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ABSTRACT 

Author: Koltsidou, Ioanna. MS 

Institution: Purdue University 

Degree Received: August 2019 

Title: Detection and Quantification of Taste and Odor Producing Bacteria in Eagle Creek Reservoir. 

Committee Chair: Christine Picard  

 

The accelerated growth of algal blooms in water bodies has caused the increased 

occurrence of taste and odor (T&O) episodes worldwide. Even though T&O compounds have not 

been associated with adverse health effects, their presence can have extensive socio-economic 

impacts in contaminated waters. Eagle Creek Reservoir, a eutrophic water body, which supplies 

about 80% of Indianapolis drinking water, experiences frequent and sometimes severe odorous 

outbreaks. The terpenoid bacterial metabolites, 2-methylisoborneol (2-MIB) and geosmin, have 

been identified as the main compounds contributing to those T&O problems, which occur 

seasonally when the reservoir receives most of its water and nutrient loads from discharge events. 

In this study, ECR’s microbial community composition was assessed by a 16S next generation 

sequencing approach, confirming the presence of the major bacterial phyla of Cyanobacteria, 

Proteobacteria, Actinobacteria and Bacteroidetes, which are commonly found in freshwater 

environments. The relative abundance of Cyanobacteria, which are regarded as the main T&O 

producers in freshwater, followed the fluctuation of 2-MIB and geosmin concentrations closely. 

Mapping sequence analysis of a metagenomic dataset, successfully recovered the genes 

responsible for the synthesis of geosmin and 2-MIB, demonstrating the microbial ability for 

odorous compound production in ECR. Quantification of the geoA and MIBS genes in 

Cyanobacteria was achieved by the development and application of qPCR assays on water samples 

collected from the reservoir. A statistically significant positive correlation was found between 

MIBS gene quantity and MIB concentration for all sampling locations, implying that this assay 

could potentially be used as a tool for the early prediction of upcoming T&O episodes. The geoA 

gene detection assay, did not correlate well with geosmin concentrations, suggesting that even 

though the gene might be present, this does not necessarily mean that it is metabolically active.  
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 INTRODUCTION  

1.1 Global Rise of Taste and Odor Episodes   

Water is one of the most important substances and an essential component for the 

preservation of life on this planet. Since water covers 70% of the earth, we often think of it as 

being inexhaustible and plentiful, however, less than 1% of freshwater is available making its 

proper conservation necessary for sustainable use [Lee et al., 2017]. In direct threats to water 

conservation is the continued rise of urbanization and intensive industrial and agricultural practices, 

leading to eutrophication of freshwater ecosystems, a process that favors the proliferation and 

dominance of bacterial blooms [Gkelis et al., 2014; Paerl and Paul, 2012]. Contained with those 

blooms are a group of bacteria known as cyanobacteria, bacteria that harness the suns energy and 

produce oxygen photosynthetically. Although cyanobacteria have existed on earth on Earth since 

ancient times and blooms are a natural phenomenon, reports and studies show that they are 

currently increasing worldwide and becoming an issue of a great concern [Huisman et al., 2018; 

Paerl and Paul, 2012; Winter et al. 2011]. Alarmingly, a recent study developed a model 

predicting the effect of climate change and anthropogenic activities on cyanobacteria, and found 

that in the USA the mean number of days with Cyanobacterial blooms will increase from 7 days 

per year per waterbody under current conditions to 18-39 days in 2090 [Chapra et al. 2017; 

Huisman et al., 2018]. This accelerated growth of algal blooms in water bodies has a secondary 

effect – the production of metabolites, which cause the occurrence of taste and odor (T&O) 

episodes in diverse waters such as lakes, fishponds and reservoirs [Lee et al., 2017]. Even though 

taste and odor compounds have not been associated with any serious biological or pathological 

effects, consumers perceive water as unsafe to drink [Giglio et al., 2010]. Therefore, water 

management utilities are called to deal with this problem and develop methods for the early 

detection and prediction of emerging issues in order to avoid economic losses and gain consumer 

trust.    

1.2 Eagle Creek Reservoir  

Eagle Creek Reservoir (ECR;86°18′13.07′′W, 39°51′09.84′′N; A = 5.0 km2; Z = 4.2 m), 

was constructed in 1967 in the northwest corner of Marion County, Indiana, to initially provide 
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flood control and subsequently drinking water when the T.W. Moses Drinking Water Plant came 

online in 1976 [Harris et al., 2016; Li et al., 2006]. Currently, ECR is part of a major drinking and 

recreational water system, along with Geist and Morse Reservoirs, which supplies potable water 

for over 900,000 residents of the Indianapolis Metropolitan region [Song et al., 2012]. The land 

use in Eagle Creek watershed is primarily agricultural (about 60%), resulting in high nutrient loads 

and contributing to the classification of the reservoir as being mesotrophic to eutrophic [Song et 

al., 2012]. In the last few years, drinking water managers have documented algal blooms of taste 

and odor causing microorganisms, with the problem starting to become more frequent and 

sometimes severe in the early 2000’s [Li et al., 2006; Pascual and Tedesco, 2006]. The odorous 

events are usually observed during the Spring, when the reservoir receives most of its water and is 

fully mixed and turbid, and at the beginning of Fall. In order to identify the sources of the problem 

and develop efficient management strategies, Citizens Water Indianapolis, the water division of 

Citizens Energy Group, started a long-term research partnership with the Center for Earth and 

Environmental Science at IUPUI.    

1.3 Geosmin and 2-MIB  

Most of the taste and odor episodes in drinking water are caused by the terpenoid bacterial 

metabolites 2-MIB (2-methylisoborneol) and geosmin (trans-1,10-dimethyl-trans-9-decalol) 

which produce a mildewed and earthy flavor respectively [Lee et al.,2017; Jüttner and Watson, 

2007; Watson et al., 2008]. Each compound exists as (+) and (-) enantiomers (Figure 1.1), but odor 

outbreaks are caused by the biological production of the (-) stereoisomer which is 10 times more 

potent than the (+) molecules [Jüttner and Watson, 2007]. Their hydrophobic properties help them 

penetrate and accumulate in fish flesh, reducing the quality of freshwater aquaculture [Guttman 

and Rijn, 2009; Klausen et al., 2005]. Since geosmin and 2-MIB were first isolated from 

actinomycetes and identified by Gerber et al. [1965] and Medsker et al. [1969], much research has 

revolved around them [Giglio et al., 2008; Komatsu et al., 2008]. One of the main reasons being 

that due to their strong resistance to oxidation, a process routinely applied to water purification, 

and their low detection threshold by human senses (2-10 ng/L), they tend to be the most common 

substances in odor incidents [Auffret et al., 2011; Suurnäkki et al., 2015; Wang et al., 2016].  
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Figure 1.1 Chemical structures of 2-MIB and geosmin enantiomers [Watson, 2003]. 

1.4 Biological Sources  

The secondary metabolites geosmin and 2-MIB are produced by a wide range of 

microorganisms, including eukaryotes such as fungi, amoeba, liverworts and beets, but mainly 

prokaryotes belonging to cyanobacteria, actinomycetes, proteobacteria and myxobacteria [Giglio 

et al., 2008; Jüttner and Watson, 2007]. In freshwater environments, planktonic and benthic 

cyanobacteria are considered the main producers of T&O compounds, since oftentimes strong 

correlations have been reported between microscopic cell counts and concentrations of geosmin 

and 2-MIB [Asquith et al., 2013; Chiu et al., 2016; Tsao et al., 2014; Watson et al., 2008]. 

Cyanobacteria are oxygen producing bacteria that use sunlight as an energy source to convert 

carbon dioxide into biomass and can rapidly increase, forming blooms that are frequently 

associated with the production of odorous metabolites [Huisman et al., 2018; Su et al., 2013; Tsao 

et al., 2014]. More than 40 species have been confirmed as MIB and/or geosmin producers, 

including strains of Anabaena, Lyngbya, Planktothrix, Aphanizomenon, Oscillatoria, 

Pseudanabaena [Asquith et al., 2013; Chiu et al., 2016; Jüttner and Watson, 2007; Lee et al., 2017; 

Zhang et al., 2009]. The synthesis, production and secretion of those metabolites depends on 
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environmental factors and microbial population dynamics, but most of the intracellular pools get 

released during senescence, lysis and biodegradation of the cells [Lee et al., 2017; Watson, 2003; 

Watson et al., 2008]. Cyanobacteria belong to a morphologically diverse group and greatly differ 

in their metabolite chemistry and production dynamics [John et al., 2018; Watson et al., 2003; 

Watson et al., 2008]. Consequently, even closely related species and different stains of the same 

species, may produce varying amounts of 2-MIB and geosmin, making it difficult to anticipate and 

predict emerging T&O episodes. Perhaps more importantly, it is increasingly difficult to trace their 

origin, as many times microbial biomass and subsequent metabolites do not follow closely one 

another.   

Although cyanobacteria are regarded as the primary producers of geosmin and 2-MIB, the  

presence of those compounds during periods of low cyanobacterial biomass indicates that there 

are other bacteria also contributing to the T&O problem [Asquith et al., 2013]. Actinobacteria, 

which belong to a class of Gram-positive heterotrophic bacteria with DNA high in GC content, 

also have the ability to produce geosmin and 2-MIB in aquatic environments [Asquith et al., 2013; 

Klausen et al., 2005]. They are typically characterized as soil bacteria, but they can be found in 

aerobic, organic-rich environments, such as the water-sediment interface, where they usually get 

introduced through terrestrial runoff, and in some cases constitute more than 60% of the bacterial 

community population [Jüttner and Watson, 2007; Klausen et al., 2005; Lyllof et al., 2012]. 

Initially, since the two compounds were first identified and isolated from Streptomyces, these 

species were regarded as the main producers. However, further research revealed other 

actinobacterial odor producers such as species of Nocardia, Arthrobacter and Micromonospora 

[Jüttner and Watson, 2007; Lindholm-Lehto and Vielma, 2018]. In some cases, species can 

produce either geosmin or 2-MIB, and some produce both [Zaitlin et al., 2003]. In the case of 

Streptomyces, which produces both, following sporulation and during mycelial growth, 

demonstration of a direct relationship with odor production was not always straightforward, since 

spores that are not metabolically active cannot be distinguished from vegetative forms when using 

traditional cell count techniques [Asquith et al., 2013]. Furthermore, Actinobacteria display diverse 

morphologies and have variable metabolic and cellular capacities, resulting in inconsistent odor 

production by isolates that have identical 16S rRNA sequences. This means, the detection of the 

origin of the problem becomes more difficult and T&O episodes are not well predicted [Asquith 

et al., 2013; Klausen et al., 2005].    
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1.5 Biosynthetic Pathways and Production Mechanism  

Although geosmin and 2-MIB were identified in the late 1960’s, it was not until much later 

that their biosynthetic pathways were elucidated. Bentley and Meganathan [1981], first 

demonstrated through labeling experiments on Streptomyces, that the compounds are terpenes, 

derived from precursors of the isoprenoid pathway. They concluded that 2-MIB is a methylated 

monoterpene and geosmin is most likely derived from a sesquiterpenoid precursor. There are three 

major biosynthetic pathways of isoprenoid synthesis that may lead to the production of geosmin 

and 2-MIB by different microorganisms (Figure 1.2) [ Jüttner and Watson, 2007]. Bacterial taxa 

primarily use the 2-methylerytthritol-4-phosphate (MEP) pathway but some organisms have the 

ability to preferentially choose between the MEP and mevalonic acid (MVA) pathway, depending 

on their growth stage [Jüttner and Watson, 2007; Rodrίguez-Concepciόn and Boronat, 2002]. Both 

pathways lead to the production of isopentenyl diphosphate (IPP), a 5-carbon precursor for geranyl 

diphosphate and farnesyl diphosphate, ultimately leading to 2-MIB and geosmin, respectively 

[ Asquith et al., 2013]. The MEP pathway synthesizes IPP in plastids, whereas the MVA pathway 

produces cytosolic IPP [Rodrίguez-Concepciόn and Boronat, 2002].  

Significant progress in the understanding of genes and enzymes involved in the production 

mechanism of geosmin has been recently made. Cane et al. [2006], showed that the geosmin 

synthase gene (geoA) is essential for geosmin biosynthesis, by demonstrating the inability of 

Streptomyces avermilitis mutants for the geoA gene to produce either germacradienol or geosmin. 

The same was reported in cyanobacteria, based on the presence of a single gene encoding the 

geosmin synthase enzyme [Giglio et al., 2008]. The production of geosmin happens through the 

conversion of farnesyl diphosphate, the universal 𝐶15  sesquiterpene precursor, to geosmin 

catalyzed by geosmin synthase encoded by the geoA gene (Figure 1.3) [Giglio et al., 2008; Giglio 

et al., 2010].   

Labeling experiments have shown that 2-MIB is a methylated monoterpene alcohol, and 

the additional methyl group is derived from S-adenosyl-L-methionine (SAM) [Bentley and 

Meganathan, 1981; Komastu et al., 2008; Wang et al., 2011]. In combination with the feeding 

experiments conducted by Dickschat et al., [2007], which demonstrated that methylation of 

geranyl diphosphate (GPP) produces the substrate for 2-MIB cyclase and then subsequent 

formation of 2-MIB occurs, it was suggested that there are two steps in the synthesis of 2-MIB 
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[Wang et al., 2011]. First, we have the S-adenosylmethionine-dependent methylation of GPP to 2-

methyl-GPP and then its subsequent cyclization to 2-MIB (Figure 1.4) [Asquith et al., 2013; Wang 

et al., 2011]. The genes involved in the biosynthesis of 2-MIB, were identified by Komatsu et al., 

[2008], via bioinformatic tools to screen 2-MIB producing actinomycetes and found two genes 

forming an MIB synthesis operon. Those genes are GPP-2-methyltranferase (GPPMT) which 

catalyzes the first step of the reaction and a monoterpene cyclase (2-MIB synthase, MIBS) that is 

involved in the cyclization step. Giglio et al., [2010], revealed that the same two reactions are 

present in 2-MIB synthesis in cyanobacteria and demonstrated the successful activity of GPPMT 

and MIBS genes in Pseudanabaena through incubation experiments with GPP and SAM. The 2-

MIB synthesis genes in cyanobacteria are homologous to actinomycetes genes, suggesting 

ancestral origins for this biosynthetic pathway [Wang et al., 2011].   

 

 

 

Figure 1.2 Simplified biosynthetic pathways for the formation of 2-MIB and geosmin [Jüttner 

and Watson, 2007]. 
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Figure 1.3 Production mechanism of geosmin [Giglio et al., 2008]. 

 

 

 
Figure 1.4 Production mechanism of 2-MIB [Wang et al., 2011]. 

 

1.6 Purpose of Biosynthesis  

Although 2-MIB and geosmin are well known secondary terpenoid metabolites, their 

biological function and ecological roles have not been elucidated. In general, secondary 

metabolites are not directly involved in the growth, development or reproduction of the growing 

bacteria, but they impact microbial community dynamics and interactions [Tyc et al., 2017]. 

Volatile organic compounds, a subcategory of secondary metabolites that includes 2-MIB and 
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geosmin, are small molecules that can have a wide range of influence since they can easily travel 

long distances via aqueous and atmospheric diffusion [Tyc et al., 2017; Wheatley, 2002]. They can 

act in two ways affecting microbial interactions, either as infochemicals contributing to 

communication and signaling or antimicrobial agents which serve as defensive mechanisms [Tyc 

et al., 2017; Watson et al., 2003; Wheatley, 2002]. Secondary metabolite production in 

Streptomyces for example, is regarded as a response to stress factors that can ensure survivability 

of the next generation of geminating spores through antibacterial activity [Asquith et al., 2013]. In 

addition to their possible role as biological weapons in microbial competing interactions, some 

compounds such as geosmin can serve as a communication mechanism between them when facing 

stress [Liato and Aïder, 2017]. The fact that a freshwater environment is a dynamic system and 

microbial interactions are responsive to environmental factors, along with the possibility of biased 

result interpretation under laboratory conditions, makes the clarification of the biosynthetic 

purpose of 2-MIB and geosmin harder.   

1.7 Environmental Drivers  

Over the past several decades, anthropogenic activities including urbanization, and 

intensified industrial and agricultural practices have caused eutrophication in many freshwater 

environments [Huisman et al., 2018; Paerl and Paul, 2012]. This nutrient enrichment favors the 

proliferation of more frequent and severe bacterial blooms which are linked to the production of 

taste and odor compounds [Srinivasan and Sorial, 2011]. When increased amounts of phosphorus 

(P) and nitrogen (N) are present in a water body, cyanobacteria tend to dominate in the microbial 

community and outcompete other microorganisms [O’Neil et al., 2012]. One reason that those 

nutrients provide a competing advantage is the fact that cyanobacteria can utilize atmospheric 

nitrogen (𝑁2) as a nitrogen source via fixation in order to support their growth [O’Neil et al., 2012; 

Paerl and Paul, 2012]. Some of the 𝑁2-fixing genera that have also been confirmed as geosmin 

and/or 2-MIB producers include Anabaena, Aphanizomenon, Lyngbya and Oscillatoria [Giglio et 

al., 2008; Giglio et al., 2010; Paerl and Paul, 2012; Zhang et al., 2009]. In general, cyanobacteria 

can utilize various forms of dissolved and particulate organic N and P, with iron (Fe) also having 

an important role as a micronutrient since it is required for the enzymatic activity of nitrogenase 

[O’Neil et al., 2012]. Several studies have indicated that in freshwater environments, dominance 

of cyanobacteria and T&O concentrations increased when TN:TP ratios are relatively low and 
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nitrogen availability is limited relative to phosphorus [Harris et al., 2016; Lee et al., 2017; Zhang 

et al., 2016]. This is also the case for Eagle Creek Reservoir, where elevated abundances of 

cyanobacteria and actinobacteria have been observed when TN:TP ratios are low. However, it is 

important to note that cell death and decay can result in a large release of N and P, and become a 

source of internal nutrient loading, obscuring the relationships between nutrient input and 

microbial abundance [Ma et al., 2013].   

Climate change is another factor that can promote conditions that favor the formation of 

blooms, including increased water temperature, reduced water column mixing, severe storms and 

a short ice-covered season [Huisman et al., 2018; Winter et al., 2011]. Cyanobacteria are widely 

tolerant, but cold temperatures tend to inhibit their metabolism as they have higher temperature 

requirements for their growth [Lee et al., 2017; Winter et al., 2011]. Zhang et al. [2016] 

demonstrated in their study that the cyanobacterial genera of Anabaena and Aphanizomenon were 

most abundant in Lake Chaohu (China) at a temperature range of 13–30°C and 13–25°C 

respectively. Furthermore, the species of Lyngbya kuetzingii has been confirmed to release more 

intracellular geosmin into the medium at higher temperatures and as its growth progresses [Zhang 

et al., 2009]. In many cases however, different strains of the same species have varying optimal 

T&O production temperatures and may not be a good representation of the entire freshwater 

system as they are isolates studied under laboratory conditions [Anuar et al., 2017].  

Shorter periods of ice cover and warming of the water surface leads to stratification, 

another condition that favors the proliferation of cyanobacteria [Huisman et al., 2018]. Many 

planktonic genera can regulate their buoyancy under conditions of reduced water column mixing, 

and either float to the surface where they have better access to light or migrate deeper to find 

nutrient concentrated waters [Huisman et al., 2018; O’Neil et al., 2012; Paerl and Paul, 2012; 

Winter et al., 2011]. In addition, climate change has contributed to more frequent and extreme 

storms, resulting in increased amounts of rainfall and the mobilization of nutrients through 

terrestrial runoff, that accumulate faster in freshwater systems [Huisman et al., 2018; Paerl and 

Paul, 2012]. Although some of the parameters described above might impact to a greater extent 

the proliferation of cyanobacterial blooms, there is not a single factor triggering the onset of T&O 

events, as they all act in synergy and create a dynamic and mobile system.   
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1.8 Detection Methods  

Current approaches for direct detection of odorants in water are mainly based on gas 

chromatography/mass spectrometry (GC/MS), a sensitive analytical method that can measure 

metabolites at levels as low as parts per trillion (ppt) [Liato and Aïder, 2017; Tsao et al., 2014; 

Wang et al., 2016]. Typically, GC/MS is coupled with enrichment and extraction techniques, solid 

phase microextraction (SPME) which has been widely used in the food/beverage industry and 

utilizes a fused silica fiber for extraction of the contaminants from the sample headspace 

[Srinivasan and Sorial, 2011; Wang et al., 2016; Watson et al., 2000]. Although this method is 

sensitive, it has several drawbacks including the technical expertise required by the operator, the 

expensive and largely immobile instrumentation that cannot be used for on-site monitoring, and 

most importantly, the fact that it does not identify the source of the problem [John et al., 2018; Su 

et al., 2013]. In order to investigate the origin of T&O episodes, microscopy and traditional plate 

count techniques are employed for identification and enumeration of odor-producing bacteria. 

However, those methods are also problematic, as most bacteria in nature are difficult to culture 

and require selective media [Jüttner and Watson, 2007; Nielsen et al., 2006]. Microorganisms such 

as Actinomycetes which fragment when plated, are challenging to enumerate and other bacteria 

that are more visible such as cyanobacteria, require taxonomical expertise for their classification 

since they often lack distinct morphological characteristics [Jüttner and Watson, 2007; Su et al., 

2013]. Furthermore, microscopic techniques are time consuming and do not distinguish between 

T&O producers and non-producers [Jüttner and Watson, 2007; Su et al., 2013]. Culture 

independent techniques for identification of T&O producing bacteria such as fluorescence in situ 

hybridization (FISH) have been successfully used, demonstrating higher sensitivity for 

quantification of active microorganisms but lacking the ability to distinguish between bacteria that 

can and those that can not synthesize geosmin and 2-MIB [Auffret et al., 2011; Nielsen et al., 

2006].   

Perhaps a more comprehensive approach for investigation of the microbial T&O producers 

is the use of quantitative real-time polymerase chain reaction (qPCR), which contains an inherent 

ability to quantitate specific genes or genetic loci of interest. In this method, PCR-based DNA 

amplification of the target is monitored after each cycle by measuring a fluorescence signal which 

is proportional to the starting quantity of the target gene [Antonella and Luca, 2013]. One of the 

major advantages using this molecular-based assay is its unique identification, as primers and 
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probes are designed to specifically bind to the gene of interest. In addition, it can detect very low 

cell numbers, making it a highly sensitive method that can also be used for rapid on-site monitoring 

of emerging T&O episodes in a relatively inexpensive way [John et al., 2018; Lyllofff et al., 2012]. 

In the last few years, qPCR assays have been successfully used for the quantification of genes 

related to toxin production in freshwater systems [Rasmussen et al., 2008; Marbun et al., 2012; 

Tsao et al., 2014]. Similar approaches have also been applied for the detection and quantification 

of odor producing microorganisms based on genes responsible for geosmin and 2-MIB synthesis. 

Giglio et al. [2008], first reported a qPCR assay to evaluate the presence of geosmin synthase 

genes in cyanobacterial strains. Screening of seventeen cyanobacterial isolates, coupled with GC-

MS analysis, revealed the correlation between the geoA gene presence and geosmin production. 

Thereafter, several research groups have demonstrated the positive correlation between the geoA 

and 2-MIB synthesis genes and their respective concentrations [Chiu et al., 2016; Su et al., 2013; 

Wang et al., 2016]. Those results indicate, that with further optimization, qPCR assays could serve 

as a valuable tool for the monitoring and early prediction of emerging T&O problems in freshwater 

systems.   

1.9 Taste and Odor Control  

Since both geosmin and 2-MIB have low detection odor threshold by human senses, their 

control and treatment by water utilities is necessary. Because of their stability and resistance to 

oxidation, conventional water treatment methods, which usually include the steps of coagulation-

sedimentation-filtration-chlorination, do not effectively eliminate them [Jüttner and Watson, 

2007; Lee et al., 2017; Lindholm-Lehto and Vielma, 2018]. Chlorine (𝐶𝑙2), which is widely used 

as an oxidant and disinfectant, does not destroy or remove geosmin and 2-MIB, but merely masks 

the musty/earthy odor in water [Liato and Aïder, 2017; Nerenberg et al., 2000]. Application of 

ozone (𝑂3), a stronger oxidant, has greater success in eliminating 2-MIB and geosmin but it can 

also react with natural organic substances to produce by-products such as low molecular weight 

ketones and aldehydes, tainting the water with a fruity odor [Lee et al., 2017; Nerenberg et al., 

2000]. Currently the most widely used technology for the treatment of odors in water is absorption 

by powdered activated carbon (PAC), despite the fact that its effectiveness for geosmin and 2-MIB 

is lower than that for other T&O producing organics and it can have high operational costs [Liato 

and Aïder, 2017; Nerenberg et al., 2000; Srinivasan and Sorial, 2011]. Algaecides treatments, in 
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the form of copper-based chemicals, also control the growth of bloom forming microorganisms by 

inhibiting both respiration and photosynthesis in algae [Boyd and Massaut, 1999]. This is the 

approach adopted by the Citizens Energy Group, for the control of T&O episodes in ECR, albeit 

requiring multiple treatments during the same season as episodes become more frequent and severe 

[Pascual and Tedesco, 2006]. However, algaecide treatments should be used with caution, not 

only because they are a high expense for water utilities, but also because disruption of the cells 

might release cell-bound material and magnify the problem [Jüttner and Watson, 2007; Lee et al., 

2017].  

1.10 Scope of this Study  

Taste and Odor outbreaks pose a significant issue for water utilities, as they tend to lose 

consumer trust who consider water to be unsafe to drink.  Most T&O episodes are not anticipated 

or linked to their biological origin, making their treatment complicated and not always effective. 

The research presented in this document, which is fully supported by Citizens Water Indianapolis, 

the water division of Citizens Energy Group, is an attempt to understand geosmin and 2-MIB 

microbial production dynamics in Eagle Creek Reservoir, that experiences frequent T&O 

problems. In the following chapters, we will first investigate and characterize the changing 

microbial population relative to geosmin and 2-MIB concentrations, with the help of next 

generation DNA sequencing technology. Then, based on the development of qPCR assays, 

targeting the synthesis genes of those compounds, we will elucidate the correlation between the 

genes and the respective concentrations and observe the spatiotemporal patterns of their 

distribution. Our overall goal is to establish a reliable method that could serve as a tool for the 

early detection of upcoming T&O events and guide algaecide treatments in a more efficient way.  
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 COMPOSITION OF MICROBIAL COMMUNITY 

ASSOCIATED WITH TASTE AND ODOR EPISODES IN EAGLE 

CREEK RESERVOIR  

2.1 Introduction  

Microbial populations in freshwater and marine environments play key roles in global 

biogeochemical cycles and primary productivity, as they regulate the flux of elements through 

mobilization of particulate matter derived from terrestrial runoff [Eiler and Bertilsson, 2004; 

Kennedy et al., 2010]. Unfortunately, a big part of their structure and biological functions remains 

unexplored, since most bacteria lack distinctive morphological characteristics and are hard to 

isolate using traditional culturing techniques [Kennedy et al., 2010; Pope and Patel, 2008; Zwart 

et al., 2002]. The relatively recent development of DNA sequencing technologies enable us to 

overcome cultivation difficulties, explore the population dynamics and genetic diversity of 

microbial communities and characterize novel organisms using taxonomically informative 

genomic markers [Sharpton, 2014]. In the case of archaea and bacteria, the most widely used 

marker gene is the small subunit rRNA gene (16S rDNA) which is taxonomically and 

phylogenetically conserved among species [Sharpton, 2014; Zwart et al., 2002]. The major 

limitation of this approach is that only microbes for which phylogenetic information is known can 

be detected and characterized in a sample. Shotgun metagenomic sequencing is an alternative 

method that can partly overcome this problem since DNA from all cells is extracted and 

independently sequenced instead of targeting a specific gene [Sharpton, 2014]. In the last few 

years the number of studies using metagenomic approaches has increased because of the 

advancements in next-generation sequencing technologies that enable researchers to explore 

microbial biodiversity and function in a great range of environments, including soil, freshwater 

and human biological samples [Gomez-Alvarez et al., 2012; McVeigh et al., 1996; Pope and Patel, 

2008; Seashols-Williams et al., 2018].  

Common Bacteria detected by next generation sequencing techniques and metagenomic 

analysis in freshwater environments include the phyla of Proteobacteria, Cyanobacteria, 

Actinobacteria, Bacteroidetes and Verrucomicrobia [Eiler and Bertilsson, 2004; Zwart et al., 2002]. 

Among those, Cyanobacteria play an important role shaping the microbial structure of the system, 

by producing substances such as organic carbon, oxygen and fixed nitrogen which constitute 
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highly available substrates for heterotrophic bacteria and affect their interactions [Eiler and 

Bertilsson, 2004; Huisman et al., 2018]. In addition, their presence in freshwater is of a great 

concern due to the ability of some species to produce secondary metabolites such as toxins, 

impacting human and animal health, as well as odorous compounds that deteriorate drinking water 

quality [Pope and Patel, 2008; Winter et al., 2011]. Although non-toxic, the cyanobacterial blooms 

occurring in Eagle Creek Reservoir, the major drinking water supply of Indianapolis, are 

associated with the production of taste and odor compounds. The odorous events are usually 

observed during the Spring, when the reservoir receives most of its water and is fully mixed and 

turbid, and at the beginning of Fall. Those problems are mainly caused by the terpenoid bacterial 

metabolites 2-MIB (2-methylisoborneol) and geosmin (trans-1,10-dimethyl-trans-9-decalol) 

which produce a mildewed and earthy flavor, respectively [Jüttner and Watson, 2007; Wang et al., 

2016]. Each compound exists as (+) and (-) enantiomers, but odor outbreaks are caused by the 

biological production of the (-) stereoisomer which is 10 times more potent than the (+) molecules 

[Jüttner and Watson, 2007]. Both exhibit strong resistance to oxidation, which is a process 

routinely applied in water purification, and along with their low detection threshold by human 

senses (2-10 ng/L), they tend to be the most persistent substances in odor incidents [Auffret et al., 

2011; Suurnäkki et al., 2015]. A wide variety of microorganisms can synthesize and secrete MIB 

and geosmin, but cyanobacteria and actinobacteria species are regarded as the main producers in 

freshwater ecosystems [Auffret et al., 2011; Wang et al., 2016]. The production mechanism of the 

terpenoid metabolites in cyanobacteria and actinomycetes is similar, with homologous genes 

involved in the synthesis [Giglio et al., 2010; Wang et al., 2016]. Geosmin is synthesized through 

the conversion of farnesyl diphosphate to geosmin catalyzed by geosmin synthase encoded by the 

geoA gene [Giglio et al., 2010; Suurnäkki et al., 2015]. MIB synthesis consists of 2 key reactions: 

1) methylation of geranyl diphosphate (GPP) to 2-methyl-GPP, and, 2) further cyclization of 2-

methyl-GPP to MIB catalyzed by MIB synthase [Giglio et al., 2010]. 

Since taste and odor episodes tend to become frequent and sometimes severe in ECR, it is 

necessary to trace the origin of the problem in order to find effective management solutions. To 

better understand microbial population dynamics in the system, this study aimed to answer the 

main questions of “who is there?” and “what are they doing?”. Using next generation sequencing 

techniques, targeting the 16S rRNA gene, the purpose of the present work was to characterize 

bacterial community composition, in relation to geosmin and 2-MIB concentrations, and evaluate 



33 

 

its response to the algaecide treatment applied in the reservoir. Furthermore, we attempted to 

retrieve the genes responsible for the synthesis of geosmin and 2-MIB, using a previously analyzed 

metagenomic dataset [Clercin, 2018], in which the geoA and MIB synthase genes were not 

successfully recovered.   

2.2 Materials and Methods  

2.2.1 Study site 

Eagle Creek Reservoir (ECR;86°18′13.07′′W, 39°51′09.84′′N; A = 5.0 km2; Z = 4.2 m), 

was constructed in 1967 in the northwest corner of Marion County to initially provide flood control 

and then drinking water for the city of Indianapolis when T.W. Moses Drinking Water Plant 

became available in 1976 [Harris et al., 2016; Li et al., 2006]. The depth ranges from 4 to 13 

meters, with the deepest areas located in the southern basin near the dam. The reservoir is classified 

as being mesotrophic to eutrophic [Song et al., 2012], and its water column is mixed and turbid in 

April/May when it receives most of its water from snow melt and intense rainfall and then in 

October after the seasonal thermal stratification is over.  

2.2.2 Sample collection and processing  

For the metagenomic analysis, water samples were collected in May, July and October 

2013 near the dam where the strongest water column stratifications occur (Figure 2.1(A)). Discrete 

water samples were collected with a vertical Van Dorn sampler at four different depths 

corresponding to sub-surface (0 m), epilimnion (3 m), metalimnion (6 m) and hypolimnion (9-10 

m), i.e. 1 meter above the water-sediment interface. A total of 11 samples was collected as the sub-

surface sample from October did not recover enough genetic materials to be processed. After 

collection near the dam all the samples were put on ice in autoclaved 1-L HDPE brown bottles and 

filtered in the lab through 0.22 µm mesh size pores on a sterile glass filtration unit, then frozen for 

storage in 15-mL Falcon tubes.  

For the 16S rRNA gene sequencing analysis, water samples were collected with a vertical 

Van Dorn sampler at two locations, near the dam and north of intake (Figure 2.1(B)). After that, 

50ml of water were filtered through a Sterivex filter unit while being on the boat and 3ml of 

RNAlater stabilization solution was used for preservation purposes. Filters were stored in a -80 𝐶◦  

freezer before further processing.  
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A)          

 

B)  

 

Figure 2.1 Eagle Creek Reservoir sampling locations. A) 2013 Sampling location used for 

metagenomic analysis; B) 2017 Sampling locations used for 16S sequencing analysis. 
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2.2.3 DNA extraction  

The genomic DNA of the water samples was extracted using the DNeasy PowerWater 

Sterivex Kit (Qiagen). Lysis buffer was added to the Sterivex filter units, which were then mixed. 

Subsequently, the lysate was removed for additional lysis using a 5 ml bead beating tube. After 

the removal of proteins and inhibitors, total genomic DNA was captured on an MB Spin Column. 

The column was washed, and purified DNA was eluted in 100 μL of EB solution (sterile elution 

buffer) and then stored at −20 °C. The concentration and purity of the DNA was measured with a 

NanoDrop 2000/2000c Spectrophotometer (Thermo Scientific Inc.).  

2.2.4 Sequencing technologies  

The samples collected during the 2013 sampling season were shipped to Illumina, Inc., San 

Diego, CA for analysis on frozen filters to determine the phylogenetic structure of the BCC by 

next-generation sequencing (NGS) Shotgun Metagenomics method [Clercin, 2018]. Sequencing-

ready libraries were prepared using the Prep Kits for MiSeq v.3 Nextera XT, Illumina. The samples 

collected during the 2017 sampling season were shipped to MR DNA lab, Shallowater, TX for 

16S sequencing analysis. Primers targeted the 16S rRNA gene V4 variable region and along with 

HotStarTaq Plus Master Mix Kit (Qiagen, USA) they were used  in a single-step 30 cycle PCR 

under the following conditions: 94°C for 3 minutes, followed by 30 cycles (5 cycle used on PCR 

products) of 94°C for 30 seconds, 53°C for 40 seconds and 72°C for 1 minute, after which a final 

elongation step at 72°C for 5 minutes was performed. The subsequent sequencing was performed 

on an Ion Torrent PGM system.  

2.2.5 Sequence processing   

The sequence analysis for both datasets (2013 & 2017) was performed using the CLC 

Genomics Workbench software (Qiagen Bioinformatics). Reference sequences were retrieved 

from the NCBI database and their similarity was assessed by the Clustal Omega-Multiple 

Sequence Alignment program [McWilliam et al., 2013]. Read mapping for the metagenomic 

dataset was performed using CLC’s default parameters except from a length fraction of 0.5 and a 

similarity fraction of 0.6. Raw mapping results were converted to percentages and then rescaled 

on a 0 - 1 range both on a per gene/reference sequence basis and a “global” basis. Heat Maps for 

the scaled percentage of mapped reads were generated using the R software for statistical and 
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graphical analysis. Sequence identity was confirmed by generating a consensus sequence for the 

sample with the highest number of mapped reads for each reference sequence and then doing a 

BLASTn search on the NCBI (National Center for Biotechnology Information) sequence database. 

The first five sequences producing significant alignments were selected to be listed in this report. 

Reference based OTU clustering was performed using CLC’s default parameters and the 

Greengenes database [DeSantis et al., 2006] as a reference with a similarity score of 97%. Alpha 

diversity was estimated based on phylogenetic diversity distance calculations. Estimation of beta 

diversity was based on the Bray-Curtis equation.  

2.2.6 T&O analysis  

2-Methylisoborneol and geosmin concentrations were quantified by a Head-Space Solid-

Phase Micro-Extraction (HS-SPME) combined with a Gas Chromatography-Mass Spectrometry 

(GC-MS) at the Citizens Energy lab.  

2.3 Results  

2.3.1 Presence of T&O synthesis genes in the metagenomic dataset   

In order to investigate whether the bacterial population in ECR has the potential of 

producing geosmin and 2-MIB, and recover the genes responsible for the synthesis of those 

compounds, read mapping was performed on the 2013 metagenomic samples by aligning their 

reads to  known geoA and MIBS containing reference sequences  retrieved from the NCBI database. 

Cyanobacterial reference sequences had good alignment and high similarity scores between them, 

ranging from 81.33 to 99.77% for the geoA gene and from 84.37 to 91.42% for the MIBS gene 

(Table 2.1). This enabled us to trim those reference sequences so that they can have the exact same 

length. In contrast, the actinobacterial reference sequences for the geoA gene had low similarity 

scores between them (Table 2.1) resulting in a poor alignment that did not allow for a length 

adjustment and implying that the gene is highly variable among different actinobacterial species. 

Only one MIBS Actinobacterial reference sequence was used due to limited information on the 

database.   

Relative to each sample’s total number of reads, raw results for both geoA (Table 2.2) and 

MIBS (Table 2.3) genes show a low number of mapped reads to the reference sequences. Generally, 
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regarding both genes, more reads were successfully mapped to Actinobacterial compared to 

Cyanobacterial reference sequences. Percentages of the mapped reads were calculated, and the 

range was adjusted on a scale of 0 to 1 both on a per gene/reference sequence basis and a “global” 

basis. Heat maps (Figure 2.2 A & B), where comparisons for the same reference sequence across 

different samples can only be made, indicate that for each reference sequence, regarding both the 

geoA and MIBS genes, the May-10m sample has the highest level of mapped reads. The “global” 

scaled heat map for the geoA gene (Figure 2.3(A)), shows that mapping of the May-10m sample 

to Streptomyces fradiae has the highest percentage of mapped reads across all reference sequences 

and samples. In addition, more reads mapped to the geoA sequences coming from Actinobacterial 

species compared to Cyanobacterial, and higher levels of mapped reads were detected in May. 

Looking at the “global” scaled heat map regarding the MIBS gene (Figure 2.3 (B)), the May-10m 

sample mapped to Streptomyces lividans generated the highest percentage of mapped reads. Once 

again, the May samples had the highest number of mapped reads among the three sampling months 

and Streptomyces lividans used as a reference sequence resulted in more mapped reads compared 

to Cyanobacterial reference sequences.  

Sequence identity was confirmed by generating a consensus sequence for the sample with 

the highest number of mapped reads for each reference sequence and then doing a BLASTn search 

on the NCBI sequence database. The expected value (E) is 0.0 (Table 2.4, Table 2.5, Table 2.6, 

Table 2.7) for all of the BLASTn results, indicating the presence of a “significant” match. 

Consensus sequences derived from sample mappings to Actinobacterial reference sequences, when 

used on the BLASTn search, generated significant alignments with species belonging to the same 

genus as the reference sequence on the mapping analysis. In contrast, consensus sequences derived 

from sample mappings to Cyanobacterial reference sequences, when used on the BLASTn search, 

generated significant alignments with species not necessarily belonging to the same genus as the 

reference sequence on the mapping analysis. No significant similarity was found on the BLASTn 

search for the consensus sequence derived from the mapping of the May-6m sample to 

Mycobacterium talmoniae.  
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Table 2.1 Read mapping reference sequences A) Cyanobacterial reference sequences-geoA gene. 

B) Actinobacterial reference sequences-geoA gene. C) Cyanobacterial reference sequences-MIBS 

gene. D) Actinobacterial reference sequence – MIBS gene. 

A)  

    Percent Identity Matrix  

Reference Sequences 

(geoA-Cyanobacteria) 

Length 

(bp) KJ658367.1 KJ658368.1 KJ658376.1 KJ658375.1 

KJ658368.1 Nostoc sp. 

ATCC 53789 884 81.45 100.00 82.13 81.9 

KJ658376.1 Planktothrix sp. 

18 884 81.56 82.13 100.00 99.77 

KJ658375.1 Oscillatoria sp. 

PCC 9240  884 81.33 81.9 99.77 100.00 

KJ658367.1 Aphanizomenon 

sp. PMC9501  884 100.00 81.45 81.56 81.33 

B) 

  Percent Identity Matrix  

Reference Sequences                 

(geoA-Actinobacteria) 

Length 

(bp) JX966093.1 PPEA01000211.1 CP009111.1 

JX966093.1 Streptomyces fradiae 

strain HX  1585 100.00 45.50 47.66 

PPEA01000211.1:c7846-7397 

Mycobacterium talmoniae strain 

ATCC BAA-2683 C1Y40_211 450 45.50 100.00 68.24 

CP009111.1:c1186434-1185346 

Rhodococcus opacus strain 1CP 1089 47.66 68.24 100.00 

 

C)  

  Percent Identity Matrix  

Reference Sequences (MIBS-

Cyanobacteria) 

Adjusted 

Length (bp) 

HQ630883.

1 

HQ630885.

1 

KJ658378.

1 

HQ630883.1 Pseudanabaena limnetica 

str. Castaic Lake 723 100.00 88.66 84.37 

HQ630885.1 Oscillatoria limosa  723 88.66 100 91.42 

KJ658378.1 Planktothrix sp. 328 723 84.37 91.42 100 

 

D)  

Reference Sequences (MIBS-Actinobacteria) Length (bp) 

CP009124.1:c157137-155815 Streptomyces lividans 

TK24 1323 



 

 

 

Table 2.2 Read mapping raw results – geoA gene.  

    Reference Sequences (geoA) 

    Cyanobacteria  Actinobacteria  

    

Nostoc sp. 

ATCC 

53789  

Planktothrix 

sp. 18  

Oscillatoria 

sp. PCC 

9240  

Aphanizomenon 

sp. PMC9501  

Streptomyces 

fradiae 

Mycobacterium 

talmoniae  

 

Rhodococcus 

opacus  

Sample  

Total 

Reads Mapped Reads 

May-0m 33,395,202 42 46 46 46 621 102 459 

May-3m 37,789,429 70 66 63 63 669 196 555 

May-6m 57,196,837 118 122 125 125 1,642 425 1,083 

May-10m 31,003,711 109 75 82 82 1,489 304 943 

July-0m 32,673,383 14 8 8 8 230 41 178 

July-3m 85,796,130 45 19 21 21 463 113 446 

July-6m 52,993,984 46 20 24 24 847 138 538 

July-10m 19,306,387 34 35 35 35 386 106 287 

October-3m 55,503,302 37 25 27 27 738 131 448 

October-6m 69,814,786 41 32 36 36 960 192 587 

October-

10m 46,838,779 14 5 5 5 297 43 185 
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Table 2.3 Read mapping raw results - MIBS gene. 

    Reference Sequences (MIBS) 

    Cyanobacteria Actinobacteria  

    

Oscillatoria 

limosa  

Pseudanabaena 

limnetica  Planktothrix sp. 328  

Streptomyces 

lividans  

Sample  Total Reads Mapped Reads  

May-0m 33,395,202 120 40 130 357 

May-3m 37,789,429 115 85 142 455 

May-6m 57,196,837 285 150 272 1,046 

May-10m 31,003,711 342 118 296 895 

July-0m 32,673,383 31 13 47 149 

July-3m 85,796,130 84 26 87 307 

July-6m 52,993,984 135 28 119 461 

July-10m 19,306,387 77 47 70 222 

October-3m 55,503,302 144 44 101 393 

October-6m 69,814,786 197 54 161 528 

October-10m 46,838,779 48 16 40 173 
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A)  

 

 

Figure 2.2 Heat Maps representing the percentage of mapped reads scaled on a per gene/reference basis. A) geoA. B) MIBS. 
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Figure 2.2 continued 

B)   
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A)   

 

Figure 2.3 Heat Maps representing the percentage of mapped reads scaled on a “global” basis. A) geo. B) MIBS. 

 

 



 

 

Figure 2.3 continued 

B)  
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Table 2.4 BLASTn results – geoA Cyanobacteria. 

Consensus 

sequence Sequences Producing Significant Alignments  

Max 

Score  

Total 

Score 

Query 

Cover  

E 

value  

Per. 

Ident.  Accession  

May 6m -Nostoc 

sp. ATCC 

53789  

Nostoc sp. ATCC 53789 geosmin synthase (geoA) gene, partial cds 1594 1594 100% 0.0 99.21% KJ658368.1 

Nostoc punctiforme PCC 73102 NPUNMOD protein gene, complete cds 1417 1417 100% 0.0 95.59% FJ010203.1 

Nostoc punctiforme PCC 73102 NJ2 protein gene, partial cds 1417 1417 100% 0.0 95.59% FJ010202.2 

Nostoc punctiforme PCC 73102, complete genome 1417 1417 100% 0.0 95.59% CP001037.1 

Nostoc sp. UK1 geosmin synthase (geoA) gene, partial cds 1170 1170 99% 0.0 90.61% KJ658372.1 

May 6m-

Planktothrix sp. 

18  

Planktothrix sp. 328 geosmin synthase (geoA) gene, partial cds 1628 1628 100% 0.0 99.89% KJ658374.1 

Oscillatoria sp. PCC 9240 geosmin synthase (geoA) gene, partial cds 1616 1616 100% 0.0 99.66% KJ658375.1 

Calothrix sp. PCC 7507, complete genome 850 850 99% 0.0 84.03% CP003943.1 

Nostoc punctiforme PCC 73102 NPUNMOD protein gene, complete cds 776 776 99% 0.0 82.56% FJ010202.1 

Nostoc punctiforme PCC 73102 NJ2 protein gene, partial cds 776 776 99% 0.0 82.56% FJ010203.2 

May 6m-

Oscillatoria sp. 

PCC 9240  

Oscillatoria sp. PCC 9240 geosmin synthase (geoA) gene, partial cds 1628 1628 100% 0.0 99.89% KJ658375.1 

Planktothrix sp. 328 geosmin synthase (geoA) gene, partial cds 1616 1616 100% 0.0 99.66% KJ658374.1 

Calothrix sp. PCC 7507, complete genome 839 839 99% 0.0 83.81% CP003943.1 

Nostoc punctiforme PCC 73102 NPUNMOD protein gene, complete cds 767 767 94% 0.0 83.19% FJ010203.1 

Nostoc punctiforme PCC 73102 NJ2 protein gene, partial cds 767 767 94% 0.0 83.19% FJ010202.1 

May 6m-

Aphanizomenon 

sp. PMC9501  

Oscillatoria sp. PCC 9240 geosmin synthase (geoA) gene, partial cds 1628 1628 100% 0.0 99.89% KJ658375.1 

Planktothrix sp. 328 geosmin synthase (geoA) gene, partial cds 1616 1616 100% 0.0 99.66% KJ658374.1 

Calothrix sp. PCC 7507, complete genome 839 839 99% 0.0 83.81% CP003943.1 

Nostoc punctiforme PCC 73102 NPUNMOD protein gene, complete cds 767 767 94% 0.0 83.19% FJ010203.1 

Nostoc punctiforme PCC 73102 NJ2 protein gene, partial cds 767 767 94% 0.0 83.19% FJ010202.1 

 

 

 

 



 

 

Table 2.5 BLASTn results – geoA Actinobacteria. 

Consensus 

sequence Sequences Producing Significant Alignments  Max Score  

Total 

Score 

Query 

Cover  

E 

value  

Per. 

Ident.  Accession  

May 6m-

Streptomyces 

fradiae 

Streptomyces fradiae strain HX putative germacradienol 

synthase (geoA) gene 2822 2822 100% 0.0 98.80% JX966093.1 

Streptomyces sp. KPB2 chromosome, complete genome 2473 2473 100% 0.0 94.83% CP034353.1 
Streptomyces sp. CCM_MD2014 chromosome, complete 

genome 2473 2473 100% 0.0 94.83% CP009754.1 

Streptomyces sp. CB09001 chromosome, complete genome 2362 2362 100% 0.0 93.58% CP026730.1 

Streptomyces sp. 2114.2 genome assembly, chromosome: I 2357 2357 100% 0.0 93.52% LT629768.1 

May 6m- 

Rhodococcus 

opacus  

Rhodococcus opacus strain 1CP, complete genome 1943 1943 100% 0.0 98.90% CP009111.1 

Rhodococcus opacus PD630, complete genome 1760 1760 100% 0.0 95.87% CP003949.1 

Rhodococcus jostii RHA1, complete genome 1572 1572 100% 0.0 92.75% CP000431.1 

Rhodococcus opacus strain R7 sequence 1539 1539 100% 0.0 92.20% CP008947.1 

Rhodococcus opacus B4 DNA, complete genome 
1356 1356 100% 0.0 89.17% 

AP011115.

1 
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Table 2.6 BLASTn results – MIBS Cyanobacteria. 

  

Consensus 

sequence Sequences Producing Significant Alignments  

Max 

Score  

Total 

Score 

Query 

Cover  

E 

value  

Per. 

Ident.  Accession  

May 10m- 

Oscillatoria 

limosa  

Oscillatoria limosa LBD 305b MIB synthase gene, partial cds 1260 1260 100% 0.0 98.20% HQ630885.1 

Planktothricoides raciborskii gene, MIB synthase, partial 

sequence, strain: SBR1_14 1055 1055 100% 0.0 93.10% LC157990.1 

Planktothricoides raciborskii gene, MIB synthase, partial 

sequence, strain: SBR1_8 1055 1055 100% 0.0 93.10% LC157987.1 

Planktothricoides raciborskii gene, MIB synthase, partial 

sequence, strain: SBR1_16 1053 1053 99% 0.0 93.09% LC157992.1 

Planktothricoides raciborskii gene, MIB synthase, partial 

sequence, strain: SBR1_15 1053 1053 99% 0.0 93.09% LC157991.1 

May 6m- 

Pseudanabaen

a limnetica  

Pseudanabaena limnetica str. Castaic Lake MIB synthase 

gene, complete cds 1304 1304 100% 0.0 99.17% HQ630883.1 

Pseudanabaena sp. dqh15 2-methylisoborneol (2-MIB) 

synthesis associated operon, complete sequence 1127 1127 100% 0.0 94.76% HQ830028.1 

Pseudanabaena galeata pgmtc gene for monoterpene cyclase, 

complete cds, strain: NIES-512 1110 1110 100% 0.0 94.34% AB826230.1 

Pseudanabaena sp. NIVA-CYA 111 MIB synthase gene, partial 
cds 1046 1046 100% 0.0 92.69% HQ630887.1 

Oscillatoria limosa LBD 305b MIB synthase gene, partial cds 872 872 100% 0.0 88.45% HQ630885.1 

May 10m- 

Planktothrix 

sp. 328  

Planktothrix sp. 328 2-methylisoborneol synthase gene, 

partial cds 1271 1271 100% 0.0 98.48% KJ658378.1 
Oscillatoria sp. 327/2 2-methylisoborneol synthase gene, 
partial cds 1266 1266 100% 0.0 98.34% KJ658377.1 

Leptolyngbya sp. A2 MIB cyclase gene, partial cds 1061 1061 100% 0.0 93.23% KP013063.1 

Oscillatoria limosa LBD 305b MIB synthase gene, partial cds 928 928 100% 0.0 89.92% HQ630885.1 

Planktothricoides raciborskii gene, MIB synthase, partial 

sequence, strain: SBR1_14 905 905 100% 0.0 89.39% LC157990.1 

 



 

 

Table 2.7 BLASTn results – MIBS Actinobacteria. 

 

Consensus 

sequence Sequences Producing Significant Alignments  

Max 

Score  

Total 

Score 

Query 

Cover  

E 

value  

Per. 

Ident.  Accession  

May 6m- 

Streptomyces 

lividans  

Streptomyces sp. 2114.2 genome assembly, chromosome: I 2318 2318 100% 0.0 98.34% LT629768.1 

Streptomyces lividans TK24, complete genome 2318 2318 100% 0.0 98.34% CP009124.1 

Streptomyces coelicolor A3(2) complete genome; segment 

29/29 2318 2318 100% 0.0 98.34% AL939132.1 

Streptomyces coelicolor orf3, orf1, p52, orf2, orf4, orf5 genes, 

partial and complete cds 2318 2318 100% 0.0 98.34% AB035202.1 

Streptomyces sp. S10(2016), complete genome 1421 1421 94% 0.0 87.32% CP015098.1 
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2.3.2 Microbial community composition  

For the assessment of microbial population composition, a total of 12 samples were 

selected (Table 2.8) and sequenced, targeting the 16S rRNA gene. Relative abundance of major 

bacterial phyla for the samples collected north of intake (Figure 2.4) and near the dam (Figure 2.5) 

showed that Cyanobacteria, Proteobacteria, Bacteroidetes and Actinobacteria were the most 

prevalent phyla in all samples. At the north of intake location (Figure 2.4), we observed that 

relative abundance of Cyanobacteria follows the fluctuation of geosmin and 2-MIB concentrations 

for the first three samples. Specifically, in the beginning of May, when T&O concentrations are 

relatively low, W26 sample’s composition is mainly characterized by Proteobacteria (43%), 

Cyanobacteria (32%), followed by Bacteroidetes. As geosmin and 2-MIB started to peak in the 

beginning of June, relative abundance of Cyanobacteria increased to 73% (sample W57) and 

Proteobacteria dropped from 43% to 11%, with Bacteroidetes also decreasing. A few days after 

the algaecide treatment was applied to the reservoir, the relative abundance of Cyanobacteria 

(sample W20) decreased to 5% and Proteobacteria increased to 58% from 11%. The results for the 

samples collected following that treatment (W14, W11, W4) demonstrated that the relative 

abundance of Cyanobacteria increased again, even though T&O compound concentrations were 

low. This implies that even though Cyanobacteria were present in high abundances in those 

samples, the synthesis genes are either not expressed or possessed by those organisms. 

Actinobacteria, which are also associated with geosmin and 2-MIB production in freshwater 

environments [Jüttner and Watson, 2007], had a low and relatively stable abundance, ranging from 

3% to 6%. As expected, the relative abundance of Cyanobacteria and Actinobacteria did not 

correlate with geosim and 2-MIB concentrations (Table 2.9). Compared to Cyanobacteria, the 

relative abundance of Actinobacteria did not decrease as drastically in the sample collected a few 

days after the algaecide treatment. Regarding the relative abundance of bacterial phyla in samples 

collected near the dam, the first two samples followed the same patterns as the corresponding 

samples collected at the north of intake location. However, the relative abundance of 

Cyanobacteria in sample W18, which was collected after the algaecide treatment, did not decrease 

as the corresponding sample at the north of intake location, dropping to only 56% compared to 5% 

in sample W20. As the T&O concentrations decreased, the relative abundance of Cyanobacteria 

in samples W12 and W9 also decreased, potentially allowing Proteobacteria levels to gradually 
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increase. On August 15, when geosmin and 2-MIB concentrations were on the rise, Cyanobacteria 

also increased to 70%. Also, it is worth noting that in sample W18 Actinobacteria’s relative 

abundance increased to 14% even though the algaecide treatment had been applied a few days 

earlier. Again, the relative abundance of Cyanobacteria and Actinobacteria did not correlate with 

T&O compound concentration, except from Cyanobacteria which showed a statistically significant 

positive correlation with geosmin.  

Temporal changes in the relative abundance of bacterial taxa at the class level for the 

samples collected at the locations near the dam and north of intake are shown in Figure 2.6. The 

major classes of Cyanobacteria were Chloroplast and Synechococcophycideae with Chloroplast 

predominant in samples W26 and W24 collected on May 10. Synechococcophycideae started to 

become present in greater proportions from June 7 and after. Proteobacteria in the samples 

collected north of intake comprised the classes of Alpha, Beta and Gamma Proteobacteria. In 

addition, the class of Deltaproteobacteria, which is typical of sediment, was present on the samples 

collected at the dam location [Teske et al., 2011]. Betaproteobacteria appear to be the dominant 

class in most of the samples except in W20 in which proteobacterial composition shifts to 

Gammaproteobacteria and Alphaproteobacteria. Flavobacteria, Cytophagia and Saprospirae are 

the major classes present, belonging to the Bacteroidetes phylum.  The heat map (Figure 2.7) 

constructed from the 25 most unique OTU’s across all samples, shows that Pseudanabaena and 

Synechococcus are the main Cyanobacterial genera present in most of the samples. The family of 

Pseudomonadaceae and the genus of Flavobacterium, both potential 2-MIB degraders belonging 

to the phylum of Proteobacteria, were present in high numbers in samples W20, W12, W26 and 

W24 [Ho et al., 2007; Izaguirre et al., 1988]. The family of Sphingomonadaceae, which includes 

genera capable of geosmin biodegradation, were present in samples W20, W14, W12, and W11 

[Ho et al., 2007].  

The Alpha diversity graph (Figure 2.8), showing the relationship between phylogenetic 

diversity and sampling depth, indicates that since the rarefaction curves reach the plateau phase, 

the community was sequenced deeply enough and additional sampling would not lead to increased 

estimates of diversity [Sogin et al., 2006; Zhang et al., 2012]. Samples W24 and W26 had the 

lowest phylogenetic diversity while sample W11 had the highest.  
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Table 2.8 List of samples used for the 16S sequencing analysis. 

Sampling Date Location Sample ID 

5/10/2017 Dam W24 

5/10/2017 North of Intake W26 

6/7/2017 Dam W56 

6/7/2017 North of Intake W57 

6/20/2017 Dam W18 

6/20/2017 North of Intake W20 

7/3/2017 Dam W12 

7/3/2017 North of Intake W14 

7/17/2017 Dam W9 

7/17/2017 North of Intake W11 

8/15/2017 Dam W3 

8/15/2017 North of Intake W4 

  

 

Table 2.9 Correlation analysis results between the relative abundance of Cyanobacteria, 

Actinobacteria and the concentrations of geosmin and 2-MIB.  

 

North of Intake  Spearman rho  p-value  

Cyanobacteria-Geosmin 0.4058397 0.4247 

Cyanobacteria-2-MIB 0.1428571 0.8028 

Actinobacteria-Geosmin 0 1 

Actinobacteria-2-MIB 0.4413674 0.3809 

Dam Spearman rho  p-value  

Cyanobacteria-Geosmin 0.8116794 0.04986 

Cyanobacteria-2-MIB 0.7714286 0.1028 

Actinobacteria-Geosmin 0.1739313 0.7417 

Actinobacteria-2-MIB 0.7714286 0.1028 
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Figure 2.4 Relative abundance of bacterial phyla in comparison to geosmin and 2-MIB concentrations – North of Intake. 
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Figure 2.5 Relative abundance of bacterial phyla in comparison to geosmin and 2-MIB concentrations – Dam. 
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Figure 2.6 Stacked bar charts representing bacterial taxonomy based on OTU clustering analysis. A) North of Intake B) Dam. 

 

 

 



 

 

Figure 2.6 continued 
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Figure 2.7 Heat Μap showing the abundance of each feature in each sample along with the sample clustering. 
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Figure 2.8 Alpha diversity graph based on phylogenetic diversity.  
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2.4 Discussion  

Knowledge of the microorganisms responsible for the synthesis and production of T&O 

compounds in drinking water environments is critically important for the development of 

diagnostic tools and early detection and prediction of upcoming odorous episodes. Identification 

of microorganisms associated with geosmin and 2-MIB production in ECR has been previously 

achieved using a metagenomic dataset, but recovery of the key enzymes involved in the last step 

of their synthesis was not successful [Clercin, 2018]. In another study, the use of a shotgun 

metagenomics approach in a drinking water reservoir also failed to identify any 2-MIB synthase 

genes in the assembled contigs [Otten et al., 2016]. Although the mapping of individual sequencing 

reads to known 2-MIB synthases obtained from the NCBI database revealed potential 2-MIB 

producers, only five reads corresponding to an Oscillatoria sp. or Pseudanabaena sp. 2-MIB 

synthase were successfully mapped [Otten et al., 2016]. In accordance with those findings, when 

mapping analysis was performed in the present study to recover the genes of interest, their presence 

was confirmed but in low number since a few sequences relative to the total number of sample’s 

reads was successfully mapped to the reference sequences. Furthermore, our results revealed the 

genetic variability of the geoA and MIBS genes in Actinobacteria, by showing the low percent 

identity between reference sequences corresponding to the same gene but representing different 

actinobacterial species. Additional support to this argument is the fact that consensus sequences 

derived from mapping to actinobacterial reference sequences, when used on a BLASTn search, 

generated significant alignments with species belonging to the same genus as the reference 

sequence on the mapping analysis. In contrast, consensus sequences derived from sample 

mappings to Cyanobacterial reference sequences, when used on the BLASTn search, generated 

significant alignments with various Cyanobacterial species, indicating that geoA and MIBS genes 

are highly conserved among them.  

As expected, higher levels of reads mapped to reference sequences in May samples when 

the reservoir is fully mixed and T&O concentrations are higher. Also, the samples retrieved from 

lower depths (6-10m) had greater percentages of reads corresponding to the genes of interest. The 

geoA reference sequence of Streptomyces fradiae and the MIBS sequence of Streptomyces lividans 

had more sample reads mapped to them compared to Cyanobacterial reference sequences, 

indicating that Actinobacteria might contribute more to the problem. However, we need to take 



59 

 

into consideration the sequence length of the reference sequences, which in the case of 

Streptomyces species was longer, giving an advantage over the number of reads that could 

successfully align to them.   

Other limitations concerning the mapping analysis of the present work, include the inability 

to assign enzymatic activities to specific organisms as the coverage of microbial population 

sequencing data is inadequate in available databases and the variability of the genes belonging to 

the same genera and carrying out the same function is underestimated [Teske et al., 2011]. In 

addition, metagenomic approaches give information regarding the presence of genes in an 

environment and not necessarily their activity [Kennedy et al., 2010]. In this study, we did not 

distinguish between dead or living cells, so the sequences identified might be associated with 

active as well as dead organisms. Future research should focus on the development of 

metatranscriptomic approaches to be applied on the study of T&O episodes in ECR so that we can 

get a better and more accurate understanding of the reservoir’s microbial population dynamics.  

 ECR’s bacterial community composition, in relation to geosmin and 2-MIB concentrations 

was assessed by a 16S sequencing approach. The major bacterial phyla of Cyanobacteria, 

Proteobacteria, Actinobacteria and Bacteroidetes that were present in ECR are commonly found 

in freshwater environments [Eiler and Bertilsson, 2004; Pope and Patel, 2008; Poretsky et al., 

2014]. Pseudanabaena and Synechococcus genera, present in high abundances in some of the 

samples are known T&O producers [Izaguirre and Taylor, 2004], with the latter frequently being 

abundant in drinking water reservoirs [Gomez-Alvarez et al., 2012; Poretsky et al., 2014]. In 

general, the relative abundance of Cyanobacteria and Actinobacteria did not correlate well with 

T&O compound concentrations, indicating that the production of those compounds may be done 

by a relatively small fraction of the total population. In addition, even though their abundance was 

high in some samples, the corresponding geosmin and 2-MIB concentrations were low, implying 

that the organisms might not possess or actively express the genes responsible for the synthesis of 

those compounds. Sample W18 (Dam) was the only one that had a higher relative abundance of 

Actinobacteria (14%) compared to the other ones. Since soil is considered to be their major natural 

reservoir and the dam is a construction where sediment usually accumulates, the increased levels 

of Actinobacteria at this location can be partially explained [Asquith et al., 2013; Yang et al., 2005]. 

In terms of Alpha diversity, the samples collected on May 10 had the lowest phylogenetic diversity. 

Water column mixing, happening in the reservoir at that point of time may act as a disturbance to 
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the microbial community composition, which is not always resistant to those events [Poretsky et 

al., 2014; Shade et al., 2011; Shade et al., 2012]. Redistribution of microorganisms across water 

column might create antagonizing conditions, forcing them to compete for nutrient availability, 

something that might be against those who cannot quickly adjust to such an environment.  

Algaecide treatment application was another factor affecting the microbial community 

composition in ECR. Even though Cyanobacterial relative abundance decreased to 5% at the north 

of intake sampling location, the treatment did not seem to be effective towards Actinobacteria. 

Location also plays an important role in the efficacy of treatment, since the relative abundance of 

Cyanobacteria in the sample collected near the dam did not decrease as drastically as in the sample 

from the north of intake location where the algaecide is usually applied. Also, a possible effect in 

response to the algaecide treatment is the shift of Proteobacterial composition in sample W20, 

from mainly being comprised of Betaproteobacteria, to increased levels of Gamma and Alpha 

Proteobacteria, with the latter one previously confirmed as being resistant to other treatment 

methods [Chao et al., 2013]. Since microbial degradation of geosmin and 2-MIB is possible in 

ECR, it could be potentially used as an alternative treatment approach in the future for the effective 

management of T&O problems. Although the 16S rRNA gene sequencing approach gives a good 

overall view of the microbial community composition in ECR, drawing definite conclusions about 

their association with T&O production is not feasible since the results only produce relative 

abundance numbers. Development of techniques for the quantification of the genes responsible for 

the synthesis of geosmin and 2-MIB, which will be discussed on the next chapter, is something 

that could provide better insights into the origins of the problem. Furthermore, strain isolation and 

characterization through culturing experiments would be essential for the correct identification of 

T&O producers, since not all bacterial strains belonging to the same species can produce those 

odorous metabolites.  

2.5 Conclusions  

Understanding the relationship between microbial community composition and function is 

a major challenge in studying and identifying T&O producers in freshwater environments. The 

present study was able to recover the synthesis genes of geosmin and 2-MIB through the mapping 

analysis of a metagenomic dataset. Their presence highlights an active biosynthesis of those 
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compounds. Existence of bacterial phyla, common in many freshwater environments, was 

confirmed using a 16S rRNA gene sequencing approach. High abundances of Pseudanabaena and 

Synechococcus genera, which are known T&O producers, were also confirmed. Relative 

abundance of Cyanobacteria and Actinobacteria did not correlate well with T&O compound 

concentrations. This lack of correlation along with the low number of mapped reads, implies that 

production may be done by a relatively small fraction of the total bacterial population. However, 

individual contributions of microorganisms to T&O episodes is difficult to assess. The coper-based 

algaecide treatment applied to the reservoir, appeared to be effective only for Cyanobacteria and 

mostly at the north of intake. This emphasizes that the selection of location and type of algaecide 

is critical for the efficient management of emerging T&O episodes in the reservoir.   
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 DEVELOPMENT AND APPLICATION OF 

QUANTITATIVE-PCR ASSAYS TARGETING GEOSMIN AND 2-MIB 

PROCUCING CYANOBACTERIA IN EAGLE CREEK RESERVOIR  

3.1 Introduction 

Progressive eutrophication and pollution have caused the accelerated growth of algal 

blooms in water bodies worldwide which are related to the steady increase of odor incidents in 

diverse waters such as lakes, aquaculture systems and reservoirs [Auffret et al., 2011; Huisman et 

al., 2018; Lee et al., 2017; Wang et al., 2016]. Most of the taste and odor episodes in drinking 

water are caused by the terpenoid bacterial metabolites 2-MIB (2-methylisoborneol) and geosmin 

(trans-1,10-dimethyl-trans-9-decalol) which produce a mildewed and earthy flavor respectively 

[Lee et al.,2017; Jüttner and Watson, 2007; Watson et al., 2008]. Although there is no evidence 

for adverse health effects related to those compounds, their presence in water cause consumer 

complaints who consider it unsafe for drinking [Auffret et al., 2011; Chiu et al., 2016].  

Each compound exists as (+) and (-) enantiomers (Figure 1.1), but odor outbreaks are 

caused by the biological production of the (-) stereoisomer which is 10 times more potent than the 

(+) molecule [Jüttner and Watson, 2007]. Their low odor detection by human senses (2-10 ng/L), 

along with their strong resistance to oxidation, a process commonly applied to water purification, 

make them the most persistent and disturbing substances in odor incidents [Suurnäkki et al., 2015; 

Wang et al., 2016]. A wide variety of microorganisms can synthesize and secrete 2-MIB and 

geosmin, including fungi, proteobacteria and myxobacteria, but cyanobacteria and actinobacteria 

species are regarded as the main producers in freshwater ecosystems [Auffret et al., 2011; Wang 

et al., 2016]. The production mechanism of the terpenoid metabolites in cyanobacteria and 

actinomycetes is similar with homologous genes involved in the synthesis [Giglio et al., 2010; 

Wang et al., 2016]. Geosmin is synthesized through the conversion of farnesyl diphosphate to 

geosmin catalyzed by geosmin synthase enzyme encoded by the geoA gene [Giglio et al., 2010; 

Suurnäkki et al., 2015]. 2-MIB synthesis consists of 2 key reactions: 1) methylation of geranyl 

diphosphate (GPP) to 2-methyl-GPP, and, 2) cyclization of 2-methyl-GPP to 2-MIB catalyzed by 

MIB synthase [Giglio et al., 2011]. Most of the production is retained within the cells, with the 

bulk release occurring during senescence, death and biodegradation [Lee et al., 2017; Watson et 

al., 2008].   
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Current approaches followed by water utilities for detection and quantification of odorants 

in water are mainly based on gas chromatography/mass spectrometry (GC/MS), coupled with 

various enrichment and extraction techniques, such as SPME [Liato and Aïder, 2017; Tsao et al., 

2014; Watson et al., 2000]. Although this method is sensitive, it has several drawbacks including 

the technical expertise required by the operator, the expensive and large instrumentation that 

cannot be transported and used for on-site monitoring, and most importantly, the fact that it does 

not identify the biological source of the problem [John et al., 2018; Su et al., 2013]. Microscopy 

and traditional plate count techniques have been employed and widely used for the identification 

and enumeration of odor-producing bacteria. However, there are several limitations associated 

with those methods as most bacteria in nature are difficult to culture and require highly selective 

media [Jüttner and Watson, 2007; Nielsen et al., 2006]. Furthermore, microscopic techniques 

require taxonomical expertise by the operator, long analytical time and lack the ability of 

distinguishing between T&O producers and non-producers [Jüttner and Watson, 2007; Su et al., 

2013].   

An alternative approach for investigation of the microbial T&O producers is the use of 

quantitative real-time polymerase chain reaction (qPCR), which in contrast to the conventional 

PCR, quantifies the targets rather than identifying its presence or absence. One of the major 

advantages using this molecular-based assay is its unique identification, as primers and probes are 

designed to specifically bind to the gene of interest. In addition, it is a sensitive method capable of 

detecting very low cell numbers, useful for for rapid on-site monitoring of emerging T&O episodes 

in a relatively inexpensive way [John et al., 2018; Lyllofff et al., 2012]. In the last few years, this 

method has been widely used for the detection of T&O bacterial producers in various environments 

such as recirculating aquaculture systems [Auffret et al., 2011], liquors [Du et al., 2013] and 

reservoirs [Chiu et al., 2016], targeting not only the geoA and 2-MIB synthase genes but also the 

23S rRNA gene in Streptomycetes [Lylloff et al., 2012]. Several studies, using primers targeting 

the geoA and MIBS genes in Cyanobacteria and Actinobacteria have successfully demonstrated 

the positive correlation between the genes and the respective geosmin and 2-MIB concentrations 

[Giglio et al., 2008; Su et al., 2013; Wang et al., 2016]. This demonstrates that qPCR techniques 

could potentially serve as a valuable tool for the prediction and early detection of emerging T&O 

events.  
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Eagle Creek Reservoir, which supplies about 80% of Indianapolis drinking water, 

experiences frequent and sometimes severe T&O episodes caused by elevated levels of geosmin 

and 2-MIB. The odorous events are usually observed during the Spring, when the reservoir 

receives most of its water and is fully mixed and turbid, and at the beginning of Fall. In order to 

investigate the origin of the problem, qPCR assays targeting the synthesis genes of those 

compounds in Cyanobacteria were developed and applied to water samples collected during the 

2018 sampling season (April-October). The objectives of the present work are to explore the 

correlation between the copy number of geoA and MIBS genes and the geosmin and 2-MIB 

concentrations, investigate the spatiotemporal variation of gene abundance in the reservoir and 

finally, evaluate the effectiveness of 16S rRNA qPCR and cell counting techniques as predictors 

of T&O episodes.  

3.2 Materials and Methods  

3.2.1 Study site  

Eagle Creek Reservoir (ECR; 86°18′13.07′′W, 39°51′09.84′′N; A = 5.0 km2; Z = 4.2 m), 

was constructed in 1967 in the northwest corner of Marion County to initially provide flood control 

and then drinking water for the city of Indianapolis when T.W. Moses Drinking Water Plant 

became available in 1976 [Harris et al., 2016; Li et al., 2006]. The depth ranges from 4 to 13 

meters, with the deepest areas located in the southern basin, near the dam. The reservoir is 

classified as mesotrophic to eutrophic [Song et al., 2012], and its water column is mixed and turbid 

in April/May when it receives most of its water from snow melt and intense rainfall and then in 

October after the seasonal thermal stratification is over.  

3.2.2 Sample collection and processing  

Sampling season started in late April and lasted through October, resulting in 24 collection 

dates and 328 samples in total in 2018. Water samples were collected using a vertical Van Dorn 

sampler at 14 locations over the reservoir (Figure 3.1) and 50ml of water were immediately filtered 

through a 0.22 μm Sterivex filter unit. For preservation purposes, 3ml of RNAlater stabilization 

solution was added to the filter. Filters were kept on ice and stored in a -80 °C freezer until further 

processing.   
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Figure 3.1 ECR-Sampling locations 2018. 

3.2.3 DNA extractions 

Genomic DNA of the water samples was extracted using the DNeasy PowerWater Sterivex 

Kit (Qiagen). Lysis buffer was added to the Sterivex filter units, which were then mixed. 

Subsequently, the lysate was removed for additional lysis using a 5 ml bead beating tube. After 

the removal of proteins and inhibitors, total genomic DNA was captured on an MB Spin Column. 

The column was washed, and purified DNA was eluted in 100 μL of EB solution (sterile elution 

buffer) and stored at −20 °C. The concentration and purity of the DNA was measured with a 

NanoDrop 2000/2000c Spectrophotometer (Thermo Scientific Inc.). Bacterial DNA, used as a 

standard for the qPCR assay, was extracted using the Quick-DNA Fungal/Bacterial kit (Zymo 

Research).  
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3.2.4 Primer design  

Sequences of the geoA and MIBS were obtained from the NCBI database and were aligned 

using Clustal Omega (multiple sequence alignment program) and BioEdit. Primers (Table 3.1) and 

probes (Table 3.2) were designed in conserved locations along the length of the genes using the 

PrimerQuest Tool. For MIB synthase detection in Cyanobacteria, primers were designed based on 

the following sequences: Pseudanabaena sp. NIVA-CYA 111 (HQ630887.1), Oscillatoria sp. 

327/2 (KJ658377.1) and Planktothrix sp. 328 (KJ658378.1). For geosmin synthase detection, 

primers were designed based on the following cyanobacterial sequences: Nostoc sp. UK1 

(KJ658372.1), Aphanizomenon sp. PMC9501 (KJ658367.1), Planktothrix sp. 18 (KJ658376.1), 

and Oscillatoria sp. PCC 9240 (KJ658375.1). Estimation of total bacterial load was based on the 

universal 16S primers and probe retrieved from Nadkarni et al. [2002].  

Table 3.1 Primers used in this study. 

Primers Sequence (5' to 3') 

Expected 

Length 

(bp) Target Reference 

CYN_GEO_S5

F ATACTYGGMTCARAAGARGAAGC 

103 geoA This study 

CYN_GEO_S5

R GYATCTGGATGRGTATAKGARCA 

Cy_MIB_S3.F CAGCTTCTACACCTCCATGAC 

135 MIBS This study Cy_MIB_S3.R AGGAGATCGTTGACCAKRACG 

16S_uni.F TCCTACGGGAGGCAGCAGT 

466 
16S 

rRNA 
Nadkarni et 

al. (2002) 16S_uni.R GGACTACCAGGGTATCTAATCCTGTT 

 

Table 3.2 Probes used in this study. 

Probes Sequence (5' to 3') Reference 

CYN_GEO NED-GATKCYCAYGACTACGCCYTRCT-MGBNFQ This study 

CYN_MIB VIC-TCCGTCACGCAGCGTTCYTRGC-MGBNFQ This study 

16SU FAM-CGTATTACCGCGGCTGCTGGCAC-TAMRA 

Nadkarni et al. 

(2002) 

 

3.2.5 PCR amplification  

Initial test for amplification of the desired target genes, was performed in a total volume of 

10.5 μL, containing 3μL of extracted DNA, 1 μL (10μΜ) of each of the forward and reverse 

primers for either geoA or MIBS, 5 μL of 2X PCR Master mix and 0.5 μL of 2mg/ml bovine serum 



72 

 

albumin. For the primers targeting the geoA gene, amplification was performed at 94°C for 8 min, 

then 40 cycles at 94 °C for 15 sec, followed by 1 min at 52 °C, 72°C for 30 sec, and a final 

extension period of 1 min at 72°C. Amplification conditions were exactly the same for 16S and 

MIBS detection except from the annealing temperatures that were 55°C and 53°C respectively. 

Nocardia sp. (ATCC 202099) which belongs to Actinobacteria was used to evaluate the specificity 

of the primers towards Cyanobacteria and nuclease-free water was used as a negative control. 

Positive controls included genomic DNA from E.coli (ATCC 700928DQ), Nostoc sp. (ATCC 

53789) and Pseudanabaena sp. (ATCC 29210) for the primers targeting the 16S rRNA, geoA and 

MIBS genes respectively. Field samples were used as well to test for the primer’s effective 

amplification. PCR product quality was evaluated after electrophoresis on agarose gels.  

3.2.6 Standards for qPCR analysis  

For the 16S assay, genomic DNA from E.coli (ATCC 700928DQ) was used as a standard, 

and 6 serial dilutions were performed on an initial concentration of 35000 copies/μL, with a 

dilution factor of 1/5. For the geoA assay, Nostoc sp. (ATCC 53789) was used as a standard and 6 

serial dilutions were performed on an initial concentration of 4.12*1010 copies/μL with a dilution 

factor of 1/5. Based on the MIB synthase sequence of Pseudanabaena sp. NIVA-CYA 111, a DNA 

fragment (Table 3.3) was synthesized (Integrated DNA Technologies) and used as a standard for 

the MIBS assay. The standard was serially diluted 7 times, starting at a concentration of 60.22*107 

copies/μL with a dilution factor of 1/10. The number of gene copies was calculated as follows: 

N (copies/ml) = C g/ml * [𝑌 𝑏𝑝 ∗  660 𝑔 𝑚𝑜𝑙𝑒−1𝑏𝑝−1]−1𝑁𝐴 [Auffret et al., 2011; Su et al., 2013], 

where C is the DNA concentration, Y is the PCR fragment length and 𝑁𝐴 represents Avogadro’s 

constant.     

 

Table 3.3 Sequence of the synthesized MIBS DNA fragment. 

MIBS Fragment (5'-3') 

CTGGCTGCGCGACAGCACGACAGCTTCTACACCTCCATGACGCTAATCGACCCCA

TCGGAGGCTACGTCCTCCCACCAGATATTTTCTTCGATTCGCGCGTCCGTCACGCA

GCGTTCCTAGCTGGGACGGCGGTCGTTCTGGTCAACGATCTCCTTTCGGTCGCCAA

AGATCTGG 
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3.2.7 qPCR protocol  

DNA from the water samples was aliquoted into 96-well plates and reactions were 

performed in triplicate for each assay. Each qPCR reaction was performed in a total volume of 

12.5 μL.  For the 16S assay, the reaction consisted of 6.25 μL TaqMan Universal PCR Master Mix, 

0.25 μL of 10μM of each of the primers and probe, 2.5 μL DNA, 1μL bovine serum albumin and 

2μL of nuclease free water. The amplification conditions were as follows: an initial denaturation 

step of 94°C for 8 min, followed by 40 cycles of 94 °C for 15s, 55 °C for 60s and 72°C for 30s. 

For the geoA assay, the reaction consisted of 6.25 μL TaqMan Universal PCR Master Mix, 0.4 μL 

of 10μM of each of the primers and probe, 2.5 μL DNA, 1μL bovine serum albumin and 1.55μL 

of nuclease free water. The amplification conditions were as follows: an initial denaturation step 

of 94°C for 8 min, followed by 40 cycles of 94 °C for 15s, 52 °C for 60s and 72°C for 30s. Finally, 

the MIBS assay consisted of 6.25 μL TaqMan Universal PCR Master Mix, 0.5 μL of 10μM of each 

of the primers and probe, 2.5 μL DNA, 1μL bovine serum albumin and 1.25μL of nuclease free 

water. The amplification conditions were as follows: an initial denaturation step of 94°C for 8 min, 

followed by 40 cycles of 94 °C for 15s, 53 °C for 60s and 72°C for 30s on a 7500 real time PCR 

system (ThermoFisher).  

3.2.8 T&O analysis  

2-Methylisoborneol and geosmin concentrations were quantified by a Head-Space Solid-

Phase Micro-Extraction (HS-SPME) combined with a Gas Chromatography-Mass Spectrometry 

(GC-MS) at the Citizens Energy lab.  

3.2.9 Cell counts  

Algae cell count analysis was performed by Chase Howard and conducted by hand using 

microscopy with a Nagoette Bright Line Hemacytometer stage (Hausser Scientific, 0.500 mm 

stage depth) and an Olympus BX53 microscope (100x, 200x, and 400x magnifications) on 

unfiltered water samples treated with 1-2% Lugol’s solution.   

3.2.10 Statistical analysis  

For statistical analyses, R v64 3.5.3 software package was used [R Development Core 

Team, 2011]. Spearman’s rho correlations were performed to assess potential links between gene 
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densities and geosmin and 2-MIB concentrations. The Kruskal-Wallis test was used to determine 

if there are statistically significant differences between sampling locations for the measured gene 

abundances by qPCR.  

3.2.11 Spatial maps 

Spatial maps were created with ArcMap, a feature within the ArcGIS [ESRI Inc., 2019].  

3.3 Results  

The standard curves for each of the 16S, geoA and MIBS TaqMan assays were generated 

by using serial dilutions of genomic DNA from E.coli (ATCC 700928DQ), Nostoc sp. (ATCC 

53789) and the synthesized MIBS DNA fragment (Table 3.3), respectively. Due to the large 

volume of samples, a separate standard curve was generated for each plate of each assay. The 

standard curves shown in Figure 3.2 were linear with high correlation coefficients. For the 16S, 

geoA and MIBS assays, 𝑅2 had a range of 0.7668 – 0.9672, 0.971 – 0.9922 and 0.9576 – 0.9879, 

respectively. qPCR efficiency (E) was calculated based on the equation, E = (10−1/𝑠- 1) where s 

is the slope of the standard curve [Tsao et al., 2014]. The efficiencies ranged between 67.53-

84.01% for the 16S assay, 71.22-81.86 % for the geoA assay and 64.5-86.53% for the MIBS assay. 

Those values are outside the desired range of 90-105%, which is somewhat expected considering 

the degenerate nature of our primers and probes [Seashols-Williams et al., 2018]. If we assume 

that the methodological threshold was Ct=40 cycles [Lylloff et al., 2012], then the detection limit 

for the 16S assay for plates 1 through 4 was 1.39, 7.76, 2.19 and 3.18 copies/μL. In the same way, 

regarding the geoA assay the detection limit for plates 1 through 4, was 28,438.1 (copies/μL), 

37,792 (copies/μL), 42,169.7 (copies/μL) and 92,257.1 (copies/μL). For the MIBS assay detection 

limits for plates 1 through 4 were 3.19 (copies/μL), 2.57 (copies/μL), 4.16 (copies/μL), and 47.93 

(copies/μL).   
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A) 

 

B)  

Figure 3.2 Standard curves A) 16S assay B) geoA assay C) MIBS assay. 
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Figure 3.2 continued  

C)   

           

Raw water samples were analyzed for odorous compounds by the Citizens Energy lab. 

Looking at geosmin concentrations at the first sampling location of each grid (Figure 3.3), it is 

noticeable that major peaks occurred on early May and then during late August and at the 

beginning of Fall. Geosmin detections show minima during the Summer months.  Maximal value 

of geosmin was observed in May 8 for location 4.3 (Figure 3.4), which was 24.38 ng/L and 

exceeded the odor threshold of 4 ng/L [Clercin, 2018]. Time series plots (Figure 3.4) for the geoA 

gene detected by the qPCR assay showed that the major peaks for all locations occurred in early 

May, and some minor ones during late August and at the beginning of Fall. Algaecide treatments 

to terminate T&O production were applied on May 9th, June 26th and September 18th. Geosmin 

showed an immediate response to the May 9th treatment as concentration dropped to below 

detection limits on the following collection day (May 10th) for all sampling locations. Response to 

the June 26th treatment was not immediate for the sampling points located north of intake, as 

geosmin concentrations peaked a few days later on June 28 and sharply decreased after that. The 

June 26th treatment did not seem to affect geosmin concentrations at locations 5.1 and 6.1 where 
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the levels were already minimal and remained this way after the treatment as well. The treatment 

applied on September 18th successfully decreased geosmin concentration levels on locations within 

grids 1,2,3 and 4 as observed on the subsequent sampling date which was on September 20. This 

treatment, however, did not disrupt the geosmin concentration on locations 5.1 and 6.1. Overall 

the effects of the last algaecide treatment did not last long since concentrations peaked again, 

beginning September 27. Regarding the geoA gene levels, response to the May 9th treatment was 

either immediate or delayed as observed in the case of locations 1.1, 1.2 and locations in grid 2 & 

3, where an increase occurred on May 10 and the levels dropped after that. On June 28, which was 

the immediate sampling date after the June 26th treatment, all sampling points except from location 

4.3 showed minimal or below detection levels of geoA gene concentration. Finally, on September 

20, the immediate sampling collection date after the September 18th algaecide treatment, geoA 

concentrations were below detection limits except from location 1.1. Although the fluctuation 

patterns between geosmin concentration and geoA gene levels in our samples follow one another 

closely in some parts, later in the sampling season the major peaks in geosmin concentration do 

not correspond well with gene abundances. In order to evaluate the association between those two 

variables, Spearman’s rho correlation analysis was performed. Results (Table 3.4) indicated that a 

statistically significant positive association between geosmin concentration and geoA gene existed 

only for location 3.3 with rho=0.70 and for location 4.3 with rho=0.51.          
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Figure 3.4 Time series graphs of geosmin concentration and geoA gene quantity for the sampling 

locations within each grid. Vertical black lines indicate algaecide treatment dates. 
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Figure 3.4 continued  
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Figure 3.4 continued  
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Figure 3.4 continued  
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Figure 3.4 continued  
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Figure 3.4 continued 
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Table 3.4 Correlation analysis results between geosmin and geoA gene quantity. 

 

Location Spearman rho p-value 

1.1 0.248648 0.2526 

1.2 0.3922697 0.06412 

1.3 0.3314672 0.1318 

2.1 0.0528011 0.8202 

2.2 0.3089066 0.1515 

2.3 0.1497546 0.4849 

3.1 0.322475 0.1243 

3.2 0.3621898 0.08944 

3.3 0.701068 0.0003995 

4.1 0.226925 0.3098 

4.2 0.3071725 0.1877 

4.3 0.5098368 0.02165 

5.1 -0.04282962 0.8499 

6.1 0.1428875 0.5367 

 

Looking at ΜΙΒ concentrations for the first sampling location of each grid (Figure 3.5), it 

is noticeable that major peaks occurred during May and September. MIB detections show minima 

during the Summer months when the reservoir stratifies. Maximal value of MIB was observed in 

May 16 for location 6.1 (Figure 3.6), which was 631.85 ng/L and exceeded the odor threshold of 

10 ng/L [Clercin, 2018]. Time series plots (Figure 3.6) for the MIBS gene, detected by the qPCR 

assay, show that the major peak occurred during May, with location 6.1 having the highest gene 

concentration of 157,427.5 (± 54,553.9 copies/μL) among all sampling points on May 8th. As 

mentioned above, algaecide treatments to terminate T&O production were applied on May 9th, 

June 26th and September 18th. On May 10th which was the following sample collection date after 

the first treatment, MIB concentration levels started decreasing for locations in grid 1, 2, 3 and 4 

but without immediately reaching levels below the odor threshold. In contrast, the MIB 

concentration for locations 5.1 and 6.1 kept increasing even after the treatment, reaching a 

maximum on May 16th and started drastically decreasing after that. When the second algaecide 

treatment was applied, MIB concentrations were already at low levels across all locations, 

implying that geosmin might have been the main target. After the third treatment, MIB 

concentration did not show an immediate response, since on September 20th it peaked across all 

locations. Looking at the MIBS gene levels and their response to algaecide treatments, a gradual 
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decrease started following the application of the first one for most locations. The subsequent 

treatments did not seem to influence MIBS levels detected by our qPCR assay, since they were 

already low or below detection levels. It is worth noting that although MIBS gene concentrations 

were close to zero during September, MIB concentrations showed some minor peaks during this 

time. This highlights the possible existence of other bacterial MIB producers that contribute to the 

problem and are not detectable by this qPCR assay. In order to evaluate the association between 

the MIBS gene abundance and the corresponding MIB concentration, Spearman’s rho correlation 

analysis was performed. Results (Table 3.5) indicated a statistically significant positive correlation 

between the two variables for all of our sampling locations.  
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Figure 3.6 Time series graphs of MIB concentration and MIBS gene quantity for the sampling 

locations within each grid. Vertical black lines indicate algaecide treatment dates. 
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Figure 3.6 continued 
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Figure 3.6 continued 
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Figure 3.6 continued 
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Figure 3.6 continued 
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Figure 3.6 continued 
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Table 3.5 Correlation analysis results between MIB and MIBS gene quantity. 

 

 

Location  Spearman rho  p-value 

1.1 0.6222153 0.001523 

1.2 0.8131144 2.41E-06 

1.3 0.6261638 0.001824 

2.1 0.7991441 1.39E-05 

2.2 0.8102751 4.86E-06 

2.3 0.7117924 9.59E-05 

3.1 0.6818296 0.0002433 

3.2 0.727774 8.29E-05 

3.3 0.7488591 9.39E-05 

4.1 0.7330964 0.000104 

4.2 0.8526532 1.80E-06 

4.3 0.7901149 5.70E-05 

5.1 0.8539246 4.31E-07 

6.1 0.8033632 1.16E-05 

 

In order to measure total bacterial density and evaluate its possible relationship with 

fluctuations in MIB and geosmin concentrations, a qPCR assay was used, targeting the 16S rRNA 

gene. Compared to the geoA and MIBS results, where major peaks occurred during May and 

September, the 16S rRNA gene quantities (Figure 3.7), had peaks occurring throughout the 

sampling season. Spearman’s correlation coefficients were used to evaluate the association 

between the 16S rRNA gene quantity and T&O concentrations. Results (Table 3.6) indicated that 

a statistically significant negative correlation between 16SrRNA quantity and MIB concentration 

occurred only for locations 1.1, 2.2, 3.1, and 4.3. A statistically significant negative correlation 

between the 16SrRNA gene quantities and geosmin concentrations occurred only for locations 4.3 

and 5.1 (Table 3.7).   

Since cell counting techniques are still widely used by water utilities to monitor T&O 

episodes, we wanted to assess the relationship between total cell counts and geosmin and MIB 

concentrations [Jüttner and Watson, 2007]. As expected by the fact that cell counting techniques 

do not take into consideration the synthetic capabilities of microorganisms, there were no 

statistically significant correlation between T&O concentrations and total cell counts (Table 3.8 & 

Table 3.9). This highlights that techniques that are based on the estimation of total bacterial 

densities are not the most appropriate tools in monitoring and predicting upcoming T&O problems.  
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Figure 3.7 Time series plots of the 16S rRNA gene quantities measured by qPCR across all 

locations within each grid. 
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Figure 3.7 continued  
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 Figure 3.7 continued  

 

 

 

 

 

Table 3.6 Correlation analysis results between 16S rRNA gene and MIB concentration. 

 

Location  Spearman rho  p-value 

1.1 -0.4990119 0.01648 

1.2 -0.2262846 0.2977 

1.3 -0.09768492 0.6645 

2.1 -0.02077922 0.9303 

2.2 -0.445072 0.03793 

2.3 0.0152207 0.9437 

3.1 -0.5148946 0.01004 

3.2 -0.2005929 0.3571 

3.3 -0.2636364 0.2471 

4.1 -0.2546584 0.2516 

4.2 -0.0481203 0.8412 

4.3 -0.6157895 0.005975 

5.1 0.2626377 0.2377 

6.1 -0.1025974 0.6573 
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Table 3.7 Correlation analysis results between 16S rRNA gene and geosmin concentration. 

 

Location  Spearman rho  p-value 

1.1 -0.4086533 0.05286 

1.2 -0.202016 0.3553 

1.3 -0.2388452 0.2844 

2.1 -0.2111968 0.3581 

2.2 -0.3550825 0.09638 

2.3 -0.09560253 0.6568 

3.1 -0.2003158 0.348 

3.2 0.005456795 0.9803 

3.3 -0.009283378 0.9681 

4.1 -0.1809525 0.4203 

4.2 0.2558489 0.2763 

4.3 -0.4869952 0.02943 

5.1 -0.4367002 0.04215 

6.1 -0.1276464 0.5814 

 

 

Table 3.8 Correlation analysis results between total cell counts and geosmin concentration. 

 

Location  Spearman rho  p-value 

1.1 0.03557389 0.8816 

1.2 0.1155376 0.6376 

1.3 0.1778694 0.4531 

2.1 0.04571182 0.8571 

2.2 0.102769 0.6664 

2.3 0.2790208 0.2335 

3.1 0.1228351 0.6164 

3.2 0.2937021 0.1963 

3.3 -0.1345233 0.5946 

4.1 0.2826148 0.2273 

4.2 0.4219671 0.1035 

4.3 0.2976703 0.2812 

5.1 -0.1231587 0.6495 

6.1 0.08819521 0.7364 
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Table 3.9 Correlation analysis results between total cell counts and MIB concentration. 

 

Location  Spearman rho  p-value 

1.1 0.4015038 0.08042 

1.2 0.09122807 0.7101 

1.3 0.2421053 0.3024 

2.1 0.2714138 0.2749 

2.2 0.1849624 0.4333 

2.3 0.01203008 0.962 

3.1 0.3194384 0.1825 

3.2 -0.05974026 0.7973 

3.3 0.2301342 0.3567 

4.1 0.02255639 0.9265 

4.2 0.1647059 0.5412 

4.3 0.2571429 0.3538 

5.1 0.2382353 0.3729 

6.1 -0.04411765 0.8686 

 

Spatial maps were constructed using the ArcMap software in order to better visualize the 

spatial variations of the 16S rRNA genes (Figure 3.8) and the T&O synthesis genes (Figure 3.9 & 

Figure 3.10). Based on the Kruskal-Wallis test that was performed (Table 3.10) to investigate if 

there was a location that had higher gene quantities compared to others during the time span of our 

sampling,  there was no statistically significant difference between locations for geoA, MIBS and 

16S rRNA gene quantities.  

 

Table 3.10 Kruskal-Wallis test results. 

 Kruskal-Wallis test Conclusion 

MIBS chi-squared = 7.0291, df = 13, p-value = 0.9006 

No statistically significant 

difference between locations 

geoA chi-squared = 5.9861, df = 13, p-value=0.9467 

No statistically significant 

difference between locations 

16S rRNA chi-squared = 5.6415, df = 13, p-value=0.9582 

No statistically significant 

difference between locations 

 

In order to evaluate the change of gene quantities before and after the application of the 

algaecide treatment the Wilcoxon Signed Rank Test was performed, which is the non-parametric 

analogue to the paired t-test. Based on those results (Table 3.11), the null hypothesis which 
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assumes that the median difference between pairs of measured gene quantities before and after 

treatment is zero, is accepted for most of the target genes and treatment dates. The only exception 

is for the geoA gene quantity in respect to the second and third treatment, in which the null 

hypothesis was rejected based on the p-value. Regarding the second treatment, there was a 

statistically significant increase in the geoA quantity a few days after its application. In contrast, 

after the third treatment, there was a statistically significant decrease in the geoA quantity. Since 

there is not a consistent trend, specific conclusions cannot be drawn about the response of gene 

quantities to the algaecide treatment. The fact that sample collection was performed the exact day 

before and right after just for the first treatment could pose a limitation to the interpretation of the 

results. During the days between the treatment and sample collection, both biotic and abiotic 

factors could have interfered, impacting the gene levels and preventing an accurate evaluation of 

the pre and post algaecide behaviour.  

 

Table 3.11 Wilcoxon Signed Rank test results for the gene quantities measured for the collection 

dates before and after the algaecide treatments. 

  Wilcoxon Signed Rank Test  

Quantity 

(copies/μL) 

Pre/Post 

Treatment (May-9) 

Pre/Post Treatment 

(June-26) 

Pre/Post Treatment 

(September 18) 

16S 

Z = -0.78471,               

p-value = 0.4326 

Z = -1.7264,                    

p-value = 0.08428 

Z = -0.59638, p-value = 

0.5509 

MIBS 

Z = -0.15694,             

p-value = 0.8753 

Z = -0.44455,                   

p-value = 0.6566 

Z = -0.44721, p-value = 

0.6547 

geoA 

Z = -0.47082,             

p-value = 0.6378 

Z = -2.1339,                   

p-value = 0.03285 

Z = 2.0449, p-value = 

0.04086 

 

 

 



99 

 

 

 

Figure 3.8 Spatial maps of 16S rRNA gene quantity for each sampling date. Data are sorted on a 

quantile basis. Red stars indicate sampling date before the algaecide treatment and blue stars 

indicate the sampling date after treatment. 



100 

 

Figure 3.8 continued 
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Figure 3.8 continued 
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 Figure 3.8 continued  
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Figure 3.8 continued  
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Figure 3.8 continued 
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Figure 3.8 continued  
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Figure 3.8 continued  
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Figure 3.8 continued  

 

 



108 

 

Figure 3.8 continued  
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Figure 3.8 continued 
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Figure 3.8 continued 
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Figure 3.9 Spatial maps of MIBS gene quantity for each sampling date. Data are sorted on a 

quantile basis. Red stars indicate sampling date before the algaecide treatment and blue stars 

indicate the sampling date after treatment. 
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Figure 3.9 continued 
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Figure 3.9 continued 
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Figure 3.9 continued  
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Figure 3.9 continued  
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Figure 3.9 continued  
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Figure 3.9 continued  
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Figure 3.9 continued 
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Figure 3.9 continued  
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Figure 3.9 continued  
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Figure 3.9 continued  
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Figure 3.9 continued  
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Figure 3.10 Spatial maps of geoA gene quantity for each sampling date. Data are sorted on a 

quantile basis. Red stars indicate sampling date before the algaecide treatment and blue stars 

indicate the sampling date after treatment. 
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Figure 3.10 continued 
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Figure 3.10 continued  
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Figure 3.10 continued  
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Figure 3.10 continued 
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Figure 3.10 continued  
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Figure 3.10 continued  
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Figure 3.10 continued  
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Figure 3.10 continued  
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Figure 3.10 continued  
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Figure 3.10 continued  
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Figure 3.10 continued 
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3.4 Discussion  

For the quantification of T&O bacterial producers in ECR, two qPCR assays were 

developed targeting the synthesis genes of 2-MIB and geosmin in Cyanobacteria and were applied 

on our water samples along with a universal 16S rRNA assay. The qPCR results were based on 

the generation of a standard curve, which unfortunately did not have the optimal efficiency of 90-

105% [Seashols-Williams et al., 2018; Simmons et al., 2007]. Several different reasons can affect 

DNA amplification and the resulting qPCR efficiency, including primer mismatches, annealing 

temperatures, PCR inhibitory substances, and steric hindrance [Brankatschk et al., 2012]. In our 

analysis, the use of degenerate primers that cause suboptimal primer-template kinetics could be 

one of the main reasons for the lower efficiencies [Brankatschk et al., 2012; Seashols-Williams et 

al., 2018]. In the future, qPCR assay optimization in regards of amplification conditions, 

concentration of input components and primer design should be made.  

As expected, the highest levels of MIB and geosmin concentrations were observed during 

May when discharge events happen and the water column is fully mixed, and at the beginning of 

Fall when the reservoir destratifies. The quantities of the geoA and MIBS genes, did not always 

follow the fluctuation pattern of T&O compound concentrations and in some cases, they were 

undetectable even though geosmin and MIB levels were present. This suggests that other bacterial 

producers that are not detected by the qPCR assays described in this study might also contribute 

to the synthesis of MIB and geosmin in ECR. Spearman’s correlation analysis indicated that there 

is a statistically significant positive correlation between the MIBS genes and MIB concentration. 

If long-term sample collection and analysis occurs, a good correlation between gene copy and 

concentration could be established and serve as an effective tool for monitoring emerging T&O 

episodes. Statistically significant positive correlation between the geoA genes and the 

corresponding geosmin concentration existed only for 2 of our sampling locations. The association 

between those two variables could have been affected by several factors, such as the production 

rate of geosmin from different organisms, their growth phase and gene copy numbers of the 

producing species [Chiu et al., 2016]. Furthermore, the lack of correlation between the geosmin 

synthesis genes detected by our qPCR assay and the respective concentration, could be partially 

explained by the fact that although geoA genes might be present, they may not be metabolically 

active. Also, there is the possibility that our qPCR assay underestimated the geoA gene quantities, 

since the designed primers only targeted a certain range of cyanobacterial geosmin producers.  
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The qPCR assay that was used to estimate 16S rRNA gene quantities showed statistically 

significant correlation with geosmin and MIB concentrations only for a few locations and it was 

negative. Total cell counts did not correlate with neither MIB nor geosmin concentrations. Those 

results are in accordance with other studies that have demonstrated the lack of linear correlation 

between the synthesis genes and the T&O compound concentrations [Wang et al., 2016].This 

highlights that even though traditional cell counting techniques are widely used by the water 

industry for the monitoring of T&O episodes, they are not able to distinguish between geosmin 

and MIB bacterial producers and non-producers as they do not take into consideration the synthetic 

capabilities of microorganisms [Jüttner and Watson, 2007; Su et al., 2013].  

Algaecide treatments effectively decreased the quantities of the genes detected by qPCR, 

with the exception of some cases where the levels appeared to increase immediately after their 

application. However, based on our sampling scheme the Wilcoxon Signed Rank Test showed that 

there was not a statistically significant median difference between the gene quantities pre and post 

treatment. In the future, sample collection should be made the dates right before and after each 

treatment application for an accurate evaluation of its impact. In regards of spatial distribution, 

based on the results from the Kruskal-Wallis test, which indicated that there was no statistically 

significant difference in the genes detected by our qPCR assays between sampling locations, over 

the course of the study period, we cannot identify a specific point at the reservoir where T&O 

problems tend to originate from and consequently guide algaecide application.  

Even though the qPCR assays developed in this study successfully identified geosmin and 

MIB cyanobacterial producers in ECR, they do not provide information regarding the active 

synthetic capability of the cells. Since DNA could originate from either dead or living 

microorganisms, incorporation of transcriptomic approaches could provide a better understanding 

on which cells are metabolically active. Future research efforts should also focus on the 

development of qPCR assays targeting the synthesis genes of geosmin and MIB in Actinobacteria, 

in order to investigate their role in contributing to T&O problems. Finally, assuming that the qPCR 

assays will be furtherly optimized, establishment of a multiplex technique would be more cost and 

time effective for analysis of large sample volumes.   
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3.5 Conclusions  

In Eagle Creek Reservoir, frequent and sometimes severe T&O episodes are observed 

during Spring and Fall while fewer of them are detected during the Summer months. The 

development of qPCR assays targeting the synthesis genes of geosmin and MIB in Cyanobacteria, 

successfully quantified potential T&O producers and highlighted possible associations between 

gene quantities and the respective concentrations. A statistically significant positive correlation 

was found between MIBS gene quantity and MIB concentration for all sampling locations, 

implying that this assay could potentially be used as a tool for the early prediction of upcoming 

T&O episodes. The geoA gene detection assay, did not correlate well with geosmin concentrations, 

suggesting that even though the gene might be present, this does not necessarily mean that it is 

metabolically active. As expected, correlation between the 16S rRNA gene quantity and geosmin 

and MIB concentrations existed only for certain locations and it was negative. This highlights that 

approaches used on the basis of total bacterial biomass evaluation, are not good indicators of T&O 

problems. Further optimization of the qPCR assays developed in this study, will strengthen their 

applicability in quantifying geosmin or 2-MIB producing bacteria in ECR.  
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 CONCLUSIONS & PERSPECTIVES  

Occurrences of T&O episodes are a common phenomenon in freshwater environments, 

resulting in the deterioration of drinking water quality and the loss of consumers trust, who 

perceive water as unsafe to drink. It is hard to trace the biological origins and predict those events, 

as they pose a complex problem which has different intensity and frequency every year depending 

on varying environmental conditions and the composition of microbial community. In Eagle Creek 

Reservoir those episodes are usually observed during May when the reservoir receives most of its 

water from snow melt and rainfall and then at the beginning of Fall after thermal stratification is 

over. However, T&O outbreaks do not follow the same trend every year, as it was observed in 

years 2017 and 2018 where major peaks of T&O compound concentrations occurred during May 

and June respectively. The terpenoid bacterial metabolites geosmin and 2-MIB are the most 

common substances in T&O incidents, and the microbial capability of their production in ECR 

was confirmed in this study. Mapping analysis, using a metagenomic dataset from samples 

collected in 2013, successfully retrieved the genes of interest geoA and MIBS, responsible for the 

synthesis of those compounds. In addition, taxonomic analysis of samples collected in 2017 that 

were sequenced targeting the 16S rRNA gene, confirmed the presence of known cyanobacterial 

producers of geosmin and 2-MIB.  

Management strategies of T&O episodes in ECR include the application of a copper-based 

algaecide treatment. Based on the 16S sequencing results (2017) presented in this study, the 

treatment was only effective towards Cyanobacteria as it drastically decreased their relative 

abundance in samples, and not towards Actinobacteria which remained at relatively constant levels 

and are considered to be major producers of geosmin and 2-MIB as well. Looking at the gene 

quantities detected by the qPCR assays, even though the initial hypothesis was that they decrease 

after the algaecide treatment, something like that was not supported by the Wilcoxon Signed Rank 

Test which indicated that the median difference of paired measurements before and after treatment 

was not significant. The only exception was the median difference for the pre/post treatment 

measurement of the geoA gene, which was statistically significant for the second and third 

treatment, but did not show a consistent trend, making the drawing of conclusions hard. Since 

sample collection was not performed the day before and right after each treatment, both biotic and 

abiotic factors could have interfered, impacting the gene levels and preventing an accurate 
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evaluation of the pre and post algaecide treatment behaviour. In the future, sample collection 

should be arranged right before and after the algaecide application so that we can better evaluate 

the microbial population response to it. As an alternative treatment approach, the incorporation of 

biodegradation methods could be an option, since the presence of bacteria having the ability to 

breakdown geosmin and 2-MIB was confirmed in this study.  

The argument that a small fraction of the total bacterial population contributes to the 

production of T&O compounds in ECR was supported by several methods of analysis for samples 

collected during different years. Based on the mapping analysis of the 2013 metagenomic dataset, 

less that 1% of the sample reads mapped to reference sequences representing the geoA and MIBS 

genes. Furthermore, the relative abundance of Cyanobacteria and Actinobacteria in samples that 

were collected during 2017 and analysed through 16S sequencing, did not correlate with the 

concentrations of geosmin and 2-MIB. Likewise, the 16S rRNA gene quantities detected by qPCR 

and Cyanobacterial cell counts did not correlate with those concentrations either, highlighting the 

importance of designing diagnostic tools targeting specific T&O bacterial producers and not the 

microbial community as a whole.  

In consideration of this, qPCR assays were developed in this study targeting the geoA and 

MIBS genes in Cyanobacteria. Correlation analysis showed a positive correlation between the 

MIBS gene quantities and the respective 2-MIB concentration for all sampling locations, indicating 

that this assay could be used as an accurate diagnostic tool for the early detection of emerging 

T&O events. In contrast, a positive correlation between the geoA gene quantities and geosmin 

concentrations existed only for 2 of our sampling locations, suggesting that even though gene 

detection was successful, they might not be expressed in those organisms. Since the efficiency of 

those assays was lower than the ideal range of 90-105%, further optimization in terms of primer 

design, annealing temperatures and the concentration of each reaction component should be made 

in the future to achieve better quantification of those genes. Another limitation includes the high 

detection limits of the geoA assay, that were probably caused by the use of DNA extracted straight 

from the Nostoc sp. culture, which could have multiple copies of the same gene, resulting in an 

incorrect calculation of the gene copy number used to generate the standard curve. Furthermore, 

horizontal gene transfer between bacteria in freshwater environments should be investigated and 

taken into consideration in the future, since the presence of identical genetic material in species 
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belonging to different bacterial classes, can lead to false positive results and inaccurate 

identification of the biological source of the problem.  

In terms of spatial distribution, the initial expectation was that T&O problems in ECR tend 

to originate from the north side where the input of minor streams is located, and then spreading to 

the rest of the reservoir. This trend was not depicted by the spatial maps constructed for the gene 

quantities measured by qPCR that indicated a random pattern of fluctuation, and it was not 

supported by the statistical analysis either which showed that there is no statistically significant 

difference between sampling locations. As a result, a specific point acting as source of the problem, 

which could potentially guide treatment application, could not be identified. This does not 

necessarily exclude the possibility that there are certain locations in the reservoir where T&O 

episodes tend to originate from, since our sampling scheme might not have captured this pattern.  

In addition to qPCR assay optimization, the development of a multiplex approach and the 

design of primers targeting the genes of interest in Actinobacteria, should become an objective for 

future research. This will enable as to get a better understanding of the biological origin of geosmin 

and 2-MIB production, and also develop accurate diagnostic tools with shorter analytical time 

which could be used for on-site monitoring of T&O episodes. Furthermore, since DNA does not 

indicate whether genes are expressed or not, incorporation of transcriptomic approaches is 

essential for the evaluation of active synthetic capabilities of the targeted bacterial groups. Finally, 

strain isolation of Cyanobacterial and Actinobacterial species could also contribute to the 

identification of microbial T&O producers and consequently to the development of diagnostic 

tools targeting those producers.  

 

 

 

 

 


