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Abstract

Introduction: Pharmacokinetic modeling of contrast uptake by Dynamic-Contrast
Enhanced Magnetic Resonance Imaging studies has shown potential to predict the
pathologic response to neoadjuvant therapy in breast cancer patients via several
small studies. We will attempt to prospectively validate the performance of several
previously published criteria in women undergoing neoadjuvant therapy with
bevacizumab or trastuzumab.

Methods: 11 patients underwent dynamic contrast enhanced magnetic resonance
imaging both before and after receiving one cycle of trastuzumab or bevacizumab
neoadjuvant chemotherapy for a primary breast lesion of greater than two
centimeters. By abstracting pharmacokinetic parameters (Ktrans) from each study,
predictions for therapeutic response based on previously published criteria (Ah-See
and Yu utilize a threshold for percentage change in median Ktrans; Padhani, a
percentage change in Ktrans range) were compared with the response by pathology
acquired after completion of neoadjuvant therapy.

Results: 7 patients were able to successfully complete imaging at the two requisite
time points. All utilized criteria correctly identified 5/5 non-responders; the Ah-See
and Padhani criteria were able to identify 1/2 positive responders; and the Yu
criterion identified 0/2 positive responders.

Discussion: The efficacy of the Ah-See and Padhani criteria identify responders and
non-responders equally well. Due to the Padhani criterion’s susceptibility to noise,

however, it is likely that Ah-See would outperform Padhani on a larger cohort.
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Introduction

The non-invasive qualification and quantification of neoplastic lesions poses
obvious benefits to patient care. Unfortunately, while there exist imaging modalities
suited to qualifying tumor characteristics, obtaining clinically relevant measures of
malignancy often requires physical sampling for ex-vivo pathological evaluation in
addition to any imaging. As new anti-cancer agents whose primary effect may not
initially be cytolysis become increasingly common in clinical practice, the
development of non-invasive staging techniques that investigate histologic or
metabolic features not traditionally appreciated via anatomical imaging becomes
necessary. This study will examine one such proposed imaging modality:
pharmacokinetic (PK) modeling of Dynamic Contrast-Enhanced Magnetic
Resonance Imaging (DCE-MRI). In particular, DCE-MRI will be used to evaluate the
response of patients with breast cancer to the neoadjuvant therapy with the

antiangiogenic agents bevacizumab and trastuzumab.

Clinically evaluating anti-angiogenesis agents in breast cancer: the need for DCE-MRI
Anti-angiogenesis agents like bevacizumab are recombinant humanized
monocolonal antibody that blocks the effects Vascular Endothelial Growth Factor
(VEGF). Bavacizumab’s pharmacologic mechanism involves binding to, and thus
inhibiting, the cellular receptors of VEGF. VEGF, itself, is a potent inducer of many
effects thought to be important to the progression of cancer, including mitogenic

and prosurvival functions on vascular endothelial cells; angiogenesis; and induction



of the formation of fenestrations in the endothelial lining of vessels 1. To that end,
initial animal studies of bevacizumab have demonstrated in-vivo inhibition of tumor
growth in mice 2, an effect which has been replicated in humans in many different

solid tumor types 3-.

Breast cancer presents a particularly attractive target for bevacizumab because
many of its histologic subtypes have been shown to over-express the VEGF receptor
7 and indeed, studies have indicated the prognostic value of VEGF expression in
response to therapy 8°. Accordingly, three large randomized controlled trials have
demonstrated that the addition of bevacizumab to selected first-line, small-
molecule-based chemotherapies increases the progression-free survival of certain
patients with breast cancer 10-12, Interestingly, this benefit to progression free
survival interval did not correspond with an increase in overall survival in the
studies. This discordance has led to bevacizumab’s disapproval for use as part of
the primary chemotherapeutic regimen in breast cancer via the United States Food
and Drug Administration. It should be noted, however, that these large studies were
designed and conducted according to long-established and familiar criteria for
measuring outcome. As will be discussed, these measurements do not directly

quantify the physiologic action of agents such as bevacizumab.

There exist two classification schemes accepted by the Food and Drug
Administration for the measurement and reporting of tumor response to therapy

during clinical trials: the world health organization guidelines (WHO0)13 and the



more recently developed Response Evaluation Criteria in Solid Tumors (RECIST)14.
Both WHO and RECIST guidelines define surrogate clinical endpoints such as
response and progression free survival based on serial changes in tumor size. .
Both utilize thresholds of percentage change of the largest-measured diameter
(two-dimensional in the case of WHO, and one dimensional in the case of RECIST) to
classify disease as progressive, stable, or a partial responder (note that complete
response is also defined, but as the absence of apparent disease). Such schemes are
less than ideal for the evaluation of anti-angiogenic agents such as bevacizumab,
which are thought to be cytostaticl® and may not result in immediate tumor
shrinkage. Thus, bevacizumab’s efficacy may not be well reflected in the traditional

size-based endpoints incorporated into its clinical trials to date.

The need for a well-tailored, non-invasive means for detecting the activity of anti-
angiogenic agents such as bevacizumab goes beyond the potential for higher quality
research design. Indeed, as neoadjuvant therapy has become increasingly utilized in
breast cancer 16, the determination of a given patient’s pathological response early
in their course of therapy is important as it bears prognostic significance and may
influence outcome?’. Interestingly, a potentially clinically relevant pathological
response to bevacizumab may be detected as early as 48 hours after the initiation of
therapy!8. Therefore, while it appears to be possible to gauge a patient’s response to
therapy with anti-angiogenic agents, to investigate and potentially utilize them in
the neoadjuvant role, one’s current options for clinical assessment are less than

ideal: either subject the patient to invasive pathological biopsy or rely on



established size-based biomarkers that may not strongly correlate with in-vivo

activity.

This begs the question: if the metrics traditionally utilized to evaluate cytotoxic
chemotherapeutic agents are potentially inadequate to evaluate anti-angiogenic
agents, are there other more effective imaging biomarkers? One of the most
promising imaging biomarkers is DCE-MRI'. This study will attempt to further

evaluate DCE-MRI’s efficacy in this role.

DCE-MRI and Pharmacokinetic Modeling

The DCE-MRI moniker encompasses a wide range of magnetic resonance imaging
study designs. It has been employed to characterize lesions of many different
histologic types including: breast, prostate2, brain?1, liver?2, and cervix?3 among
others. Despite the variety of pathology surveyed, each imaging study incorporates a
very simple mechanism: inject an extracellular contrast agent during MR signal
acquisition so that, in the completed study, disparate phases of contrast wash-in and

washout can be evaluated with some sort of analysis.

In its basic implementation, DCE-MRI is commonly used as a tool for evaluating
solid organ masses.. For example, the diagnosis of several common liver lesions can
be made based on a lesion’s appearance on images obtained at three specific time
points following the administration of a CT or MRI contrast agent. Focal nodular

hyperplasia enhances briskly in the arterial phase and then becomes iso-



intense/iso-dense to the liver parenchyma on delayed images. Hepatic
hemangiomas display peripheral, nodular, discontinuous enhancement in the
arterial phase and gradually fill with contrast at more delayed time points.
Hepatocellular carcinoma enhances briskly in the artierial phase and then becomes
hypo-dense/hypo-intense to the liver parenchyma on delayed images. The
subjective evaluation of a lesion’s enhancement characteristics over time is the

simplest form of DCE-MRI.

A semi-quantitative example of DCE-MRI is used in the diagnosis of breast cancer.
Early investigators evaluated contrast uptake and washout in clinically suspicious
breast lesions?4. In their analysis of signal intensity curves obtained from nine time
points approximately forty-seconds apart they stratified the resulting time-intensity
shape following bolus arrival into one of the three classes of form demonstrated in
Figure 1: uptake, plateau, and washout. Through this, they were able to show that
malignant tumors were more likely to enhance and then de-enhance (consistent
with the washout curve)where-as benign lesions tended to enhance progressively
(consistent with the continued uptake curve). (p<.001, sensitivity 91%, specificity
83%). Further investigations would confirm this trend in morphology?52¢, though
with insufficient specificity to be useful in confidently distinguishing benign from
malignant breast tissue. Nevertheless, the current standard of care in breast MRI is
to obtain high spatial resolution images of the breast before contrast, during the
first pass arterial phase, and then again 5-6 minutes later and analyze the resulting

signal enhancement curve. This is a semi-quantitative example of DCE-MRI.
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Figurel Diagrammatic representation of the three categories of signal intensity (SI) curves noted after
initial upstroke from the bolus (dashed line marks the end of this period): continued uptake, plateau,
and washout.

Multiple strategies to quantify curve morphology have been proposed and vary from
measuring the initial slope of the curve??, to finding the area under the curve after
some elapsed time period?8, to some of the approaches discussed in greater detail in
this paper. What these methods have in common is that they attempt to capture the
pharmacokinetic behavior of contrast as it diffuses into normal and pathologic
tissues. For instance, one such method -- signal enhancement ratio (SER) -- is
calculated by measuring the signal in a lesion at three different time points S,S,,S,
(corresponding to pre-bolus administration, estimated peak-signal during the first
pass arterial phase, and after enough time has passed to reach steady state,

Sl _So

respectively) 2°. SER is calculated as High SER values correspond to tumors

2 0

that enhance briskly and then de-enhance. Low SER values correspond to tumors

that either show low levels of initial enhancement or progressive delayed
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enhancement. SER has been studied in a limited population of breast cancer
patients as a predictor of resurrence following chemotherapy. Tumors with large
areas of increased SER were more likely to recur following chemotherapy than
tumors with low SER30. However, its accuracy in that study (75% correctly
identified, but only 35% correctly identified before chemotherapy) leaves much to

be desired if it is to be employed as tool for clinical decision making.
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More rigorous attempts at qualitatively analyzing time-enhancement curves involve
the use of true pharmacokinetic models. The most popular model was first
described by Tofts et al and variants of this model are recommended by the National
Cancer Institute in the US and the Pharmacodynamic/Pharmacokinetic
Technologies Advisory Committee in the United Kingdom whenever analysis of
DCE-MRI is to be used as an imaging biomarker31. The Tofts model is a simple two
compartmental model diagrammed in Figure 2. In it, contrast is introduced into the
blood plasma (compartment #1) and is either excreted by the kidneys at a
concentration-dependent rate k2 or leaks across a vascular barrier into a tumor
tissue (compartment #2) at a concentration-dependent rate k1. In this model, the
contrast agent only has access to the extracellular space of the tumor (i.e. the
contrast agent does not actually enter into cells), so the extracellular fraction of the
tumor becomes an explicit subcomponent of the tissue compartment. If v,
represents the fraction of tumor that is extracellular space then the relationship

between the concentration of contrast in the tissue compartment ( ¢,(¢)) and its

extracellular subspace ( c¢.(7)) is

c(t)=ve (1) (1)
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Figure 2 The Tofts Model. A two compartmental model is shown where concentration of contrast in the
plasma compartment is Cp(t), and the tissue compartment is Ct(t). Note that the fraction of the tissue
compartment’s volume that is accessible to contrast (ve) is also diagrammed, the extracellular sub-
compartment and it’s concentration of contrast is given by Ce(t). k1 represents the rate constant
governing concentration-dependent movement of plasma between tumor and plasma, Ktrans between
the extracellular sub-compartment, and k2 the rate of renal excretion.

According to Tofts, the total amount of contrast in tissue is therefore given as
v.V,c,(t) where V, is the total volume of the tumor. This amount is assumed to
change proportionately to the difference in contrast concentrations between the

extracellular space and plasma according to the following differential equation

v,

€

Ll pSie, () - e, 0] @)

where S is the total surface area of the microvasculature within the tumor and P is

PS
= 7 as the volume

the permeability of the tumor capillaries. By defining K

trans

transfer coefficient (units of 1/min) and recalling equation (1), equation (2)

becomes

de (1) _ _c(n)
dt - Ktrans Cp(t) A
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K

Furthermore, if we let kcp = trans s then
dc (1)
dtt_ = Ktranscp(t) - kepct(t)

In this setting, Kirans represents the rate constant for contrast flow across the
capillaries into the tumor (normalized to tumor volume), and kep represents the rate
constant for contrast passage from the tumor back into the capillaries. When

combined with initial conditions ¢ (0) = ¢,(0) = 0, this differential equation has an
implicit solution,

kgt

c (1) = Ktransf:cp(r)e_ke"(’_r)dr =c, () ®{K e "} (3)

Equation (3) provides a highly useful interpretation: the concentration of contrast in

tissue can be broken into two independent functions. One, K *=' can be thought

transe_
of as a transfer function describing the passage of contrast from the vasculature into
the tumor. This transfer function is convoluted with Cp(t) which describes the

concentration of contrast in plasma, referred to in the literature as the arterial input

function (AIF).

The original Tofts model defines a particular AIF according to the following
equation:

¢, () =ae™ +a,e" (4)
Parsing the bi-exponential decay in equation (4) yields that - according to the Tofts

model as diagrammed in Figure 1 - the concentration of plasma contrast is

governed by a term representing the movement of contrast out of plasma and into
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tissue, as well as a second term which governs the slow dissipation of contrast via
renal excretion. By substituting equation (4) into equation (3) and holding all
parameters as fixed but K and v, different families of curves can be generated
as demonstrated in Figure 3. Empirically, one can appreciate thatas K, _ increases
a tumor’s curve morphology generally shifts from a continuous uptake curve to a
plateau curve to a washout curve. Likewise, as ve increases (i.e. as the cellularity of
the tumor decreases), the curves progress from a washout morphology to a

continuous uptake morphology.
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Figure 3 Simulated traces of concentration of gadolinium generated by holding all variables defined in

the Tofts model constant and varying only (a) Ktrans and then (b) Ve.
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A modification of the standard Tofts model introduces an additional term to account
for the fraction of tumor that is occupied by blood vessels. Contrast within
microscopic intra-tumoral blood vessels technically contributes to the concentration
of contrast within the tumor. This modification, called the extended Tofts model,

adds a term to Equation (3) as below
ket
c () =v,c (D) +c (N®{K e} (5)

where v_is the fraction of tumor occupied by blood vessels.

Note additionally that the Tofts AIF represents an idealization of the concentration
of contrast in plasma. To be specific, its mathematical form implies that the bolus
mixes with the entire plasma volume instantaneously at the same moment of its
sudden arrival at the modeled tissue. As seen in Figure 4, the concentration curve
begins at a non zero value at t=0, which is non-physiologic. Instead, the vascular
mixing of contrast is a complex, stochastic process that takes a finite amount of time.
and results in a curve much different from its ideal form in the Tofts AIF. Therefore,
for this thesis, we utilized an AIF [cp(t)] based on a measured population input
function from the literature. Blood plasma contrast concentration curves were
measured in multiple patients and averaged to form a population based AIF which is

described by the following empirical equation developed by by Orton et. al.32

ag(l —cos(ugt)) + agag f(t,u;) for O=st=t,,

6
agag f(tg,ug)e o= (©)

c (I)=
32 for t>t,

Where,
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l-e™ acos(uyt)+ u, sin(u,t) — ae™
f(t,a) = S
a o’ +u
2
fy=—
Uy

The difference in AIF morphology between Orton’s proposed AIF and Tofts original
formulation is depicted in Figure 4. It is important to note that while the above
equation is not based on any particular physiologic model, the curve it describes
matches in-vivo contrast concentration curves measured in real patients. 33).

Limitations of using a population based input function are revisited later in this

manuscript.
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Figure 4 A comparison of the AIFs of both the Tofts model (blue) and that of Orton (red)
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Pharmacokinetic Modeling of DCE-MRI and Predicting Patient Response to Neoadjuvant
Therapy

K is a particularly attractive target for the investigation of potential prognostic

trans

biomarkers in the use of anti-angiogensis drugs due to its theoretical association
with the vascular barrier in tissue as well as the ability of clinicians to quantify it
non-invasively and without ionizing radiation. Unfortunately, the several small
studies conducted to date have resulted in inconsistent conclusions and thus, data
on the efficacy of PK modeling of DCE-MRI are limited. For instance: Yankeelov et. al.

34 were able to determine a statistically significant shift towards lower K ___in their

trans

analysis of populations of voxels from breast lesions undergoing neoadjuvant
therapy before and after said therapy. Importantly, while there appeared to be a

shiftin K ___ due to the use of neoadjuvant therapy, responders were not

trans

confidently segregated from non-responders and the prognostic value of this
observation was left undetermined. Thukral et. al.3% observed a similar significant

shiftin the K ___ of the voxel populations, but, when compared to pathology data,

trans
were unable to show any difference between responders and non-responders.
Interestingly, this stands in stark contrast to others such as Ah-See et. al. 3¢ who
were able to differentiate between responders and non-responders by utilizing
percentage change in the median value of K, from baseline. Compounding this

confusion of results is the relatively small number of patients this method has been

applied to.
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This project will attempt to help elucidate this relationship by focusing on
prospectively analyzing a group of breast cancer patients according to cutoffs
established by several investigators. In 2006 Padhani et. al. 37 noted that an increase,

no change, or decrease of less than 11% in the range of K ___calculated over a

trans

population of lesion voxels after one cycle of neoadjuvant chemotherapy had an
80% sensitivity and 76% specificity in distinguishing non-responders from
responders. Yu et. al.38 noted by ROC analysis that after two cycles of neoadjuvant
chemotherapy, a patient’s pathologic response could be predicted (sensitivity 81%,

specificity 88%) by calculating the median K ___ and using a threshold of

trans

percentage change from baseline of -85%. Ah-See et. al. were able to generate a
similar threshold after two cycles neoadjuvant chemotherapy for difference in

median K, of -42.1%, however their means of producing this criterion was novel.

trans

Before initiating neoadjuvant chemotherapy, Ah-See et. al. performed two baseline
imaging studies that could be used to generate a 95% confidence interval for

repeatability of the difference in median value of K, __.They then generated the

cutoff used in their criterion by utilizing the lower bound of the calculated
repeatability interval (i.e. any lower difference could represent a statistically
significant effect). With this in mind, this project will not only evaluate the efficacy
of each of the mentioned criteria by applying them prospectively, but will also

attempt to produce a similar repeatability interval with only a single baseline

imaging study. .
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Specified Aims

This study aims to better qualify the relationship between the change from baseline
of the DCE-MRI measured pharmacokinetic parameter K, ,and a patient’s
response to neoadjuvant chemotherapy with an anti-angiogenic agent for breast
cancer. To accomplish this goal, this project will prospectively apply the cut-offs of

change in K ___reported by Padhani et. al., Yu et. al., and Ah-See et. al. to patients

undergoing neoadjuvant chemotherapy for breast cancer. Additionally, it will
evaluate the efficacy of using a repeatability interval cutoff as described by Ah-See

et. al.,, but generated with only a single baseline imaging study.
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Methods

This thesis project was conducted utilizing data acquired as part of an ongoing
collaboration between the Yale University School of Medicine (YSM) and the Brown
University Oncology Group (BrUOG) to evaluate the effectiveness of neoadjuvant
therapy in the treatment of breast cancer. As such, a full description of the methods
utilized in this study must necessarily include both the procedures specifically
derived to meet the specified aim as well as those developed for the larger
collaborative effort, and generative of the data pertinent to this study. To make this
distinction explicit, note that the ensuing subsections describing patient
recruitment, treatment, and data acquisition are the product of the protocol for the
larger collaboration and are were not developed as part of this thesis. Subsections
outlining the methods for data and statistical analysis were specifically developed

for this thesis.

Patient Recruitment and Treatment

Patients eligible for the larger collaborative effort between YSM and BrUOG were
patients with biopsy proven breast cancers larger than 2 cm in size. The
collaborative effort attempted to recruit 60 patients with HER2 negative breast
cancers and 60 patients with HER2 positive breast cancers. Once admitted, patients

were randomized to one of two study arms: one providing traditional, small-
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molecule neoadjuvant chemotherapy with paclitaxel and carboplatin, the other
utilizing anti-angiogenesis agents (bevacizumab for HER2 negative cancers and
trastuzumab for HER2 positive cancers). Before initiating neoadjuvant therapy, a
baseline breast MR was obtained. This initial imaging was repeated at +1 week after
initiation of neoadjuvant therapy and again at no less than +15 weeks from therapy
initiation and prior to planned surgical procedure for removal of the lesion. Surgical
specimens were collected at removal for assessment of pathological response. This
response was classified into one of three categories: complete response, partial

response, and poor response.

To be included in the analysis conducted for this thesis project, patients must have
been randomized to the anti-angiogenesis arm of the collaborative study and have
been recruited early enough that the previously described baseline and +1 week
imaging (hereafter referred to as imaging conducted at time points one and two,
respectively) could be obtained, and additionally, have remained in the study long
enough that definitive pathological assessment had been conducted and could be
included in analysis. Furthermore, each imaging study conducted at time points one
and two must have had sufficient temporal resolution to be compatible with PK
analysis. A brief description and comparison of the two methods for imaging utilized

in the collaborative study ensues.
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Data Acquisition

All DCE-MRI studies acquired as part of the collaborative effort were conducted
according to one of two methods. The most common sequence (acquired at Brown
and at out-patient imaging centers) was designed to produce studies amenable to
analysis by the previously mentioned SER method. As such, three volumes were
acquired: one prior to administration of gadolinium, one “peak” volume taken at the
presumed arrival of bolus (typically 75 seconds post gadolinium administration),
and one volume post-arterial phase of contrast (typically at six minutes post-
gadolinium). Images were obtained using a 3 dimensional spoiled gradient echo T1
weighted fat suppressed sequence. The resulting studies were of high spatial
resolution (Zmm x 1 mm x 1mm) and signal to noise, but with only three data
points over six minutes - of insufficient temporal resolution to curve-fit the

concentration of gadolinium.

The protocol utilized to achieve high temporal resolution utilized an innovative k-
space sharing technique (TWIST, Siemens Medical Systems) where the central
portions of k-space are oversampled at high temporal resolution and combined with
peripheral k-space data acquired at different times. Since contrast information is
located in the central k-space regions overall tumor signal intensities are updated at
high temporal resolution. Since edge data is contained in the periphery of k-space,
which is relatively under-sampled with this technique, tumor margins become

slightly less distinct. The details of this technique are beyond the scope of this
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thesis. The imaging protocol was determined by the radiologist on the study and

was set prior to the initiation of this thesis project.

Images obtained on patients recruited at Yale were obtained using this technique
resulting in a high temporal resolution (4-7 seconds per volume) and relatively low
spatial resolution (5mm x 1mm x 1 mm) dynamic series using the following
parameters: TR: 3.5 ms, TE: 1.5 ms, field of view: 350 mm, and image matrix 320 x
320. For the purposes of T1 mapping (as described subsequently) a reference
image was acquired using a flip angle of 3 or 5 degrees. Subsequently, repeated
measures were acquired for 5 minutes using a flip angle of 25 degrees. 0.1 mmol /
kg of Magnevist IV contrast was injected at 2 cc /sec through an upper extremity

peripheral IV after the 4t acquired volume.

Of 30 patients recruited a the Yale site, only 11 were enrolled before their initial
MRI and underwent high temporal resolution DCE-MRI before and after initial
exposure to chemotherapy. Of these 11 patients, only 7 underwent successful DCE-

MRI at both time points. This results in a study population of only 7 patients.

Data Post-Processing

Data gathered as described above were analyzed utilizing a specially developed
software platform, DCLab, written by the author in MATLAB. This analysis

constituted the central portion of this thesis. One of the primary goals in developing
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this software was to allow for the exploration and development of novel and
literature proposed pharmacokinetic models in disparate organ systems. As such,
DCLab was written according to object-oriented principles to afford modularity and
easy extensibility. A brief explanation of the class hierarchy used for the
implementation of pharmacokinetic models is outlined in Appendix A. Note that the
flexibility afforded authors coding for DCLab is derived from the abstraction and
compartmentalization of the various steps in its analytical workflow. A brief

overview of that process follows:

1. All images from both dynamic and reference series are loaded into working
memory and subsequently organized into discrete, time-sorted collections of
volumes

2. The spatial location of a lesion is identified in the dynamic series and the
perimeter of an encompassing volume of interest is drawn at the volume’s
intersection with the acquired slices, thus defining a volume of interest (VOI)

3. Aninitial (pre-contrast) T1 value for each voxel of the VOI is calculated and
stored.

4. Using the baseline T1 values calculated in step 3, the concentration of
contrast at each voxel of the VOI over the span of the dynamic series is
calculated

5. Each time vs contrast curve generated by step 4 is used to fit a user-selected
pharmacokinetic model (in the case of this project, the extended Tofts model

with the Orton AIF). The results of which are presented to the user
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The ensuing discussion will describe the implementation of pertinent, non-trivial

aspects of DCLab’s analytical workflow.

Determining Tissue Gadolinium Concentration

Generally in DCE-MRI, converting from measured signal intensity to tissue
gadolinium concentration is achieved via one of two separate means. One is the
physical construction and use of an apparatus that houses multiple phantoms of
known T1 (representing discrete intervals of the full range of T1 expected of
gadolinium) that can be placed comfortably alongside the patient3°. This method
ensures both patient and materials of known T1 can be scanned at the same time,
therefore allowing T1 to be derived by interpolating the measured signal against a
reference curve. However, this is impractical in the setting of a clinical trial
performed in a clinical environment. Additionally, there is no room for such a

phantom in the breast coils used at our institution.

The second method involves establishing a baseline T1 map of each voxel in the
volume of interest (VOI). Measured signal intensity within a VOI is determined by
the T1 properties of the tissues within that VOI. As discussed in the following
section, the relationship between T1 and measured signal intensity can be
determined if the parameters of the imaging sequence are known. Gadolinium

concentrations within a given tissue can be determined by first converting changes
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in tissue signal intensity to changes in tissue T1. Changes in tissue T1 are related to
changes in gadolinium concentration according to the equation
delta(Concentration) = 1/Relaxivity( deltal/T1) . Therefore, by measuring how T1
changes within a VOI, one can determine the gadolinium concentration within that

VOI.

Calculating a Baseline T1 Map:

According to the Bloch equations, signal S derived from a gradient recalled echo
(GRE) sequence with flip angle 6 can is represented mathematically as

(1-E))sin6

S=M
“1_EE, —(E, - E,)cos6 (7

—T% —T%.
where E, =e " E,=e¢ 77" apq M, represents the contribution to signal from

machine gain, proton density, and T2*. As first observed by Mansfield and Morris 0

when TR>>T,. equation (7) reduces to
(1-E))sin6
S=M,————
° 1-E, cosf ®

Rearranging equation (8) produces

S S
=F —+M (-E 9
sin@ "tan®@ + Mol ) ®)

The key observation that enables calculation of T1 is that equation (9) has the form

Y = mX + b where
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m=FE,

Y = ,S
sinf
_ S
" tan®

Thus, with two measured signal intensities, S, at the same point spatially but at
differentflip angles 6, an initial T1 map can be calculated over the VOI by solving
for m at each voxel (E1 contains the constants TR and T1. TR is known and T1 can
then be determined). This relationship has been found to be experimentally valid
over the expected physiologic range of gadolinium provided that sequence

parameters are carefully chosen*!.

One important consideration to facilitating an accurate estimation of local T1 is to
correctly select signal to be utilized in the preceding calculations. DCLab
accomplishes this by first averaging the signal obtained from each voxel in the VOI
over all volumes in the reference series and doing the same for all volumes in the
dynamic series that are captured before the local arrival of the contrast bolus. Note
that this necessarily requires identifying the time point at which the bolus arrives
before any attempts at deriving T1. This is accomplished by expanding the free
parameters of the extended Tofts model to fit an additional parameter representing

the arrival of the bolus, 7, as follows:

e "y (10)

trans

c () =ve (t=1)+c,(t-1) ®{K
[t should be noted, however, that the initial T1 map must be estimated before

calculation of gadolinium contrast can be accomplished. Because the model



30

presented in equation (10) is designed for output data in units of concentration of
contrast, an approximation must be made at this stage to ensure that anyz,
discovered by matching an objective function based on equation (10) to signal of
arbitrary units is accurate. DCLab makes use of a relationship observed by Walker-
Samuel et. al.#2 to accomplish this. This relationship holds that, as a reasonable
approximation, the concentration of gadolinium in tissue varies linearly over its

physiologic range with the following ratio of signals

S - S(0)
s

r

c,(?)

Where S represents the signal from the dynamic series, and S, a separate series
with a flip angle 6, such that sinf, =0. In the case of the index imaging study, this
criteria is met by the reference series (flip of 3-5 degrees). DCLab thus calculates the
average signal ratio over the VOI for each time point in the dynamic series, scales
the resulting set to the physiologic range of gadolinium contrast and fits to that set,
the model represented by equation (10). In so doing, #, can be calculated and the

dynamic series segmented into signal obtained before and after bolus arrival.

Calculating the Contrast of Gadolinium
Once the initial T1 map has been calculated, the remaining unknowns in equation
(8) can be solved for at time points before the arrival of contrast. In particular, M,

can be calculated as follows:
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_ o 1-E cosb,
© " (1-E)sinb,

Where S,and 6, are the signal and flip angle, respectively, of the dynamic series.
Because M, is not expected to vary with the arrival of gadolinium, the T1 for all

voxels in the VOI and at each time point in the dynamic series can be calculated by

rearranging equation (8) so that

%/I —sinf,
A/I cosf, —sind,

Using this equation, the T1 at each time point for all voxels can be calculated, and

the concentration of contrast is

1 1
T(1) T,(0)

c=-

1 ,gad

Where R, is the unit longitudinal relaxivity of Magnevist in plasma.

1,gad

Fitting the Extended Tofts Model

The mechanics of matching the extended Tofts model defined in equation (5) to the
observational data requires special explanation. DCLab utilizes the Levenberg-
Marquardt non-linear least squares curve-fitting algorithm as it has been shown to
generate superior performance with regard to percentage of data accurately fit than
other employed methods#*3. The Levenberg-Marquardt algorithm searches through

an N-d problem space, where N is the number of parameters to be fit, by iteratively
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perturbing each of the target parameters so as to minimize the sum-squared error
of an objective function (in this case, the extended Tofts model) to provided
observational data. Like all optimization algorithms of this sort, the performance of
Levenberg-Marquardt is seed-dependent: its ultimate output may represent a local,

rather than global, minimum in the problem space.

DCLab attempts to reduce this potential for error by allowing a user to seed
Levenberg-Marquardt with an arbitrary number of “initial guesses” and returning
the parameters that resulted in the single “best.” Note that, in this study, the number
of guesses chosen represents a compromise between compute time and coverage of
the problem space. To be specific, the problem space spanned by physiologic K
and v, (note that v was notincluded as its physiologic range is much smaller than
either of the other two utilized parameters) was divided into 4 equally sized
segments, the centers of which were each included as an initial seed. In addition, the
center of the entire previously-described problem space and the parameters that
generated the last successful fit were also included. Using this set of seeds the
Levenberg-Marquardt algorithm was run for each time vs. concentration trace at
each voxel in the VOI. A “successful fit” was defined as algorithmic output that

yielded parameters falling within their known physiologic range (for instance v,

and v, are fractions ranging from 0 to 1, an algorithmic output yielding a value for

either above 1 or beneath 0 was rejected). If more than one seed was successfully fit,

the set of output parameters that yielded the lowest sum-squared error was chosen
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as the returned fit for each voxel. If no seed was successfully fit, the voxel was

removed from further analysis.

Fixed PK Parameter Valuation

As noted previously, DCLab utilizes a population-based AIF. The fixed parameters
noted in Equation (6) are provided by Orton32 and were produced via modeling on
simulated data**. Additionally, the unit longitudinal relaxivity of Magnevist in

plasma was obtained from in-vivo estimations reported by Pintaske et. al. 4>.

Statistical Analysis
All patient studies processed by DCLab had the following measurements recorded:

the median and range of K, _ over all voxels in the VOI and a histogram of the K

trans trans

calculated at each voxel in the VOI. A non-parametric Mann-Whitney U test was

utilized to compare the percentage change in median K,___from time point one to

trans

two between responders and non-responders by pathology. Percentage change in

median K, __ was compared to cutoffs of an increase, no change, or less than 85%

trans

(in the case of the Yu criterion) and 42% (in the case of the Ah-See criterion)

decrease in K, _ to classify each patient meeting the criterion as a “predicted non-

trans

responder” otherwise a “predicted responder”. Similarly, a percentage change of the

range of K ___ that showed an increase, no change, or less than 11% decrease was

trans

classified as a “predicted non-responder” and otherwise a “predicted responder.”
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This thesis additionally calculated a repeatability range for the difference in median

K., the lower bound of which was utilized as an additional criterion for

tra

predicting pathologic response. Because this thesis had imaging from only a single
study before the administration of neoadjuvant chemotherapy, the repeatability
range could not be calculated by strictly repeating Ah-See’s method. Instead, it was
found by first randomly segmenting the baseline lesion voxels into two distinct
populations for each patient. Using these two populations the difference median

K, could be calculated and, according to Ah-See, the repeatability range is

trans

*] .96W

Where n is the number of studies and d is the percentage change in median K

trans "
Thus, if the percentage change showed an increase, no change, or decrease less than
that provided by the lower bound of the repeatability range it was classified a

“predicted non-responder,” otherwise a “predicted responder.”



35

Results

To date, 106 women have been admitted to the anti-angiogenic arm of the
YSM/BrUOG trial. 30 of this cohort have undergone the high-temporal DCE-MRI.
However, since most of the patients were enrolled after an initial clinical breast MRI
detected their breast cancer, only 11 patients had high temporal resolution DCR-
MRI performed at baseline. Of these, four had to be dropped from analysis due to
incorrectly acquired reference series (n=2), unrecorded reference series (n=1), or a

dynamic series with image acquisition begun post-bolus arrival (n=1).

On analysis of the surgical specimens acquired after completion of neoadjuvant
chemotherapy, two women were noted to have lesions that responded by pathology

and five were classified non-responders.

The calculation of K___over all voxels of each included patient’s lesion can be

trans

described via the statistical descriptors reported in Table (1) and representative

histograms detailing the transformation of K __. from time point one to two are

trans
diagrammed in Figure (5) for representative patients. In addition, the average
concentration of contrast over lesions taken from time points one and two - as well
as their best-fit model-generated curve - are provided from the same patients in

Figure (6).
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Patient Time Percent Mean K Median Range Pathological
ID POll’lt Flt trans Ktrans Ktrans Response
1 1] 63%] 0107006 | 0096 | 0.717 | .
2 [ 7% | 0212013 | 0474 | 0867 &
5 L] 60% ]| 0516x024] 0.514] 1678| .
2| 55% | 0470:020| 0.441| 0981 cgative
g3 .. 1| 73%] 0500+020] 0.500] 1408/ . .
21 7 40% | 0421+022| 0377 1414 cgative
41| 96%]| 0106=0.05| 006z| 0913 . .
21 790% | 0229:015| 0204| 0917 cgative
e .. 1] 79%] 0149x0.10] 0.137] 0556 . .
21 62% | 0202:011| 0180 | 0.647 cgative
6 .1 84% | 0358+0.19 | 0315] 1.168| ..
217782% | 0.09620.03 | 0082 0.459
7o L] 73% | 0590:0.24 | 0606 0999 | ..
217 79% | 04742026 | 0432 1.015

Table 1 For both time points collected for each patient, the percentage of lesion voxels fit via PK
modeling; the pathological response of the lesion to antiangiogenic therapy; and statistical descriptors
of the Ktrans calculated for each voxel in the target lesion.
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VOI Histograms of Ktrans
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Figure 5 Histograms of the calculated per-voxel Ktrans over a lesion’s VOI. Note that patient 1 is a non-
responder by pathology; her Ktrans histograms are given at time points (a)1 and (b) 2. Patient 6 is a
responder by pathology; her Ktrans histograms are given at time points (a) 1 and (b) 2.
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VOI Average Concentration of Gadolinium Over Time
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Figure 6. Traces of the average measured concentration of contrast over a lesion’s VOI as well as the
trace of the best-fit PK model. Note that patient 1 is a non-responder by pathology. (a) Gives her average
trace and fit at time point 1 (modeled Ktrans=0.108, Ve=0.325), and (b) her average trace and fit at time
point 2 (modeled Ktrans=0.1684, Ve=0.500). Patient 6 is a responder by pathology. (a) Gives her average
trace and fit at time point 1 (modeled Ktrans=0.295, Ve=0.694), and (b) her average trace and fit at time
point 2 (modeled Ktrans=0.135, Ve=0.565).

By performing the non-parametric Mann-Whitney U test for significance on the

difference between median K, ___ values from time point one to two and using an

trans
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a =0.05, the mean difference between the responders and non-responders cannot

be determined to be statistically significant at this level of power (p=0.0952).

After scaling the pertinent values in Table (1) against their respective initial levels at
time point one, the Padhani, Yu, and Ah-See criteria for identifying pathological

responders can be applied. The results of doing so are provided in Table (2) for all

criteria.
%A o,p PadhaniCriterion Yu Criterion Ah-See Criterion %A
Median Range %A Range %A Median %A Median Median PR
<-11% <-85% <-42.1% <-39.4%
1] +82% | +21% - - - - -
2| -14% | -42% ¥ - - - -
3] -24% | 0% : - - - -
4| +116% 0% - - - - _
5| +36% | +16% - - - - -
6| -73% | -61% + - + + +
71 29% | +2% - - - - +

Table 2 Predicted Response to Therapy According to Literature and Proposed Criteria. For each patient
in the study (ID), the percentage change between time points one and two of the median and range of
Ktrans are provided. Utilizing these values, the results of applying the Padhani, Yu, Ah-See, and the

proposed criteria are shown (note that “+” is equivalent to “predicted responder” and “-“ is equivalent to
“predicted non-responder”) as well as the final pathological response (PR).

By running twenty-five simulations where each lesion at time point one was
segmented into two distinct populations randomly and their difference in median

K. was utilized to calculate a repeatability interval, the average lower bound was

trans

-34.7 £ 3.76%. The result of using this criterion to predict pathological response by

individual patients is provided in Table (2).
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Discussion

Although the limited amount of data associated with this project necessarily limits
the conclusions one may draw, there remain several observations that necessitate
consideration. This discussion will focus on trends and findings either in agreement

with or opposition to previously published work.

Many of the preceding experiments (excepting Padhani) that attempt to derive a
means of predicting pathological response to neoadjuvant therapy by way of change

over a population of K___ remark that, retrospectively, the difference between

trans

median K. from some point during therapy to baseline is significantly different if

trans
a patient is determined to have responded to therapy than if she hasn’t. This finding
could not be reproduced in this thesis. The reason here is unsatisfying: this study is
simply too underpowered. Note that the statistical test for determining a difference
between the means of two potentially different datasets, the Mann-Whitney U test,
cannot generate a p value less than that noted above (p=0.0952) for any member
valuation of sets of cardinality 2 and 5. The responders in this study have greater

negative difference in median K. than non-responders: the trend is in the correct

trans

direction.
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While the absolute values of K, reported in this thesis appear to fall within the

trans

range of that reported elsewhere, one glaring difference deserves consideration.
Specifically, previous reports that utilize curve fitting have yielded higher
percentages of voxels fit than here. One important point, when considering why this
may be, is to focus on the centrality of the shape of the population-derived AIF to the
morphologic range of concentration curves that can be fit with physiologically

ranged free parameters.

A population-derived AIF is static; it cannot account for variation in the speed at
which the bolus was pushed, the patient’s cardiac output, nor the process of contrast
mixing (among other factors). Consider that by doubling the parameter ¢, in

Equation (6), any fit by this new model to a given concentration curve will yield

K... and v_exactly half of that predicted by the model valuations utilized in this

trans
project. Thus, with an AIF that is not a good approximation of plasma contrast, the
model fitting stage may generate non-physiologic free parameters that would result
in a voxel’s rejection (for instance, a “true” g, valued half of that utilized here would
result in the rejection of all voxels with “true” v, ranged 0.5-1). This is a limitation
intrinsic to utilizing population-derived AIF: individual variation is lost, thus - in
addition to lower voxel matching rates if the AIF is not reasonably close to “true”--

accuracy in K __calculations is reduced.

trans

This potential source of error is accounted for in this study through the use of an

automated means for supplying the contrast bolus, and by assuming that a patient’s
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physiology will not change sufficiently to alter the shape of the bolus between
studies. Because this study considers percentage change between two time points, it
is assumed that any error produced by an incorrect AIF in analysis will be
sufficiently reproduced at the second time point as to be negligable. Considering the
non-linearity of the Tofts model, this may not be a reasonable assumption. Note that

this issue is not addressed in previous studies.

Alternatives to using a population derived AIF are to create a patient specific AIF
based on the first pass of contrast through an artery in the imaged field of view. An
automated technique for this was first described in 20014¢ and this technique has
been used in similar studies performed at the NCI?0. However, the assumptions
used in the T1 mapping scheme described above do not hold at gadolinium
concentrations normally found in arterial blood (at high concentrations the signal
intensity can saturate due to T2* effects). This was shown in the reference
discussed in the next paragraph. Subsequent errors in the AIF would result in the

same problems described above.

Another alternative solution is to administer a small bolus of contrast (roughly 10%
of the normal dose) and use this bolus to prospectively construct an AIF scaled to a
subsequent injection*’. This technique has not, to our knowledge, been applied in
any published studies. Additionally, the authors who describe this technique did
not calculate the AIF using T1 mapping techniques. Instead, they assumed that

contrast equation scaled linearly with relative signal enhancement (i.e. a doubling in
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signal intensity equaled a doubling in concentration) which is not quantatively
accurate. Itis not clear how this assumption affects the calculated AIF and thus the

subsequent calculations.

A third alternative is to utilize a reference method first described by Yankeelov48. In
this method, time enhancement curves are measured in a non-neoplastic tissue such

as pectoralis muscle. Using assumed values of K,___ and kep for these tissues, the

trans

Tofts model is solved for the AIF. This AIF is then used for analysis of the tumor
enhancement curve. Potential problems with this method mirror those of using a
population AIF in that it is not known how constant pectoralis muscle K _ is
throughout the population. Additionally, these values may be affected by
chemotherapy and change over time. To account for this some authors have

modified the technique to report a tumor K ___ scaled to that of the reference

trans

tissue*? and perform ROC analyses based on those values. This makes comparing
perfusion results from patient to patient and from study to study difficult because
the reported parameter is not tumor specific. An additional problem with the
reference method is that for this study the physical geometry of the breast coil used
in the MRI exam results in decreased signal to noise in the muscles due to their
posterior location. Reference imaging is more practical when studying neoplasms
like cervical and prostate cancer where reference muscles are located near the

center of the field of view.
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A second limitation in the computation algorithm is the technique used for T1
mapping. Equation (9) above should produce an accurate calculation of T1 in ideal
circumstances. The B1 field must be homogenous throughout the entire field of
view, the longitudinal magnetization must be in steady state, and the transverse
magnetization must be completely spoiled before each repeated excitation. More
sophisticated techniques have been developed that take these potential confounders

into considerations?. The study scan protocol did not allow for this type of analysis.

Additionally, T1 histogram analysis revealed a large variation in measured T1
values across structures that should be relatively homogenous, such as adipose
tissue in the breast (for an example, see Figure 7). This suggests that the pre-
contrast reference series, obtained a low flip angle, may have had insufficient signal
to noise to be accurately used in the analysis. For this reason, we performed most of
our analyses on mean tumor regions of interest as opposed to voxel by voxel
analyses. Averaging signal from all the voxels in the tumor resulted in baseline T1

measurements more in line with those in the literature.



45

Histogram of Calculated Initial T Values of Adipose
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Figure 7 Histogram of calculated initial T1 over all voxels in a volume of interest placed over breast
adipose tissue (true adipose T1 is approximately 300ms)

The performance of each criterion used for prediction of response to therapy also
necessitates remarks. In particular, the Padhani criterion is extremely difficult to
justify. In carefully considering their study design, note that Padhani et. al. rejected

all voxels that yielded K, . greater than 0.5/sec because valuation above that cutoff

was said to have an unclear physiological meaning. This arbitrary cutoff necessarily

sets an upper-bound on the possible K, range, and thus effects their receiver

trans
operating characteristic analysis. Additionally, the AIF they chose for their study is
the same as that for the original Tofts model and given in Equation (4). Because the
Tofts AIF does not accurately reflect the true concentration of contrast in plasma,

the absolute value of the K . generated via their method may vary with true K

trans’

but it may not be accurately valued. Thus, their use of a cutoff is highly questionable;
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without it, the range trends reported in their results would be much more

susceptible to noise.

That the Ah-See and Yu criteria were both able to correctly predict all non-
responders while failing to accurately do the same for positive responders is
interesting. One possible explanation is that each of their criteria was applied after
completion of the second cycle of neoadjuvant chemotherapy. In this thesis, they are
applied after the first. Presumably, with more time, the responders could reach the
cutoffs reported. Another explanation is simply that neither criterion was reported
to have 100% sensitivity. Thus, with our limited data, it is impossible to tell if this

failure represents a significant difference.

Finally, the performance of our data-generated cutoff appears promising. By judging
the performance of each criterion to how closely it's determinant value is to one that
would accurately segment the two populations, ours performed best. That said, had
imaging been performed at two cycles instead of one, the accuracy of Ah-See and Yu
may have been higher. On the question of the difference between the values of our
cutoff and Ah-See’s, there are several possible reasons. Specifically, contributions to
the repeatability range accounted for by Ah-See’s method, but not ours, are imaging
parameter inaccuracies, errors of slice selection, and differences in coil placement
between studies (among others). Conversely, our data (unlike Ah-See’s) were
generated with heterogeneous imaging parameters. With both of these important

differences in mind, note that Ah-See’s cutoff falls within one standard of deviation
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of our average value. It is certainly plausible that their value could just as easily have
been generated on their data using our method. On examination of Ah-See’s paper, it
appears possible to separate data with 100% accuracy into three categories: those

with change of median K below -43.7% (our mean value, minus one standard

trans

deviation) as predicted pathological responders, those with change of median K
above -35.1% (our mean value plus one standard deviation) as predicted
pathological non-responders, and those few in-between needing further evaluation.
This is all speculative but our results do suggest it is possible to generate a suitable

repeatability range by segmentation of a single lesion. More data are needed for any

meaningful conclusions.

Considering the results presented here, there are several potential interesting
avenues for future research. As patients continue to be enrolled in the Yale/BruOG
study, the analysis begun and described as part of this thesis can be continued to
better elucidate the validity of the retrospectively-derived criteria. Additional
patients may also influence our measured repeatability range. It should also be
noted that DCLab was written to be extended and modified, thus there is potential

for its future utilization in research on novel targets and via novel models.
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