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STAT3 IS IMPORTANT FOR THE EMERGENCE OF HUMAN B CELLS PREDICTED 

TO PROLIFERATE AFTER INFECTION WITH EPSTEIN-BARR VIRUS 

Amanda Z. de la Paz and Sumita Bhaduri-McIntosh.  Section of Infectious Diseases, 

Department of Pediatrics, Yale University, School of Medicine, New Haven, CT.

Many unanswered questions surround the early changes in B cells that lead to 

establishment of latency and immortalization following Epstein-Barr virus (EBV) 

infection.  Data from the Bhaduri-McIntosh lab revealed that EBV differentially infects B 

cells into distinct sub-populations, only one of which, those marked CD23hi CD58+ IL6-, 

can be predicted to proliferate as early as 3 days after exposure to EBV.  Other cells 

produced IL6 but did not proliferate, perhaps assisting a select few to do so.  They also 

found that high levels of signal transducer and activator of transcription 3 (STAT3) 

correlate with resistance to lytic cycle induction and hence maintenance of the 

immortalized state.  We hypothesized that 1) IL6 is necessary for the emergence of 

CD23hi CD58+ B cells following infection with EBV, and that 2) phosphorylation of 

STAT3 is necessary for the emergence of this B cell sub-population that is predicted to 

proliferate.  We tested these hypotheses and showed that blocking IL6 by infecting 

human primary B cells with EBV in the presence of neutralizing antibodies did not have 

an effect on the emergence of CD23hi CD58+ cells.  However, the STAT3 inhibitors 

Stattic and AG490, abrogated the emergence of this sub-population, especially within 24 

hours of exposure to EBV.  We concluded that phosphorylation of STAT3 is important for 

the emergence of human B cells predicted to proliferate during the process of 

immortalization after EBV infection.  
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INTRODUCTION

 The Epstein-Barr virus (EBV) was discovered in 1964 by Epstein, Achong, and 

Barr from electron micrographs of cells cultured from Burkitt's lymphoma (BL) tissue 

after Denis Burkitt, a British colonial surgeon in Uganda, had raised the possibility of an 

infectious etiology for the multifocal jaw tumors he encountered in children throughout 

sub-Saharan Africa following observations of the lymphoma's overlapping distribution 

with endemic malaria (1).  Four years later, serendipitously, E.H., a research technician 

working in a virology laboratory, became EBV seropositive after contracting infectious 

mononucleosis (IM), providing the main clue that led to further investigations identifying 

the virus as the cause of heterophile-positive IM (2).  Subsequent studies demonstrated 

the lymphoproliferative effect of EBV, transforming B cells in vitro into continuously 

proliferating lymphoblastoid cell lines (LCLs), a state that has since been termed 

''immortalization'' (3, 4), further establishing EBV as the first human virus implicated in 

oncogenesis (5). 

 Since its original description 46 years ago, EBV has been associated with a 

heterogeneous group of malignant diseases (6, 7).  Its genome has been detected in tissue 

biopsies from patients with nasopharyngeal cell carcinoma (NPC) (8); within the 

epithelial cells of oral ''hairy'' leukoplakia in AIDS patients (9); in T cell lymphomas (10); 

and in Reed-Sternberg cells of Hodgin's disease (11).  The virus has also been firmly 

linked as the pathogenic agent in a variety of other human tumors, including non-

Hodgkins lymphomas and lymphoproliferative disease (LPD) in immunodeficient hosts 

(e.g. AIDS-associated, post-transplant, and nasal T/natural killer cell), while its 
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association with leiomyosarcomas in immunosuppression is suspected (6, 12).  Although 

the majority of people infected with EBV will not develop cancer as a consequence of 

their infection (13), the elevated incidence of some of these diseases in certain 

populations (6) and  the rise of organ transplantations and immunosuppressive therapy for 

various conditions necessitate a better understanding of the oncogenic potential of EBV 

and its role in the pathogenesis of this heterogenous group of cancers.

EBV and its natural history of infection 

EBV is a gamma-herpes virus that infects >90% of the world's population, benignly 

persisting for the host's lifetime (1, 6, 14, 15).  This persistent infection is evident as 

stable levels of viral shedding in saliva (16).  Infectious virus can be detected in 

oropharyngeal secretions from nearly all seropositive individuals (16).  Persistently 

infected individuals also demonstrate infected B cells in the blood (17) and lymphoid 

tissue (12).  Infection usually occurs  via contact with oral secretions; however, blood 

transfusion and bone marrow and organ transplantation have also been implicated (18).  

In developing countries and lower socioeconomic groups, presumably due to socio-

demographic factors controlling exposure to the virus (19), primary infection with EBV 

usually occurs during the first few years of life and is often asymptomatic or manifests as 

a non-specific illness.  On the other hand,  primary infection is more frequently delayed 

until adolescence or young adulthood in industrialized countries and higher 

socioeconomic groups, producing the characteristic clinical features of acute IM in 50% 

of such individuals (2, 15, 20). 
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 The EBV genome is composed of linear double-stranded DNA encoding 

approximately 100 viral proteins (6, 7, 15).  Infection with EBV, like that with other 

herpes viruses, involves both lytic and latent phases (6).  Two target cell types can be 

infected: oropharyngeal epithelium and resting or non-proliferating, memory B 

lymphocytes (21, 22).  Infection of epithelial cells by EBV results in active replication 

leading to release of infectious virions into saliva (15).  This replicative phase, also 

known as productive or lytic infection, involves expression of the full array of nearly 100 

viral lytic cycle genes (9, 23).  In contrast, EBV persists in latently infected, resting, 

memory B lymphocytes in the blood (24).  In vitro infection of B cells leads to their 

immortalization (3, 22).  Upon infection of B cells, the linear EBV genome becomes 

circular, forming an episome, and usually remains latent, with viral replication 

spontaneously activated in only a small percentage of cells (15).  In healthy, persistently 

infected individuals, approximately 1 in 10,000 to 100,000  memory B cells in the 

circulation are infected with EBV, and the number of latently infected cells remains stable 

over years (12, 22).

 The establishment of latency with periodic episodes of viral lytic replication 

within the long-lived memory B cell compartment appears central to the phenomenon of 

viral persistence, resulting in a controlled lifelong EBV infection despite sustained virus-

specific cellular and humoral immune mechanisms (12).  However, with 

immunosuppression, a decline in effective T-cell surveillance can lead to virus 

reactivation, elevated blood and plasma levels of EBV-DNA (14, 25, 26), and increased 
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numbers of latently infected B cells in the peripheral blood (14, 27).  These events can 

then promote uncontrolled EBV-driven lymphoproliferation and development of a tumor 

(12).

Persistence of EBV in B cells

Latent infection within the B cell compartment in healthy EBV-seropositive individuals is 

characterized by the limited expression of a subset of virus latent genes (7).  A minimal 

form of latency, type 0, is characterized by the expression of a single viral gene product, 

LMP2A.  Lack of expression of nearly all EBV genes allows B cells to evade the host 

cell-mediated immune response (21, 28).  Resting, memory B cells in type 0 latency 

persist for life in the peripheral blood of healthy individuals.  Latency types 1 and 2 are 

characteristically observed among tumor cells in specific EBV-related diseases such as 

Burkitt lymphoma (type 1 latency), Hodgkin’s disease (type 2 latency), and 

nasopharyngeal cell carcinoma (type 2 latency).  Latency type 3 is characterized by the 

expression of all nine viral latency proteins.  These include the nuclear antigens (EBNA 

1, 2, 3A, 3B, 3C, and Leader protein) and the latent membrane proteins (LMP 1, 2A, and 

2B).  In addition, two sets of non-translated small RNAs (EBERs 1 and 2, and BART) are 

also expressed from the EBV genome (21).  Latency type 3 is characteristic of LCLs, i.e. 

EBV-immortalized B cells in vitro.  LCL-like cells are strongly immunogenic in vivo, and 

therefore readily recognized and controlled by cytotoxic T lymphocytes.  The resulting 

expansion of cytotoxic T cells directed against cells in which viral replication has been 

activated is the main component of the classic lymphocytosis of IM (12).  B cells similar 
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to LCL with a type 3 latency pattern are characteristic of tumor cells in LPD and are also 

found in tonsils of healthy EBV-seropositive individuals (29).  While LCL generated in 

vitro from healthy human subjects have been used to study EBV gene expression, its 

persistence in B cells, and the role of the virus in tumorigenesis, little is known about 

cellular processes that occur during early stages of infection with EBV. 

EBV-driven B cell proliferation

As mentioned previously, EBV can transform or immortalize human B lymphocytes in 

vitro to a state of continuous proliferation, generating permanent LCLs containing 

multiple copies of the viral genome in the form of episomes in every cell (30).  Given that  

only a few genes are characteristically expressed in the latently infected, growth-

transformed lymphocyte despite the presence of the complete EBV genome, these genes 

were investigated to examine their likely role in viral persistence and EBV 

lymphoproliferation (31).  Initial studies of B cell immortalization by EBV were 

performed by infecting peripheral B cells, converting EBV-negative BL cell lines into 

EBV+ cell lines by infection, or transfecting EBV-negative BL cell lines with EBV genes 

(4, 32, 33, 34, 35).  These early experiments led to the characterization of two primary 

transforming proteins encoded by EBV: Latent Membrane Protein (LMP) 1 and Epstein-

Barr Nuclear Antigen (EBNA) 2 (36).

 LMP1 was found able to transform rodent fibroblasts and increase tumorigenicity 

in nude mice (34), providing evidence of its key role in EBV-induced proliferative 

transformation.  When introduced by gene transfer into EBV-negative BL cell lines, 
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LMP1 induced broad phenotypic changes, altering cell morphology and increasing 

proliferative ability.  These LMP-1 expressing cells also exhibited increased homotypic 

adhesion as a result of increased expression of the adhesion molecules LFA1 (CD18) and 

ICAM1 (CD54), thought to foster B cell growth by enhancing autocrine growth factor 

effects.  In addition, LMP1 induced CD58 (LFA3) expression, which, alongside ICAM1, 

results in increased susceptibility of EBV-infected cells to immune surveillance via 

heterotypic adhesion to T lymphocytes.  Such an effect is believed to permit EBV to 

establish a commensal relationship with the host as a repository for infectious virus (31).  

 Several lines of evidence also implicate EBNA2 as at least one other EBV protein 

necessary for EBV lymphoproliferation.  Infection of EBV-negative BL cell lines with 

P3JHR1, an EBV strain with a deletion within a region of the genome containing the 

coding sequence for EBNA2, did not result in immortalization (32).  EBNA2 also 

specifically induces expression of CD23, a marker of immortalization, following EBV 

infection and when transfected into B cells (35, 36).

IL6 may be important in assisting cells predicted to proliferate

Early experiments of EBV-mediated B cell immortalization singled out CD23, the low 

affinity receptor for IgE, as an early marker of EBV infection (4).  Compared to 

activation of B cells by other mechanisms, EBV infection induced higher levels of CD23 

(33).  While expression of CD23 on EBV-infected cells expressing Epstein-Barr nuclear 

antigens was found to be necessary for  immortalization (4), it is unclear if expression of 

both CD23 and latency antigens is sufficient for immortalization.  Indeed, early 
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experiments by Thorley-Lawson and Mann showed that there were more cells that were 

infected (EBNA+) than those that also expressed CD23 and progressed to become a line 

of established proliferating lymphoblasts (4).  This observation is consistent with findings 

from recent studies done in the Bhaduri-McIntosh lab demonstrating that only one sub-

population of EBV-infected B cells proliferates from at least two that newly emerge after 

infection with EBV (Megyola et al., submitted manuscript).

 By correlating expression of a battery of molecular markers of host cell origin that 

have been described following encounter with EBV or viral proteins, such as CD18, 

CD58, CD54 (100), IL6, IL10 (10, 96), HLA class II, CD21, CD80, CD86, PD1, and 

CD57 with expression of CD23, expression of EBV latency genes, and B cell 

proliferation, Dr. Bhaduri-McIntosh discovered that EBV differentially infects primary B 

cells into sub-populations of  cells.  Only a single sub-population of infected cells 

proliferates.  Proliferation is a prerequisite for immortalization to occur.  Cells predicted 

to proliferate can now be identified as early as 3 days following exposure of primary B 

cells to EBV.

 Through ex vivo experiments using primary B cells from four healthy EBV-

seropositive adults, they showed that CD58, in combination with CD23, is an early 

marker for EBV-mediated proliferation of B cells, and that following exposure of B cells 

to EBV, four sub-populations of cells are observed, differentiated by expression of CD23, 

CD58, and IL6: a CD23hi CD58+IL6- group of cells that continues to proliferate 

indefinitely, a CD23lo CD58+ group that expresses IL6 but does not proliferate, a CD23lo 

CD58- group and a CD23- group that neither express IL6 nor proliferate.  Most notably, 
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while CD23hi CD58+ and CD23lo CD58+ cells both express EBV latency genes including 

LMP1 and EBNA2, only CD23hi CD58+ cells undergo proliferation.  No differences in 

the levels of expression of LMP1 protein or the fraction of cells expressing LMP1 protein 

were observed between the two sub-populations.  Since sorted CD23hi CD58+ IL6- cells 

did not proliferate in culture in the absence of the other sub-populations, it is plausible 

that the non-proliferating sub-populations of cells share a common goal: to potentiate 

proliferation of a select few marked as CD23hi CD58+ IL6-.  Indeed IL6 present in mixed 

infected cultures may play a role in assisting cells destined to proliferate.  In this study, 

we sought to examine this potential role further.

1L6, STAT3, and human tumors

IL6 is a cytokine produced by monocytes, B cells, fibroblasts, endothelial cells, and other 

cell types.  Its multiple functions include its important role in the proliferation and 

maturation of B cells (37).  Overproduction of IL6 is thought to be involved in the 

pathogenesis of lymphoid malignancies and high-grade B-cell lymphomas, with the 

cytokine acting as a growth factor for malignant B cells including multiple myeloma (38) 

and EBV-transformed B cells (39, 40, 41, 42).  In addition, IL6 can induce latent EBV to 

undergo lytic replication in B cells (43) while EBV can induce B cells to produce IL6 and 

its receptor (44), further facilitating tumorigenesis.  

 Evidence suggestive of the role of IL6 in EBV lymphomagenesis is seen in both 

animal models and humans.  Severe combined immunodeficient (SCID) mice 

transplanted with EBV+ human peripheral blood leukocytes (hu-PBL) developed LPD of 
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human B cell origin, manifesting as large lymphoid tumors characteristic of aggressive 

LPD seen in immunosuppressed patients (45, 46, 47).  Of note, these xenotransplanted 

SCID mice also had detectable serum levels of human IL6 (48, 49).  Subsequent 

experiments using the same model demonstrated a significant decrease in tumor 

incidence and improved survival in hu-PBL-SCID mice after inhibition of human IL6 

with a neutralizing monoclonal antibody (50).  In humans, abnormally high levels of IL6 

are observed in patients with LPD (37, 40).  Haddad et al. then showed that monoclonal 

anti-IL6 antibody treatment of 10 patients with transplant-associated LPD refractory to 

reduction of immunosuppression resulted in complete remission in 5 patients and partial 

remission in 3 (37).  In the face of increasing evidence implicating the cytokine as an 

important factor in a variety of hematological and epithelial malignancies, it is no 

surprise that IL6 can also induce one of the  signal transducers and activators of 

transcription (STATs), specifically STAT3, a protein that is itself associated with 

oncogenesis.

 STATs comprise a family of structurally related cytoplasmic proteins originally 

identified as key intermediaries in cytokine-dependent signaling pathways and 

recognized for their dual function: signal transduction in the cytoplasm and activation of 

transcription in the nucleus, hence the name STAT (51).  They participate in normal 

physiological cell processes such as cell survival, proliferation, differentiation, and 

apoptosis following activation by cytokines belonging to the IL6 cytokine family (52) 

and growth factors such as EGF and PDGF (53).  STAT3 is one of seven STAT family 

members (STAT1, 2, 3, 4, 5A, 5B, and 6) that are activated via tyrosine phosphorylation 
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by members of the Janus kinase (JAK) family of protein tyrosine kinases in response to 

the aforementioned extracellular stimuli.  The binding of ligand to the common receptor 

gp130 results in phosphorylation of STAT3 on tyrosine (Y) residue 705, leading to the 

formation of a dimer via the reciprocal interactions between the SH2 domain of one 

monomer and the phosphorylated tyrosine of the other (54).  Dimerized STAT3 then 

translocates to the nucleus and directly binds to elements in the promoters of specific 

cellular genes essential in survival, proliferation, and development, regulating their 

transcription (53, 55).  Aberrant STAT activity may thus contribute to malignant 

transformation by promoting cell proliferation and survival.  

 Constitutively activated STAT3 has been widely reported in many human cancer 

cell lines, leukemias and lymphomas, and solid tumors, including hepatocellular 

carcinomas, breast cancers, and head and neck cancers (56).  In addition, studies have 

shown that constitutive activation of STAT3 occurs in cell lines transformed with v-Src, 

the transforming protein of Rous sarcoma virus; v-Abl, the oncogene transduced by 

Abelson murine leukemia virus; and by human T-cell leukemia virus-1 (53, 57, 58).  

Constitutive activation is not due to mutations in STAT3 itself but rather to deregulation 

of tyrosine kinases or of the ligands that activate STAT3 (53, 58, 59).  In normal cell 

signaling, STAT activation is transient, under negative regulation produced by 

dephosphorylation of intermediates by protein tyrosine phosphatases, by the suppressor 

of cytokine signaling (SOCS) family of JAK inhibitors, and by the induction of STAT 

inhibitors such as the protein inhibitor of activated STAT (PIAS) (60).  STAT3 activation 

that results in oncogenesis, however, is long-lasting and persistent, driving increased 
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expression of genes encoding the anti-apoptotic proteins Bcl-2, Bcl-xL, and mcl-1 (56), 

as well as cell cycle regulatory proteins that promote cell cycle progression such as        

c-Myc (61) and Cyclin D1 (54) and other transcription factors like c-Jun and c-Fos (62).

 Phosphorylated STAT3 (P-STAT3) itself can drive the expression of Stat3 gene.  

Indeed, a high level of expression of total STAT3 temporarily follows activation of 

STAT3 (56).  Stat3 is strongly upregulated in response to IL6, resulting in an increase in 

the amount of unphosphorylated STAT3 (U-STAT3) (55).  Constitutive activation of 

STAT3 in many tumors leads to increased expression of U-STAT3, which in turn drives 

the expression of oncogenes such as MET and MRAS, which do not respond directly to 

P-STAT3 (55).  A correlation between high levels of expression of Stat3 and of these two 

oncogenes has also been demonstrated in some tumors using tumor tissue microarray 

(55).

 Aberrant STAT3 activity also plays a role in EBV-driven tumorigenesis.  

Constitutively active STAT3 signaling is present in BL, NPC, Hodgkin’s disease, and 

LPD (60, 63).  EBNA1 (64) and LMP1 (60), the two latency proteins frequently 

expressed in EBV-associated tumors, have also been shown to be regulated by the JAK-

STAT signal transduction pathway.  LMP1 can also activate the expression of IL6 and in 

so doing promote phosphorylation at Y705 in an autostimulatory loop (65).  Moreover, 

constitutively active STAT3 is required for the growth stimulatory and tumor-producing 

effect of LMP1 in an LMP1 transgenic mouse model (66).     

 Findings in the Bhaduri-McIntosh lab linked STAT3 levels to maintenance of 

latency in the BL-derived cell line HH514-16.  Latently infected BL cells refractory to 
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EBV lytic cycle induction by sodium butyrate were confirmed to express high levels of 

STAT3 protein (67).  Subsequent experiments found high levels of STAT3 expressed in 

LCL but not in uninfected, cultured primary B cells and showed that phosphorylation of 

STAT3 rapidly followed infection of primary B cells with EBV (Megyola et al., 

unpublished data).  While much is unknown regarding STAT3 and its role in the 

development and maintenance of EBV lymphomas, this study sought to investigate in 

particular its role, in conjunction with that of IL6, in the emergence of B cells predicted 

to proliferate during the immortalization process.

 The association of IL6 and STAT3 with human cancers, in addition to the role of 

IL6 as a key intermediate in STAT3 activation, has raised interest in targeting them 

therapeutically.  JAK family tyrosine kinase inhibitors and Src family kinase inhibitors 

block STAT3 activation and inhibit survival of human cancer cell lines (65).  Peptides 

that block STAT3 dimerization and DNA binding activity have also been developed and 

shown to inhibit cell transformation (68).  Targeting IL6 through antibody-mediated 

inactivation seems equally promising (37).  It follows that a better understanding of the 

interactive roles 1L-6, STAT3, B cells, and EBV play in the promotion and maintenance 

of B cell proliferation following EBV infection may provide a rational basis for novel 

therapeutic interventions and lymphoma prevention, especially in vulnerable 

immunosuppressed populations.  
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HYPOTHESES AND SPECIFIC AIMS

Hypothesis 1:  IL6 is necessary for the emergence of CD23hi CD58+ B cells following   

   infection of human primary B cells with EBV.

 Specific Aim 1a:  Use neutralizing antibodies to IL6 and/or IL6 receptor (IL6R) with 

   isotype matched antibodies in parallel as control to determine if 

   blocking the activity of IL6 will inhibit the emergence of the 

   CD23hi CD58+  B cell population after infection with EBV.

Hypothesis 2:  Following exposure of human primary B cells to EBV, STAT3 is 

         necessary for the emergence of CD23hi CD58+ B cells that are predicted 

         to proliferate.

 Specific Aim 2a:  Use STAT3 inhibitors (AG490 and Stattic) to determine if 

                blocking the activity of STAT3 will abrogate the emergence of 

                the CD23hi CD58+ B cell population after infection with EBV.

 Specific Aim 2b:  Determine the window of time during which inhibition of STAT3 

            activity has an effect on emergence of CD23hi CD58+ B cells.   
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MATERIALS AND METHODS

Statement of medical student contribution

The author prepared reagents, maintained cell cultures, and performed all experiments 

with the assistance of Cynthia Megyola and under the guidance of Dr. Bhaduri-McIntosh.  

EBV preparation and titration were performed by Cynthia Megyola.  Phlebotomy and 

flow cytometry data acquisition and analysis were performed by Dr. Bhaduri-McIntosh.    

Isolation of mononuclear cells and enrichment of B cells

3 healthy EBV-seropositive adults previously identified by Western blot analyses for 

antibodies to EBNA1 and small viral capsid antigen volunteered to donate blood for the 

study.  Venous blood drawn in a heparin-coated syringe was diluted with 1 volume of 

RPMI 1640 medium (Sigma-Aldrich) and underlaid with 1 volume of lymphocyte 

separation medium (Ficoll-Hypaque; ICN).  The mixture was centrifuged at 800xG for 40 

minutes in a clinical centrifuge at room temperature.  Peripheral blood mononuclear cells 

(PBMCs) were isolated from the interface of the gradient and resuspended at 2 x 106 

cells/ml in complete RPMI 1640 medium containing 10% heat-inactivated, sterile filtered 

fetal bovine serum (FBS), penicillin, streptomycin, and amphotericin B.  Since EBV 

persists in 1-50 out of 106 peripheral B cells (69), the likelihood of in vitro outgrowth of 

large numbers of proliferating endogenous infected B cells within a few days is minimal 

to none.  T cells were removed prior to infection of B cells with EBV to minimize the 

effect of the cell-mediated immune system on EBV-driven B cell proliferation.  To avoid 

non-specific expression of CD23 via inadvertent activation of B cells by bead-bound 
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antibodies used in positive selection procedures, a negative selection procedure was used 

to isolate B cells.  PBMCs were subjected to CD3+ cell depletion using immunomagnetic 

beads (Dynal; Invitrogen) using the manufacturer’s instructions.  Monocytes were not 

removed from the CD3-depleted cells since “accessory cells” would likely simulate an 

environment akin to in vivo infection for the B cells.  In addition, more efficient 

outgrowth of EBV-infected B cells has been reported in the presence of auxiliary 

activation signals (70).  However, when cells were harvested after culture with EBV, 

greater than 98% obtained for analysis were B cells because monocytes adhered to the 

plastic tissue culture wells, as has been described (Megyola et al., unpublished data and 

71).  These experiments were performed with approval from the Human Investigation 

Committee at Yale University.  Informed consent was obtained from the volunteers.   

EBV preparation and titration

 EBV-positive B95-8 cells were lytically induced with the inducing agent TPA for 1 hour 

followed by extensive washing and placement in culture.  Cells were harvested after 4 

days and EBV was isolated from the cell culture supernatant by centrifugation as 

described (72).  Infectivity of the virus preparation was assessed by infecting BJAB cells, 

an EBV-negative B lymphoma cell line, with serial dilutions of virus.  After 48 hours in 

culture, cells were examined for expression of EBNA by indirect immunofluorescence 

(73) and virus titer was calculated.  For 2 different virus stocks, multiplicity of infection 

(moi) of 50-100 could be obtained with a 1:10 to 1:20 dilution of concentrated virus.  The 

viral preparations were aliquoted and stored at -70°C.
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IL6 and IL6R neutralization

CD3-depleted cells were incubated with rat monoclonal anti-IL6 neutralizing antibody 

(clone MQ2-13A5; BD Pharmingen) and/or mouse monoclonal anti-IL6R neutralizing 

antibody (clone B-R6; Abcam) at concentrations of 1 µg/ml, 10 µg/ml, and 100 µg/ml one 

hour prior to exposure to EBV and placed in culture at 37°C in the presence of 5% CO2.  

A parallel set-up involving their respective isotype-matched antibodies, purified NA/LE 

rat IgG1κ (clone R3-34) and mouse IgG1 (clone NCG01), served as control.  

STAT3 inhibition

One hour prior to exposure to EBV, CD3-depleted cells were incubated at 37°C in the 

presence of 5% CO2 with either AG490 (Cayman Chemical) at 5-50 μM in DMSO as 

solvent, Stattic (Tocris Bioscience) at 10-50 μM, or DMSO at 5-50 μM as control.  

AG490 inhibits activation of STAT3 by inhibiting JAK2 (74) while Stattic is a non-

peptidic inhibitor of STAT3 that inhibits binding of tyrosine-phosphorylated peptide 

motifs to STAT3 SH2 domain and inhibits STAT3 activation, dimerization and nuclear 

translocation (75).  In subsequent experimental set-ups, CD3-depleted cells were exposed 

to EBV for 2 hours and placed in culture at 37°C in the presence of 5% CO2, during 

which time AG490 at 25 μM was added 0-72 hours after EBV infection.  After 2 hours of 

exposure to EBV, cells were washed 2 times with RPMI to prevent ongoing binding and 

infection with virus before they were replaced in culture.  AG490 was replaced in the 

culture medium after washing.
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Infection of B cells and cell culture

Following exposure of primary B cells with B95-8 virus derived EBV at moi of 50-100, 

cells were placed in culture at 37°C in the presence of 5% CO2 at a concentration of 2 x 

106 cells/ml in RPMI containing 10% FBS, penicillin, streptomycin, and amphotericin B.  

Cells were harvested on day 4 based on findings from the Bhaduri-McIntosh lab that 

markers for proliferating cells can be identified as early as 3 days following exposure of 

primary B cells to EBV.  As previously mentioned, for the AG490 time point experiments 

the cells were washed twice with RPMI after exposure to EBV for 2 hours before they 

were replaced in culture.

Fluorescence-activated cell sorter (FACS) analysis

Cells were harvested at appropriate times and stained with saturating concentrations of 

fluorochrome-conjugated monoclonal antibodies against human cell surface molecules.  

Antibodies directed against surface molecules included anti-CD23-PE (BD Pharmingen) 

and anti-CD58-FITC (AbD Serotec).  IgG from murine serum (Sigma-Aldrich) at 1 mg/

ml was included in the mixture to inhibit non-specific binding.  Cells were incubated with 

antibodies for 30 minutes at 4°C followed by 2 washes.  Isotype matched control 

antibodies included monoclonal murine IgG1-PE and IgG1-FITC.  For intracellular 

staining, cells were fixed and permeabilized with Cytofix/Cytoperm (BD Pharmingen).  

Cells were incubated for 30 minutes at 4°C with rat anti-IL6-APC (BD Pharmingen) or 

biotinylated anti-IL6 (eBioscience) and rabbit anti-STAT3 antibody (C20; Santa Cruz 

Biotechnologies) followed by 2 washes.  Isotype control antibodies included monoclonal 

17



rat IgG1-APC.  Bound anti-IL6-Biotin antibody was detected using Avidin-PE-Cy7 while 

bound anti-STAT3 was detected using Cy5-conjugated anti-rabbit IgG.  One hundred 

thousand events were acquired using a LSR II or FACS Calibur flow cytometer (BD 

Biosciences).  Data analysis was performed using WinMDI software.  Gates were set on 

live lymphocytes based on their forward- and side-scatter profiles.  Cells stained by an 

antibody of interest was determined by comparing with cells identically treated with a 

fluorochrome conjugated matched isotype control antibody.
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RESULTS

CD23hi CD58+ B cells emerged despite efforts to inhibit IL6 function.

Preliminary experiments suggested that CD23hi CD58+ cells were unable to proliferate in 

the absence of non-proliferating sub-populations.  Since one of the two newly emerged 

sub-populations expressed IL6, a B cell growth factor, we examined whether inhibition of 

IL6 had an effect on the emergence and proliferation of CD23hi CD58+ cells.  

Experiments were performed using primary cells from three healthy individuals enriched 

for B cells by depletion of CD3 cells.  Neutralizing antibody to IL6, IL6R, or to both was 

added to CD3-depleted cells 1 hour prior to infection with EBV.  Simultaneously, cells 

were infected with EBV in the presence of identical concentrations of isotype-matched 

antibodies as control.  Figure 1 shows that the presence of neutralizing antibodies at a 

concentration of 1 µg/ml to IL6, IL6R, or both had no effect on the emergence of CD23hi 

cells as compared to control cells not incubated with neutralizing antibodies on day 4 

following exposure of cells to EBV.  Similarly, no effect was observed when cells were 

harvested on day 6, suggesting continued proliferation of CD23hi cells despite the 

presence of neutralizing antibodies (data not shown).  Antibody concentrations of 5, 10, 

and 100 µg/ml were also used with similar results (data not shown).  Thus, functional 

inhibition of IL6 and/or IL6R did not demonstrate a negative effect on the emergence or 

proliferation of CD23hi cells. 
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Figure 1.  Blocking IL6 has no effect on the emergence of CD23hi CD58+ B cells.  CD3-
depleted cells from EBV-seropositive subject 1 were incubated with anti-IL6, anti-IL6R, or a 
combination of the two antibodies and exposed to EBV followed by examination of cells stained 
with antibodies directed against CD58 (FITC) and CD23 (PE) on day 4.  Percentages represent 
fractions of CD23hi CD58+ cells of the total.



Correlation between expression of STAT3 and CD23 in B cells exposed to EBV.

Since ligand binding to IL6R triggers activation of the JAK-STAT3 pathway (62), we 

next examined the effects of EBV infection on levels of STAT3 protein.  Interaction of 

IL6 with IL6R results in activation of STAT3 to phospho-STAT3 (P-STAT3 at residue 

Y705) via JAK tyrosine kinases.  Following dimerization and nuclear translocation, P-

STAT3 transcriptionally activates Stat3 in addition to a myriad of other target genes.  

Findings in the Bhaduri-McIntosh lab revealed that exposure of B cells to EBV is 

followed by phosphorylation of STAT3 at Y705 and that LCL have high levels of total 

STAT3 (Megyola et al., unpublished data).  Therefore, using total STAT3 as an indirect 

measure of phosphorylation of STAT3, we sought to correlate levels of expression of 

STAT3 with CD23 expression and with emergence of CD23hi cells after exposure of B 

cells to EBV.  Figure 2 shows that when B cells were cultured alone for 4 days, 12% of 

the total B cell population expressed high levels of STAT3 (STAT3hi).  As expected, no 

CD23hi cells emerged.  In contrast, when B cells were exposed to EBV for 4 days, 41.3% 

of cells were STAT3hi.  Furthermore, 4.3% of the total cells were CD23hi and co-

expressed high levels of STAT3.  Whereas CD23lo cells could express high or low levels 

of STAT3, most CD23hi cells expressed high levels of STAT3.  Therefore, exposure to 

EBV resulted in an increase in the fraction of B cells expressing high levels of total 

STAT3.  In addition, CD23hi cells demonstrated expression of high levels of STAT3.                

21



22

Figure 2.  Correlation between expression of STAT3 and CD23 in B cells exposed to EBV.  
CD3-depleted cells from EBV-seropositive subject 2 were exposed to EBV followed by 
examination of cells stained with antibodies directed against STAT3 (Cy5) and CD23 (PE) on day 
4.  Percentages represent fractions of STAT3hi and  STAT3hi CD23hi cells of the total.  
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Inhibition of STAT3 with Stattic abrogates the emergence of all three CD23+ B cell 

populations and results in near-complete inhibition of STAT3 expression.

Previous experiments in the Bhaduri-McIntosh lab revealed that exposure of B cells to 

EBV is followed by phosphorylation of STAT3 at Y705.  In addition, my experiments 

(Fig.2) showed that CD23hi cells express high levels of STAT3.  We therefore asked if 

STAT3 is necessary for the emergence of CD23hi CD58+ B cells that are predicted to 

proliferate following EBV infection.  While constitutively active STAT3 was required for 

LMP1-mediated promotion of tumors in an LMP1 transgenic immunocompromised 

mouse tumor model (66), the requirement for STAT3 in an infection model may not be 

obligatory.  To address this question, we infected CD3-depleted cells from 2 healthy 

EBV-seropositive adults with EBV in the presence of Stattic, a small molecule STAT3 

inhibitor that interferes with STAT3 activation, dimerization, and nuclear translocation 

(75).  Three different concentrations of Stattic were tested.  We compared the fractions of 

CD23hi CD58+, CD23lo CD58+, and CD23lo CD58- cells and examined expression of 

STAT3 on day 4 after exposure of B cells to EBV in the presence of different 

concentrations of Stattic or solvent as control.  While Figure 3 shows data from subject 3, 

a range of values for both subjects is included in the text.  Even at the lowest 

concentration of 10µM Stattic, all three CD23+ populations failed to emerge as compared 

to solvent (DMSO) control (Fig.3A).  While STAT3+ cells were 81.8% (range: 60.5-81.8) 

of the total when cells were infected in the presence of DMSO, only 5.9% (3.6-5.9) of 

cells were STAT3+ when cells were infected in the presence of 10µM Stattic (Fig.3B).  

Thus, Stattic inhibited nearly all STAT3 expression at the lowest concentration tested.   
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Trypan blue dye exclusion was used to determine if Stattic was toxic to cells.  

Table 1 shows that even at 10µM, the lowest concentration tested, Stattic resulted in the 

death of nearly 81% of cells as compared to cells incubated with DMSO.  The negative 

effect on cell viability was more pronounced at higher concentrations of Stattic.  

Therefore, Stattic appeared to have a global effect on cells exposed to EBV that included 

inhibition of emergence of all CD23+ sub-populations, inhibition of expression of STAT3, 

and cell viability.  While the presence of DMSO did not adversely affect cell viability 

(data not shown), substantial cell death after exposure of B cells to EBV (DMSO 

condition in Table 1) was not unexpected.        

                           

24

Condition Number of cells

Number of cells 
seeded in culture 

on day 1
6 x 106

Number of cells 
harvested on day 

4 following 
exposure to EBV 
in the presence of 

DMSO 8 x 105

Number of cells 
harvested on day 

4 following 
exposure to EBV 
in the presence of 

10µM Stattic 1.5 x 105
Number of cells 

harvested on day 
4 following 

exposure to EBV 
in the presence of 

20µM Stattic 1 x 105

Number of cells 
harvested on day 

4 following 
exposure to EBV 
in the presence of 

50µM Stattic 2.5 x 104

Table 1.  Subject 3 Stattic Trypan blue exclusion assay.  
The total numbers of EBV-exposed B cells seeded in culture on 
day 1 and harvested on day 4 in the presence of different 
concentrations of Stattic or solvent are shown.     
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AG490 preferentially inhibits emergence of CD23hi CD58+ B cells and results in a 

fall in the STAT3hi population.

Since Stattic was toxic to EBV-exposed B cells, we decided to test AG490, an inhibitor 

that specifically blocks phosphorylation of STAT3 at Y705 by inhibiting  JAK2 (74).  

Table 2 shows that AG490 was not toxic to cells at any of the three concentrations tested.  

Figure 4 and 5 show data from subject 3 using AG490.  There was a 5.7-fold fall in the 

emergence of CD23hi CD58+ cells and a 3.1-fold fall in the emergence of CD23lo CD58+ 

cells in the presence of 5µM AG490 (Fig.4A).  When 25µM AG490 was used, there was 

a 14.3-fold fall in the emergence of CD23hi CD58+ cells compared to a 4.7-fold fall in the 

emergence of CD23lo CD58+ cells.  At a concentration of 50µM, AG490 resulted in a 

190-fold fall in the emergence of CD23hi CD58+ cells with a 10.1-fold reduction in 

CD23lo CD58+ cells.  There were minimal differences in the percentages of CD23lo CD58- 

cells.  Thus, AG490 preferentially inhibited the emergence of CD23hi CD58+ cells.       

The presence of AG490 did not affect the percentage of STAT3+ cells (Fig.4B).  

Figure 5 shows that if STAT3 expression was divided into low, intermediate, and high 

levels, no fall in the fraction of cells expressing low levels of STAT3 was observed at any 

concentration of AG490.  There was no fall at 5µM but a 1.2-fold fall at 25µM, and a 1.9-

fold fall at 50µM in the percentage of cells expressing intermediate levels of STAT3.  In 

comparison, there was a 2.8-fold, an 8.4-fold, and a 15-fold fall in the percentage of cells 

expressing high levels of STAT3 in the presence of 5µM, 25µM, and 50µM AG490, 

respectively.  Thus, AG490 demonstrated preferential inhibition of the STAT3hi 
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population.  AG490 did not affect IL6 expression at any of the concentrations tested (data 

not shown).   
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Condition Number of cells

Number of cells 
seeded in culture 

on day 1
6 x 106

Number of cells 
harvested on day 

4 following 
exposure to EBV 
in the presence of 

DMSO 8 x 105

Number of cells 
harvested on day 

4 following 
exposure to EBV 
in the presence of 

5µM AG490 1.6 x 106
Number of cells 

harvested on day 
4 following 

exposure to EBV 
in the presence of 

25µM AG490 8 x 105

Number of cells 
harvested on day 

4 following 
exposure to EBV 
in the presence of 

50µM AG490 1.2 x 106

Table 2.  Subject 3 AG490 Trypan blue exclusion assay.  The 
total numbers of EBV-exposed B cells seeded in culture on day 1 
and harvested on day 4 in the presence of different 
concentrations of AG490 or solvent are shown.     
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The effect of AG490 on the emergence of cells predicted to proliferate is observed 

during the first 24 hours of exposure of B cells to EBV.

We then investigated the window of time during which AG490 could negatively affect the 

emergence of CD23hi CD58+ cells.  We exposed CD3-depleted cells from a healthy EBV-

seropositive adult in the presence of 25µM AG490.  AG490 was added at different times 

(0-72 hours) following exposure of cells to EBV, and all cells were harvested at 96 hours 

post exposure.  Figure 6 shows that when AG490 was added from 0-24 hours after 

exposure to EBV, the fraction of CD23hi CD58+ cells decreased to 0.3-1% of total as 

compared to 5.2% in the control group (+EBV+DMSO), resulting in a 5.2- to 17.3-fold 

reduction.  The negative effect on the emergence of CD23hi CD58+ cells was lost when 

AG490 was added after 24 hours.  As was observed in earlier experiments, the effect on 

emergence of CD23lo CD58+ cells was less substantial (Fig.4A) with 1.3-2.5-fold 

reduction when AG490 was added from 0 to 24 hours after exposure to EBV.  Results of 

experiments in Figure 6 suggest that phosphorylation of STAT3 during the first 24 hours 

of infection with EBV is important for the emergence of B cells predicted to proliferate.     
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Figure 6.  The effect of AG490 on the emergence of cells predicted to proliferate is observed 
during the first 24 hours of exposure of B cells to EBV.  CD3-depleted cells from EBV-
seropositive subject 2 were exposed to EBV in the presence of 25µM AG490 added at different 
times after addition of EBV.  Cells were washed after 2 hours of incubation with EBV; AG490 
was maintained in culture for the duration of the experiment.  Cells were harvested at 96 hours 
after exposure to EBV.  Cells were stained with antibodies directed against CD58 (FITC) and 
CD23 (PE).  Percentages represent fraction of  cells in each region.  Raw data is shown in A and a 
graphic representation is shown in B. 
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DISCUSSION 

 Since EBV-driven B cell outgrowth has been commonly studied by examining B 

cell lines 3-8 weeks after infection with EBV (79, 80), many unanswered questions 

surround the early stages following EBV infection.  It is an event central to the 

persistence of the virus and the development of EBV-associated B cell lymphomas in 

immunocompromised individuals, in whom a decline in effective T cell surveillance can 

lead to uncontrolled EBV-driven lymphoproliferation.  Given the rise of infectious and 

iatrogenic causes of immunosuppression and the absence of a vaccine or specific therapy 

directed against EBV, an ubiquitous virus, a better understanding of early events that lead 

to proliferation of B cells upon infection with EBV is critical.  These lines of 

investigation will contribute to our knowledge of the pathogenesis of EBV lymphomas 

and likely lead to promising alternate modes of prevention and therapy.    

 Although CD23 is generally believed to be an early marker for immortalization (4), 

findings in the Bhaduri-McIntosh lab demonstrate that EBV differentially infects B cells 

into distinct sub-populations, only one of which, those marked CD23hi CD58+ IL6-, can 

be predicted to proliferate as early as 3 days after exposure to EBV (Megyola et al., 

submitted manuscript).  Another sub-population of cells was found to produce IL6 but did 

not proliferate.  As IL6 promotes B cell growth, these findings raise the possibility that 

non-proliferating sub-populations share the common goal of potentiating proliferation of 

a select few, possibly via IL6.  They also found that expression of high levels of STAT3 

correlated with maintenance of the latent state (67).  These findings, in conjunction with 

evidence linking IL6 (37, 40, 45, 46, 47, 48, 49, 50) and STAT3 (60, 63)  to EBV 
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lymphomagenesis, prompted us to investigate the role of both in driving proliferation of 

newly infected primary B cells.       

 The experiments presented address questions regarding the role of IL6 and STAT3 

in the emergence of B cells predicted to proliferate after exposure of B cells to EBV.  

Blocking IL6 did not abrogate the emergence of CD23hi CD58+ cells as was our initial 

hypothesis.  Consistent with prior findings in the lab, STAT3 expression increased, and 

CD23hi cells emerged after exposure to EBV.  We subsequently showed that inhibiting 

STAT3 activity with Stattic abrogated the emergence of all three CD23+ B cell 

populations and knocked out nearly all STAT3 expression.  AG490, on the other hand, 

had a preferential negative effect on CD23hi CD58+ B cells and resulted in a decrease in 

the STAT3hi and STAT3hi CD23hi populations.  This enabled us to determine that 

phosphorylation of STAT3 is important for the emergence of cells marked CD23hi CD58+ 

and predicted to proliferate, especially within the first 24 hours after EBV infection.  

However, this study is not without its limitations.

 Constitutively active STAT3 has been detected in LCL (63) and in B cell- and 

epithelial cell-derived EBV tumors (60, 63).  Our lab previously observed a high level of 

expression of STAT3 in LCL but not in uninfected, cultured B cells.  Additionally, 

experiments revealed that phosphorylation of STAT3 followed exposure of B cells to 

EBV (Megyola et al., unpublished data).  While this study adds to what is known about 

STAT3 in EBV tumorigenesis, what is not clear in the data presented here is the 

importance of high levels of STAT3 in B cell proliferation given that AG490 is known to 

target STAT3 phosphorylation via its specific inhibition of JAK2 in the JAK-STAT3 
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signal transduction pathway.  Downregulation of STAT3 expression using siRNA is an 

option, as well, but current approaches do not deliver siRNAs into a high percentage of 

primary cells  without cytotoxicity (83), resulting in low transfection efficiency.  To 

conclusively demonstrate the importance of high levels of STAT3 in the emergence of 

CD23hi CD58+ cells, the same experiments will need to be performed using primary B 

cells from individuals with the hyper-IgE or Job’s syndrome, a rare disorder of immunity 

and connective tissue predominantly caused by mutations in Stat3, most of which are 

located in the SH2 and DNA binding regions.  Production of proteins with dominant 

negative activity results in the characteristic symptoms of dermatitis, boils, cyst-forming 

pneumonias, elevated serum IgE levels, retained primary dentition, and bone 

abnormalities (84).

 While we found that 10-20.8% of STAT3hi  cells were also CD23hi and thus 

predicted to proliferate, it is interesting to note that a substantial number of CD23lo cells 

were also STAT3hi but did not proliferate.  It is possible that STAT3, athough expressed at 

high levels, may not be phosphorylated in this sub-population of B cells.  Alternative 

mechanisms of transcribing Stat3 gene beside P-STAT3-mediated transcription may exist.  

This possibility is supported by the observation that inhibition of CD23lo CD58+ sub-

population is relatively and that of CD23lo CD58- sub-population is completely spared in 

the presence of AG490.  Another plausible explanation is that inhibitors of STAT3 

phosphorylation such as the SOCS family of JAK inhibitors and PIAS (60) may be 

induced specifically in CD23lo cells.
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 In our use of Stattic and AG490, we must also consider any possible pleiotropic 

inhibitory effects pointing to STAT3-independent B cell proliferation.  Specific and 

selective STAT3 inhibitors are few in number.  Many compounds have multiple targets or 

are not specific to STAT3 (85).  AG490, a specific Jak2 inhibitor, may interrupt other 

signal transduction pathways that rely on phosphorylation by Jak2 besides that of STAT3.  

Comparing the levels of expression of the anti-apoptotic and pro-proliferative molecules 

Bcl-2, Bcl-xL, Mcl-1, and c-Myc (56, 61), which are transcriptional targets of P-STAT3, 

by immunoblot using specific antibodies would allow one to directly assess the 

downstream effects of P-STAT3.  Expression of transcriptional targets of 

unphosphorylated STAT3 such as IL8, ICAM1, and RANTES (55) would indicate if 

unphosphorylated STAT3 is involved in the early processes that follow exposure of B 

cells to EBV.    

 Our data also shows that phosphorylation of STAT3 is only important for 

emergence of CD23hi CD58+ cells during the first 24 hours after infection with EBV, 

which begs the question of why this effect disappears past 24 hours.  It is possible that 

viral proteins made 24 hours following EBV infection compensate for the lack of STAT3 

phosphorylation and proceed to take over the task of maintaining B cell proliferation.  A 

candidate viral protein in this case might be LMP-1.  Its key role in EBV-induced 

proliferative transformation is suggested by evidence such as its ability to transform 

rodent fibroblasts and increase tumorigenicity in nude mice (34).  Furthermore, its 

expression following EBV infection was not observed earlier than 48 hours (86).  While 

LMP-1 has also been shown to activate STAT3 via IL6-dependent and IL6-independent 
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mechanisms (65, 87), whether this involves STAT3 phosphorylation is unclear.  It is 

possible that LMP-1 activates expression of STAT3 in the absence of an effect on 

phosphorylation of STAT3 in B cells.  

 Although blocking IL6 and IL6R showed no effect on emergence of CD23hi CD58+ 

cells in our experiment, the possibility that IL6 plays a role in emergence of CD23hi 

CD58+ cells cannot be excluded.  IL6 has been found to be a growth factor for LCL in 

culture (40) and in SCID mice (50).  The strong correlation between the incidence of 

post-transplant EBV lymphomas and markedly increased levels of serum IL6 (88) cannot 

be ignored.  The potential role of IL6 in aiding the cells destined to proliferate is also 

strongly suggested by death of cells when the sub-populations were sorted and 

reintroduced into culture separately (Megyola et al., unpublished data).  

 Initially, we had considered that we may not have used a high enough concentration 

of the neutralizing antibodies.  Earlier studies with anti-IL6 antibody showed that 

biological activity of IL6 was not inhibited at 1:1 molar ratio of IL-6:anti-IL-6 antibody 

(89).  However, this is unlikely in this case as a concentration of 100 µg/ml of anti-IL6 

was used, which is much higher than reported elsewhere.  Complete blockade of IL6 may 

be necessary to see an effect on the emergence of CD23hi CD58+ cells.  It is possible that 

even small amounts of IL6 may be sufficient for the emergence of proliferating cells to 

proceed.  An alternative approach is to remove IL6-producing CD23lo cells after infection 

by sorting and then compare outgrowth of CD23hi cells in the presence of neutralizing 

antibodies to IL6 and IL6R with that of mock sorted cultures.  
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 We also considered that the affinity of the neutralizing antibodies for their targets 

was sub-optimal or that the antibodies had an opposite, excitatory, effect.  Given this 

plausible explanation and the time constraints within which we were working, we 

decided to focus our investigation on STAT3 rather than identify alternate sources of 

reagents.  Ideally, however, one would repeat the experiments with perhaps a different 

batch of neutralizing antibodies.

 Overall, these experiments imply that our hypothesis regarding STAT3 was correct 

and encourage further experiments to shed light on the early events in EBV-driven B cell 

proliferation and the interactions between IL6, STAT3, B cells, and EBV.  The hope is 

that this will enable us to identify and to institute early interventions in EBV lymphoma 

prevention and innovative therapeutic strategies.  Before this can occur, however, we 

need a more well-founded and complete understanding of these interactions, which will 

further our comprehension of the underlying pathogenesis of EBV lymphomas.
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