabbit Donkey 1:1000 Alexa 488 or 647 
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2.2.2 Tyramide Signal Amplification 

 In order to detect the weak melanopsin or TRPV1 expression, tyramide 

signal amplification was used (TSA kit #12; Invitrogen) as reported by Estevez 

and colleagues (2012). Briefly, retinas were incubated in 1% H2O2 in 0.5% PBX 

for 1h to quench peroxidase activity. Retinas were then washed (always in PBS 6 

times for 10 min) and incubated in TSA blocking solution for 2h and then 

melanopsin antibody or rabbit anti-TRPV1 in TSA blocking solution for 2 days at 

4oC. Tissue was washed then incubated in TSA blocking solution for 1h, followed 

by goat anti-rabbit HRP secondary (1:100) in TSA blocking solution for 2h. 

Retinas were again washed then incubated in tyramide-488 (1:100) in 1_Plus 

Amplification Diluent (Perkin Elmer) for exactly 5 min then washed and mounted 

on a glass slide with Vectashield.  

2.2.3 Zenon Conjugation of Melanopsin Antibody 

 Antibody to melanopsin and the transcription factor Brn3b were used to 

assess the co-expression in the TRPV1 expressing intrinsically photosensitive 

retinal ganglion cells (ipGCs; Berson et al., 2010) in wholemount retinas. 

Because both primary antibodies were raised in rabbit, melanopsin antibody was 

first conjugated to Alexa 647 using a Zenon labeling kit (ThermoFisher Scientific, 

cat# Z25308). One µL melanopsin antibody and 5 µL Alexa 647 conjugate were 

incubated together at room temperature for 5 min then incubated with an 

additional 5 µL of Zenon blocking reagent. The conjugated antibody was applied 

after the completion of the Brn3b primary and secondary antibody incubation 
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(see 2.2.2. General Immunohistochemistry). The retina was then incubated in 

blocking solution for 1h and conjugated melanopsin (1:50) in blocking solution for 

2h. The retina was washed then post-fixed in 4% paraformaldehyde for 15min, 

washed 3 times 5 min, mounted on a slide and imaged immediately. The Alexa 

647 fluorescence faded significantly the next day.  

2.3 Confocal Image Acquisition and Morphological Analysis 

 TdTomato expression was examined in TRPV1Cre /Ai9 and TRPV1cre-AAV 

retinal whole mount and transverse retinal sections using confocal microscopy as 

previously reported (Zhang et al., 2014). Images were acquired on an Olympus 

FV1000 confocal microscope. Z-stack images of tdTomato positive cells and 

Lucifer yellow and neurobiotin-streptavidin labeled GCs were acquired with 0.4 

μm z-step using a 40× water immersion lens, NA 1.15. Images of retinal slices 

were collected using 60× oil-immersion lens, NA 1.4. High resolution scanning 

was performed at 1024 x 1024 pixels and images were analyzed using the 

Olympus Fluoview software (FV10-ASW, Olympus Corporation). Dendritic area 

was the area of a polygon connecting the tips of the dendrites. Soma area was 

the area of a smooth polygon outlining the widest extent of the soma. Percent 

stratification in the IPL was measured using Image J software on individual 90o 

rotations of the z-stack image. The INL and GCL were 0% and 100% 

respectively. Percent stratification of CHAT bands was measured as reference. 

All data were saved and analyzed using Microsoft Excel and Graphpad Prism 

statistical software. Each cell was classified according to the GC (Sun et al., 

2002; Berson et al., 2010), displaced amacrine cell (dAC; Pérez De Sevilla Müller 
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et al., 2007; Zhu et al., 2014) or AC (MacNeil et al., 1999; Haverkamp et al., 

2004; Lin and Masland 2006 & Kay et al., 2011) that was morphologically similar.  

 The densities and distributions of each cell type were calculated. 

Wholemount images (500 µm x 500 µm) were collected from the dorsal, nasal, 

ventral and temporal quadrants from three TRPV1cre/Ai9 retinas which had been 

labeled with melanopsin antibody using the TSA method. GCs which did and did 

not co-express td-tomato and melanopsin were counted in each section to 

establish the densities of each cell type. Brightly labeled GCs which were brightly 

labeled with melanopsin were distinguished from dimly labeled and regarded as 

separate classes (Berson et al., 2010). The coverage factor for each GC class 

was computed by multiplying the mean dendritic area of each class by the 

density. GC classes with coverage factors less < 1 have space between cells and 

>1 have overlapping dendrites (Wässle, 2004).  

2.4 Whole-cell patch clamp recordings 

2.4.1 Tissue preparation  

 Whole cell patch clamp recordings from GCs was performed as previously 

described (Ray et al., 2014; Zhang et al., 2014). Eyes were removed and retinas 

were prepared and dissected under dim red light for GC recordings in Ringer's 

solution (in mM, 110 NaCl, 2.5 KCl, 1 CaCl2, 1.6 MgCl2, 10 D-glucose and 22 

NaHCO3, bubbled with 5% CO2/95% O2, pH 7.4). Retinas were quartered and 

each quarter was mounted on a cover slip and placed in a recording chamber. 

During the experiment, the retinas were superfused with oxygenated extracellular 
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solution at 34-35°C. Recording electrodes were pulled from borosilicate glass 

(FHC) on a P-97 Flaming/Brown Micropipette Puller (Sutter Instruments). 

Electrode resistance measured between with 5-8 MΩ. The glass pipettes were 

back-filled with (in mM) 112.5 CsCH3SO3, 1 MgSO4, 7.8 × 10-3CaCl2, 0.5 BAPTA, 

10 HEPES, 4 ATP-Na2, 0.5 GTP-Na3, and 5 lidocaine N-ethyl bromide (QX314-

Br). To visualize GCs for morphological classification, the intracellular solution 

contained 7.5 neurobiotin chloride (pH 7.2 adjusted with CsOH) and 2.2 Lucifer 

Yellow CH Lithium Salt.  

2.4.2 Electrophysiology and Pharmacology  

 TRPV1cre/Ai9 GCs were visualized using brief exposure to green light. A 

GΩ seal was created on the soma and only GCs with series resistance < 25 MΩ 

were used for recording. All voltages were corrected for the measured liquid 

junction potential of 17 mV. Whole cell GC current were recorded using an Axon 

Multiclamp 700B amplifier (Molecular Devices) and signals were digitized at 10 

kHz with a Digidata 1440A (MDS Analytical Technologies). Signals were filtered 

at 2.4 kHz with a four-pole Bessel low-pass filter. Clampex 10.2 software (MDS 

Analytical Technologies) was used to generate command outputs and acquire 

analog whole-cell current. Off-line, a 20 Hz eight-pole Bessel low-pass filter was 

applied to the data and analyses of data were performed using Clampfit 10.4. To 

block excitatory inputs, bath solution was supplemented with L-AP4 (4µM) to 

saturate mGluR6 receptors as well as DAP-5 (50 µM) and CNQX (20 µM), to 

block NMDA and non-NMDA receptors, respectively. All reagents were 

purchased from Tocris Bioscience. Capsaicin evoked currents were recorded by 
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applying capsaicin (30µM) in extracellular solution with blockers to the bath for 3-

5 min while holding the GC membrane potential at -60 mV. Consistent with 

previous calcium imaging studies in dissociated GCs (Ryskamp et al., 2014), 

current responses to bath application of capsaicin were slow, reaching peak 

amplitude within 2 to 3 min after response onset and lasting several minutes. We 

found that GC membrane currents fluctuated in the absence of capsaicin with 

similar timing as capsaicin evoked responses. To differentiate capsaicin evoked 

responses from normal fluctuations, control experiments were performed. GC 

current responses were recorded to Ringer's solution with blockers applied from 

a second bath solution.  

 Capsaicin evoked currents were also recorded from two ACs in whole 

mount retinas in the Borghuis lab as previously described (Borghuis et al., 2011). 

The recording protocol and reagents were similar, but differences existed in the 

equipment. The main differences from the protocol above are as follows:  

1. Retinas were dissected under infrared illumination and kept whole rather than 

quartered.  

2. Retinas were bathed in oxygenated Ames (Sigma-Aldrich) instead of Ringers.  

3. Fluorescent ACs were imaged using a two-photon microscope rather than 

epifluorescence.  

4. ACs were filled with Alexa 488 dye (Invitrogen) for visualization. Morphological 

classification was successful in one AC.  

All differences are unlikely to alter the results.  

 2.4.3 Whole cell patch clamp analysis  



 

37 

 

 Baseline current was measured as the average over two minutes before 

response onset. The peak amplitude of the slow current was measured as the 

minimum from baseline. A capsaicin response was defined as larger amplitude 

fluctuation than control. All cells with capsaicin evoked responses had similar 

times to onset.  

 

III. In Vitro Electrophysiology Recordings from Retinal Ganglion Cells 

using Multi-electrode Array (Chapter IV & V) 

3.1 In vitro MEA recordings 

 The procedures for multi-electrode array (MEA) recordings have been 

previously published (Fransen et al., 2015). Briefly, mice were dark adapted 

overnight and their retinas were dissected under dim red illumination to preserve 

the photoreceptor responses. Chemical vitrectomy was performed using 

proteases collagenase (12 U/mL) & hyaluronidase (37.13 uM) in Ringers applied 

for 15 min then washed three times to remove proteases. The dissected retina 

was quartered with anatomical orientation preserved. Retinal pieces were 

incubated in bicarbonate buffered Ringer’s solution (see ”Whole cell patch clamp 

recordings”) within a light protected oxygenated chamber. Oxygenated Ringers 

was continuously pumped through the temperature controlled (37oC) recording 

chamber (Multichannel systems). To record the responses of GCs, a quarter of 

the retina was placed in the recording chamber and held in place with GCs next 

to the electrodes on a 60 electrode array with a transparent cell filter membrane 
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(Fisher Scientific) held down by a platinum ring. Retinal piece in the recording 

chamber were maintained in darkness for 45 min to 1 h prior to experiments. 

Spiking activity was bandpass filtered (3000 – 100Hz; MC Rack software, 

Multichannel systems) 

3.2 Visual Stimuli 

 We established a threshold of response to dim light and assessed the 

spatial and temporal properties of GCs in photopic conditions. Five full-field light 

increments of 5 second duration were presented with increasing intensity. 

Responses were recorded to 0.6, 1.4 & 3.1 log R*/rod/sec stimuli against a dark 

background. The retina was then adapted to a 2.6 log R*/rod/sec background for 

5 min before recording responses to 4.1 & 5.4 log R*/rod/sec stimuli against the 

same background. Stimuli were projected by a mini-projector (HP Notebook 

Consumer Projection Companion model# AX325AA) onto the retina through the 

microscope optics. Recordings in WT retinae showed that under our dark 

adaptation conditions, 0.6 log R*/rod/sec stimulus was the minimum intensity that 

evoked a response in a minority of GCs (18%). Roughly half of WT GCs 

responded at 1.4 log R*/rod/sec, and almost all responded to 3.1 log R*/rod/sec 

(Fig. 3.1a). Under light adapted conditions, 4.1 log R*/rod/sec evoked responses 

in the largest % of GCs and 5.4 log R*/rod/sec evoked the largest % of ON/OFF 

responses (Fig. 3.1a & d, respectively).  

3.3 Analysis of MEA Data 
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 Analysis of the MEA recordings also have been described previously 

(Fransen et al., 2015). Spikes were sorted according to their principle 

components and clustered according to similarities in spike amplitude and time 

stamp, keeping only cells which were isolated from the noise (Offline spike sorter 

version 3, Plexon, Inc.). To verify that each cluster contained spikes from a single 

cell, only spikes with an interspike interval greater than 1 msec were included in 

the same cluster. Each cell was analyzed according to the stimulus presented. 

To analyze full-field stimuli, average PSTHs and raster plots of each cell for each 

stimulus luminance value were measured and compared, similar to the analyses 

described by Nobles and colleagues (2012). Briefly, GCs were classified 

according to their response to the light onset (ON), offset (OFF), or both 

(ON/OFF). Responses were further classified according to the duration of their 

response. Sustained cells were defined as those whose excitatory response 

remained 3 SEM above mean spontaneous level for the entire duration of 

stimulus presentation (5 s). Transient GCs had excitatory responses that 

returned to the mean spontaneous level within the first 2 s. A small population of 

GCs responded to the offset of light for 2 > 5 s and was analyzed separately (Fig. 

3.3c & d). 

 

IV. In Vivo Electrophysiology Recordings from Optic Nerve Fibers 

(Chapter IV) 

4.1 Surgical Preparation 

Surgical procedures were performed at light adapted levels and have 
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been previously described (Nobles et al., 2012; Sagdullaev and McCall, 2005). 

Briefly, anesthesia was induced with an intraperitoneal injection of a Ringer’s 

solution containing ketamine (127mg/kg) and xylazine (12 mg/kg). Anesthesia 

was maintained throughout the experiments with supplemental subcutaneous 

injections (50% of initial concentration) administered about every 45 min. The 

head was secured in a stereotaxic frame (David Kopf Instruments) with ear cups 

and a bite bar. Body temperature was maintained at 37°C with a feedback 

controlled heating pad (TC-1000; CWE). Eyes were dilated with topical 

tropicamide (0.25%) and phenylephrine hydrochloride (0.6%). Clear zero-

powered lenses (Sagdullaev et al, 2004) moistened with artificial tears (Akwa 

Tears, Akorn, Inc.) were placed over the eyes to prevent drying of the corneas. A 

craniotomy was performed anterior to the Bregma suture and the overlying cortex 

was removed using suction to expose the optic nerve. 

4.2 Electrophysiology Recordings from Optic Nerve Fibers 

Tungsten rods were etched to form electrodes and coated in acrylic 

(impedance 50-100 KΩ). A reference electrode was inserted subcutaneously. 

Action potentials were recorded from individual axons and amplified (Xcell3 

microelectrode amplifier, FHC). Isolated spikes were displayed on an 

oscilloscope (60MHz, Tektronix Inc.) and played on an audio monitor (AM7, 

Grass Instruments) for direct feedback between the stimulus and response. 

Spikes rising through a level designated above noise were digitized (Power 1402, 

CED) and recorded for offline analysis (Spike 2, CED). Spikes were accumulated 

within a 50ms bin width and displayed as post-stimulus time histograms 
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(PSTHs). Each average PSTH was smoothed by fitting it with a raised cosine 

function with a 50ms smoothing interval to minimize alteration of the peak firing 

rate and maximize signal-to-noise ratio (Sagdullaev and McCall, 2005). 

4.3 Quantitative Characterization of GC Visual Response Properties 

 The position, spatial extent and RF center sign of each GC were 

determined first using a handheld light source projected onto a screen located 25 

cm from the anterior nodal point of the eye. All quantitative measures of GC 

visual responses and receptive field properties were evoked by stimuli 

(VisionWorks; Vision Research) presented on a CRT display monitor with a 

mean luminance of 20cd/m2 (Eizo E120 FlexScan FXC7). All stimulus and RF 

dimensions are presented in degrees of visual angle (corrected for monitor 

distance). Responses were recorded to a series of 67% contrast spot increments 

or decrements from background (20 cd/m2) corresponding to the preferred 

stimulus of ON or OFF GCs respectively. To characterize the RF organization, 

spots were centered on the mapped RF whose outer diameter ranges from 2 to 

25 cm or 4.6 to 52.7o visual angle. Duration of the spot presentation was 5 sec, 

with a 6 sec interstimulus interval. Each spot diameter was presented 8 times 

and interleaved randomly along with 8 blank trials in which only background was 

presented. To estimate the contribution of RF surround, responses were 

recorded to 25 cm diameter, 67% contrast spot increments or decrements from 

background (20 cd/m2) corresponding to the preferred stimulus of ON or OFF 

GCs respectively. A series of background luminance (20 cd/m2) inner spots 

whose outer diameter ranges from 2 to 16.5 cm was presented. The inner and 
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outer spot arrangement forms an annulus. Duration of the annulus presentation 

was 5 sec, with a 6 sec interstimulus interval. Each annulus of inner spot 

diameter was presented 8 times and interleaved randomly along with and 8 blank 

trials in which only background was presented. 

4.4 Analysis of responses from intact preparation 

The spike trains were displayed as a peri-stimulus time histogram in which 

the numbers of spikes per second are graphed over time. Responses to each 

spot diameter or luminance were averaged and smoothed to maximize signal to 

noise ratio. The baseline firing rate, peak firing rate, mean firing rate during 

stimulation and response duration were calculated from each smoothed function 

and compared between genotypes. The peak response amplitude and response 

duration were graphed as a function of spot diameter to produce an area 

response function (ARF). In WT GCs the peak response has an arch shape 

because peak response will increase as the spot size increases until the spot 

equals the functional RF size of the cell. As the spot diameter increases beyond 

the RF center, the surround suppression decreases the peak response 

amplitude. The peak of the area response function was considered the optimal  

spot size of the GC. The duration of the area response function is typically flat in 

WT GCs because durations are consistent regardless of spot size. Peak 

amplitude, response duration and mean response rate of the optimal spot size 

were compared between genotypes. 
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V. Characterization of LRIT3 Expression and Function (Chapter V) 

5.1 Immunohistochemistry for LRIT3   

Table 2.2. Antibodies used to label specific proteins in the retinas of TrpM1-/-, Nyxnob, Lrit3-/+ and 
Lrit3-/- mice. Primary antibodies were used to fluorescently label proteins that constitute the 
mGluR6-TRPM1 signalplex in dendritic tips of ON BCs. Antibodies to Cone Arrestin and the lectin 
PNA were used to label proteins in the cone terminals. Antibodies to Cacna1f labeled the protein 
in the rod and cone terminals. Pikachurin is an extracellular protein in the synapse between 
photoreceptors and ON BCs. 
Primary Antibodies 

Antibody target Host species Concentration Source 

mGluR6 Goat 1:2000 
Gift from Catherine 
Morgans 

TRPM1 Goat 1:2000 
Gift from Kirill 
Martenmyanov 

GPR179 Sheep 1:2000 
Gift from Catherine 
Morgans 

RGS7 Sheep 1:1000 
Gift from Catherine 
Morgans 

RGS11 Sheep 1:1000 
Gift from Catherine 
Morgans 

R9AP Sheep 1:2000 
Gift from Catherine 
Morgans 

Gβ5 Goat 1:1000 
Gift from Catherine 
Morgans 

PNA* 
Mouse (568 
conjugated) 1:1000 

ThermoFisher; cat # 
L32458 

Cone Arrestin Rabbit 1:1000 Gift from Cheryl Craft 

Pikachurin Rabbit 1:1000 
Gift from Catherine 
Morgans 

PSD95 Mouse 1:1000 
Gift from Catherine 
Morgans 

Cacna1f Sheep 1:2000 
Gift from Catherine 
Morgans 

 *PNA is not a protein but carbohydrate moiety to which it binds. 

 

Immunohistochemistry was performed as described above (2.2 

Immunohistochemistry). Table 2.2 is a list of the primary antibodies used in 

Chapter V. 

5.2 Electroretinography 
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 Mice were dark adapted overnight and anesthetized (see Animals).  The 

anesthetized mouse was prepared for ERG recordings under dim red light. Pupils 

were dilated and accommodation relaxed with topical applications of 0.625% 

phenylephrine hydrochloride and 0.25% Tropicamide and corneal surface 

anesthetized using 1% Proparacaine HCL. Body temperature was maintained via 

an electric heating pad (TC1000 Temperature control, CWE Inc.). A clear acrylic 

contact lens with a gold electrode (LKC technologies Inc.) was placed on the 

cornea and wet with artificial tears (Tears Again, OCuSOFT, Inc.). Ground and 

reference needle electrodes were placed in the tail and on the midline of the 

forehead, respectively. A 20 min dark-adaptation preceded the presentation of 

full field strobe flashes presented in a Ganzfeld (LKC UTAS Visual Diagnostics 

System with Big Shot Ganzfeld). For scotopic responses flashes were presented 

on a dark background and for photopic responses there was a 5 min light 

adaptation period and flashes were presented on a rod saturating background 

(20 cd/m2). The luminance of the flashes ranged from -3.6 to 1.4 log cd sec/m2.  

5.3 Retinal slice preparation and BC whole cell patch clamp recording 

 Anesthetized mice were euthanized by cervical dislocation, eyes were 

enucleated and retinas were removed and placed in Ames solution (Sigma-

Aldrich). Retinas were placed on nitrocellulose paper (Millipore) and sliced 

perpendicular to the retinal layers using a tissue slicer. The retinal slices were 

then adhered in place in the recording chamber using vacuum grease. Recording 

electrodes were pulled on a P-97 Flaming/Brown Micropipette Puller (Sutter 

Instruments Co., Novato, CA) from borosilicate glass (FHC, Inc., Bowdoin, ME). 
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Electrode resistance measured between 6-9 MΩ. Electrodes were filled with Cs-

gluconate intracellular solution (20 mM CsCl, 107 mM CsOH, 107 mM D-

Gluconic Acid, 10 mM NaHEPES, 10 mM BAPTA, 4 mM ATP, and 1 mM GTP). 

1% sulforhodamine was included in the intracellular solution to visualize the cell 

and classify the morphology (Ghosh, et al., 2004).  

 Retinal slices were bathed in Ames solution supplemented with the 

following inhibitory blockers: 1µM strychnine, 100 µM picrotoxin and 50 µM 6-

tetrahydropyridin-4-yl methylphosphinic acid (TPMPA). L-AP4 (4 µM) also was 

added to the bath solution to saturate mGluR6 receptors. Rod ON BC somas 

were targeted for whole cell patch clamp recording. A 2-4 GΩ seal was created 

on the cell body. Cells with an input resistance ~ 1 GΩ and access resistance < 

25 MΩ were used for recording. The recording chamber was maintained at 34-

35°C. A Picospritzer II (Parker Instrumentation, Cleveland, OH) was used to 

pressure apply pharmacological agents onto rod ON BC dendritic tips in the outer 

plexiform layer (OPL). The agents used were the mGluR6 receptor antagonist α-

cyclopropyl-4-phosphonophenylglycine (CPPG 0.6 mM or 3 mM) or the TRPM1 

agonist capsaicin (10 μM). All reagents were purchased from Sigma-Aldrich, 

except for L-AP4 and capsaicin, which were purchased from Tocris Bioscience 

(Avonmouth, Bristol, BS11 9QD United Kingdom).  

5.4 Voltage Clamp Protocols 

 Voltage clamp responses were recorded using a Multiclamp 700A 

amplifier with a Digidata 1440A digitizer (MDS Analytical Technologies, Union 

City, CA) and filtered at 2.4 kHz with a four-pole Bessel low pass filter, sampled 
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at 10 kHz. Clampex 10.2 software (MDS Analytical Technologies, Sunnyvale, 

CA) was used to generate command outputs and acquire and analyze analog 

whole cell current. Rod ON BCs were voltage clamped at +50mV (Nawy, 2004; 

Shen et al., 2009). Capsaicin was puffed at the dendrites for either 200 msec or 1 

sec. Three to five responses were recorded from RBC and then averaged. The 

first 1.5 sec of each rod ON BC recording was used to measure variance and 

standing current. Clampfit 10.2 was used for offline analyses of data. Currents 

were filtered offline with an 8-pole Bessel low pass filter at 20 Hz. Prism 5.04 

software (Graphpad Software, Inc., La Jolla, CA) was used to perform the 

following statistical analyses as suited for the necessary comparison: two-way 

repeated measures ANOVAs, two-way ANOVAs, one-way ANOVAs, or t-tests. 

Statistical significance = P < 0.05. 

5.5 MEA recordings  

 Light evoked spiking responses to 2s full-field stimulus (5.4 log R*/rod/sec, 

20 trials, 10s ISI) were recorded from Lrit3-/+, Lrit3-/- and mGluR6-/- retinas using 

MEA as described above (see 3.1 In vitro MEA recordings). After obtaining 

baseline light responses, L-AP4 (4 µM) or ACET (20 µM) was added to the bath 

solution to saturate mGluR6 receptors or block Kainate receptors respectively. 

Light responses were recorded in the presence of reagents and 20 min after 

Ringer's wash.  Data was analyzed as described above (see 3.3 Analysis of 

MEA). 

 

VI. Statistical Analysis (Chapters III, IV & V) 
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Statistical analyses were performed using Prism5 Software (GraphPad). 

Distributions of each parameter were tested for normality using the D’Agostino 

and Pearson omnibus test and appropriate parametric or non-parametric 

statistical analyses were used. For each morphological and electrophysiological 

measure, t-test with Welch’s correction was used for two sample comparison. 

One-way ANOVA with Bonferroni’s post-hoc tests were used for comparisons 

with three or more normally distributed samples. Kruskal Wallace with Dunns 

post-hoc tests were used for non-parametric comparisons. Two-way ANOVA with 

Bonferroni’s post-hoc tests was used to compare response components across 

spot size or luminance. In all figures, data are plotted as the mean ± SEM and 

significance is indicated as *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. For 

MEA recordings, alpha < 0.01 was considered significant (see Appendix I). For 

all other comparisons alpha < 0.05 was considered significant. 
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CHAPTER III 

TRPV1 MODULATES RETINAL GANGLION CELL SPIKING 

ACTIVITY IN THE MOUSE  

 

I.  Introduction 

 The transient receptor potential vanilloid-1 (TRPV1) channel is a non-

selective cation channel with an affinity for Ca2+. TRPV1 has been extensively 

studied in Aδ and C-fiber nociceptors in the PNS. There, the channel can be 

activated by many ligands including capsaicin, low pH, endovanilloids such as 

anandamide or by stimulation with noxious heat or pressure (Caterina & Julius, 

2001; Moreira et al., 2012). Activation of TRPV1 in the peripheral and central 

terminals of primary nociceptors results in the robust influx of Ca2+ and 

subsequent prolonged release of glutamate to post-synaptic spinal cord neurons. 

TRPV1 also enhances the sustained release of Ca2+ from intracellular stores, 

resulting in sensitization of the nociceptors long after the initial stimulus 

(Medvedeva et al., 2009). In this way, TRPV1 activity in the PNS plays a role in 

nociception, inflammation, chronic pain, nociceptor sensitization and 

desensitization, and apoptosis (Caterina et al., 2000; Caterina & Julius 2001; 

Medvedeva et al., 2009).  
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 The literature regarding the expression and function of TRPV1 in the CNS 

is contradictory. Cavanaugh and colleagues (2011b), using reporter mice, 

determined TRPV1 expression in the brain is confined to a few discrete areas, 

most notably in the periaquaductal gray, Cajal-Rhetsius cells of the 

hippocampus, and hypothalamus in reporter mice. Other studies demonstrate 

TRPV1expression and function in the hippocampal pyramidal cells (Gibson et al., 

2008), dentate gyrus (Chavez et al., 2010), striatum (Musella et al., 2009), 

nucleus accumbens (Grueter et al., 2010; Bhaskaran et al., 2010; Renteria et al., 

2014) and superior colliculus (Maione et al., 2011). TRPV1 also is expressed in 

the retina (Gilliam & Wensel, 2011; Sappington et al., 2009 & 2015; Leonelli et 

al., 2009). TRPV1in the CNS is reported to play roles in thermoregulation, 

learned fear, neuropathic pain, and migraine (Caterina & Julius, 2001; White et 

al., 2011 for review). TRPV1 also has been proposed to play a role in memory 

formation by regulation of long-term potentiation (LTP) and excitatory synapse 

formation in the hippocampus (Chavez et al., 2010; Bhaskaran et al., 2010). 

TRPV1 reportedly regulates long-term depression (LTD) and subsequent neurite 

pruning in the retino-collicular pathway and nucleus accumbens (Maione et al. 

2009; Grueter et al., 2010). In the CNS, TRPV1 is likely gated by endovanilloids 

such as anandamide (Gibson et al., 2008; Maione et al., 2011; Kawahara et al., 

2011; Ryskamp et al., 2014). In both LTP and LTD, TRPV1 activation by 

anandamide results in Ca2+ influx, prolonged increases in intracellular [Ca2+], and 

subsequent sustained neurotransmitter release from presynaptic terminals. 

TRPV1 activity in the brain has been implicated in diseases such as fibromyalgia 
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and other chronic pain disorders, Parkinson’s disease, Huntington’s disease, 

anxiety and depression. Given roles assigned to TRPV1 in the CNS, clarifying its 

specific function in neural processing is valuable.  

 TRPV1in the retina has been implicated in disorders such as glaucoma 

and ischemia induced apoptosis, but the role of TRPV1 in visual signaling has 

not been investigated. Previous publications report TRPV1 protein expression in 

the inner retina of rodents (Sappington et al., 2009 & Leonelli et al., 2009 & 

2013), goldfish (Zimov &Yazulla, 2007), and non-human primates (Sappington et 

al., 2015). Similar to the role of TRPV1 in the PNS, the protein is thought to 

regulate Ca2+ in the ganglion cell layer (GCL) and inner nuclear layer (INL) of the 

retina (Sappington et al., 2009 & 2015; Leonelli et al., 2010; Ryskamp et al., 

2014). In calcium imaging studies, capsaicin, a known agonist of TRPV1, as well 

as TRPM1, (Shen et al., 2009) increases intracellular [Ca2+] in dissociated 

ganglion cells (GCs; Sappington et al., 2011; Ryskamp et al., 2014). Prolonged 

capsaicin induced increases in intracellular [Ca2+] promotes apoptosis in the 

inner retina (Leonelli et al, 2011; Sappington et al., 2011). Capsazepine, a known 

antagonist of TRPV1 and TRPM1 alters neuronal and synaptic development in 

the rat inner retina (Leonelli et al., 2011). In mouse models of glaucoma, 

capsazepine blocked pressure induced intracellular [Ca2+] increases in 

dissociated GCs (Sappington et al., 2011) and may be neuroprotective. However 

selective elimination of TRPV1 protein using knockout mice leads to increased 

GC death compared to wild type in glaucoma models (Sappington et al., 2015). 

This suggests TRPV1 activity is neuroprotective in models of retinal dysfunction. 
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The role of TRPV1 in normal retinal function has not been studied. To this end, I 

made use of the parallel visual pathways within the retina to investigate the role 

of TRPV1 function in normal visual signaling. 

 To investigate the role of TRPV1 in normal vision, I compared visual 

responses in WT and TrpV1-/- GCs. One of the parallel pathways is established 

by the input from rods and cones, which differentially signal at low and high 

luminance levels, respectively. Within the rod pathway, there are multiple 

luminance dependent signaling pathways, which transfer visual information from 

the rods to GCs (Bloomfield & Völgyi, 2009). At visual threshold, rod signaling 

arises through a primary pathway to rod bipolar cells (RBCs) and through their 

synapses on AII amacrine cells (ACs; Völgyi et al., 2004; see Bloomfield and 

Dacheux, 2001 for review). AII ACs transfer information through gap junctions 

with ON cone BCs (CBCs), which stratify in sublaminae (s) three to five in the 

IPL. AII ACs form inhibitory glycinergic synaptic connections with OFF CBCs 

which stratify in s 1-2 (Kolb & Nelson, 1983; Strettoi et al., 1992). Völgyi and 

colleagues (2004) report a proportion of OFF and ON GCs which function as the 

most sensitive light detectors and receive rod signals only through this primary 

pathway.  

 A feedback inhibitory circuit at the RBC to the AII synapse further 

enhances signaling at visual threshold. The AII and GABAergic A17 form a dyad 

synapse with the RBC (Kolb & Famiglietti, 1974; Famiglietti & Kolb, 1975; Strettoi 

et al., 1990; Strettoi et al., 1992; Chun et al., 1993; Kim et al., 1998). The A17 

receives glutamatergic input from the RBC in response to dim light. The A17 then 
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inhibits the RBC though feedback GABA release onto GABAA and GABAc 

receptors in the RBC terminal (Eggers & Lukasiewicz, 2011). GABAA and GABAc 

receptors differ in their kinetic properties. GABAA rapidly turns on and off within 

several milliseconds (Eggers and Lukasiewicz, 2006). In contrast, GABAc 

responds more slowly and the duration of the response lasts tens to hundreds of 

milliseconds (Chang & Weiss, 1999; McCall et al., 2002). Tonic A17-mediated 

GABA release in the dark likely decreases spontaneous glutamate release from 

RBCs, a process that enhances the signal to noise ratio to dim light at the visual 

threshold (Grimes et al., 2015).   

 As luminance increases a secondary rod pathway transfers the visual 

signal to cones via gap junctions (Bloomfield and Völgyi, 2009). This gap junction 

coupling increased the visual information being transferred from the cones to the 

CBCs to enhance the sensitivity of the cone pathway to light. However, the 

increased spread of signal results in low visual acuity. In daylight conditions, gap 

junction coupling in the retina decreases prevents response saturation and 

increases visual acuity (Witkovsky, 2004). Rods transfer visual signal synaptically 

to OFF CBCs in the tertiary rod pathway at higher luminance values.  

In the cone pathway, when the rod signal is saturated, visual information is 

transferred from cones to OFF and ON CBCs, forming the ON and OFF parallel 

pathways (see Wässle et al., 2004 for review). Light decrements result in 

increased glutamate release from cones to OFF and ON CBCs, causing OFF 

CBC to depolarize and ON CBCs, which have a sign inverting synapse (see 

Chapter 1, Fig. 1.3), to hyperpolarize. Light increments result in decreased 
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glutamate release from cones and the subsequent hyperpolarization of OFF 

CBCs and depolarization of ON CBCs. OFF and ON CBCs synapse with OFF 

and ON GCs in the outer and inner half of the IPL, respectively. The OFF and 

ON pathways may enhance the perception of light or dark edges and contrast 

discrimination (Dolan et al., 1994).  

 Besides the OFF and ON pathways, the excitatory receptive field (RF) 

center and inhibitory surround parallel pathways also emerge in the outer 

plexiform layer. Horizontal cells initiate the inhibitory surround in OFF and ON 

CBCs to transmit information regarding the size of stimuli in the RF (Hartline, 

1940; Enroth-Cugell and Robson, 1966; Werblin and Dowling, 1969; Baylor et al., 

1971). The BC center surround organization is modulated and integrated by 

inhibitory ACs in the IPL so that GCs, which receive input from multiple BCs, also 

have an overall center surround organization (Kuffler, 1953; Rodieck and Stone, 

1965; Lukasiewicz and Werblin, 1990; Werblin, 1991; van Wyk et al., 2009). The 

processes mediating the formation of the RF center surround organization in 

GCs are not fully understood. Lateral inhibition from GABAergic ACs enhances 

the BC center surround organization through GABAc receptors.  However, other 

spiking GABAergic and glycinergic ACs serially inhibit the ACs providing 

surround suppression to BCs (Eggers et al., 2013; Moore-Dotson et al., 2015). 

GABAergic wide-field ACs also provide lateral inhibition directly to GCs to 

decrease the GC spiking response to stimuli larger than the GC’s RF center 

(Flores-Herr et al., 2001; Eggers et al., 2007; Eggers and Lukasiewicz, 2010; 
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Farrow et al., 2013; Protti et al., 2014). Glycinergic narrow-field ACs contribute 

local inhibition to the GC RF center (Protti et al., 1997; Zhang & McCall, 2012).  

 Within the ON and OFF pathways, there is increasing evidence for 

temporal signaling pathways (Euler et al., 2014). How sustained and transient 

responses arise from the same cone input is not fully known. There are five 

known ON CBC and five to ten OFF CBC types in the mouse retina. The 

glutamate receptors are the same on all ON and OFF types; mGluR6 in ON BCs 

(Slaughter and Miller, 1985; Nakajima et al., 1993; Morgans et al., 2009; Shen et 

al., 2009) and non-NMDA-type ionotropic glutamate receptors in OFF BCs 

(Borghuis et al., 2014, but see DeVries, 2000). Despite that, OFF and ON CBC 

types have different temporal responses in parallel pathways. OFF and ON 

sustained BCs stratify in s 1-2 and s 4-5 of the IPL, respectively (Awatramani & 

Slaughter, 2000; Roska & Werblin, 2001; Li & DeVries, 2006; Baden et al., 2013; 

Euler et al., 2014). Excitatory and inhibitory input, internal properties of ON and 

OFF BCs, synaptic kinetics and additional processes may shape the temporal 

properties of glutamate release from CBCs. A combination of sustained or 

transient release of glutamate from BCs and modulation by ACs contribute to 

response durations in post-synaptic GCs (see Euler et al., 2014 for a review) and 

match the duration of the GC spiking response to the stimulus (Borghuis et al., 

2013 & 2014). Sustained responses most likely extract details in a scene (Roska 

et al., 2006). ON and OFF transient BCs and GCs stratify centrally in the IPL. 

Transient GCs likely provide the perception of edges and outlines in a scene 

(Roska et al., 2006).  
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Since the glutamate receptors do not differ in ON and OFF CBC types, 

inhibition from amacrine cells likely modulates the duration of CBC depolarization 

and subsequent glutamate output. Slowly responding and long duration GABAc 

mediated inhibition decreases the maintained release of glutamate from ON 

CBCs and shapes the maintained spiking response in ON GCs (Lukasiewicz and 

Shields 1998; Lukasiewicz et al. 2004; Sagdullaev et al. 2006). GABAc mediated 

inhibition shortens the response durations in ACs and GCs in salamander (Dong 

and Werblin, 1998) and the absence of GABAc receptors enhances the 

maintained spiking responses of ON GCs in mouse (Sagdullaev et al., 2006). 

Tonic GABA release on GABAc receptors also decreases the spontaneous 

glutamate release from ON CBCs, a process that acts as gain control to increase 

the range of perceptible luminance values (see Chapter 1.2.2.1.c.iv. serial 

inhibition). GABAA mediated inhibition decreases the rapid release of glutamate 

that shapes the peak spiking response in post-synaptic GCs (Eggers & 

Lukasiewicz, 2011). ON CBCs do not express glycine receptors (Ivanova et al., 

2006). Despite that, glycinergic inhibition enhances excitatory center responses 

and subsequent ON GC response duration. This modulation occurrs through 

serial inhibition by glycinergic narrow-field ACs of GABAergic ACs which synapse 

with ON CBCs or ON GCs. This serial inhibition of inhibition, referred to as 

disinhibition (Nobles et al., 2012), produces an overall enhancement ON GC 

spiking responses.   

 Glutamate release from OFF CBCs is modulated by GABA and glycine 

(Sagdullaev et al., 2006; Ivanova et al., 2006; Eggers & Lukasiewicz, 2011). The 
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majority of the inhibitory input to OFF CBCs is glycinergic cross-over inhibition 

from the ON pathway and shapes the rapid and maintained release of glutamate 

(Ivanova et al., 2006; Eggers & Lukasiewicz, 2011; Nobles et al., 2012; Borghuis, 

2014; Zhang et al., 2014). GABAA mediated inhibition is lower than glycinergic 

inhibition, but still shapes the rapid release of glutamate. GABAc mediated input 

provides the lowest amount of inhibition to OFF CBCs. The spontaneous and 

maintained spiking responses of OFF GCs in mice lacking GABAc receptors are 

similar to WT (Sagdullaev et al., 2006), suggesting GABAc inhibition provides 

little modulation of maintained glutamate release to some OFF GCs (Eggers & 

Lukasiewicz, 2011).  

 Membrane properties within the ON and OFF GCs modulate the total 

spiking activity of the GCs in combination with input from BCs and ACs. The 

spontaneous spiking activity in OFF GCs is internally generated and tonically 

modulated by glycinergic cross-over inhibition from the ON pathway (Roska & 

Werblin, 2001; Zaghloul et al., 2003; Roska et al., 2006; Margolis & Detwiler, 

2007; Chen et al., 2010; Borghuis et al., 2014). In response to a light decrement, 

cross-over inhibition decreases, which results in an increase in OFF GC spiking 

activity. The OFF GC response also is enhanced by excitatory input from the 

OFF CBC. Thus, the peak and maintained response in OFF GCs is shaped by 

glutamatergic input and rebound spiking activity from release of inhibition. In 

contrast, tonic glutamate release from the ON CBCs drives the spontaneous 

spiking in ON GCs (Margolis & Detwiler, 2007); in the absence of glutamatergic 
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input, they do not spike. Thus the peak and maintained response in ON GCs is 

shaped by excitatory and inhibitory input.  

 These and other parallel pathways integrate to allow GCs to extract visual 

information and transmit that signal to the brain for higher order processing. 

Further complicating matters, however, is the idea that the responses within 

these pathways may not be static, but depend on stimulus (Umino et al., 2008; 

Eggers et al., 2013; Farrow et al., 2013; Grimes et al., 2015). For example, some 

ON GCs can signal light offset and OFF GCs can signal light onset depending on 

luminance conditions or stimulus size (Sagdullaev & McCall, 2005; Tikidji-

Hamburyan et al., 2015).  

 I investigated the contribution of TRPV1 to the rod and cone pathway 

inputs to GCs. The differences I found between WT and TrpV1-/- GCs suggests 

that TRPV1 shapes visual signals in the following ways:  

1. Enhances the luminance threshold of ON and OFF GCs under rod 

stimulating conditions. TRPV1 likely decreases GABAergic feedback 

inhibition to RBC in dark adapted conditions. 

2. Enhances spontaneous spiking rates in OFF GCs. TRPV1 likely 

decreases glycinergic inhibition of OFF CBCs and/or GCs. 

3. Enhances excitatory input to the RF center of sustained ON GCs to 

prolong the spiking response. TRPV1 likely decreases GABAc 

mediated lateral inhibition to ON CBCs in light adapted conditions. 
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 TRPV1 modulates distinct processes indicative of a role in serial inhibition of 

GABAergic and glycinergic ACs.  Because the center response properties are 

affected, TRPV1 likely enhances glycine release from narrow-field amacrine cells 

which modulate local inhibition to the RF center of ON and OFF GCs. In this way, 

TRPV1 modulates perception by enhancing sensitivity to dim light and 

discrimination of fine details (visual acuity) in daylight.  

 

II.   Results 

2.1. TRPV1 enhances visual signaling in only the primary rod pathway 

Light stimuli near the visual threshold evoke signaling through the primary 

rod pathway via the AII amacrine cell. Rod mediated ERG b-waves are similar 

between WT and TrpV1-/- (Shen et al., 2009), suggesting that TRPV1 does not 

contribute to the depolarization of the RBC. To determine whether TRPV1 

contributes to transmission of visual signal from RBC to GCs through the primary 

rod pathway, I compared the proportions of dark adapted GCs that responded to 

the lowest luminance full-field stimulus (0.6 log R*/rod/sec) in WT (n= 10 retina 

pieces from 5 mice) and TrpV1-/- (n=9 retina pieces from 5 mice) retinas, 

recorded using a multi-electrode array (MEA). I found that neither genotype had 

ON/OFF responses to the dimmest light. Fourteen percent of WT GCs 

responded (n=81) and significantly fewer TrpV1-/- GCs were responsive to the 

same stimulus (Fig. 3.1; 1%, n=5, p<0.001). Because of the difference in the  
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proportions of WT and TrpV1-/- GCs responsive to 0.6 log R*/rod/sec stimulus, I 

concluded that TRPV1 is necessary for signaling through the primary rod 

pathway and sets the sensitivity of the rod driven GC light responses.  

To determine the 

level of the disruption within 

the rod pathway, I examined 

the differences in the 

responses of WT and 

TrpV1-/- GCs under 

luminance conditions that 

stimulated the three rod 

pathways.  After the 

presentation of the dimmest 

luminance, I presented two 

luminance increments (1.4 

& 3.1 Log R*/rod/sec) 

reported to elicit responses 

mediated by rod and cone 

pathways (Völgyi et al., 

2004). The percent of 

responsive WT GCs 

increased with luminance. Similar proportions of WT and TrpV1-/- GCs had 

responses under luminance conditions that stimulated the secondary and tertiary 

 

 

 

 

 

Figure 3.1 Higher luminance is required to evoke a 
response in TrpV1-/- (A) Full-field luminance increments 
were presented to dark adapted WT (n=10) and TrpV1-/- 

(n=9) retinas on the MEA. The proportions of non-
responsive (NR) GCs were compared between WT (n=560 
GCs) and TrpV1-/- (n=523 GCs) at each luminance. The 
first increment (0.6 log R*/rod/sec) isolated signals through 
the primary rod pathway. The majority of WT GCs were 
NR at the first luminance (n=479, 86+5%) and there was a 
larger proportion of TrpV1-/- NR GCs (n=526, 99+1%; 
ANOVA p=0.02, post hoc Bonferroni t-test p<0.01) 
compared to WT. Eighty-one WT and five TrpV1-/- GCs 
had responses mediated through the primary rod pathway, 
indicating TRPV1 was necessary for signaling through the 
RBC-AII AC. The second luminance (1.4 log R*/rod/sec) 
evoked signaling through the secondary rod and cone 
pathways. The third luminance (3.1 log R*/rod/sec), 
evoked signaling through the tertiary rod and cone 
pathways. Proportions of WT NR GCs decreased with 
increasing luminance (52+9% &14+3%, respectively). 
There were similar proportions of WT and TrpV1-/- NR GCs 
at the second (55+6%) and third (17+4%) luminance 
increments. TRPV1 did not contribute to secondary or 
tertiary rod signaling. Values were reported as mean+sem. 
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pathways (Fig. 3.1). This result suggests TRPV1 plays a role in enhancing the 

sensitivity of the primary rod pathway to threshold stimuli. The ERG b-wave 

represents the depolarization of the ON BCs and is similar between TrpV1-/- and 

WT mice in response to all tested luminance values (Shen et al., 2009). TRPV1 

must enhance glutamate transmission to the AII or regulate transmission of the 

signal through the AII directly.   

2.2 TRPV1 does not contribute to primary cone pathway signaling 

 Cone mediated ERG b-waves are similar between WT and TrpV1-/- (Shen 

et al., 2009), suggesting visual signal transmission through the ON CBCs is 

intact. To determine if TRPV1 contributed to transmission of visual signal through 

the cone pathway, I assessed light evoked spiking responses in WT and TrpV1-/- 

GCs under light adapted conditions. To compare temporal and spatial processing 

confined to the RF center or surround, visually evoked spiking responses were 

recorded from individual GC axons in the optic nerves of anesthetized TrpV1-/- 

and WT mice (Fig. 3.2). To evoke RF center dominated response, spots of 

varying size were presented above a light adapting background (4 log 

R*/rod/sec) confined to the RF center of individual GCs. An area response 

function (ARF) plotting amplitude of response as a function of spot size was 

computed for each GC and the spot size corresponding to its peak, which 

represents the spatial summation of all excitatory inputs, defined the RF center 

diameter (see Methods). GCs were classified as OFF, ON or ON/OFF according 

to the response to a dark (3 log R*/rod/sec) or light (4.7 log R*/rod/sec) spot 
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whose diameter matched the RF center diameter. Figure 3.2 shows 

representative raster plots and PSTHs for sustained ON and OFF GCs in  

 

Figure 3.2 TRPV1 does not contribute to 
cone pathway signaling in GCs sampled in 
vivo. (A) ON and OFF alpha GCs are 
sampled in vivo. A and B show representative 
PSTHs for WT (Ai & Bi) and TrpV1-/- (Aii & Bii) 
OFF (A) and ON (B) GCs in response to a 
dark spot (3.0 log R*/rod/sec) or light (4.7 log 
R*/rod/sec) spot, respectively, whose 
diameter matched the receptive field center. 
(C) A larger proportion of ON center GCs 
(63%) than OFF GCs (37%) was sampled in 
the WT in vivo. Similar proportions of WT and 
TrpV1-/- ON (60%) and OFF (40%) GCs were 
sampled in vivo (Fisher’s exact test, p=0.58). 
ON/OFF GCs were not sampled in either 
genotype in vivo. In the absence of TRPV1, 
visual signal transmission was intact through 
the ON and OFF cone pathways to ON and 
OFF alpha GCs  

 

WT and TrpV1-/-. The proportion of WT ON GCs was greater than WT OFF GCs. 

The proportion of TrpV1-/- ON and OFF GCs was similar to WT (Fisher’s exact 

test p=0.58). As we have observed before, ON/OFF GCs were not sampled in 

optic nerve recordings (Nobles et al., 2012).  

The morphological identity of the WT and TrpV1-/- GCs sampled in optic 

nerve and MEA recordings are unknown. In vivo optic nerve recordings target 
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GCs with large axon diameters (Boycott and Wässle, 1974). Given the brisk 

responses of ON and OFF GCs, we likely record from ONα and OFFα GC  

classes (Manookin et al., 2008) or A-type (Sun et al. 2002) which have large 

somas, dendritic fields and axon diameters (Kuffler, 1953; Enroth-Cugell and 

Robson, 1966; Manookin et al., 2008; Nobles et al., 2012). To confirm my results 

 

Figure 3.3 TRPV1 does not contribute to 
cone pathway signaling in GCs sampled 
in vitro. (A) More GC classes are sampled 
using the MEA in vitro than in vivo. A B and C 
show representative PSTHs for WT (Ai, Bi & 
Ci) and TrpV1-/- (Aii, Bii & Cii) OFF (A) ON (B) 
and ON/OFF (C) GCs in response to in vitro 
cone stimulating full-field luminance step (4.1 
log R*/rod/sec) above a light adapting 
background (2.6 log R*/rod/sec) (C) The 
proportions of each GC class was determined 
in each retinal piece (n=9) and the mean 
percent compared between WT (n=9) and 
TrpV1-/- (n=9). The largest proportion WT 
GCs sampled had ON responses (46%), then 
ON/OFF (37%) and the smallest proportion 
were OFF (17%). Similar proportions of WT 
and TrpV1-/- ON (47%), ON/OFF (39%) and 
OFF (15%) GCs were sampled in vitro. 
(ANOVA, p=0.71). In the absence of TRPV1, 
visual signal transmission was intact through 
the ON and OFF cone pathways to all GC 
classes sampled in vitro.  
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among other GC classes, I recorded from WT and TrpV1-/- GCs using the MEA in 

vitro, which likely samples more GCs classes than in vivo (Fig. 3.3; Anishchenko 

et al., 2010; Marre, et al., 2012; Li et al., 2015; Walch et al., 2015). I compared 

the proportions of GCs that responded under light adapted conditions to 4.1 log 

R*/rod/sec in WT (n=9 retina pieces from 5 mice) and TrpV1-/- (n=9 retina pieces 

from 5 mice) retina (Fig. 3.3). Similar to my in vivo results, the majority of WT 

GCs had ON (Fig. 3.3bi & d) responses and a smaller proportion had OFF (Fig. 

3.3ai & d). In contrast to my in vivo results, 37% of WT GCs were ON/OFF (Fig. 

3.3ci & d). TrpV1-/- and WT GCs had similar proportions of OFF, ON and 

ON/OFF (Fig. 3.3d, ANOVA p=0.71) responses. Full field luminance increments 

stimulated both the RF center (excitation) and surround (suppression) and the 

response represents the combination of their excitation and suppression (Kuffler 

1951). OFF and ON center GCs can gain excitatory responses of the opposite 

sign (ON and OFF, respectively) to full-field stimuli (Sagdullaev & McCall, 2005; 

Tikidji-Hamburyan et al., 2015). Despite this, cone signaling through the ON and 

OFF pathways occurs in similar proportions in WT and TrpV1-/- to full-field stimuli. 

The distributions of RF center classes were not affected by the absence of 

TRPV1. From this I concluded TRPV1 did not influence the primary cone 

pathway. To assess the contribution of TRPV1 to the ON and OFF pathways 

individually, I compared spontaneous and light evoked spiking activity in WT and 

TrpV1-/- ON and OFF GCs. The origin of the excitatory spiking responses in 

ON/OFF GCs is more complex and can be elicited by excitatory or inhibitory 
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input in response to full-field stimuli (Sagdullaev & McCall, 2005). Therefore, 

response properties of the ON/OFF GC are not discussed.  

2.3 TRPV1 enhances spontaneous activity in OFF GCs 

 I compared spontaneous activity in the dark and with a light adapting 

background. Due to the large numbers of GCs recorded on the MEA from few 

mice, α < 0.01 was considered significant for all comparisons (see Appendix I).  

The WT OFF GC mean spontaneous rates were similar under dark (6.7+1.3 

sp/sec) and light adapted (6.2+1.1 sp/sec; p=0.95) conditions (Fig. 3.4a), 

suggesting little modulation of spontaneous activity by light in OFF GCs. For 

each WT and TrpV1-/- OFF GC, I determined the change in spontaneous activity 

 

Figure 3.4 Spontaneous activity was lower in TrpV1-/- OFF GCs (Ai) WT OFF GC 
spontaneous rates were similar under dark (6.7+1.3 sp/sec) and light adapted (6.2+1.1 sp/sec; 
p=0.95) conditions. TrpV1-/- mean spontaneous rates also were similar under dark (2.7+0.7 
sp/sec) and light adapted (3.1+0.7 sp/sec; p=0.65) conditions. The spontaneous in the dark was 
subtracted from the spontaneous activity in light conditions. The distributions of the change in 
spontaneous activity along with the mean (dotted line) and three standard errors (shaded 
region) where determined for WT (-0.6+0.2) and TrpV1-/- (0.3+0.1) OFF GCs. The change in 
spontaneous activity was significantly larger in TrpV1-/- compared to WT (p=0.008). The 
spontaneous activity of the majority of WT OFF GCs did not change (68%), while 11% 
increased and 21% decreased (B). The proportions of TrpV1-/- OFF GC with changes in 
spontaneous activity was similar to WT (Chi square; p=0.04). The majority (60%) did not 
change, 30% increased and 10% decreased spontaneous activity in the light. TRPV1 did not 
contribute to the processes which maintained the similar spontaneous spiking rate in the light. In 
contrast, the mean spontaneous activity was decreased in TrpV1-/- OFF GCs in both dark and 
light adapted conditions compared to WT (C; p<0.0001). TRPV1 enhances the spontaneous 
activity in OFF GCs. 
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with a 2.6 Log R*/rod/sec background from dark. I plotted the difference in 

spontaneous activity in a histogram along with the mean difference (dotted line) 

plus and minus three standard errors of the mean (shaded region) for each 

genotype. I found populations of WT OFF GCs whose spontaneous activity 

increased, decreased, or remained the same in the light (Fig. 3.4b), however the 

mean change was zero (Fig. 3.4a). Figure 3.4a shows the distributions of the WT 

and TrpV1-/- OFF GCs also were similar under dark (2.7+0.7 sp/sec) and light 

adapted (3.1+0.7 sp/sec; p=0.65) conditions, however the mean change in 

spontaneous activity in the light was significantly increased compared to WT 

(0.3+0.1 sp/sec; p=0.008). This suggests TRPV1 may contribute to the 

processes underlying the spontaneous activity in OFF GCs. The proportions of 

TrpV1-/- OFF GCs that had increased or decreased spontaneous activity in the 

light compared to the dark was similar to WT (Fig. 3.4b; chi square p=0.04). 

Spontaneous activity of TrpV1-/- OFF GCs was significantly lower than WT at both 

adaptation levels (Fig. 3.4c; p<0.0001). TRPV1 enhances spontaneous activity in 

OFF GCs. Spontaneous activity is internally generated in OFF GCs which have 

sustained (sOFF) and transient (tOFF) responses (Margolis & Detwiler, 2007). 

Under light adapted conditions, OFF GC spontaneous activity is strongly inhibited 

by glycinergic cross-over inhibition (Margolis & Detwiler, 2007; Nobles et al., 

2012). The inputs shaping spontaneous activity in OFF GCs in the absence of 

light is not well known, however cross-over inhibition from the AII may continue to 

drive much of the inhibitory synaptic input to the OFF GC (Murphy and Rieke, 

2008). Lower spontaneous activity in the TrpV1-/- most likely represents increased 
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inhibition on OFF GCs in both conditions. The following could explain the 

difference: 

 1. TRPV1 could enhance inhibition onto AIIs or other cross-over ACs, 

which make synaptic connections with OFF GCs. In the absence of TRPV1, the 

AC becomes more active and inhibits the OFF BCs and GCs more. If this were 

true, the lack of transmission through the primary rod pathway would have to 

come from increased inhibition of the RBC 

 2. TRPV1 could inhibit the signal from the ON pathway to the cross-over 

AC. In the absence of TRPV1, ON input to the AC is enhanced and so is cross-

over inhibition. The latter is inconsistent with lack of signal from the primary rod  

 

 

Figure 3.5 Spontaneous activity is lower in TrpV1-/- ON GCs and do not increase with light 
(A) WT ON GC spontaneous rates were higher under light adapted conditions (4.3+0.37 sp/sec) 
compared to dark (3.0+0.32sp/sec; paired t-test p<0.0001) conditions. In contrast, TrpV1-/- ON 
GC mean spontaneous rates were similar under dark (2.0+0.3 sp/sec) and light adapted (2.3+0.3 
sp/sec; paired t-test p=0.32) conditions. The spontaneous rate in the dark was subtracted from 
the spontaneous rate in light conditions. The distributions of the change in spontaneous activity 
along with the mean (dotted line) and three standard errors (shaded region) where determined for 
WT (1.4+0.3) and TrpV1-/- (0.4+0.2) ON GCs. The change in spontaneous activity was 
significantly larger in WT compared to TrpV1-/- (p=0.0009). The spontaneous activity of half of WT 
ON GCs did not change (50%), while 34% increased and 16% decreased in light (B). The 
proportions of TrpV1-/- OFF GC with changes in spontaneous activity was lower than WT (Chi 
square; p=0.0002). The majority (69%) did not change, 24% increased and 7% decreased 
spontaneous activity in the light. TRPV1 enhanced the ON GC change in spontaneous activity to 
light. The mean spontaneous activity was decreased in TrpV1-/- ON GCs in both dark and light 
adapted conditions compared to WT (C; p<0.0001). TRPV1 enhances the spontaneous activity in 
ON GCs. 
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pathway (Nobles et al. 2012). TRPV1 activity may affect the dark contributing AC 

more than the cross-over AC. Alternatively, if TRPV1 resides in OFF GCs, it may 

affect the spiking activity directly. 

 3. TRPV1 enhances glutamate release from OFF BCs. In the absence of 

TRPV1, excitatory input to the OFF GC is decreased and spontaneous activity is 

decreased. If this were true, TRPV1 may be regulating inhibition to the OFF BC. 

This would likely be through serial inhibition of another AC, which provides 

feedback or feed forward inhibition to the OFF BC or GC.  

2.4 TRPV1 enhances spontaneous activity in ON GCs 

  I made similar comparisons of the spontaneous activity in WT and TrpV1-/- 

ON GCs. The WT ON GC mean spontaneous rates increased with light 

adaptation (Fig 3.5; p=0.95), consistent with previous publications (cat- Barlow 

and Levick, 1969; mouse- Sagdullaev & McCall, 2005; Zaghloul et al., 2003). 

Figure 3.5a shows the distributions of the change in spontaneous activity for WT 

and TrpV1-/- ON GCs. I found populations of WT ON GCs whose spontaneous 

activity increased, decreased, or remained the same in the light (Fig. 3.5a & b). 

Among the WT ON GCs, 34% had increased spontaneous activity in 2.6 log 

R*/rod/sec light conditions compared to dark. A minor population (16%) had 

decreased spontaneous activity, and 50% had no change (Fig. 3.5b). In contrast, 

the mean spontaneous activity of TrpV1-/- ON GCs were similar under dark 

(2.0+0.3 sp/sec) and light adapted (2.3+0.3 sp/sec; paired t-test p=0.65) 

conditions. The mean change in spontaneous activity in the light was significantly 

lower compared to WT (Fig. 3.5a; p<0.0001). There was no change in 
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spontaneous activity under light adapted conditions in 69% of TrpV1-/- ON GCs 

and the proportions of TrpV1-/- ON GCs that had increased or decreased 

spontaneous activity in the light compared to the dark was lower than WT (Fig. 

3.5b; Chi square p=0.0002). TRPV1 is required for light induced modulation of 

spontaneous activity in ~20% of ON GCs. Spontaneous activity of TrpV1-/- ON 

GCs was significantly lower than WT at both adaptation levels (Fig. 3.5c; ANOVA 

p<0.0001). TRPV1 enhances spontaneous activity in ON GCs.  

 Spontaneous activity in ONα GCs is driven by glutamate release from ON 

CBCs (Massey et al., 1983; Zaghloul et al., 2003; Margolis & Detwiler, 2007). In 

the dark, spontaneous glutamate release and ON GC spike rate is low. Under 

light adapted conditions, glutamatergic input and spiking rate increases. Inhibition 

to the ONα GC plays little role in shaping spontaneous activity (Margolis & 

Detwiler, 2007). My data shows that spontaneous activity in ~50% of WT ON 

GCs and ~30% of TrpV1-/- were modulated by light (Fig. 3.5b). In the absence of 

TRPV1, equal proportions (~10%) of ON GCs that increased or decreased 

spontaneous activity with light lost light modulation. Also the mean spontaneous 

rates were lower under dark and light adapted conditions. This suggests TRPV1 

may regulate tonic inhibition to the ON BC or ON GC. GABAergic inhibition to 

GABAc receptors on ON CBCs decreases spontaneous glutamate release to ON 

GCs (Sagdullaev et al., 2006). Also, glycine regulates ON GC spontaneous 

activity through serial inhibition (Nobles et al., 2012). TRPV1 may play a role in 

glycinergic serial inhibition of GABAc feedback inhibition. In this case, the 

absence of TRPV1 tonically disinhibits the GABAergic feedback AC, leading to 
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increased GABA release onto the ON CBC and subsequent decreased 

glutamate release from the ON CBC. Alternatively, TRPV1 may regulate 

inhibition to the ON GC directly or, if TRPV1resides in ON GCs, it may regulate 

spiking activity there. In summary, the lower spontaneous activity in the absence 

of TRPV1 may be the result of: 

1. Decreased tonic glutamate release from ON CBCs. 

2. Increased tonic inhibition to the ON GCs. 

3. Changes in the ON GCs that decreased the spike rate.  

I next assessed light evoked spiking responses address each of these possible 

roles for TRPV1. Because spontaneous activity was different between WT and 

TrpV1-/- and changes with stimulus conditions, spontaneous activity was 

subtracted from all light evoked responses.   

2.5 TRPV1 prolongs the duration of ON and regulates duration in OFF GC 

responses in vitro. 

In the absence of TRPV1, rod mediated signal through the RBC-AII AC 

circuit is disrupted, while cone mediated signal to OFF and ON GCs is 

maintained. Within OFF and ON cone pathway, there are sustained and transient 

temporal parallel pathways that culminate in GC responses to the onset of a  
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stimulus (transient) or its maintained presence (sustained). I examined the 

sustained or transient pathway by comparing their responses in WT and TrpV1-/- 

under cone pathway mediated luminance conditions; a 4.1 log R*/rod/sec 

luminance increment (5 s) above a 2.6 log R*/rod/sec background. Responses to 

this stimulus paradigm were analyzed for the remainder of the in vitro 

comparison. I found that almost half of WT OFF GCs within retinas had transient 

responses (Fig. 3.6b; tOFF; 47%). The proportions of TrpV1-/- tOFF GCs were 

similar to WT (Fig. 3.6b; 64%; p=0.25). I conclude that TRPV1 does not directly  

 

Figure 3.6 OFF response durations were 
prolonged inTrpV1-/- tOFF GCs to photopic 
stimuli (A) Representative PSTHs of WT 
(n=49) and TrpV1-/- (n=48) transient OFF 
(tOFF) GCs. (B) The percent of transient 
responses among OFF GCs was determined in 
WT (n=9) and TrpV1-/- (n=9) retinal pieces. The 
mean percent of tOFF GCs per retinal piece 
was similar between WT (47+12%) and TrpV1-

/-  (64+8%, p=0.25) retinas. (C) The majority of 
WT tOFF GCs had durations <2s to the offset 
of 4.1 (n=40, 81%) log R*/rod/sec stimulation 
(B) Nineteen percent of WT tOFF GCs had 
response durations 3>4s (n=9). Twenty-four 
(51%) TrpV1-/- tOFF GCs had durations <2s to 
the offset of 4.1 log R*/rod/sec stimulation. 
Similar to WT, 28% (n=13) of TrpV1-/- tOFF 
GCs had response durations 3>4s. In contrast 
to WT, 21% (n=11) ofTrpV1-/- tOFF GCs had a 
response phenotype not observed in WT. 
These GCs responded for 2>3 s (arrow). (C) 
TrpV1-/- tOFF mean response durations were 
greater than WT tOFF GCs (p<0.01). 
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regulate temporal kinetics of OFF GCs that match their response to stimulus 

duration.  

  Among the WT tOFF GCs, there were two distinct populations based on 

response duration. Out of 49 WT tOFF GCs 81% had responses shorter than 2 s 

and the remaining 19% had responses between 3 and 5 s (Fig. 3.6c). No WT 

OFF GCs had responses 2 > 3 s. A smaller proportion of TrpV1-/- tOFF GCs 

(51%) than WT had responses shorter than 2 s (Fig. 3.6c). Similar to WT, 28% of 

TrpV1-/- tOFF GCs had response durations between 3 and 5 s. The remaining 

21% of TrpV1-/- tOFF GCs had responses 2 > 3 s (Fig. 3.6c arrow), which was 

 

Figure 3.7 OFF response durations were 
prolonged inTrpV1-/- tOFF GCs to photopic 
stimuli (A) Representative PSTHs of WT (Ai; 
n=88) and TrpV1-/- (Aii; n=185) transient ON 
(tON) GCs. (B) The percent of transient 
responses among ON GCs was determined 
in WT (n=9) and TrpV1-/- (n=9) retinal pieces. 
The mean percent of tON GCs per retinal 
piece was larger in TrpV1-/- (74+5%) 
compared to WT (43+9%, p=0.008) . (C) All 
WT and TrpV1-/- tON GCs had durations <2s 
to the onset of 4.1 log R*/rod/sec stimulation. 
TrpV1-/- tON mean response durations were 
similar to WT tON GCs (p=0.76). 
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not a phenotype seen in WT. The mean response duration was longer in TrpV1-/- 

tOFF GCs compare to WT (Fig. 3.6c; p=0.01). From this I conclude that TRPV1 

regulates response durations to cone mediated signals in ~21% of tOFF GCs. 

There are ~20% more tOFF GCs sampled in TrpV1-/- compared to WT. That is 

not a statistically significant difference, however I cannot determine whether 

TRPV1 prolongs or shortens the response in this small population of OFF GCs.  

Figure 3.7a shows representative PSTHs of WT and TrpV1-/- transient ON 

(tON) GCs. Among the WT ON GCs 43% within retinas had transient responses 

(tON) at 4.1 log R*/rod/sec. In contrast to TrpV1-/- OFF GCs, TrpV1-/- ON GCs 

were more transient than WT (Fig 3.7b; 74%; p=0.008). TRPV1 increases the 

response durations to cone mediated ON signals in ~31% of ON GCs and in 

~54% of ON GCs that have sustained responses (sON). I conclude that TRPV1 

is required to regulate temporal kinetics of ON GCs that match their response to 

stimulus duration.  

WT tON GCs, had response duration <1.7 s with mean 0.71 s. The 

distribution and mean of the TrpV1-/- tON GC response durations were similar to 

WT (Fig 3.7c; p=0.76). I could not determine the specific sON GCs that have 

shortened durations in the absence of TRPV1 by their response durations or 

other response properties (shown later). In order to make direct comparisons 

between similar GC classes, ON GCs were combined and compared as one 

functional class. 

2.6 TRPV1 contributes to the maintained response of OFF and ON GCs 
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I compared light responses in cone mediated luminance conditions 

between WT and TrpV1-/- ON and OFF GCs to determine if TRPV1 modulates 

response properties. Light responses are composed of a transient increase in 

spike rate, followed by a maintained response that returns to prestimulus 

baseline spiking at variable times corresponding to stimulus duration.  

The transient portion of the GC response to a full- field stimulus is shaped 

primarily from the excitatory inputs of the presynaptic BCs with some modulation 

Figure 3.8 Maintained response rates were increased in TrpV1-/- tOFF GCs compared to WT. 
(Ai) The proportions of tOFF GCs were similar between WT and TrpV1-/- OFF GCs. I compared 
the peak amplitude (i) and maintained rates (ii; corrected for spontaneous activity) in WT and 
TrpV1-/- sOFF (A) and tOFF (B) GCs. Amplitudes (Ai) were similar between WT (39.1+3.3) TrpV1-/- 

(42.8+3.8) sOFF GCs (p=0.37). (Aii) Relative maintained values also were similar between WT 
(2.6+0.4) TrpV1-/- (2.1+0.5) sOFF GCs (p=0.46). (Bi) Amplitudes were similar between WT 
(33.3+2.6) TrpV1-/- (-0.1+0.1) tOFF GCs (p=0.001). (Bii) The mean relative maintained value of 
TrpV1-/- tOFF GCs (0.9+0.3) was larger than WT- (-0.1+0.1; p<0.001). TRPV1 does not contribute 
to the processes shaping the peak of the response, but regulates the maintained portion and 
duration of response of OFF GCs.  
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by AC mediated inhibition (Eggers & Lukasiewicz, 2011). Thus, an analysis of 

peak response can help to define if TRPV1 plays a role in modulation of the BC 

input to each GC type. The maintained portion of the response is likely shaped 

by a combination of excitatory and inhibitory inputs, with GABAc mediated 

inhibition modulating ON GC maintained activity. I assessed the peak and 

maintained rates in response to light to determine if response properties were 

affected by the absence of TRPV1. Spontaneous activity was subtracted from 

peak and maintained rates because of the difference between WT and TrpV1-/-. 

The corrected peak was referred to as the amplitude (Fig. 3.8) and the corrected 

maintained response was referred to as the relative maintained value in all 

subsequent analysis (Fig. 3.8aii & bii). Sustained GCs had positive relative 

maintained value, while transient GCs had relative maintained values less than, 

equal, or greater than zero. Among the transient GCs, relative maintained values 

less than zero indicate suppression of the response below spontaneous activity, 

which is referred to as the peri-stimulus suppression (PSS; Fig. 3.8bii). 

 I compared the peak response amplitude in WT and TrpV1-/- OFF GCs. 

The distribution and mean of TrpV1-/- sOFF GC amplitudes was similar to WT 

(Fig. 3.8ai; p=0.37). WT and TrpV1-/- sOFF GC relative maintained values also 

were similar (Fig. 3.8aii; p=0.46) suggesting TRPV1 does not contribute to the 

peak or maintained response of sOFF GCs. The distribution and mean of TrpV1-/- 

tOFF GC amplitudes was similar to WT (Fig. 3.8bi; p=0.17). From this, I conclude 

that TRPV1 does not contribute to the peak response of OFF GCs, which is 

shaped by glutamate release from OFF BCs and the release of cross-over 
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inhibition from the ON pathway (Margolis & Detwiler, 2007; Murphy & Rieke, 

2008). 

The distribution of the relative maintained values from WT tOFF GCs 

shows that 51% (n=25) had a PSS. A similar proportion of TrpV1-/- tOFF GC 

(42%; Fishers exact test, p=0.42) also had a PSS. However, the distribution of 

the TrpV1-/- tOFF GCs relative maintained rates were positively skewed 

compared to WT and the mean (0.90 sp/sec above spontaneous activity) was 

significantly larger than WT (0.1 sp/sec below spontaneous activity; Fig. 3.8bii; 

p=0.001). The latter result is consistent with the longer duration of response in 

21% of TrpV1-/- tOFF GCs. As mentioned in that section, I cannot determine 

whether TRPV1 suppresses the maintained response and shortens duration in a 

small population of tOFF GCs, or enhances the maintained response and 

prolongs the duration in a population of sOFF GCs. Either way, the processes 

shaping the maintained response occurred after the peak, which was not affected 

by the absence of TRPV1. TRPV1 likely regulates feedback or feedforward 

inhibition to OFF BCs or GCs. The mechanisms shaping the GC maintained 

response are not fully understood. There is evidence suggesting that different 

types of OFF CBCs release glutamate in transient or sustained manners 

depending axon stratification centrally or proximally in the IPL respectively (Euler 

et al., 2015). Also, ACs modulate the temporal properties of OFF GCs directly. In 

order to affect the maintained response and not the peak, the kinetics of 

inhibitory receptors TRPV1 is affecting must be slowly activating. The following 

circuits are likely candidates:  
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1. OFF CBCs receive GABAergic and, to a larger extent, glycinergic light-evoked 

inhibition. Prolonged inhibitory input which affects the prolonged release of 

glutamate is shaped by both glycine receptor and GABAc receptor mediated input 

(Eggers & Lukasiewicz, 2011). However, glycinergic input decreases both the 

transient and maintained release of glutamate from the OFF CBC (Ivanova et al., 

2006). Therefore, TRPV1 may be regulating GABAc inhibition to OFF CBCs. 

While OFF CBCs have slow GABAc mediated feedback inhibition, GABAc did not 

affect the maintained response of tOFF or sOFF GCs sampled in optic nerve 

recordings (Sagdullaev et al., 2006). If TRPV1 were regulating GABAc mediated 

input, the maintained rates of OFF GCs in the optic nerve recordings should be 

similar in WT and TrpV1-/-.  

2. Glycinergic input to the OFF GC or BC enhances the peak and maintained 

spiking responses of OFF GCs, likely through cross-over inhibition (Nobles et al., 

2012). TRPV1 may enhance glycinergic input to a population of OFF BCs or 

GCs. Alternatively, TRPV1 may regulate serial inhibition of the ACs which 

regulate OFF GC spiking activity.  

3. TRPV1 may be in OFF GCs, or affect properties of the OFF GC directly, which 

contribute to the spontaneous activity. My data from the next chapter shows 

TRPV1 is expressed in a subset of OFF GCs.  

 I made similar comparisons of the amplitudes (Fig. 3.9ai) and relative 

maintained rates (Fig. 3.9ai) in WT and TrpV1-/- ON GCs. The distributions and  
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means WT and TrpV1-/- ON GC amplitudes were similar (Fig. 3.9ai; p=0.43). 

From this I concluded that TRPV1 does not contribute to the peak response of 

ON GCs. The majority of WT ON GCs had sustained responses and positive 

relative maintained values with a mean of 2.5 (Fig. 3.9aii). Only 12% of WT ON 

GCs (n=27) had a PSS. In contrast, significantly more TrpV1-/- ON GC had a 

PSS than WT (Fig. 3.9aii; 32%; Fishers exact test, p<0.0001). The amplitude of 

the PSS was not compared because the value is relative to spontaneous activity, 

which is significantly lower in TrpV1-/- ON GCs compared to WT. The majority of 

TrpV1-/- ON GCs were transient and had relative maintained values less than or 

equal to zero. The mean TrpV1-/- tON GCs relative maintained value (0.16) was 

lower than WT (Fig. 3.9aii; p<0.0001). From this, I conclude that TRPV1 does not  

 

Figure 3.9 Maintained response rates were lower in TrpV1-/- ON GCs compared to WT. 
(Ai) I compared the peak amplitude (i) and maintained rates (ii; corrected for spontaneous 
activity) in WT and TrpV1-/- ON GCs. Amplitudes (Ai) were similar between WT (23.9+0.8) 
TrpV1-/- (23.5+0.9) ON GCs (p=0.43). (Aii) Relative maintained values were larger in WT 
(2.5+0.3) compared to TrpV1-/- (0.2+0.3) ON GCs (p<0.0001). TRPV1 does not contribute to 
the processes shaping the peak of the response, but regulates the maintained portion and 
duration of response of ON GCs.  
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contribute to the peak response, but enhances the maintained response of ON 

GCs.  

 The maintained responses in ON GCs is determined by glutamate release 

from ON BCs and shaped by inhibition. In the absence of TRPV1, inhibition to 

 

Figure 3.10 TrpV1-/- ON GC were more transient than WT in vivo. (A) Representative PSTHs 
for WT (i) and TrpV1-/- (ii) tOFF (A) and tON (B) GCs in response to a spot whose diameter 
matched the receptive field center are shown. Background (mean) luminance was 4.0 log 
R*/rod/sec. WT (Ai) and TrpV1-/- (Aii) tOFF GCs had a transient peak response to a dark spot (3.0 
log R*/rod/sec) which returned to spontaneous rates within 1.7s from stimulus onset. (B) The 
majority of WT OFF GCs (79%) sampled in vivo were sustained. This is different than in vitro 
where the proportions of WT sOFF and tOFF GCs were approximately equal. Consistent with in 
vitro results, TrpV1-/- had similar proportions of sOFF and tOFF GCs as WT (Fisher’s exact test, 
p=0.89). WT (Ci) and TrpV1-/- tON (Cii) GCs had a transient peak response which returned to 
spontaneous rates (Ci; solid line) within 1.7s from stimulus onset in response to a light spot (4.7 
log R*/rod/sec) whose diameter matched the receptive field center. WT tON GCs continued to 
spike at spontaneous rates for the duration of the stimulation (Ci; dotted line). After the transient 
peak, the meanTrpV1-/- tON GC spike rate was lower than spontaneous for 1 to 3 s, then returned 
to spontaneous levels before stimulus offset (Cii). WT and TrpV1-/- sON and sOFF GCs had a 
transient peak followed by a maintained response with spike rates greater than spontaneous 
levels for the entire duration of the stimulation. (D) Almost all of WT ON GCs (97%, n=287) 
sampled in vivo were sustained. Consistent with in vitro results, TrpV1-/- ON GCs were more 
transient (60%, n=23) than WT (3%, n=10; Fisher’s exact test, p<0.0001). TRPV1 prolongs the 
duration of ON GCS sampled in vivo.  
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the ON CBC or ON GC is increased. The suppression of the response occurs 

after the transient peak, suggesting TRPV1 is likely regulating feedback or 

feedfoward inhibition. Also, the kinetics of the inhibitory receptors must be slow. 

TRPV1 may be acting in the following ways: 

1. GABAc mediated feedback inhibition of ON BCs decreases the maintained 

response of ON GCs (Sagdullaev et al., 2006; Eggers and Lukasiewicz, 2011). 

TRPV1 may inhibit the GABAergic AC providing the feedback inhibition to the ON 

BC. In the absence of TRPV1, the feedback AC is disinhibited and releases more 

GABA to GABAc receptors in ON BCs (Nobles et al., 2012).  

2. Glycinergic serial inhibition enhances the peak and maintained rates of ON 

GCs in optic nerve recordings (Nobles et al., 2012). TRPV1 may enhance the 

tonic release of glycine from ACs which provide serial inhibition to GABAergic 

ACs. 

3. TRPV1 in ON GC is regulating the spiking activity there. For this to hold true, 

TRPV1 would have to be in nearly all ON GCs. My data (investigated in the next 

chapter) does not support this hypothesis. TRPV1 resides in a small subset of  

ON GCs.  

  

2.7 TRPV1 activity prolonged duration of responses in the RF center of ON 

GCs in vivo 

  To determine if TRPV1 contributes Sometimes I used a 5 s stimulus, 

similar to the in vivo recording (WT n=10 & TrpV1-/-n=59) of the stimulus (Nobles 

et al. 2012; Fig. 3.10a & c). The intermediate durations (>2 < 5 s) observed in 
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populations of OFF GCs in vitro were not observed in vivo. The majority of WT 

OFF GCs sampled in vivo had sustained responses (Fig. 3.10b). There were 

similar proportions of TrpV1-/- sOFF or tOFF GCs compared to WT (Fig. 3.10b; 

Fisher's exact test, p=0.89). Similar to in vitro results, there was a larger  

 

Figure 3.11 WT sustained GC 
spontaneous activity was 
greater than TrpV1-/- in vivo 
(A) Consistent with in vitro 
results, spontaneous rates to a 
light background (4 log 
R*/rod/sec) were greater in WT 
sOFF GCs (7.1+0.4 sp/sec) 
than TrpV1-/- sOFF GCs 
(4.8+0.6 sp/sec; p=0.03). (B) 
Spontaneous rates were similar 
between WT tOFF GCs 
(5.8+0.6 sp/sec) and TrpV1-/- 

tOFF GCs (4.6+1.3 sp/sec; 
p=0.52). (C) Spontaneous rates 
were greater in WT ON GCs 
(29.8+0.8 sp/sec) than TrpV1-/- 

sON GCs (12.3+2.3 sp/sec; 
p<0.0001). 

 

proportion of TrpV1-/- tON GCs than WT (Fig. 3.10d; Fisher's exact test 

p<0.0001). Nearly all (287 out of 297) ON GCs sampled in the WT optic nerve 

recordings were sustained. In contrast, 60% of TrpV1-/- ON GCs were transient 

with response durations ranging from 0.3 to 1.7s. The larger proportion of TrpV1-

/- tON GCs than WT in vivo is consistent with the idea that the absence of TRPV1  
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alters the sustained 

response in a class of 

sON GC to a transient 

response. This population 

comprised ~37% of ON 

GCs sampled in vitro and 

~55% of ON GCs sampled 

in vivo. Thus, TRPV1 

enhanced the maintained 

portion of the response 

and subsequent duration 

in the majority of ON GCs 

sampled in vivo. The 

aberrant transient 

response was evoked by 

stimuli matching the RF 

center (in vivo) and full-

field stimuli which evoked 

more of the inhibitory 

surround (in vitro). Thus, 

TRPV1 modulated center response properties enhanced the maintained 

response in ON GCs.   

 

Figure 3.12 TrpV1-/- sOFF GCs peak and maintained 
firing rates were lower than WT (Ai) Amplitudes were 
greater in WT sOFF GCs (52.5+2.2 sp/sec) than TrpV1-/- 
sOFF (31.9+4.0 sp/sec) to spots whose diameter matched 
the RF center (Aii) WT sOFF amplitudes showed center 
summation; amplitudes increased with spot diameter up to 
the spot which matched the RF center. TrpV1-/- sOFF 
amplitudes also had center summation and were lower than 
WT to all spots which stimulated the RF center (p<0.0001). 
(Bi) Spontaneous activity was subtracted from the 
maintained response rate (0.4 to 2 s) to obtain the relative 
maintained value. The relative maintained value was larger 
in WT sOFF GCs (7.4+0.4 sp/sec) than TrpV1-/- (3.4+ 0.3 
sp/sec; p<0.0001) to a dark spot that matched the RF 
center. (Bii) WT sOFF relative maintained values showed 
center summation and TrpV1-/- sOFF relative maintained 
values also had center summation and were lower than WT 
to all spots that stimulated the RF center (p<0.0001). (C) 
The mean peak RF center diameter was similar between WT 
(18.6+0.7 degrees of visual angle) and TrpV1-/- (22.9+2.8 
degrees visual angle; p=0.088) sOFF GCs.  
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2.8 TRPV1modulated excitatory properties of sustained OFF and ON GC 

receptive field centers in vivo  

 Spontaneous activity of WT sOFF and tOFF GCs and TrpV1-/- sOFF and 

tOFF GCs was similar. TrpV1-/- sOFF spontaneous activity (4.8+0.6 sp/sec) was 

lower than WT (Fig. 3.11a; p=0.03). WT (5.8+0.6 sp/sec) and TrpV1-/-  tOFF 

spontaneous activity (4.6+1.3 sp/sec) was similar (Fig. 3.11b; p=0.52). TrpV1-/- 

ON spontaneous activity (12.3+2.3 sp/sec) was lower than WT (Fig. 3.11c; 

29.8+0.8 sp/sec; p<0.0001). Consistent with in vitro results, TRPV1 contributes 

to processes driving spontaneous activity in sustained OFF and ON GCs.  

WT sOFF GCs had greater amplitudes than TrpV1-/-(p=0.003) to spots 

whose diameter matched the RF center. This was consistent across all smaller 

spots as well (Fig. 3.12ai & aii). Both WT and TrpV1-/- sOFF GCs showed center 

summation; amplitudes increased with spot diameter up to the spot which 

matched the receptive field center. This differed from my in vitro results where I 

did not find a difference in sOFF amplitude between genotypes using a full-field 

photopic stimulation. To determine if this resulted from the difference in the 

stimulus (full-field vs spot confined to the RF center), I compared the WT sOFF 

amplitude to the largest spot. Again, WT sOFF amplitude was larger than TrpV1-/- 

(p=0.01; data not shown). Thus the difference was more likely to represent the 

differences in the cell classes that comprise sOFF cells in vivo and in vitro. 

From this I concluded that TRPV1 activity enhances the excitatory peak 

amplitude to RF center stimulation in the population on sOFF GCs sampled in 

vivo. In the absence of TRPV1, this enhancement could take the form of  
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increased inhibition on 

the OFF GC or 

decreased glutamate 

release from the OFF 

BCs. The mean RF 

center diameter of 

TrpV1-/- sOFF GCs 

was similar to WT 

(Fig. 3.11c; p=0.088); 

TRPV1 did not 

contribute to RF 

spatial tuning of the 

peak response. This 

suggests both center 

and surround 

response properties 

contributing to the 

peak were affected 

equally. This is 

indicative of increased 

tonic suppression of 

the sOFF GC sampled in vivo. TRPV1 may regulate disinhibition to the OFF GC. 

Otherwise TRPV1 by be affecting the spiking activity in the OFF GC directly.  

 

Figure 3.13 TrpV1-/- tOFF GC peak and maintained firing rates 
were similar to WT (Ai) Amplitudes were similar in WT (29.4+2.7 
sp/sec) and TrpV1-/- tOFF GCs (40.5+14.0 sp/sec; p=0.71) to 
spots whose diameter matched the RF center (Aii) WT tOFF 
amplitudes showed center summation. TrpV1-/- tOFF amplitudes 
had center summation and were similar with WT to all spots 
which stimulated the RF center (p=0.85). (Bi) Spontaneous 
activity was subtracted from the maintained response rate (0.4 to 
2 s) to obtain the relative maintained value. The mean relative 
maintained value was similar in WT (1.6+0.3 sp/sec) and TrpV1-/- 

tOFF GCs (1.6+0.3 sp/sec; p=0.93) to a dark spot that matched 
the RF center. (Bii) WT tOFF relative maintained values were 
similar to all spots which stimulated the RF center (p=0.84) and 
TrpV1-/- tOFF relative maintained values were similar to WT 
(p=0.73). (C) Mean peak RF diameters were similar between WT 
(28.9+1.8 degrees of visual angle) and TrpV1-/- (19.7+2.6 degrees 
visual angle; p=0.058) tOFF GCs.  
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 The mean relative maintained value in WT sOFF GCs to spots whose 

diameter matched the RF center was 7.4+0.4 sp/sec and relative maintained 

value showed center summation, like the amplitudes. WT sOFF GCs mean 

relative maintained values in response to optimal RF stimulation was greater 

than TrpV1-/- sOFF GCs (3.4+0.3 sp/sec; p<0.0001). This was consistent across 

all spots that stimulated the RF center (Fig. 3.12bi & bii). TrpV1-/- sOFF relative 

maintained values had center summation as well. From this I concluded that 

TRPV1 activity enhances the transient and maintained center response in the 

population of sOFF GCs sampled in vivo. In the absence of TRPV1, the shapes 

of the amplitude and maintained ARFs were similar to WT (data not shown). 

TRPV1 may act to inhibit local inhibition to sOFF GCs or their OFF BC synaptic 

partners under light adapted conditions.  

 Amplitudes were similar between WT (29.3+2.7 sp/sec) and TrpV1-/- tOFF 

GCs (40.5+14.0 sp/sec; p=0.71) to spots whose diameter match the RF center 

(Fig. 3.13ai). This was consistent across all smaller spots as well (Fig. 3.13ai & 

aii). Both WT and TrpV1-/- tOFF GC amplitudes showed center summation 

(p<0.0001). The mean RF center diameter of TrpV1-/- tOFF GCs was similar to 

WT (Fig. 3.13c; p=0.06). From this I conclude TRPV1 did not contribute to the 

center response properties that shaped the peak amplitudes of tOFF GCs 

sampled in vivo.  

 Relative maintained values of WT tOFF GCs were constant regardless of 

spot diameter (Fig. 3.13bii; p=0.42). TrpV1-/- tOFF GC Relative maintained 

values were similar to WT with RF center stimulation (p=0.93) and this was  
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consistent across spot 

sizes within the RF 

center (Fig. 3.13bi & 

bii; p=0.36). In 

contrast, the 

maintained rates and 

response durations of 

the TrpV1-/- tOFF GCs 

recorded in vitro were 

larger than WT tOFF 

GCs. This difference 

between my in vivo 

and in vitro data was 

due to the contribution 

from a population 

(20%) of TrpV1-/- tOFF 

GCs with long 

response durations 

(2>5s), which were 

not observed in either 

genotype in vivo. I 

conclude that TRPV1 does not contribute to the maintained response in the 

population of tOFF GCs sampled in vivo.  

 

Figure 3.14 TrpV1-/- ON GC peak and maintained firing rates 
were lower than WT (Ai) Amplitudes were greater in WT ON 
GCs (47.9+1.2 sp/sec) than TrpV1-/- ON GCs (26.9+2.7; 
p<0.0001) to spots whose diameter matched the RF center (Aii) 
WT ON amplitudes showed center summation. TrpV1-/- ON 
amplitudes also had center summation (p<0.0001) and were 
lower than WT to all spots which stimulated the RF center 
(p<0.0001). (Bi) Almost all WT ON GCs were sustained and 
therefore had positive relative maintained values. The mean 
relative maintained value was larger in WT ON GCs (17.2+0.7 
sp/sec) than TrpV1-/- (4.7+ 1.3 sp/sec; p<0.0001) to a light spot 
that matched the RF center. This was consistent with the large 
proportion (55%) of tON GCs in TrpV1-/- (Bii) WT ON relative 
maintained values showed center summation (p<0.0001). In 
contrast, TrpV1-/- ON relative maintained values were constant 
regardless of spot size and were lower than WT to all spots which 
stimulated the RF center (p<0.0001). (C) RF diameters were 
similar between WT (21.6+0.7 degrees of visual angle) and 
TrpV1-/- (17.8+1.5 degrees of visual angle; p=0.052) ON GCs.  
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 WT ON GCs had greater amplitudes (47.9+1.2 sp/sec) than TrpV1-/- (Fig. 

3.14ai; 26.9+2.7, p<0.0001) to spots whose diameter matched the RF. This was 

consistent across all spots smaller than the RF center (Fig. 3.14aii). WT and 

TrpV1-/- ON GCs showed center summation (Fig. 3.14aii). These results were 

different than the in vitro results; there was no difference in TrpV1-/- ON peak 

amplitude compared to WT to photopic full-field stimuli. WT ON GC amplitude 

also was larger than TrpV1-/- in response to the largest spot (Fig. 3.14aii; 

p<0.0001; data not shown), which evokes surround suppression. From this I 

concluded that TRPV1 enhances the peak response to center stimulation in the 

population of ON GCs sampled in vivo. The shape of the peak ARF was similar 

between genotypes (data not shown) and RF diameters were similar in WT and 

TrpV1-/- ON GCs (Fig. 3.14c; p=0.052), which indicates TRPV1 modulates center 

and surround response properties that shaped the peak in similar proportions. 

TRPV1 may modulate local inhibition in the RF center to the ON GC or ON BCs 

(Nobles et al., 2012).  

 Almost all WT ON GCs recorded in vivo had sustained responses. The 

mean relative maintained value in response to a spot whose diameter matched 

the RF center was 17.2 (+0.7) sp/sec above spontaneous activity (Fig. 3.14bi). 

The relative rate in WT ON GCs showed center spatial summation; relative 

maintained values were lower to smaller spots (Fig. 3.14bii). The mean relative 

maintained value in response to optimal RF stimulation in TrpV1-/- ON GCs (4.7+ 

1.3 sp/sec) was lower than WT (Fig. 3.14bi; p<0.0001). This was consistent 
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across all spot sizes (Fig. 3.14bii; p<0.0001). Interestingly, the ARF of the TrpV1-

/- ON relative maintained values across spot size was flat rather than the inverted  

 

Figure 3.15 TrpV1-/- tON and sON GC maintained firing rates had inverse ARFs (Ai) 
Relative maintained values were normalized to the value in response to a spot whose diameter 
matched the RF center and graphed as % of relative maintained value as a function of % of 
optimal spot matched to RF diameter. Like peak amplitudes, WT ON relative maintained 
values were spatially modulated (p<0.0001); rates increased proportionally with spot diameter 
and were greatest to a spot whose diameter matched the RF center. Spots larger than the RF 
center evoked surround suppression of the relative maintained values. The percent change in 
relative rates inTrpV1-/- sON GCs was similar to WT to all spot sizes (p=0.80). (Aii) TrpV1-/- tON 
relative maintained values in the aberrant TrpV1-/- tON GCs also were spatially modulated 
(p<0.0001), however modulation was the inverse of the WT (and TrpV1-/-) sON GCs 
(p<0.0001). Stars indicate difference from relative rate to spot matched to RF center (100%). 
Spots whose diameters were smaller than the RF center evoked larger relative rates than 
spots matched to the RF center. Minimum relative maintained values, which represent the 
largest suppression of the maintained response, were evoked by spots 50% larger than the RF 
center. Relative maintained values to spots larger than that were similar to RF center rate, 
indicating local inhibition suppressed maintained responses more than surround inhibition. (B) 
Stars indicate difference between tON and sON relative rates. Relative maintained values for 
TrpV1-/- sON and tON GCs were similar and positive (sustained) to spots whose diameters 
were 20% of the RF center. As spot size increased to RF center, TrpV1-/- sON relative 
maintained values increased and TrpV1-/- tON relative maintained values decreased. TrpV1-/- 

tON relative maintained value was negative, indicating PSS of the response below 
spontaneous activity, to spots whose diameters were >80% of the RF center. The ARF of the 
tON and sON GCs combined lacked spatial modulation.  
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U shape in the WT ON GCs, indicating that among all TrpV1-/- ON GCs, the 

maintained rates did not have center summation (Fig. 3.14bii). Taken together,  

my results suggested TRPV1 enhances spontaneous and light evoked spiking 

activity in the majority of ON GCs sampled in vivo.  

2.9 TRPV1 likely enhances serial inhibition of GABAc receptor mediated 

responses in ON BCs  

To investigate the absence of spatial summation in the relative rates of 

TrpV1-/- ON GCs, I normalized WT and TrpV1-/- ON GC relative maintained 

values to the value in response to a spot whose diameter matches the receptive 

field center. I compared the normalized values in TrpV1-/- sON and tON GCs  

individually to WT ON GCs. TrpV1-/- sON GCs had a similar ARF to WT; the 

relative maintained values had similar spatial properties (Fig. 3.15ai). Relative 

maintained values in the aberrant TrpV1-/- tON GCs were spatially modulated 

(Fig. 3.15aii; p<0.0001). However, the shape of the TrpV1-/- tON area response 

function was opposite that of the of the WT ON GCs (p<0.0001). Spots  

with diameters that were smaller than the RF center evoked larger relative 

maintained values than spots matched to the RF center (Fig. 3.15aii).  

Minimum relative rates, which represent the largest suppression of the 

maintained response, were evoked by spots 50% larger than the RF center.  

Relative maintained values to spots larger than that were similar to RF center 

rate, indicating local inhibition suppressed maintained responses. Surround 
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suppression did not increase the total suppression of the relative maintained 

value (Fig. 3.15aii). The combination of the inverted U shaped ARF in the TrpV1-/-  

  
Figure 3.16 TrpV1-/- tON GC peri-
stimulus suppression had center 
summation and surround 
suppression. (A) In the majority of 
TrpV1-/- tON GCs (80%) there was a 
transient increase in the spiking rate in 
response to light spots whose 
diameter matched the RF center. One 
sec after stimulus onset, the spike rate 
was suppressed below spontaneous 
activity. The peri-stimulus suppression 
continued for one to three seconds, 
then returned to spontaneous rates 
before the offset of the five sec 
stimulus. The area of the peri-stimulus 
suppression, shaded red, was 
quantified as a function of spot 
diameter in relation to the RF center 
diameter (B) There was peri-stimulus 
suppression to spots whose diameters 
were > 60% of the RF center. 
Suppression increased proportionally 
with spot diameter. Spots whose was 
50>100% larger than RF center 
evoked the maximum suppression. 
Suppression area decreased to larger 
spots. Thus, the ACs modulating the 
PSS receive surround inhibition. 

 

sON GCs and the U shaped in the TrpV1-/- tON formed a flat function when all 

ON GCs were compared together (Fig. 3.15b). The suppression in the response 

to spots slightly larger than optimal suggests that in the absence of TRPV1 there  

is an increase in local inhibition either onto a population of sON GCs or the 

presynaptic ON CBCs. Furthermore, the inhibition shaping the PSS of the  

maintained response had center surround spatial properties. I investigated this 

further by assessing the spatial modulation of the PSS.   
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Figure 3.17 Possible explanation for the peri-stimulus suppression of maintained rates 
in TrpV1-/- ON GC (A) In WT, ON CBCs, which were presynaptic to ON GCs, depolarized to a 
light spot in the ON RF center. The depolarization resulted in the release of glutamate to the 
ON GC and to a GABAergic AC which releases GABA on the GABAc receptor, which is located 
in the ON BC. The GABAergic AC likely provides surround suppression to the ON BC. A 
TRPV1 positive AC (likely glycinergic) tonically inhibits the GABAergic AC in light adapted 
conditions. In the absence of TRPV1, the GABAergic AC is disinhibited and GABAc mediated 
inhibition to the ON CBC is increased. The ultimate result would be the suppression of the 
maintained release of glutamate and subsequent maintained spiking response in ON GCs to 
center stimulation (B). A different GABAergic AC provides surround suppression to GABAA 
receptors on the ON GC. That AC would likely have transient glutamate release, resulting in 
transient surround suppression (B), which does not add to the suppression of the maintained 
response. With this prediction, the TRPV1 ON GCs which have transient center responses 
should have transient surround suppression to annular stimuli whose inner diameter matches 
the RF center. 
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In the majority of TrpV1-/- tON GCs (80%), there was PSS of the 

maintained response, which began directly after the transient peak with one to 

three sec duration (Fig. 3.16a). To investigate this aberrant PSS in TrpV1-/- ON 

GCs, I calculated the total area of the TrpV1-/- tON PSS in response to each spot 

size. I graphed the PSS area as a function of the percent of spot size relative to 

the spot whose diameter matched the RF center (Fig. 3.16b). I found little or no 

suppression in responses to spots < 40% of the optimal RF. Suppression 

appeared when spots were > 60% of the optimal RF and suppression increased 

with spot size. Spots that were 1.5 to 2 times larger than the optimal RF 

produced the largest suppression (Fig. 3.16b). Thus, the aberrant PSS which is 

generated in the absence of TRPV1 mediated input showed center summation 

and surround suppression, indicating the ACs mediating the local inhibition 

receive surround inhibition from other (likely wide-field) ACs. A circuit like this has 

been identified in the mouse. Medium field GABAergic ACs release GABA onto 

GABAc receptors located in ON BC terminals. In this way, ACs enhance the 

surround suppression of the ON BC to stimuli larger than the BC receptive field 

(Eggers & Lukasiewicz, 2010; Eggers et al., 2013; Moore-Dotson et al., 2015).  

Spiking GABAergic and glycinergic ACs serially inhibit the AC providing BC 

surround suppression. In the absence of TRPV1, surround suppression to the 

ON CBC is increased and glutamate release is decreased (Fig. 3.17a). Thus, in 

the TrpV1-/-, spot stimuli that are localized to the RF center of the BC (25 µm; 

Eggers & Lukasiewicz, 2010) would produce sustained release of glutamate from 

ON CBCs. Spots whose diameter activates the surround of the ON BC, but are 
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still smaller than the GC RF center, would suppress the maintained release of 

glutamate from the ON BC, and the maintained spiking response of the ON GC.  

 Surround suppression in the IPL arises from lateral feed-forward inhibition 

to BCs and GCs (Cook & McReynolds, 1998; Flores-Herr et al., 2001). Since  

activation of the GC surround does not enhance the PSS, a different GABAergic 

AC likely provides surround suppression to the ON GC. Surround suppression in  

ON GCs which have tON center responses in the absence of TRPV1 (Fig. 

3.17b). This suggests the surround suppression coming into the ON GC directly  

was transient and therefore did not add to the peri-stimulus suppression, which 

lasted for two to four sec. If my hypothesis were true, the surround suppression  

to the TrpV1-/- tON GCs would have been transient and thus not enhance the  

peri-stimulus suppression of the maintained response (Fig. 3.17b). I used annular 

stimuli to isolate the surround suppression to ON GCs and compared the 

suppression properties in TrpV1-/- tON and sON GCs to WT (Fig. 3.18). A larger  

percent of WT ON GCs (92%) had surround suppression than TrpV1-/- ON GCs 

(Fig. 3.18a; 62%, p=0.004), indicating TRPV1 enhanced surround suppression to  

 ON GCs. TRPV1 activity may enhance glutamate release from ON BCs outside 

the RF center of the ON GC, or may act directly on the wide-field AC responsible  

for surround suppression of ON GCs. As mentioned, the majority of WT ON GCs 

had sustained responses to RF center stimulation. Among these GCs, 

approximately half of them (56%) had transient surround suppression and the  

remainder had sustained surround suppression (Fig. 3.18bi). The majority of 

TrpV1-/- ON GCs had transient center responses (73%). As predicted, the  
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Figure 3.18 TRPV1 enhanced the maintained response in ON center GCs with transient 
surround suppression. (A) Annular stimuli were presented to ON GCs to evoke the surround 
suppression. A larger percent of WT ON GCs have surround suppression (92%) than TrpV1-/- 
ON GCs (62%; Fisher’s exact test, p=0.004), indicating TRPV1 enhanced the surround 
suppression to sON GCs. (Bi) Among the WT ON GCs with surround suppression, 93% had 
sON center responses; 56% had sON center responses with transient surround suppression, 
while 38% had sON center, sustained surround responses. Four tON center GCs had transient 
surround suppression (7%) (Bii) Among the TrpV1-/- ON GCs with surround suppression, the 
minority had sON center responses (27%) and those four sON center GCs had sustained 
surround suppression. The surround suppression was transient in all TrpV1-/- tON center GCs 
with suppression (73%). Therefore, the population of TrpV1-/- ON GCs with peri-stimulus 
suppression of the maintained response had transient surround suppression, consistent with 
my proposed model (Fig. 3.17) 

surround suppression in all TrpV1-/- tON GCs was transient (Fig. 3.18bii). TrpV1-/-  

sON GCs had sustained surround suppression if it was present (four out of nine). 

While this suggested the center maintained response within a specific GC class 

was enhanced by TRPV1 activity, further experiments would be necessary to 
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confirm such a hypothesis. My attempts to locate such GCs among fluorescently 

labeled GC classes have been unsuccessful so far. 

 

III. Discussion 

3.1 TRPV1 modulates signaling through several retinal pathways 

 TRPV1 activity enhances spontaneous and light evoked GC spiking 

activity within several pathways. In the rod pathway, TRPV1 enhances the 

sensitivity of GCs to respond to threshold luminance. In the cone pathway, 

TRPV1 enhances the spontaneous and light evoked activity in ON and OFF 

GCs. Within the ON and OFF pathways, TRPV1 acts specifically, on the 

sustained temporal pathway. Within the sustained pathway, TRPV1 activity 

enhances the center response properties in sub-populations of sON and sOFF 

GCs. All of this suggests TRPV1 acts to enhance the extraction of specific 

information from the visual world. The spiking activity of the GCs gives a general 

idea of the role of TRPV1 in shaping visual processing, which can be 

investigated further through the investigation of the specific circuits which shape 

the spiking activity. The first circuit to investigate would be one which shapes the 

very specific effects observed in TRPV1 sON and sOFF GCs. I will discuss such 

a circuit within the parallel pathways individually.   

3.2 TRPV1 likely enhances temporal signaling through the ON pathway 

through amacrine cell mediated inhibition 
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 My results showed that TRPV1 enhanced the excitatory peak and 

maintained response to center stimulation in 55% of sON GCs sampled in vivo. 

In addition, TRPV1 modulated spatial properties of the maintained response in 

that population, but not the transient peak. TRPV1 enhanced the maintained 

response in approximately half of the sON GCs sampled in vivo as well, but did 

not alter the peak. Thus, within the ON cone pathway, TRPV1 is required to 

match the duration of the response to the duration of the stimulus in 

approximately half of the GCs which do that. Also the TRPV1 mediated circuit 

that regulates the temporal responses in these GCs is independent of the 

processes regulating the peak response to the majority of these GCs. 

 The processes modulating the duration of the maintained response is GCs 

is not fully understood but appears to be regulated by a combination of the 

duration of enhanced glutamate release from BCs and AC modulation of the 

signal. Recordings from CBCs in salamander and recently in mouse show a 

gradient of the duration of glutamate release related to stratification in the IPL 

(see Euler et al., 2015 for review). CBCs and GCs stratifying closer to the nuclear 

layers have more sustained responses while those in the center are more 

transient. This suggests the transient spiking in GCs comes from transient 

glutamate release from CBCs. The maintained response can also be modulated 

by ACs in the IPL. Specifically, a GABAc mediated feedback loop to ON CBCs 

decreases the maintained activity in sON GCs (McCall et al., 2004). Because the 

peak ARF spatial profile is not altered by the removal of TRPV1, the disruption of 

the excitation/inhibition balance is occurring in the IPL, after the events forming 
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the transient have passed. The most likely candidate for the decrease in the 

maintained rate is an increase in feedback inhibition to the ON CBC via the 

GABAc receptor or an increase in GABAergic or glycinergic feedforward inhibition 

to the ON GC (Nobles et al., 2012). In this case, TRPV1 activity would regulate 

serial disinhibition of the feedback or feedforward ACs, as proposed in Figure 

3.17. The expression of TRPV1 mainly in glycinergic ACs in the retina (see 

Chapter 4) indicates TRPV1 most likely modulates glycinergic inhibition (O’Brien 

et al., 2003; Manookin et al., 2008; van Wyk et al., 2009; Chen et al., 2010; 

Nobles et al., 2012; Zhang and McCall, 2014). 

 Feedback inhibition is ultimately mediated by GABA release onto the 

GABAA and GABAc receptors in ON CBCs (Zhang et al., 1997; Eggers et al., 

2007). GABAA receptors have fast kinetics and GABAA mediated inhibition can 

decrease the transient release of glutamate from BCs. GABAc receptors have 

slower kinetics and modulate the prolonged release of glutamate (Eggers & 

Lukasiewicz, 2011). Dong and Werblin (1998) showed that blocking GABAc 

mediated feedback inhibition using the selective GABAc receptor antagonist 

TPMPA enhanced the maintained response and increased the duration, but did 

not make transient cells sustained. Sagdullaev and colleagues (2006) also 

showed that the maintained response of sON GCs is enhanced in GABAc 

knockout mice in vivo. Since all spiking activity in ON GCs is driven by glutamate 

from the ON BCs, if glutamate release is suppressed below the spontaneous 

release, then the spiking activity of the ON GC will also be suppressed below 

spontaneous. Maintained rates are suppressed below spontaneous activity in 
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TrpV1-/- ON GCs, TRPV1 activity likely enhances the maintained response in ON 

GCs by inhibiting the GABAc mediated lateral inhibition to ON BCs (Fig. 3.17). 

 TRPV1 enhancement of the maintained response could be mediated 

through tonic serial inhibition. GABAergic amacrine cells mediate both wide field 

(Cook & McReynolds, 1998; Flores-Herr et al., 2001) and local feedback 

inhibition (Dong & Werblin, 1998; Freed et al., 2003) to BCs and GCs. 

GABAergic feedback to the RF center of rabbit local edge detector GCs is 

controlled by serial glycinergic inhibition (Russell and Werblin, 2010). Also 

salamander GC responses are mediated through serial inhibition (Zhang et al., 

1997). Nobles and colleagues (2012) found GlyRa2 and GlyRa3 combined 

mediated tonic serial inhibitory input to ON GCs which enhances the peak and 

maintained responses of ON GCs in vivo. My in vivo results from the TrpV1-/- are 

similar to the GlyRa2 and GlyRa3 results from that publication, further supporting 

the idea that TRPV1 activity is mediating inhibition of local feedback and 

feedforward inhibitory circuits. If this were true, then TRPV1 activity promotes the 

tonic release of glycine from the ACs in which it is expressed onto ACs regulating 

the feedforward and feedback circuits.   

3.3 TRPV1 likely enhances spontaneous and evoked signaling through the 

OFF pathway via amacrine cell mediated inhibition 

 Spontaneous activity was lower in TrpV1-/- sOFF GCs compared to WT in 

vivo and in vitro. Spontaneous activity is internally generated in large OFF GCs 

(Margolis & Detwiler, 2007) and modulated by excitatory and inhibitory 

neurotransmission. In the absence of cross-over inhibition from the ON pathway, 
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OFF GCs depolarize and spontaneous spiking increases (Zaghloul et al., 2003). 

In the absence of TRPV1, OFF spontaneous activity is lower, suggesting that 

cross-over inhibition is intact and there may be increased inhibition or decreased 

excitation to the OFF GCs compared to WT. Nobles and colleagues (2012) report 

Glyra2 mediated inhibition enhances the spontaneous activity in OFF GCs. 

TRPV1 regulation of tonic glycinergic inhibition may be enhancing OFF 

spontaneous activity through these receptors.  

 Peak responses were not affected by the absence of TRPV1 in the 

population of sOFF GCs sampled in vitro, however the peak and maintained 

responses were lower in the population of TrpV1-/- sOFF GCs sampled in vivo. 

The shapes of the peak and maintained ARFs were similar to WT. Thus, in a 

population of sOFF GC which is not highly represented in MEA recordings, 

center and surround excitatory and inhibitory processes were equally affected by 

the lack of TRPV1. This TRPV1 mediated enhancement of spontaneous and light 

evoked spiking activity similarly is suggestive of a common source. In the 

absence of TRPV1 there is increased tonic inhibition to the OFF BCs or the post-

synaptic sOFF GCs. In this case, the tonic release of glycine from TRPV1 

expressing ACs would likely directly inhibit which drives results in TRPV1 may In 

WT mice, OFF GCs receive cross-over inhibition from the ON pathway (Zaghloul 

et al., 2003; Margolis & Detwiler, 2009; Roska & Werblin, 2001; Roska et al., 

2006; Chen et al., 2010) which decreases the spontaneous activity and 

enhances the peak and maintained rates to light decrements. Nobles and 

colleagues (2012) reported GlyRa2 mediated inhibition is involved in this cross-
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over pathway. In the absence of GlyRa2, spontaneous and evoked spike rates 

are decreased in sOFF GCs. This is similar to my results in the TrpV1-/- sOFF 

GCs. Thus, TRPV1 activity may enhance glycinergic cross-over inhibition from 

the ON pathway to a subset of sOFF GCs sampled in vivo. These are 

presumably the sOFF alpha. This is consistent with my hypothesis that TRPV1 

regulates tonic glycine release. TRPV1 positive ACs have processes in both the 

OFF and ON sublaminae, therefore, TRPV1 could reside in the narrow-field 

glycinergic AC providing the cross-over inhibition to the sOFF GCs. 

Alternatively, TRPV1 could be acting in concatenated AC circuits. Such circuits 

have been observed (Anderson et al., 2011).  

  Another small population of OFF GCs showed TRPV1 modulation. 

TRPV1 activity shortened the response durations in approximately 25% of tOFF 

GCs which were sampled in vitro, but not in vivo. GABAc mediated inhibition to 

OFF BCs regulates the prolonged release of glutamate while glycine receptor 

mediated inhibition regulates both the peak and prolonged release of glutamate 

(Eggers & Lukasiewicz, 2011). Since the peak rates in these GCs was similar to 

WT tOFF, this suggests TRPV1 mediated disinhibition of the GABAc feedback 

circuit, similar to what was proposed in the ON pathway. Alternatively, TRPV1 

could be enhancing feed-forward inhibition to the subset of tOFF GCs. This could 

be from the TRPV1 positive ACs directly or again from concatenated AC circuits.  

Since these cells were not sampled in vivo, they are most likely not the transient 

OFF alpha cells and may have smaller axon diameters. TRPV1 reporter mice 

label populations of glycinergic ACs and OFF GCs which co-stratify in the center 
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of the IPL (see TRPV1 expression chapter). The TRPV1 expressing GCs have a 

medium sized dendritic area and axon diameter and are a good target to 

investigate this possible circuit further.  

3.4 TRPV1 likely enhances sensitivity in the rod pathway via amacrine cell 

mediated inhibition 

  
 TRPV1 enhances the sensitivity of responses to dim light. TRPV1 was 

necessary for signal processing through the primary rod pathway. Since ON and 

OFF responses were similar in vitro to 1.4 and 3.1 log R*/rod/sec stimulation, 

secondary and tertiary rod pathways were intact in the TrpV1-/-. The rod BC 

forms a synapse with the AII AC. Rod derived excitatory information is 

transferred to the ON CBC through gap junctions. The AII simultaneously inhibits 

the OFF CBC through a glycinergic synapse (Kolb & Nelson, 1983; Strettoi et al., 

1992; Chun et al., 1993; Merighi et al., 1996). Glycinergic inhibition of the OFF 

CBC during light stimulation enhances the response of the OFF CBC and GC to 

light offset (Merighi et al., 1996) Our results show that rod signaling through the 

rod to cone gap junctions and rod to OFF CBC is functional in TrpV1-/-. Also, dark 

adapted b-waves which measures the depolarization of rod bipolar cells were 

similar to WT (Shen et al., 2009). Therefore, TRPV1 likely regulates signaling 

downstream from the depolarization of the RBC. This could occur due to 

inhibition of glutamate release from the RBC terminal, inhibition of the signal 

through the AII AC, inhibition of glutamate release from the ON and OFF CBCs, 

or increased inhibition to ON and OFF GCs. My spiking responses alone cannot 
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determine which process is responsible for the decreased rod sensitivity in ON 

and OFF GCs, however there are known pathways which share similarities with 

the probable pathways affecting the cone signals. One example is feedback 

inhibition to the RBCs. RBC to AII is a dyad synapse between those two parties 

and the GABAergic A17 (Kolb & Famiglietti, 1974; Famiglietti & Kolb, 1975; 

Strettoi et al., 1990; Strettoi et al., 1992; Chun et al., 1993; Kim et al., 1998). The 

A17 inhibits the RBC though feedback GABA release on the GABA receptors in 

the RBC terminal. Excessive GABAA or GABAc activation at the rod bipolar cell 

has been shown to decrease ON GC responsiveness to light in salamander 

(Ichinose and Lukasiewicz, 2002) and mice (Grimes et al., 2015). The A17-

mediated feedback loop improves the signal to noise ratio of rod signaling to light 

at the visual threshold. TRPV1 may be acting to modulate GABA release from 

the A17 AC and subsequent inhibition on the RBCs. More experiments are 

necessary to test this. 

  Disruption of signal through the AII AC directly is through inhibition of the 

AII or alterations within the coupling of the AII network would also decrease 

signaling through the primary rod pathway. Light affects gap junctions in the 

retina. In the dark, the AII AC network is weakly coupled and adaptation to a 

luminance values similar to twilight increases the coupling greater than ten-fold 

(see Bloomfield and Völgyi, 2009 for review) which enhances the signal through 

summation of synchronous activity. If TRPV1 regulated coupling, then in the 

absence of TRPV1, there may be an inability of the AII network to regulate gap 

junctions. If coupling were increased in the dark, very small signals would spread 



 

102 

 

to neighboring ACs and become dilute. Signals at twilight luminance levels, when 

networks are highly coupled, would be similar to WT. Under daylight conditions, 

coupling would decrease in the WT but not the TrpV1-/-. Rod signaling should 

have minimal impact in the GC responses under these conditions. Direct 

inhibition of the AII AC would have similar results. While this process is driven by 

light, it is mediated by release of dopamine from dopaminergic ACs (Hu et al., 

2010; Kothmann et al., 2009; see Bloomfield and Völgyi, 2009 for a review). 

Dopamine acts through D1 receptors to modulate gap junction coupling and 

extend the dynamic range of light processing. This occurs in both the OPL and 

IPL and likely involves GABAc receptors (Wellis & Werblin, 1995; Herrmann et 

al., 2011; Smith et al., 2015). It should be noted that dopamine regulates gap 

junctions in all retinal layers. Furthermore, there is no evidence that coupling in 

specific layers is independent from the others. Alterations in dopamine signaling 

affects the b-wave amplitude and TrpV1-/- mice have normal b-waves (Jackson et 

al., 2014; Shen et al., 2009). For these reasons I find it unlikely that TRPV1 is 

regulating the dopaminergic system or gap junctions in the IPL. However, further 

studies are needed to investigate whether TRPV1 activity modulates this 

process. 

3.5 Possible methods of TRPV1 activation 

 TRPV1 located in AC and GCs and likely regulates presynaptic release of 

neurotransmitter in the retina, consistent with the majority of evidence regarding 

the function of TRPV1 in the CNS (van der Stelt & Di Marzo, 2004). TRPV1 

activation often results in long after affects through influx and regulation of 
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intracellular calcium concentrations at the terminals. Prolonged increased [Ca2+] 

promote prolonged neurotransmitter release from the terminals (Medvedeva et 

al., 2008). and in several brain regions (Gibson et al., 2008; Maione et al., 2009; 

Kawahara et al., 2011 see Edwards, 2014 & Ryskamp et al., 2014 for reviews) 

such as the hippocampus (Gibson et al., 2008). This process shapes pain 

receptor sensitization in the peripheral nervous system (Medvedeva et al., 2008) 

and long-term potentiation for memory formation in the hippocampus (Gibson et 

al., 2008). Our data suggest TRPV1 regulates presynaptic glycine release from 

the ACs it inhabits. TRPV1 most likely resides in the axon terminals of the GCs 

and is not mediating the visual responses in the retinal portion of the GCs directly 

(Chapter III). Figure 3.17 illustrates the potential involvement of TRPV1 in retinal 

serial inhibition. TRPV1 activation in amacrine cells regulates the tonic release of 

glycine onto glycine receptors located on another amacrine cell. That amacrine 

cell would subsequently be inhibited from releasing GABA or glycine onto their 

post-synaptic ON CBC or GC targets. In this way, TRPV1 enhances the 

spontaneous activity and maintained response by enhancing either tonic 

asynchronous glutamate release from ON CBCs or decreasing inhibition directly 

onto the ON GC. OFF GC responses are increased by enhanced cross-over 

inhibition during light stimulation, either from increased excitatory signaling in the 

ON pathway or the increased cross-over AC signal directly.  

 TRPV1 has numerous possible activators. The most likely activators in the 

retina are the endocannabinoids which are ubiquitously expressed in the retina 

(Yazulla, 2008). These include anandamide, NADA, and 
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hydroperoxyeicosatetraenoic acids (HpETEs).  Endocannabinoid release may be 

associated with bright light stimulation (Ryskamp et al, 2014). This is consistent 

with TRPV1 activity regulating luminance dependent enhancement of 

spontaneous activity and maintained rates in ON GCs. With regards to the role in 

visual processing, TRPV1 may be involved in regulating tonic release of 

neurotransmitters from ACs and in this way shapes the slower processes, the 

spontaneous and maintained responses, via tonic disinhibition of other ACs in a 

luminance dependent way. TRPV1 also enhances signal through the primary 

pathway in the dark. Further investigation is necessary to determine the 

mechanisms leading to this decreased sensitivity and the potential TRPV1 

activator.  

 

IV    Conclusions 

 TRPV1 modulates visual signals in the retina. In the rod pathway, TRPV1 

enhances sensitivity to dim light. In this way, TRPV1 increases the luminance 

range the retina can detect. In the cone pathway, TRPV1 prolongs the response 

duration of most sON GCs. In this way, TRPV1 likely enhances the perception of 

details in the visual world in daylight conditions. My data is consistent with a role 

for TRPV1 in modulating visual signals in the IPL, presynaptic to ON and OFF 

GCs. Specifically, TRPV1 enhances serial inhibition of ACs that release GABA 

onto GABAc receptors in ON BCs. This circuit optimizes the extraction of visual 

information that is relevant to dark or daylight conditions. The functional role of 
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TRPV1 is consistent with its expression in amacrine cells. TRPV1 expression in 

the retina is discussed in the next chapter.  
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CHAPTER IV 

TRPV1 IS EXPRESSED IN SPECIFIC AMACRINE AND GANGLION 

CELL CLASSES IN THE MOUSE RETINA 

 

I. Introduction 

 TRPV1 is a multi-modal receptor channel, which can activate or modulate 

neural signals both directly through influx and regulation of Ca2+ and indirectly 

through modulation of cellular pathways. TRPV1 has been extensively studied for 

its role in nociception, inflammation, and pathology in the PNS and CNS. A role 

for TRPV1 in retinal pathology has only recently been proposed and is less well 

understood. TRPV1 activity has been implicated as both neuroprotective and 

neurotoxic in diabetic retinopathy (Krassas et al., 2007), ocular ischemia 

(Sakamoto et al., 2014) and glaucoma (Sappington et al., 2015 for review). For 

example, TRPV1 mediated processes have recently been implicated as a 

contributing factor in GC death in mouse models of glaucoma in vitro 

(Sappington et al., 2009), but TRPV1 activation may be protective to GCs in the 

DBA/2J in vivo mouse models of glaucoma (Ward et al., 2014; see Sappington et 

al., 2015 for review).  
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 Ritter & Dinh (1988, 1990, and 1992) observed the TRPV1 agonist 

capsaicin induced death of cells in the INL and GCL and in axon terminals in 

brain nuclei, which were targets of GCs. Specifically, Ritter and Dinh reported 

neurodegeneration in the suprachiasmatic nucleus (SCN), ventrolateral 

geniculate nucleus (vLGN), intergeniculate leaflet (IGL), and olivary and medial 

pretectal nuclei (OPN & MPN). Systemic capsaicin induced neurodegeneration in 

visual nuclei was eliminated when the eye was enucleated prior to capsaicin 

injection (Ritter & Dinh, 1992). Some GC axons were damaged by capsaicin 

while somas remained intact. This suggests capsaicin neurotoxicity is mediated 

by TRPV1 in mouse GC axons and inner nuclear retinal neurons. However, while 

capsaicin induces neurodegeneration through TRPV1 mediated excitotoxicity, it 

also induces damage through TRPV1-independent mechanisms (Kim et al., 

2003; Costa et al., 2005; Athanasiou et al., 2007; see Ryskamp et al., 2014 for a 

review). Also, capsaicin is a known agonist of TRPM1 channels, the signaling 

channel in ON BCs in the retina. TRPM1 mediates capsaicin evoked currents in 

ON BCs of TrpV1-/- mice but not TrpM1-/- (Shen et al., 2011; Ray et al., 2014). 

Therefore, further studies are needed to determine TRPV1 expression in retina. I 

tried to use various commercially available TRPV1 antibodies and found that 

different antibodies produced different expression patterns and the results were 

inconclusive. As an alternative, I crossed TRPV1cre to Ai9 reporter mice and 

assessed TRPV1 expression throughout development. In comparison, I used 

intravitreal viral delivery of the LoxP-tdTomato construct to TRPV1cre retinas to 

assess TRPV1 expression in the mature retina. I determined that:  
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1. TRPV1 is localized to two narrow-field (NF) AC classes, one wide-field (WF) 

displaced AC class, and three GC classes in the mature mouse retina.  

2. Axons from TRPV1 expressing GCs target the SCN, vLGN, IGL, and OPN, the 

previously reported sites of capsaicin induced neurodegeneration (Ritter & Dinh, 

1992) as well as the superior colliculus (SC).  

3. TRPV1 gates excitatory current in ACs but not in GCs, suggesting TRPV1 

plays a role in presynaptic modulation of visual signal.  

Clarifying the specific expression of TRPV1 in the retina and functional role in 

normal visual signaling or pathology is important if either agonists or antagonists 

of TRPV1 are to be pursued as possible therapeutic options. Here I investigated 

the localization of TRPV1 in the mouse retina. 

 

II. Results 

2.1 TRPV1 antibodies are unreliable in the mouse  

 TRPV1 is expressed in the rodent CNS at levels ~20-30 fold lower than in 

the dorsal root ganglia (Sanchez et al., 2001; Cavanaugh et al., 2011b). The  

presence of TRPV1 mRNA and protein in the mouse (Shen et al., 2009; Gilliam 

et al., 2011; Sappington et al., 2011), rat (Nucci et al., 2007) and human 

(Martinez-Garcia et al., 2013) retina has been confirmed. The exact localization 

of TRPV1 in retina is under debate (see Ryskamp et al., 2014 for a review) but 

the majority of studies support TRPV1 expression in the inner retina and 

microglia in rodent retina. Sappington and colleagues report expression of  
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Figure 4.1. TRPV1 antibody label had a low signal to noise ratio in mouse DRG and 
retina. (A) Rabbit anti-TRPV1 from Alamone Labs labels a non-specific protein in WT 
and TrpV1-/- DRG. Scale bar 20 um. (B) High concentration rabbit anti-TRPV1 from 
Neuromics (1:50) produces non-specific label in DRG (Bi) and retina (Bii; scale bar 10 
um), but low TRPV1 specific label at more dilute concentrations (C; 1:500). (Di) The 
amplified Neuromics antibody label in TRPV1cre/Ai9 reporter DRG is co-localized with 
tdTomato positive neurons. A population of primary afferents expressed TRPV1 
transiently during development and therefore was tdTomato positive but negative for 
TRPV1-ir (arrow). (Dii) Amplified TRPV1-ir is low and punctuate in WT retina and absent 
in TrpV1-/- retina. Scale bar 10 um. 

TRPV1 in GCs of mice using in situ hybridization (2015). TRPV1 antibody 

expression has been variable and inconsistent across several reports (see 

Ryskamp et al., 2014 for a review), confirming the need for proper controls to 

interpret the data. TrpV1-/- mice were not used in any of the previous studies to 

confirm specific expression of the antibody.  

 To determine the specific expression of TRPV1 in the retina, I tested all of 

the antibodies listed in prior publications (Table 2.1). Further I used them at the 
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published concentrations and also performed a concentration gradient to 

determine the optimal concentration for each antibody. I compared retinal 

expression to the firmly characterized dorsal root ganglia (DRG) expression in 

TRPV1 reporter mice. To confirm the specificity of TRPV1 antibody 

immunoreactivity (ir), I simultaneously labeled WT and TrpV1-/- retina and DRG. 

In my experience, TRPV1 antibodies were unreliable in the mouse for the 

following reasons: TRPV1-ir from several antibodies had a low signal to noise 

ratio in the DRG, which I enhanced using tyramide signal amplification (TSA). 

One antibody (Alamone Labs; Table 2.1) did not specifically target TRPV1; 

TRPV1-ir was still present in the DRG of TrpV1-/- mice (Fig. 4.1a). Rabbit anti-

TRPV1 from Neuromics used at previously reported concentrations (Neuromics, 

1:50; Sappington et al., 2009, 2015) also resulted in non-specific label in the both 

WT and TrpV1-/- DRG and retina (Fig. 4.1bi & bii). When I decreased the 

concentration (1:500) I obtained label in the WT DRG, which was absent in the 

TrpV1-/-. That indicated the possibility that the antibody had specificity at that 

concentration (Fig. 4.1ci). When the same concentration was used in retinal 

sections, I found faint punctate signal in the IPL that was only slightly brighter 

than the TrpV1-/- retina. As a consequence, I tried Tyramide Signal Amplification 

(TSA) to enhance the label. I tested the system first in the DRG of TRPV1cre/Ai9 

reporter mice. In DRG slices with TSA from four mice, 27% of neurons with 

TRPV1-ir were still faintly labeled (26/96). All neurons with TRPV1-ir co-

expressed tdTomato (Fig. 4.1di). Some (60%) DRG neurons expressed 

tdTomato but no TRPV1-ir (arrow) indicative of transient TRPV1 expression in a 
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population of primary afferent during development, as has been reported (Mishra 

et al., 2011). Even with TSA, TRPV1-ir was low in retina and possibly restricted 

to small puncta in the IPL. The low signal to noise ratio of TRPV1-ir in retina lead 

me to conclude the antibodies were not useful for determining TRPV1 expression 

there. I attempted to enhance the signal of that and the other antibodies using 

various techniques which had been useful with other antibodies (data not 

shown). I fixed the tissue with various concentrations of paraformaldehyde and 

for various lengths of time. I also tried antigen retrieval. I was unable to enhance 

the signal to noise ratio any further than I did with the TSA. As an alternative to 

the antibodies, I used TRPV1 reporter mice to investigate the specific expression 

of TRPV1 in the mouse retina.  

2.2 TdTomato expression in TRPV1cre /Ai9 and TRPV1cre –AAV retinas was 

similar in the GCL and differed in the INL 

Figure 4.2a was a 500µm x 500µm 3d reconstruction of the retina from the 

INL to the GCL obtained from a TRPV1cre /Ai9 mouse. Vertical sections showed 

the processes of labeled cells overlapped fairly continuously in the IPL 

throughout the retina (Fig. 4.2c) and stratified densely in sublaminae one, two 

and three above the bottom CHAT band. There was sparse labeling in s4 and s5. 

Images were collected from the dorsal, ventral, temporal and nasal quadrant of 

four retinas. The mean number of labeled cells in four 0.25 mm2 areas of the 

GCL and INL from three mice was 26 (+3.6) and 220 (+30.5) respectively (Fig. 

4.2b). The density of tdTomato+ cells was 104/mm2 in the GCL and 880/mm2 in  
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the INL. TdTomato was expressed in all areas of the retina. There were similar 

numbers of tdTomato 

positive (tdTomato+) cells 

in the GCL (Fig. 4.2d; 

ANOVA p=0.16) and INL 

(Fig. 4.2e; ANOVA 

p=0.67) between all 

quadrants. Assuming a 

mouse retinal area of 14 

mm2, I calculate that there 

were 1456 cells in the 

GCL and 12,320 cells in 

the INL that expressed 

TRPV1 (Williams & 

Goldowitz, 1992; 

Lyubarsky & Pugh, 1996). 

Approximately 3% of ACs 

in the INL are cholinergic 

starburst ACs, which form 

the OFF ChAT band in the 

IPL. These ACs have a density of 1100/mm2 (Jeon et al., 1998). TRPV1cre/Ai9 

tdTomato+ cells in the INL were presumably ACs based on small soma size and 

absence of processes that projected to the OPL and comprised ~ 2.4% of all 

 

Figure 4.2. TdTomato is expressed in the INL, IPL & GCL 
of TRPV1cre/Ai9 retinas. (A) Cells in the INL and GCL are 
labeled consistently across the retina. Scale bar 50 µm (B) 
The GCL has an average of 26 (+3.6) labeled cells and the 
INL has 220 (+30.5) in an area similar to that shown in (A). 
(C) Processes of labeled cells form a plexus in s1-3 in the 
IPL across the retina and majority of processes stratify 
betIen the ChAT bands. Sparse processes also populate s5. 
Scale bar 15 µm. (D) The distribution of cells in the GCL and 
INL is mostly consistent across the retina except there are 
feIr labeled in the temporal GCL. 
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ACs. Similarly, W3 GCs are the most numerous in mouse retina, comprising 

~13% of all GCs with a density of 250/mm2 (Zhang et al., 2012). The density of 

tdTomato+ GCL cells was less than half of that. 

 

Figure 4.3. TdTomato expression is similar in TRPV1cre/Ai9 and TRPV1cre-AAV 
retinas. (A) Cells in the INL and GCL are labeled consistently across areas of retina 
with dense expression. Scale bar 50 µm. An enlarged side projection of A shows a 
similar dense plexus in s1-3 (B; scale bar 20 µm). (C) The injection techniques 
resulted in areas of sparse label. Individual cells were isolated enough to 
morphologically characterize. Axons confirm the 3 large cells in this picture are GCs. 
Several ACs with small somas are also labeled. (D) One of the GCs stratifies in the 
ON sublaminae, while another has a displaced soma in the INL, thick processes in 
s1, and an axon projecting through the IPL to the nerve fiver layer (arrow). Scale bar 
20 µm.  

 

TRPV1cre /Ai9 tdTomato expression does not differentiate transient 

developmental and mature TRPV1 expression. Also, the overlap of tdTomato+ 

processes precludes morphological identification of many of the individual cell 

classes. To address both issues, I intravitreally injected mature TRPV1cre mice 

with AAV containing the LoxP-tdTomato construct. Retinas had patches of either 

dense (Fig. 4.3a & b) or sparse (Fig. 4.3c & d) tdTomato label. The decreased 

tdTomato expression in sparse areas was indicative of decreased viral 
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integration in those cells. Because of the variability in expression, I compared the 

patterns of tdTomato expression in densely labeled areas to TRPV1cre/Ai9, but 

not the numbers of labeled cells. I also isolated individual cell types in sparsely 

labeled areas and compared them to cell types found in TRPV1cre/Ai9. Those 

results were described in later sections.  

The densely labeled areas had similar, but not identical, expression 

patterns to the TRPV1cre /Ai9 (Fig. 4.3a). Cells were labeled in the GCL and INL. 

Many in the GCL were had axons and were GCs. Cells in the INL had processes 

projecting to the IPL only, characteristic of ACs. The enlarged transverse view 

shows the tdTomato processes overlapped extensively in s 1-3. In the ON 

sublaminae of the TRPV1cre/Ai9, there were isolated NF processes that were 

discernibly stratified in s 4-5. There were also WF processes in s 5. In contrast, 

TRPV1cre-AAV had very few NF processes that stratified in s 4-5. This indicated 

the latter tdTomato+ ACs expressed TRPV1 transiently in development. 

TRPV1cre-AAV tdTomato+ cells had WF processes in s 5. From this I conclude 

TRPV1 is expressed in OFF stratified ACs in GCs in the mature retina. ON 

stratified NF ACs had transient TRPV1 expression during development. I next 

assessed the morphology of TRPV1 expressing cells.  

2.3 TRPV1 was expressed in two NF and one wide-field amacrine cell class 

in the mature retina  

 Individual ACs were isolated in the sparsely labeled areas of wholemount 

TRPV1cre-AAV and morphologically characterized (Fig. 4.3c & d; Fig. 4.4a, c &d). 

Although the processes of ACs in TRPV1cre/Ai9 retinas overlapped, occasionally 
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the dendritic tree that projected from an individual NF AC process was 

discernible in transverse slices (Fig. 4.4b arrow). The dendrites of those ACs 

were not isolated and the origin of adjacent processes could not be determined 

(arrowhead). Dendritic and soma areas and stratification were only measured on 

isolated TRPV1cre-AAV ACs (Fig. 4.4a, c & d). ACs observed in TRPV1cre/Ai9 

were only used for qualitative comparison to similar morphological types which 

were isolated in the TRPV1-AAV (Fig. 4.4a). Two classes of NF ACs, which 

comprised 86% isolated ACs, were identified in the retinas of both TRPV1cre-AAV 

and TRPV1cre/Ai9. The majority of isolated NF ACs (n=17, 61%) resembled the 

Flag A ACs identified by MacNeil and colleagues (1999) in the rabbit retina (Fig. 

4.4a). Flag A ACs stratified in s2-3 of the IPL. 

One NF AC that resembled the Flag AC that stratified in s4-5 was isolated 

in TRPV1cre-AAV. It was named for the inner IPL stratified twin, Flag B (MacNeil 

et al., 1999). The second NF AC class that was regularly isolated in TRPV1cre-

AAV retinas (n=7, 25%) resembled the “no glycine, no GABA” (nGnG) ACs 

described in the mouse retina (Fig. 4.4a; Kay et al., 2011). nGnG ACs received 

that name due to the absence of the inhibitory neurotransmitters, which are 

typically found in ACs. nGnG ACs had similar sized dendritic areas as the Flag A, 

but processes stratified in s1-3. NF ACs that had similar stratification patterns 

were observed in TRPV1cre/Ai9 transverse sections (Fig. 4.4b). The NF AC that 

had ON stratified processes and was observed in the TRPV1cre/Ai9 but not 

TRPV1cre –AAV appeared to be multistratified in all IPL sublaminae. That AC 

resembled the rabbit AB diffuse 1 (Fig. 4.4b; MacNeil et al., 1999), which also  
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stratified in all 

sublaminae. AB 

diffuse 1 ACs were 

discernible in 

wholemount 

TRPV1cre-AI9 due to 

the isolated NF 

processes in the ON 

sublaminae. I 

assigned the 

corresponding 

processes in the OFF 

sublaminae to the 

same AC, but it was 

possible the latter 

processes originated 

from neighboring ACs. 

If that were the case, 

NF ON processes 

were from Flag B type 

ACs instead. TdTomato+ ON stratified NF ACs expressed TRPV1 during 

development, but not in the mature retina. In contrast, TRPV1 was expressed in 

Flag A and nGnG NF ACs in the mature retina.  

 

Figure 4.4. TRPV1 is expressed in mouse ACs (Ai) Flag A ACs 
were observed in the TRPV1cre/Ai9 and TRPV1cre-AAV (Bi; scale 
bar 10 µm). The narrow-field dendrites (1960+378 µm2) stratified 
in s2-3 (Bi & C). (Ai) nGnG ACs also were observed in both 
reporters (Bii; scale bar 10 µm) and had slightly larger dendritic 
areas (2270+530 µm2). nGnG ACs stratified in s1-3 (Bii&C). (Aiii) 
The wide-field WA3-2 dAC was observed in sparsely labeled 
areas of TRPV1cre-AAV and stratified in the middle of the IPL at 
the border of the ON and OFF sublaminae (C). (Biii) AB-diffuse 1 
ACs were multistratified throughout the IPL and were only 
observed in TRPV1cre/Ai9, suggesting TRPV1 is transiently 
expressed during development. Scale bar 10 µm. (D) Soma areas 
increase in relation with dendritic areas.  
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 TdTomato also was expressed in a WF AC with a soma displaced to the 

GCL (dAC) (Fig. 4.4a; n=3, 11%). Those dACs lacked axons in the nerve fiber 

layer, a defining characteristic that delineated dACs from GCs. TdTomato+ WF 

dACs resembled the WA3-2 (Pérez De Sevilla Müller et al., 2007) and the bifid 

(Badea & Nathans, 2004). The WF ACs described in both publications had two 

groups of sparsely branching processes projecting radially from conventionally 

placed somas in the INL. The processes stratified in s3 at the border of the ON 

and OFF sublaminae. Because the somas of tdTomato+ WF dACs in the 

TRPV1cre-AAV were displaced to the GCL, I did not assign them the classification 

names above. A WF dAC with similar morphology was recently described in 

neuronal nitric oxide synthase (nNOS) reporter mice (Zhu et al., 2014). The 

expression of nNOS should be confirmed before assigning WF dACs in  

TRPV1cre/AI9 retinas the nNOS classification and will be the subject of future 

experiments. WF dACs were not isolated enough to identify in TRPV1cre/AI9 

retinas, but I did find somas in the GCL that lacked axons (Fig. 4.5d). Glycine is 

expressed in NF ACs, while medium and WF are GABAergic (Marc et al., 1995). 

As mentioned, nGnG NF ACs are the exception to that rule. I labeled the TRPV1 

expressing (TRPV1+) ACs nGnG based on a similar morphology to those 

published. The neurotransmitter associated with those cells was still unknown. I 

next looked for the presence of inhibitory neurotransmitters by labeling retinal 

slices and wholemounts with antibodies to glycine, GABA or the GABA 

synthesizing enzyme, Glutamic acid decarboxylase isoforms 65 & 67 

(GAD65/67). The wholemount labeling showed the majority of tdTomato+ ACs  
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were glycinergic, but there 

was a population of ACs, 

which had very low 

(broken circles) or 

undetectable (solid circle 

levels of glycine (Fig. 

4.5a). The somas of 

nGnG ACs did not 

express GABA either. The 

transverse view showed 

the processes of these 

ACs stratified in s 1-3, 

similar to the nGnG ACs 

reported by Kay and 

colleagues (2011). Figure 

4.5b showed an isolated 

nGnG AC (circle) in slice 

with processes largely 

ramified in s 2-3. Other 

tdTomato+ ACs 

expressed both high 

(arrow) and low (arrowhead) levels of glycine.  

 

Figure 4.5. Neurotransmitter expression in TRPV1+ 
ACs. (A) Wholemount TRPV1cre/Ai9 retinas were co-
labeled for glycine and RFP. A subset of TRPV1+ ACs 
had negligible (broken circles) or no (solid circle) glycine 
expression. The morphology resembles the nGnG (B; Kay 
et al., 2014). Neighboring ACs have high (arrow) or 
moderate (arrowhead) glycine expression. (C) TRPV1+ 
ACs do not express vGlut3, hoIver an enlarged view of the 
IPL show processes co-stratified with and directly adjacent 
to glutamatergic ACs. Scale bar is 10 µm in A, B & Ci. 
Scale bar is 4 µm in Cii. 
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Flag A ACs were first characterized in rabbit retina. The most similar 

morphological correlate that had been described in mouse were the 

glutamatergic ACs (GACs), which expressed glycine and vesicular glutamate 

transporter type 3 (vGlut3; Haverkamp & Wässle 2004; Lee et al., 2014; Kim et 

al., 2015). I labeled TRPV1cre/Ai9 retinal slices with an antibody to vGlut3 to 

determine if TRPV1 was expressed in that subset. While tdTomato+ ACs co-

stratified with GACs, they were not labeled (Fig. 4.5c). Further, the processes of 

the two types of ACs were adjacent to each other which could suggest a possible 

interaction, though more information is necessary to confirm that idea (Fig. 4.5cii; 

see discussion). GAD65/67 antibody labeled few, sparsely distributed tdTomato+ 

dACs, which were presumed to be the WF dACs isolated in the TRPV1cre-AAV 

retinas. The dACs in TRPV1cre/Ai9 have a very low density of approximately 

4/mm2. I concluded that TRPV1 largely resided in NF ACs, which stratified in s 1-

3. The majority of these were glycinergic and among the others I have not been 

able to identify their associated neurotransmitter. 

2.4 TRPV1 was Expressed in One OFF and Two Intrinsically Photosensitive 

Retinal Ganglion Cell Classes 

 To determine the morphologies of TRPV1 expressing GCs in the mature 

and developing mouse retinas, isolated GCs were imaged in the TRPV1cre-AAV 

mice and compared to GCs in the TRPV1cre/Ai9. TdTomato+ GCs in the 

TRPV1cre/Ai9 were filled with Lucifer Yellow and/or Neurobiotin for morphological 

characterization (see methods). Three GC classes were labeled in both 

TRPV1cre-AAV and TRPV1cre/Ai9 retinas (Fig. 4.6). Those included M1 and M2  
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Figure 4.6. TRPV1 is expressed in mouse GCs (Ai) B3o GCs were 
observed in the TRPV1cre/Ai9 and TRPV1cre-AAV (Bi). The medium-field 
dendrites (22,065 + 915 µm2) stratified in s3 between the middle of the IPL 
and the OFF ChAT band (Ai, Bi & C). (Aii) TdTomato+ M2 GCs were 
observed in both reporter mouse types (Bii). M2 dendrites stratified in s5 of 
the IPL (mean area: 44,677+5,100 µm2; Bii & C). (Aiii) M1 GCs had few 
deep diving processes, which stratified in s1 and spread over a large area 
(43,550+5,640 µm2 ; Biii & C). Scale bar is 20 µm in A and 40 µm in B. (D) 
Soma area were similar between classes.  

 

intrinsically photosensitive (ip) GCs (Berson et al., 2010) and one OFF GC. The 

morphologies of M1 and M2 GCs have been extensively characterized (see 

Schmidt et al., 2011 for a review) and TdTomato+ M1 and M2 GCs had similar 

morphologies. M1 GCs had few dendrites, which stratified in s1 of the IPL (Fig. 
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4.6a, b & c; Berson et al., 2010; Ecker et al., 2010). M2 GC had more dendrites 

and regular pattern in the ON sublaminae (Fig. 4.6 a, b & c; Berson et al., 2010). 

The tdTomato+ M1 and M2 GCs had variable dendritic and soma areas, their 

distributions overlap, and the M1 mean dendritic area was slightly smaller than 

M2 (M1: n=11 dendritic area: 43,550+5,640, soma area: 128.4 + 11.1; M2: n=12 

dendritic area: 44,677+5,100, soma area: 150.8 + 12). All of my measurements 

were similar to those described by Berson and colleagues (2010). The OFF GC 

had monostratified processes in s 3 at the border of ON and OFF IPL layers 

(n=23; 46 + 1%). The medium sized dendritic area (22,065 + 915 µm2; Fig. 4.6b 

& c), was similar to B3o (199 µm dendritic diameter, 15 µm soma diameter; Sun 

et al., 2002). The B3o had the smallest dendritic area of the tdTomato+ GCs (Fig. 

4.6c) but a similar soma size to the tdTomato+ positive M1 and M2 GCs (Fig. 

4.6d). All three GC classes labeled in the TRPV1cre/Ai9 also were represented in 

the TRPV1cre -AAV retinas. M1 GCs were most frequently labeled (n=17, 55%), 

followed by M2 (n= 6, 19%) and B3o (n=6, 19.4%). A small number of other GCs 

were observed. A multi-stratified GC with small dendritic area (19,423 um2) was 

labeled in a TRPV1cre/Ai9 (n=1) and TRPV1cre -AAV (n=1) retina. The dendrites 

stratified in s 1-3 and resembled the W3 (Zhang et al., 2012). One large ON GC 

which resembled the A1 (Sun et al., 2002) and M4 (Estevez et al., 2012) was 

identified in a TRPV1cre -AAV retina. Because morphologically similar GCs 

expressed tdTomato in the TRPV1cre/Ai9 and TRPV1cre-AAV retinas, I concluded 

that TRPV1 is expressed in M1, M2 and B3o GCs in the mature retina. 

TdTomato+ GCs were referred to as TRPV1+ for all subsequent analysis.  
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 M1 and M2 ipGCs express the photopigment melanopsin (Berson et al., 

2010). I next confirmed the expression of melanopsin in TRPV1+ M1 and M2 

GCs. I labeled three TRPV1cre /Ai9 retinas with an antibody to melanopsin using 

tyramide signal amplification. The melanopsin antibody label in TRPV1cre/Ai9  

retinas matched previous publications (Estevez et al., 2012). M1 GCs have bright 

fluorescence while all other ipGCs are dimmer (Berson et al., 2010; Estevez et 

al., 2012). Melanopsin was co-expressed in 30% of TRPV1+ GCs (Fig. 4.7). Of 

the TRPV1+ cells in the GCL that did not express melanopsin, 95% (362/382 

cells) had larger somas and axons and were presumed to be mostly B3o GCs.  

 

Figure 4.7. Melanopsin is co-expressed in TRPV1+ M1 and M2 GCs (A) 
Melanopsin label is bright in M1s and dim in M2s. Both bright and dim label is 
found in TRPV1+ GCs (arrow and arrowhead, respectively).Scale bar is 50 
µm. (B) The majority of TRPV1+ GCs were B3o OFF (560+26 per retina). 
There were 280(+28) TRPV1+ M2 and 168+56 TRPV1+ M1 GCs per retina. 
Finally, WF dACs comprised the smallest population of TRPV1+ cells in the 
retina (56+14 per retina). (C) Only 30% of TRPV1+ GCs were ipGCs. 
Similarly 34% of M2 and 26% of M1 GCs were expressed TRPV1.   
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The extensive co-stratification of the processes from TRPV1+ GCs and ACs 

prevented morphological identification of them directly. However, the W3 GCs 

were observed in very small numbers (2 out of 34 melanopsin negative GCs  

characterized). No tdTomato+ M4 GCs were observed in the TRPV1cre/Ai9. 

Twenty of the TRPV1+ cells in the GCL (5%) were WF dACs, identified by their 

very small somas and lack of axon.  

The numbers of each GC class were counted and compared based on the 

presence and brightness of melanopsin label in the four quadrants from three 

retinas. In a 0.25 mm2 area, there was a mean of three TRPV1+ M1 GCs, five 

TRPV1+ M2 GCs, ten TRPV1+ B3o GCs and one TRPV1+ WF dACs. Therefore, 

the density of TRPV1+ M1 GCs was 12/mm2, of M2 GCs was 20/mm2, of B3o 

GCs was 40/mm2 and of TRPV1+ WF dACs was 4/mm2. Given a mouse retinal 

area of 14 mm2 (Williams & Goldowitz, 1992; Lyubarsky & Pugh, 1996), then only 

168 out of the reported 640 M1 GCs per retina (Berson et al., 2010) expressed 

TRPV1 (Fig. 4.7b & c; 26%). Similarly, 280 out of 830 M2 GCs per retina 

expressed TRPV1 (34%). The majority of TRPV1+ GCs, around 560 per retina, 

were B3o OFF GCs. TRPV1+ WF dACs were very rare with only 56 per retina. 

The small numbers of TRPV1+ GCs may be indicative of a very specific function 

in those cells.  

2.5 TRPV1 was expressed in the Brn3b negative subclass of M1 ipGCs 

 TRPV1+ M1 GCs were a very small population, which may have 

represented a sub-class of M1. Two M1 subclasses have been identified 

previously (Chen et al., 2011). I investigated whether TRPV1+ M1 GCs 
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represented one of those sub-classes. The axons of two populations of M1 GCs 

have different central targets. The largest population (approximately 2/3 of M1s; 

Chen et al., 2011) expresses the transcription factor Brn3b and their axons 

project to the shell of the olivary pretectal nucleus (OPN). In contrast, the axons 

of Brn3b negative M1 GCs project to the suprachiasmatic nucleus (SCN; Chen et 

al., 2011). To determine whether Brn3b positive or negative M1 GCs express 

TRPV1, I double labeled TRPV1cre/Ai9 retinas were with antibodies to 

melanopsin and Brn3b (Fig. 4.8a). In order to use both antibodies that were 

made in rabbit, I used a melanopsin antibody conjugated to Alexa 647. 

Conjugated melanopsin produced weaker label than melanopsin with TSA that 

produced a signal that could only be seen in M1 GCs. In three retinas, an 

average of 554 M1 GCs were labeled per retina. That number is similar to 

previous reports of 640 M1 GCs in the ganglion cell layer (Berson et al., 2010) 

and confirms that the majority of M1 GCs were labeled with that technique. Six of 

the 19 M1 GCs (31%) I counted in three retinas co-expressed Brn3b (Fig. 4.8). 

Of those, none of them expressed TRPV1. Similarly, 13 M1 GCs were Brn3b 

negative and 10 of those GCs expressed TRPV1 (52%). TRPV1 was expressed 

in 77% of the Brn3b negative M1 GCs.  

The absence of Brn3b in TRPV1+ M1 GCs is indicative that TRPV1 is 

expressed in some of the population of M1s that project to the SCN, but the 

numbers of GCs are low, so I sought to test that hypothesis further. I assessed 

tdTomato expression in the brains of TRPV1cre-AAVmice to determine the targets 

of TRPV1+ GC axons. Consistent with the absence of Brn3b expression, 
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TRPV1+ processes were found terminating in the SCN (Fig. 4.8a). TRPV1+ 

terminals also were found in the core of the OPN, the target of M2 GCs, but not 

strongly present in the OPN shell, the target of Brn3b+ M1 GCs (Fig. 4.8b). I 

compared the spread of tdTomato label in the OPN to that in the TRPV1cre/Ai9 

brain. Multiple brain nuclei in TRPV1cre/Ai9 had tdTomato label (Cavanaugh et  

al., 2011b) and therefore the origin of tdTomato+ processes could be the brain or 

retina. I found tdTomato+ processes in the core and shell of the OPN of the  

 

Figure 4.8. TRPV1 is expressed specific subsets of M1 and M2 ipGCs (A) TRPV1 is 
expressed in M1 GCs, which lack the transcription factor Brn3b. This specific population 
projects to the SCN (Chen et al., 2011). Consistent with the absence of Brn3b, TRPV1+ M1 
axon terminals are highly expressed in TRPV1cre-AAV SCN (B). TRPV1+ GC axons terminate 
in the core of the OPN (C), IGL, vLGN (D) and SC (E), all know targets of M2 ipGCs. TRPV1+ 
M2 and B3o GCs do not project to the dLGN (D), suggesting TRPV1 modulates non-image 
forming vision. (F) TRPV1+ axons send collaterals to both the IGL and OPN, both areas 
involved in regulation of circadian rhythms. Scale bars are 20 µm in A and 100 µm in B-F.  
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TRPV1cre/Ai9. I measured the spread of the tdTomato label in a similar 

coronal section and compared it to the tdTomato+ GC axons in TRPV1cre-AAV 

(Fig. 4.8c broken outline). The spread of the tdTomato+ processes was smaller 

and centrally clustered, indicative of GC terminals in the core rather than the 

shell of the OPN. From that I conclude that TRPV1 was expressed exclusively in 

Brn3b negative M1 subclass, which projected to the SCN. However, I did not find 

tdTomato expression in all of the Brn3b negative M1 GCs.  

Besides the core of the OPN, M2 GCs project to the dLGN and the SC 

(Schmidt et al., 2011). The target of B3o GCs is unknown, however the majority 

of GCs that do not express melanopsin project to the dLGN and SC. M1 axons 

can target other non-image forming nuclei in the brain. I assessed tdTomato 

expression other targets areas of GC axons. There were very few tdTomato+ 

axons that terminated in the dLGN, a target of M2 GCs (Schmidt et al., 2011; Fig. 

4.8c). Other known targets of ipGCs include the intergeniculate leaflet (IGL) and 

ventral LGN (vLGN) (Berson et al., 2003; Chen et al., 2011). The IGL and vLGN 

were labeled in the TRPV1cre-AAV (Fig. 4.8d). Further, I observed that some 

axons which innervated the LGN also innervated the OPN (Fig. 4.8f) and most 

likely originated from TRPV1+ M2 GCs. The SC was labeled and presumably the 

post-synaptic target of the TRPV1+ M2 and B3o GCs (Fig. 4.8d; Schmidt et al., 

2011).  

2.6 Capsaicin induced excitatory currents in amacrine but not ganglion cells 

 In order to understand the mechanism by which TRPV1 alters GC spiking 

responses, it is important to establish how it affects the visual responses of the 
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cells that express TRPV1. TRPV1 is a non-specific cation channel and bath 

application of capsaicin leads to [Ca2+] elevations in dissociated GCs and 

microglia (Ryskamp et al., 2014), but does not appear to affect photoreceptors or 

Müller cells (Sappington et al., 2009). To determine TRPV1 protein expression, 

tdTomato+ cells in TRPV1cre/Ai9 retinas were targeted for whole cell patch clamp 

recordings in a wholemount preparation. Capsaicin activates TRPM1 in ON 

bipolar cells and induces excitatory currents, which will result in increased 

excitatory currents in ON GCs (Shen et al., 2009; Ray et al., 2014). As a result, 

when I bath applied capsaicin, I isolated excitatory currents mediated only by 

TRPV1 in GCs in the presence of glutamate receptor blockers (DAP-5, CNQX 

and L-AP4).  

In dissociated GCs, the increased Ca2+ responses induced by capsaicin (5 

mins; 40 µM) had a transient peak lasting approximately one min, which was 

followed by a steady fluorescence that remained slightly elevated above baseline 

for >7min (Ryskamp et al., 2014). The capsaicin signal was absent from TrpV1-/- 

GCs, indicative of a TRPV1 mediated Ca2+ response. To determine whether 

capsaicin could mediate currents in GCs, I bath applied 30 µM capsaicin for three 

min and recorded current responses in whole cell patch clamp configuration 

(Vhold= -60mV). TdTomato+ somas from TRPV1cre/Ai9 retinas were targeted 

using brief fluorescent illumination. To determine the general variability of current 

fluctuations in GCs, I recorded eight GCs in the absence of capsaicin (Fig. 4.9; 

see methods). GCs were filled with Lucifer Yellow and Neurobiotin for 

morphological identification. Five of the eight control GCs were tdTomato+: 1 M1,  
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Figure 4.9. TRPV1 agonist capsaicin evokes current in TRPV1+ ACs but not GCs in 
wholemount retina (Ai) Control experiments measured fluctuations in membrane current in 
presence of glutamate receptor blockers from two separate solutions. Eight tdTomato+ GCs 
had mean fluctuation amplitude -12.6+ 2 pA (C). Currents responses to capsaicin were then 
measured in 16 tdTomato+ GCs under identical conditions. The amplitudes of the currents in 
the presence of capsaicin were similar to control ( -6.5+1.8 pA; Aii & C). Capsaicin responses 
were measured in 4 non-fluorescent GCs and fluctuations were similar to control (-14.3+2.7pA; 
Aiii). (B) Currents responses to capsaicin were then measured in 3 tdTomato+ ACs under 
identical conditions. The amplitudes of the currents in the presence of capsaicin were larger 
than control ( -49.8+13.9 pA; p=0.006; B & C). One AC had a displaced soma (iii) Capsaicin 
evoked TRPV1 mediate currents in ACs but not in the retinal portion of GCs.  
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1 M2, and 3 B3o. Three were non-fluorescent D2 bistratified GCs (Sun et al., 

2002) whose processes stratified with the CHAT bands. The responses from all 

control GCs were used to set a minimum criterion for a capsaicin evoked 

response, e.g., the amplitude in the presence of capsaicin had to be statistically 

larger than control membrane fluctuations (Fig. 4.9ai). Responses from 16 

tdTomato+ GCs in nine TRPV1cre/Ai9 retinas were recorded in the presence of 

capsaicin. Eight were B3o, five were M1, and three were M2. Capsaicin 

responses from five non-fluorescent D2 bistratified, one A1 ON GC, and two 

unknown GCs also were recorded. Fig. 4.9 shows representative traces of 

membrane current fluctuations (Vhold= -60mV) from control recordings and 

recordings in the presence of capsaicin. All of the fluctuations in response to 

capsaicin fell within the range of the control fluctuations (0 to -21pA; p=0.58). I 

determined that capsaicin did not evoke a current response in any GCs. In light 

of known TRPV1 expression and function in other neural systems, there were 

several possible explanations for absence of capsaicin currents in TRPV1+ GCs 

in wholemount retina, which I will mention briefly here and expanded on in 

Chapter VI (General Discussion and Future Directions).  

1. TRPV1 could be present outside the retina, such as in GC axon   

terminals.  

2. TRPV1 may also be located intracellularly and regulating calcium stores 

there rather than passing membrane current.  

3. TRPV1 in vesicle stores within the GC may be quickly inserted in the 

membrane and pass calcium current in response to noxious stimuli, such 
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as dissociation of the GCs in culture. This process occurs within minutes 

of noxious stimuli and increases excitatory currents in affected cells. 

  

  To determine if TRPV1 can mediate current at all, Dr. Borghuis and I 

recorded from tdTomato+ ACs (n = 2) in wholemount retinas. Again, capsaicin 

(30 µM) was bath applied for seven or five minutes. In contrast to the GCs, 

capsaicin evoked a large inward current in those ACs (Fig. 4.9b; -22pA & -65 pA, 

respectively). The responses reached a plateau approximately seven min after 

onset of capsaicin application. We monitored the ACs for 40 and 20 min after 

capsaicin application and the current response did not return to baseline. The 

recorded ACs were imaged using two-photon microscopy directly after recording 

and morphologically identified. The morphology of one AC was an nGnG, 

consistent with morphological analysis of TRPV1+ ACs. The morphology of the 

second AC was undetermined due to insufficient filling of the AC by the Alexa 

dye.  

 While targeting TRPV1+ GCs, I inadvertently recorded from a tdTomato+ 

WF dAC, although it was a rare class labeled in TRPV1cre/Ai9 retinas. In that AC, 

three min capsaicin application evoked a large inward current, similar to the other 

ACs (Fig. 4.9biii; -64pA). The current had a transient peak that reached a 

maximum approximately 7 min after capsaicin application. The current declined 

and returned to baseline holding 15 min after capsaicin application. Although the 

number of ACs recorded from was small, the similarity among the tdTomato+ 

ACs and dACs lead to the conclusion that they expressed TRPV1 channels that 
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can be directly gated by capsaicin and pass current when activated. Possible 

TRPV1 ligands that are endogenous in the retina are discussed in the next 

section.  

   

III.      Discussion  

3.1 Capsaicin induced excitatory currents in amacrine but not ganglion cells 

 To determine the specific cell types that express TRPV1 in the retina, I 

used a TRPV1cre knockin mouse (Cavanaugh et al., 2011a&b) and induced 

tdTomato expression in TRPV1+ cells using two methods: TRPV1cre/Ai9 to 

assess developmental and mature expression and TRPV1 cre -AAV to assess 

mature expression only. The data between the two reporter types is largely 

consistent, therefore TrpV1 continues to be transcribed in ACs and GCs in the 

mature mouse. TRPV1 is expressed in two NF ACs and one WF dAC, which 

have been previously identified in the rabbit (MacNeil et al.,1999) and mouse 

(Pérez De Sevilla Müller et al., 2007; Badea & Nathans, 2004; Lin & Masland, 

2006; Kay et al., 2012; Lee et al., 2014; Zhu et al., 2014). That expression is 

consistent with reports by Leonelli and colleagues (2010& 2013) in which they 

found TRPV1-ir in NF ACs in the rat. I did not find consistent TRPV1-ir in the 

mouse retina, which I attribute to low specificity of the TRPV1 antibody to mouse 

protein. TRPV1 protein expression in the mouse DRG is 20-30 fold higher than 

the retina and TRPV1-ir requires signal amplification to accurately assess TRPV1 

localization there. The faint punctate like label in the IPL of the mouse retina then 
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is not surprising and is too faint to be useful for determining TRPV1 expression 

patterns. However, capsaicin evoked currents confirmed TRPV1 protein 

expression in three tdTomato+ ACs. The prospective role of TRPV1 in each AC 

type is discussed below:  

1. The Flag A AC stratifies in s 2-3 and express glycine (MacNeil et 

al.,1999). Activation of TRPV1 increases intracellular calcium by entry 

through the channel or TRPV1 mediated calcium regulation of 

intracellular stores (Olah et al., 2001; Liu et al., 2005; Karai et al., 

2004; Medvedeva et al., 2009). Subsequently, TRPV1 commonly plays 

a role in sustained, asynchronous neurotransmitter release. TRPV1 in 

the Flag A ACs may modulate light responses by regulating tonic 

glycine release. 

2. The nGnG stratifies in s1-3 and do not express glycine or GABA as 

previously reported (Kay et al., 2012). The neurotransmitter released 

by the nGnG ACs has not been determined (Kay et al., 2012). The 

expression of TRPV1 in these ACs gives prospective targets to 

investigate. TRPV1 is activated by endocannabinoids and 

endovanilloids such as anandamide, 12-Hepete, and NADA (see 

Ryskamp et al., 2014 for a review). Endovanilloids are synthesized 

from membrane phospholipids and cannot be immuno-labeled directly, 

but anandamide regulating enzymes have been localized to ACs in the 

goldfish and rat retina (Zimov & Yazulla, 2007; Hu et al., 2010; Zabouri 

et al., 2011). Interestingly, ACs expressing the regulatory enzyme 
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FAAH in the goldfish retina co-localize with TRPV1-ir. Future studies 

are needed to determine if endocannabinoid related enzymes are 

expressed in mouse TRPV1+ nGnG ACs.  

3. The TRPV1+ WF dAC resembles the conventionally placed WA S3 

(Pérez De Sevilla Müller et al., 2007), and bifid (Badea & Nathans, 

2004), but are most similar to the displaced nNOS-2 WF AC (Zhu et 

al., 2014). The expression of nNOS in TRPV1+ AC has yet to be 

determined. Interestingly, Leonelli and colleagues (2013) report 

TRPV1+ ACs co-stratify with NF nNOS+ ACs in the rat and TRPV1 

activation may regulate nNOS expression and NO signaling in the 

retina. They suggest that NO upregulation by TRPV1 activation by 

capsaicin induced death of GCs. The specificity of TRPV1 (rather than 

TRPV1-independent capsaicin effects) to induce NO release still needs 

to be confirmed in TrpV1-/-. The idea that TRPV1 may regulate 

intracellular Ca2+ concentrations in nNOS WF ACs and subsequent NO 

synthesis and release, a Ca2+ dependent process, may be a target for 

future investigation.       

 All AC types co-stratify with glutamatergic ACs but do not express vGlut3. 

The positions of the processes give them the potential to form synaptic 

connections with each other or the GACs. Peters’ rule states that neuronal 

processes connect in proportion to their proximity and dendritic or axonal density 

(Peters & Feldman, 1976; Peters & Payne, 1993). However synaptic connection 

between ACs and GCs that colocalize s 2-3 violate Peter’s rule. Krishnaswamy 
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and colleagues (2015) found that besides co-stratification, recognition molecule 

sidekick 2 in GACs and post-synaptic W3B GCs enhanced pairing between the 

specific cells. GACs and other ACs and GCs stratifying in s 3 play roles in visual 

processing of image motion, local edge detection and local contrast change 

(Chiao and Masland, 2003; Murphy and Rieke, 2008; Zhang et al., 2012; 

Krishnaswamy et al., 2015, Lee et al., 2014 & 2016). GACs enhance extraction 

of specific features by these cells (Kim et al., 2015). Co-stratification of TRPV1+ 

ACs and GCs with GACs and related neurons suggest TRPV1 may play a role in 

some or all of these processes.    

3.2 TRPV1 in ganglion cells likely regulates non-image forming visual 

signaling in the brain 

 There are previous reports of TRPV1 in GCs in mouse (Sappington et al., 

2009 & 2016, rat (Sappington et al., 2009; Leonelli et al., 2009 & 2014), human, 

monkey (Sappington et al., 2016) and bovine retinas (OLeary et al., 2014). Most 

studies of TRPV1 in the retina show expression of TRPV1 in GCs in rats and 

mice, however the numbers of labeled cells are variable between studies. 

Leonelli and colleagues (2009) found TRPV1-ir in a small number of GCs in the 

rat, while the Calkins group reports TRPV1-ir in nearly all GCs in the mouse 

retina. The concentration of the antibody used in the latter studies is 1:50. My 

data shows that the same antibody at the same concentration results in high non-

specific label in the DRG and retina of WT and TrpV1-/- mice. In general, the 

TRPV1 antibodies were not very useful in mice. Sappington and colleagues also 
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report TRPV1 mRNA expression in 70% of GCs using in situ hybridization with 

high inter-retinal variability. My results from TRPV1 reporter mice determined that 

TRPV1 is expressed only in ~6% of GCs, consistent with what Leonelli and 

colleagues found in the rat (2009). I further determined that TRPV1 is expressed 

in small populations of specific GC classes. The GC classes labeled in TRPV1cre 

mice have been previously identified (Sun et al., 2002; Berson et al., 2010; 

Farrow et al., 2013). Capsaicin application in the wholemount does not evoke 

current in TRPV1+ GCs, suggesting TRPV1 may reside in the axons or terminals 

of these cells, or may play a role in intracellular regulation of Ca2+. The 

prospective role of TRPV1 in each AC type is discussed below:  

1. The B3o GC (Sun et al., 2002) has a medium sized dendritic area , which 

stratifies in s3 of the IPL. It resembles the PV-4 (Farrow et al., 2013) in the 

parvalbumin cre mice. It may also resemble the W7 GCs (Kim et al., 

2010). However the TRPV1+ OFF GC may have a smaller dendritic area 

than the latter. GCs with W3 morphology were labeled less frequently in 

both reporter types. Interestingly, very few, if any axons from the 

TRPV1cre-AAV mice terminated in the dLGN, the target of most image 

forming GCs, but tdTomato+ axons were observed in the SC. Functionally 

the SC integrates visual and other sensory information for directing head 

and eye movements (May, 2006; Krauzlis et al., 2013). The specific 

function of B3o GCs in visual processing is unknown. Maione and 

colleagues (2009) report direct evidence for TRPV1 expression and 

function in GC axon terminals in the SC. Expression there is higher in the 
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developing retina and is necessary for long-term depression, which is 

likely involved in dendritic pruning. The TRPV1 antagonist 

iodoresinaferatoxin blocked long term depression, however trials with 

TrpV1-/- mice were not reported. TRPV1 is present but decreased in the 

adult axon terminals and has a different function (long-term depression is 

not observed in the adult SC).  

2. A small population of M1 ipGCs (~30%) expresses TRPV1 and is 

morphologically similar to previous reports. Intrinsically photosensitive 

GCs are 1% of all GCs (Berson et al., 2010) and only 30% of all ipGCs 

express TRPV1. The small numbers of TRPV1+ ipGCs may be indicative 

of a very specific function in these cells. GC classes extract distinct pieces 

of information to send to post-synaptic targets in the brain, where signals 

are integrated (Masland, 2012). The specific site of axon termination is 

related to the function of those GCs. Among the M1 ipGCs, those that 

express Brn3b project to the shell of the OPN and regulate pupil 

constriction in response to light. The Brn3b negative M1s project to the 

SCN and IGL regulate photoentrainment (Güler et al., 2008; Hatori et al., 

2008, Ecker et al., 2010; Chen et al., 2011). My results indicate the 

TRPV1+ M1s represent the latter population. In the absence of light input, 

the intrinsic periodicity of the circadian rhythms is not exactly 24 hrs. Light 

activated M1 input synchronizes the circadian clock to the day/night 

environment (see Hatori & Panda, 2010 for a review). Photoentrainment of 

the circadian clock has not been studied in TrpV1-/- mice and would be an 
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interesting target of future studies. Interestingly, endocannabinoid serum 

expression is under circadian regulation. Also, endocannabinoids reside in 

the SCN and have been shown to modulate photoentrainment of the 

circadian rhythm. In that study, photoentrainment was mediated by CB1 

receptors on GABAergic interneurons and TRPV1 agonists were not 

tested. 

3. M2 ipGCs project to the core of the OPN and may also send axons to the 

dLGN, vLGN, and SC (Baver et al., 2008; Ecker et al., 2010; Schmidt et 

al., 2011; Estevez et al., 2012; Hughes et al., 2016). TRPV1+ M2s send 

projections to the LGN and core of the OPN. TdTomato+ axon terminals 

were also observed in the SC. The absence of tdTomato+ terminals in the 

dLGN suggests the TRPV1+ M2s (and other TRPV1+ GCs), have 

functions related to non-image forming processing. In contrast to M1 GCs, 

the majority of the light evoked response is mediated by photoreceptor 

input to the M2 rather than melanopsin activation. The function of M2 GCs 

is still under investigation, but may be involved in circadian regulation of 

blood circulation or intraocular pressure (Blasiak et al., 2013) and has 

recently been implicated in light induced hypersensitivity to pain or light 

aversion in rats (Martenson et al., 2016). Pain modulating neurons in the 

rostral ventromedial medulla receive light information mediated through 

the OPN. That pathway has been implicated as a prospective source of 

light induced hyperalgesia in conditions such as migraine. It would be 



 

138 

 

interesting to know if inhibiting TRPV1 function could modulate pain 

inducing light information there.     

 

IV.  Conclusions  

  In this study I used TRPV1 reporter mice to determine the specific retinal 

neurons that express TRPV1. I determined that TRPV1 is localized to two NF AC 

classes. There, TRPV1 may regulate release of glycine and modulate visual 

signals to GCs. The presence of TRPV1 in ACs with unknown neurotransmitter 

and WF dACs, which may also express nNOS have potential to the help 

elucidate the role these cells play in shaping vision. Three main GC classes were 

consistently labeled in the mature mouse retina. TRPV1 in GCs that regulate 

circadian rhythms in combination with a likely endocannabinoid activator make 

TRPV1 a target of study in a field with important implications in health and 

disease. Further, the selective label of subsets of ipGCs make the TRPV1 

reporter mouse a useful tool for clarifying the function of the pathways they 

innervate.  

.  
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CHAPTER V 

LRIT3 REGULATES TRPM1 LOCALIZATION AND OPL SYNAPTIC 

STRUCTURE AND FUNCTION  

 

I. Introduction 

 Transient receptor potential cation channel subfamily M member 1 (TRPM1) 

is a non-selective cation channel whose function in the retina has been well 

described (Bellone et al., 2008; Morgans et al., 2009; Shen et al., 2009; Koike et 

al., 2010). Bellone and colleagues first described a potential role for TRPM1 in 

retinal signaling when they observed mutations in TRPM1 were associated with 

night blindness and also coat spotting in Appaloosa horses (Bellone et al., 2008). 

Subsequent work has confirmed that TRPM1 is expressed in the dendritic tips of 

ON BCs and is required for depolarization of ON BCs to light (Koike et al., 2010; 

Morgans et al., 2009; Nakamura et al., 2010; Pearring et al., 2011). Absence of 

TRPM1 or components necessary for the function of TRPM1 results in the human 

disorder, complete congenital stationary night blindness (cCSNB; Miyake et al., 

1987; Audo et al., 2009; Zeitz et al., 2015), which is characterized by decreased 

vision in low light. Other visual abnormalities that have been associated with 

cCSNB patients are:  decreased visual acuity, myopia, nystagmus and strabismus 
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(Carr, 1974; Boycott et al., 1993; Zeitz et al., 2015). ON BC dysfunction in cCSNB 

leads to a characteristic phenotype in which the ERG has a normal a-wave 

although the b-wave is absent (Bornschein, 1952; Miyake et al., 1986).   

 Components of the ON BC signaling cascade associated with TRPM1 

function have been identified due to mutations in humans (Dryja et al., 2005; Pinto 

et al., 2007; Audo et al., 2009; Zeitz et al., 2015), horses (Bellone et al., 2008), 

and/or mice (Masu et al., 1995; McCall & Gregg, 2008) which lead to the nob 

phenotype. Responses through the ON pathway are initiated by sign inverting 

synapses between rod and cone photoreceptors with ON BCs. TRPM1 is 

associated with the metabotropic glutamate receptor mGluR6 and G-proteins Gαo 

and Gβγ. They and multiple accessory proteins form a signaling complex 

(signalplex) in ON BCs, which mediates transmission of visual signal at the 

synapse. The G-protein cascade, described in detail in the introduction (Fig. 1.4), 

is summarized here. In the dark, glutamate is continuously released from rod and 

cone photoreceptors and binds to the mGluR6 receptors on the post-synaptic ON 

BC dendrites (Nakajima et al., 1993; Nomura et al., 1994). Once bound, a Go g-

protein coupled cascade is activated (Nawy et al., 1999; Dhingra et al., 2000, 2002, 

2012), which, through several intervening steps that have yet to be fully elucidated, 

closes the TRPM1 cation channel (Morgans et al., 2009; Shen et al., 2009; Koike 

et al., 2010; Peachey et al. 2012). In response to light, glutamate release is 

decreased and mGluR6 is inactivated. The regulator proteins Gβ5, RGS7 and 

RGS11 (Morgans et al., 2009; Jeffrey et al., 2010; Cao et al., 2012), as well as 

GPR179 and R9AP (Peachey et al., 2012; Ray et al., 2014), mediate the rapid 
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inactivation of the mGluR6 cascade and opening of the TRPM1 channel. Influx of 

Na+ and Ca2+ through the non-specific TRPM1 cation channel depolarizes the ON 

BC (Shen et al., 2009; Morgans et al. 2009). Accessory proteins are critical for the 

proper localization and function of the mGluR6 ON BC signalplex. The leucine rich 

repeat protein, nyctalopin, is required for TRPM1 localization in the synaptic 

membrane (Gregg et al., 2003; Pearring et al., 2011). Mice with mutations in the 

Nyx gene encoding nyctalopin (Nyxnob) have the no b-wave (nob) ERG phenotype 

(Pardue et al., 1998; Gregg et al., 2003; McCall et al., 2008). Recent studies have 

shown that replacing absent components of the cascade with functional protein 

can restore ON pathway signal in a mouse model of the disorder (Gregg et al., 

2007; Scalabrino et al., 2015).  

 A similar accessory protein, leucine-rich repeat immunoglobulin-like 

transmembrane domain 3 (LRIT3), also is absent in some cCSNB patients (Zeitz 

et al., 2013) and a mouse with a nob ERG (Lrit3nob6; Neuillé et al., 2014). Similar 

to in the nyctalopin knockout, the absence of LRIT3 results in the mislocalization 

of TRPM1 (Neuillé et al., 2015). However, Lrit3nob6 mice display a phenotype that 

differs from Nyxnob; mGluR6, GPR179, RGS7, RGS11 and Gβ5 is absent from the 

dendritic tips of the ON cone BCs (CBCs), but present in RBCs. In addition, 

expression of the peanut agglutinin (PNA) binding glycoprotein at the cone 

terminals also is downregulated (Neuillé et al., 2015). 

 To better understand the role of LRIT3, we created a mouse with a targeted 

mutation in exon two of the Lrit3 gene, the coding region for the leucine rich repeat 

sequence using zinc-finger nuclease technology. We determined that expression  
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Figure 5.1. Immunohistochemistry and Western blots verify LRIT3 expression is 
eliminated in the Lrit3-/- mouse retina A) Vertical sections of Lrit3+/- and Lrit3+/-  retinas 
were labeled with antibodies to LRIT3. The absence of LRIT3 label in the Lrit3-/- confirms 
the specificity of the antibody. B) Similarly, Western blot data reveals an absence of 
LRIT3 protein in the Lrit3+/-  retina. C) Vertical sections were co-labeled with antibodies to 
LRIT3 and Pikachurin, which is present at the dendritic tips of ON BCs. LRIT3 is co-
localized with Pikachurin in the Lrit3+/-  on both the RBC puncta and the congregation of 
protein representing the ON CBCs. Pikachurin, but not LRIT3 is present in the Lrit3-/-.      
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of LRIT3 protein was absent in these Lrit3-/- mice and I showed that they display a 

nob ERG phenotype. We further examined the structure of the OPL and assessed  

visual function through the ON and OFF pathways in the in Lrit3-/- mice. We 

determined that LRIT3 is required for nyctalopin expression and that in the 

absence of LRIT3 and 

nyctalopin, TRPM1 is 

mislocalized in ON BCs. 

Further, visual signal 

transduction through the 

OFF pathway in Lrit3-/- is 

significantly lower than 

Lrit3+/+ and other nob 

mice. We determined 

LRIT3 is required for 

normal glutamate 

transmission from 

cones to OFF BCs. This 

alteration in glutamate 

signal, in combination 

with altered synaptic 

protein expression in 

Lrit3-/-, suggest a trans-synaptic functional role for LRIT3 at the cone terminal.  

 

 

Figure 5.2. ERGs from Lrit3-/- mice express a no b-
wave phenotype consistent with models of cCSNB 
A) Scotopic ERGs from Lrit3+/- (n=6) and Lrit3-/- (n=6) 
have similar amplitude a-waves, however the Lrit3-/- 
lacks a b-wave. B) Photopic ERGs from the same mice 
have similar amplitude a-waves, however the Lrit3-/- 
lacks a b-wave. Results are consistent with normal 
photoreceptor function, but an absence of signal 
through the rod and cone ON BCs.    
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II. Results 

2.1 LRIT3 is absent in the Lrit3emrgg1 mouse retina  

Using the ERG, LRIT3 has been shown to be critical to ON BC function in. 

We designed zinc finger nucleases targeted to a highly conserved domain in Lrit3  

exon 2 (see section 2.1.2 Generation of Lrit3 Zinc Finger Nuclease (ZFN) 

knockout mice). Of the several Lrit3 mutant lines identified (manuscript in 

preparation), one had a 40 base pair deletion (Lrit3emrgg1) and it is used in the  

results of our studies presented here. We also generated an antibody to LRIT3 to 

use in immunohistochemistry and western blotting. 

 

2.5.1 Generation of Anti-LRIT3 antibody). 

Immunohistochemistry (Fig. 5.1a) on transverse retinal sections show that 

LRIT3 is expressed exclusively in a punctate pattern in the OPL in the Lrit3+/- 

retina. This expression is absent in Lrit3-/- retina. Western blots (Fig. 5.1b) verify 

the elimination of LRIT3 protein expression. LRIT3 is co-localized with 

Pikachurin, the extracellular matrix protein that resides in the synapse between 

photoreceptors and ON BCs (Fig. 5.1c). The expression of LRIT3 indicates it is 

part of the ON BC signalplex, which is consistent with previous reports in the 

Lrit3nob6 using different dendritic markers (Neuillé et al., 2015).  

 

2.2 Glutamate Receptors Are Functional in OFF but not ON BCs in the Lrit3-/-  
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I confirmed that this Lrit3-/- model lacked ON BC function using the 

electroretinogram (ERG). The b-wave is absent in the Lrit3-/- ERG responses to  

dim flashes indicating RBCs do not depolarize to light in Lrit3-/-  retinas. The a-

wave amplitude in the Lrit3-/- 

ERG responses to the same 

stimuli is similar to Lrit3+/-. 

Photoreceptors in Lrit3-/-  

retinas hyperpolarize to light 

(Fig. 5.2a). Similarly, the 

individual responses from the 

Lrit3-/- mice to a family of 

flashes above a light 

background (20 cd/m2) 

lacked an ON BC driven b-

wave, while the cone driven 

a-wave also was normal (Fig. 

5.2b). A no b-wave ERG 

phenotype is emblematic of 

retinas that lack functional 

ON BCs (Peachey et al., 

2007; McCall & Gregg, 2008) 

and our results show that the 

 

Figure 5.3. Responses of BCs to CPPG, 
Capsaisin, or Kainate puffs A) Representative 
voltage-clamp responses (Vhold= +50 mV) of WT, 
Lrit3-/-, and Trpm1-/- RBCs evoked by puff 
application of the mGluR6 antagonist CPPG (0.6 
mM, 200 msec) delivered with the mGluR6 
agonist L-AP4 (4 µM) in the bath solution. 
Current responses to CPPG in Lrit3-/- and Trpm1-

/-  RBCs were smaller than WT (p < 0.001) and 
did not differ from each other (p > 0.05). B)  
Representative voltage-clamp current responses 
of WT, Lrit3-/-, and Trpm1-/- RBCs evoked by puff 
application of the TRPM1 agonist capsaicin (10 
µM, 200 msec). Current responses to Capsaicin 
in Lrit3-/- and Trpm1-/-  RBCs were smaller than 
WT (p < 0.001) and did not differ from each other 
(p > 0.05). C) Fluoresently labeled Type 1 and 2 
OFF BCs were targeted for patch clamp 
recording in VSX1 and Lrit3-/-/VSX1 retinas. 
Representative voltage-clamp current responses 
(Vhold= -60 mV) of VSX1 and Lrit3-/-/VSX1 OFF 
BCs evoked by puff application of Kainate (4 µM, 
200 msec). Response amplitudes were similar 
between VSX1 and Lrit3-/-/VSX1 (p > 0.05).   
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Lrit3-/- mouse is similar to the Lrit3nob6 mouse (Neuille et al., 2014).  

To directly determine if the ON BC signalplex was functional in the 

absence of LRIT3, we made whole cell patch clamp recordings of Lrit3-/- RBCs. 

In the presence of 4uM the mGluR6 agonist, L-AP4 (4µM), mGluR6 antagonist 

CPPG was puffed onto the RBC dendrites to displace L-AP4 bound to mGluR6. 

This pharmacologically simulates flashes of light (Ray et al., 2014). We also 

puffed the TRPM1 agonist, capsaicin, to determine if TRPM1 channels could be 

directly gated. As previously reported (Ray et al., 2014), both pharmacological 

manipulations resulted in robust outward currents with the rod BCs held at +50 

mV in control rod BCs (Fig. 5.3a & b). In contrast, only a small response was 

evoked in Lrit3-/- RBCs by either CPPG or capsaicin (Fig. 5.3a & b). An identical 

residual response was recorded in Trpm1-/- RBCs, consistent with our previous 

work and likely results from an effect of these drugs on unknown channels (Ray 

et al., 2014).  

We evaluated responses in Types 1 and 2 OFF BCs using Kainate puffs 

to activate ionotropic glutamate receptors. We targeted OFF BCs in VSX1-CFP 

reporter and Lrit3-/-/VSX1-CFP retinas (Fig. 5.3c). The amplitudes of the 

responses to Kainate between control and Lrit3-/- OFF BCs was similar (p > 

0.05). Together the results show that the mGluR6 signalplex is disrupted in this 

Lrit3-/- retina, whereas as least two subsets of OFF BCs express Kainate 

glutamate receptors and are responsive to Kainate puffs. 

 

2.3 LRIT3 is Required for Expression of Nyctalopin  
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Figure 5.4. Nyctalopin is absent in the Lrit3-/- retina A) Vertical slices from TgEyfp-Nyc and 
TgEyfp-Nyc:Lrit3-/- mouse retinas were labeled with antibody to GFP.  EYFP-nyctalopin fusion 
protein is expressed in puncta in the OPL on the tips of the RBCs as well as large clusters 
representing the tips of the ON CBC terminals.  When LRIT3 is absent, the EYFP-nyctalopin 
fusion protein also is absent. B) TRPM1 is expressed at the dendritic tips of RBCs and ON 
CBCs. The absence of LRIT3 eliminated the expression of TRPM1 from the dendritic tips of 
both RBCs and ON CBCs. 

 
It has previously been shown that TRPM1 expression is absent in the OPL 

of the Lrit3nob6 mouse (Neuillé et al., 2015). The absence of a response to 

capsaicin puffs is consistent with this interpretation. However, we have previously 

shown that expression of TRPM1 requires expression of nyctalopin (Pearring et 

al., 2011) and because the absence of expression can be interpreted to 

represent a protein:protein interaction, I evaluated whether nyctalopin is 

expressed in Lrit3-/- retina (Fig. 5.4a) and confirmed that in the Lrit3-/- mouse, 

TRPM1 expression was absent from the dendritic tips of the ON BCs (Fig. 5.4b). 
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Antibodies are not available for nyctalopin, therefore I crossed and backcrossed 

a transgenic mouse line that expresses an EYFP tagged nyctalopin (TgEyfp-Nyc: 

Gregg et al., 2007) to Lrit3-/- mice. In TgEyfp-Nyc mice the EYFP-nyctalopin 

fusion protein is expressed in puncta in the OPL on the tips of the RBCs as well 

as large clusters representing the tips of the ON CBC terminals (Fig. 5.4a). 

Expression of the EYFP-nyctalopin fusion protein is absent in TgEyfp-Nyc:Lrit3-/- 

retinas. As expected, the absence of nyctalopin eliminated the expression of 

TRPM1 from the dendritic tips of both rod and cone Lrit3-/- ON BCs (Fig. 5.4b). 

Thus, LRIT3 expression is required for nyctalopin expression in both rod and 

cone ON BC terminals and this result suggests that if there is a protein:protein 

interaction it should be between LRIT3 and nyctalopin. Whereas the absence of 

TRPM1 expression results from the loss of nyctalopin. 

 

2.4 LRIT3 is Expressed and Localized Normally in Other Models of cCSNB 

 In the absence of LRIT3, the expression of many ON BC signalplex 

members remain (Lrit3nob6; Neuillé et a., 2015). In addition, in the Lrit3nob6 cone 

ON BCs, LRIT3 expression appears to be required for the expression and correct 

localization of mGluR6, GPR179, RGS7, RGS11 and Gβ5 (Neuillé et al., 2015). 

Because the protein:protein interaction among members of this large signalplex 

is relatively unknown, we asked if LRIT3 was expressed in the absence of 

several ON BC signalplex proteins. Figure 5.5 shows that expression and 

localization of LRIT3 is independent of mGluR6 (Grm6-/-, Maddox et al., 2008), 

GPR179 (Gpr179nob5, Ray et al., 2014), Nyctalopin (Nyxnob, Pardue, et al., 1998; 
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Peachey et al., 2012; Pearring et al., 2011) or TRPM1 (Trpm1-/-, Koike et al., 

2010) at both the synapse with rod and cone terminals.   

   

2.5 LRIT3 is Required for Normal Function of Both ON and OFF GC 

Responses 

 I surveyed general visual responses of Lrit3-/- GCs to full field flashes by 

recording extracellular activity of a large number of GCs using the multielectrode 

array. Consistent with ERG responses Lrit3-/- GCs in the dark adapted retina did 

not respond to either a 7x10-4 or a 5x10-3 μW/cm2 flash. The result was the same 

in mGluR6-/- GCs recorded under the same conditions. In contrast, 6 and 42% of 

 

Figure 5.5. LRIT3 is expressed at both rod and cone photoreceptor terminals in 
several mouse models of cCSNB.  
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WT GCs responded to the same flash intensities, respectively. To a photopic 

flash (46.3 μW/cm2; 500 msec), nearly all WT and mGluR6-/- GCs were visually 

responsive (Fig. 5.6a) but only about half of Lrit3-/- GCs had stimulus evoked 

responses. I classified the GCs with stimulus evoked responses based on the 

timing of their responses to light onset (ON) or light offset (OFF). Among WT 

GCs, the full-field photopic stimulus evoked responses at either light onset, offset 

or at both phases (Fig. 5.6a). These functional classes differed in both mGluR6-/- 

and Lrit3-/- GCs, GCs with short latency ON responses were absent and all 

responses to light onset had long time to peak > 0.5 msec after stimulus onset 

(Fig. 5.6aii). In contrast, OFF GCs across the three genotypes had similar time to 

peak (< 0.3 msec). To determine whether all responses arise from input through 

OFF BCs, we recorded Lrit3-/- GCs in control Ringer’s and then in the presence 

of ACET. All light evoked responses (n = 15) were eliminated in the presence of 

ACET and all responses returned to control after drug washout. These results 

are consistent with both my ERG recordings and with a lack of glutamate release 

in the ON sublaminae. 

 The MEA recordings represent responses from a wide variety of GC 

classes. To better understand the parallel pathways involved, we assessed 

differences between Lrit3-/- and control in three well characterized GCs; ON and 

OFF alpha, and OFF delta using patch clamp recordings in retinal whole mounts 

(Fig. 5.6b). The example traces (Fig. 5.6bi) show the representative averaged 

currents evoked at light onset and offset in three GCs of each type. At light offset, 

control ON alpha cells show a robust outward current that is somewhat sustained  
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and light onset evokes a transient inward current. As expected Lrit3-/- ON alpha 

GCs had no outward current at light onset, however, a small transient inward 

current remains and arises from crossover from the OFF pathway (Borghuis et 

 

 

 

 

Figure 5.6. Visually-evoked responses of Lrit3-/- GCs are significantly altered 
compared to Grm6-/- and controls. Ai. Representative average peristimulus time 
histograms (above - raster plots to individual stimulus presentation) of responses recorded 
on a multielectrode array to a full field light stimulus (46.3 μW/cm2).  Control GCs 
(comprised of Lrit3+/, Grm6+/- and WT, which do not differ) responses can be classified as 
ON, OFF and ON/OFF from their excitatory response to light onset or offset, respectively. All 
responses to stimulus onset occur at < 0.4 sec after stimulus onset. All Lrit3-/- and Grm6-/-  
GC responses to light onset occur > 0.4 sec after stimulus onset. These responses are 
referred to as dON. Aii. The distribution of GC functional classes is shown as a mean across 
animals (Lrit3+/- n = 7; Grm6+/- n = 12; and WT n = 8). B. Similar to the general population of 
GCs, the well characterized ON alpha GC has no excitatory response to light onset and the 
OFF alpha and OFF delta cells have significantly diminished peak ampitudes (p <0.05). D. 
The Lrit3-/- GCs OFF responses have significantly small peak firing rates (10 sp/sec) 
compared to Grm6-/- and control GCs (26 and 29 sp/sec, respectively; Kruskal-Wallis; p < 
0.001). 
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al., 2014). At light offset, control OFF alpha GCs show a large initial transient 

inward current followed by a smaller sustained current that lasts for the duration 

of the flash and then returns to baseline. Control OFF delta GCs show a slowly 

building and sustained current to light offset that returns to baseline. In contrast, 

to Lrit3-/- ON alpha GCs, the peak amplitude of the response to light offset was  

smaller in Lrit3-/- OFF GCs compared to WT (Fig. 5.6bii). This result also was 

found in the spiking responses of all Lrit3-/- OFF GCs compared to both WT and 

to mGluR6-/- GCs. As expected the data show the absence of signaling through 

the ON pathway. What is unexpected is the reduction in signaling through the 

OFF pathway, suggesting a trans-synaptic defect in the Lrit3-/- retina that is not 

present in the Grm6-/- retina. This defect could occur in OFF BC signaling or in 

synaptic transmission between the photoreceptor and the cone BC. 

 

III. Discussion  

 Mutations in Lrit3 have been determined in two cCSNB patients to date 

(Zeitz et al., 2013).  The Lrit3nob6 mouse has a targeted deletion of exons three 

and four, which should result in loss of the transmembrane and intracellular 

domains (Neuillé et al., 2014). The mouse we generated has a 40 bp deletion in 

exon two of Lrit3, the region coding for the leucine-rich repeat domain. Both 

mutations resulted in the absence of LRIT3 and characteristic nob phenotype 

(Fig. 5.1 & Fig. 5.2). Therefore, deletions in the extracellular or transmembrane 

domains eliminate the protein. Both mouse lines also shared similar patterns of 
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signalplex protein expression at the cone, but not rod synapse. This specific  

Lrit3-/- phenotype is inherent to the absence of LRIT3 protein rather other genetic 

differences that might exist between the mice.   

 As previously reported, we observed mislocalization of TRPM1 to the 

soma in the absence of LRIT3. Similar to TrpM1-/-, application of the TRPM1 

agonist, capsaicin, produced a negligible current response (Fig. 5.2), consistent 

with the absence of TRPM1 protein in the synapse. The Lrit3-/- alterations in 

TRPM1 expression and disruption in TRPM1 function resembles the Nyxnob 

phenotype (Gregg et al., 2007; Pearring et al., 2011). Because of this, we 

investigated the expression of EYFP tagged nyctalopin in Lrit3-/-/TgEyfp-Nyc 

retinas.  

 The nyctalopin-EYFP fusion protein expressed in TgEyfp-Nyc mice is 

functional and capable of restoring ON responses in Nyxnob/TgEyfp-Nyc mice 

(Gregg et al., 2007). The absence of EYFP tagged nyctalopin in Lrit3-/-/TgEyfp-

Nyc is consistent with the idea that nyctalopin expression is dependent on LRIT3 

expression. This is indicative of a protein-protein interaction between LRIT3 and 

nyctalopin.  LRIT3 expression in Nyxnob and LRIT3 and nyctalopin expression in 

TrpM1-/- retinas suggest a one direction path of dependence (Fig. 5.4; Pearring et 

al., 2011). Nyctalopin is required for TRPM1 expression and LRIT3 is required for 

nyctalopin expression. Therefore, a protein-protein interaction may be inferred 

between nyctalopin and LRIT3, but not TRPM1 and LRIT3. Pearring and 

colleagues (2011) confirmed a direct interaction between TRPM1 and a small 

fraction of the nyctalopin protein and nyctalopin is required for the proper 
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localization of TRPM1 in ON BC dendritic tips. Mislocalization of TRPM1 in Lrit3-/- 

is likely due to the loss of the protein-protein interaction between nyctalopin and 

TRPM1 rather than LRIT3 and TRPM1.  Further studies are necessary to 

determine this. Nyctalopin lacks an intracellular domain and it has been assumed 

there is another ancillary transmembrane protein linking extracellular nyctalopin 

to TRPM1 and intracellular scaffolding proteins at the synapse (Pearring et al., 

2011). Determining the whether LRIT3 interacts directly with TRPM1 and is the 

linking protein will clarify this question. 

 As mentioned, disruption in ON pathway signaling in Lrit3-/- is consistent 

with other mouse models of cCSNB. Surprisingly, however, signaling through the 

OFF pathway was also significantly reduced in the absence of LRIT3. OFF BCs 

express Kainate receptors (Borghuis et al., 2014) which are not affected by loss 

of ON BC signal cascade proteins. Further, GC spiking response to light 

decrements are similar between Grm6+/+ and Grm6-/- mice (Fig. 5.6; Renteria et 

al., 2006).  Kainate puffs evoked similar inward currents in Lrit3-/+ and Lrit3-/- OFF 

BCs, confirming the presence of functional glutamate receptors in the dendrites 

of these cells (Fig. 5.3). However, EPSCs and membrane depolarizations to a 

luminance decrement are significantly lower in Lrit3-/- OFF BCs compared to 

Lrit3-/+ (data not shown), suggesting decreased glutamate transmission from the 

cones to the OFF BCs.  Lower excitatory currents and spiking activity in Lrit3-/- 

GCs compared to WT GCs correlated with the OFF BC current responses. Only 

19% of Lrit3-/- GCs compared to 91% Lrit3-/+and 73 % Grm6-/- had light 

responses. Also, Lrit3-/- OFF GC spiking response amplitudes were lower than 
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Lrit3-/+ and Grm6-/-. Loss of Grm6-/- and Lrit3-/- responses in the presence of the 

Kainate receptor antagonist, ACET confirmed their origin in the OFF pathway. 

The decreased excitatory currents in the OFF pathway leads us to conclude that 

the origin of the OFF pathway signaling defect is decreased glutamate 

transmission from the cone to OFF BC.  Impaired signaling transmission in the 

absence of LRIT3 could be the result of decreased glutamate release from the 

cones or structural abnormalities in the synapse.   

 ON BC cascade proteins are downregulated in cone, but not rod BCs. 

This cone specific phenotype suggests that while LRIT3 is expressed at both the 

rod and cone synapse, its function is different at the two locations. LRIT3 is 

required for nyctalopin and TRPM1expression at both the rod and cone synapse, 

but LRIT3 is also required for expression of many other proteins as well at the 

cone synapse.  One of these proteins is the PNA binding protein that is specific 

to the cone and not rod synapse. In light of this, the identification of the PNA 

binding protein at the base of the cone terminals is of significant interest given its 

prospective role in regulating structure or function at the cone synapse.  LRIT3 

could be anchoring specific signalplex at the cone, but not the rod terminals 

directly.  But most likely, LRIT3 may regulate the expression or function of 

another protein that is required for cone BC signalplex localization. Overall, 

LRIT3 may have a trans-synaptic function which maintains nyctalopin in the rod 

and cone ON BCs, in required for visual signal transmission through the ON BCs, 

and enhances signaling from the cones to OFF cone BCs.  
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CHAPTER VI 

GENERAL DISCUSSION AND FUTURE DIRECTIONS 

 

 TRP channels participate in multiple functions in neurons, with the majority 

of them playing critical roles in sensory processing (Venkatachalm & Montell, 

2007). TRPV1 is the most characterized TRP channel outside of the retina 

(Caterina et al., 1997; Caterina & Julius, 2001) and its roles in thermosensation 

and pain signaling have been well defined. While TRPV1 is present in brain 

nuclei (Cavanaugh et al., 2011b), the biological function of TRPV1 in signal 

transduction in the CNS is inconclusive (see Ho et al., 2012 for a review). Very 

little is known about TRPV1 in the retina. TRPV1 function may be 

neuroprotective or neurodegenerative in response to retinal ischemia (Sakamoto 

et al., 2014), and glaucoma (Ward et al., 2014; Weitlauf et al., 2014; Sappington 

et al., 2015). The function of TRPV1 in shaping visual signals in the retina has 

not been investigated.   

 With very little prior knowledge regarding the role of TRPV1 in normal 

visual processing, I investigated this by comparing the GC spiking responses in 

WT and TrpV1-/- mice, which represents the visual output of the retina. I used 

knowledge of the retinal pathways and circuitry to determine whether TRPV1 

modulates normal visual signals and if so, which pathways TRPV1 shapes. I 
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simultaneously determined the specific cells in which TRPV1 is expressed and 

used knowledge of the known function of those cells to piece together the role of 

TRPV1 in the retina. My cohesive results from Chapters III and IV determined 

TRPV1 is regulating a circuit that is likely involved in enhancing visual acuity in 

daylight and visual sensitivity in dim light. TRPV1 enhances serial inhibition of 

GABAergic ACs to reduce GABA release onto GABAc receptors, which are 

located on ON CBCs. With decreased GABAergic inhibition of the ON CBCs, 

glutamate release is prolonged, resulting in sustained spiking responses and 

enhanced spontaneous activity in post-synaptic ON GCs. Sustained ON GCs 

improve the perception of static details in the visual world (Roska et al., 2006). 

TRPV1 in glycinergic ACs (Chapter IV) likely enhances their tonic release of 

glycine onto GABAergic amacrine cells to mediate the serial inhibition. 

 

Discussion of Experimental Limitations  

  My results provide a broad idea of TRPV1 function in retinal circuitry. 

From here, the details of the circuits can be dissected to test my conclusions and 

understand more about this protein and the neural pathways it affects. There are 

inherent limitations to conclusions regarding underlying retinal circuitry based on 

the spiking output alone. Making evidence based assumptions about current 

inputs and outputs without direct measurement is a limitation of interpreting 

spiking activity. One assumption I made regarding the role of TRPV1 in retinal 

processing was that it modulates signals presynaptic to the GCs. The evidence 

for this includes the following:  
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1. TRPV1 is expressed in small populations of GCs which total only ~6% 

of all GCs (Chapter IV). In contrast, TRPV1 affects either spontaneous 

and/or light evoked spiking activity in the majority (>70%) of ON and OFF 

GCs (Chapter III). In contrast, TRPV1 is expressed in large numbers of 

ACs whose processes form a continuous plexus in the IPL. This strongly 

suggests TRPV1activity in ACs is affecting the spiking activity in the 

majority of GCs through presynaptic modulation of the visual signal. 

However, based on this finding, I cannot determine whether TRPV1 in the 

small percentage of GCs is affecting their spiking activity. Therefore, I 

tested idea this directly.   

2. TRPV1 is a calcium channel which can be activated by capsaicin. With 

prolonged exposure to capsaicin, TRPV1 activation results in prolonged 

Ca2+ influx lasting approximately three min. (DRG, Medvedeva et al., 

2009; GCs, Ryskamp et al., 2015) followed by a decline in intracellular 

[Ca2+] to a plateau which is elevated compared to pre-stimulus. The 

plateau lasts tens of minutes depending on the strength of stimulus (i.e. 

concentration of capsaicin) and represents TRPV1 mediated release of 

Ca2+ from intracellular stores (Medvedeva et al., 2009). TRPV1 is 

expressed in two populations of ipGCs, M2 and M1, and an OFF GC, B3o. 

Using whole cell patch clamp, I recorded from each of the TRPV1+ GC 

types. In voltage clamp, I held the GC at the chloride reversal potential (-

60 mV) in the presence of 30µM capsaicin. No inward current greater than 

control was evoked by capsaicin in any TRPV1+ GCs. In contrast, inward 
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current responses to capsaicin were detected in all three tested TRPV1+ 

ACs. From this I concluded that TRPV1activation in ACs produces Ca2+ 

influx. However, the absence of either a capsaicin evoked intial rise in 

inward current or a slow plateau phase in TRPV1+ GCs suggests TRPV1 

is not present in the retinal portion of GCs or is not activated by capsaicin. 

I therefore have no evidence that TRPV1 in GCs is modulating spiking 

activity directly in the normal wholemount retina.  

 

 One limitation in my data is the lack of direct current recordings in ON 

GCs that are affected by TRPV1 activity. My attempts to identify the specific GC 

classes have been unsuccessful. If the specific classes are identified, I could 

record spontaneous and light evoked currents in patch clamp configuration to 

determine the source of the altered spiking activity. In Chapter IV, I determined 

that TRPV1 most likely regulated feedback or feedforward inhibition to sON GCs. 

I attempted to identify a specific morphological class of ON GC whose sustained 

light responses became transient in the absence of TRPV1. To do this, I crossed 

and back crossed TrpV1-/- mice with GRIK, SLICK-H, and PVcre/STP reporter 

mouse lines with fluorescently labeled population of sON GCs. I obtained 

homozygousTrpV1-/-/heterozygous labeled line mice (Table 6.1). I targeted 

fluorescently labeled ON GCs in retinal wholemount preparation (note quadrants 

of the retina were used) using brief illumination. I recorded the extracellular light-

evoked spiking activity to full-field (5 sec) light stimulation. I found that the sON 

GCs in these labeled lines maintained their sustained spiking responses in the 
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absence of TRPV1. I concluded that TRPV1 did not modulate the temporal 

spiking activity of those specific GCs, which resemble the A1 and A2 (Sun et al., 

2002). 

Other mice with labeled sON GCs have recently been developed and I 

propose continuing these experiments using the labeled lines described in table 

6.2. I will record spiking responses to full-field light in cell attached mode. If there 

is a response to a luminance step that is transient in the TrpV1-/-, I will break in  

Table 6.1 Mouse lines with fluorescently labeled GCs, which I crossed with TrpV1-/- . I 
targeted labeled sON GCs and recorded spontaneous and light evoked responses in whole cell 
patch clamp mode. TRPV1 did not alter the temporal properties of sON GCs that are labeled in 
these mice. 

 

and record light responses to full-field and spot stimuli using whole cell mode to 

will isolate and record either the IPSCs (Vhold = ~0mV) or EPSCs (Vhold = ~-60 

mV). Spontaneous currents (sEPSCs and sIPSCs) (absence of light stimulation) 

and light evoked currents (L-EPSCs and L-IPSCs) will be characterized to stimuli 

similar to those used in the intact preparation (Chapter III).  

 
 

Mouse Short 
Name 

GC 
labeled 

Spiking 
Responses 
in TrpV1-/- 

Source/Jackson 
lab stock# 

C57BL/6-Tg(Grik4-
cre)G32-4Stl/J 

GRIK4cre ON A1 Sustained Gift from S. 
Bloomfield & A. 
Huberman; 006474 

Tg(Thy1-cre/ERT2,-
EYFP)HGfng/PyngJ 

SLICK-H ON A1 Sustained Gift from S. 
Bloomfield & A. 
Huberman; 012708 

B6;129P2-
Pvalb tm1(cre)Arbr/J 
 

PVcre 
 

  Hippenmeyer et al., 
2005; 008069 

Thy1Stp-EYFP STP   Gift of J. Sanes; 
Buffelli et al., 2003; 
005630 

 PVcre/STP 
 

ON, A2 Sustained  
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Table 6.2 Mouse lines with fluorescently labeled GCs, which can be crossed with TrpV1-/- . 
Labeled sON GCs can then be targeted for patch clamp recording experiments to determine the 
role of TRPV1 in shaping light responses  

In the absence of TRPV1, I expect to find light evoked EPSCs with shortened 

duration compared to WT. I also predict the GABAc antagonist TPMPA will  

prolong the EPSCs and subsequent spiking activity. Light evoked IPSCs may 

also have prolonged duration compared to WT. If the temporal properties of 

these labeled GCs is similar in WT and TrpV1-/-, alternative approaches include 

the following: 

1. Similar experiments to MEA recordings conducted in Chapter IV can be 

used to assess the light responses with and without the GABAc receptor 

blocker, TPMPA. I expect response properties, including durations to 

increase in WT, but proportionally more in TrpV1-/-. However, there are 

limitations to this experiment, which are discussed in appendix I. 

2. Mouse lines with labeled ON BCs can be crossed to TrpV1-/-. Using 

two-photon microscopy, BCs can be targeted for patch clamp recording in 

wholemount retinas and light evoked current responses can be recorded. I 

expect the excitatory input to labeled BCs to be similar in the absence of 

TRPV1. TPMPA sensitive inhibitory input may be increased.  

3. Since the majority of ON GCs had lower spontaneous activity in the 

absence of TRPV1, spontaneous currents can be recorded from labeled 

Mouse Short Name GC 
labeled 

Reference 

Opn4CreERT2 OPN4cre  Chen et al., 2011 

B6.129(Cg)-Tg(CAG-
Bgeo/GFP)21Lbe/J  

ZEG   

 OPN4cre/ZEG M1, M2, M3 Chen et al., 2011 

Tg(Cdh3-
EGFP)BK102Gsat/Mmnc 

CDH3-GFP Multiple ON 
types 

Osterhout et al., 2011 

Tg(Hoxd10-
EGFP)LT174Gsat/Mmucd 

Hoxd10-GFP ON DS and 
ON/OFF DS 

Dhande et al., 2013 
 

https://www.mmrrc.org/catalog/getSDS.php?mmrrc_id=236
https://www.mmrrc.org/catalog/getSDS.php?mmrrc_id=236
https://www.mmrrc.org/catalog/getSDS.php?mmrrc_id=32065
https://www.mmrrc.org/catalog/getSDS.php?mmrrc_id=32065
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ON GCs. Pharmacological manipulation can be used to isolate the source 

of the currents. 

 

 My data in Chapters III and IV show TRPV1 expression within a small 

percent of GCs that is not activated by capsaicin. This is contradictory to other 

reports. Using TRPV1 antibodies, Sappington and colleagues (2011& 2015), 

report robust expression of TRPV1 in the majority of GCs. Using the same 

antibody and concentrations they described, I found similar fluorescent 

expression in the mouse retina, however I also found the same expression in 

TrpV1-/- retina.  Further, the fluorescent expression in the DRG of WT and TrpV1-

/- mice was similar and did not represent the DRG expression of TRPV1 reported 

by multiple investigators (Hwang et al., 2005; Zacharova & Palecek, 2009; 

Cavanaugh et al., 2011b). The same group, in a series of publications, used 

calcium imaging in dissociated GCs to measure increases in intracellular [Ca2+] in 

response to capsaicin. They report that TRPV1 is present in the majority of GCs 

and is activated by capsaicin, which leads to an influx of Ca2+. While that group 

did not repeat the experiment in TrpV1-/-, Ryskamp and colleagues (2014) report 

similar capsaicin mediate Ca2+ signals in dissociated GCs, which are absent in 

the TrpV1-/-.  

 The most likely explanation for the difference between my results and the 

two other groups are the different experimental models. I recorded current 

responses to capsaicin from tdTomato+ GCs in TRPV1 reporter wholemount 

retinas. The other groups looked at calcium signals in response to capsaicin in 
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dissociated GCs. The following are possible explanations for the differences in 

the calcium signals and my absence of current responses.  

1. TRPV1 expression in the membrane is increased in dissociated GCs 

compared to wholemount. Investigation of TRPV1 in the PNS has 

confirmed that TRPV1 expression is regulated by external factors. When 

the cell is stressed (as would occur in the process of retinal cell 

dissociation) TRPV1 protein in the membrane increases rapidly. In primary 

afferent nociceptors, TRPV1 is present in intracellular vesicles. In the 

presence of stressful stimuli, the nociceptors are depolarized and the 

vesicular TRPV1 protein is rapidly inserted in the membrane (Planells-

Cases et al., 2005). At the same time, TRPV1 transcription is upregulated.  

There is evidence that GCs contain similar machinery and upregulate 

TRPV1 in response to increased pressure or ischemia (Ward et al., 2014; 

Sappington et al., 2015; Sakamoto et al., 2014). 

2. Capsaicin may be activating TRPV1 located in intracellular 

compartments which may release calcium from intracellular stores. This 

would produce an increased calcium signal but not necessarily a change 

in the membrane voltage.  

3. GCs which express TRPV1 are more likely to survive the dissociation 

process.  

To determine the source of the differences between the reported calcium 

signals and my current responses to capsaicin application, I propose doing 

calcium imaging in wholemount retina. To first, confirm capsaicin responses in 
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ACs but not GCs in larger populations of TRPV1 reporter cells, I propose similar 

experiments to those conducted in Chapter III with calcium imaging in TRPV1cre 

mice crossed to Gt(ROSA)26Sortm38(CAG-GCaMP3 )Hze (Ai38) mouse. The calcium 

indicator protein, GCaMP3, will be expressed in TRPV1+ cells and TRPV1 

agonist mediated calcium responses can be imaged simultaneously in larger 

populations. Current responses in capsaicin activated neurons can be confirmed 

by patch clamp recordings in synaptically isolated cells. Based on my data in 

Chapter IV in which I recorded capsaicin induced currents in tdTomato+ ACs but 

not GCs, I expect capsaicin activated Ca2+ signals and currents in ACs, not GCs 

in wholemount TRPV1cre /Ai38 retina. Depending on the results of these 

experiments, further experiments can be designed to investigate whether TRPV1 

is upregulated in response to trauma or if capsaicin evokes release of Ca2+ from 

intracellular stores. 

To investigate the third possibility, that TRPV1+ GCs are more likely to 

survive the dissociation procedure, I propose dissociating TRPV1cre/Ai9 retinas 

according to published methods (Ryskamp et al., 2014) and counting the 

numbers of fluorescent and non-fluorescent GCs in several samples. I would 

place a sample of the solution containing the dissociated retina on a slide, also 

using a similar technique to those published, and fix the cells using 4% 

paraformaldehyde. I would use standard protocols to label the samples using 

antibodies to tdTomato and a GC marker such as the transcription factor, 

recombination signal-binding protein Jk (RBP-J; Zheng et al., 2009). I would 

count the number of tdTomato+/RBP-J+ cells in each sample and compare it to 
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the number of RBP-J+ only cells. Given my data from Chapter IV, I expect 6% of 

GCs to be tdTomato+. With this expectation I would collect samples from 3 to 6 

mice to obtain appropriate power (G*Power). 

Another limitation in the interpretation of my results from Chapter III is the 

unknown mechanism by which TRPV1 is activated. Recent evidence suggests 

TRPV1 in intracellular locations is activated by endovanilloids and regulates 

release of endocannabinoids there in a pathway which regulates tonic GABA 

release in hippocampal neurons (Lee et al., 2015). Enzymes responsible for 

synthesis endocannabinoids and endovanilloids such as anandamide, HpETE 

and NADA are expressed in mouse ACs (Porcella et al., 2000; Hu et al., 2010). 

Endovanilloids within or post-synaptic to the TRPV1+ neurons have the potential 

to activate TRPV1 (Gibson et al., 2008; Ho et al., 2012). If they are activating 

TRPV1, their expression must be colocalized with or adjacent to TRPV1 

receptors. I propose labeling TRPV1cre/Ai9 retinal sections with antibodies to 

various proteins related to endovanilloid expression and assessing the 

localization of endovanilloids related to tdTomato+ neurons. If endovanilloids are 

found in or adjacent to tdTomato+ neurons, further experiments can be designed 

to test whether the endovanilloids are activating TRPV1 and affecting visual 

responses. 

The final limitation of my data I will discuss is the assumption that TRPV1 

is directly regulating the release of the traditional neurotransmitters, glycine and 

GABA. Other neurotransmitters are expressed by retinal cells and release of 

such non-traditional neurotransmitters can be regulated by TRPV1 (Leonelli et 
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al., 2009; Castillo, 2012; Leonelli et al., 2015). One such neurotransmitter that 

might affect visual responses is nitric oxide (NO).  I determined TRPV1 had a 

specific effect on which were indicative of TRPV1 enhancing glycine release from 

glycinergic ACs, resulting in disinhibition of GABA release to GABAc receptors.   

Consistent with that idea and previous publications (Leonelli et al, 2011 & 2013), 

my results in Chapter IV confirm the expression of TRPV1 in the inner retina of 

mice. The TRPV1+ Flag A AC expresses glycine, while the TRPV1+ nGnG AC 

has no known neurotransmitter. Also, a GABAergic WF AC resembles the 

recently describe nNOS-2 (Zhu et al., 2014), and therefore has the potential to 

release a second neurotransmitter, nitric oxide (NO).  

 The similarities between the function of NO and TRPV1 in the retina is 

evidence that TRPV1 has the potential to regulate NO, as described below: 

1. The function of NO in the retina: NO modulates visual signals in 

similar ways as TRPV1. NO enhances the coupling between the AII and 

ON CBC terminals (Bloomfield et al.,1997; Bloomfield and Völgyi, 2009). 

NO also regulates GABAc function in rod BCs through intracellular 

pathways (Gasulla et al., 2012).  Both of these processes affects visual 

signal transmission through the primary rod pathway. In this way, NO 

enhances the sensitivity of ON and OFF GC responses to dim light. 

Similarly, my results show that TRPV1 activity is required for signaling 

through the primary rod pathway and enhances the sensitivity of ON and 

OFF GCs to dim light.  
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2.  Further, NO-stimulated cGMP activation enhances the sustained 

release of glutamate from cone BCs directly in light adapted conditions 

(Snellman et al., 2009; Vielma et al., 2014), and NO can modulate the 

release of glycine and GABA from ACs directly and inhibit GABA receptor 

function (Wexler et al., 1998). Similarly, my results show that TRPV1 

enhances the sustained release of glutamate from cone BCs in light 

adapted conditions. And the modulation of light responses by TRPV1 are 

consistent with TRPV1 enhancing the release of glycine from ACs or 

decreasing GABAergic inhibition.  

 

 While my results described in Chapter III are consistent with a role for 

TRPV1 in sustained glycine release from the Flag A ACs, NO (and a possible 

neurotransmitter in the nGnG ACs) also has the potential to alter the visual 

responses. Based on this, it is important to: 1. Determine if TRPV1+ ACs express 

nNOS and release NO. 2. Determine if TRPV1 regulates the release of NO. 

I propose the following hypotheses: 

1.  nNOS is expressed in TRPV1+ ACs  

2. TRPV1 is required for NO release from nNOS+ ACs.   

 

I propose the following experiments to test my hypotheses: 

1. To investigate the prospective co-expression of nNOS and TRPV1, I will 

label the TRPV1cre/ai9 retinas with antibodies to nNOS. If my hypothesis is 
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correct, the tdTomato and nNOS antibody expression should colocalize in 

ACs.  

2. To determine if TRPV1 regulates NO release I propose a series of 

experiment.  

 A. nNOS protein expression was downregulated by intravitreal 

capsaicin injections (Leonelli et al., 2013), which may suggest TRPV1 or 

TRPM1 activity downregulates nNOS expression in the retina. To test if 

TRPV1 modulates nNOS protein levels, I propose comparing nNOS 

protein expression in TrpV1-/- and WT retinas by assessing the nNOS 

antibody label and western blot quantification in each genotype.  Since 

nNOS is also modulated by light and circadian rhythms, assessments 

should be made during the circadian day and night as well as in both dark 

and light adapted retinas. If my hypothesis is correct that TRPV1 

enhances NO release, then I expect nNOS protein expression will be 

decreased in TrpV1-/- compared to WT.  

B. NO release in the light and during the circadian day reduces gap 

junction coupling between the AII and ON CBC in order to enhance cone 

dominated vision (Zhang et al., 2005; Volgyi, & Bloomfield, 2011). 

Neurobiotin passes through gap junction and is widely used to assess 

coupling between cells. To determine if TRPV1 enhances NO release, I 

propose assessing the AII to ON CBC gap junction coupling in TrpV1-/-  

and WT retinas. To do this, neurobiotin will be injected in AII ACs and/or 

ON CBCs in WT and TrpV1-/- retinas. Since gap junction coupling is 
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modulated by light and circadian rhythms, assessments should be made 

during the circadian day and night as well as in several luminance 

conditions. If my hypothesis is correct, the transfer of neurobiotin 

between AII and ON CBCs will be increased in TrpV1-/- compared to WT 

during the circadian day and in daylight conditions.   

C. Under light adapted conditions increased NO modulates the 

release of glycine and GABA from ACs and inhibits GABA receptor 

function in ACs (Wexler et al., 1998). ON CBCs express GABAA and 

GABAc receptors and NO enhances release of glutamate from ON CBCs. 

To test if TRPV1 modulates the same pathways through release of NO or 

glycine, I propose recording spontaneous and evoked GABAergic 

inhibitory currents in WT and TrpV1-/- ON CBCs in light adapted 

conditions. To target specific BC types, mice with fluorescently labeled 

ON BCs can be crossed and backcrossed (VSX type 7, Gus-GFP type 7, 

clm1 type 9, GRM6-tdTomato all ON) to TrpV1-/-. If there is a difference in 

the charge transfer between genotypes, then GABAA and GABAc 

selective inhibitors can be applied to determine the source of the 

difference. Given my GC spiking results in Chapter III, I expect increased 

GABAc mediated inhibition in type 6, 7, 8 or 9 TrpV1-/- ON BC compared 

to WT. nNOS inhibitor (ARL-17477 dihydrochloride hydrate) also can be 

applied. If my hypothesis is correct, nNOS inhibitor will enhance GABAc 

mediated current in WT ON BCs and have no effect on TrpV1-/- ON BC 

inhibitory current. Glycine receptor antagonist, strychnine, may also be 

http://www.sigmaaldrich.com/catalog/product/sigma/sml0178
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applied. If TRPV1 enhances glycinergic serial inhibition of GABAergic 

ACs, the GABAergic inhibition should be increased in WT ON BCs in the 

presence of strychnine, but not in TrpV1-/- ON BC.  

 

If the results of these experiment is consistent with TRPV1 regulating NO 

release, then further experiments can be designed to test the hypothesis directly, 

such as NO imaging using the DAF-FM NO fluorescent indicator or recording 

GABAergic inhibitory currents in ON CBCs with NOS inhibitors.   

 

Future Experiments 

   

To assess the specific functions of TRPV1+ GCs, it helps to know the 

specific brain nuclei the GCs project to.  The axonal projections from TRPV1+ 

GCs provide very little contribution to the dLGN, the image forming area (Chapter 

IV). Also, my data suggests that the TRPV1+ M1 ipGCs project to the SCN but 

not the OPN and likely mediate specific functions there. One of the main 

functions of GCs projecting to the SCN is circadian photoentrainment. I propose 

determining whether TRPV1 plays a role in circadian photoentrainment by 

comparing the activity of TrpV1-/- mice compared to WT. Circadian 

photoentrainment is typically assessed by tracking the activity of mice during 12-

hr light and 12-hr dark days using a running wheel (Altimus et al., 2010). Mice 

are more active during the dark phase. The light-dark phase can then be 

advanced 6 hrs and the activity of WT mice will adjust so that they are more 
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active 6 hrs earlier, or will photoentrain. Mice which lack photoreception through 

SCN projecting ipGCs will not photoentrain to light shifts and increase activity 

according to their circadian rhythms only, known as free running (Provencio & 

Foster, 1995; Panda et al., 2002). I hypothesize that TrpV1-/- mice will still show 

photoentrainment, however the ability of the mice to adjust their running patterns 

to the light shift will be decreased compared to WT.    

To determine other possible contributions of TRPV1 to light pathways in 

the brain, I propose experiments to determine the specific brain nuclei innervated 

by each class of TRPV1+ GC. To do this I can inject a retrograde neuronal tracer 

such as a dye conjugated Cholera Toxin B into the SCN, OPN, LGN, IGL, or SC 

of TRPV1cre/Ai9 mice to label the GCs that project to each specific brain region. I 

can then analyze the morphologies of the tdTomato+/CT-B+ neurons to 

determine the specific GC classes that project to each region. I hypothesize that 

tdTomato+ M2 GCs project to the IGL and OPN, M1 GCs project to the SCN, and 

B3o GCs project to the IGL and SC. Depending on the results of these 

experiments, other techniques can be employed to address the function of 

TRPV1 in GCs.  

 

TRPM1 

  

 In contrast to TRPV1, TRPM1 is the most characterized TRP channel in 

the retina due to its role in signal transduction through the ON pathway. Loss of 

TRPM1 signaling causes the visual disorder, cCSNB.  However, very little is 
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known about its function outside of the retina. TRPM1 also is expressed in 

melanocytes and may regulate intracellular Ca2+ concentrations and 

melanogenesis (Guo et al., 2012).  

 

Discussion of Experimental Limitations   

 Our data shows that LRIT3 is required for nyctalopin expression rod and 

cone BC dendrites. In the absence of LRIT3 and subsequent nyctalopin, TRPM1 

is mislocalized and ON pathway signaling is disrupted, resulting in the cCSNB 

phenotype in patients. We further showed that LRIT3 is required for normal 

glutamate transmission from the cone terminals to cone BCs. In the absence of 

LRIT3, responses through the OFF pathway are lower than WT. It is unknown 

what additional effect the decreased OFF signaling might have on the vision of 

patients with Lrit3 mutations. The two patients had clinical symptoms similar to 

patients with Nyx mutations (Zeitz et al., 2013). Besides the nob ERG and night 

blindness, the first patient had high myopia, strabismus, and decreased visual 

acuities in both eyes (20/80 and 20/30 corrected). The second patient also had 

myopia and visual acuities of 20/40 and 20/50 corrected. Both patients also 

reported blurry vision. Patients with Nyx mutations also often have myopia, 

reduced visual acuity, and strabismus.  

It is unknown if OFF pathway signaling is decreased in humans with Lrit3 

mutations and if so, whether it alters visual perception more than mutations in 

Nyx. Tests such as the pattern ERG and visually evoked potential which 

measure inner retinal and V1 function, respectively, might be useful measures in 
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these patients. Visually evoked potentials from patients with Nyx mutations are 

absent to dim luminance, but similar to normal vision subjects under photopic 

conditions (Kubová et al., 2004). Patients with LRIT3 mutations might be 

expected to have visually evoked potentials with decreased amplitudes.  

 

Future Experiments 

 We determined a transynaptic functional role for LRIT3 in glutamate 

transmission at the cone synapse. Current and future experiments are designed 

to investigate the mechanisms by which LRIT3 enacts its effect. Specific 

questions and prospective experiments to address them are listed below.  

1. Does LRIT3 bind nyctalopin and/or TRPM1 directly?  

Protein interact can be assessed using pull-down studies with LRIT3 and 

TRPM1 antibodies with retinal lysates. Tg-Nyx mice can be used to 

assess interactions with nyctalopin in the absence of a nyctalopin 

antibody. 

2. What other protein(s) does LRIT3 interact with that relate to its 

transynaptic function?  Pikachurin and dystroglycan are proteins that are 

expressed in the extracellular space of the cone to BC synapse and are 

required for the structural integrity of the synapse (Omori et al., 2012). 

Dystroglycan is anchored in the membrane of the cone terminal and 

pikachurin likely binds dystroglycan. The binding partner of pikachurin on 

the BC side is unknown. Both proteins are present in the Lrit3-/-. I propose 
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using the LRIT3 antibody to determine if it is expressed in the pikachurin 

ko mouse.  

3. Is LRIT3 regulating the structural integrity of the synapse? We have 

shown that cone terminals express ribbons, and form contacts with both 

ON and OFF BCs. Techniques such as block face EM to create 3D 

reconstructions of the OPL in Lrit3-/- would be useful to investigate the 

synaptic structure.  

4. What is the PNA binding protein at the cone terminal? LRIT3 may 

regulate proteins whose functions shape glutamate transmission. Given 

the downregulation of PNA binding protein in the Lrit3-/-, that protein may 

have such a function. We have designed experiments to identify the 

protein. Proteins pulled down from retinal lysate with PNA will be identified 

using mass spectrometry. PNA binds proteins in the outer segments and 

terminals of the cones. Only the protein at the cone terminal is 

downregulated in the Lrit3-/-. Therefore, we plan to perform the mass 

spectrometry from WT and Lrit3-/- isolated terminal fractions.   

 

 

Conclusions 

 My work has clarified the role of two of these channels in shaping visual 

responses. I have shown that TRPV1 modulates visual signal processing in the 

inner retina to enhance the sensitivity to light and match the timing of the 

responses to the stimulus. Has implications in enhancing the perception of fine 
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details. The function of TRPM1 in ON pathway signaling has been well 

established. We further characterized aspects of the ON BC signalplex. 

Specifically, we showed two extracellular proteins are necessary for localization 

for TRPM1 in the rod and cone BCs. We further show the importance of one of 

these proteins, LRIT3, in trans-synaptic function of cones. With these 

understandings of the role of these proteins in shaping the function of specific 

neuronal pathways, future work can be conducted to establish the mechanisms 

behind it.  
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APPENDIX 

STATISTICAL ANALYSIS 

 

 The multi-electrode array (MEA) is a useful tool for collecting large 

numbers of cells from single retinas simultaneously (Marre et al., 2012; Petrusca 

et al., 2007). Previous publications have assessed correlations between different 

cells (Elstrott et al., 2008; Farajian, Pan, Akopian, Volgyi, & Bloomfield, 2011; 

Hamby, Rosa, Hsu, & Feller, 2015), categorize many functional types 

(Anishchenko et al., 2010; Li et al., 2015; Marre et al., 2012; Walch et al., 2015), 

assess responses of these types to a large variety of stimuli (Hamby et al., 2015; 

Pearson & Kerschensteiner, 2015; Tikidji-Hamburyan et al., 2015) and analyze 

the affects of disease (Chen et al., 2015; Della Santina, Inman, Lupien, Horner, & 

Wong, 2013; Fransen, Pangeni, Pyle, & McCall, 2015; Gonzalez-Menendez, 

Reinhard, Tolivia, Wissinger, & Munch, 2015; Sekirnjak et al., 2006). With the 

MEA caution is required when making statistical comparisons between groups as 

I have. The t-statistic, which is the most used between two samples to determine 

significance, is dependent on the variability in the samples (Student, 

1908)(Krzywinski & Altman, 2014a). The example t-test equation below is used 

to compare two independent samples with normal distribution, equal variance 

and unequal number.  
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= difference in the sample means  
sX = Standard deviation of the sample 
s2

X = Variance of the sample 
n = number of the sample 

 
 
The t-statistic is determined by taking the differences of the two population 

means and dividing it by the sum of the variability in the two populations and the 

sum of the inverse of the number. Therefore as the variability in the samples 

increases, the t-statistic will decrease, even if the means don’t change. Also, if 

the numbers in the samples increase, the t-statistic will also increase. As the t-

statistic increases, the chance of finding a significant difference between the 

means also increase (p decreases).  

 With the MEA there are multiple sources of variability in the system. 

Variability is innate in both the technical collection of the data and the biological 

differences in cells, retinas, and mice. To account for the variability, repetitive 

samples are taken during the recording process. I present 10 repetitions of each 

luminance to measure the variability in the spiking responses. I compare the 

average response within cell classes to measure the variability in each class. I 

can compare the average class response in each retina or mouse to measure the 

variability in the animal. When experiments involve multiple distributions and 

therefore multiple sources of variability, the total distribution is the sum of the 
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individual distributions and the variability is the sum of the variabilities or 

variances (Blainey, Krzywinski, & Altman, 2014).   

 

Figure 1. Experiments with multiple replications have multiple variances (σ2) 
from both technical and biological sources. The total variance in the sample is 
the sum of the individual variances (from Blainey et al., 2014)  
 With the MEA, large numbers of cells are collected from small numbers of 

mice. Since the chances of finding a significant difference between groups 

increases as numbers increase, then making comparisons between large 

populations of cells increases the probability of finding a statistical difference. 

However, with the decrease in the numbers of mice sampled, the variability 

between mice is most likely under sampled and under estimated in the total 

variance. As mentioned before, as the variance decreases, the t-statistic 

increases, again increasing the probability of finding a significant difference. 

Therefore, the increase in number and decrease in variance must be adjusted for 

to prevent type I errors (finding a significant difference that does not actually 

exist; (Blainey et al., 2014).  

 Ultimately using the mouse as the n in statistical comparisons is usually 

the best solution, however a balance must be made between what is optimal for 

each technique. Here, the power in the MEA is the ability to sample from many 
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numbers and classes of cells simultaneously. Experiments should be designed to 

give the best chance of determining real differences only with minimal waste 

(especially when involving animals). In order to obtain suitable power (> 80%) 

given the variability and effect size between my samples, tens to hundreds of 

units should be compared (G-Power analysis). Decreasing the power decreases 

the probability of finding a difference that actually exists (type II error; (Krzywinski 

& Altman, 2014b). Regarding my MEA data, using the mouse as the n for all 

comparisons is not feasible for those numbers given the resources and time 

needed for data collection and analysis. In the analysis of my experiments I used 

retinal pieces as the unit when feasible, such as in the comparisons of 

proportions of cell types and the transience of the responses. I compared my 

results obtained from retinal pieces to those obtained using the cell as the unit 

and obtained the same statistical results. For the comparisons of light responses 

within the cell classes, I used the cell as the n and considered p values < 0.01 to 

be significant to decrease the chance of committing a type 1 error.  
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