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ABSTRACT 

GENE EXPRESSION ANALYSIS OF NEUROTROPHINS, TRK 

RECEPTORS, AND ASSOCIATED REGULATORY MOLECULES 

AFTER CONTUSIVE SPINAL CORD INJURY 

Matthew Tyler Hougland 

August 12, 2013 

 

 Traumatic spinal cord injury (SCI) results in changes to the anatomical, 

neurochemical, and physiological properties of cells in the central and peripheral nervous 

system.  Neurotrophins, acting by binding to their cognate Trk receptors on target cell 

membranes, contribute to modulation of anatomical, neurochemical, and physiological 

properties of neurons in sensorimotor circuits in both the intact and injured spinal cord. 

Neurotrophin signaling is associated with many post-SCI changes including maladaptive 

plasticity leading to pain and autonomic dysreflexia, but also therapeutic approaches such 

as training-induced locomotor improvement.  Here we characterize expression of mRNA 

for neurotrophins and Trk receptors in lumbar dorsal root ganglia (DRG) and spinal cord 

after two different severities of mid-thoracic injury and at 6 and 12 weeks post-SCI.  

There was complex regulation that differed with tissue, injury severity, and survival time, 

including reversals of regulation between 6 and 12 weeks, and the data suggest that 

natural regulation of neurotrophins in the spinal cord may continue for months after birth. 

 
   iii 



Our assessments determined that a coordination of gene expression emerged at the 12 

week post-SCI time point and bioinformatic analyses address possible mechanisms. 

Additionally, we sought to determine if the regulatory patterns we observed were perhaps 

due to an inflammatory molecule that mediated the coordinated expression pattern that 

we observed at 12 weeks post injury, and identified the chemokine CCL2 as a potential 

candidate gene. 
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CHAPTER 1 

GENERAL INTRODUCTION 

1.1 Spinal cord injury 

 Estimates of the global occurrence of spinal cord injuries (SCI) are in the range of 

100000 to 300000 new cases reported each year (Barbeau H 1999).  Many factors 

contribute to the spontaneous recovery (or lack thereof) observed in patients with SCI as 

a result of changes in the injured spinal cord, with many functional aspects of daily life 

being negatively affected.  In particular, locomotion is among the most common and 

debilitating of these.  Limited independent mobility is associated with lower life 

satisfaction and quality of life post-SCI, and enhancing sensory and locomotor capability 

of patients with SCI has a dramatically positive effect (Putzke JD 2002). 

  Traumatic injury to the spinal cord results in a variety of changes not only to 

neurons within the spinal cord but throughout the entire sensorimotor circuitry.  Sensory 

neurons of the dorsal root ganglia (DRG) rapidly undergo long-lasting changes in their 

electrophysiological properties and growth capacity (Bedi SS 2010; Bedi SS 2012; 

Walters 2012). Locomotor circuitry in the spinal cord caudal to an injury site undergoes 

plasticity at the cellular, synaptic, and connectivity levels in an activity dependent manner 

after injury in humans and experimental models (Edgerton VR 2004; Rossignol S 2006; 

Petruska JC 2007).  One strategy to restore function after spinal cord injury (SCI) is 

physical therapy and/or locomotor rehabilitation training (Wernig A 1995). 
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1.2 Locomotor rehabilitation training and activity dependent plasticity 

 Factors that determine the functional outcome after training include both 

the severity and location of the injury. Based on these factors, some patients with 

incomplete SCI can improve walking ability after rehabilitation training (Wernig A 

1995).  A similar degree of improvement has not been shown in motor complete injuries, 

but several weeks of treadmill training can increase the load bearing capacity of clinically 

complete patients (Dietz V 1995).  These changes can partially be attributed to a 

reorganization of sensorimotor circuits. For example, (Grasso R 2004) showed that in 

ASIA A/B patients (complete motor loss) and ASIA C/D patients (incomplete motor loss) 

with body weight supported treadmill training (BWST), levels of activation of motor 

neuron pools show drastic spatiotemporal changes when compared with controls (healthy 

subjects) (Figure 1), though foot placement was roughly equal between all groups. These 

and other studies (Beres-Jones JA 2004, Ivanenko YP 2003, for review see Dietz V 2002) 

highlight the ability of the injured human spinal cord to produce rhythmic patterns that 

are modulated with training. 

 A degree of locomotor capability can also be restored after training in animal 

models.  After transection, cats trained to perform bipedal stepping of the hindlimbs 

improve on the basis of two behavioral criteria.  Trained cats step at speeds six times 

faster and can produce 30-50 more successful steps during an evaluation session than 

non-trained cats. (Figure 2)  During the swing phase, electromyography (EMG) burst 

amplitude increased in the tibialis anterior (TA, an ankle flexor) and decreased in the 

vastus lateralis (VL, a knee extensor) and medial gastrocnemius (MG, an ankle extensor), 
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similar to what is seen in uninjured cats.  This finding is consistent with evidence in 

humans that shows after treadmill training, EMG amplitude in the MG is increased 

during the stance phase, and improper co-activation of the TA during the stance phase is 

decreased (Dietz V 1995). The differences seen in EMG activity were also reflected by 

differences in kinematics; vertical displacement of the ankle was higher in the step-

trained cats, at the end of stance the hindlimbs extended further, and the swing phase 

projected further forward at placement in the trained versus untrained cats (de Leon RD 

1998).  When stand training is provided to transected adult cats for 12 weeks, the load 

bearing capacity of the hindlimbs increased.  At the end of the 12 week training period, 

cats that received stand training were able to maintain full weight-bearing hindlimb 

extension for an average 545 s longer than cats that were untrained.  Longer periods of 

standing are indicative of an enhanced ability to activate hindlimb extensors and thus 

maintain load-bearing extension at the knee and ankle joints.  To test whether the 

characteristics of stepping were retained when the task is no longer practiced, EMG 

amplitude and kinematic assessments were done 6 and 12 weeks after the cessation of 

training.  After 6 weeks, the hindlimb circuitry retained the characteristic patterns that 

were seen at the cessation of training, however by 12 weeks these acquired characteristics 

were lost.  Despite this lack of task specific retention, when the animals were re-trained 

after the 12 week period, they acquired the ability to stand four times faster than with 

initial training (De Leon RD 1999).   

Further evidence for reorganization of the sensorimotor circuitry after injury 

comes from rat models.  In adult rats after contusion injury, treadmill training leads to 

restoration of kinematic stepping parameters seen in the normal state (Heng C 2009).  
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Treadmill training can not only compensate for the decrease elicited by a neonatal 

transection(assessments done in adult rats), but results in larger than normal EPSPs(a 

measure of the synaptic input onto a motoneuron), and reverses the SCI induced increase 

in AHP depth(part of what determines firing frequency of a neuron based on a given 

input current) (Petruska JC 2007).  In the same model, step training enhanced the 

locomotor capability of rats, and this enhancement was not due to regrowth of either 

ascending or descending axons across the site of the lesion (Tillakaratne NJ 2010).   

 In the isolated lumbar spinal cord, reorganization of sensorimotor circuits 

can essentially occur in either the afferent neurons (DRG), interneurons in the spinal 

cord, or the motor neurons themselves (as mentioned above).  Monosynaptic connections 

are made onto interneurons that project both ipsilaterally and contralaterally from group 

Ib and II afferents (Jankowska E 2009), and are important for the pattern generating 

characteristics of sensorimotor circuitry.  These interneurons reside within laminae V-

VIII and can be glutamatergic, glycinergic, or GABA/glycinergic (Bannatyne BA 2009).  

Following injection of the glycinergic inhibitor strychnine, transected adult cats were 

trained to either step or stand for twelve weeks, and stepping ability was then assessed 

after thirty minutes. The cats trained to step showed no difference in stepping ability 

before or after administration of strychnine, however the cats that were trained to stand 

were not initially able to step, but after injection were able to regain full weight-bearing 

stepping.  The group of cats that were trained to step for the first twelve week period, 

were then re-trained to stand for twelve weeks and likewise the cats that were initially 

trained to stand were then re-trained to step for twelve weeks.  Following this additional 

twelve weeks of training, the cats re-trained to stand (that were first trained to step) 
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showed similar results to the initial twelve week stand trained group in that they were not 

able to step initially but regained the ability after administration of strychnine.  Similarly, 

the cats that were re-trained to step for twelve weeks lost their responsiveness to 

strychnine with results analogous to the step trained group after the first twelve weeks (de 

Leon RD 1999).    Collectively, these studies demonstrate the potential for sensorimotor 

circuits in the lumbosacral spinal cord to develop and retain physiological information in 

an activity dependant manner after training.  

 

1.3  Neurotrophins, Trk receptors and SCI  

The neurotrophins Nerve Growth Factor (NGF), Brain Derived Neurotrophic 

Factor (BDNF), and Neurotrophin 3 (NT3) are secreted growth factors that were first 

characterized for their important role in the survival of subpopulations of sensory neurons 

and in formation of spinal cord sensorimotor circuits during development (Barbacid M 

1995; Lindsay RM 1996; Huang EJ 2001).  In addition to these essential roles in 

establishing the physiological patterns of developing neural circuitry, neurotrophins are 

implicated as having a role in activity dependent changes associated with restoration of 

function after spinal cord injury. 

When uninjured rats are trained for five days and sacrificed at different time 

points after training, BDNF levels increase two hours post training in the spinal cord and 

at all time points in the soleus muscle.  NT3 showes a similar expression pattern to 

BDNF, with elevated levels two and six hours after training in the cord and at all time 

points in soleus muscle (Gomez-Pinilla, 2001).  NT3 and its high affinity receptor TrkC 

were further analyzed at three and seven days after voluntary wheel running.  NT3 
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mRNA and protein levels in the lumbar spinal cord were elevated both three and seven 

days after voluntary exercise.  In the soleus muscle, NT3 mRNA and protein levels were 

elevated at all points.  TrkC mRNA was elevated in the cord significantly at both time 

points, and protein after three days (Ying Z 2003).  These studies suggest a similar 

pattern of regulation for the neurotrophins in the uninjured cord, but also provide a basis 

for how their regulation changes after injury.   

 Using spinal isolation (SI), which eliminates all supraspinal and afferent input to 

lumbar spinal cord, both NT3 and BDNF were down-regulated in the lumbar region 

bereft of input.  In the same study, when botulinum toxin was injected unilaterally into 

the muscle, eliminating efferent output to the ipsilateral muscle but leaving the sensory 

input intact, NT3 expression was increased in the ipsilateral hemicord compared to the 

contralateral hemicord, while BDNF was decreased (Gómez-Pinilla F 2004).  In the 

lumbar cord after hemisection, rats were placed in either a trained group or sedentary 

group and their levels of neurotrophins were analyzed at several time points.  BDNF 

levels of trained rats decreased after injury and were restored after training, while NT3 

stayed the same as controls after injury and with training expression levels were 

significantly elevated after 28 days (Ying Z 2005).   

Rats with a moderate mid-thoracic contusion subjected to three different types of 

exercise (treadmill, stand, and swim) show altered expression levels of the neurotrophins 

BDNF and NT3 in both the spinal cord and soleus muscle (ankle extensor).  As seen with 

hemisection, BDNF expression in the cord decreased after injury, but all forms of 

exercise restored expression to levels seen in controls.  In the soleus muscle, only the 

group with treadmill training returned to pre-injury levels.  Levels of NT3 expression 
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were elevated in both the cord and soleus muscle with all the exercise regimes (Figure 3) 

(Hutchinson KJ 2004).  Delivery of exogenous BDNF and NT3 to the transected spinal 

cord improves recovery of hindlimb function (Blits B 2003)(in rats) and results in a level 

of function similar to that seen in animals receiving locomotor training after spinal 

transection (Figure 4) (Boyce VS 2007)(in cats). In light of the demonstrated and 

suggested roles in modulating sensorimotor physiology, characterizing the endogenous 

regulation of neurotrophins and their receptors after injury is particularly relevant. 

 

1.4  Neurotrophins and Physiology 

 Neurotrophins have key roles in modulating the anatomical, 

neurochemical, and physiological properties of cells in the central and peripheral nervous 

system.  The effects of neurotrophins on responses to stimuli in both the intact and 

injured nervous system have been extensively investigated and studies have demonstrated 

an important role in modulation of sensorimotor physiology (Huang EJ 2001; Huang EJ 

2003; Reichardt LF 2006; Skaper SD 2008; Skaper SD 2012). The neurotrophins have 

therefore become a frequent target for manipulation after injury.  

Physiological and behavioral studies have established NGF as a nociceptive 

agonist. NGF administration to neonatal, juvenile, and adult rats over the course of 9 

weeks results in a decrease in both mechanical and thermal withdraw latency, indicated 

hypersensitivity to both types of stimuli (Lewin GR et al. 1993). These findings are also 

extended to the single cell level, evident by the finding that nociceptive DRG neurons 

responsive to capsaicin are sensitized upon application of NGF (Shu and Mendell 2001).  
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After subcutaneous injection of BDNF and NT3 into neonatal rats, an 

enhancement in the response of motoneurons to increasing intensities of dorsal root 

stimulation after BDNF was seen in the polysynaptic component, whereas no change is 

observed in the monosynaptic component.  In contrast, after NT3 injection, the 

monosynaptic component showed the greatest increase, with an increase in the 

polysynaptic component also observed to a lesser degree.  Additionally, four treatments 

were administered; BDNF, TrkB-IgG (blocks BDNF signaling), NT3, and TrkC-IgG 

(blocks NT3 signaling).  TrkB-IgG and NT3 both increased the average amplitude of the 

EPSP, while TrkC-IgG and BDNF had the opposite effect (Figure 5) (Seebach BS 1999). 

These results indicate that the levels of these neurotrophins have potentially different 

effects following postnatal injection, in that NT3 potentiates the monosynaptic 

component of the EPSP and to a lesser degree the polysynaptic component, while BDNF 

enhances the exclusively the polysynaptic component.  

 These results are also consistent with the notion that TrkB activation has an effect 

on plasticity through facilitation of GABAergic transmission (i.e. interneuron) (Pezet S 

2002),  TrkB ligands have a suppressive effect on mechanosensory plasticity in the 

deafferented spinal cord (Ramer LM 2007), and have been shown to hypersensitize 

neurons of the superficial dorsal horn receiving high threshold primary afferent input 

(Garraway SM 2003), highlighting the broad physiological  role of TrkB ligands in the 

function of the nervous system.  

When the distal stump of the MG nerve in axotomized cats is placed in NT3, they 

exhibit Ia EPSPs 2.5 times normal, and 5 times larger than the axotomized that are left 

untreated.  Conduction velocity of group I afferents in treated animals recovered to 
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normal values (Munson JB 1997).  Removal of NT3 four to five weeks later results in a 

subsequent decline in both EPSP and conduction velocity within one week to values 

observed in the axotomized group, while NT4/5 (a TrkB ligand) causes a limited 

improvement in conduction velocity with no effect seen in the EPSP (Mendell LM 1999). 

This is also the case for chronic application of NT3, as fibroblast implants into the 

lumbosacral cord enhanced the EPSP from both central and segmental inputs (Arvanian 

VL 2003).  Additionally, cultered dorsal root ganglion cells allowed to grow in BDNF 

and NT3 conditioned media from AAV infected HEK cells exhibit robust neurite 

outgrowth (Blits B 2003).Taken together, these studies suggest that neurotrophins can 

support both anatomical and physiological forms of plasticity 

 

1.5  Neurotrophins/Trks expression in sensorimotor circuits after injury 

Neurotrophins influence cellular processes by binding to membrane-bound 

receptors which transduce the extracellular signal into intracellular effect – their high 

affinity tyrosine kinase receptors. In general, NGF binds TrkA, BDNF binds TrkB, and 

NT3 binds TrkC (Barbacid M 1995; Patapoutian A 2001; Huang EJ 2003), although 

cross-talk is recognized and there is a low-affinity pan-neurotrophin receptor p75, which 

we do not consider here. To determine the role of neurotrophins in any process or 

condition one must examine not only the neurotrophins, but also the receptors. 

Prior characterizations of changes in neurotrophins and Trk receptors in lumbar 

neural circuitry have been instrumental in elucidating the complex regulation of these 

important molecules after injury (Table 1). However, these have largely focused on time 
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points of less than 6 weeks (Hayashi M 2000; Liebl, Huang et al. 2001; Liebl DJ 2001; 

Nakamura M 2001; Widenfalk J 2001; Qiao and Vizzard 2002; Qiao L 2002; Gulino R 

2004; Zvarova, Murray et al. 2004; Qiao and Vizzard 2005; Qiao LY 2005; Qian DX 

2006; Li XL 2007; Hajebrahimi, Mowla et al. 2008; Hajebrahimi Z 2008; Qian, Zhang et 

al. 2011; Qian DX 2011; Keeler BE 2012). Although valuable for elucidating the role of 

neurotrophin signaling in the first 6 weeks after SCI, these data are of uncertain value for 

relating to longer-term post-SCI function. Given the many demonstrations of continued 

changing conditions after SCI (Beattie, Hermann et al. 2002; Profyris, Cheema et al. 

2004; Ung, Lapointe et al. 2008; Beck, Nguyen et al. 2010), it is important to recognize 

that the temporal character of experiments has a significant influence on the outcome. 

 

1.6 Inflammation and SCI  

 Another important aspect of SCI that affects cellular processes and influences 

how the nervous system responds to injury is inflammation. In humans after SCI, 

neutrophils, macrophages, and lymphocytes enter the cord through hemorrhage or 

extravasation, inducing a robust microglial response (Fleming, Norenberg et al. 2006). 

This cellular infiltration acutely after traumatic injury results in an upregulation of 

inflammatory factors in endogenous cells of the nervous system (neurons and microglia) 

such as IL1beta, IL6, and TNFalpha (Yang, Blumbergs et al. 2004). In rats, early 

transient increases in IL1beta, IL6 and TNFalpha are injury severity dependent, and as is 

the case in humans, is a result of upregulation of expression in neurons and microglia, not 

blood borne leukocytes (Yang, Jones et al. 2005). The acute early release of these 

cytokines leads to induction of their mRNA, as mice lacking the receptors for TNFalpha 
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and IL1 exhibit a diminished level of expression of these molecules (Pan, Ni et al. 2002). 

However, this expression pattern is transient, and returns quickly to levels seen in 

controls (Streit, Semple-Rowland et al. 1998).  

 In addition to these cytokines, many others have been identified as being 

upregulated after SCI in rodents such as IL-6, IL-1α, IL-1β, IL-13, CCL2, MIP1α, 

RANTES, and TNFα (Stammers, Liu et al. 2012). This finding can be extended to 

humans in the case of IL-6, IL-8, and CCL2, and has even been suggested as being a 

relevant biomarker for injury severity and subsequent recovery, as they were able to 

better predict the outcome of motor recovery 6 months after injury than the ASIA score 

(Kwon, Stammers et al. 2010). CCL2 has been shown to be upregulated in many models 

of peripheral nerve injury, and has a role in the development of pain after peripheral 

nerve injury (Tanaka, Minami et al. 2004; Jeon, Lee et al. 2008; Bhangoo, Ripsch et al. 

2009; Jeon, Lee et al. 2009; Foster, Jung et al. 2011).  Similar to IL1beta, induction of 

CCL2 expression can be accomplished through the actions of TNFalpha (Jeon, Sung et 

al. 2011). TNFalpha has also been shown to lead to hyperalgesia in models of peripheral 

inflammation, through regulation of both NGF (Woolf, Allchorne et al. 1997) and 

BDNF-TrkB (Lin, Ro et al. 2011). Thus, in studies investigating SCI and neurotrophin 

regulation, examination of cytokines and other markers of inflammation could prove to 

be instrumental in uncovering novel interactions that govern expression of plasticity 

related molecules.  
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CHAPTER 2 
 

MATERIALS AND METHODS 
 
 
2. Materials and methods  
 

All experimental protocols and procedures were approved by the Institutional Animal 

Care and Use Committee at the University of Louisville, Louisville, KY.  Experimental 

animals were 7 week old female Sprague–Dawley rats (Taconic Labs, Hudson, New 

York).  Animals were housed in pairs throughout the course of our experiments. 

 

2.1 Surgical spinal cord injury  

Rats (n = 47) were anesthetized with 50mg/kg sodium pentobarbital (Sigma, St Louis, 

MO).  Once sedated, Lacquer Lube was applied to the eyes to prevent drying.  After skin 

incision, laminectomy was performed at vertebral level T9, to expose the T10 spinal cord. 

Contusion injuries were produced using the New York University (NYU) Impactor. 

Either “Moderate” or “Moderately severe” injuries were produced by releasing a 10g, 

2mm rod from 12.5 mm or 25 mm height, respectively, onto the exposed dura mater of 

the spinal cord. These will subsequently be referred to as 12.5gcm and 25 gcm injuries. 

Immediately after producing the contusion the wound was closed in layers and the skin 

incisions were stapled. Rats received fluids (10cc 0.9% saline subcutaneously), and 

antibiotic treatment (0.1cc Gentamicin (50mg/mL) intramuscularly, and Bacitracin was 

topically applied on the incision site).  Animals were housed overnight in a recovery 
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room with a heating pad under their cage, and were taken to the animal facilities in the 

morning. 

 

Assessment of mRNA expression in SCI animals was compared to control animals. 

These consisted of naïve rats (2 per time point group) and rats receiving laminectomy 

only (3 rats per time point group), for a total of 5 controls per time point.  There were 4 

additional laminectomy-only control rats included with the animals used for the 6 week 

post-SCI DRG assessment. All surgical procedures (except for the spinal cord injury), 

were as described above for the laminectomy-only control rats.  

 

2.2 Injury Characterization 

2.2.1. Behavior 

Experiments were performed on rats separated into groups based on injury severity, 

survival time, and the tissue to be analyzed for mRNA expression.  Rats were 

familiarized with the testing procedures and personnel by handling for 1 week before 

injury. Pre-surgical behavioral assessments were done to ensure no pre-existing 

conditions were present that would subsequently affect our locomotor outcome measures. 

Seventeen rats received 12.5g-cm NYU (moderate) and sixteen rats received 25 g-cm 

NYU (moderately severe) injuries. Hindlimb locomotor function was assessed with the 

Basso, Beattie, and Bresnahan Locomotor Rating Scale (BBB) (Basso DM 1996). BBB 

testing was carried out prior to injury and 7, 14, 21, 28, 35, 42 for the six week spinal 

cord group, and 7, 14, 21, 28, 35, 42, 49, 56, 63, 72, 79, and 84 days post injury for the 

twelve week spinal cord (SC) groups, twelve week dorsal root ganglia (DRG) group, and 
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at 7, 14, 28, and 42 days post injury for the six week DRG group. For testing, rats were 

placed in an open field (a plastic tank that was 105 cm in diameter with 30 cm high walls) 

for 4 min.  BBB testing was done after animal care in the morning.  Hindlimb movement 

and locomotion were scored simultaneously by two observers who were blind to the 

treatment groups. We include the BBB measures as a means to characterize the injuries 

with commonly used assessments so that the mRNA measures can be placed in context. 

 

2.2.2. Histology 

At the end of the testing period, rats were anesthetized with sodium pentobarbital and 

euthanized via transcardial perfusion with 30% RNA Later (Qiagen) in 0.1M Phosphate 

Buffered Saline (PBS). An approximately 10 mm long block of spinal cord containing the 

injury epicenter was removed from each animal and immersed in 4% paraformaldehyde.  

After 1 week cords were immersed in PBS containing 30% sucrose for cryoprotection 

until further processing. For sectioning, tissue was embedded in TissueTek® (VWR) and 

frozen. The blocks were cut 50um thick in the transverse plane on a cryostat and were 

sampled every 250μm.  A series of sections spanning the rostrocaudal extent of the lesion 

was stained with eriochrome cyanine (EC) to assess amounts of spared myelin as 

described (Rabchevsky AG 2007) .  Light microscopy was used to determine spared 

white matter.  Images were captured using a SPOT digital camera (Diagnostic 

Instruments) mounted on a Zeiss Axioskop.  From these, the area of spared tissue was 

manually designated (Intuos drawing tablet; Wacom (Otone, Japan)).  Areas of white 

matter sparing were calculated using the ImageJ program and expressed as a proportion 

of control (defined as group-mean of the smallest white matter area from an analogous 
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section of spinal cord from all control animals). For each injured animal, the spinal cord 

injury epicenter was defined quantitatively as the section containing the least amount of 

intact tissue.  Percent white matter sparing is reported as mean (± standard deviation). As 

with the BBB, we include the WMS measures as a means to characterize the injuries with 

commonly used assessments so that the mRNA measures can be placed in context. 

 

2.3. mRNA expression 

 

2.3.1. Isolation and cDNA conversion 

 

Animals were euthanized after final behavioral assessments and exsanguinated by 

transcardial perfusion using 30% RNA later (Qiagen) in Phosphate Buffered Saline 

(PBS).  Lumbar spinal cords (L4/5) and Dorsal Root Ganglia (DRG) were removed and 

immersed in 100% RNA later and stored at -20°C until further processing.  Spinal cords 

were homogenized on ice in 1mL Trizol and RNA was isolated using Trizol/chloroform 

extraction method.  Briefly, homogenate was transferred to a 1.5mL tube and spun at 

12000g for 10 min at 2°C. The supernatant was transferred to a new tube and 200uL 

chloroform added.  This mixture was spun for 15 min at 2°C to separate into aqueous and 

organic phases.  The aqueous phase was transferred to a new tube and alcohol 

precipitation was performed with 100% isopropanol, then 70% ethanol.  After removal 

and drying of excess ethanol, the pellet was resuspended in 30uL nuclease free H20, 

solubilized in 600uL Buffer RLT with beta-Mercaptoethanol (BME) and processed 

through RNeasy MiniKit (Qiagen) per manufacturers protocol.  DRGs were homogenized 
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directly in Buffer RLT + BME and processed through RNeasy MiniKit.  RNA was 

analyzed by Nanodrop (ThermoScientific, Waltham, MA, USA) to obtain concentration 

and 500ng of RNA from each sample was reverse transcribed into cDNA using Quanta 

Biosciences qScript cDNA SuperMix.  All RNA was converted to cDNA using the same 

lot of reverse transcriptase. Performing the reverse-transcription for all samples with the 

same reagents is a methodological procedure meant to reduce the cross-sample variability 

which in turn can enhance the reliability of statistical assessments. 

 

2.3.2. qRT-PCR 

 

mRNA expression levels were quantified by qRT-PCR on Corbett Research 6000 

(Qiagen) using FastStart Universal SYBR Green Master Mix(Roche). Duplicate reactions 

were run for each sample for both the gene of interest and the normalizer (Beta-3 Tubulin 

– demonstrated as a suitable normalizer gene for SCI work (Strube C 2008). Relative 

expression levels were calculated as ∆∆CT of gene of interest vs. normalizer.  Primer 

sequences for the genes analyzed are provided in Table 2, along with their relationship to 

the known gene structure and transcript species. 

 

2.4. Statistics 

 

Statistical analyses were performed using SPSS (IBM, North Castle, NY, USA) or 

SigmaPlot/SigmaStat (Systat Software, San Jose, CA, USA).  A Student’s t-test was 

performed to determine if expression levels differed between control groups.  In cases 
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where gene expression did not differ between control groups the six and twelve week 

control groups were combined and the expression values for the experimental groups are 

reported as a fold change of the unified control group. One-way analysis of variance 

(ANOVA) was performed on these values with post-hoc Tukey’s test for all pairwise 

comparisons.  All groups with p<0.05 difference are reported as significant.  Pearson 

Product Moment was calculated to determine the relationships between the expression 

levels of the different transcripts, and to determine the relationships between BBB/WMS 

vs. expression levels. Differences between BBB scores were assessed using a mixed 

model repeated measures ANOVA with a post-hoc Bonferroni t-test. 
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CHAPTER 3 
 

EXPRESSION OF NEUROTROPHINS AND TRK RECEPTORS IN 
SENSORIMOTOR CIRCUITS AFTER DIFFERING CONTUSION SEVERITIES 

 
 
3.1 Introduction 

 

The impact of SCI varies depending on the location of the injury itself and the 

spatial relation of the investigated tissue to the SCI. The relative composition of types of 

tissues innervated changes throughout the course of the neuraxis as does the specific 

function of local circuitry. For example, in rat, the spinal components of bladder control 

are focussed on the T13/L1 and L6/S1 segments, colon function is focused in L6/S1, and 

the locomotor central pattern generator appears focussed in (though not limited to) the 

L1/2 segments, spinal sympathetic circuitry regulating outflow exists roughly from T1-

L2, and spinal parasympathetic circuitry exists in the sacral-caudal spinal cord. Thus it 

follows that the effect on spared function and/or recovery is influenced by the level of the 

injury (Magnuson, Trinder et al. 1999; Magnuson, Lovett et al. 2005; Garcia-Alias, 

Valero-Cabre et al. 2006), but this also extends to less direct functions (Campagnolo, 

Bartlett et al. 2000; Lucin, Sanders et al. 2007). It is also very important to consider that 

both neural and non-neural tissues remote from the SCI can be affected (Collazos-Castro, 

Soto et al. 2005; Massey, Hubscher et al. 2006; Gris, Hamilton et al. 2008). 

Sensory input to the spinal cord plays a role in establishing recovery and 

regulating spinal function after alteration of descending inputs. For example, urinary 
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bladder function after SCI is highly reliant on afferent input and plasticity of sensory 

components (Tai, Roppolo et al. 2006; de Groat and Yoshimura 2009), and SCI affects 

the trk receptor profile of neurons in DRG segments innervating bladder differently than 

for DRG innervating hindlimb (Qiao and Vizzard 2002; Qiao and Vizzard 2005), a 

finding that extends to spinal trk receptors as well (Zvarova, Murray et al. 2004). 

Additionally, the type and amount of sensory input can influence spontaneous recovery 

after SCI (Grau, Washburn et al. 2004; Ollivier-Lanvin, Keeler et al. 2010; Caudle, 

Brown et al. 2011; Ferguson, Huie et al. 2012; Ferguson, Huie et al. 2012; Grau, Huie et 

al. 2012) and also influence the effectiveness of physical therapy (Bouyer and Rossignol 

1998; Bouyer and Rossignol 2003; Edgerton VR 2004; Gomez-Pinilla, Ying et al. 2004; 

Edgerton, Courtine et al. 2008; Frigon and Rossignol 2009; Ollivier-Lanvin, Keeler et al. 

2010), all of which may involve neurotrophin signaling (Gomez-Pinilla, Ying et al. 2004; 

Hutchinson, Gomez-Pinilla et al. 2004; Boyce, Tumolo et al. 2007; de Leon 2007; Côté 

MP 2011; Boyce, Park et al. 2012). Further, autonomic dysreflexia (AD), a maladaptive 

condition frequently observed in patients with cervical or high thoracic SCI, is often 

triggered by nociceptive sensory input (Maiorov, Fehlings et al. 1998; Krassioukov and 

Fehlings 1999; Garstang and Miller-Smith 2007), and sprouting of central terminals of 

nociceptive neurons, thought to be NGF-dependent, is a proposed mechanism that 

contributes to AD (Weaver, Cassam et al. 1997; Krenz, Meakin et al. 1999; Marsh, Wong 

et al. 2002; Cameron, Smith et al. 2006; Ackery, Norenberg et al. 2007).  

Hence, it is important to examine not only the spinal cord, but also the sensory 

neurons that provide signals to the spinal cord, and to consider that the effects of SCI on 

the afferent neurons may differ in relation to the SCI, and/or to the tissues they innervate 
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(Qiao and Vizzard 2002; Zvarova, Murray et al. 2004; Bedi, Yang et al. 2010; Bedi, Lago 

et al. 2012; Keeler BE 2012). With these considerations in mind, it is important to 

consider that the spatial parameters of experiments, with regard to both the level of SCI 

and how the SCI affects the tissue investigated, can significantly influence the outcome.  

Injury severity, or more specifically the location and degree of damage to the SC, is 

another key factor that determines the functional capabilities of the spinal cord caudal to 

a SCI. The literature is replete with examples of this when reports are considered 

together, (Rossignol and Frigon 2011), however far fewer single studies examine 

multiple injury severities (Magnuson, Lovett et al. 2005; Smith, Burke et al. 2006), 

despite the fact that the degree of injury severity also significantly influences the 

outcome. 

Thus, we intially sought to characterize natural regulation of neurotrophin and trk 

receptor genes in tissues and conditions that were most applicable to experimental studies 

of long-term function and recovery after SCI and to conditions most often represented in 

animal models and human studies. We characterized the transcriptional response of 

neurotrophins and their cognate Trk receptors to spinal cord contusion temporally (6 and 

12 weeks post-injury), spatially (in lumbar spinal cord and DRG), and relative to injury 

severity (12.5 g-cm and 25g-cm NYU contusions). 

 
 
 
3.2 Results  
 
3.2.1. Injury Characterization 
 
 To assess the degree of injury severity, we characterized spinal cord injuries 

based on two parameters; behavior as measured by BBB, and the amount of spared white 
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matter at the epicenter after staining with eriochrome cyanin (Rabchevsky AG 2007).  

BBB scores were significantly greater in the 12.5 g-cm injury groups than the 25 g-cm 

groups beginning at week 5 (Fig 6a). These differences in behavior were reflected in the 

amount of spared white matter, as the 25 g-cm groups had 8.5% (± 1.8%) and the 12.5 g-

cm groups had 13.9% ( ±3.6%) spared white matter at the epicenter.  In accord with prior 

literature (Basso DM 1996; Schucht P 2002; Magnuson DS 2005), a significant 

correlation (r=0.88, p<0.001) was observed between white matter sparing at epicenter 

and BBB scores (Fig 6b).  BBB scores of the 12.5 g-cm group showed a high degree of 

variability and continued to increase between 6 and 12 weeks instead of reaching a 

plateau.  Within this group, 2 animals had BBB scores consistent with the range observed 

in previous literature (Basso DM 1996; Agrawal G 2010) (12 and 13) and 4 animals that 

had higher BBB scores than expected for this injury severity (mean 17.9) at 12 weeks 

post injury. We considered that these results may be due to both greater amount of spared 

white matter (SWM) and/or asymmetry of the lesion (Fig 6c, 6d).  Indeed, of the 4 

animals whose BBB scores continued to increase, all had a greater amount of spared 

white matter (mean 16.1% for 4 animals with higher BBB scores, 10.1% for 2 animals 

with lower BBB scores), and all had asymmetrical injuries (arbitrarily defined as more 

than 4% greater SWM on one side versus the other). Animals with the lower BBB scores 

in the 12.5 g-cm group did not represent statistical outliers (Grubbs outlier test). Separate 

statistical analyses of gene expression were performed with the exclusion of the 2 

animals whose BBB scores did not continue to increase and the results generally did not 

differ from those found when all 6 animals were considered together. The lone exception 

was the results for expression of one Trk receptor in the spinal cord, which is noted 
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below.  We thus consider all 6 animals together in the group in all subsequent figures and 

analyses of mRNA expression.  

 

 

 

3.2.2. Expression of Trk receptors in the DRG  

 One purpose of this study was to determine whether these different contusion 

severities result in a differential transcriptional response of neurotrophins and their Trk 

receptors in lumbar sensorimotor circuits.  Hence, we sought to determine the expression 

level of Trk receptors in the DRG 6 and 12 weeks after our two severities of contusion 

injury. Expression of TrkA, TrkB, and TrkC each differed significantly between the 6 and 

12 week groups, with the magnitude and direction of difference depending on receptor 

type and injury severity. Expression of TrkA mRNA in DRG from the 12 week group at 

both injury severities was significantly greater than that in DRG from the corresponding 

6 week group. Expression of TrkA in DRG from the 12 week group that received 12.5g-

cm injury was also elevated relative to the control groups.  We also observed a difference 

in TrkA expression between injury severities at the 12 week time point. Similar to TrkA, 

expression of TrkC mRNA in DRG from the 12 week group was greater than that in 

DRG from the corresponding 6 week group at both injury severities, but the difference 

only reached significance in the 12.5 g-cm animals.  Unlike the findings for TrkA, we 

detected no significant difference in TrkC expression between DRG from the 12.5 g-cm 

group and from the 25 g-cm group at the 12 week time point.  Expression of mRNA for 

TrkB in DRG at 12 weeks after 25 g-cm injury was significantly lower than in DRG from 
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both the 6 week SCI and control groups.  No significant difference in TrkB expression 

was observed between injury severities at 6 or 12 week time points in the 12.5 g-cm 

injury group (Fig. 7). 

 

 

 

 

3.2.3. Expression of Neurotrophins in the DRG 

 As with TrkA, NGF mRNA expression in DRG from the 12.5g-cm injury severity 

group was significantly greater in the 12-week group than in both the 6 week and control 

groups.  However, no significant changes in NGF expression were observed between 

survival-time groups in the 25 g-cm injury severity group.  As with TrkB, BDNF 

expression in the 12 week 25 g-cm group was significantly less than in the 6 week 25 g-

cm group, but did not differ from the control group (Fig. 8). No other differences were 

observed in BDNF expression levels.  There was a large increase in the mean expression 

of NT3 in DRG from the 12 week, 12.5 g-cm injury group, however due to high variance 

no significant differences were observed from 6 to 12 weeks. 

 

 

3.2.4. Expression of Trk receptors in the spinal cord 

 Expression levels of mRNA for neurotrophin receptors TrkA, TrkB, and TrkC 

were assessed from samples of lumbar spinal cord (L4/5).  In the groups that received a 

12.5 g-cm injury, the level of TrkA in spinal cord from the 12 week group was 

23 

 



significantly greater than that from the 6 week group, whereas there was no significant 

difference between the two post-SCI times in the 25g-cm injury group. Like TrkA, the 

level of TrkC in spinal cord from the 12 week 12.5g-cm group was significantly greater 

than that from the 6 week group, with no significant difference between the two post-SCI 

times in the 25g-cm injury group.  No significant changes in TrkB expression levels were 

detected between any groups (Fig. 9). 

 

 

 

3.2.5. Expression of neurotrophins in the spinal cord 

 The results for neurotrophins in the spinal cord are displayed differently from the 

data regarding expression levels of neurotrophins and Trk receptors in the DRG, and Trk 

receptors in the spinal cord. In the aforementioned assessments, the expression of 

neurotrophins and trks did not differ between the 6 week and 12 week control animals. 

Thus, those data were analyzed and presented relative to the mean and variation of a 

single unified control group. This allowed us to simultaneously assess the effect of both 

injury severity and survival time on gene expression. For the neurotrophin genes in spinal 

cord, however, expression differed significantly between the 6 week and 12 week control 

groups (Figure 5A). We first analyzed these expression data exactly as was done for the 

other tissues – comparing each injury severity and survival time to the mean and variation 

of a single unified control group – but for the sake of clarity we have presented the data 

from the individual animals in each group. Caution must be taken when considering the 

expression data for the experimental groups in this analysis (Figure 10A) because of the 
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use of a unified control group – i.e., these data were generated exactly as were the other 

expression values, but are relative to a unified control group that, in this case, is not a 

suitable control group. We found decreases between our 6 and 12 week control groups in 

expression levels of NGF, BDNF, and NT3 in the spinal cord in the absence of spinal 

cord injury. It is worth noting that our quality control measures were repeated for these 

samples, but the assessments remained the same.  In ruling out technical issues and 

variability due to the necessity of using animals from different litters, a single factor 

appears to account for the altered expression levels in the control groups, that being age. 

Because the gene expression differed between the 6 week and 12 week control 

groups, we cannot incorporate the temporal characteristic of the experimental design in 

our assessment of neurotrophin expression in spinal cord. We are limited to analyzing the 

effect of injury severity on gene expression within each separate survival time group, 

where the data from experimental groups is expressed relative to the time-matched 

control group only (Figure 10B). Considered in this way, spinal cord injury itself did not 

significantly influence expression of any neurotrophin at any time considered, with the 

exception of NT3 at 12 weeks post-SCI. At this time, NT3 was elevated relative to the 

time-matched control group, with no effect of injury severity. 

 

 

3.2.6. Relationship of transcriptional assessments to functional and anatomical 

assessments  

 Our experimental design was intended to embrace the variability that exists with 

models of contusive SCI in that we also examined whether a statistical correlation existed 
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between expression levels of each transcript and BBB or white matter sparing on an 

animal by animal basis.  We observed no statistically significant correlation between the 

expression levels of the transcripts and BBB score or white matter sparing.  

 

 

3.3 Discussion 

Spinal cord injury leads to many changes that affect both the central and 

peripheral nervous system, indeed the entire organism, with residual functional capacity 

largely dependent on the location and severity of the injury.  Many approaches have been 

used in efforts to re-establish function, including (but not limited to) enhancement of 

regeneration across the injury site (Bregman BS 2002; Moon L 2005; Sharma H 2012; 

Smith GM 2012) and plasticity of intact circuits below the level of the lesion (Edgerton 

VR 2004; Boulenguez P 2009; Rossignol S 2011).  One means for achieving plasticity of 

intact circuits is through activity-dependent reorganization of inputs (Edgerton VR 

2004)).  This phenomenon has been described in both animal (Edgerton VR 2008) and 

human (Harkema SJ 2008) studies of spinal cord injury.  Neurotrophins have been 

associated as playing a key role in induction of such changes (Hutchinson KJ 2004; 

Boyce VS 2007; Côté MP 2011; Boyce VS 2012). However, activity-dependent changes 

in locomotion often manifest at times later than those examined in studies of post-SCI 

expression of neurotrophins and trk receptors (De Leon RD 1998; De Leon RD 1999); 

(Table 3). Indeed, the dynamic period of spontaneous locomotor recovery generally lasts 

for approximately 6 weeks after SCI, a time well beyond the majority of previous studies 

(Table 3). In addition to a putative role in locomotor function, neurotrophin signaling has 
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also been implicated in pathologic outcomes of plasticity such as post-SCI pain and 

autonomic dysreflexia (Brown and Weaver 2012). The role of neurotrophin signaling has 

primarily been examined in terms of initiation of these conditions acutely after SCI in 

animal models (Krenz, Meakin et al. 1999; Marsh, Wong et al. 2002; Cameron, Smith et 

al. 2006), as opposed to later-phase initiation or maintenance. The regulation we have 

demonstrated at extended time points may provide new rationale for examining the role 

of neurotrophin signaling in later stages of these conditions. 

Neurotrophins exert modulatory effects on cellular physiology through activation 

of their cognate Trk receptors (Lindsay RM 1996; Patapoutian A 2001; Huang EJ 2003).  

In the DRG, expression of neurotrophin receptors is restricted to specific populations of 

cells.  Generally, TrkA is expressed in neurons with small soma size, TrkB in neurons 

with intermediate size, and TrkC in neurons with large soma size; populations of TrkA 

and TrkC expressing neurons remain largely separate, whereas TrkB is co-expressed in 

overlapping populations of TrkA and TrkC positive cells (Mu X 1993; McMahon SB 

1994; Wright DE 1995; McMahon SB 1996; Phillips HS 1996). Trk receptors are not 

ubiquitous, however, as there is a large subpopulation of small diameter DRG neurons 

which do not express any of the Trk receptors or the low-affinity neurotrophin receptor 

p75 in the adult (McMahon SB 1994; Molliver DC 1997; Bennett DL 1998).  In the 

mammalian spinal cord, TrkA is expressed in second order nociceptors of the dorsal 

horn, TrkB has a broad pattern of expression which overlaps with both TrkA and TrkC 

expression, and TrkC is expressed in neurons of the intermediate and ventral horn 

(Duberley RM 1997; Curtis R 1998; Schober A 1999; Copray S 2000; Liebl DJ 2001); 

also available from: http://mousespinal.brain-map.org. 
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As long as 6 weeks after spinal cord transection injury, the number of cells 

expressing TrkA and TrkB protein in L1 and L6/S1 DRG (containing bladder afferents) 

increases over controls, though the numbers of cells expressing these genes does not 

significantly change in L4/5 DRG (Qiao L 2002; Qiao LY 2005).  Our analysis of Trk 

expression, which was also performed in L4/5 DRG, found no significant change in the 

trkA or trkB mRNA levels for either severity of contusion injury at 6 weeks post injury, 

in agreement with the prior work.  In intact sensory and sympathetic ganglia of the adult 

rat, NGF and NT3 (as well as TrkA, full length TrkB, and TrkC), localize exclusively to 

neurons; BDNF and the truncated isoform of TrkB are expressed more extensively, 

however, localizing to neuronal cells and some glial and satellite cells (Wetmore C 

1995). These observations are consistent with the notion that full length Trk expression 

predominantly occurs in neurons, though since the latter study was performed with intact 

animals, we cannot exclude the possibility that our injuries potentially resulted in ectopic 

expression in other cell types. Indeed, there are numerous reports of trk receptor 

expression by non-neuronal cells. In particular Schwann cells can express trks, as can 

cancer cells (Funakoshi, Frisen et al. 1993; Tacconelli, Farina et al. 2005; Hess, Scott et 

al. 2007; Jin, Lee et al. 2011). Further, neurotrophins are often expressed in non-neuronal 

cells, most notably by cells outside the nervous system where they influence both 

developmental and adult processes (Lewin 1996; Petruska and Mendell 2004). 

Previous assessments of changes in neurotrophin/Trk receptor expression levels 

after spinal cord injury have typically focused at time points of less than 6 weeks.  BDNF 

expression increases up to two weeks after injury in the spinal cord after thoracic 

transection and crush injury (Hayashi M 2000; Li XL 2007), though both increases and 
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decreases in expression have been reported after hemisection during a similar time period 

post injury (Gulino R 2004; Qian DX 2006).  Expression levels of NGF and NT3 in the 

cord increase for up to 3 weeks after spinal cord injury (Hayashi M 2000; Li XL 2007).  

In another study, NGF and BDNF transcripts were found to increase up to 4 days 

following injury in the adult cord, however, by 2 weeks post injury all neurotrophins 

were expressed at levels similar to that of control (Nakamura M 2001; Widenfalk J 

2001), suggesting expression decreases after an early increase, though these studies used 

different injury models.  Trk mRNA expression is downregulated acutely in the spinal 

cord at and around the injury site after contusion (Liebl DJ 2001; Hajebrahimi Z 2008), 

however by 6 weeks expression levels are not different from control (Liebl DJ 2001).  

However, after spinal cord transection TrkC has been shown to increase after two weeks 

(Qian DX 2011).  Similarly, in a recent study assessing mRNA and protein changes after 

transection at 10 and 31 days post injury, whole spinal cord TrkB mRNA was elevated at 

10 days post injury, and whole spinal cord NT3 and TrkB protein was elevated at 31 days 

post injury, with expression differences also observed depending on the location within 

the parenchyma of the spinal cord (Keeler BE 2012).  Table 1 summarizes the findings of 

recent experiments to facilitate comparison of these results. 

We found TrkA expression increases in both the DRG and spinal cord of animals 

after contusion in a manner that was dependent on injury severity.  This finding is of 

particular interest with regards to the functions of NGF and TrkA.  NGF plays a well-

defined role in sensitization of nociceptive afferent neurons (Shu X 1999; Shu X 2001; 

Galoyan SM 2003; Zhu W 2004).  Nociceptive DRG neurons undergo changes after SCI, 

including development of spontaneous activity (Bedi SS 2010) and an enhanced intrinsic 
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growth promoting state (Bedi SS 2012).  Such changes in anatomical and physiological 

properties of nociceptors may contribute to development of conditions such as autonomic 

dysreflexia (Marsh DR 2002)).  TrkA antagonists prevent the sensitization (thermal and 

mechanical hyperalgesia) normally induced by partial nerve injury (Ma WY 2010), and 

antagonism of TrkA signaling has been effective for controlling human pain (Mantyh PW 

2011). Hence, elevation in the levels of TrkA and NGF in response to contusive injury 

could play a role in some of the maladaptive processes after incomplete SCI. 

TrkB activation has also been implicated in hypersensitivity to nociceptive input 

and sensitization of nociceptors (Kerr BJ 1999; Shu XQ 1999; Garraway SM 2003).  

However, after either SC transection or contusion injury, BDNF induced facilitation of 

afferent responses in lamina II of the dorsal horn is significantly reduced (Garraway SM 

2005; Garraway SM 2007).  Our results could suggest a mechanism for those 

physiological observations.  In addition to TrkB expression in populations of second 

order nociceptive neurons (Schober A 1999), it is expressed robustly throughout the 

interneuronal circuitry, and also co-expressed along with NT3 in motoneurons (Buck CR 

2000), a finding corroborated in humans (Josephson A 2001).  Notably, BDNF 

administration to the injured spinal cord can improve locomotor outcomes, however 

because of its influence on nociceptive circuitry its therapeutic utility may be limited 

(Boyce VS 2012).   

In DRG, TrkC is present on medium to large diameter muscle spindle afferents 

that make monosynaptic connections with motoneurons and cutaneous low threshold 

mechanoreceptors (Klein R 1994; Oakley RA 1997; Josephson A 2001) in the 

intermediate and ventral horns of the spinal cord.  NT3, likely acting via TrkC, can exert 
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a modulatory effect on sensorimotor circuits in both intact (Petruska JC 2010) and injured 

preparations (Mendell LM 2001; Arvanian VL 2003; Arvanian VL 2006; Arvanian VL 

2006; García-Alías G 2011; Schnell L 2011).  Locomotor training after spinal cord injury 

is associated with increased expression levels of TrkB and TrkC agonists in rats 

(Hutchinson KJ 2004; Côté MP 2011). In addition, co-administration of both BDNF and 

NT3 to the injury site has been shown to improve hindlimb locomotion after transection 

in both rats (Blits B 2003) and cats (Boyce VS 2007).  Taken together, these findings 

suggest a potential role for Trk activation in modulation of lumbar sensorimotor circuitry 

in both intact and injured animals. 
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CHAPTER 4 

NEUROTROPHINS AND AGING IN THE SPINAL CORD 

4.1 Introduction 

The apparent age-related regulation of NGF, BDNF, and NT3 in non-injured 

spinal cord was unexpected and we made significant efforts to identify possible technical 

and sampling issues. While those factors that often account for variability did not 

satisfactorily account for the expression patterns we observed, the single factor of age did 

appear to fully account for the differences. Expression of the neurotrophins has been 

examined in the context of embryonic and postnatal development and in aging (e.g., 

(Timmusk, Belluardo et al. 1994; Nosrat 1998; Bergman, Ulfhake et al. 2000). However, 

to the best of our knowledge, there has been no systematic assessment of the regulation of 

the neurotrophins at such late postnatal times, leading us to postulate that perhaps there 

was a previously undocumented age related decrease in neurotrophin expression that 

persisted throughout the lifespan of the adult rat. 

 Much of the literature concerning neurotrophins and aging comes from 

assessments of expression levels in the forebrain. In the cortex and hippocampus, the 

mature form of NGF levels decrease relative to age in naïve animals, while BDNF levels 

remain unchanged (Perovic, Tesic et al. 2012).  However, other studies that sampled 

multiple areas throughout the forebrain and also the sciatic nerve found no significant 

difference in levels of NGF, BDNF, or NT3.  These changes appear to be region specific 

however, as increases in the levels of BDNF in the hippocampus, as well as increases in 
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levels of NT3 in the cerebral cortex have been documented(Katoh-Semba, Semba et al. 

1998). Thus, we sought to determine whether the changes we observed from 6 to 12 

weeks in the spinal cord were due to regional specificity within the spinal cord and 

whether these changes persisted throughout the lifespan of the adult rat 

 

4.2 Results 

4.2.1 Expression of NGF, BDNF, and NT3 at 3, 6, 9, 12, and 15 months after birth in 

the uninjured rat spinal cord 

 Unlike the decreases that we observed for all neurotrophins from 3 to 6 months in 

the adult rat, these changes did not persist throughout the course of adulthood based on 

further analysis at 9, 12, and 15 months after birth (NGF Fig 11, BDNF Fig 12, NT3 Fig 

13). The only significant change in the levels for any of the neurotrophins was an 

increase in the levels of NT3 at 9 months after birth, above the levels of 3 and 6 month 

uninjured rats (Fig 13). 

 

4.3 Discussion 

 Though the observation that the trend of decreasing expression did not persist 

through the lifespan of the adult rat was somewhat surprising, there are several factors 

that provide rationale for the explain differences we observed. The animals we used at 

our 9 and 15 month time points had been used for the purpose of breeding and were 

housed at a different location.  This could have resulted in several differences between 

these animals and the animals used for the 3, 6, and 12 month after birth groups. One was 

simply that the 9 and 15 month groups had been pregnant. During pregnancy, uterine 
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receptivity to implantation is dependent on levels of progesterone (Bazer, Burghardt et al. 

2008). Progesterone plays a role in neuroprotection via regulation of BDNF (Su, 

Cunningham et al. 2012; Singh and Su 2013). Progesterone has also been shown to 

maintain levels of NGF (Tometten, Blois et al. 2005), thus a putative link between 

neurotrophins and hormones regulated during pregnancy is plausible. Another difference 

between the groups of rats were the environments in which they were placed. 

Additionally, environmental enrichment in the adult rodent nervous system has been 

shown to protect the brain from age-related dysfunction, which can be accomplished 

through induction of NGF (Mohammed, Henriksson et al. 1993) and BDNF (Cirulli, 

Berry et al. 2010) expression, and could also play a role in regulation of neurotrophin 

levels. Though these mechanisms might certainly be involved, the observation that no 12 

and 15 month after birth groups differed in their expression levels (12 month animals 

were conditioned in a similar environment to the 3 and 6 month groups, and did not give 

birth) raises questions as to the validity of this argument.   
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CHAPTER 5 

COORDINATED EXPRESSION OF NEUROTROPHINS AND TRK 

RECEPTORS IN DRG AT 12 WEEKS POST INJURY 

5.1 Introduction 

 12 weeks after injury there were analogous increases in the NGF and NT3 from 

the expression levels we observed at our 6 weeks time points. Since all assessments were 

obtained from samples that were derived from the same animals, we sought to determine 

whether these increases extended concomitantly within each sample. Thus, we next 

calculated the correlation coefficient between all neurotrophins(i.e. NGFvNT3, 

NGFvBDNF, BDNFvNT3), their Trk receptors(i.e. TrkAvTrkC, TrkAvTrkB, 

TrkBvTrkC), and between each neurotrophin ligand and its cognate receptor(NGFvTrkA, 

BDNFvTrkB, NT3vTrkC).  Such interactions that regulate expression levels of different 

neurotrophins have been reported in different cellular and animal models previously 

(Leingärtner A 1994; Canossa, Griesbeck et al. 1997; Gratto and Verge 2003; Mallei, 

Rabin et al. 2004; Kuo, Groves et al. 2007), however none have investigated whether 

such patterns emerge between all neurotrophins and Trk receptors at more chronic time 

points after contusive SCI. 
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5.2  Results 

To further characterize the relationship between the neurotrophins and their receptors in 

lumbar DRG and spinal cord, we analyzed the expression levels of neurotrophins and Trk 

receptors relative to each other, and without respect for injury severity. In the spinal cord, 

the only significant relationship was that of TrkB and TrkC in the control and 6 week 

groups.  No relationship was found between any other expression levels at any time 

points in the spinal cord (Table 2).  In the DRG, there was a relationship between NGF 

and NT3 in all groups. In the 6 week groups the only other significant correlation 

observed was between BDNF and TrkB.  After 12 weeks there was a significant 

correlation in the expression levels of all neurotrophins in the DRG, a relationship that 

existed for the Trk receptors as well (Table 3). Additionally, a significant correlation was 

observed between expression levels of neurotrophins and their cognate Trk receptors at 

12 week time points (Table 3). This coordinated expression pattern occurred in all 

animals independent of injury severity (Figures 14 & 15). The reliability of this statistical 

assessment is enhanced by our performing the reverse-transcription for all samples with 

the same reagents, a procedure which reduces the cross-sample variability. 

 

5.3 Discussion 

12 weeks post injury a coordinated expression pattern emerged when comparing 

all neurotrophins and Trk receptors to one another. This pattern was independent of 

injury severity, and was also present between the neurotrophins and their cognate Trk 

receptors in the DRG (Tables 1and 2, fig’s. 5 and 6), a relationship that was not evident at 
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6 weeks post-SCI, nor for expression levels in the SC. Although there are reports of 

smaller groups of neurotrophins and/or Trks being regulated in a coordinated fashion 

(Widenfalk, Olson et al. 1999), to our knowledge this degree of coordination has not been 

reported. One obvious possibility is a feedback/feedforward relationship between 

some/all of these genes, and these sorts of relationship do exist (Michael, Averill et al. 

1997; Wyatt, Middleton et al. 1999; Gibbons and Bailey 2005). 

Neurotrophin dependent neurotrophin expression has been demonstrated in vitro 

in NIH3T3 and PC12 cells (Canossa M 1997; Mallei A 2004), hippocampal neurons 

(Canossa M 1997), and cerebellar granule neurons (Leingärtner A 1994).  In vivo, 

intrathecal administration of NT3 to intact adult animals for one week results in reduced 

expression of TrkA protein in the DRG, but has no effect on levels of TrkC (Gratto KA 

2003).  After unilateral axotomy, sub-cutaneous administration of exogenous NT3 

similarly causes a decrease in TrkA on the side contralateral to the injury.  This contrasts 

to the increase in TrkA expression seen on the side ipsilateral to the injury; the effect of 

NT3 on expression levels of TrkB and TrkC however is not affected by injury in this 

paradigm, as levels of these transcripts show increased expression up to 4 weeks post 

axotomy in both ipsi- and contralateral DRG (Kuo LT 2007).  Such coordinated 

expression patterns could result from changes at the epigenetic level or from potentially 

from interactions between the different transcription factors associated with expression of 

specific transcripts.   

In (Hougland et al. 2012), bioinformatic analyses were performed in an attempt to 

elucidate potential underlying factors involving miRNA and common transcription 

factors that may underlie the expression patterns that were observed between 
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neurotrophins/Trks. Though no common miRNA targets were revealed through a 

TargetScan analysis of 3’-UTRs, this was likely due to the search criteria inherent in the 

bioinformatic platform that was used. TargetScan only retrieves targets that have been 

experimentally confirmed, thus the absence of a finding likely reflects a lack of preceding 

investigations into the subject rather than simply a negative finding. Likewise, in 

searching for common transcription factors that regulate expression of these genes, no TF 

was retrieved that involved regulation of TrkC. This was due to stringent filtering 

processes that relegated all returned queries to those validated as being expressed in the 

nervous system (Hougland, Harrison et al. 2012).  Despite the exclusion of TrkC as a 

result of this filtering process, TrkC has several well established transcription factors that 

play a role in determining its expression in the nervous system, notably; Runx3 

(Levanon, Bettoun et al. 2002), Runx1, Brn3a, (Zou, Li et al. 2012)and REST (Nakatani, 

Ueno et al. 2005). 

During development, Runx1 and Runx3 transcription factors play essential roles 

in cell fate determination of nociceptive (Chen CL 2006) and proprioceptive (Inoue K 

2002) neurons, respectively.  Much attention regarding transcriptional regulation of 

neurotrophin expression in the mature nervous system has been given to BDNF, due to its 

role in activity dependent mechanisms during long-term potentiation (LTP).  Such 

investigations have revealed several important transcriptional regulators including; cyclic 

AMP response element binding protein (CREB), calcium-responsive transcription factor 

(CaRF), and methyl CpG-binding protein 2 (MeCP2) (Tao X 1998; Tao X 2002; Chen 

WG 2003; Reichardt LF 2006).  Such findings may facilitate future efforts to determine 
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the mechanisms regulating the expression of the neurotrophins and Trk receptors in the 

injured adult spinal cord and sensory ganglia. 

Despite the absence of TrkC from the analysis, (Hougland et al 2012) identified 4 

TFs that potentially interacted with the entire set of remaining genes. The majority of 

literature regarding these TFs and their involvement in regulation of neurotrophins and 

Trks is in the context of development or cancer. Accordingly, the authors could not 

identify any studies examining Pax3, NeuroD, or MafB in spinal cord or DRG in the 

context of SCI. Maf has been studied in relation to neurodegeneration (Kobayashi, 

Tsukide et al. 2011) and in stress (Machiya, Shibata et al. 2007). Pax3 was studied in 

relation to nerve injury, where it was found to not be regulated (though this does not 

imply it not being active) (Vogelaar, Hoekman et al. 2004). 

There are studies examining CREB in spinal cord (Canossa, Griesbeck et al. 

1997; Copray and Kernell 2000; Crown, Ye et al. 2006; Cote, Azzam et al. 2011) or DRG 

(Qiao and Vizzard 2005) in the context of SCI, with the latter study examining the TrkA, 

TrkB, and CREB, though not in direct relation to each other. Interestingly, the expression 

of activated CREB in the DRG changed over the course of the first 6 weeks after SCI, 

with the levels at 6 weeks being significantly greater than controls, though not in the 

DRG we examined here. After a conditioning lesion to the peripheral nerve, enhanced 

regeneration of the central branches can be observed and is dependent on elevation of 

cAMP within the DRG. (Neumann, Bradke et al. 2002; Yang and Yang 2012)Other 

studies demonstrate induction of CREB in injured/stressed neurons and also in neurons 

post-synaptic to stressed sensory neurons (Ji and Rupp 1997; Bedogni, Pani et al. 2003; 

Choi, Kim et al. 2003; He, Csiszar et al. 2003; Zhu, Lau et al. 2004), while others 
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demonstrate CREB regulating multiple NTs (Bender, Lauterborn et al. 2001), in at least 

one case by interacting with cytokines (Otten, Marz et al. 2000). 

 Our data was derived from homogenized tissue, thus we cannot make conclusions 

about apparent coordinated expression on the basis of individual cells, though we can 

draw from a number of sources to make inferences about what may potentially be 

happening.  

1) There is some evidence that at 6 weeks after SCI trk receptors are expressed 

almost exclusively in DRG neurons, similar to before the SCI (Qiao and 

Vizzard 2002; Qiao and Vizzard 2005). However, it must be noted that there 

is a wealth of evidence that suggest expression of NTs and Trks in non-

neuronal cells (e.g., (Funakoshi, Frisen et al. 1993; Elkabes, Peng et al. 1998; 

Nemoto, Fukamachi et al. 1998; Noga, Englmann et al. 2002; Hess, Scott et 

al. 2007), although much of this is in the context of cancer (e.g., (Tacconelli, 

Farina et al. 2005; Howe, Cochrane et al. 2011; Jin, Lee et al. 2011). Studies 

which identify the cell types expressing the NTs or Trks are necessary as it is 

possible that at least a portion of the tissue-level regulation could be due to 

invading cells. Certainly the complement of immune cells in the spinal cord 

is affected by injury, even in segments spatially remote from the injury (e.g., 

(Popovich, Wei et al. 1997). Immune cells invade the DRG after nerve injury 

(e.g., (Nguyen, O'Barr et al. 2007; Vega-Avelaira, Geranton et al. 2009; Kim 

and Moalem-Taylor 2011), but this possibility has not been examined in 

DRG at any time after SCI. However, evidence suggests that the immune 

cells and their functions throughout the body may be affected by SCI (e.g., 
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(Popovich, Stuckman et al. 2001), and some express Trk receptors and/or 

neurotrophins (e.g., (Noga, Englmann et al. 2002; Nassenstein, Kerzel et al. 

2004; Tabakman, Lecht et al. 2004). 

2) There are certainly studies which examine the chronic post-SCI condition, 

but we could not identify any that could provide data relevant to these 

specific considerations (i.e., they examined other readouts). 

 Almost irrespective of the outcome of the above considerations, there is still 

another consideration that can be brought to bear. Although there are papers describing 

co-expression of some of these genes in single cells where common genetic/molecular 

regulation could possibly be at play, it is highly unlikely that all the coordinated 

expression is accounted for by single cells. Even in the condition where expression is 

limited to neurons, and even to the same population of neurons that expressed these genes 

in the intact system (i.e., differences in expression would be based on volume regulation 

in any given cell and not on recruitment/de-recruitment of cell populations), what is the 

likelihood that this degree and scope of coordinated expression could occur across 

different cell types independently? It seems unlikely that each of the genes considered 

would change in a single cell type independent of its regulation in any other cell type, and 

still display such relatively similar expression levels. However, because there is little-to-

no cellular expression data here or in the literature from which to extrapolate the identity 

of the cells expressing these genes (i.e., immunocytochemical or in situ hybridization 

assessment of DRG 12 weeks post-SCI), we must acknowledge that this is possible. 

There is, however, virtually no reason to expect that individual cells would express all of 
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the “coordinated” genes and thus have the mechanism of coordinated regulation exist 

fully inside of those given single cells. Therefore, at least some of the coordination must 

arise across cells which express one or more of the “coordinated” genes, thought whether 

this is due to the protein products of the genes themselves or an outside factor is unclear.  

 Additionally, there might also be a shared biological process(es) or response(es) 

being executed in various different cells – a process that has similar outcomes in terms of 

gene regulation but arrives there through actions of different specific molecular entities. 

For “simplicity”, let us consider that only the neurons of the DRG are involved. Even this 

cell population is not homogeneous in function, form, or sensitivity. Each of the Trk 

receptors is expressed largely in separate subpopulations. Given the dissimilarities of 

their regulatory sequences, they may each be directly regulated by distinct factors. 

However, conditions may arise that induce the non-homogeneous neuronal types, 

regardless of the specific trk they express (and thus which specific factors will act on the 

DNA and/or mRNA), to coordinately regulate the expression of their trk receptor. It is 

possible that the regulation of those specific factors may be under a control mechanism 

that is itself shared across the different neuron types. Our analysis would not detect this. 

As an example, consider cellular stress or injury. Numerous authors have reported on the 

regulation of Trks and neurotrophins in response to nerve injury, and the change in 

expression over time (Ernfors, Rosario et al. 1993; Sebert and Shooter 1993; Krekoski, 

Parhad et al. 1996; Yamamoto, Sobue et al. 1996; Bergman, Fundin et al. 1999; Lee, 

Zhuo et al. 2001; Kuo, Groves et al. 2007), and many aspects of our data agree with 

reported regulation after nerve injury or neuronal stress. Intriguingly, there was another 
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report of “coordinated regulation” associated with DRG neurons and glia in conditions of 

injury and/or stress (Cameron, Vansant et al. 2003).  

  Presently it is unclear whether SCI induces any long-term injury or stress on DRG 

neurons. Certainly the central axons of some DRG neurons are damaged in SCI, 

particularly those terminating in the affected cord, or with long axons ascending through 

the dorsal columns (Huang, Robson et al. 2006). However, effects of injury to central 

axons differs from those of injury to peripheral axons (Stam, MacGillavry et al. 2007), 

and the long-term effects on expression of neurotrophins and trk receptors has not been 

examined. Injury to central axons is not the only possible source of stress to sensory 

neurons, however. The inflammatory condition of the spinal cord and continued spread of 

damage may induce injury or stress in sensory neurons at times remote from the acute 

SCI, and at locations remote from the lesion (Popovich, Wei et al. 1997; Popovich 2000; 

Bao, Chen et al. 2004; Fleming, Norenberg et al. 2006; Gris, Hamilton et al. 2008; Kwon, 

Stammers et al. 2010; Bao, Brown et al. 2011; Lubieniecka, Streijger et al. 2011; Ng, 

Stammers et al. 2011; Stammers, Liu et al. 2012). There is a systemic inflammatory 

condition (Fleming, Norenberg et al. 2006; Gris, Hamilton et al. 2008; Bao, Omana et al. 

2012) that has unknown effects on these neurons. Additionally, one must consider the 

effects of SCI on peripheral tissues innervated by sensory and motor neurons. The 

inflammation and altered activity/mobility/use state can impact these tissues (Edwards-

Beckett and King 1996; Lynch, Anthony et al. 2000; Gris, Hamilton et al. 2008) with 

uncertain consequences for the innervating neurons. The increased expression of galanin, 

a neuropeptide induced in DRG neurons by stress/injury (Suarez, Guntinas-Lichius et al. 

2006), in the DRG innervating bladder and bowel (but not other DRG) after SCI 
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(Zvarova, Murray et al. 2004) suggests that the histopathology secondary to SCI may 

stress the sensory neurons innervating those tissues. Tissue damage has been shown to 

induce stress/injury responses in sensory neurons (Ivanavicius, Ball et al. 2007; Hill, 

Harrison et al. 2010; Thakur, Rahman et al. 2012), and has been shown to affect 

regulation of multiple neurotrophins in the injured tissue (Vizzard 2000). 
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CHAPTER 6 

EXPRESSION OF INFLAMMATORY MARKERS AFTER SCI 

6.1 Introduction 

 Cytokines such as IL-6 have been shown to induce expression of NGF, NT4/5, 

and NT3 from cultured astrocytes (Otten, Marz et al. 2000). In rodents after injury, IL-6, 

IL-1α, IL-1β, IL-13, CCL2, MIP1α, RANTES, and TNFα are elevated acutely in the 

spinal cord(Stammers, Liu et al. 2012). In humans, protein levels measured from CSF of 

injured patients indicate that assessment of some of the same molecules can serve as a 

biomarker for injury severity, including IL-6, IL-8, CCL2, tau, S100beta, and glial 

fibrillary acidic protein(Kwon, Stammers et al. 2010).  Based on the data presented in the 

previous chapters, we deduced several scenarios that could be at play. It is possible that 

neurotrophins alone could be regulating their own expression and that of Trk receptors. 

We also considered, based on the data mentioned above, that a common factor or 

mechanism might be influencing expression, such as infiltration of immune cells 

expressing inflammatory cytokines, or simply cytokines endogenously expressed by cell 

types resident within the nervous system. 

To investigate whether a cytokine/receptor or other inflammatory molecule is 

responsible for the expression patterns observed among the set of neurotrophins/Trks, we 

limited our targets to a specific (and partially overlapping) subset of factors that we felt 

represented a broad range of molecules involved in these processes. These included: IL6, 

LIF, and CNTF, a related set of ligands that bind the common GP130 co-receptor(a 
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molecule which was also included), the cytokine TNFa, iNOS, a protein that is induced to 

form Nitric Oxide as an immune defense mechanism, CD11b, an integrin present on the 

surface of leukocytes that mediates immune cell adhesion, Interferon gamma and the 

chemokine CCL2(aka MCP1). 

 

6.2 Results 

6.2.1 Gene targets without appreciable expression levels 

 Several of the genes we chose to investigate were not expressed to detectable 

levels in the DRG.  All reactions were run in duplicate, and the criteria for detectable 

gene expression was when more than one of the samples(1 set of duplicates) within more 

than one of the 6 groups(6wk control, both 6wk injury groups, 12wk control, and both 

12wk injury groups) failed to reach the Ct threshold for the gene of interest.  The genes 

included in this list are: IL6, IL10, iNOS, and Interferon gamma (data not shown). 

 

6.2.2 Gene targets whose controls were unchanged from 6 to 12 weeks 

 Genes that were expressed at appreciable levels were divided into two groups 

depending on whether or not expression of their control groups changed significantly 

from 6 to 12 weeks post surgery. There were four genes that had no change in the control 

groups from 6 to 12 weeks; CD11b, LIF(Fig 16), TNFa in DRG and SC(Fig 17), and 

gp130. Of these four genes, only gp130 showed any significant changes. For gp130, in 

the 12.5gcm 12 weeks post injury, expression levels were elevated significantly above the 

control group, as well as both of the 25 gcm injury groups. In animals that received a 25 
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gcm injury, expression levels were reduced significantly from 6 to 12 weeks post 

injury.(Fig 18) 

 

 

6.2.3 Gene targets whose controls changed from 6 to 12 weeks 

 Genes that had changes in the expression of controls from 6 to 12 weeks were 

CNTF and CCL2. For CNTF, all 12 week groups showed a significantly increase relative 

to the 6 wk control and 6 wk 12.5 gcm groups. However, since controls increased from 6 

to 12 weeks, it also helps to assess levels relative to time matched control. If this is done, 

the 6 wk 25gcm group is significantly above the 6 wk control group, while all other 

relative expression levels are not significant. (Figure 19) For CCL2, control expression 

levels decreased from 6 to 12 weeks, but in contrast the injury groups were substantially 

increased. (Fig 20)  

Note: Figure 21 and 22 for discussion purposes 

 

6.3 Discussion 

Interleukins are cytokines that exhibit a diverse array of effects across different 

cell types and tissues (Brocker, Thompson et al. 2010). Interleukins can exert both pro- 

and anti-inflammatory effects, and serve to activate and modulate differentiation of 

immune cells in response to inflammation (Commins, Borish et al. 2010). IL6 belongs to 

a family of cytokines that have a broad range of effects stemming from their various roles 

in inflammation, immune response, and cell survival and differentiation (Jazayeri, Carroll 

et al. 2010), and can be further characterized based on whether or not they are 
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biologically active as monomers or heterodimers. Those of the monomeric subdivision 

bind through the common co-receptor subunit gp130 (also known as IL6ST) (Boulay, 

O'Shea et al. 2003; Heinrich, Behrmann et al. 2003), which also includes(among others) 

LIF and CNTF. LIF signals through gp130 in combination with LIF receptor (LIFR) 

(Plun-Favreau, Perret et al. 2003), while CNTR signals through a heterotrimeric complex 

that includes both gp130 and LIFR as well as the CNTF receptor (CNTFR) (Stahl and 

Yancopoulos 1994). 

Expression of IL6 can be stimulated through signaling complexes of other 

cytokines such as TNFa, IL1, and LIF, as well as in an autocrine fashion. This occurs 

through binding of nuclear factor IL6 (NF-IL6) to an IL1-responsive element within the 

IL6 promoter (Akira, Isshiki et al. 1992), and also activates transcription through 

phosphorylation of STAT3 tyrosine kinase (Akira 1997). In contrast to IL6, IL10 is 

biologically active as a homodimer and acts through the JAK/STAT pathway to suppress 

expression of pro-inflammatory cytokines, and is thus an important anti-inflammatory 

molecule (Murray 2007). These cytokines, along with the evolutionary related 

Interleukins in both of their family, are expressed by white blood cells in response to 

infection and injury (Dinarello and Mier 1986). In addition, CD11b is an integrin 

expressed on the cell surface of white blood cells that mediates adhesion and migration of 

leukocytes (Solovjov, Pluskota et al. 2005). They are important mediators of the immune 

response and are highly expressed after insult to the body, thus due to the lack of 

expression (or change in expression in the case of CD11b) we observed, it is unlikely that 

the infiltration of white blood cells that express these molecules into the DRG can explain 

the patterns of expression that were observed in our previous studies.  Despite our data 
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suggesting that the IL6 cytokines that are biologically active as monomers and TNFa do 

not appear to be responsible for the expression pattern of neurotrophhins 12 weeks post 

SCI, we did not investigate the IL6 cytokines biologically active as heterodimers, nor did 

we investigate other Interleukins or cytokines. Since these molecules comprise expansive 

families of molecules that mediate immune response in a wide variety of ways, our 

analysis is by no means exahaustive.  

IL6, LIF, and CNTF have differing effects on the survival of cultured newborn rat 

DRG neurons. Specifically, both CNTF and LIF are able to promote survival of these 

neurons (Simon, Thier et al. 1995), and enhances neurite outgrowth in both large 

diameter and small diameter cells of the DRG, while IL6 does not (Sango, Yanagisawa et 

al. 2008).  This finding however, is likely due to the IL6 receptor not being sufficiently 

expressed at this developmental stage, as supplying both the IL6 ligand and soluble 

receptor does support survival (Thier, Marz et al. 1999).  In vivo, CNTF is expressed by 

Schwann cells, and after peripheral nerve injury is released to promote axonal 

regeneration and neuron survival. However, when primary DRGs are explanted and 

cultured, neurons begin to also express CNTF, which is localized to both the soma and 

dendrites (Sango, Yanagisawa et al. 2007). This could be due either to disruption of cell-

cell contact, or potentially a response to injury by the explanted neurons. We observed 

that CNTF levels were elevated above that of controls 6 weeks post injury in a 

moderately severe (25 gcm) contusion.  However, though the expression levels of both 

the 12 week control and injury groups are elevated above controls in the 6 week post 

injury groups, CNTF levels returned to that of controls by 12 weeks post injury relative 

to the time matched control. Thus, the increase in CNTF seen at 6 weeks does not persist, 
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and the further increase in CNTF expression above 6 week levels is likely only a function 

of aging, a finding that is supported in previous literature (Nakamura and Bregman 

2001).  

Our investigations of inflammatory markers that potentially influence expression 

of the neurotrophins and their Trk receptors targeted three groups of molecules that serve 

separate, yet overlapping functions: cytokines, interferons, and chemokines. Cytokines 

mediate growth, differentiation, and activation during an immune response. This 

contrasts with chemokines, which serve to direct immune cells to sites of inflammation 

via chemotaxis; and inteferons, which directs cellular responses to viral infections 

(Commins, Borish et al. 2010).  Interferon gamma was the only interferon that was 

assessed, due to its important role in cell-mediated immunity (Farrar and Schreiber 1993), 

and had undetectable levels of expression. The only chemokine (White, Sun et al. 2005) 

assessed was Chemokine ligand 2(CCL2), also known as Monocyte Chemotactic 

Protein(MCP1). Expression of CCL2 was essentially the same as control at our 6 week 

time point, but at 12 weeks post injury had risen to approximately 8 times the level of the 

control group in both injury severities. CCL2 leads to hyperexcitability of DRG neurons 

both in culture and in vivo (White, Sun et al. 2005).  Additionally, many models of 

neuropathic pain induce potent expression of CCL2, (Tanaka, Minami et al. 2004; Jeon, 

Lee et al. 2008; Bhangoo, Ripsch et al. 2009; Jeon, Lee et al. 2009; Foster, Jung et al. 

2011) and knockout mice lacking its receptor CCR2 (Abbadie, Lindia et al. 2003),  or 

pharmacological blockade (Serrano, Pare et al. 2010) impairs the development of 

neuropathic pain. This hyperalgesic response is due to upregulation of the current density 
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and expression of TRPV1 (Kao, Li et al. 2012) and Nav1.8 (Belkouch, Dansereau et al. 

2011). 

In the rodent and human spinal cord, CCL2, along with several other 

inflammatory cytokines, can be used as a correlative biomarker for injury severity 

(Kwon, Stammers et al. 2010; Stammers, Liu et al. 2012).  We observed that CCL2 was 

upregulated in our 25 gcm group at 12 weeks post-injury. Though the discrepancy 

between our findings and that of the previous studies is unclear, there are a number of 

parameters that were different between the experiments. In the previous rodent studies, 

the time points assessed only extended to 24 hours post injury. Though a contusion injury 

was also used for the purposes of their studies, the injury was performed using the OSU 

impactor rather than the NYU device.  As shown earlier, not only can the type of 

contusion effect the levels of expression but even the severity within the same type of 

injury model. These previous also assessed protein levels, whereas only mRNA was 

examined for the purposes of our study. In terms of the human study, protein levels were 

also examined, though from the CSF and the blood serum, and the time period was up to 

72 hours post injury. These vastly different time points and methods of injury very likely 

contributed to the differences observed between the findings of these previous studies and 

our own. 

 

 

 

 

 

51 

 



 
 
 
 
 

CHAPTER 7 

GENERAL DISCUSSION 

 Through our characterization of neurotrophins and their Trk receptors we found 

that from 6 to 12 weeks post-contusion there were differences in the mRNA expression 

levels of these molecules, and this difference was dependent on the severity of the 

contusion. Based on previous data that use different models of spinal cord injury and 

assess neurotrophin/Trk levels at various times (Table 1), the observation that there is an 

injury severity dependent difference in expression of individual transcripts is not 

surprising. This highlights the importance of characterizing any experiment in terms of 

injury model, time point, and injury severity. However, it nevertheless elicits the question 

of why the difference exists? One explanation is that there are different levels of activity 

below the level of the injury. It is feasible to think that differing levels of descending 

input(based on which fibers are spared) lead to concomitant changes to the motoneurons 

basal levels of excitability, perhaps through remaining monoaminergic synapses 

(Heckman, Lee et al. 2003; Anelli, Sanelli et al. 2007; Murray, Stephens et al. 2011).  

This could in turn result in tonic levels of muscle activity and subsequent levels of 

afferent activity that are affected relative to the amount of spared descending input. 

 Another possibility is that the nervous system is reacting to the injury by 

regulating certain plasticity-inducing factors. Operating under this notion, there are 

several scenarios that one could use to explain these observations, 1) such factors could 

be regulated in a manner meant to achieve the degree of homeostatic plasticity (aka 
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“normalcy”) that was present in the circuitry before the injury 2) such factors could be 

regulated based on the capacity for the circuitry to achieve a certain degree of 

homeostatic plasticity(that is, based on severity of the injury and how well the animal(s) 

recovered).  If the former is the case, then one would expect that the further the animal is 

from how it functioned before the injury (i.e. more severely injured), the more highly a 

plasticity inducing molecule would have to be expressed to achieve the level of pre-injury 

function. If the latter is the case, then one would expect essentially that the higher the 

capacity for functional recovery (i.e. less severely injured), the higher the level of 

expression of these plasticity-inducing factors.  

 It is important to note, that the “factors” being referred to could either be the 

neurotrophins/Trks themselves and/or some other molecule that regulates expression of 

all the neurotrophins/Trks. If it is a single neurotrophin, the prime candidate would be 

NT3, as it is the only neurotrophin that has been shown to be able to bind to and activate 

all three Trk receptors (Davies, Minichiello et al. 1995). If it is all the neurotrophins, then 

it would likely be acting through the pan-neurotrophin receptor p75 (Dechant, Rodriguez-

Tebar et al. 1994). There is also the possibility that it is not the neurotrophins acting 

through Trks or p75, but through a separate signaling mechanism that acts on all 

subclasses of neurons in the DRG that express neurotrophins/Trks and accordingly 

coordinates levels of expression, such as an inflammatory mediator.  Indeed, 

inflammatory molecules such as TNFalpha and IL6 have been suggested to be associated 

with NGF (Woolf, Allchorne et al. 1997) and BDNF (Lin, Ro et al. 2011) mediated hyper 

excitability of DRG neurons in models of neuropathic pain. The observation that CCL2 is 

drastically upregulated at 12 weeks is particularly interesting, given that CCL2 can effect 
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DRG neurons of all sizes (i.e. large, medium, small) (White, Sun et al. 2005), which 

theoretically encompasses all subpopulations of neurons that express Trk receptors in the 

DRG.  Finally, these putative interactions could be occurring synergistically, such that an 

external factor initiates a particular expression pattern which is then overtaken by 

neurotrophin/Trk mediated neurotrophin/Trk expression in a feed-forward manner, or 

vice versa.  

 Upon further analysis, by calculating the correlations between expression levels 

of the different neurotrophins and Trks in the context of each individual animal, we were 

able to uncover what appears to be a coordinated pattern of expression that exists among 

the neurotrophins and Trk receptors in the DRG (but not spinal cord) at 12 weeks (but not 

at 6 weeks) post injury.  This pattern was independent of injury severity (i.e. expression 

values were correlated between all molecules regardless of whether the injury was 

12.5gcm or 25 gcm). Furthermore, we investigated expression of cytokines as potential 

elements involved in the changes we observed, and  identified elements that were 

regulated in either a time(i.e. CCL2) or injury severity dependent (i.e. gp130) fashion. 

Based on these assessments, future investigations into the cause(s) of initiation of these 

mechanisms will be better informed as to what might or might not be a useful starting 

point.  

 The finding that at 12 weeks there was a coordinated expression pattern in the 

DRG that was independent of injury-severity while certain transcripts increase (i.e. TrkA) 

from 6 to 12 weeks, but other transcripts decrease (i.e.TrkB), warrants further 

clarification. Why is this happening? More specifically, what is causing a different 

direction of change in one versus the other if they are eventually being regulated in an 
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analogous manner in the different constituent subpopulations of neurons? One possibility 

is that each set of neurotrophin/Trk receptor has an initial response to loss of descending 

input/alteration of afferent input acutely (i.e. TrkB increases, TrkA decreases), from 

which it is still “recovering” at 6 weeks, that by 12 weeks has been overtaken by a 

differing response. Such a response could be activity- or factor-dependent (or both) in 

such a way that modulates their expression in a manner that dictates when expression of 

one of these molecules (neurotrophin, Trk) is relatively low/high in the DRG of a certain 

animal, that the other molecules of their family (neurotrophin, Trk) is relatively low/high 

as well. It is also possible that both are active at the same time, with a more robust 

response that masks the effect of the other until the initial robust response becomes 

inactive and thus the other becomes more apparent.  

 The coordinated expression pattern can also be understood as a predictive factor 

that, given a set of data, one could deduce which animal expressed a certain level of a 

neurotrophin/Trk based on the expression level of another neurotrophin/Trk. For 

example, view the range of all injured animals at 12 weeks post injury and their TrkA 

expression values as lying on a spectrum from low to high. When compared with the 

highest value from NGF, BDNF, NT3, TrkB, and TrkC, the highest expression in 4 of 5 

of these molecules are from the same animal as that for TrkA. Though it might be useful 

for one to view the coordinated expression pattern in this way to aid conceptualization, it 

is important to note that the predictive power of any given point is directly related to the 

correlation coefficient between two sets of molecules, and since none of the coefficients 

were 1, this is not an absolute predictor (as demonstrated above). 
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 Due to the finding that control levels of certain genes changed between 6 and 12 

weeks, plots were constructed for display purposes and to identify any robust trend that 

might have been occurring that our statistical analyses failed to elucidate. These analyses 

failed to uncover any novel findings, but served to demonstrate that there was a higher 

degree of variability in neurotrophin expression than Trk receptor expression (Fig 21 and 

22). Subsequent power analysis was performed post-hoc to determine the ideal group size 

based on the average means and variability for all neurotrophins and Trk receptor 

transcripts assessed. These analyses revealed that had we used an n of 12 for all groups, 

we would perhaps have also found changes between groups relative to both injury 

severity and survival time in the following analyses: TrkC in the DRG, NT3 in the DRG, 

TrkB in the DRG, TrkA in the spinal cord, and TrkA in the DRG. 

 Severalother factors that could have influenced the results we observed warrant 

further consideration. For instance, as the animals that were used in this experiment were 

all females, it is important to note that the potential role of the estrous cycle was not 

investigated. (Baker and Hagg 2005) found that after spinal cord contusion, the stage of 

the estrous cycle did not affect sensory axon degeneration, though neurotrophin levels 

were not examined. Investigations of the role of estrous cycle on neurotrophin/Trk 

receptor levels have been performed primarily in the hippocampus. In one study, it was 

shown that TrkA fluctuates by as much as 16-fold during proestrous in reactive 

astrocytes. This effect was not observed in rats that were ovariectomized, however with 

reintroduction of estrogen, TrkA increased 12-fold (McCarthy, Barker-Gibb et al. 2002). 

This increase in expression of TrkA is also observed in medial septum neurons, and for 

levels of BDNF in the hippocampus, but not NGF (Gibbs 1998). Mutated BDNF can lead 
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to increased anxiety behavior, impaired memory, and increased expression of BDNF and 

its receptor TrkB in the hippocampal formation, and also alters the fluctuation of protein 

expression observed across the estrous cycle (Spencer, Waters et al. 2010). Additionally, 

in the hippocampus of mice, TrkB is phosphorylated during high-estradiol states(i.e. 

proestrus in females) than lower estradiol states(estrus and diestrus in females and males) 

(Spencer-Segal, Waters et al. 2011), an increase that also is accompanied by a period of 

greater hippocampal excitability (Scharfman, Mercurio et al. 2003). These studies 

highlight 1) that different stages of the estrous cycle can lead to differential changes in 

gene expression of neurotrophins 2) that different stages of the estrous cycle can alter 

BDNF levels, which leads to changes both to the activity of individual neurons and 

behavior of the animal. Despite these documented interactions, the exact contributions of 

hormone levels and stages of the estrous cycle to our data are unclear. 

 Another consideration is activity levels of the animals before sacrifice. 

Specifically, changes in the activity level could alter the induction of immediate early 

genes, such as c-Fos. c-Fos has been used as a marker for many cellular processes, 

including activity (Jasmin, Gogas et al. 1994), hormonal activation (Li, Hand et al. 1997), 

as well as neurotrophin binding (Boyce, Park et al. 2012). Spinal cord injury can also 

induce expression of immediate early genes. After a spinal cord crush injury, levels of 

immediate early genes, cytokines, and neurotrophins show a sequential expression pattern 

that differs with time. c-fos and c-Jun reach peak levels an hour after injury, persisting for 

up to 6 hours; followed by cytokines TNFa and IL6  which reach their peak expression 

levels around 3 hours, persisting up to 12 hours; and then the neurotrophins NT3 and 

BDNF begin to be upregulated at 12 hours (Hayashi, Ueyama et al. 2000). Relating this 
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to activity period after sacrifice, animals that were sacrificed earlier in the day (close to 

the night, their period of highest activity), would be more likely to have increased c-Fos 

(for example) levels relative to those sacrificed at later times in the day. From the study 

above it appears that this induction of immediate early genes does not begin to affect 

neurotrophin levels until around 9 hours after these genes reach their peak, thus 

neurotrophin levels would likely be higher later in the day, assuming a direct link 

between activity, immediate early gene expression, and neurotrophin expression. The fact 

that the animals were sacrificed in a sequential manner throughout the day (from 

approximately 10am to 5 pm) and that we still found consistently elevated expression 

levels in some groups, it seems unlikely that these factors played a significant role in 

influencing the data. Nevertheless, it certainly would have been useful to have some 

measure of activity, and similar future studies should attempt to address these concerns. 

  Though the manipulation of expression of the neurotrophins and/or Trk receptors 

might seem beneficial when viewed alone for purposes of cell survival, or alteration of 

excitability of a certain population of cells, these studies also highlight an idea that has 

not been explored thus far with regard to neurotrophins. Though neurotrophins/Trk 

receptors have been largely been investigated under that assumption that they have 

discrete functions on discrete populations of cells, it is also possible that manipulation of 

any one component of their signaling or expression system could alter the others in a way 

that could be maladaptive. Take for instance the effects of NT3, which has established 

functions as potentiating the excitability of proprioceptive neurons in both the DRG and 

spinal cord (Klein, Silos-Santiago et al. 1994). If one were to attempt to overexpress NT3 

as a means of enhancing the excitability of this system, it could inadvertently lead to 

58 

 



overexpression of NGF as well (Mendell, Albers et al. 1999), which has documented 

effects of leading to hyperexcitability of nociceptive neurons (though NT3 can have anti-

nociceptive properties (Shu XQ 1999) as well, thus may serve to mitigate this effect to an 

extent).  Conversely, reducing expression of NGF to ameliorate pain could lead to 

unwanted effects on proprioceptive circuits. Accordingly, investigations that involve 

neurotrophins/Trk receptors should take into account the effect that manipulation of one 

component could have on all others, both through expression analysis and functionally. 

Furthermore, as side effects are a common reason for cessation of many therapies, this is 

also important with regard to clinical studies that involve neurotrophins.  

 Taken together, these findings point to what appears to be a set of overlapping 

interactions that ultimately produce a coordinated transcriptional network.  After a 

contusive injury to the thoracic spinal cord, a degree of descending input to the lumbar 

cord is lost based on the exact nature of the injury. These inputs are heterogeneous in 

nature in terms of neurotransmitter content of the spared tracts, and the location in the 

lumbar cord onto which the tracts synapse. Despite this heterogeneity, the resulting effect 

of this loss of descending input is loss of function of the output of lumbar circuits (i.e. 

lower motoneurons), and loss of molecular interactions between synapses of the 

descending tracts and the axons/dendrites/synapses present in the lumbar cord. Likely at 

play in the acute setting of the injury is the release of inflammatory/stress molecules from 

the spared descending synapses that is due to their interaction with the still dynamic 

molecular setting of the injury site. After time has passed and the cord has “adjusted” to 

the different environment and dynamic events have ceased, it appears based on our work 

that an external factor begins to regulate the expression of the neurotrophins and their 
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cognate Trk receptors in a “coordinated” manner. Based on our results, CCL2 seems to 

be a potential contributor to such a process, as it is dramatically upregulated at time 

points when we see this phenomenon of coordinated expression (Fig 20) and has been 

previously shown to effect large, medium, and small diameter cells of the DRG, which 

represent all different subclasses of neurons on which Trk receptors are present (White, 

Sun et al. 2005). 

 Though this is one mechanism that may be present, a separate mechanism, 

perhaps one that is activity dependent also appears to regulate the levels of the 

neurotrophins and the Trk receptors. Such an activity dependent mechanism could be 

based on a level of activity that is determined by injury severity, i.e. motor neuron pools 

with greater levels of spared descending input lead to more motor output which leads to a 

greater level of basal activity in the DRG. Summarily, both activity dependent and 

independent mechanisms could be at play simultaneously to achieve a spectrum of 

expression levels. Alternatively, differing levels of motoneuron output could lead to 

release of a common factor/molecule in the periphery that is motoneuron activity 

dependent but not dependent on levels of afferent activity.  Whether this process is 

beneficial or maladaptive to the entire system depends on a variety of factors, including 

(but not limited to); the relative contributions of each trophic factor to the overall activity 

of the system, how much the expression level of one factor influences the other, and the 

severity of the injury and what types of information are relays to more rostral levels of 

the nervous system. These findings have an impact not only as novel discoveries, but 

could also have implications for the utility of different therapeutic approaches used to 

help patients with spinal cord injury. Ultimately, only further investigation into the 
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precise mechanisms that govern such processes will determine their impact on future 

scientific research.                   
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Figure 1 

 

 

Figure 1: In ASIA A/B patients (complete motor loss) and ASIA C/D patients 

(incomplete motor loss) with body weight supported treadmill training (BWST), levels of 

activation of motor neuron pools show drastic spatiotemporal changes when compared 

with controls (healthy subjects) 
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Figure 2 

 

 

Figure 2: Treadmill training improves both maximum speed of stepping and the number 

of successful steps that are able to be performed after thoracic transection in the cat. 
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Figure 3 

 

 

Figure 3: Contusive spinal cord injury results in decreased expression of BDNF, but does 

not change NT3 expression. Exercise after contusive spinal cord injury results in levels of 

BDNF and NT3 expression that are elevated relative to what is observed after contusive 

spinal cord injury. 
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Figure 4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Neurotrophic factor treatment(NTF) after thoracic transection of the cat spinal 

cord produces the same effect as treadmill training(trained) after transection. 

Combination of training and neurotrophic factor treatment results in similar kinematic 

parameters as seen before transection. 
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Figure 5 

 

 

 

Figure 5: BDNF decreases the amplitude of the EPSP in motoneurons after afferent 

stimulation. NT3 increases the amplitude of the EPSP in motoneurons after afferent 

stimulation, demonstrating a difference in the effects of the two Trk receptor ligands. 
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Figure 6.  Injuries were characterized 

using BBB scores to assess hindlimb 

locomotor function and white matter 

sparing (WMS) at epicenter using EC 

stain. (A)  BBB scores of groups that 

received 12.5 g-cm (blue) or 25 g-cm 

(green) NYU injuries.  Starting at week 

5, a significant difference was observed 

between the two injury severities.  Both 

groups were significantly different 

(p<0.05) from controls (not shown) at all 

time points.  (B)  White matter sparing at 

epicenter (x-axis) plotted versus BBB 

score.  Black dots represent 6 week 

values.  Green dots represent 12 week, 25 

g-cm injured animals.  Blue x represent 

the two animals from the 12 week, 12.5 

g-cm group with the lowest BBB scores within the group.  Blue dots represent the four 

animals from the 12 week, 12.5 g-cm group with the highest BBB scores within the 

group.   (C)  Image taken from a 12.5 g-cm contused animal showing a laterally-

symmetrical injury pattern at the epicenter.  Note the difference from (D), which was 

taken from an animal that also received a 12.5 g-cm spinal cord contusion but which 

yielded an asymmetrical injury at epicenter. *p<0.05, ***p<0.001 
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Figure 7. 

 
 
 
 

mRNA expression of Trk receptors is altered in L4/5 DRG at 6 and 12 weeks after 

receiving either 12.5 g-cm(blue) or 25 g-cm(green) NYU contusion injury to spinal cord 

at vertebral level T9. Fold change (F.C.) is reported as change of 12 week relative to 6 

week time points in all figures.  Black bar on TrkA reports fold-change (f.c.) of 25 g-cm 

at 12 weeks relative to 12.5 g-cm at 12 weeks. X axis denotes weeks post injury.  White 

lines in box-plots indicate group mean.  Dotted gray lines indicate expression level of 

controls (normalized to 1), with ± s.e.m. indicated by the vertical arrows at right end of 

the control line.  #p<0.05 vs. control, *p<0.05, **p<0.01, ***p<0.001 
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Figure 8 

 
 
mRNA expression of Neurotrophins is altered in L4/5 DRG at 6 and 12 weeks after 

receiving either 12.5 g-cm (blue) or 25 g-cm (green) NYU contusion injury to spinal cord 

at vertebral level T9. Fold-change (f.c.) is reported as change of 12 week relative to 6 

week time points in all figures. X axis denotes weeks post injury.  White lines in box-

plots indicate group mean.  Dotted gray lines indicate expression level of controls 

(normalized to 1), with ± s.e.m. indicated by the vertical arrows at right end of the control 

line. #p<0.05 from control.  *p<0.05, **p<0.01, ***p<0.001 
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Figure 9. 

 
 
 
mRNA expression of Trk receptors is altered in L4/5 spinal cord at 6 and 12 weeks after 

receiving either 12.5 g-cm (blue) or 25 g-cm (green) NYU contusion injury to spinal cord 

at vertebral level T9. Fold-change (f.c.) is reported as change of 12 week relative to 6 

week time points in all figures.  X axis denotes weeks post injury. White lines in box-

plots indicate group mean.  Dotted gray lines indicate expression level of controls 

(normalized to 1), with ± s.e.m. indicated by the vertical arrows at right end of the control 

line. #p<0.05 from control.  *p<0.05, **p<0.01, ***p<0.001 
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Figure 10. 

 
 
 
A) Scatterplots of Neurotrophin mRNA expression in L4/5 SC at 6 and 12 weeks after 

receiving either 12.5 g-cm (blue) or 25 g-cm (green) NYU contusion injury to spinal cord 

at vertebral level T9, relative to the unified control group as was done for the other data.  

x's represent mRNA expression of age-matched naive animals.  Open circles represent 

expression of age-matched laminectomy control animals. *p<0.05, **p<0.01 

B) mRNA expression of Neurotrophins in L4/5 SC at 6 and 12 weeks after receiving 

either 12.5 g-cm (blue) or 25 g-cm (green) NYU contusion injury to spinal cord at 

vertebral level T9, relative to their respective age matched control groups. X axis 

denotes weeks post injury.  White lines in box-plots indicate group mean.  Dotted gray 

lines indicate expression level of controls (normalized to 1), with ± s.e.m. indicated by 

the vertical arrows to the right of each time-point pair. #p<0.05 from control. 
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Figure 11: NGF expression as a function of age in the L4/5 spinal cord of naïve rats 

 

 
 
Figure 11: No age-related change in mRNA expression of NGF.   
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Figure 12: BDNF expression as a function of age in L4/5 spinal cord of naïve rats 
 

 
 
Figure 12: No change in age-related expression of BDNF. 
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Figure 13: NT3 expression as a function of age in L4/5 spinal cord of naïve rats 
 

 
 
Figure 13: NT3 expression is elevated at 9 months post birth relative to both 3 and 6 

months post birth. *p<0.05. **p<0.01 
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Figure 14. 

 

 
 
 
Figure 14: Correlated expression of neurotrophins in DRG emerges at chronic time 

points.  Blue dots represent animals with 12.5 g-cm injuries.  Green dots represent 

animals with 25 g-cm injuries. Values represent fold-change of the individual animals 

versus mean of control group. 
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Figure 15. 
 

 
 
 
 
Figure 15: Correlated expression of Trk receptors in DRG emerges at chronic time points.  

Values represent fold-change of the individual animals versus mean of control group.  

Blue dots represent animals with 12.5 g-cm injuries.  Green dots represent animals with 

25 g-cm injuries. 
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Figure 16 

 
 
Figure 16: No change was observed between any injury severity or time point in the DRG 

for LIF or CD11b expression. 
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Figure 17 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 17: No change was observed between any injury severity or time point in the DRG 

or spinal cord in TNFa expression 
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Figure 18 

 
 
 
 
 
Figure 18: GP130 is decreased in 25 g-cm injury severity group at both time points 

relative to 12 weeks 12.5 g-cm injury severity group. *p<0.05. ***p<0.001. ##p<0.01 vs 

control group. 
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Figure 19 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 19: CNTF expression increases at 12 weeks in both injury severities. Control 

group at 12 weeks time point also increases(top). Relative to time matched control, 

CNTF expression is increased at 6 weeks in the 25 g-cm injury severity, no change 

relative to 12 week time matched control. Black bar represents mRNA expression of 

control group. Blue bar represents mRNA expression of 12.5g-cm injury severity group. 

Green bar indicates mRNA expression of 25 g-cm injury severity group. 
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Figure 20 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 20: CCL2 expression increases at 12 weeks post contusive spinal cord injury. 

Black bars represent mRNA expression of control group. Blue bars represent mRNA 

expression of 12.5 g-cm injury severity group. Green bars represent mRNA expression of 

25 g-cm injury severity group. **p<0.01 
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Figure 21 

 
 
 
Figure 21.  Control expression values of all groups assessed for mRNA levels of 

neurotrophins and Trk receptors in the DRG. An initial statistical analysis(t-test) was 

performed to determine if an age dependent change existed between our 6 and 12 week 

control groups. After performing this analysis we determined that no age related changes 

existed for our expression values in the DRG. Thus, all control relative expression values 

were combined, averaged, and then normalized to the combined average of all control 

values for each molecule labeled on the x-axis (denoted as f.c. all control on y-axis). Red 

X: 12 week control expression values. Black dot: 6 week control expression values.  
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Figure 22 

 
Figure 22. Control expression values of all groups assessed for mRNA levels of 

neurotrophins and Trk receptors in the spinal cord. An initial statistical analysis(t-test) 

was performed to determine if an age dependent change existed between our 6 and 12 

week control groups. After performing this analysis we determined that no age related 

changes existed for our Trk receptor expression values in the spinal cord, but an apparent 

age related change in controls did exist for the neurotrophins in the spinal cord. All 

control relative expression values were combined, averaged, and then normalized to the 

combined average of all control values for each molecule labeled on the x-axis (denoted 

as f.c. all control on y-axis) Due to the difference observed for neurotrophin expression 

values in controls, further analysis was also performed relative to expression values of 

time matched controls at 6 and 12 week time points (Figure 10). Red X: 12 week control 

expression values. Black dot: 6 week control expression values. *p<0.05 
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Table 1. Summary table of previous findings for NTs and Trk. (Hougland et al 2012) 
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Table 1(continued) 
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Table 1(continued) 

86 

 



Table 1(continued) 
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Table 2. Correlations between expression of mRNA for trk receptors in spinal cord.  
 

 
r‐value p‐value r‐value p‐value r‐value p‐value

TrkA vs TrkB 0.47 0.2 0.25 0.46 0.19 0.56
TrkA vs TrkC 0.42 0.26 0.21 0.53 0.4 0.19
TrkB vs TrkC 0.75 0.01 0.76 0.004 0.44 0.16

Control 6 week 12 week
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Table 3.  Correlations between expression of mRNA for neurotrophins, Trk receptors, 
and cognate pairs. 

 

r‐value p‐value r‐value p‐value r‐value p‐value
NGF vs BDNF 0.20 0.61 0.15 0.69 0.84 0.001
NGF vs NT3 0.72 0.03 0.87 0.003 0.92 0.00006
BDNF vs NT3 0.10 0.80 0.33 0.38 0.88 0.0004
TrkA vs TrkB 0.04 0.90 0.005 0.989 0.89 0.0007
TrkA vs TrkC 0.56 0.11 0.61 0.08 0.79 0.006
TrkB vs TrkC 0.40 0.28 0.38 0.31 0.78 0.004
NGF vs TrkA 0.65 0.06 0.55 0.13 0.88 0.0004
BDNF vs TrkB 0.45 0.22 0.69 0.04 0.77 0.005
NT3 vs TrkC 0.57 0.11 0.61 0.08 0.77 0.006

Control 6 week 12 week
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Table 4. Transcription factor binding sites for neurotrophin and trk receptor genes. 
 

Entries with 
transcription 
factors separated 
with a “:” have 
binding sites 
situated such that 
they act in a 
cooperative 
fashion, rather 
than independent 
from each other. 
Entries with 
transcription 
factors separated 
by a “,”share 
binding sites or 
have binding sites 
situated near each 
other such that 
the factors act in 
competition with 
each other. 

TF Binding-site name HGNC symbol TrkA NGF TrkB BDNF TrkC NTF3
AhR AHR x x x
AhR:Arnt x
AP-1 FOS; FOSB; JUN; JUND x x
AP-2 TFAP2A x x x x
AR AR x x
Arnt ARNT x
ATF ATF x x
ATF2 ATF2 x x x x
ATF2:cJun x
Brn-2 POU3F2 x
C/EBP CEBPA,B,D,E,G,Z x x
CAR NR1I3 x
c-Ets-2 ETS2 x
c-Jun JUN x x
c-Myc:Max x
COUP-TF1 NR2F1 x x x
CREB CREB1 x x x x x
CREB,ATF x
CREM CREM x x
DEC BHLHE40 x x x
E2A TCF3 x
Ebox TCF3; MYOD1; MYOG x
ER-alpha ESR1 x x
Ets ETS1,2; ETV1,2,3,4,5,6,7 x x x
Foxj1 FOXJ1 x
FOXO1 FOXO1 x
GATA-3 GATA3 x x
GR NR3C1 x x x
HES1 HES1 x x
HOXA5 HOXA5 x
HOXB8 HOXB8 x
KROX EGR1,2; ZNF22; ZBTB7B x
MAF MAF x x x x
MAFB MAFB x x x x x
Max MAX x x x
MEF-2 MEF2A x
MEF-2C MEF2C x
Myc MYC x x
Neuro D NEUROD1 x x x x x
NFAT1 NFATC2 x x x x
NF-AT4 NFATC3 x x x x
NF-kappaB NFKB1 x
NKX2B NKX2-2 x
NRSF REST x
NURR1 NR4A2 x x x
Oct-1 POU2F1 x x
Octamer POU family of proteins x x
Oct-x STAT1 x
p53 TP53 x
Pax-3 PAX3 x x x x x
Pax-6 PAX6 x
Pax-8 PAX8 x x x
Pbx1 PBX1 x x x
POU6F1 POU2F1 x
POUF2F1 POU6F1 x
PPARgamma PPARG x
PPARgamma:RXR-alpha x
PXR NR1I2 x
RXR-alpha RXRA x x
SF1 SF1 x
SMAD MADH family of proteins x x
Smad3 SMAD3 x x
Sox1 SOX1 x x
Sox2 SOX2 x
Sp1 SP1 x x x x
SRF SRF x
Sry SRY x x x
STAT SOAT1 x x x
STAT1 STAT1 x
STAT3 STAT3 x x
Tax CNTN2 x
Tax/CREB x x
Tbp TBP x x x
TCF-4 TCF4 x
Tcfap2a TFAP2A x
Tcfap2b TFAP2B x
Tst-1 CCDC6 x
USF USF1 x
USF2 USF2 x
VDR VDR x
VDR, CAR, PXR x x
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