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ABSTRACT 

 

ROLE OF TRKB-SIGNALING IN TASTE DEVELOPMENT AND FUNCTION 

Jennifer Rios-Pilier 

August 24th, 2018 

 

In the geniculate ganglion, taste neurons likely differentiate into subtypes 

during development, but very little is known about how these neurons are defined 

molecularly or how they differentiate. Embryonically, geniculate neuron 

development is regulated by the growth factor, brain derived neurotrophic factor 

(BDNF). Postnatally, BDNF becomes restricted to subpopulations of taste 

receptor cells with specific functions, primarily sour responding. I hypothesized 

that during development, the receptor for BDNF, tropomyosin kinase B receptor 

(TrkB), also becomes restricted to a neuronal subset. I used transgenic mouse 

models to label and quantify both geniculate neurons (primarily taste) innervating 

the oral cavity (Phox2b+), and those expressing TrkB (GFP) across 

developmental age and in conditional TrkB knockouts. I found that TrkB 

expression and dependence divides oral cavity projecting neurons into three 

subpopulations: 1) neurons that continue to express TrkB into adulthood and are 

TrkB-dependent during development (50%), 2) neurons dependent on TrkB 

during development but that downregulate TrkB expression between E15.5 and 



 
 

vi 
 

E17.5 (41%), and 3) neurons that never express or depend on TrkB (9%). This  

small population of TrkB independent neurons failed to innervate any of the 

remaining taste buds, indicating that they may be non-taste somatosensory 

neurons.  

It is unclear what the function of TrkB was in the 50% of neurons that 

continued to express TrkB in adulthood, but it could regulate neuronal function 

similar to its role in the adult CNS. To answer this question, I examined taste 

function in both chorda tympani (CT) whole nerve responses and brief-access 

behavioral tests after blocking TrkB-signaling. TrkB-signaling was blocked using 

a chemical-genetic approach in which mice with a point mutation in the TrkB 

(TrkBF616A ) signaling domain cause it to bind the chemical 1-NMPP1, which 

blocks signaling. Following administration of 1-NMPP1, CT responses were 

reduced for specific taste stimuli including NH4Cl and sour stimuli (citric acid and 

HCl). Following conditioned taste aversion learning to 10 mM citric acid, TrkBF616A  

mice treated with 1-NMPP1 had higher lick rates than vehicle treated mice to low 

citric acid concentrations, a finding consistent with reduced sensitivity. Functional 

changes were not due to changes in the morphology of TrkB fibers in the taste 

buds. I conclude that one adult role of BDNF-TrkB signaling in the taste bud is to 

directly regulate taste function.  
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CHAPTER I 

GENERAL INTRODUCTION 

 

1.1  Anatomy and organization of the peripheral taste system 

Taste information from food is detected by taste receptor cells located in 

taste buds. These taste receptor cells convert chemical information into action 

potentials that propagate through taste nerves to higher order neurons in the 

brain. There are five different taste modalities: sweet, bitter, umami, sour, and 

salt. Sweet and umami tastes detect caloric value and protein content from food, 

respectively. Sour and bitter tastes mediate aversive signaling to prevent 

ingestion of harmful or poisonous substances such as spoiled food. Salty taste, 

on the other hand, identifies ions and minerals. 

Taste buds can be found in the tongue, soft palate, larynx, and epiglottis; 

they are located inside specialized epithelial structures called papillae. There are 

three types of taste papillae: fungiform, foliate and circumvallate. The fungiform 

papillae comprise taste buds from the anterior 2/3 of the tongue. These papillae 

are innervated by the chorda tympani nerve, a branch of the facial nerve, whose 

cells bodies are located in the geniculate ganglion. Foliate and circumvallate 

papillae contain taste buds from the lateral and posterior 1/3 of the tongue, 
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respectively. These papillae are innervated by the glossopharyngeal nerve and 

their cell bodies are in the petrosal ganglion.  

 

1.2  Taste bud cell types 

Taste cells exist as a heterogenous cluster of 50-100 cells within each 

taste bud. These cells are classified into four types based on: their morphology, 

expression of transduction mechanism markers, and the neurotransmitters they 

release. Type I cells (dark) are electron dense, with long apical microvilli. These 

cells are known to have a supporting “glial-like” role as they wrap around taste 

cells (Bigiani, 2001; Pumplin, Yu, & Smith, 1997). Type I cells express the 

ectoATPase, NTPDase, important for the clearance of neurotransmitters such as 

ATP into ADP released by other cells (Bartel, Sullivan, Lavoie, Sevigny, & Finger, 

2006; Kukulski et al., 2005). Removal of NTPDase results in accumulation of 

ATP and leads to desensitization of purinergic receptors in afferent nerves 

associated with taste cells (Vandenbeuch et al., 2013).  

Type II (light) cells are electron-lucent with short apical microvilli and a 

large round nucleus. These taste cells also are called receptor cells because 

they express G protein couple receptors (GPCRs) that mediate sweet, bitter, and 

umami tastes. Taste stimuli (i.e. sugar) bind to the GPCR, activate 

phospholipase C β-2 (PLCβ2) resulting ultimately in the release of Ca2+. Type II 

cells do not form synapses (Clapp, Yang, Stoick, Kinnamon, & Kinnamon, 2004). 

Instead, these taste receptor cells communicate with nerve fibers via secretion of 

ATP (Chaudhari, 2014; Finger et al., 2005; Kinnamon & Finger, 2013; Roper, 
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2006) through ion channels expressed on their surface membrane such as 

CALHM1/3 (Z. Ma, Saung, & Foskett, 2017; Z. Ma et al., 2018; Taruno, 

Matsumoto, Ma, Marambaud, & Foskett, 2013; Taruno, Vingtdeux, et al., 2013). 

CALHM1 is a voltage gated ion channel modulated by calcium concentration. 

CALHM1 facilitates the release of ATP from Type II cells in response to 

membrane depolarization after taste stimulation (Taruno, Vingtdeux, et al., 2013). 

In confirmation of this role, CALHM1-/- mice showed a reduction in relative 

responses to sweet, bitter, and umami taste responses when tested on whole 

nerve recordings from chorda tympani nerve (Taruno, Vingtdeux, et al., 2013). A 

recent study showed that CALHM1 interacts with CALHM3 to mediate ATP 

release from Type II cells (Z. Ma et al., 2018).   

Type III (intermediate) cells are intermediate electron-lucent with a single 

thick apical microvillus (C. L. Yee, Yang, Bottger, Finger, & Kinnamon, 2001) 

.These are the only cells to form synapses with afferent fibers (Takeda & 

Hoshino, 1975; C. L. Yee, Jones, & Finger, 2003). Consistent with their synaptic 

associations with afferent nerve fibers, type III cells express proteins involved in 

vesicular exocytosis such as synaptosomal-associated protein (SNAP25) 

(DeFazio et al., 2006; R. Yang, Crowley, Rock, & Kinnamon, 2000; C. L. Yee et 

al., 2003) and neural cell adhesion molecules (NCAM) (G. M. Nelson & Finger, 

1993). These cells release serotonin in respond to sour taste stimuli or a 

decrease in pH (Y. A. Huang, Maruyama, Stimac, & Roper, 2008; Y. A. Huang, 

Pereira, & Roper, 2011; Y. J. Huang et al., 2005; Larson et al., 2015). Type III 

cells respond to sour stimuli via the transient receptor potential (TRP) ion 
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channels, polycystic kidney disease 2-like 1 protein (PKD2L1) (Horio et al., 2011; 

Ishimaru et al., 2006; Kataoka et al., 2008) that also co-labeled with the carbonic 

anhydrase IV (Car4) (Chandrashekar et al., 2009; Lossow, Hermans-Borgmeyer, 

Behrens, & Meyerhof, 2017). Carbonic anhydrase IV is an enzyme that converts 

carbon dioxide (CO2 ) into bicarbonate and H+ protons (Chandrashekar et al., 

2009; Lossow et al., 2017).  

Type IV (basal) cells are located at the base of the taste buds. These 

basal taste cells are responsible for taste bud maintenance and do not transduce 

any taste stimuli. As taste cells undergo renewal, progenitor cells add new taste 

cells into the bud by differentiating into Type I-III. These basal cells express sonic 

hedgehog (shh) (Castillo-Azofeifa et al., 2017; Miura & Barlow, 2010) and the 

neurotrophic factor, BDNF, both factors provide trophic support to taste cells and 

nerve fibers, respectively. Previous studies have shown that BDNF expression is 

downregulated in the taste buds, as result of progenitor cells (Sox2) 

differentiation into mature taste cells (T. Huang, Ma, & Krimm, 2015).  

Salt taste is detected via epithelial ENaC channels which are amiloride-

sensitive with three subunits (α, β and γ) (Chandrashekar et al., 2010; 

Guagliardo, West, McCluskey, & Hill, 2009; Lundy, Pittman, & Contreras, 1997; 

Roper, 2015). Removal of subunit α of the ENaC channel altered relative NaCl 

responses from chorda tympani nerve (Skyberg, Sun, & Hill, 2017; C. Sun, 

Hummler, & Hill, 2017). However, these studies did not specify what taste cell 

type lacking the ENaC channel were responsible for salt transduction. Patch-

clamp studies on taste cells suggested that salt transduction might be processed 
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by Type I cells (Vandenbeuch, Clapp, & Kinnamon, 2008). However, there is also 

anatomical evidence that suggests salt could be transduced by Type III cells 

since ENaC-α subunit co-labeled with Car4 (sour) cells (Chandrashekar et al., 

2009). In addition, BDNF-expressing cells might have a functional role in salt 

taste transduction since BDNF removal from the epithelium resulted in the 

expression of ENaC-γ subunit to be reduced (Tang, Rios-Pilier, & Krimm, 2017). 

It remains unclear how and what taste cells types transduce salt taste. These 

data support the idea that salt transduction might not be taste cell specific but 

instead transduced by multiple taste cells types.  

Taste cells communicate with nerve fibers via neurotransmitters released 

in response to taste stimuli. Stimulation with sweet, bitter or umami, induce the 

release of ATP from Type II cells (Finger et al., 2005; Kinnamon & Finger, 2013). 

ATP binds to purinergic receptors P2X3/2 on nerve fibers (Bartel et al., 2006; 

Finger et al., 2005; Kinnamon & Finger, 2013; Vandenbeuch et al., 2015). 

P2X3/2 receptors are widely expressed in geniculate ganglion neurons (Ishida et 

al., 2009). Removal or blockage of P2X3/2 receptor ablate most taste responses 

while temperature, touch and menthol responses remain (Vandenbeuch et al., 

2015).  

  

1.3  Neuron types in the taste system  

In the taste system, it is unclear whether or not neurons exist as distinct  

“types” defined by a combination of expression, function, and morphology as is 

the case with other sensory neurons (Le Pichon & Chesler, 2014; Zimmerman, 
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Bai, & Ginty, 2014). Studies have attempted to classify geniculate neuron based 

on their: differential development (Dvoryanchikov et al., 2017; Fei, Huang, & 

Krimm, 2014; Fei & Krimm, 2013; Patel & Krimm, 2010), connectivity patterns 

between taste cells (Larson et al., 2015; Lee, Macpherson, Parada, Zuker, & 

Ryba, 2017) and temporal expression of receptors (Ishida et al., 2009; Larson et 

al., 2015; Vandenbeuch et al., 2015). Single unit electrophysiological recordings 

and cluster analysis have classified these taste neurons as “specialist” or 

“generalist” neurons based on the sensitivity of their response to single or 

multiple taste stimuli presented on the tongue (Breza, Curtis, & Contreras, 2006, 

2007; Contreras & Lundy, 2000; Frank, 1973; Lundy & Contreras, 1999; Wu, 

Dvoryanchikov, Pereira, Chaudhari, & Roper, 2015). Some of these geniculate 

neurons might be distinguished by characteristic and firing rates (Breza, Nikonov, 

& Contreras, 2010). Other functional studies suggested differential function 

based on expression and response to different neurotransmitters (Ishida et al., 

2009; Larson et al., 2015; Vandenbeuch et al., 2015).  

In chapter II, I examine whether the neurotrophin receptor, TrkB, defines 

geniculate neurons into subtypes based on their dependence and expression of 

TrkB receptor. In chapter III, using a genetic-chemical approach, I examine which 

taste qualities are impacted by blocking TrkB-signaling in the subset (50%) of 

taste neurons that express TrkB in adulthood.  

 

1.4  Neurotrophins: role during development 
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Peripheral taste neurons depend on neurotrophins during development for 

their survival, differentiation, targeting, branching patterns, and plasticity. There 

are four neurotrophins: nerve growth factor (NGF), brain-derived neurotrophic 

factor (BDNF), neurotrophin-3 (NT-3), and neurotrophin-4 (NT4). These 

neurotrophins regulate neuronal function by binding to two types of receptors: 

p75 and the tropomyosin related kinase (Trk). The Trk receptor family share 

three domains: an extracellular domain, a single transmembrane domain, and an 

intracellular domain with tyrosine kinase activity. P75 interacts with all four 

neurotrophins, NGF binds to TrkA, BDNF and NT4 to TrkB, and NT3 to TrkC (E. 

J. Huang & Reichardt, 2001, 2003).  

Among these neurotrophins, BDNF and NT4 play critical roles in the 

development of the taste system (T. Huang & Krimm, 2010, 2014; Patel, Huang, 

& Krimm, 2010; Patel & Krimm, 2010, 2012). During embryonic development, a 

period of naturally cell death occurring in this ganglion, both BDNF and NT4 

determine the number of geniculate neurons remaining to innervate taste buds 

(Patel & Krimm, 2010). In the absence of BDNF or NT4, geniculate neuron 

number is reduced by half, whereas removal of both BDNF and NT4 results in 

loss of almost all geniculate neurons (90%) (Conover et al., 1995; Liebl, 

Tessarollo, Palko, & Parada, 1997; X. Liu, Ernfors, Wu, & Jaenisch, 1995; Patel 

& Krimm, 2010, 2012). Overexpression of BDNF or NT4 augments the number of 

geniculate neurons (Krimm, Miller, Kitzman, Davis, & Albers, 2001; Ringstedt, 

Ibanez, & Nosrat, 1999). Additionally, TrkB-/- mice lose about 96% of geniculate 

neurons by E13.5 (Fei & Krimm, 2013; Fritzsch, Sarai, Barbacid, & Silos-
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Santiago, 1997). However, neuronal loss in mice lacking p75-/- occurs slightly 

later in embryonic development, at E14.5 (Fei et al., 2014). After this embryonic 

critical period, geniculate neurons do not depend on BDNF for survival (Hoshino, 

Vatterott, Egwiekhor, & Rochlin, 2010; Patel & Krimm, 2010).  

Consistent with the neuronal loss, BDNF regulates the development of 

taste buds and their innervation. BDNF-/-
 /NT4-/- double-knockouts develop fewer 

taste buds than either BDNF-/- or NT4-/- mice (Patel et al., 2010). Furthermore, 

BDNF-/-
 /NT4-/- removal during development influences taste buds in the tongue 

more than in the palate (Patel et al., 2010). These findings strongly suggest that 

neurotrophins and their receptors are crucial for the survival of developing 

geniculate neurons and their targets.  

BDNF expression in the lingual epithelium acts as a cue for target 

innervation and neurite growth (L. Ma, Lopez, & Krimm, 2009; Ringstedt et al., 

1999; Rochlin, O'Connor, Giger, Verhaagen, & Farbman, 2000). As nerve fibers 

enter the tongue, the initial innervation of taste buds is targeted by BDNF 

expression from the epithelium (Lopez & Krimm, 2006). In BDNF knockout mice, 

innervation of the tongue is achieved but afferent fibers remain under the 

epithelium since BDNF is not present to guide them to their taste buds targets,  

(Krimm et al., 2001; Lopez & Krimm, 2006; L. Ma et al., 2009). Overexpression of 

BDNF in the epithelium disrupts targeting and the lack of innervation results in 

loss of fungiform papilla and taste buds (Lopez & Krimm, 2006; L. Ma et al., 

2009). Additionally, removal of the p75 receptor disrupts innervation of the mid-

region of the tongue and the branching pattern during development (Fei et al., 
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2014). These findings suggest that expression of BDNF taste cells is required for 

chorda tympani nerve fibers to properly innervate the fungiform papillae.  

In other sensory ganglia, expression of the TrkB receptor defines the fate 

of subpopulations of neurons with distinctive function and morphology 

(Lallemend & Ernfors, 2012; L. Li et al., 2011). In the adult taste system, some of 

the geniculate neurons appear to lack the TrkB receptor (Tang et al., 2017). It is 

unclear how many taste neurons express the TrkB receptor and if TrkB 

expression is down-regulated during development. Additionally, it is unknown 

whether TrkB-expression could define a subpopulation of neurons in the 

geniculate ganglion with a different functional role in adulthood. In chapter II, I 

examined TrkB expression in the sensory neurons (Phox2b+)  that project to the 

oral cavity in adulthood and when and how TrkB expression becomes restricted 

during development.  

Regulation of neurotrophin receptors during development is used to define 

sensory neuron types with specific function in the dorsal root ganglion 

(Lallemend & Ernfors, 2012). For example, TrkB receptors become restricted to a 

subpopulation of neurons, the A-δ low threshold mechanoreceptors (A-δ 

LTMRs), that are associated with neurons that innervate hair follicles and 

respond to hair deflections, and rapid cooling but not warming (Abraira & Ginty, 

2013; L. Li et al., 2011). In chapter II, I explored the possibility that the TrkB 

receptor could define neuron types in the geniculate ganglion based on TrkB 

expression, dependence and adult function.  
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1.5  Neurotrophins: role in adulthood 

In the peripheral taste system, BDNF expression regulates taste bud size 

and innervation as new taste cells are added (T. Huang et al., 2015). Removal of 

BDNF in adulthood has shown that BDNF maintains taste bud innervation by 

TrkB fibers by adulthood (Meng, Ohman-Gault, Ma, & Krimm, 2015; Tang et al., 

2017). Overexpression of BDNF in the lingual epithelium increases the volume of 

taste bud innervation (C. Sun, Dayal, & Hill, 2015). Since the number of 

geniculate neurons contributing to the chorda tympani nerve does not change in 

BDNF-overexpressing mice (C. Sun et al., 2015), these findings suggest that 

BDNF plays a role in branching of nerve fibers since it increased taste bud 

innervation. However, because BDNF is primarily expressed in taste bud 

receptor cells with synapses, previous studies have suggested a functional role 

of BDNF-TrkB signaling in synaptic transmission from taste cells to nerve fibers 

(C. L. Yee et al., 2003). However, this idea has never been experimentally 

tested. In chapter III, I examined the functional role of BDNF-TrkB signaling, 

specifically, by blocking TrkB-signaling and recording taste responses from the 

gustatory nerve innervating the front two-thirds of the tongue, the chorda tympani 

nerve.  

 

1.6  Functional roles of BDNF-TrkB signaling   

In addition to its developmental role, BDNF can directly modulate the 

function and structure neurons the adult CNS (Becker, Tian, Zucker, & Wang, 

2016; Berninger, Schinder, & Poo, 1999; Blum, Kafitz, & Konnerth, 2002; Du & 
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Poo, 2004; Gokce, Runne, Kuhn, & Luthi-Carter, 2009; Kafitz, Rose, Thoenen, & 

Konnerth, 1999; Lohof, Ip, & Poo, 1993; H. Lu, Park, & Poo, 2014; Matsuda et 

al., 2009; Park, Popescu, & Poo, 2014; Rose, Blum, Kafitz, Kovalchuk, & 

Konnerth, 2004; Wong, Lee, Xie, Cui, & Poo, 2015; X. Zhang & Poo, 2002). In 

the adult CNS, BDNF influences neuronal function by regulating the morphology 

of dendrites to facilitate synaptic transmission (Ohira & Hayashi, 2009; J. C. 

Zhang et al., 2014). Additionally, BDNF enhances synaptic transmission by 

regulating neurotransmitter release with presynaptic and postsynaptic targets in 

the CNS (Amaral & Pozzo-Miller, 2012; Berninger et al., 1999; Du & Poo, 2004; 

Kang & Schuman, 1995; Kang, Welcher, Shelton, & Schuman, 1997; Lessmann 

& Brigadski, 2009; Lessmann, Gottmann, & Heumann, 1994; Y. X. Li, Zhang, 

Lester, Schuman, & Davidson, 1998; Lohof et al., 1993). For example, regulation 

of neurotransmitter release is not limited to the CNS; BDNF enhances synaptic 

transmission by promoting the release of acetylcholine at the presynaptic 

terminals in neuromuscular junctions (Lohof et al., 1993; Obis et al., 2015).  

Changes in synapse morphology induced by BDNF can also potentiate 

synaptic transmission (Alonso, Medina, & Pozzo-Miller, 2004; Amaral & Pozzo-

Miller, 2007b; Harward et al., 2016; Tyler & Pozzo-Miller, 2001; J. C. Zhang et 

al., 2014). Many studies have implicated a role for BDNF in depression, learning, 

and memory (Cazorla et al., 2011; Heldt, Stanek, Chhatwal, & Ressler, 2007; 

Johnson et al., 2008; Linnarsson, Bjorklund, & Ernfors, 1997; Minichiello et al., 

1999; Mu, Li, Yao, & Zhou, 1999; Ren-Patterson et al., 2005; Shin, Kim, & Kim, 

2011; C. Yang, Shirayama, Zhang, Ren, & Hashimoto, 2015; J. C. Zhang et al., 
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2014; J. C. Zhang et al., 2015). Upregulation of BDNF improves spatial learning 

and memory and other cognitive deficits associated with anxiety and depression 

(Cazorla et al., 2011; Heldt et al., 2007; Johnson et al., 2008; Linnarsson et al., 

1997; J. C. Zhang et al., 2014; J. C. Zhang et al., 2015). In addition, induction of 

BDNF by Neuropep-1 improves spatial learning and memory in rats (Shin et al., 

2011). Studies with the selective TrkB receptor antagonist ANA-12 suggested 

that BDNF exerts its anti-depressant and anxiolytic effects by modifying dendritic 

spines (Cazorla et al., 2011; C. Yang et al., 2015; J. C. Zhang et al., 2014).  

BDNF-TrkB signaling also can have rapid effects on neuron function by 

regulating the activation of channels that play a role in excitability and resting 

potential such as Nav1.9 (Blum et al., 2002; Kafitz et al., 1999), Nav1.2 (Ahn, 

Beacham, Westenbroek, Scheuer, & Catterall, 2007), TRPC3 (Amaral & Pozzo-

Miller, 2007a; H. S. Li, Xu, & Montell, 1999) and suppression of Kiv1.3 channels 

(Mast & Fadool, 2012; Tucker & Fadool, 2002). Application of BDNF induced 

depolarization of central neurons within milliseconds and increases the firing rate 

of neurons in a dose-dependent manner (Kafitz et al., 1999). BDNF-induced 

neuronal depolarization requires activation of the full-length TrkB receptors and 

the opening of Nav1.9 channels (Blum et al., 2002; Kafitz et al., 1999). 

Additionally, these functional effects are reversibly blocked by K252a, a tyrosine 

kinase inhibitor (Kafitz et al., 1999) and saxitoxin (STX), a selective sodium 

channel blocker (Blum et al., 2002). Another channel involved in BDNF-induced 

neuronal excitability is the voltage-dependent potassium channel Kiv1.3. In the 

olfactory bulb, activation of BDNF-TrkB signaling suppresses Kiv1.3 activity 
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within 15mins due to phosphorylation (Tucker & Fadool, 2002). Moreover, 

phosphorylation of TrkB receptors recruits adaptor proteins that activates the 

PLCγ pathway to depolarize the membrane via TRPC3 receptors (H. S. Li et al., 

1999). The PLCγ inhibitor, SKF-96365, blocked the changes in current induced 

by BDNF application (Amaral & Pozzo-Miller, 2007b; H. S. Li et al., 1999). 

 Studies in sensory neurons, suggest that BDNF might play a role in 

nociception (Buldyrev et al., 2006; Fabbretti & Nistri, 2012; Pezet, Malcangio, & 

McMahon, 2002; Simonetti, Giniatullin, & Fabbretti, 2008; Wang, Ratnam, Zou, 

England, & Basbaum, 2009), specially via purinergic receptors and calcitonin 

gene related peptide (CGRP) (Simonetti et al., 2008). CGRP upregulates gene 

expression of purinergic receptors, P2X3 (Simonetti et al., 2008) and the release 

of BDNF from trigeminal neurons (Buldyrev et al., 2006). Moreover, blocking 

TrkB-signaling reduces hyperalgesia induced by capsaicin or formalin (Wang et 

al., 2009). These studies suggest that BDNF via activation of TrkB can modulate 

nociception by regulating the release of neurotransmitters and function of 

channels. 
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CHAPTER II 

 

TRKB EXPRESSION AND DEPENDENCE DIVIDES GUSTATORY 

NEURONS INTO THREE SUBPOPULATIONS 

 

2.1. Introduction 

 The geniculate ganglion primarily contains two neuron subpopulations: 1) 

neurons that carry mostly taste, but some somatosensory information from the 

anterior two-thirds of the tongue and the palate to the brain (oral sensory), and 2) 

those that innervate the outer ear through the auricular nerve (auricular neurons). 

Development of most of these neurons is regulated by the neurotrophin brain-

derived neurotrophic factor (BDNF). BDNF binds with high affinity to the 

tropomyosin kinase B receptor (TrkB) (Barbacid, 1995; E. J. Huang & Reichardt, 

2003) and critically regulates the survival of taste neurons (Patel et al., 2010; 

Patel & Krimm, 2010). Early in development, BDNF expression in taste buds acts 

as a cue for TrkB+ fibers to innervate taste organs  (Hoshino et al., 2010; Krimm 

et al., 2001; Lopez & Krimm, 2006; L. Ma et al., 2009; C. A. Nosrat, Ebendal, & 

Olson, 1996; C. A. Nosrat & Olson, 1995; Ringstedt et al., 1999; Rochlin et al., 

2000). Both this target innervation process and neuron survival occur during a 

critical developmental period (Hoshino et al., 2010; L. Ma et al., 2009). After this 

critical period, BDNF is downregulated in the taste bud, but continues to be 
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expressed in a subpopulation of taste receptor cells (T. Huang et al., 2015; C. L. 

Yee et al., 2003). This expression change suggests that BDNF may play a 

different role/s in later developmental stages and adulthood.  

 Most geniculate ganglion neurons express the BDNF receptor TrkB 

(Farbman et al., 2004; Fei & Krimm, 2013; Yamout, Spec, Cosmano, Kashyap, & 

Rochlin, 2005) early in development and depend on TrkB signaling for their 

survival (Fei & Krimm, 2013; Fritzsch et al., 1997; C. A. Nosrat, 1998). However, 

in TrkB knockout animals, many innervated taste buds remain at birth despite 

profound geniculate neuron loss by E13.5 (Fei & Krimm, 2013; Fritzsch et al., 

1997). One possible explanation is that gustatory neurons lacking the TrkB 

receptor could migrate into the geniculate ganglion after E13.5. Consistently, in 

chick embryos, geniculate neurons continue to delaminate from the epibranchial 

placodes and migrate into the geniculate ganglion throughout embryonic 

development (Blentic, Chambers, Skinner, Begbie, & Graham, 2011). How many 

gustatory neurons remain after E13.5 in TrkB knockouts is unclear, particularly 

because earlier studies lacked markers for taste neurons and did not quantify 

geniculate neurons after E13.5 (Fei & Krimm, 2013; Fritzsch et al., 1997). 

Therefore, a subset of TrkB-independent taste neurons of unknown size likely 

exists.  

 By adulthood, only a subset of taste neurons appears to be regulated by 

BDNF, as adult BDNF removal only reduces taste bud innervation by 40% (Meng 

et al., 2015; Tang et al., 2017). Therefore, in adulthood, many gustatory neurons 

likely lack the TrkB receptor. Yet, it remains unknown if, when, or how, during 
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development or adulthood, TrkB expression decreases in the neurons that 

innervate the oral cavity. Here, my primary goals were to determine 1) how many 

neurons express TrkB in adulthood, and 2) when and how TrkB expression 

decreases during development. 

 Previous studies examining TrkB expression in adulthood lacked markers 

for distinguishing the roughly 50% of geniculate ganglion neurons that are oral 

sensory from the auricular neurons innervated the outer ear. The transcription 

factor Phox2b was recently established as a marker that distinguishes geniculate 

ganglion neurons innervating the oral cavity (Phox2b+) from those innervating 

the ear (Phox2b-) (Dvoryanchikov et al., 2017; Ohman-Gault, Huang, & Krimm, 

2017). Using Phox2b as a marker for geniculate taste neurons, I determined that 

developmental reduction of TrkB-expression and differential dependence on TrkB 

for survival divide oral sensory neurons of the geniculate into three subsets. 

These subpopulations were: 1) neurons that depend on TrkB expression during 

development and continue to express TrkB receptors in adulthood (50%), 2) 

neurons that depend on TrkB during development but downregulate it between 

E15.5 and birth (41%), and 3) neurons that never express or depend on TrkB and 

do not innervate taste buds (9%). Therefore, adult roles of TrkB-signaling are 

likely restricted to a subset of oral cavity projecting neurons.  

 

2.2. Materials and methods 

2.2.1. Animals 
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 All mice were housed in a central facility and maintained under controlled 

conditions of normal humidity and temperature, with standard alternating 12-h 

periods of light/dark and free access to water and food. Animals were cared for 

and used in accordance with guidelines of the U.S. Public Health Service Policy 

on Humane Care and Use of Laboratory Animals and NIH Guide for the Care 

and Use of Laboratory Animals. 

 To visualize TrkB expression in Phox2b-expressing neurons, Phox2b-Cre 

(Tg[Phox2b-cre]NP91Gsat/Mmucd, Stock No. 034613-UCD(Ohman-Gault et al., 

2017)) with tdTomato (Ai14, Jax Stock No. 007914) mice were bred with 

TrkBGFP/+ (B6.129S6[Cg]-Ntrk2tm2.1Ddg/J, Jax Stock No. 023046) mice (L. Li et al., 

2011; Madisen et al., 2010). In Phox2b-Cre mice, gene recombination occurs in 

any neuron that has ever expressed Phox2b. In the geniculate ganglion, this is 

specific to oral sensory and excludes the somatosensory neurons that innervate 

the outer ear via the auricular nerve (Ohman-Gault et al., 2017). These oral 

sensory neurons are mostly gustatory, but also include somatosensory fibers 

(Donnelly, Shah, Mistretta, Bradley, & Pierchala, 2018; Dvoryanchikov et al., 

2017; Kumari et al., 2015; Kumari et al., 2017). However, most of the 

somatosensory neurons innervating the tongue arise from the trigeminal 

ganglion. 

 Embryo heads from mice aged E13.5 (n = 2), E15.5 (n = 3), E17.5 (n = 4), 

and P0 (n = 3) were collected for immunohistochemistry. The day that a vaginal 

plug was observed was designated E0.5. Geniculate ganglia from adult mice 

(P60) were also collected for whole mount and serial sections. To conditionally 
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remove the TrkB receptor from oral cavity neurons, I bred Phox2b-

Cre::tdTomato::TrkBGFP/+ mice with a mouse line in which the coding region of 

the TrkB gene was surrounded by loxP sites (Ntrk2tm1Ddg/J mouse, Jax Stock No. 

022363) (Chen et al., 2005). These conditional TrkB knockout mice do not live to 

adulthood and instead die at different postnatal ages (Fei & Krimm, 2013; Ozek, 

Zimmer, De Jonghe, Kalb, & Bence, 2015), so I collected geniculate ganglia and 

tongues from Phox2b-Cre::tdTomato::TrkBGFP/loxP and Phox2b-

Cre::tdTomato::TrkBGFP/+ at P20. These geniculate ganglia were processed to 

determine how many oral sensory neurons depended on TrkB signaling during 

development.  

 

2.2.2. Immunohistochemistry 

 Embryos aged E13.5 were fixed by immersion in 4% paraformaldehyde 

(PFA). Embryos aged E15.5 and older, young (P20) mice, and adult (P60) mice 

were all sacrificed with an overdose (1 ml, i.p.) of 2.5% tribromoethanol (Avertin) 

and then were trans-cardially perfused with 4% PFA. Geniculate ganglia were 

dissected under a microscope and then embryo and newborn heads or 

geniculate ganglia from adult mice were post-fixed in 4% PFA overnight at 4 °C. 

Tissue was then transferred to 30% sucrose/phosphate-buffered saline (PBS) for 

cryoprotection at 4 °C overnight. The following day, tissue was frozen on dry ice 

in OCT (Sakura Tek) embedding medium and stored at -80 °C until processing 

for immunohistochemistry.  
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 To visualize oral cavity neurons in adult mice, entire geniculate ganglia 

were rinsed in 0.1 M PB four times and blocked overnight with 3% donkey serum 

in 0.1 M PBS containing 0.5% Triton X-100 (PBST). Ganglia were then incubated 

with the following primary antibodies for 5 d at 4 °C: goat anti-GFP (1:400; 

Novus, AB Registry ID: AB_10128178, Cat No. NB100-1700, Littleton, CO) and 

rabbit polyclonal anti-dsRed (1:500, Clontech Laboratories, Inc., Cat No. 632496, 

Mountain View, CA). After incubation in primary antibodies and four rinses with 

0.1 M phosphate buffer (PB), tissues were incubated for 2 d in the following 

secondary antibodies: goat anti-GFP Alexa Fluor 488 (1:500; Jackson 

ImmunoResearch Laboratories, West Grove, PA) and goat anti-rabbit Alexa 

Fluor 555 (1:500; Jackson ImmunoResearch Laboratories). The tissue was then 

washed four times in 0.1 M PB, mounted onto slides, and cover-slipped 

using aqueous mounting medium (Fluoromount-G, SouthernBiotech, 

Birmingham, AL). 

 Alternatively, serial transverse sections (20 µm) were cut using a cryostat. 

Sections were left to air-dry on a slide warmer overnight. The next day, sections 

were post-fixed in 4% PFA for 15 min at 4 °C. After four rinses with PBST, 

sections were blocked for 1 h at room temperature with 5% normal goat serum in 

PBST. Then, the tissue was incubated overnight at 4 °C with the following 

primary antibodies: chicken anti-GFP (1:1,000; Thermo Fisher, Cat No. A10262, 

Carlsbad, CA) and rabbit anti-P2X3 (1:500; Millipore, AB Registry ID: 

AB_11212062, Cat No. AB58950, Billerica, MA). After incubation in primary 

antibodies and four rinses in PBST, sections were incubated for 1 h at room 
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temperature in the following secondary antibodies: goat anti-chicken Alexa Fluor 

488 (1:500; Jackson ImmunoResearch Laboratories) and goat anti-rabbit Alexa 

Fluor 647 (1:500; Jackson ImmunoResearch Laboratories). The tissue was then 

washed four times in 0.1 M PBS, mounted onto slides, and cover-slipped 

using aqueous mounting medium (Fluoromount-G).  

 To visualize fungiform papillae and innervated taste buds, anterior tongue-

halves from Phox2b-Cre::tdTomato::TrkBGFP/loxP and Phox2b-

Cre::tdTomato::TrkBGFP/+ mice were collected at P20 using the same procedures 

as described for geniculate ganglia. To examine taste bud innervation and Car4-

positive taste cells, thick sagittal sections (70 µm) of one-half tongue from each 

animal was cut using a cryostat and rinsed in 0.1 M PB four times for 15 min. 

After blocking with 3% normal donkey serum in 0.1 M PB containing 0.5% Triton 

X-100 overnight at 4° C, tissues were incubated for 5 d in the following primary 

antibodies: rat anti-cytokeratin-8 (K8, 1:50, Cat No. Troma-1-s, Developmental 

Studies Hybridoma Bank, Iowa City, IA), rabbit polyclonal anti-dsRed (1:500, 

Clontech Laboratories, Inc., Cat No. 632496), and either goat anti-Car4 (1:500, 

Cat No. AF2414, R&D Systems, Minneapolis, MN). Floating sections were rinsed 

in 0.1M PB four times for 15 min and incubated for 2 d in the following secondary 

antibodies (Jackson ImmunoResearch Laboratories): donkey anti-rat Alexa Fluor 

488, donkey anti-rabbit Cy3, and donkey anti-goat Alexa 647. To examine taste 

bud innervation and PLCβ2-positive taste receptor cells, the other half of the 

tongue for each animal was incubated for 5 d in rabbit anti-PLCβ2 (1:500, Cat 

No. SC-206, Santa Cruz Biotechnology, Dallas, TX). Floating sections were 
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rinsed in 0.1M PB four times for 15 min and incubated for 2 d in donkey anti-

rabbit Alexa Fluor 647. Then, sections were rinsed in 0.1 M PB four times for 15 

min and blocked for 2 d with donkey anti-rabbit (1:100, Cat No. 007-003-007, 

Jackson ImmunoResearch, Laboratories). After four rinses in 0.1M PB for 15 

min, sections were incubated for 5 d in the following primary antibodies: rat anti-

K8 (1:50, Cat No. Troma-1-s, Developmental Studies Hybridoma Bank, Iowa 

City, IA), and rabbit polyclonal anti-dsRed (1:500, Clontech Laboratories, Inc., 

Cat No. 632496). Floating sections were rinsed in 0.1M PB four times for 15 min 

and incubated for 2 d in the following secondary antibodies (Jackson 

ImmunoResearch Laboratories): donkey anti-rat Alexa 488, donkey anti-goat 

Alexa Fluor 488, and donkey anti-rabbit Cy3. To quantify fungiform papillae, all 

tissues were then rinsed in 0.1 M PB and stained with DAPI (2 µL in 50 mL of 

double distilled H20, Life Technologies, Foster City, CA) for 45 min. After four 

rinses in 0.1 M PB, tissues were cover-slipped using aqueous mounting medium 

(Fluoromount-G).  

 

2.2.3. Neuron quantification of whole mounts at P20 and in adulthood 

 Images of whole ganglia were captured using a 40× oil immersion lens 

(FV1200, Olympus) with a step size of 0.47 µm. Confocal images were obtained 

by stitching multiple fields to create a high-resolution image of the entire ganglia 

in a single Z-stack. Each labeled channel was collected individually using single-

wavelength excitation. Images of each optical section through the whole ganglia 

were then analyzed using Neurolucida 360 (MBF Bioscience, Williston, VT). 
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Brightness and contrast were adjusted for background standardization in all 

images. Each labeled neuron was followed through the optical sections so that 

each neuron was only counted once. The absolute number of single- (anti-

dsRed) and double-labeled (anti-dsRed and anti-GFP) neurons were counted by 

examining each cell through the Z-stack. 

 

2.2.4. Neuron quantification of sections during development 

 Serial sections of embedded embryo and newborn heads and adult 

geniculate ganglia were captured using a 40× oil immersion lens (FV1200, 

Olympus). Confocal images were collected using single-wavelength excitation 

taken with a step size of 1.0 µm. Alternating images from serial sections 

containing ganglia were then analyzed using Neurolucida 360 (MBF Bioscience). 

The number of single- (anti-dsRed) and double-labeled (anti-dsRed and anti-

GFP) neurons were counted in alternating sections by following each cell through 

the Z-stack so that each neuron was only counted once. The percentage of oral 

cavity neurons (tdTomato+) expressing TrkB (GFP+) was calculated for each 

section and averaged for each animal per age group and then compared to 

tdTomato single-positive neurons. To quantify TrkB expression in non-taste 

neurons, the percentage of neurons that expressed both TrkB (GFP) and P2X3 

but not Phox2b was examined across ages. 

  

2.2.5. Quantification of fungiform papillae and taste bud number after 

conditional TrkB removal from oral sensory neurons 
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 Images of taste buds were captured from thick sections of tongue-halves 

using a 60× oil immersion lens with a step size of 1.0 µm. Images were collected 

using single-wavelength excitation and projected along the Z-axis. To determine 

how TrkB removal affected taste bud number, I counted taste buds in the 

fungiform papillae using DAPI staining with a fluorescence microscope and a 20× 

objective lens. I examined all sections for one-half of a mouse tongue. Anti-K8 

labeling indicated the presence of a taste bud in each fungiform papilla. I 

examined all the taste buds labeled with anti-K8 on each half tongue and 

quantified the number of taste buds containing Car4+ or PLCβ2+ labeled cells. 

The percentage of taste buds containing Car4+ and PLCβ2+ taste receptor cells 

was calculated by dividing the number of taste buds containing labeled cells by 

the total number of taste buds for each one-half of tongue (anti-K8, n = 

5/genotype). 

 

2.2.6. Data Analysis  

A student’s t-test was used to compare the number of double-labeled vs. 

single-labeled neurons in Phox2b-Cre::tdTomato::TrkBGFP/lox mice in adulthood 

(n= 3). A Chi-squared (X2) test was used to analyze the percentage of Phox2b 

neurons that express TrkB in geniculate ganglion sections in E15.5 (n = 3), 

compared to E17.5 (n = 4), P0 (n = 3) and adult (n= 3). Because this is 3 

statistical tests, type one error was controlled using a Bonferroni correction, and 

so a p-value of p < 0.0167 was established before analysis. A Chi-squared (χ2) 

test was also used to analyze TrkB expression in Phox2b-negative neurons 
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across different ages (E13.5 (n = 2), P0 (n = 3), and adult (n= 3)) and Bonferroni 

correction was used for a p-value of p < 0.025. A students t-test was used to 

compare the number of remaining neurons at P20 in conditional TrkB knockouts 

(Phox2b-Cre::tdTomato::TrkBGFP/lox , n=7) compared with controls (Phox2b-

Cre::tdTomato::TrkBGFP/+, controls, n = 5). A student’s t-test was used to compare 

the number of taste buds between controls (Phox2b-Cre::tdTomato::TrkBGFP/+, 

n=5) and conditional knockouts (Phox2b-Cre::tdTomato::TrkBGFP/lox n=5). Chi-

squared (χ2) test was used to compare the percentage of taste buds with 

PLCβ2+ and Car4+ cells between (Phox2b-Cre::tdTomato::TrkBGFP/lox, 

conditional knockouts, n=4) and controls (Phox2b-Cre::tdTomato::TrkBGFP/+, 

controls, n=4). Except where otherwise specified, a significance for all tests was 

established as p < 0.05 before analysis; however, actual p-values are reported.  

 

2.3. Results 

2.3.1. Only half of the oral sensory neurons in the geniculate ganglion 

express TrkB in adulthood 

 Early in development, approximately 90% of geniculate neurons express 

TrkB and depend on TrkB for their survival (Fei & Krimm, 2013; Fritzsch et al., 

1997). I hypothesized that following this critical period for neuron survival, only a 

subset of the neurons projecting to the anterior two-thirds of the tongue would 

continue to express TrkB in adulthood. This would be consistent with the finding 

that not all adult gustatory nerve fibers appear to express TrkB in adulthood 

(Tang et al., 2017).  
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 Recently, Phox2b expression has been used to distinguish oral sensory 

neurons (Phox2b+) from those innervating the outer ear (auricular neurons; 

Phox2b-)(Dvoryanchikov et al., 2017; Ohman-Gault et al., 2017). Trigeminal 

neurons innervating the tongue are also Phox2b-. Thus, in the geniculate 

ganglion, Phox2b expression is fairly specific to taste neurons, plus a few general 

oral sensory neurons. To visualize TrkB expression in oral sensory neurons, I 

crossed Phox2b-Cre::tdTomato mice with TrkBGFP/+ mice to visualize TrkB 

receptor expression (GFP+: green) in oral sensory neurons (dsRed+, red; Figure 

1A). I quantified neurons from Z-stacks of adult (P60) whole mount geniculate 

ganglia. In adulthood, not all geniculate ganglion neurons expressed the TrkB 

receptor (Figure 1A, B). Specifically, while GFP labeling was distributed 

throughout the ganglion, tdTomato+ neurons were located more medially and 

closer to the greater superficial petrosal nerve (Figure 1, A). This suggests that 

oral cavity-projecting neurons are primarily localized to one part of the ganglion. 

 I then quantified the numbers of single-labeled (TrkB-, tdTomato only) and 

double-labeled (TrkB+, red and green) oral cavity-projecting neurons in whole 

mount P60 geniculate ganglia (Figure 1B). An average of 354 ± 33 neurons were 

Phox2b+. Of those, 185 ± 21 neurons co-labeled with GFP, while 169 ± 0 

neurons expressed tdTomato alone (p < 0.01; Figure 1B). Thus, roughly 52% of 

oral cavity-projecting neurons express TrkB in adulthood. 

 

2.3.2. TrkB expression declines between E15.5 and E17.5. 
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 Although approximately half of oral cavity-projecting neurons express TrkB 

in adulthood (Figure 1), approximately 90% geniculate neurons express TrkB 

between E11.5 and E13.5 (Farbman et al., 2004; Fei & Krimm, 2013; T. Huang & 

Krimm, 2010; Yamout et al., 2005). I next sought to determine at what period 

during development TrkB expression decreases. Using Phox2b-tdTomato to 

identify oral cavity-projecting neurons, I quantified the number of tdTomato+ 

neurons expressing TrkB-GFP at ages E13.5, E15.5, E17.5, at birth (P0), and 

adulthood (P60) from serial transverse sections using immunohistochemistry. 

Consistent with previous findings (Fei & Krimm, 2013; Yamout et al., 2005), I 

observed TrkBGFP labeling throughout most of the geniculate ganglion at E13.5. 

TrkBGFP labeling was also observed outside of the geniculate ganglion (Top 

panel, Figure 2A-E). Across all ages examined, Phox2b-tdTomato labeling (red) 

was restricted to the medial portion of the geniculate ganglion (Middle panel, 

Figure 2 A-E). At E13.5 and E15.5, TrkBGFP labeling appeared uniformly 

distributed throughout the geniculate ganglion. After E17.5, TrkB labeling 

appeared to be more strongly expressed tdTomato- (non-taste) neurons, and this 

pattern persisted through adulthood (bottom panel, Figure 2A-E).  

  Understanding the temporal dynamics of TrkB expression might provide 

insight into the mechanism underlying decreased TrkB expression in adulthood. 

To determine when during development TrkB expression begins to decrease in 

oral sensory neurons, the percentage of Phox2b+ neurons co-labeled with GFP 

was quantified E13.5-P60 (Figure 2F). At E13.5, most (95%) tdTomato+ neurons 

expressed TrkB. The remaining 5% of tdTomato+ neurons likely consisted of the 
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small subpopulation of TrkB-independent geniculate ganglion taste neurons (Fei 

& Krimm, 2013). TrkB expression in oral cavity-projecting neurons did not differ 

between ages E13.5 and E15.5 (91%; p = 0.151). However, by E17.7, TrkB 

expression was significantly reduced to only 63% (p < 0.001) and remained 

reduced at birth (57%; p < 0.001). By adulthood, only 50% of tdTomato+ neurons 

expressed GFP. These data replicate our findings regarding TrkB expression in 

whole mount ganglia (Figure 1). Thus, TrkB expression is significantly reduced to 

approximately 50% of oral cavity-projecting neurons between E15.5 and E17.5 

and remains reduced into adulthood.  

 

2.3.3. Decreased TrkB expression is specific to Phox2b+ oral sensory 

neurons 

Since TrkB expression is reduced in tdTomato+ neurons, I next wanted to 

determine if this decrease was specific to oral sensory neurons, or if it also 

occurred in the auricular neurons of the geniculate ganglion. Previous studies 

have shown that these afferents express TrkB receptors as early as E11 

(Yamout et al., 2005). To determine if TrkB expression was also reduced in these 

auricular neurons during development, I examined TrkB expression in tdTomato- 

neurons. I used P2X3 (Figure 3: blue) as a general marker of geniculate ganglion 

neurons (Fei & Krimm, 2013; Ishida et al., 2009; Vandenbeuch et al., 2015). 

Contrary to previous reports (Ishida et al., 2009), P2X3 did not label all 

tdTomato- neurons (Figure 3). P2X3 labeling was observed in many sensory 

neurons within the geniculate ganglion, including some Phox2b- cells. TrkBGFP 
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labeling was brighter in some regions of the geniculate ganglion, especially near 

Phox2b- neurons. This pattern continued into birth and adulthood. I counted the 

number of P2X3+/tdTomato- (non-taste neurons) with and without GFP (TrkB). 

Early in development (E13.5), most (92.9%) P2X3+ neurons also express 

TrkBGFP. Importantly, the percentage of P2X3+/tdTomato- neurons expressing 

TrkB did not significantly differ at birth (86.4%; p > 0.05) or adulthood (94.7%; p > 

0.05). Thus, in somatosensory (non-taste) geniculate ganglion neurons, TrkB 

receptor expression remains consistent across development. I conclude that 

decreased TrkB expression during development is specific to a subset of 

neurons that carry oral sensory (primarily taste) information from the tongue and 

soft palate to the brain. TrkB reduction is likely part of the differentiation program 

for this specific subset of taste neurons. 

 

2.3.4. A small population of Phox2b+ sensory neurons is TrkB-independent 

during development 

 When TrkB expression is eliminated during development, most geniculate 

ganglion neurons (94%) are lost by E13.5. However, 33% of the taste buds 

remain and most of these are innervated at birth (Fei & Krimm, 2013), which 

seemed a surprising amount of innervation considering the large total geniculate 

neuron loss. Because neurons continue to migrate into the geniculate ganglion 

over a long period of embryonic development (Blentic et al., 2011), I speculated 

that at least some of the decreased TrkB+ expression observed at E17.5 resulted 

from the migration of TrkB- neurons into the geniculate ganglion after E15.5. If 
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this were the case, these TrkB+ tdTomato+ neurons would be present in the 

geniculate ganglion at later stages of development when TrkB is conditionally 

removed. Alternatively, TrkB expression may be downregulated after the critical 

developmental period for either geniculate neuron targeting or survival (Hoshino 

et al., 2010; L. Ma et al., 2009; Meng et al., 2015; Runge, Hoshino, Biehl, Ton, & 

Rochlin, 2012). In this case, most geniculate neurons would be lost in conditional 

TrkB knockouts. To evaluate these possibilities, I quantified the number of 

tdTomato+ neurons remaining in the geniculate ganglion at P20 in conditional 

TrkB knockout mice (Phox2b-Cre::tdTomato::TrkBGFP/loxP) compared to controls 

(Phox2b-Cre::tdTomato::TrkBGFP/+).  

 As shown in adulthood (Figure 1), TrkB expression was not homogenous 

across the geniculate ganglion at P20 (Figure 4A, green). tdTomato expression 

was restricted to a subset of neurons, confirming that not all geniculate ganglion 

neurons express Phox2b (Figure 4A, red). The geniculate ganglia from Phox2b-

Cre::tdTomato:: TrkBGFP/loxP mice were smaller and contained fewer tdTomato+ 

neurons relative to controls. Interestingly, an average of 28 ± 5.3 (n=7) 

tdTomato+ neurons remained in the geniculate ganglion after TrkB removal 

compared to 349.8 ± 44.6 (n=5) in control mice (Phox2b-

Cre::tdTomato::TrkBGFP/+; Figure 4C; ***p < 0.001). The remaining 8% of 

tdTomato+ neurons represent a small subset of TrkB-independent neurons. This 

proportion is equivalent to the percentage of tdTomato+/TrkB- neurons in the 

geniculate ganglion at E13.5 (5%). Therefore, new TrkB-independent taste 

neurons do not migrate into the geniculate ganglion after E13.5. These results 
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support the conclusion that 92% of taste neurons express and depend on TrkB 

during development (E13.5 and earlier), and that TrkB is downregulated in a 

subset of these neurons between E15.5 and E17.5.  

 

2.3.5. Remaining neurons innervate fungiform papillae but not taste buds, 

resulting in a substantial taste bud loss by P20. 

 A small group of Phox2b+ geniculate neurons do not depend on the TrkB 

receptor during development. These oral sensory neurons are primarily 

gustatory, but also include a small population of somatosensory neurons 

(Dvoryanchikov et al., 2017; Yokota & Bradley, 2016). Therefore, whether the 

remaining neurons or supported/innervated taste buds was unclear. To examine 

the location of innervation for these remaining oral sensory neurons, I examined 

the entire tongue for dsRed positive nerve fibers in control (Phox2b-

Cre::tdTomato::TrkBGFP/+; Figure 5A) and conditional TrkB knockout (Phox2b-

Cre::tdTomato::TrkBGFP/loxP; Figure 5B, C) mice. Conditional TrkB removal 

reduced taste bud size and completely eliminated tdTomato innervation within 

taste buds (Figure 5B). I found only a few tdTomato+ fibers innervating the 

lingual epithelium. These fibers innervated fungiform papillae, but these papillae 

lacked taste buds (Figure 5C). The few neurons remaining following TrkB 

removal might belong to a somatosensory neuron population, since they 

innervated fungiform epithelium and not taste buds.  

 TrkB is required for the survival of 92% oral sensory neurons in the 

geniculate ganglion; gustatory neurons are required to maintain taste buds (Fei 
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et al., 2014; Ito & Nosrat, 2009; I. V. Nosrat, Agerman, Marinescu, Ernfors, & 

Nosrat, 2004; Oakley, Lawton, Riddle, & Wu, 1993). So, next I quantified the 

number of taste buds that developed in the absence of TrkB fibers. Consistent 

with previous findings, TrkB removal significantly reduced the number of taste 

buds (Phox2b-Cre::tdTomato::TrkBGFP/+: 63.8 ± 4.9 vs. Phox2b-

Cre::tdTomato::TrkBGFP/loxP: 8.9 ± 1.5, **p < 0.01, Figure 5D). TrkB removal from 

Phox2b+ neurons reduced taste buds by 86%, suggesting that TrkB-dependent 

neurons support most taste buds during development. 

 Since the remaining taste buds completely lacked innervation, I also 

wanted to determine if nerve fibers preferentially supported specific subtypes of 

taste receptor cells. Taste buds from Phox2b-Cre::tdTomato::TrkBGFP/+ (Figure 

5A, E-G) and Phox2b-Cre::tdTomato::TrkBGFP/loxP (Figure 5B, H-J) mice were 

labeled for PLCβ2, a marker for Type II taste receptor cells that transduce bitter, 

sweet, umami (DeFazio et al., 2006), and for Car4, a marker of Type III cells that 

transduce sour (Chandrashekar, Hoon, Ryba, & Zuker, 2006). I quantified the 

percentages of taste buds with PLCβ2+ and Car4+ cells for both genotypes. All 

taste buds from Phox2b-Cre::tdTomato::TrkBGFP/+ mice contained both Car4+ 

and PLCβ2+ taste receptor cells (Figure 5F and G). In contrast, taste buds from 

conditional knockouts typically lacked Car4+ cells (Figure 5I and J), while 

PLCβ2+ cells were present in 100% of taste buds examined from both genotypes 

(Figure 5K). Conditional TrkB knockout significantly reduced the percentage of 

Car4+ cells in the remaining taste buds to ~21.3 ± 2.5% compared to controls 

(Phox2b-Cre::tdTomato::TrkBGFP/+: 85.3 ± 1.8%, **p < 0.01, Figure 5K). These 
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data suggest that the loss of innervation caused by TrkB removal markedly 

reduces the number of taste buds and Type III taste receptor cells by P20.  
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Figure 2.1. Half of adult taste neurons express the TrkB receptor. A) 

Representative image of a whole mount adult geniculate ganglion from a 

Phox2b-Cre::tdTomato::TrkBGFP/+ mouse labeled for both tdTomato (oral cavity-

projecting, red) and GFP (TrkB, green). B) Quantification of the total number of 

neurons (n=3) projecting to the oral cavity (red only) and oral cavity-projecting 

neurons that express TrkBGFP (double-labeled). C-E) Magnified images illustrate 

the criteria used to identify and count single-labeled (arrow) and double-labeled 

(arrowhead) oral cavity-projecting neurons. Scale bar = 50 µm (A) and 10 µm (C-

E). ***p <0.001.   
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Figure 2.2. TrkB expression decreases before birth in oral cavity-projecting 

neurons and remains reduced through adulthood. A-E) Representative Z-

stack images of TrkB-GFP (green, top) and Phox2b-tdTomato (red, middle) from 

geniculate ganglion sections across ages E13.5 (n = 2), E15.5 (n = 3), E17.5 (n = 

4), P0 (n = 3), and P60 (n = 3). Dashed lines illustrate the boundaries of the 

geniculate ganglion. F) Mean percentage ± SEM of Phox2b-positive neurons that 

express TrkB receptor during development and adulthood. ***p < 0.001, Scale 

bar = 50 µm.  
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Figure 2.3. TrkB expression is consistent across ages in non-taste neurons. 

A) Representative image of geniculate ganglion sections labeled with TrkBGFP 

(green), P2X3 (blue) and Phox2b-tdTomato (red) across ages (E13.5 (n=2), P0 

(n=3), adult (n=3)). B) Mean percentage ± SEM of non-taste neurons (Phox2b-, 

P2X3+) that express TrkB during development and adulthood. Scale bar = 50 

µm. 
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Figure 2.4. A small population of taste neurons (Phox2b-positive) do not 

depend on TrkB expression during development. A) Representative picture of 

a whole mount of geniculate ganglion at P20 from Phox2b-

Cre::tdTomato::TrkBGFP/+ (control) and B) Phox2b-Cre::tdTomato::TrkBGFP/loxP 

(conditional knockout). C) Mean ± SEM of Phox2b+ neurons remaining after TrkB 

removal from oral cavity-projecting neurons (control, n = 5; conditional knockout, 

n = 7 conditional knockout). Both scale bars = 100 µm (A, B). ***p<0.001. 
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Figure 2.5. In conditional TrkB knockouts, remaining neurons innervate 

fungiform papillae, but not taste buds, resulting in substantial taste bud 

loss by P20. A) Representative image of a taste bud (keratin-8) with Phox2b+ 

fibers (tdTomato) from Phox2b-Cre::tdTomato::TrkBGFP/+ mice. B) Representative 

image of a taste bud from Phox2b-Cre::tdTomato::TrkBGFP/loxP lacking Phox2b-

fibers. C) Phox2b+ nerve fiber innervating a fungiform papillae (DAPI). D) 

Quantification of the number of taste buds remaining after TrkB removal from 

taste neurons (control, n = 5; conditional knockout, n = 5). E, G) Representative 

image of Phox2b-Cre::tdTomato::TrkBGFP/+ taste bud (keratin-8) with innervation 

(red) from Phox2b-Cre::tdTomato::TrkBGFP/+ mice, F, G) Car4+ (green) and 

PLCβ2+ taste receptor cells. H-J) Representative image of Phox2b-

Cre::tdTomato::TrkBGFP/loxP taste bud (keratin-8) with no innervation from 

Phox2b-Cre::tdTomato::TrkBGFP/+ mice and I) PLCβ2+ taste receptor cells K) 
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Quantification of percentage of taste buds with Car4+ cells. Data represent the 

mean of percentage ± SEM. Scale bar = 10 µm. Scale bar on E applies to F and 

G.  Scale bar on H applies to I and J. **p<0.01. 
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2.4. Discussion:  

 During development, the neurotrophin BDNF and its receptor TrkB play 

vital roles in the survival and targeting of taste neurons from the geniculate 

ganglion (Jones, Farinas, Backus, & Reichardt, 1994; L. Ma et al., 2009). Most 

geniculate neurons express TrkB in the early stages of development (Fei & 

Krimm, 2013; Yamout et al., 2005), and TrkB is necessary for maintenance of 

most geniculate neurons at E11.5-E13.5 (Fei & Krimm, 2013; Fritzsch et al., 

1997). By adulthood, however, the ligand for TrkB, BDNF, is expressed in a 

subset of taste receptor cells, and BDNF removal reduces some but not all of the 

nerve fibers innervating taste buds (Meng et al., 2015; Tang et al., 2017). These 

findings suggest that by adulthood, TrkB expression may be limited to a subset of 

taste neurons. Here, I found that not all adult Phox2b+ (taste) neurons expressed 

TrkB. Specifically, TrkB expression decreased in these neurons between E15.5 

and E17.5 such that it was expressed in half the taste neurons by adulthood.  

 There were two potential explanations for how this developmental 

reduction in TrkB expression occurred. One possibility was that TrkB receptors 

were downregulated and became restricted to a subset of geniculate neurons. 

Alternatively, TrkB expression could have decreased because TrkB- neurons 

migrate into the geniculate ganglion after E13.5 (Blentic et al., 2011), an age 

when most geniculate neurons both express and depend on TrkB (Fei & Krimm, 

2013). I found that TrkB- neurons do not migrate into the geniculate ganglion at 

later embryonic ages, and instead the TrkB receptor is downregulated. 

Specifically, TrkB expression did not decrease until after E15.5, which is later 
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than might be expected if new TrkB- neurons continue to migrate into the 

geniculate ganglion. Furthermore, the small number of TrkB- oral cavity neurons 

present in the E13.5 geniculate ganglion (approximate 5%) accounted for most of 

the remaining neurons in the conditional TrkB knockout at P20 (approximately 

9%). I conclude that most (91%) of the oral cavity neurons initially express and 

depend on the TrkB receptor and then 41% of these neurons downregulate TrkB 

between E15.5 and E17.5. 

 The timing of TrkB downregulation in the oral cavity-projecting neurons 

corresponds with the timing of decreased BDNF expression in the taste bud (T. 

Huang & Krimm, 2010). Around E14.5, geniculate neurons depend on BDNF 

expression in the lingual epithelium to properly innervate their targets (Lopez & 

Krimm, 2006; L. Ma et al., 2009). By E15.5, geniculate neurons have already 

reached their targets, so BDNF should no longer be needed in the tongue at 

such high levels. Also, at these later stages, geniculate neurons no longer 

depend on BDNF for survival (Hoshino et al., 2010). Thus, the timing of 

decreased TrkB expression corresponds with changing roles of BDNF-TrkB 

signaling during development. Another example in these same neurons of a 

developmentally critical gene changing roles during development, is the growth 

factor receptor, Ret (27).  Ret regulates expression of the transcription factor, 

Phox2b, embryonically, but later identifies a subset of adult Ret expressing 

neurons that are likely somatosensory in function (Donnelly et al., 2018). The role 

of TrkB in adulthood may be to regulate plasticity and branching characteristics 
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for a subset set of oral sensory geniculate neurons (TrkB-expressing(Tang et al., 

2017)), but could also regulate taste function in this same neuron subset. 

 In the dorsal root ganglion, a series of developmentally expressed 

transcription factors and growth factor receptors orchestrate neuron subtype 

development (Lallemend & Ernfors, 2012). However, our current understanding 

of neuron subtypes and how they differentiate within the geniculate ganglion is 

still emergent. The transcription factor Phox2b plays a role in the differentiation of 

neurons that control viscero-sensory functions (D'Autreaux, Coppola, Hirsch, 

Birchmeier, & Brunet, 2011; Dauger et al., 2003; Pattyn, Morin, Cremer, Goridis, 

& Brunet, 1997) and so likely specifies oral sensory from articular neurons in the 

geniculate ganglion (Dvoryanchikov et al., 2017; Ohman-Gault et al., 2017). I 

found that the TrkB expression is downregulated specifically in this subset of 

Phox2b+ oral sensory neurons, but not in the auricular neurons. A finding 

consistent with a higher level of TrkB expression in auricular neurons than oral 

sensory neurons by adulthood (Dvoryanchikov et al., 2017). Therefore, Phox2b-

regulated differentiation into an oral sensory neuron subtype is required for this 

decrease in TrkB expression. However, this decrease only occurs in half of the 

Phox2b+ neurons. Given that Phox2b expression first occurs at E9-9.5 (Pattyn et 

al., 1997; Pla et al., 2008), which is days before the downregulation of TrkB, 

Phox2b likely initiates a cascade of events orchestrating the differentiation of 

taste neurons followed by differentiation of neuron subtypes. A complex series of 

events such that combinations of these factors work together to orchestrate adult 

expression patterns (24) seems likely. For example, the growth factor receptor, 
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Ret, is expressed in both TrkB+ and TrkB- neurons, which further divides oral 

sensory neurons into Ret+TrkB+,Ret+TrkB-,Ret-TrkB+, etc. (Donnelly et al., 

2018). Using a combination of factors to specify neuron subtypes permits a 

smaller number of factors to orchestrate the development of a larger number of 

neuron subtypes (i.e. two factors can specify four types, etc). It is now clear that 

multiple molecular subtypes of oral sensory neurons are present in the geniculate 

ganglion (Dvoryanchikov et al., 2017), although precisely how many is still 

unclear. 

 While much of gustatory neuron differentiation may be regulated by a 

cascade of intrinsically expressed molecular factors, the target also likely 

regulates gustatory neuron differentiation. Once taste neurons innervate their 

targets BDNF from the taste bud could maintain TrkB expression in gustatory 

neurons, such that those innervating BDNF-expressing taste receptor cells retain 

the higher TrkB levels. Because BDNF is preferentially expressed in the taste 

receptor cells that express the neurotransmitter serotonin (C. L. Yee et al., 2003), 

TrkB might be preferentially expressed in neurons that have the serotonin 

receptor, Htr3a, which mediates the neuronal serotonin response (Larson et al., 

2015). Consistently, mean TrkB expression is higher in the Phox2b+neurons that 

express Htr3a relative to those that do not (Dvoryanchikov et al., 2017).  

 When TrkB was conditionally removed from Phox2b+ neurons during early 

development, a few remaining neurons innervated the oral cavity. This is 

consistent with studies using full TrkB knockouts reporting that TrkB removal 

substantially reduces the number of geniculate ganglion neurons (Fei & Krimm, 
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2013; Fritzsch et al., 1997). However, these previous studies could not examine 

innervation patterns of these remaining neurons, as they lacked appropriate 

genetic markers. Here, I found a few tdTomato+ fibers innervating the epithelium 

in a fungiform papilla and no labeled innervation in remaining taste buds. There 

are several possible sources of these remaining fibers. One is that these few 

remaining nerve fibers were innervating locations previously occupied by a taste 

bud. Alternatively, these remaining neurons may be non-taste, and could belong 

instead to a small somatosensory population in the geniculate ganglion that 

innervate the oral cavity (Donnelly et al., 2018; Yokota & Bradley, 2016, 2017). 

This could be the same small population of fewer than 10% of the Phox2b+ 

geniculate neurons that express somatosensory specific genes, including Mafb 

(Dvoryanchikov et al., 2017). Consistently, Mafb+ neurons tend to express lower 

levels of TrkB than other Phox2b+ neurons in the geniculate ganglion 

(Dvoryanchikov et al., 2017). These remaining neurons could also be a 

subpopulation supported by GDNF-signaling via the Ret receptor (Donnelly et al., 

2018), rather than TrkB. 

 Consistent with the neuronal loss, condition TrkB knockout mouse 

tongues had fewer taste buds. Previous reports of full TrkB knockouts indicate 

that 37% of the taste buds remained (Fei & Krimm, 2013), compared to only 14% 

in the current study. Furthermore, in one of these earlier studies, 58% of the 

remaining taste buds were innervated in full TrkB knockout mice (Fei & Krimm, 

2013), while I observed no remaining taste bud innervation. One explanation for 

these discrepancies is that P2X3 was previously used as marker for taste bud 
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innervation (Fei & Krimm, 2013). P2X3 is expressed in some somatosensory 

neurons (Staikopoulos, Sessle, Furness, & Jennings, 2007); therefore, non-taste 

P2X3+ fibers may innervate some of the remaining taste buds. More likely, these 

two studies examined different postnatal ages; therefore, the remaining Phox2b+ 

neurons in the geniculate ganglion might initially innervate taste buds at birth but 

retract by P20, resulting in an additional postnatal taste bud loss.  

 Taste buds require innervation to retain their normal size and integrity 

(Guth, 1957; Oakley et al., 1993; H. Sun & Oakley, 2002). Because some taste 

buds remained despite complete innervation loss by P20, we investigated 

whether developmental denervation influences some taste cell types more than 

others. I found that Car4+ taste receptor cells, known to express SNAP25 and 

have synapses (Lossow et al., 2017; R. Yang et al., 2000), were absent from 

most remaining taste buds. Alternatively, all remaining taste buds still contained 

PLCβ2+ taste receptor cells. Therefore, Car4+ taste receptor cells may depend 

on innervation more than PLCβ2+ receptor cells. Innervation likely supports taste 

buds at least in part by releasing sonic hedgehog (Castillo-Azofeifa et al., 2017; 

W. J. Lu et al., 2018). However, in the absence of innervation, the few remaining 

taste buds could be supported by epithelial-derived sonic hedgehog (Castillo-

Azofeifa et al., 2017; Kumari et al., 2015; H. X. Liu, Maccallum, Edwards, 

Gaffield, & Mistretta, 2004; Miura et al., 2001; Miura, Scott, Harada, & Barlow, 

2014).  

 Taken together, these data show that TrkB expression and dependence 

divides taste neurons into subpopulations. I suggest that BDNF expression 
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initially guides TrkB+ fibers to innervate taste buds during a critical 

developmental period (L. Ma et al., 2009). During this time, all taste neurons 

express and depend on TrkB, while the 9% of oral cavity-projecting neurons that 

are TrkB-independent are oral somatosensory. After this critical period, TrkB 

expression in Phox2b+ neurons is downregulated, dividing these neurons into a 

TrkB+ and TrkB- subpopulations. In the adult taste system, BDNF likely 

maintains TrkB expression and taste bud innervation of the TrkB+ but not the 

TrkB- taste fibers (Tang et al., 2017). These TrkB+ taste neurons may play a 

different functional role than TrkB- neurons in adulthood. Because taste neuron 

subclasses are likely defined by combinations of differential gene expression, 

TrkB likely joins with other factors (Abraira & Ginty, 2013; Donnelly et al., 2018; 

Dvoryanchikov et al., 2017; Lee et al., 2017) to separate taste neurons into types 

and influence their ability to innervate subclasses of taste receptor cells
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CHAPTER III 

 

BLOCKING TRKB-SIGNALING DISRUPTS TASTE FUNCTION 

 

3.1. Introduction 

The neurotrophin, brain derived neurotrophic factor (BDNF), regulates the 

normal development of the taste system. Specifically, BDNF binding to its 

receptor, TrkB, causes dimerization and activation of signaling cascades 

supporting the survival and targeting of taste neurons during development 

(Hoshino et al., 2010; Krimm et al., 2001; L. Ma et al., 2009; Patel & Krimm, 

2010). Both cell death and targeting occur during a critical period of 

development, after which BDNF is no longer required for either function (Hoshino 

et al., 2010; L. Ma et al., 2009; Meng et al., 2015).  After this critical period, both 

BDNF and TrkB expression becomes restricted to subsets of taste cells and 

geniculate neurons, respectively (T. Huang et al., 2015; Tang et al., 2017). This 

change in expression pattern indicates that BDNF-TrkB signaling likely has new 

functional roles in the adult taste system.  

The role of TrkB signaling in the adult peripheral taste system are unclear, 

but some possibilities can be gleaned from how BDNF functions in the postnatal 

and adult central nervous system (CNS). In the CNS, the TrkB signaling pathway 

plays an important role in both synaptic function and neuron morphology
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 (Blum & Konnerth, 2005; Galati, Hiester, & Jones, 2016; Park & Poo, 2013; 

Rauskolb et al., 2010; Rose et al., 2004). BDNF release is activity dependent (H. 

Lu et al., 2014; Matsuda et al., 2009; Wong et al., 2015) and can regulate neuron 

function through a variety of mechanisms (Blum & Konnerth, 2005; Chao, 2003), 

only some of which have likely been identified (Chao, 2003; Rose et al., 2004). 

For example, application of BDNF induces depolarization within milliseconds via 

Nav1.9 channels (Blum et al., 2002; Kafitz et al., 1999), influences neuronal 

excitability via TRPC3 channels (Amaral & Pozzo-Miller, 2007a; H. S. Li et al., 

1999), and suppression of Kiv1.3 channels (Mast & Fadool, 2012; Tucker & 

Fadool, 2002).  

In general, peripheral and central roles of BDNF are considered to be 

fundamentally different (Sasi, Vignoli, Canossa, & Blum, 2017); however, the 

known peripheral roles are limited to embryonic development, since BDNF 

continues to be expressed in the adult taste system, we hypothesized that BDNF 

acquires new roles in adult taste system more similar to its roles in the CNS. 

Consistently, in the adult taste system, BDNF maintains innervation to the taste 

bud, without influence on neuron survival (Lopez & Krimm, 2006; L. Ma et al., 

2009), likely by regulating dendritic morphology. It is not known if BDNF can 

regulate taste function independent of morphological changes, as it can in the 

CNS. However, consistent with the idea that this might be the case, BDNF is 

expressed in the taste receptor cells with synapses, where it phosphorylates 

TrkB in the taste bud (I. V. Nosrat, Margolskee, & Nosrat, 2012), making a 

synaptic role for BDNF possible (T. Huang et al., 2015; C. L. Yee et al., 2003).  
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The aim of this study was to determine whether TrkB signaling influences 

taste function. To test this hypothesis, I used a chemical-genetic approach, which 

allowed TrkB-signaling to be reversibly blocked with 1-NMPP1 in mice with a 

specific point mutation (TrkBF616A) (Chen et al., 2005; Johnson et al., 2008; Y. Liu 

et al., 2012; Sompol et al., 2011; Vandenberg, Piekarski, Caporale, Munoz-

Cuevas, & Wilbrecht, 2015; Wang et al., 2009). I chose this approach because 

BDNF can have opposing functional roles through different receptors; an 

excitatory role on function via TrkB (Levine, Dreyfus, Black, & Plummer, 1995), 

an inhibitory role on function via p75 (Fujita, Takashima, Endo, Takai, & 

Yamashita, 2011) and truncated TrkB (Eide et al., 1996). Therefore, I expected 

that blocking only the excitatory role would yield more clear results. I found taste 

nerve (chorda tympani) responses were reduced to some stimuli, but not others, 

impacting multiple functional modalities, when TrkB signaling was blocked for 3 

hours. I also found behavioral responses were altered to low concentrations of 

citric acid and these effects were not caused by changes in morphology. These 

data are consistent with our hypothesis that TrkB signaling influences peripheral 

adult gustatory system function. 

  

3.2. Material and methods: 

3.2.1 Animals 

To disrupt TrkB signaling, I used homozygous TrkBF616A mice (P40-P70), 

(RRID: IMSR_JAX:022363). These mice have a single point mutation on the TrkB 

allele; a substitution of phenylalanine (F) to alanine (A) in the intracellular domain 
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of TrkB receptor, that allows rapid and reversible blockage of TrkB signaling by 

application of 1-NMPP1 (Chen et al., 2005; Johnson et al., 2008). Littermates 

from TrkBF616A/+ breeding pairs that lacked the point mutation (wild type) were 

used as control animals for genotype and treatment (electrophysiology 

recordings and behavior) and to ensure control mice originated from the same 

background (C57BL6). To examine changes in TrkB fiber morphology after 1-

NMPP1 treatment, I crossed TrkBCre ER::tdTomato mice 

(RRID:IMSR_JAX:027214) with homozygous TrkBF616A mice. The resulting mice 

(TrkBCre ER/F616A::tdTomato) express tdTomato following Cre-mediated gene 

recombination in TrkB-positive neurons. In addition, the TrkB receptor has a 

binding site for 1-NMPP1, which can be used to block TrkB signaling. All mice 

were housed in a central facility and maintained under controlled conditions of 

normal humidity and temperature, with standard alternating 12-h periods of light 

and dark and free access to water and food. Animals were cared for and used in 

accordance with guidelines of the U.S. Public Health Service Policy on Humane 

Care and Use of Laboratory Animals and NIH Guide for the Care and Use of 

Laboratory Animals. 

 

3.2.2. Tamoxifen administration and 1-NMPP1 injections 

TrkBCre ER/F616A::tdTomato mice received 4mg/kg of tamoxifen (T5648, 

Sigma-Aldrich, St. Louis, MO; mixed in peanut oil, 188 ng/g body weight) once 

per day for 3 days by oral gavage starting at day P39. Three weeks later, adult 

mice (P60) were injected with 10uL of 200mM 1-NMPP1 (Cayman Chemical, 
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Cat. No. 221244-14-0) or vehicle (10uL DMSO) s.c. 1-NMPP1 was mixed by 

dissolving 50mg into 754μL of DMSO to make a 200mM stock solution. Aliquots 

of 10μl of 200 mM 1-NMPP1 stock solution or 10uL DMSO (vehicle) were diluted 

into 380μL of injection solution (0.9% NaCl and 2.5% Tween-20) (Johnson et al., 

2008). This dose was chosen because it has been used in other studies to inhibit 

TrkB signaling pathway in a rapid and reversible manner by reducing both TrkB 

receptor and Erk phosphorylation  (Chen et al., 2005; Johnson et al., 2008) 

 

3.2.3. Nerve recordings 

To examine the role of BDNF-TrkB signaling on taste responses, I 

recorded whole nerve taste responses from the chorda tympani (CT) nerve. 

Briefly, at P40-P70, wild type (vehicle n = 10; 2 males 8 females// 1-NMPP1 

n=15; 8 males 6 females,) and TrkBF616A (vehicle n=11; 5 males 6 females// 1-

NMPP1 n=12; 8 males 4 females) mice were sedated with 0.32 mg/kg 

intramuscular injection of Domitor (medetomidine hydrochloride, Pfizer Animal 

Health) and anesthetized with 40 mg/kg intramuscular Ketaset (ketamine 

hydrochloride, Henry Schein). A water-circulating heating pad was used to 

maintain body temperature at ~37°C. Bilateral transection of the hypoglossal 

nerves was performed to prevent tongue movements. Then, the animal was 

tracheotomized to avoid liquid solutions from entering the lungs. A non-traumatic 

head-holder was used to position the animal (Erickson, 1966) and a mandibular 

approach was used to gain access laterally to the chorda tympani nerve near the 

left tympanic bulla. The nerve was exposed, desheathed, cut and placed on a 
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platinum-wire electrode (Figure 3.1A). A second electrode was placed on nearby 

muscle tissues to serve as ground. Kwik-Sil (Cat No. Item#: KWIK-SIL, World 

Precision Instruments) was placed in the cavity around the nerve. Whole-nerve 

CT activity was amplified (X10000; A-M Systems, bandpass 300-1500Hz) for all 

the experiments. Data were recorded and analyzed using Spike2 

(RRID:SCR_000903; Cambridge Electronic Design).  

 

3.2.4. Stimulation procedure and data analysis 

All the chemicals were reagent grade and prepared fresh in deionized 

water at room temperature: 20 mM citric acid, 10 mN HCl, 50 mM quinine, 50 

mM denatonium, 1 M sucrose, 64 mM acesulfame K+ (AceK), 100 mM Na-

saccharin (Na-sac), 300 mM monosodium glutamate (MSG), 100 and 500 mM 

NaCl and 100 mM and 500 mM NH4Cl. The stimuli were applied to the tongue 

with a syringe for 30-40s (Figure 3.1C, blue arrows). After each chemical 

stimulation, the tongue was rinsed with deionized water for approximately 60-90s 

between successive stimulations to bring nerve activity to baseline (Figure 3.1B 

and 3.1C; black arrows).  

Data analysis for relative responses: The amplitude of the integrated 

responses was measured 10s after onset, to exclude ‘somatosensory responses’ 

(phasic phase), for 20s during the steady-state (tonic phase) and averaged for 

each stimulus. Response amplitudes were plotted as ratios relative to the 

average response of 100 mM NH4Cl before and after stimulation. For a taste-

evoked response to be considered for relative responses analysis, the two 
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presentations of 100 mM NH4Cl could not differ more than 15%. Each individual 

concentration was compared between vehicle and 1-NMPP1 using  Mann-

Whitney U test (*p< 0.05) was considered significant and corrected with 

Bonferroni’s for multiple comparisons.  

Data analysis for normalized to baseline responses: Using custom written 

Matlab scripts (RRID: SCR_001622) stimulus onset was determined using 

change point detection and included 15s pre-stimulus and 30s post-stimulus (red 

portion of the trace, Figure 3.1B). To control for recording stability, each stimulus 

delivery was divided into a 15s pre-stimulus and 30s post-stimulus trial window. 

The baseline for each trial (first 10 seconds) was averaged for each mouse, and 

trials with baseline shifts more than two standard deviations from the mean were 

considered unstable and were excluded from analysis. Next, each trial a peri-

stimulus time histogram over the 45 second window was generated by dividing 

every 2.5s of the responses by the average of the baseline. Each peri-stimulus 

time histogram represents the mean of the normalized response (solid line) and 

standard error of the mean (dash lines) per group (Figure 3.1D).  

Responses to each taste stimulus were averaged across experimental 

groups. Each taste stimulus averaged normalized response was compared over 

time between TrkBF616A (vehicle vs. 1-NMPP1) using Wilcoxian rank-sum test. 

Three consecutive bins (7.5s or more) were considered significantly different and 

correction for FEW requiring at least  3 consecutive bins (black line present 

*p<0.05). The mean of the last 20s of the responses per stimulus was compared 

between TrkBF616A  (vehicle  vs 1-NMPP1) using Mann–Whitney U test and 
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corrected with Bonferroni’s for multiple comparisons (*p < 0.05) using Sigma Plot 

version 14 software (RRID: SCR_003210; Systat Software Inc., San Jose, USA). 

 

3.2.5. Behavioral paradigm 

 To examine the role of BDNF-TrkB signaling on short-term taste behavior, 

I used a brief-access task while blocking TrkB signaling. To examine taste 

function, I trained mice to avoid 10 mM citric acid with LiCl pairings after 

conditioning sessions. Mice that acquired a conditioned taste aversion, will not 

only avoid the concentration used for pairings, but will generalize it to other 

concentrations in a range (Ishiwatari & Bachmanov, 2009; Treesukosol, Mathes, 

& Spector, 2011). Conditioned taste aversion to citric acid and generalization of 

this pairing to lower concentration, I paired 10 mM citric acid with either LiCl 

injections or NaCl (as a control for LiCl), (Table 1) (Ishiwatari & Bachmanov, 

2009; Treesukosol et al., 2011). To determine if blocking TrkB-signaling 

influenced sampling of citric acid or the number of trials initiated, I trained 

TrkBF616A mice using the conditioned taste aversion paradigm.  

Water training. Water bottles were removed from home cages on day 0. 

Mice were trained in the morning (9a-12p) for 15 mins in a multi-channel 

gustometer (Davis MS-160-Mouse gustometer; DiLog Instruments Inc. 

Tallahassee Fl; (Smith, 2001)). The first 3 days (day 1-3), mice were trained to 

drink from a stationary spout. Days 4-6, mice that drank from the stationary spout 

were trained to drink from spouts that moved randomly. Mice could initiate from 

40 to 72 trials during the 15min session. For each trial, the shutter remained 
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open for 5s after the first lick or for a maximum of 10s if the mouse did not initiate 

a trial. Each trial was followed by a 7.5s intertrial interval during which time a 

motor changed tubes randomly. Trial duration was consistent during training, 

conditioning, recovery and testing stages. To prevent dehydration during training 

sessions, mice had access to a 1mL of water in their home-cage for 1.5 mins in 

the afternoon approximately 5 hours after the morning training session.   

Conditioned taste aversion training. Following water training, wild type 

mice were induced to conditioned taste aversion by pairing LiCl injections (6.0 

mEq/kg, 0.15M; n = 6) or NaCl (6.0 mEq/kg, 0.15 M; n = 7) immediately after 

receiving 10 mM citric acid (conditioned stimulus (CS)) in the gustometer. Mice 

received a total of four pairings of 10 mM citric acid with LiCl or NaCl (D7, D10, 

D13 and, D16). Each conditioning day was separated by 2 recovery days in 

which mice received only water during their morning session to reacclimate them 

to the procedure. For TrkBF616A mice, the same CTA protocol was used; pairing 

LiCl injections with 10 mM CA were used (Table 1).  

Behavioral testing. Each wild type mouse was tested in the gustometer 

with 8 different citric acid concentrations (0.03 mM, 0.1 mM, 0.3 mM, 0.7 mM, 1 

mM, 3 mM, 7 mM, 10 mM) with each concentration presented in a different 

random order for each mouse, except that water was always the first trial. 

Because lick rates were almost completely suppressed across a broad range of 

citric acid concentrations in wild type mice receiving conditioned taste aversion, 

TrkBF616A  mice were tested with slightly different citric acid concentrations (which 

included 0.003 mM, and 0.01 mM, instead of 0.7 mM, and 7 mM) with water as 
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first trial. On test day (day 19), TrkBF616A mice received either vehicle or 1-

NMPP1 3 hours prior to the testing procedure.  

Data analysis. For each stimulus, the total number of licks and trials 

engaged were measured for water and the different concentrations of citric acid 

during the conditioned taste aversion retention test. Total licks to different 

concentrations of citric acid relative to water were compared between treatment 

(wild type: LiCl vs NaCl; TrkBF616A: vehicle vs 1-NMPP1) using two-way ANOVA, 

followed by Tukey’s HSD test as post hoc; *p< 0.05 was considered significant. 

The number of trials engaged for each citric acid presentations relative to water 

were compared between treatments in TrkBF616A mice that received vehicle 

versus 1-NMPP1 using Student t-test, *p< 0.05 was considered significant. 

 

3.2.6. Immunohistochemistry 

Adult TrkBCre ER/F616A:: tdTomato mice (P60) were sacrificed 3 hours after 

1-NMPP1 or vehicle injections by with an overdose (1mL) of 2.5% 

tribromoethanol (Avertin) i.p., and trans-cardially perfused with 4% 

paraformaldehyde (PFA). Tongues were dissected and post-fixed in 4% PFA 

overnight at 4°C. Tissue was transferred to 30% sucrose/PBS for cryoprotection 

at 4°C overnight. The following day, the tongue was cut in half at the midline, 

frozen on dry ice in optimum cutting temperature (O.C.T.) embedding medium 

and stored at -80C until immunohistochemistry. For thick sections, tongue halves 

were sectioned at 70µm and collected in 0.1M PB. The sections were rinsed in 

0.1M PB tissue and then blocked for 2 days with 3% donkey serum in 0.1M 
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phosphate-buffer (PB) containing 0.5% Triton X-100 at 4°C. To visualize TrkB-

positive nerve fibers within taste buds, thick sections were incubated with the 

following primary antibodies for 5 days at 4 °C: rabbit polyclonal anti-dsRed 

(1:500, Clontech Laboratories, Inc., RRID: AB_10013483 Cat No. 632496, 

Mountain View, CA) and rat anti-cytokeratin 8 in PBS (1:50; Developmental 

Studies Hybridoma Bank, RRID: AB_531826, Cat. No. Troma-1-s, Iowa City, IA). 

After incubation in primary antibodies and four rinses in 0.1M PB, tissues were 

incubated in the following secondary antibodies for two days: goat anti-rat Alexa-

Fluor 488 (1:500; Jackson ImmunoResearch Laboratories) and goat anti-rabbit 

Alexa Fluor 555 (1:500; Jackson ImmunoResearch Laboratories). The tissue was 

then washed four times in 0.1 M PB, mounted onto slides, and cover-slipped 

using aqueous mounting medium (Fluoromount-G, Southern Biotech, 

Birmingham, AL). To visualize whole taste buds and quantify branching 

characteristics, I performed whole mount staining of the entire lingual epithelium 

on  the remaining tongue halves, as previously described (Ohman-Gault et al., 

2017). Briefly, the lingual epithelium was separated from most of the underlying 

muscle using surgical scissors under a dissecting microscope. The epithelium 

was then frozen flat in OCT and the remaining muscle was shaved off using a 

cryostat. Then, the lingual epithelium was cut into smaller pieces (tip and mid 

portions of the fungiform field) and processed for immunohistochemistry using 

the same protocol as described above for thick sections.   
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3.2.7. Quantification of TrkB fiber innervation and branching 

characteristics within the taste buds.  

Since gene recombination in TrkB-positive fibers induced by tamoxifen 

occurs randomly, only a subset of TrkB-positive fibers will be labeled with 

tdTomato. Also, the TrkB receptor is expressed in epithelium including taste bud 

cells causing a few of them to become labeled also. I used a small dose of 

tamoxifen in order to sparsely label nerve fibers. I injected the tamoxifen, 3 

weeks before euthanizing the mice, because taste labeled receptor cells have 

died and left the bud by then, and nerve fibers are completely filled with 

tdTomato. The numbers of taste buds innervated by tdTomato labeled nerve 

fibers (a subset of TrkB-positive fibers) were counted in thick sections of the 

tongue using a Leica DMLB microscope. The total number of taste buds with 

tdTomato labeled fibers was compared between mice that received 1-NMPP1 

versus vehicle 3 hours prior perfusion using t-test followed by Tukey’s HSD test 

as post hoc; *p <0.05 was considered significant. Taste buds were imaged from 

the tip of the tongue where taste bud density is higher using Olympus Fluoview 

FV1200 Laser scanning confocal microscope. Optical images were captured 

every 0.47μm with a 60× oil objective at a zoom level of 4x. For each image, 

each channel was taken separately using single-wavelength excitation and 

merged to produce a composite image. Four to six taste buds with tdTomato 

labeled fibers per mouse were used for analysis. All the taste bud images were 

deconvoluted using Deconvolution Software (RRID:SCR_002465 AutoQuant X, 

Media Cybernetics, MD, USA). Each labeled fiber was traced as it entered the 
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taste bud (defined by cytokeratin-8 labeling) using Neurolucida 360 software 

(MBF Bioscience, Williston, Vermont, USA). The number of fibers entering the 

taste bud, fiber length, number of branch points, and branch ends were 

measured.  

 

3.3. Results:  

3.3.1. Blocking TrkB-signaling reduced chorda tympani responses to some 

taste stimuli  

Although in the central nervous system, BDNF acts as a neuromodulator, 

it is unknown whether BDNF-TrkB signaling influences adult taste system 

function in adulthood. To test this idea, I used a chemical-genetic approach, 

which allowed TrkB-signaling to be reversibly blocked by 1-NMPP1 in mice with a 

specific point mutation in the intracellular domain of the TrkB receptor (TrkBF616A). 

Three hours after 1-NMPP1 injections, I recorded the whole nerve responses of 

chorda tympani nerve to the following taste stimuli: 100 mM and 500 mM NH4Cl, 

100 and 500 mM NaCl, 64 mM acesulfame K+, 100 mM Na-saccharin, 1 M 

sucrose, 300 mM monosodium glutamate (MSG), 50 mM quinine-HCl, 50 mM 

denatonium, 20 mM citric acid, and 10 mN HCl. Figure 3.2 shows representative 

integrated whole nerve responses to different taste stimuli in wild type mice 

injected with either vehicle (Figure 3.2A) or 1-NMPP1 (Figure 3.2B), and 

TrkBF616A mice injected with vehicle (Figure 3.2C) or 1-NMPP1 (Figure 3.2D). 

Each representative raw trace was selected because its height was the closest to 
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the median height of the responses for that stimulus/group. The magnitude of 

responses in TrkBF616A mice with 1-NMPP1 for 3 hours (red traces on Figure 

3.2D) showed a general suppression compared to wild type with vehicle, wild 

type with 1-NMPP1, and TrkBF616A 
 with vehicle (black traces Figure 3.2A,B & C 

respectively).  

To determine whether TrkB signaling influences taste function, I measured 

the amplitude of taste responses per stimulus averaged over a 20s stimulation 

window (tonic phase) for each group (Figure 3.3A-E). The magnitudes of the 

taste responses were not significantly different in wild type mice that received 1-

NMPP1 compared to vehicle (Figure 3.3). However, I found a general 

suppression in the magnitude of taste responses to most of the stimuli in 

TrkBF616A mice with 1-NMPP1 compared to TrkBF616A mice that received vehicle. 

 Sour responses to both citric acid and HCl were significantly reduced in 

TrkBF616A mice with 1-NMPP1 compared vehicle (Figure 3.3A, vehicle vs 1-

NMPP1; citric acid: **p = 0.004, HCl: **p = 0.003). Bitter responses to quinine 

and to denatonium were not significantly reduced in TrkBF616A mice compared to 

TrkBF616A mice that received vehicle (Figure 3.3B, quinine-HCl: p = 0.05; 

denatonium: p>0.05). Sweet responses to sucrose, acesulfame K+  and Na-

saccharin were not significantly reduced in TrkBF616A mice treated with 1-NMPP1 

compared to vehicle  (Figure 3.3C; sucrose: p >0.05, acesulfame K+: p>0.05 and 

Na-saccharin: p > 0.05). Umami responses to monosodium glutamate were 

significantly reduced in TrkBF616A mice with 1-NMPP1 compared vehicle (Figure 

3.3D; MSG, *p =0.02). Salt responses to 500 mM NaCl and 100 mM, 500 mM 



 
 

60 
 

NH4Cl were significantly reduced (Figure 3.3E: 500 mM NaCl, *p = 0.02; 100 mM 

and 500 mM NH4Cl, **p =0.01). These data indicate that blocking TrkB signaling 

for 3 hours prior recording reduced the amplitude of the taste responses to 

different taste stimuli in TrkBF616A mice.  

 

3.3.2. Responses to taste stimuli were not significantly different when 

plotted relative to 100 mM NH4Cl.  

Applications of NH4Cl in brackets before and after a series of taste 

stimulations are used to monitor nerve viability and differences between animals. 

It is also the case that taste responses are typically reported relative to the 

average of NH4Cl application since changes in the height of NH4Cl are frequently 

used as indicator of nerve stability during a recording session (Breza & 

Contreras, 2012a, 2012b; Inoue et al., 2007; Skyberg et al., 2017; C. Sun et al., 

2015; C. Sun et al., 2017; C. Sun, Krimm, & Hill, 2018). Therefore, I first analyzed 

our data using this approach. Responses between two NH4Cl responses in which 

change less than 15% before and after, were considered unstable and were 

excluded from analysis. These remaining responses were plotted relative to 100 

mM NH4Cl (Feng et al., 2015; T. M. Nelson et al., 2010; Qin et al., 2018; 

Shigemura et al., 2013).  

I found that relative taste responses to 100 mM NH4Cl, were not different 

across genotype and treatment for sours (Figure 3.4A; citric acid: p >0.05), bitters 

(Figure 3.4B; quinine-HCl: p >0.05; denatonium: p > 0.05), sweets (Figure 3.4C; 

sucrose: p >0.05 ; acesulfame K+: p >0.05; Na-saccharin: p >0.05 and salts 
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(Figure 3.4E; 500 mM NaCl: p >0.05; 500 mM NH4Cl:  p >0.05). Yet, relative 

responses to HCl in TrkBF616A mice were significantly reduced (TrkB vehicle vs 1-

NMPP1, p > HCl: * p = 0.01). Oddly, relative responses to monosodium 

glutamate (MSG) in wild type with 1-NMPP1 were significantly reduced but not in 

TrkBF616A mice (Figure 3.4D; wild type vehicle vs 1-NMPP1, **p =0.01; TrkB 

vehicle vs 1-NMPP1, p >0.05).  It was possible that responses to 100 mM NH4Cl 

were reduced to the same degree as the responses to other stimuli, such that the 

relative responses yielded no effect. 

 

3.3.3. Normalized responses were significantly to different taste 

stimuli when plotted relative to baseline.  

Since I speculated that plotting responses relative to NH4Cl masked the 

general suppression observed from the raw traces, I sought an alternate method 

of analysis. In some taste studies where responses to NH4Cl were affected, taste 

responses were normalized to baseline (5 seconds before taste stimulation) 

(Larson et al., 2015; Vandenbeuch et al., 2013). I decided to use a similar 

approach to normalize the amplitude of the integrated responses relative to their 

baseline (pre-stimulus). However, it was unclear from previous studies how nerve 

viability and recording stability over time was monitored. To address recording 

stability, chorda tympani responses to different stimuli were sorted as trials. For 

each animal, trials with a shift of two standard deviations in the baseline from the 

mean were considered unstable and were excluded from data analysis. 

Additionally, I generated peri-stimulus time histograms for each stimulus, which 
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illustrates both the mean and variability for each group response aligned over a 

45s window (peri-stimulus time histograms in Figure 3.1D).  

This analysis allowed me to compare taste responses over time between 

mice treated with 1-NMPP1 and mice with vehicle. To determine significant 

temporal differences in taste responses over the progression of the evoked 

response (taste x time), I compared each 2.5s over a 30s window which included 

the transient phasic phase (first 10s) and the steady-state or tonic phase (20s 

following the phasic phase). I found that sour responses to citric acid in TrkBF616A   

mice treated with 1-NMPP1 compared to vehicle were significantly reduced over 

time (Figure 3.5A black bar, 7.5s-17.5s; Wilcoxian rank-sum, * p<0.05). Salt 

responses to NH4Cl were significantly reduced in TrkBF616A  receiving 1-NMPP1 

compared to vehicle over time, but only for high concentrations (Figure 3.5L: 

black bar, 2.5s-30s; rank sum, *p<0.05). Normalized responses to quinine-HCl in 

TrkBF616A 1-NMPP1 group compared to vehicle were significantly reduced over 

time (Figure 3.5C black bar, 7.5s-17.5s; *p<0.05). Sweet responses to 

acesulfame K+ were significantly reduced in TrkBF616A 1-NMPP1 group compared 

to vehicle over time (Figure 3.5F black bar, 7.5s-30s; rank sum, *p<0.05).  

In addition, when I examined the average of the last 20s (tonic phase) of 

the normalized sour responses in TrkBF616A  mice treated with 1-NMPP1 

compared to vehicle, responses to both citric acid (Figure 3.5A bar graph: * p = 

0.04) and HCl (Figure 3.5B bar graph: * p =0.03) were significantly reduced. Sour 

was the taste quality where responses to multiple stimuli were reduced by 

blocking TrkB-signaling. Normalized responses to quinine-HCl were also reduced 
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in TrkBF616A 1-NMPP1 group compared to TrkBF616A with vehicle (Figure 3.5C bar 

graph: *p = 0.023) when the mean of the last 20s was compared. Umami 

responses were altered in TrkBF616A with 1-NMPP1 group compared to TrkBF616A 

with vehicle (Figure 3.5H bar graph: * p =0.05). 

Sweet responses to acesulfame K+
 were significantly reduced in TrkBF616A 

mice with 1-NMPP1 compared to TrkBF616A with vehicle (Figure 3.5F bar graph: * 

p = 0.02). Yet, sweet responses to sucrose and Na-saccharin were not different 

in TrkBF616A with 1-NMPP1 group compared to TrkBF616A with vehicle (Figure 3.5E 

bar graph: sucrose: p >0.05; Figure 3.5G bar graph) Na-saccharin: p >0.05).  

Salt responses to low and high concentrations of NaCl were not 

significantly different in TrkBF616A with 1-NMPP1 group compared to TrkBF616A with 

vehicle (Figure 3.5I bar graph: 100 mM NaCl: p >0.05; Figure 3.5J bar graph: 500 

mM NaCl: p >0.05). Conversely, salt responses to low (100 mM) and high (500 

mM) concentrations of NH4Cl were significantly reduced in TrkBF616A with 1-

NMPP1 group compared to TrkBF616A  with vehicle (Figure 3.5K bar graph: 100 

mM NH4Cl: *p = 0.03; Figure 3.5L bar graph: 500 mM NH4Cl: *p = 0.02).  

I found that normalized responses to most stimuli were not significantly 

different in wild type mice that received 1-NMPP1 compared to vehicle (citric 

acid: wild type vehicle 2.77±0.16 vs. wild type 1-NMPP1 2.45±0.24, p >0.05; HCl: 

wild type vehicle 2.44±0.21 vs. wild type 1-NMPP1 2.39±0.23, p >0.05; quinine-

HCl: wild type vehicle 1.80±0.16 vs. wild type 1-NMPP1 1.54±0.08, p >0.05; 

sucrose: wild type vehicle 2.14±0.27 vs. wild type 1-NMPP1 1.93±0.24, p>0.05; 

acesulfame K+: wild type vehicle 1.67±0.21 vs. wild type 1-NMPP1 1.56±0.14, 
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p >0.05; Na-saccharin: wild type vehicle 1.79±0.08 vs. wild type 1-NMPP1 

1.68±0.13, p >0.05; MSG: wild type vehicle 1.82±0.12 vs wild type 1-NMPP1 

1.61±0.12, p >0.05; 100 mM NaCl: wild type vehicle 1.62±0.10 vs..05; MSG: wild 

type vehicle 1.82±0.12 vs. wild type 1-NMPP1 1.50±0.11, p >0.05; 100 mM 

NH4Cl: wild type vehicle 1.85±0.07 vs. wild type 1-NMPP1 1.80±0.12, p >0.05; 

500 mM NH4Cl: wild type vehicle 3.73±0.24 vs. wild type 1-NMPP1 3.26±0.33, 

p >0.05). However, normalized responses to denatonium and  500 mM NaCl 

were significantly different in wild type mice with 1-NMPP1 compared to vehicle 

(denatonium: wild type vehicle 1.64±0.10 vs. wild type 1-NMPP1 1.23±0.07, *p 

=0.011 and 500 mM NaCl: wild type vehicle 2.89±0.22 vs. wild type 1-NMPP1 

2.41±0.20, * p = 0.047).  

In conclusion, when I normalized responses to baseline, our data indicate 

that TrkB signaling is required for normal responses to sours, some artificial 

sweeteners, bitters and salts. These effects were absent when responses were 

plotted as ratios to NH4Cl (reference stimulus). I was able to use this method to 

confirm recording stability and compare responses across time (30s). Using this 

method, I found that blocking TrkB-signaling reduced most taste responses (last 

20s of response). However, only taste responses to sour were reduced to both 

stimuli tested (citric acid and HCl).  

 

3.3.4. Blocking TrkB signaling disrupts citric acid detection using 

conditioned taste aversion in a brief-access test.  
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Given that our electrophysiological results showed that responses to all 

tested sour taste stimuli were suppressed by disrupting TrkB signaling, I aimed to 

examine the functional role of TrkB signaling in sour taste using a behavioral 

assay. I chose to focus on citric acid because out of the two sour solutions tested 

in chorda tympani nerve recordings, citric acid was reduced when plotted as the 

mean of the 20s of the tonic phase and showed a significant reduction over time 

(black bar, 10s; Figure 3.5A). Therefore, under normal conditions, mice will drink 

large amounts of different concentrations of citric acid. I designed a behavioral 

paradigm in which mice are motivated to avoid drinking citric acid at low 

concentrations in a brief-access test using conditioning taste aversion (CTA). 

When mice learn an association between 10mM citric acid and LiCl injections 

(gastro intestinal malaise), they avoid 10 mM citric acid and generalize their 

behavior to other citric acid concentrations (Ishiwatari & Bachmanov, 2009; 

Treesukosol et al., 2011). To verify the protocol, wild type mice had access to 10 

mM citric acid, and immediately after received LiCl injections or NaCl (as control) 

(refer to Table 1; conditioning). After four conditioning pairings, the number of 

licks to 0.1-10 mM citric acid relative to water were significantly reduced in wild 

type mice that received LiCl injections compared to those injected with NaCl 

(Figure 3.6B, *p<0.05). These results confirmed that our conditioned taste 

aversion protocol was effective for mice to learn to avoid concentrations of citric 

acid that they would typically drink at levels comparable to water in the absence 

of a conditioned taste aversion.  
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Using the conditioned taste aversion protocol, I trained TrkBF616A mice to 

avoid 10 mM CA (Table 1). I found that after the third (CS3) and the fourth (CS4) 

pairing of 10 mM citric acid with LiCl injections, the number of trials engaged and 

mean licks were significantly reduced after the third (CS3) and the fourth (CS4) 

during conditioning in TrkBF616A  mice (Figure 3.6C, **p<0.01 and 3.6D, **p<0.01). 

These data confirmed that TrkBF616A mice learned an aversive association to 10 

mM citric acid. Animals that failed to learn the aversive association to citric acid 

after their fourth pairing were removed (n = 3) . When I tested a range of citric 

acid concentrations compared to water (Day19), TrkBF616A  mice that received 

vehicle 3 hours prior to the task had significantly fewer licks to 0.003 mM, 1 mM, 

3 mM and 10 mM citric acid when compared to water (Figure 3.6E, black line, *p 

<0.05). These findings suggest that TrkBF616A  mice that received vehicle 

associated the taste aversion to not only 10 mM citric acid but also generalized it 

to lower citric acid concentrations. TrkBF616A mice with 1-NMPP1 had significantly 

fewer licks at the higher concentrations (1 mM, 3 mM, 10 mM) of citric acid 

compared to water (Figure 3.6E, red line, p<0.05) indicating that learning was 

generalized to high, but now lower concentrations of citric acid. In addition, 

TrkBF616A  mice that received 1-NMPP1 licked significantly more both to 0.003 

mM and 0.03 mM of citric acid compared to TrkBF616A  mice that received vehicle 

injections 3 hours prior (Figure 3.6E). These data suggest that blocking TrkB 

signaling altered TrkBF616A  mice taste aversion generalization to lower 

concentration of citric acid.  
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Since TrkBF616A mice that received 1-NMPP1 could not detect citric acid at 

low concentrations, I examined whether this finding was because TrkBF616A mice 

initiated more trials when treated with 1-NMPP1 compared to vehicle. I compared 

the number of trials engaged to the number of trials available per concentration 

of citric acid. I found no significant differences in the number of trials initiated at 

each concentration by TrkBF616A mice that received vehicle compared to 1-

NMPP1, indicating that increased licking was not due to the initiation of more 

trials at low citric acid concentrations. Interestingly, when all of these trials were 

combined, TrkBF616A mice that received vehicle engaged significantly fewer trials 

overall to citric acid solutions compared to 1-NMPP1 (Figure 3.6F, bar graph total 

CA: *p<0.05). These findings indicate that TrkBF616A  with vehicle were less 

motivated to drink citric acid solutions in general, perhaps due their greater 

similarity to the CS for these mice compared with those that received 1-NMPP1. 

Overall, these data suggest that disruption of TrkB signaling can disrupt detection 

of a conditioned taste aversion to low concentrations of citric acid on a brief-

access test.  

  

3.3.5. Disrupting TrkB-signaling for 3 hours with 1-NMPP1 had no effect on 

branching characteristics of TrkB afferent fibers  

Taste bud innervation by TrkB fibers is reduced after removing BDNF from 

the lingual epithelium (Meng et al., 2015; Tang et al., 2017) suggesting that 

BDNF sustains taste bud innervation in adulthood. Long term effects of the TrkB 

signaling pathway can modify dendritic spines and morphology of neurites 
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(Ekman, Zhu, Sward, & Uvelius, 2017; Ji et al., 2010; Yamout et al., 2005). 

However, it is unclear whether blocking TrkB signaling in taste fibers could 

induce morphological changes within the 3-hour period. To determine whether or 

not the functional changes observed in whole nerve recordings from the chorda 

tympani nerve and behavioral tests were due to morphological changes in 

innervation patterns, I examined branching characteristics of TrkB fibers within 

taste buds. I used a semi-sparse labeling approach in which TrkBCre-

ER/F616A::tdTomato mice received a dose of tamoxifen (4mg/kg) by oral gavage for 

3 days. This induced gene recombination labeling with tdTomato in many but not 

all TrkB-expressing fibers. If instead, all nerve fibers labeled, more than 50% of 

the neurons would need to withdraw completely from the taste bud for any taste 

buds to lose all their innervation achieving a measurable effect (Patel & Krimm, 

2010). Furthermore, when all taste nerve fibers are labeled the nerve plexus 

within the taste bud is too dense to measure separate within the taste bud 

(Ohman-Gault et al., 2017). This approach permits evaluation of both the number 

of taste buds innervated by a small randomly selected group of neurons, and 

evaluation of the branching characteristics of individual fibers in the taste bud. 

Then, I quantified the number of taste buds innervated by labeled fibers and their 

branching characteristics. Since any effects of blocking TrkB-signaling are likely 

to be subtle, I designed this semi-sparse analysis to be more sensitive than 

traditional approaches. 

After 3 weeks of tamoxifen administration, TrkBCre ER/F616A::tdTomato mice 

were injected with vehicle or 1-NMPP1 and perfused three hours later for 
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anatomical analysis (Figure 3.7A). I labeled taste buds with anti-cytokeratin-8 

(green) and labeled TrkB fibers with anti-dsdRed (red) (Figure 3.7B). Because 

the truncated isoform of TrkB receptor is expressed in the epithelium, I found 

tdTomato label on some perigermal cells (arrows on Figure 3.7B). The 

percentage of taste buds innervated with tdTomato-labeled fibers was quantified. 

I found no differences in the percentage of taste buds with TrkB fibers in TrkBCre-

ER/F616A::tdTomato mice that received 1-NMPP1 compared to vehicle group (1-

NMPP1: 41.8±15.6% vs. vehicle: 55.8±17.5%; p>0.05). To determine whether 

blocking TrkB signaling for 3 hours induced any morphological changes in TrkB 

fibers innervating taste buds in the fungiform field, I examined the branching 

characteristics of TrkB fibers as they entered the taste bud (Figure 3.7C). I found 

no differences in the branching characteristics between TrkBF616A with 1-NMPP1 

compared to vehicle (Figure 3.7D; branch nodes: vehicle 1.7±0.1, 1-NMPP1: 

1.4±0.2, p>0.05; branch ends: vehicle: 3.0±0.2 vs. 1-NMPP1: 2.4±0.2, p>0.05) or 

length of TrkB fibers (vehicle: 74.4±7.4 vs. 1-NMPP1: 60.2±11.9; p>0.05). I did 

not find any significant changes in nerve fiber length or branching patterns of 

TrkB-expressing afferent fibers. These data suggest that functional changes 

observed in chorda tympani recordings and behavioral paradigms were not due 

to morphological changes on afferent TrkB-fibers innervating the taste buds.  
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Figure 3.1. Example of raw data and baseline normalized responses from 

chorda tympani nerve recordings. A) Whole nerve responses were recorded 

from the chorda tympani nerve using a mandibular approach. B) A representative 

trace of not integrated and C) integrated whole nerve responses evoked by 100 

mM and 500 mM NaCl stimulation. Amplitude of the evoked response increased 

with stimulus concentration. Blue arrows indicate the stimulus onset and black 

arrows represent the initiation of water rinses. Each trial window used for 

generation of peri-stimulus time histograms consisted of the 15s before and 30s 

after stimulus delivery (red trace). C) Each trial was normalized to its baseline. A 

peri-stimulus time histogram represents the average normalized response to a 

given stimulus. Peri-stimulus time histogram were calculated by normalizing each 

2.5 seconds of the response to baseline for each response. Data shown as mean 

(solid line) ± standard error of the mean (SEM) (dashed lines) over a 45s 

window. Bin size = 2.5 seconds. 
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Figure 3.2. Whole nerve responses to taste stimuli appear reduced in 

TrkBF616A mice injected with 1-NMPP1. A) Representative integrated chorda 

tympani nerve responses from wild type vehicle, B) wild type 1-NMPP1, C) 

TrkBF616A vehicle and D) TrkBF616A 1-NMPP1 (red) to 100 mM and 500 mM 

NH4Cl, 500 mM NaCl, 20 mM citric acid, 10 mN HCl, 1 M sucrose and 50 mM 

quinine-HCl. Representative traces were selected closest to the median height of 

the average group response. Each stimulus was applied for ~30s followed by a 

water rinse for ~60-90s.  
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Figure 3.3. The mean change in amplitude of the integrated whole nerve 

responses is reduced in TrkBF616A with 1-NMPP1.  A-E) Bar graphs show the 

change in voltage from baseline over the last 20s period of the tonic phase of the 

response for the four groups of mice: wild type vehicle (open bars), wild type 1-

NMPP1 (gray), TrkBF616A vehicle (black) and TrkBF616A
 1-NMPP1 (red). A) Sour 

stimuli: 20 mM citric acid and 10 mN HCl. B) Bitter stimuli: 50 mM quinine-HCl 

and 50 mM denatonium. C) Sweet stimuli: 1 M sucrose 1M, 64 mM acesulfame 

K+ and 100 mM Na-saccharin. D) Salt stimuli: 100 mM and 500 mM NaCl and 

100 mM and 500 mM NH4Cl. E) Umami stimuli: MSG 300 mM. Figure legend 
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applies to A-E bar graphs. Data are shown as the mean ± standard error of the 

mean (SEM). *p<0.05, **p<0.01. 
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Figure 3.4. Mean taste responses to 100 mM NH4Cl were not significantly 

different. A-E) Bar graphs represent the mean responses relative to 100 mM 

NH4Cl over the last 20s period of the tonic phase for the four groups of mice: wild 

type vehicle (open bars), wild type 1-NMPP1 (gray), TrkBF616A vehicle (black) and 

TrkBF616A
 1-NMPP1 (red). A) Sour stimuli: 20 mM citric acid and 10 mN HCl. B) 

Bitter stimuli: 50 mM quinine-HCl and 50 mM denatonium. C) Sweet stimuli: 1 M 

sucrose, 64 mM acesulfame K+ and 100 mM Na-saccharin. D) Salt stimuli: 100 

mM and 500 mM NaCl and 500 mM NH4Cl E) Umami stimuli: 300 mM MSG 
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responses were significantly different in wild type mice treated with 1-NMPP1. 

Data shown as mean ± standard error of the mean (SEM). *p<0.05 
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Figure 3.5. Baseline normalized responses were disrupted by blocking 

TrkB-signaling. Peri-stimulus time histograms represent the average normalized 

responses for TrkBF616A mice that received vehicle (black) and 1-NMPP1 (red) to 

sour stimuli: A,B) Citric Acid and HCl, to bitter stimuli: C,D) Quinine-HCl and 

Denatonium; to sweet stimuli: E-G) Sucrose, Acesulfame K+  (AceK) and Na-

saccharin (Na-sac); to umami stimuli: H)  MSG; to salts: I-L) salts: NaCl and 

NH4Cl. Data shown as mean (solid line) ± standard error of the mean (SEM) 

(dashed lines) over a 45s window. Bin size = 2.5 seconds. Bar graphs represent 

the average 20s of the evoked normalized response. Figure legend applies to A-

L. *p<0.05. Black bar represents 3 or more consecutive bins that were 

significantly different over time. 
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Figure 3.6. TrkBF616A mice injected with 1-NMPP1 did not detect lower 

concentrations of citric acid on a brief-access task after conditioned taste 

aversion. A) Experimental design for a brief-access task combined with 

conditioned taste aversion (CTA). Wild type mice were conditioned by paring 10 

mM citric acid (CS) with LiCl injections. The brief-access task consisted of 

randomized presentations of water and 8 different concentrations of citric acid 

stimuli, with a maximum time of 15 minutes. Each trial consisted of a maximum of 

10s with additional 5s after first lick followed by a 7.5s intertrial interval. B) 

Conditioning LiCl injections paired with 10mM citric acid (CS) significantly 
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reduced the number of licks to 10 mM citric acid and lower concentrations in wild 

type mice by the third and fourth CS pairing. C) TrkBF616A mice were trained as 

described in A. Conditioning training significantly reduced the number of trials 

engaged and D) mean licks to 10 mM citric acid by the third and fourth day of 

training. On test day, TrkBF616A mice received 1-NMPP1 or vehicle for 3 hours 

prior to the behavioral assay. E) TrkBF616A mice with vehicle had significantly 

fewer licks to 0.003 mM and 0.3 mM of citric acid compared to water (*p<0.05) 

than TrkBF616A  mice  treated with 1-NMPP1. F) The number of trials engaged per 

citric acid concertation were not significantly different between TrkBF616A mice that 

received vehicle compared to 1-NMPP1 group. These data indicate that blocking 

TrkB signaling prevents the reduction in lick rate to lower concentrations of citric 

acid, which would normally occur following conditioned taste aversion to 10mM 

citric acid. Data shown as mean ± standard error of the mean (SEM). *p<0.05, 

**p<0.01. ***p<0.01.  
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Figure 3.7. 1-NMPP1 had no effect on branching characteristics in TrkB 

afferent fibers. A) Experimental design for anatomical analysis of TrkB fibers 

innervating taste buds. TrkBCreER/F616A::tdTomato mice received low doses of 

tamoxifen. B) Representative image of taste buds from sections of 

TrkBCreER/F616A::tdTomato mouse tongues, after mice were treated with vehicle 

(top) or 1-NMPP1 (bottom). After 3 weeks, gene recombination labels tdTomato 

TrkB-expressing fibers (red) within the taste buds (green). TrkB-expressing 

epithelial cells were also labeled (arrows). C) Representative trace of TrkB fibers 

(red) within a  taste buds (green). D) The number of branch nodes and branch 

ends were not significantly for each individual labeled fiber branches entering a 

taste bud between TrkBCre ER/F616A::tdTomato mice injected with vehicle (black) 

and 1-NMPP1 (red). Data shown as mean ± standard error of the mean (SEM). 

Scale bar = 10µm.   
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Table 1.  Schedule of behavioral paradigm used for wild type mice. 
 

 
 

  

Day  Stage Time Solution and duration  Time Solution and 

duration 

Day 1-3 Training AM Stationary spout (15 

mins) 

PM Water (1.5 mins)  

Day 4-6 Training AM Moving spout (15mins) PM Water (1.5 mins) 

Day 7 Conditioni

ng   

AM CS (1): 10mM citric acid 

(15mins) +  LiCl (ip) or 

NaCl (ip) 

PM Water (1.5 mins) 

Day 8-9 Recovery AM Water (15 mins) PM Water (1.5 mins) 

Day 10 Conditioni

ng 

AM CS (2): 10mM citric acid 

(15mins) +  LiCl (ip) ) or 

NaCl (ip) 

PM Water (1.5 mins) 

Day 11-12 Recovery AM Water (15 mins) PM Water (1.5 mins) 

Day 13 Conditioni

ng 

AM CS (3): 10mM citric acid 

(15mins) +  LiCl (ip) or 

NaCl (ip) 

PM Water (1.5 mins) 

Day 14-15 Recovery AM Water (15 mins) PM Water (1.5 mins) 

Day 16 Conditioni

ng 

AM CS (4): 10mM citric acid 

(15mins) +  LiCl (ip) or 

NaCl (ip) 

PM Water (1.5 mins) 

Day 17-18 Recovery AM Water (15 mins) PM Water (1.5 mins) 

Day 19 Testing  AM 0.03-10 mM citric acid 

and water (15 mins)   
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3.4. Discussion: 

I investigated whether TrkB signaling influences taste function by 

disrupting activation of the TrkB receptor using a genetic-chemical approach, 

which blocks TrkB signaling with 1-NMPP1 (Chen et al., 2005; Johnson et al., 

2008; Y. Liu et al., 2012; Sompol et al., 2011; Vandenberg et al., 2015; Wang et 

al., 2009). Visual inspection of the raw data suggested that blocking TrkB-

signaling reduced responses to NH4Cl . Therefore, I normalized each 2.5s of 

each trial to the average of baseline. Reporting responses proportional to 

baseline has been used previously to examine taste function with experimental 

modifications in which NH4Cl responses were also altered (Larson et al., 2015; 

Vandenbeuch et al., 2013). However, this is the first study that used peri-stimulus 

time histograms (PSTH) to compare temporal changes in a group of taste 

responses from whole nerve recordings (ex. TrkB groups: vehicle vs 1-NMPP1). I 

found that four different stimuli were reduced for at least 10s (7.5s-17.5s post-

stimulus). These stimuli cut across functional taste modalities; however, it could 

be argued that sour stimuli were the most impacted because it was the only 

modality where multiple stimuli were reduced. Consistent with our 

electrophysiological data, I found that blocking TrkB signaling reduced sensitivity 

to low concentrations of citric acid solutions in a brief-access test. Lastly, these 

functional changes did not result from morphological changes of TrkB fibers 

innervating taste buds.  

 Multiple different mechanisms could explain how BDNF-TrkB signaling 

could directly modulate taste function. In the CNS, BDNF release is activity 
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dependent (Greenberg, Xu, Lu, & Hempstead, 2009; Park & Poo, 2013; Tao, 

West, Chen, Corfas, & Greenberg, 2002; Wong et al., 2015), and although 

activity-dependent release of BDNF has not been verified in the taste system, it 

is certainly possible. In the CNS, direct application of BDNF evokes neuronal 

excitability within seconds (Black, Smith, McIsaac, & Ferguson, 2018; Kafitz et 

al., 1999; McIsaac & Ferguson, 2017). A large number of both presynaptic and 

post-synaptic mechanisms have been identified that could mediate this effect 

(Blum & Konnerth, 2005; Chao, 2003; Greenberg et al., 2009; Park & Poo, 2013).   

One possible mechanism in which BDNF modulates taste function is by 

binding to the full-length TrkB receptor on the presynaptic cell to influence 

neurotransmitter release (Greenberg et al., 2009; Park & Poo, 2013; Tao et al., 

2002; Wong et al., 2015). Consistent with a potential pre-synaptic role, 

phosphorylated TrkB is expressed in taste receptor cells (I. V. Nosrat et al., 

2012). BDNF regulation of neurotransmitter release has been best studied for 

glutamate (Carvalho, Caldeira, Santos, & Duarte, 2008; Kafitz et al., 1999; Z. 

Zhang, Fan, Ren, Zhou, & Yin, 2013), which may function and a neuromodulator 

in the taste bud (Vandenbeuch & Kinnamon, 2016). However, BDNF-TrkB-

signaling could also interact with serotonin which is an established 

neurotransmitter for taste (Y. J. Huang et al., 2005; Larson et al., 2015; Roper, 

2006). Throughout the CNS, BDNF appears to be expressed in neurons that also 

express serotonin (Martinowich & Lu, 2008; Pietrelli et al., 2018). In addition, 

although the mechanisms are largely unclear, BDNF signaling and serotonin 

function synergistically, such that BDNF reduction exacerbates the behavioral 
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effects in serotonin transporter knockouts (Ren-Patterson et al., 2005). 

Depression studies have suggested that BDNF may influence serotonin reuptake 

(Martinowich & Lu, 2008; Ren-Patterson et al., 2005). While serotonin, released 

from type III cells activate geniculate neurons via 5HT3a (Y. J. Huang et al., 2005; 

Larson et al., 2015), it is unclear whether TrkB signaling regulates taste 

responses specifically in 5HT3a-containing neurons. However, studies have 

shown that selective serotonin receptor inhibitors (SSRIs) altered sensitivity for 

bitter and sweet in depressed patients (Heath, Melichar, Nutt, & Donaldson, 

2006). 

In addition to modulating neurotransmitter function, BDNF binding to the 

TrkB receptor can directly activate membrane channels such as Nav1.2 (Ahn et 

al., 2007), Nav1.9 (Blum et al., 2002), TRPC3 (Amaral & Pozzo-Miller, 2007a; H. 

S. Li et al., 1999; Rose et al., 2004), and Kiv1.3 (Tucker & Fadool, 2002), which 

play roles in membrane excitability. Interestingly, Nav1.9 is a non-voltage gated 

sodium channel capable of modulating function of CNS neurons. The most 

important and best studied role of Nav1.9 is in the function of small unmyelinated 

sensory neurons that mediate pain (Hoffmann et al., 2017; Kanellopoulos & 

Matsuyama, 2016). Nav1.9 channels could play a similar role in gustatory 

neurons as they are also mostly small unmyelinated neurons (Yokota & Bradley, 

2016). Recent studies have shown that geniculate neurons that express full-

length TrkB receptor and project to the oral cavity (Phox2b+) express Nav1.9 

(98%) and also Kiv1.3 (30%) to a much lower extent (Dvoryanchikov et al., 

2017).  



 
 

86 
 

Because I injected 1-NMPP1 three hours before recordings, mechanisms 

that alter gene/protein expression must also be considered. BDNF has been 

shown to result in transcriptional changes within 1 hour of stimulation (Gokce et 

al., 2009; X. Zhang & Poo, 2002).  BDNF can regulate both P2X3 and Calcitonin 

gene-related peptide (CGRP) expression (Qiao & Grider, 2007; Simonetti et al., 

2008). Taste receptor cells release ATP which binds P2X3/P2X2 receptors in 

nerve fibers and is required for taste function (Finger et al., 2005; Ishida et al., 

2009; Kinnamon & Finger, 2013; Roper, 2006; Staikopoulos et al., 2007; 

Vandenbeuch et al., 2015). In trigeminal neurons, P2X3 receptors are up-

regulated by BDNF (Simonetti et al., 2008), so it is possible that P2X3 receptors 

are normally maintained by BDNF such that they are reduced when TrkB-

signaling is blocked. Sensory neurons in the DRG, upregulate CGRP expression 

in response to BDNF stimulation (Qiao & Grider, 2007). Consistent with CGRP 

regulation as a possible mechanism, CGRP is expressed in ~50% of the TrkB+ 

geniculate ganglion neurons that project to the oral cavity (Dvoryanchikov et al., 

2017). If TrkB-signaling regulates CGRP expression in taste neurons, increased 

CGRP release could (A. Y. Huang & Wu, 2015) provide positive feedback of 

neurotransmitter release from taste receptor cells (A. Y. Huang & Wu, 2015).  

In the adult taste system, most Car4-positive (94%) cells (Type III) 

transduce sour stimuli (Chandrashekar et al., 2009) and form synapses with 

afferent fibers (C. L. Yee et al., 2003) and express BDNF (T. Huang et al., 2015). 

For this reason, I hypothesized that in adulthood, TrkB expressing fibers would 

connect with this cell type and blocking TrkB-signaling would primarily impact 



 
 

87 
 

sour taste responses. Consistent with this idea, behavioral and 

electrophysiological responses to citric acid and HCl were suppressed and the 

behavioral response to citric acid was disrupted. However, I also found that other 

taste stimuli were reduced including quinine-HCl (bitter), acesulfame K+ (sweet) 

and high concentrations of NH4Cl (salt). There are several possible explanations 

for the results. First, although this population of Car4-expressing cells is required 

for sour taste (Chandrashekar et al., 2009), many of these cells also respond to 

other taste stimuli (Tomchik, Berg, Kim, Chaudhari, & Roper, 2007; Yoshida et 

al., 2009). Second, a small percentage (11%) of Type II cells, PLCβ2 cells, which 

transduce bitter, sweet and umami stimuli, also express BDNF in adulthood 

(Tang et al., 2017). Therefore, TrkB-expressing fibers may also innervate these 

taste receptor cell types. TrkB is expressed in 50% of the TrkB neuron population 

(Chapter II) which is a substantial portion of the taste neuron population and 

perhaps some of these fibers innervate non-BDNF expressing taste receptor 

cells. Lastly, given the large number of possible ways in which BDNF-TrkB 

signaling can influence function, multiple mechanisms could be involved, only 

some of which directly influence communication between BDNF-expressing taste 

receptor cells and TrkB nerve fibers. 

I found that short-term blockage of TrkB signaling in adulthood reduced 

evoked taste responses to multiple taste stimuli. In a recent study, when BDNF 

was removed from taste cells over a ten-week period relative responses to NaCl, 

sucrose, quinine and citric acid were unaffected (C. Sun et al., 2018). There are 

several possible explanations for these differences. First, TrkB is capable of 
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binding more than one ligand (Chao, 2003; E. J. Huang & Reichardt, 2003), and 

it is possible that either NT3 or NT4 compensate for the loss of BDNF (Chao, 

2003; E. J. Huang & Reichardt, 2003). Second, BDNF can have both excitatory 

and inhibitory effects, which could cancel each other out (Eide et al., 1996; Fujita 

et al., 2011; Levine et al., 1995). Lastly, removal of  BDNF may impact taste 

function similarly to blocking TrkB signaling, but reduction in NH4Cl responses 

may have masked changes in relative taste responses (C. Sun et al., 2018). This 

seems particularly likely since chorda tympani fields were enlarged as a result of 

BDNF removal from the periphery (C. Sun et al., 2018). Consistent with previous 

studies, reduction of functional activity in the periphery promotes increased 

chorda tympani terminal field sizes in the NTS (Mangold & Hill, 2007; Skyberg et 

al., 2017; C. Sun et al., 2017).  

The peripheral taste system is one of the most plastic sensory systems in 

the body. Since taste receptors cells die and are replaced, fibers must form 

connections with new cells. A large number of developmental molecules continue 

to be expressed in the adult taste system (Castillo-Azofeifa et al., 2017; Gaillard 

& Barlow, 2011; Gaillard et al., 2017; T. Huang et al., 2015; Meng et al., 2015; 

Miura & Barlow, 2010; Tang et al., 2017; C. Yee, Bartel, & Finger, 2005; C. L. 

Yee et al., 2003). Some of these molecules regulate the taste receptor cells, 

while others likely regulate nerve fiber growth, branching and connectivity in the 

taste bud (Lee et al., 2017; Meng et al., 2015; Tang et al., 2017). However, many 

of these molecules, including ephrins and semaphorins, can modulate nerve 

function independent of changes in fiber morphology or connectivity (Bi, Yue, 
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Zhou, & Plummer, 2011; Blum & Konnerth, 2005; Rose et al., 2004; Sahay et al., 

2005). In this study I demonstrate that TrkB-signaling influences functional taste 

responses independent of changes in morphology. Therefore, it is critical to 

separate these potential roles with careful experimental design. 
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CHAPTER IV 

 

GENERAL SUMMARY AND DISCUSSION 

 

The main goals of this dissertation were 1) to define taste neurons based 

on TrkB expression and dependence during development and adulthood and 2) 

examine the functional role of TrkB signaling in taste. In chapter II, I examined 

when and how TrkB downregulation occurs in the geniculate ganglion. I found 

that TrkB expression and dependence divides taste neurons into subpopulations. 

I suggest that BDNF expression initially guides TrkB+ fibers to innervate taste 

buds during a critical developmental period (L. Ma et al., 2009). During this time, 

all taste neurons express and depend on TrkB, while the 9% of oral cavity-

projecting neurons that are TrkB-independent are oral somatosensory. After this 

critical period, TrkB expression in Phox2b+neurons is downregulated, dividing 

these neurons into a TrkB+ and TrkB- subpopulations. In adulthood, BDNF likely 

maintains taste bud innervation of the TrkB+ but not the TrkB- taste fibers (Tang 

et al., 2017). In the adult taste system, these TrkB+ taste neurons likely play a 

different functional role than TrkB- neurons. Regardless, Phox2b+ neurons can 

be divided based on TrkB expression into three populations that innervate the 

oral cavity: a population that depends on TrkB during development and 

expresses TrkB in adulthood (50%), a taste population that depends on TrkB 

during development but down-regulates TrkB 
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by adulthood (41%) and finally, a likely oral somatosensory population that never 

expresses or depends on TrkB (9%).  

Next, I sought to determine the role of TrkB-signaling in taste function, 

specifically, in the 50% adult taste neurons that continues to express TrkB 

receptor. In chapter III, I found that TrkB-signaling influences taste responses 

especially from neurons that form synapses and respond to sour stimulation. My 

data suggest that TrkB-signaling influences taste function in whole nerve 

recording and behavior. These functional changes were not due to changes in 

neuron morphology. I suggest that BDNF released from taste cells in an activity-

dependent manner can modulate the release of other neurotransmitters 

important for communication between taste cells and nerve fibers such as 

serotonin and ATP (Finger et al., 2005; Y. A. Huang et al., 2011; Kinnamon & 

Finger, 2013; Larson et al., 2015). Based on my findings, BDNF-TrkB signaling 

might also facilitate transmission of taste information post-synaptically by 

opening channels that maintain the resting membrane potential and/or regulate 

neuron excitability (Ahn et al., 2007; Blum et al., 2002; Tucker & Fadool, 2002).  

In future studies, it would be interesting to examine whether BDNF is 

released from taste cells in an activity dependent manner. One possibility could 

be to record from dissociated taste cells and measure with a BDNF-calcium 

indicator, BDNF levels before and after taste stimulation (Larson et al., 2015). 

Another possibility could be to measure mRNA BDNF levels transcribed from 

activity dependent exons (ex. exon III and IV) (Tao et al., 2002). Another study of 

main interest would be to record dissociated geniculate neurons from TrkBF616A
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mice and examine how their membrane properties change with applications of 

ATP, serotonin, CGRP, and other neurotransmitters before and after 1-NMPP1 

(block TrkB-signaling), ANA-12 (TrkB antagonist) and/or SFK-PLCγ pathway 

inhibitor. Lastly, I would like to examine taste function in mice with TrkB-signaling 

blocked for more than 3 hours (24 hrs, 1 week, 2 weeks, and 4 weeks) to 

determine if the functional effects are consistent for sour responses or would 

affect across taste modalities since branching of TrkB neurons might be affected 

in long-term treatment (2 weeks or more).
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