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ABSTRACT 

 

Shehab, Ahmed. M.S., Purdue University, December 2016. TRPV4 and cAMP Mediated 
Ion Transport in the Porcine Choroid Plexus. Major Professor: Bonnie Blazer-Yost. 

 

Hydrocephalus is a medical condition characterized by a buildup of cerebrospinal fluid 

which causes hydrostatic pressure to increase resulting neuronal destruction and can 

ultimately cause death. Hydrocephalus is seen in both the pediatric population and adults. 

Treatment of hydrocephalus usually involves surgical placement of a relocation system to 

drain the fluid into the abdominal cavity. Hydrocephalus may be caused by mechanical 

obstruction of the outflow of CSF from the ventricles or by faulty reabsorption.  It can be 

also caused by CSF overproduction by the choroid plexus found in the lateral, third, and 

fourth ventricles of the brain. The choroid plexus is composed of a high resistance 

monolayer epithelium which surrounds a network of capillaries. Its primary function is to 

regulate transport of ions and water that control the production and movement of CSF. 

Therefore it is important to understand the mechanism of CSF production by the choroid 

plexus. Recently, a stable porcine choroid plexus (PCP-R) epithelial cell line with a high 

transepithelial resistance (TER) was developed that provides an important model to study 

regulation of CSF production. Ussing style electrophysiology was used to measure short 

circuit current (SCC) to characterize stimulated transepithelial ion transport in confluent 

PCP-R cells. GSK1016790, a TRPV4 agonist, was used to understand the role of TRPV4 
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in CSF production by the choroid plexus using PCP-R cell model. TRPV4 activation 

produces a sustained ion transport response that is consistent with an increase in cation 

secretion and/or anion absorption which is accompanied by a reversible decrease in TER.  

The effect of the agonist on both SCC and TER was blocked by HC067047, a TRPV4 

antagonist, showing that the sustained ion transport and TER change is TRPV4 specific. 

TRPV4 mediated ion flux was inhibited by CFTR inhibitor II GlyH-101, a cell permeable 

inhibitor of the cAMP activated chloride channel CFTR, when added on either side of the 

membrane and was not accompanied by a TER reversal which showed that CFTR is 

activated by TRPV4 mediated ion flux. TMEM16A, a calcium activated chloride 

channel, was speculated to be located in that basal membrane as T16Ainh-AO1, a 

membrane permeable TMEM16A inhibitor, reversed the TRPV4 mediated ion flux when 

added on either side of the membrane. Slight reversal in TER was observed when 

T16Ainh-AO1 was added on the apical side. Apamin, a differential inhibitor of calcium 

activated small conductance potassium channel 1, 2 and 3 (SK1, SK2 and SK3) had no 

effect on the TRPV4 mediated ion flux. Whereas, fluoxetine, a membrane permeable 

inhibitor of SK1, SK2 and SK3 channel, inhibited the TRPV4 mediated ion flux and TER 

change. Bumetanide, an inhibitor of the sodium-potassium-chloride cotransporter 

reversed TRPV4 mediated ion flux when added on the apical membrane but not on the 

basal membrane indicating a possible K+ secretion via SK1 and/or SK4/IK channels and 

Cl- absorption through CFTR and TMEM16A channels. Acetazolamide, a carbonic 

anhydrase inhibitor and a compound used to treat hydrocephalus had no effect on the 

TRPV4 mediated ion flux. cAMP is an intracellular mediator involved in neuromodulator 

effects, inflammatory responses and other regulatory mechanisms and is constitutively 
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activated by forskolin. In PCP-R cells, forskolin stimulated an increase in transepithelial 

ion flux that is consistent with an increase in cation absorption and/or anion secretion. 

Forskolin mediated ion transport was inhibited by CFTR inhibitor II GlyH-101 when 

added on either side of the membrane. No change in TER was observed.  No effect on 

forskolin mediated ion flux was observed when T16Ainh-A01, apamin or fluoxetine were 

added. Forskolin stimulated transport is partially inhibited by 1 mM BaCl2. Barium 

chloride is a general inhibitor of K+ channels. No change in TER was observed. 
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CHAPTER 1: INTRODUCTION 

 

1.1 Pediatric hydrocephalus 

 

Pediatric hydrocephalus is a medical condition characterized by an accumulation 

of cerebrospinal fluid (CSF) which triggers an increase in hydrostatic pressure causing 

neuronal destruction and can ultimately cause death (Schwamb et al., 2014). It affects 

nearly 1 in 1000 births, and has medical costs approximately $2 billion per year. 

Hydrocephalus is caused by overproduction, poor absorption, and/or mechanical 

blockage of the CSF circulation. Based on its mechanisms, hydrocephalus can be 

classified into two types, communicating and obstructive. Communicating or non-

obstructive hydrocephalus is caused by overproduction of CSF by the choroid plexus 

which overwhelms the reabsorption ability of the arachnoid, as a result there is CSF 

accumulation in the ventricles of the brain.  Obstructive or non-communicating 

hydrocephalus is caused by an obstruction in CSF flow. The obstruction can be caused by 

tumors, infections, hemorrhages or congenital malformations in the brain (Huh et al., 

2009; Ortloff et al., 2013; Nimjee et al., 2010; Cutler et al., 1973).   

Placement of a shunt is the most commonly used treatment for hydrocephalus in 

which a tube is inserted into the ventricles of the brain which diverts excess CSF into a 

different region of the body from where it can be absorbed. Abdominal cavity is 
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generally preferred. To maintain CSF at normal pressure, a valve is used within the shunt 

system (Yadav et al., 2010). There are a number of complications associated with shunt 

placement such as infection, obstruction, over drainage, and intraventricular hemorrhage. 

Many of the complications seen in patients require immediate shunt revision (Drake et 

al., 2010). Therefore it is of great importance to find an alternative form of treatment to 

improve patient survival.  

 

1.2 Importance of TRPV4 in hydrocephalus 

 

Transient receptor potential cation channel subfamily vanilloid member 4 

(TRPV4) is a non-selective Ca2+-permeable cation channel. Non-selective cation 

channels are pores in the plasma membrane which form an aqueous passage to allow 

rapid flow of cation, mainly Na+, K+ or Ca2+, determined by the ion selectivity. TRPV4 is 

permeable to both Ca2+ and Na+ with 10:1 selectivity under physiological conditions 

(Plant et al., 2007). TRPV4 is widely expressed in the lung, liver, kidney, spleen, smooth 

muscle, skin, sweat glands and the central nervous system (CNS) where TRPV4 

depolarizes the membrane potential and/or generates a Ca2+ signal (Sung et al.,2015; 

Tyerman, 2002). In the CNS, TRPV4 is expressed in the choroid plexus as well as in the 

glial and neuronal cells of the cerebral cortex (Shim and Blazer- Yost, unpublished data; 

Butenko et al., 2012). TRPV4 contributes to crucial systematic and cellular functions 

such as volume regulation, dilation of arteries, frequency of ciliary beat, etc. via its osmo 

and mechano transduction properties (Venkatachalam et al., 2007; Song et al., 2010). 

TRPV4 also responds to various ques such as temperature change, phorbol esters and 
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arachidonic acid metabolites (endogenous) (Earley et al., 2015). When TRPV4 is 

activated, the increased intracellular Ca2+ activates Ca2+-sensitive channels responsible 

for transepithelial ion fluxes in the choroid plexus. Unpublished data from our lab shows 

drugs that act as antagonists to TRPV4, ameliorate hydrocephalus in Wister polycystic 

kidney (Wpk) rats, when given during the first 18 days after birth (Figure 1.1), which is 

why it is intriguing to explore the role of TRPV4 in CSF production. Wpk rat is an 

orthologous model of the human disease called Meckel Gruber Syndrome type 3 (MKS). 

This rat model is characterized by a mutant form of the protein called transmembrane 

protein 67 (TMEM67). TMEM67 is a membrane and ciliary protein that is necessary for 

centriole migration to the luminal surface and development of the primary cilium (Smith 

et al., 2006). MKS is caused by a mutation in TMEM67 (Garcia-Gonzalo et al., 2011; 

Sang et al., 2011). In humans and rodents, MKS is an autosomal recessive disease that 

presents symptoms such as hydrocephalus and renal cystic disease.  

 

1.3 Choroid plexus 

 

The choroid plexus (CP) structure is relatively simple consisting of a solitary 

layer of low cylindrical to cuboidal epithelial cells.  These cells rest on a basement 

membrane and are linked at the apical surface by junctional complexes, containing tight 

and adherens junctions, and desmosomes. The CP highly expresses junction proteins such 

as claudin 2 and claudin 11. Underneath the basement layer lies a system of leaky 

capillaries which allow water, small molecules and ions to pass into the fluid of each 

plexus. Thin diaphragms seal these capillaries.  An osmotic gradient is created by 
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transporting ions from blood to CSF or vice versa by the choroid plexus which drives 

water movement into or out of the ventricles. Transepithelial movement of water in the 

choroid plexus via transcellular route was shown before, whereby aquaporin 1 in both the 

apical and basolateral surface aids water movement from the interstitium to the CSF. 

Water can also move via a paracellular route when the epithelium becomes leaky 

(Damkier et al., 2013).  Hydrocephalus can be caused either by an imbalance of CSF 

secretion and/or absorption or an obstruction in the CSF flow (Johanson et al., 2008). 

Therefore understanding the exact role of the ion channels or co-transporters expressed 

by the CP and the role of TRPV4 is of great importance.  

 

1.4 Ion pumps, channels and cotransporters in the choroid plexus 

 

• Na+-K+-ATPase: Na+-K+-ATPase is situated in the basolateral surface in most 

secretory epithelia and mediates the secretion process by creating an inward directed 

sodium ion gradient which is crucial for the subsequent Cl- active transport. In contrast, 

Na+-K+-ATPase is located in the apical surface of the CP (Ernst et al., 1986; Masuzawa et 

al., 1984; Praetorius et al., 2006; Siegel et al., 1984). Apical localization of the Na+-K+-

ATPase suggests that sodium ion is transported into the CSF and plays an important role 

in its secretion process.  Na+-K+-ATPase also functions as a signal transducer to regulate 

intracellular calcium (Davson et al., 1970; Pollay et al., 1985; Wright et al., 1978). Na+-

K+-ATPase was shown to be activated by calcium (Yingst, 1988). 

• Cl- channels: Previous studies performed on choroid plexus epithelial cells from 

rat, mouse, and pig have shown the presence of inward-rectifying anion conductances 
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(Clir) (Kibble et al., 1996; Kajita et al., 2000 Kibble et al., 1997). Clir channels, whose 

molecular identity is unknown are shown to be constitutively active and are assumed to 

play a substantial role in chloride ion efflux at the apical surface. It was also shown that 

the cystic fibrosis transmembrane conductance regulator (CFTR) is not present in CPE 

cells (Kibble et al., 1997). Cl- channels of volume-regulated anion channel (VRAC) 

category were also identified in CPE cells but the molecular identities of these channels 

are not known (Kibble et al., 1996; Duran et al., 2010; Kibble et al., 1997). 

• K+ channels: Time-dependent, outward-rectifying conductance (Kv), Kv1.1, 

Kv1.3 and time-independent, inward-rectifying conductance (Kir), Kir7.1 were identified 

in the mammalian CP apical surface (Kotera et al., 1994). Recent data indicate that 

potassium voltage-gated channel subfamily E member 2 (KCNE2) channel also plays a 

role in the outward-rectifying potassium conductance. All these different potassium 

channels localize in the luminal surface of rat and mouse CP (Roepke et al., 2011). 

Presence of small conductance calcium-activated potassium channels (SK) and big 

potassium channels (BK) are yet to be explored.  

• Na+ channels: Epithelial Na+ channel (ENaC) is generally expressed in tight 

epithelia such as renal collecting ducts (Amin et al., 2009; Amin et al., 2005; Leenen et 

al., 2010; Van Huysse et al., 2012; Wang et al., 2010). Amiloride is a known inhibitor of 

ENaC (Loffing et al., 2003).  Amiloride-sensitive ENaC in CPE was not reported 

(Damkier et al., 2013). 

• Na+-K+-Cl- Cotransporters (NKCCs): Na+-K+-Cl- Cotransporter 1 (NKCC1) 

facilitates movement of 1Na+:1K+:2Cl- across the cell membrane and is bumetanide 

sensitive (Russell, 2000). NKCC1 is located in the basolateral surface in most secretory 
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epithelia and facilitates ion influx. However, NKCC1 is expressed in the apical surface of 

choroid plexus epithelial cells (Plotkin et al., 1997; Keep et al., 1994). It was previously 

proposed that the force that drives NKCC1 in choroid plexus is near equilibrium (Keep at 

al., 1994). But other studies have shown that NKCC1 is involved in both ion efflux and 

influx (Crum et al., 2012; Bairamian et al., 1991). Thus the role of NKCC1 in choroid 

plexus and CSF secretion is not well understood. 

• K+-Cl- Cotransporters: KCCs are shown to be electroneutral and enable ion efflux 

which is driven by a potassium ion concentration difference across plasma membrane. 

CPE cells were shown to express both KCC3a and KCC4 in the basolateral and the 

luminal surface respectively (Chai et al., 1987; Millar et al., 2007). Therefore KCC4 

might be contributing to the recycling of potassium ions across the apical surface and 

thus keeping the sodium-potassium-ATPase active. KCC3 is reported to be the only 

potassium channel expressed in the CPE basolateral surface thus mediating K+ efflux 

(Millar et al., 2007). 

• Na+-HCO3
- Cotransporters: Depending on tissue-specific factors, electrogenic 

sodium bicarbonate cotransporter (NBCe2) facilitates the movement of two or three 

HCO3
- with one Na+ and is expressed in the luminal surface (Virkki et al., 2002; Sassani 

et al., 2002;). Sodium-driven chloride bicarbonate exchanger (NBCn2) protein is 

localized in the basolateral surface of the CP and contributes to cellular accumulation of 

Na+ and HCO3
- (Praetorius et al., 2006; Praetorius et al., 2004). NBCn1 is electroneutral 

and is reported in the basolateral surface of CP epithelial cells (Praetorius et al., 2004). 

• Na+/H+ Exchangers: Na+/H+ exchanger 1 (NHE1) is shown to be an electrically 

neutral acid extruder. Immunohistochemical studies have showed that NHE1 is located in 
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the luminal surface of both human and mouse CP (Kao et al., 2011; Damkier et al., 

2009). 

• Intracellular mediators: Very little is known about intracellular mediators in the 

choroid plexus. The only known intracellular mediator in CP is the carbonic anhydrase 

which catalyses the reversible conversion of water and carbon dioxide to hydrogen ion 

and bicarbonate. This reversible reaction maintains acid-base balance in blood and other 

tissues, which helps to transport carbon dioxide out of tissues. Acetazolamide is known to 

inhibit carbonic anhydrases and reduce CSF secretion by 50 to100% in rats and rabbits. It 

is also utilised in children and adults to treat hydrocephalus (Davson et al., 1970; Ames et 

al., 1965; Welch et al., 1963). The drug is thought to act by varying blood flow to the CP 

(Vogh et al., 1987; Jafarzadeh et al., 2014; Cowan et al., 1991). 

Ion distribution between CSF and plasma show that they are not similar. K+, 

HCO3
-, and Ca2+ concentrations are lesser in the CSF, while concentration of Cl- (~ 

130mM) is higher in the CSF (Davson et al., 1996). Transportation of these ions create a 

slight osmotic gradient, which drives the secretion of water. Therefore it is 

understandable that the movement of ions in the CP is tightly regulated. It was shown 

before that in mammals, the transepithelial potential difference is +5 mV apical positive 

(Held et al., 1964; Husted et al., 1977; Welch et al., 1965). 

 

1.5 Objective 

 

The overall objective of the proposed research is to understand ion transport in the 

choroid plexus, particularly the effect on CFTR, TMEM16A, SK and BK channels in 
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response to TRPV4 mediated calcium influx and forskolin induced cAMP. It was 

hypothesised that the above ion channels and cotransporters are activated by TRPV4 

mediated calcium influx and forskolin induced cAMP. Role of NKCC1 was also 

examined. In addition, these studies will provide evidence for using TRPV4 antagonist as 

a possible treatment option for hydrocephalus and the underlying mechanism of action of 

the drug.  
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CHAPTER 2: MATERIALS AND METHODS 

 

2.1 Materials 

 

Transwell culture plates containing 24mm inserts made from polycarbonate 

(0.4µm pore size) and cell culture flasks were acquired from Costar-Corning (Acton, 

MA). DMEM/ F12 (Dulbecco’s modified Eagle’s medium/Hams F-12) tissue culture 

media, streptomycin, insulin and penicillin were purchased from ThermoFisher Scientific 

(Waltham, MA). Trypsin-EDTA solution was obtained from Sigma Aldrich (St. Louis, 

MO). HBSS (Hanks Balanced salt solution) was obtained from Mediatech (Herndon, 

VA). FBS (Fetal bovine serum) was acquired from Atlanta Biologicals (Atlanta, GA). 

CFTR Inhibitor II GlyH-101 was acquired from Calbiochem-Merck (Darmstadt, 

Germany). Forskolin was purchased from Biomol International (Plymouth Meeting, PA). 

T16Ainh-AO1 and HC 067047 were obtained from Tocris Bioscience (Bristol, UK). 

BaCl2, GSK1016797, bumetanide, fluoxetine, apamin, and acetazolamide were purchased 

from Sigma Aldrich (St. Louis, MO).  
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2.2 Cell culture 

 

The PCP-R (porcine choroid plexus) cell line, passage 47, was obtained from 

Prof. Christian Schwerk at Heidelberg University, Germany. This cell line is suitable for 

choroid plexus electrophysiological studies as it is characterized by a high transepithelial 

resistance (~1500 Ω.cm2) (Schroten et al., 2012). 150 cm2 tissue culture flasks were used 

to culture cells in a humidified incubator maintained at 37oC that consists of 5% CO2. 

The culture medium was composed of glucose (4.5 g/L), DMEM, FBS (10%), penicillin 

(100 U/ml), streptomycin (100 mg/ml) and insulin at 5mg/L. The medium was replaced 

three times per week. A 0.5% trypsin-EDTA solution was used to passage cells every 

week at a 1:10 split ratio. Approximately 1.29 million cells were seeded on transwell 

inserts with 1.5 ml of media on the apical side and 2 ml on the basolateral side and were 

used on day 10 to 12 to perform electrophysiology. The mean TER of confluent 

monolayer of cells varied between 500 and 3000 Ω/cm2.  

 

2.3 Electrophysiology 

 

In order to observer changes in ion movement across the PCP-R epithelia when 

different inhibitors and stimulators are added, electrophysiology experiments were 

performed. For electrophysiology experiments, confluent monolayers of PCP-R cells 

were cultured on transwell membranes for 10 to 12 days. After which the membranes 

were removed and fitted in an Ussing chamber. Ussing chamber is an apparatus that 

separates the basolateral surface from the luminal surface. A confluent layer of epithelial 
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cells become polarized when it’s apical and basolateral membrane proteins are segregated 

on the appropriate membrane. Basal surface is the surface that faces the basement 

membrane. In transwell, the surface of the cell that is against the filter is the basal 

surface. Voltage and current electrodes were attached on either side of filters contained in 

Ussing chamber which were linked to the DVC-1000 voltage/current clamp via 

electrodes. DVC-1000 was obtained from World Precision Instruments (Sarasota, FL). 

PCP-R cells were kept at 37oC and were covered in medium which is free of serum. 

Constant pH maintenance and circulation of media was performed using a 5% carbon 

dioxide and 95% oxygen gas cylinder. The short circuit current (SCC) was constantly 

monitored after the transepithelial potential difference was held at zero. SCC is a 

quantification of net transepithelial ion movement where an increase denotes either anion 

secretion and/or cation absorption whereas a decrease denotes either cation secretion 

and/or anion absorption. 2mV pulses were induced every 200 seconds for 2 seconds and 

the current displacement during the pulse was used to calculate transepithelial resistance 

(TER) via Ohm’s law. After the cells show a stable basal SCC, compounds such as 

TRPV4 agonist (GSK1016797), TRPV4 antagonist (HC067047), CFTR Inhibitor II 

GlyH-101, TMEM16A inhibitor (T16Ainh-A01), Na+-K+-Cl- cotransporter 1 (NKCC1) 

inhibitor bumetanide, small conductance calcium-activated potassium channel inhibitors 

such as fluoxetine and apamin, and acetazolamide, which is a carbonic anhydrase 

inhibitor previously reported to be used to treat hydrocephalus (Carrion et al., 2001), 

cAMP inducer (forskolin), and nonspecific potassium channel inhibitor (BaCl2) were 

added to specific sides of the polarized epithelia as indicated in the figures. 
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2.4 Statistics 

 

Statistical comparison between experimental and control treatments (change in 

SCC and TER) were done using Student’s t-test. Results were considered significant at p 

≤ 0.05. 
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CHAPTER 3: RESULTS 

 

3.1: Effect of TRPV4 agonists on confluent cultures of PCP-R 

 

In order to determine the membrane localization of the TRPV4 channel, 5nM of 

TRPV4 agonist (GSK1016797) was added either on the apical or basal side of the 

polarized epithelia. Upon activation by the agonist, TRPV4 stimulated an increase in 

cation secretion and/or anion absorption when added on the basal side but not on the 

apical side. This implies that TRPV4 might be located in the basolateral membrane 

(Figure 3.1). However, in Figure 3.2 A, HC067047 (TRPV4 specific antagonist) was 

more potent when added on the apical side compared to the basal side suggesting that 

TRPV4 might be located on the apical membrane, which is consistent with previous 

finding that TRPV4 is predominantly localized in the apical surface of the CP (Takayama 

et al., 2014). This discrepancy in TRPV4 localization in the PCP-R might be due to the 

intracellular mode of action of the agonist. It is possible that the basally added agonist 

crossed the basolateral membrane of the polarized PCP-R and activated the apically 

located TRPV4 as it was shown before that the basal membrane is more permeable 

compared to the apical membrane (Flamion et al., 1990; Giepman et al., 2009). 

Immunolocalization experiments targeting TRPV4 are necessary to validate this finding. 



14 
 

GSK1016797 was added on the basal side of the membrane in subsequent experiments as 

it produced a TRPV4 response only from that side. 

 

3.2: GSK1016790A mediated ion flux and TER decline is TRPV4 specific 

 

To examine if the change in SCC and TER are TRPV4 agonist specific, 5nM of 

GSK1016797 and 100nM of HC067047 were added either on the apical or basal side of 

the polarized epithelia. Upon activation by the agonist, TRPV4 stimulated an increase in 

cation secretion and/or anion absorption. This response was accompanied by a reversible 

decrease in TER. The effect of the agonist on both SCC and TER was blocked by pre-

treatment of the TRPV4 antagonist HC067047 (100nM). HC067047 also fully reversed 

the agonist stimulated ion flux and considerably restored the agonist stimulated decrease 

in TER when added after the agonist stimulation (Figure 3.2). This indicates that the 

change in SCC and TER are TRPV4 agonist specific. 

 

3.3: TRPV4 agonist dose response 

 

To determine the optimum TRPV4 agonist (GSK1016797) concentration, a 

limited set of dose response experiments were performed. TRPV4 agonist of 1nM, 

1.8nM, 3.3nM, 5.6nM or 10nM was added to the basolateral or apical side of the 

polarized epithelia. When GSK1016790A was added to the basolateral bathing media at a 

final concentration of 1nM and 1.8nM, there was no indication of ion flux and TER 

change. Addition of 10nM produced a lethal ion flux as depicted by a drastic decrease in 
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TER. The addition of 3.3nM and 5.6nM of agonist was not found to be lethal as the TER 

did not drop below 500 ohm.cm2. 5nM was the concentration used in subsequent 

experiments. 

 

3.4: Effect of GSK1016790A on CFTR and TMEM16A 

 

To examine if any chloride channel such as CFTR and TMEM16A are activated 

by the TRPV4 mediated calcium influx, CFTR Inhibitor II GlyH-101 (50nM) and the 

TMEM16a inhibitor, T16Ainh-A01 (10µM) were added on either side of the membrane. 

As mentioned before, TRPV4 agonist mediated change in SCC represents an increase in 

cation such as K+ secretion into the CSF side (apical) and/or anion such as Cl- absorption 

into the blood side (basal). In this ion flux, the final barrier that a cation has to cross to 

get secreted into the CSF is a cation channel or co-transporter located on the apical 

membrane. Similarly, the final barrier that an anion has to cross to get absorbed into the 

blood is an anion channel or co-transporter located on the basal membrane. Based on this 

principle, it can be concluded that the anion channels, CFTR and TMEM16A might be 

located on the basal side as a reversal in the TRPV4 mediated ion flux was observed 

when DMSO prepared, membrane permeable CFTR or TMEM16A inhibitors were added 

on either side of the membrane. The inhibitors had an effect when added on the apical 

side as DMSO preparation made them membrane permeable and allowed them to act on 

the basal surface. Addition of the CFTR inhibitor on the apical side had an immediate 

effect whereas a delayed inhibition was observed when added on the basal side. No 

reversal in TER was observed (Figure 3.5). Interestingly, pre-treatment with CFTR 
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inhibitor caused a decrease in the TER (Figure 3.5 C). TRPV4 agonist mediated ion flux 

was reversed immediately by the TMEM16A inhibitor when added on either side of the 

membrane (Figure 3.6). T16Ainh-A01 partially reversed the decrease in TER caused by 

TRPV4 agonist when added on the apical side of the membrane (Figure 3.6 D). This was 

surprising as such reversal was not observed when T16Ainh-A01 was added on the basal 

side. Localization of CFTR and TMEM16A needs to be verified by immunostaining. 

 

3.5: Role and localization of NKCC1 in PCP-R 

 

NKCC1 is located in the apical membrane of the CP and mediates ion influx of 

one sodium ion, one potassium ion, and two chloride ion across the plasma membrane 

(Johanson et al., 1990; Wu et al., 1998; Keep et al., 1994). It was shown before that 

NKCC1 is constitutively active under physiological conditions (Crum et al., 2012; Wu et 

al., 1998). To identify the localization and to understand the ion movement mediated by 

NKCC1 in polarized PCP-R, 100μM of bumetanide was added on either side of the 

polarized epithelia after TRPV4 activation. TRPV4 mediated ion flux represents an 

increase in cation such as K+ secretion into the CSF side (apical) and/or anion such as Cl- 

absorption into the blood side (basal) which was reversed by bumetanide when added on 

the apical side but not on the basal side (Figure 3.7B). This implies that NKCC1 might be 

located in the apical membrane and Cl- entering the cell via NKCC1 might leak out 

through CFTR and TMEM16A channels located on the basal membrane as identified in 

section 3.4. K+ ion entering the cell via NKCC1 might leak out through potassium 

channels on the apical membrane which will be identified in section 3.7. It was shown 
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before that Na+ ion entering the cells via NKCC1 is pumped out by the apical Na+/K+-

ATPase (Johanson et al., 1990; Wu et al., 1998; Keep et al., 1994). Immunostaining is 

required to verify the NKCC1 localization. It was expected to observe a decrease from 

the basal current when the polarized epithelia was pre-treated with bumetanide on the 

apical side as NKCC1 was reported to be constitutively active, surprisingly no such 

deviation was observed (Figure 3.7A). Figure 3.7A also show that bumetanide pre-

treatment did not affect TRPV4 mediated ion flux. Addition of bumetanide did not cause 

any change in TER (Figure 3.7 C, D). 

 

3.6: TRPV4 mediated ion flux and TER decline is not effected by                  

Acetazolamide 

 

Acetazolamide is known to inhibit carbonic anhydrases and reduce CSF secretion 

in rats and rabbits. It is currently being utilised in children and adults to treat 

hydrocephalus (Davson et al., 1970; Ames et al., 1965; Welch et al., 1963).  Therefore it 

was intriguing to find out if TRPV4 mediated ion flux was affected by acetazolamide. 

Figure 3.8 shows a partial but statistically non-significant reversal of SCC and TER when 

acetazolamide was added on the apical side but not on the basal side of the polarized 

epithelia. 

3.7: Effect of GSK1016790A on SK channels 

 

There are four known types of SK channels, SK1, SK2, SK3, and SK4. SK4 is 

also known as IK or Intermediate conductance calcium-activated potassium channel. 
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Fluoxetine is membrane permeable and a specific blocker of SK1, SK2 and SK3 channels 

(Kohler et al., 1996; Faber et al., 2007; Stackman et al., 2002). Apamin is also membrane 

permeable and a differential blocker of SK1, SK2 and SK3 channels. SK2 is the most 

sensitive, SK3 shows intermediate sensitivity and SK1 is the least apamin sensitive with 

effective concentration values of ∼40pM, ∼1nM and ∼10nM respectively (Adelman et 

al., 2012). It was also reported that the cloned SK1 channel is not blocked by 100nM of 

apamin (Bond et al., 1999). To determine if any small conductance calcium-activated 

potassium (SK) channels were activated by the TRPV4 mediated calcium influx, either 

fluoxetine or apamin were added on either side of the membrane before or after TRPV4 

stimulation. TRPV4 agonist mediated change in SCC represents an increase in cation 

secretion into the CSF side (apical) and/or anion absorption into the blood side (basal) 

which was immediately blocked by fluoxetine on either side of the membrane as it is 

membrane permeable.  This suggests that fluoxetine sensitive SK channels might be 

located on the apical side which needs to be verified by immunostaining. Pre-treatment of 

cells with fluoxetine also inhibited TRPV4 agonist mediated ion flux. Reversal in TER 

was also observed when fluoxetine was added on either side of the membrane. 

Interestingly, addition of apamin had no effect on the TRPV4 mediated SCC or TER 

change (Figure 3.9). This finding indicates that TRPV4 mediated calcium influx might 

activate SK1 and/or SK4/IK channel. Future electrophysiological experiments using 

specific SK4 channel inhibitor such as Paxilline are required. 
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3.8: Effect of forskolin on CFTR and TMEM16A 

 

Forskolin is a compound known to activate adenylyl cyclase and increase 

intracellular cAMP. To examine if chloride channels such as CFTR and TMEM16A are 

activated by cAMP, CFTR Inhibitor II GlyH-101 (50nM) or T16Ainh-A01 (10μM) were 

added on either side of polarized PCP-R. Forskolin mediated change in SCC represents 

an increase in transepithelial ion flux that is consistent with an increase in anion secretion 

into the CSF side (apical) and/or cation absorption into the blood side (basal). In 

forskolin mediated ion flux, the last barrier that an anion has to cross to get absorbed into 

the CSF is an anion channel or co-transporter located on the apical membrane. Likewise, 

the final barrier that a cation has to cross to get absorbed into the blood is a cation 

channel or co-transporter located on the basal membrane. Using this notion, it can be 

concluded that the anion channel, CFTR might be located on the apical side as an 

immediate reversal in the forskolin mediated ion flux was observed when DMSO 

prepared, membrane permeable CFTR inhibitor was added on either side of the 

membrane. DMSO preparation made the inhibitor membrane permeable and allowed it to 

act on the apically located CFTR which is why the inhibitor was able to reverse the 

current when added on the basal side (Figure 3.11). Treatment with TMEM16A inhibitor 

had no effect on forskolin mediated ion flux (Figure 3.12). Neither the stimulatory nor the 

inhibitory responses were accompanied by a change in TER. 
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3.9: Role and localization of NKCC1 in PCP-R 

 

It was reported before that under physiological conditions NKCC1 is 

constitutively active (Wu et al., 1998; Crum et al., 2012). Polarized PCP-R epithelia was 

pre-treated with bumetanide on either side of the membrane. As expected, a slight but 

statistically non-significant decrease from the basal current was observed when 

bumetanide was added on the apical side but not on the basal side (Figure 3.13A). This 

supports out finding from section 3.5 that NKCC1 might be located on the apical 

membrane. It might also be implied from this data that NKCC1 might be constitutively 

active in PCP-R and it might play a role in maintaining a stable basal current. No 

inhibition in forskolin mediated ion flux was observed. No change in SCC was observed 

when bumetanide was added on either side of the membrane after forskolin treatment 

(Figure 3.13B). No change in TER was also observed (Figure 3.13 C, D). 

 

3.10: Effect of forskolin on barium sensitive potassium channels 

 

To identify cAMP dependent potassium channels, forskolin (5µM) and barium 

chloride (1mM) were added on either side of the membrane. There was an immediate 

increase in SCC after forskolin addition which was blocked by barium chloride when 

added on the basolateral side but not on the apical side (Figure 3.14 A, B). This piece of 

data supports the presence of cAMP dependent potassium channels in the basolateral 

membrane. These changes in SCC were not accompanied by a change in TER. (Figure 

3.14 C, D) 
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CHAPTER 4: DISCUSSION 

 

Pediatric hydrocephalus is a medical condition characterized by an accumulation 

of CSF that triggers a rise in hydrostatic pressure causing neuronal destruction and can 

ultimately cause death. Preliminary data from our lab shows that drugs that act as 

antagonists to the TRPV4 Ca2+ channel ameliorate hydrocephalus in Wpk rats. Wpk rat is 

an orthologous model of the human disease called Meckel Gruber Syndrome type 3 

(MKS). This rat model is characterized by a mutant form of the protein called TMEM67. 

TMEM67 is a membrane and ciliary protein that is necessary for centriole migration to 

the luminal surface and development of the primary cilium (Smith et al., 2006). MKS is 

caused by a mutation in TMEM67 (Garcia-Gonzalo et al., 2011; Sang et al., 2011). In 

humans and rodents, MKS is an autosomal recessive disease that presents symptoms such 

as hydrocephalus and renal cystic disease. In the central nervous system, Expression of 

TRPV4 was observed in the CP, as well as in the glial and neuronal cells of the cerebral 

cortex (Shibasaki et al., 2007). When activated, TRPV4 transports Ca2+ into cells, 

activating intracellular Ca2+ signaling processes and depolarizing the membrane potential. 

The increased intracellular Ca2+ then activates Ca2+-sensitive channels those are 

responsible for transepithelial ion fluxes in the choroid plexus. Our current study has 

enabled us to understand ion transport in the choroid plexus, particularly in response to 



22 
 

TRPV4 activation and cAMP and has also aided us to examine the potential use of a 

TRPV4 antagonist as a treatment option of hydrocephalus. 

Recent studies have measured TER of 150 to 200 Ω·cm2 in mammalian CP cell 

culture using epithelial volt-ohmmeter (Zheng et al., 2002). However, resistances of up to 

2,000 Ω·cm2 were observed in tight epithelia in which there is a controlled paracellular 

transport (Whittembury et al., 1985; Rosenthal et al., 2010; Will et al., 2008). In that 

regard, the PCP-R cell line is suitable to study regulated ion transport in choroid plexus 

as in our experiments it showed high resistance values between 500 and 3000 Ω·cm2. The 

TER of an epithelia is important as it shows how controlled paracellular transport is in 

that epithelia. It also determines the paracellular permeability. One possible reason for 

higher TER in the PCP-R cell line is due to higher expression of tight junction proteins 

such as ZO1, Occludin, Claudin 1 and Claudin 3, etc. which produces a continuous tight 

junction strand (Schroten et al., 2012).  

Previous studies have identified TRPV4 channel in the choroid plexus and was 

found to be predominantly expressed in the luminal surface (Takayama et al., 2014). In 

our current electrophysiological experiments, we have found that TRPV4 might be 

located in the basal membrane of the PCP-R as the TRPV4 agonist was only effective 

when added on the basal side but not on the apical side. On the other hand, the TRPV4 

antagonist was found to be more effective when added on the apical side compared to the 

basal side suggesting that TRPV4 might be located on the apical membrane, which is 

consistent with the previous report. This inconsistency in our TRPV4 localization data 

might be due to the intracellular mode of action of the agonist. It was shown before that 

the basal membrane is more permeable compared to the apical membrane, therefore it is 
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possible that the basally added agonist crossed the basolateral membrane of the polarized 

PCP-R and activated the apically located TRPV4 (Flamion et al., 1990; Giepman et al., 

2009). Immunostaining needs to be done to verify this finding. Upon activation by the 

agonist, TRPV4 stimulated an increase in cation secretion and/or anion absorption when 

added to the basal side but not the apical side. This change in SCC was also accompanied 

by a reversible decrease in the TER. Pre and post treatment with a TRPV4 antagonist 

suggests that the change in SCC and TER are TRPV4 agonist specific. 

Previous studies performed on choroid plexus epithelial cells have shown the 

presence of Clir (Kibble et al., 1996; Kajita et al., 2000 Kibble et al., 1997). Cl- channels 

of VRAC category were also identified in CPE cells but the molecular identities of these 

channels are not known (Kibble et al., 1996; Duran et al., 2010; Kibble et al., 1997). In 

our current study, we have identified two Ca2+ (TMEM16A and CFTR) and one cAMP 

(CFTR) sensitive chloride channels. The Ca2+ sensitive TMEM16A and CFTR channels 

are thought be located on the basal surface whereas the cAMP sensitive CFTR channel 

might be located on the apical membrane. Immunostaining is required to verify this 

finding. CFTR is not known to be directly activated by calcium, however it is possible 

that it was activated by calcium dependent adenylyl cyclase catalyzed cAMP. Isoforms 3, 

5 and 8 of adenylyl cyclase are activated by calcium (Halls et al., 1988). It was reported 

before that the CFTR mRNA was not detected in rat CP which contradicts with our 

current finding that CFTR channel is present in the PCP-R. This could be due to non-

specific inhibition by the CFTR Inhibitor II GlyH-101 which needs to be verified by 

performing electrophysiology experiments using CFTR knockout PCP-R cells and also 

by performing immunostaining targeting CFTR. 
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Our current study pointed towards the involvement of a barium sensitive, cAMP 

activated potassium channels in the basolateral side of the PCP-R. It’s worth noting that 

none of these experiments using K+ channel blockers was accompanied by a change in 

TER. Data from our experiments also suggests the localization of SK1 and/or SK4/IK 

channel in the apical membrane of PCP-R. There was no reversal of TRPV4 agonist 

mediated ion flux by apamin, a differential blocker of SK1, SK2 and SK3 channels 

(Adelman et al., 2012). Cloned SK1 channel is insensitive to 100nM of apamin (Bond et 

al., 1999). Addition of fluoxetine, an inhibitor of SK1, SK2 and SK3 channels completely 

reversed the change in SCC mediated by TRPV4 activation when added on either side of 

the membrane (Faber et al., 2007; Kohler et al., 1996; Stackman et al., 2002). This 

suggests a possible localization of SK1 and/or SK4/IK channel in the apical side of the 

membrane. TRPV4 mediated TER decrease was slightly reversed by fluoxetine. In order 

to identify SK4 or IK channel, experiments using specific inhibitors need to be performed 

along with immunostaining. Iberiotoxin, a big potassium (BK) channel inhibitor did not 

reverse the ion flux caused by TRPV4 agonist or forskolin suggesting an absence of 

calcium or cAMP dependent BK channel (data not shown). Absence of BK channel needs 

to be verified using Paxilline, another BK channel inhibitor (Zhou et al., 2014). 

Our current study identified a possible localization of NKCC1 on the apical 

membrane of the PCP-R which is consistent with previous reports (Wu et al., 1998; 

Gagnon et al., 2012; Damkier et al., 2012). We also observed that Cl- entering the cell via 

NKCC1 might leak out through CFTR and TMEM16A channels located on the basal 

membrane whereas K+ might leak out through SK1 and/or SK4/IK channels located on 

the apical membrane. It was proposed before by Wu et al. that Cl- entering the cell 
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through NKCC1 is secreted into the CSF via an apical chloride channel and K+ entering 

the cell through NKCC1 is reabsorbed in to the blood side via a postulated, basally 

located potassium channel or co-transporter in isolated, polarized rat CP epithelial cells. 

These findings are not supported by our current study as we observed secretion of K+ and 

reabsorption of Cl-. A more recent study conducted by Gagnon et al. showed Cl-

 reabsorption on the basolateral side via KCC in choroid plexus epithelial cells which is 

partially consistent with our study as we also identified Cl- reabsorption but via CFTR 

and TMEM16A channels.  The group also reported K+ reabsorption via KCC and 

potassium channel on the basal membrane which is inconsistent with our current study. 

Other cotransporters and exchangers such as KCC, NBCe2, NCC3 and NHE1 need to be 

identified by using specific inhibitors such as DIOA, DIDS, Furosemide respectively 

(Damkier et al., 2013). Previous studies showed that NKCC1 is constitutively active 

under physiological conditions (Wu et al., 1998; Crum et al., 2012). Our current study 

might agree with this notion as we noticed a statistically non-significant decrease from 

the basal current when PCP-R epithelia was treated with bumetanide on the apical side 

before forskolin treatment. 

Acetazolamide inhibits carbonic anhydrases activity and reduces CSF secretion in 

rats and rabbits. Children and adults are administered with acetazolamide to treat 

hydrocephalus. So it was intriguing to find out if TRPV4 mediated ion influx can be 

inhibited by acetazolamide which will indicate a possible activation of carbonic 

anhydrase by TRPV4 activity in PCP-R. Our data suggests no modulation of carbonic 

anhydrase by TRPV4 activation. Forskolin mediated current was not found to be effected 

by acetazolamide (data not shown). 
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CHAPTER 5: FUTURE DIRECTIONS 

 

Our current data warrants a fair amount of future experiments in order to hone on 

the mechanism and function of TRPV4 in CSF production. Recent electrophysiological 

experiments on renal cells in our lab suggest the involvement of serum glucocorticoid-

induced protein kinase-1 (SGK1) in TRPV4 regulation.  SGK1 has been shown before to 

be important in activating certain sodium, potassium and chloride channels (Webster et 

al., 1993). It was also shown that TRPV4 comprises a phosphorylation site on the Ser 824 

and is an SGK1 substrate. Ser 824 has been shown to control membrane localization and 

protein interaction between TRPV4 and calmodulin. This suggests that phosphorylation 

on TRPV4’s Ser 824 can regulate its functions (Lee et al., 2010). TRPV4 regulation by 

SGK1 in the choroid plexus is yet to be explored.  

Our current PCP-R culture and electrophysiology experiments were done using 

standard cell culture media which is different in terms of ion concentration and pH 

compared to plasma and CSF (Ding et al., 2016; Davson et al., 1996). Therefore it would 

be interesting to repeat the experiments using artificial CSF on the apical side and 

artificial plasma on the basolateral side. These experiments will provide more 

physiologically relevant data. Repeating the electrophysiology experiments using a 

human CPE cell line (Schwerk et al., 2012) would be interesting and our laboratory has 

recently obtained such a line. 
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Figure 1.1: Effect of TRPV4 modulators on vertical size and head dimension in the Wpk rat model. (A) Heads of 17 day old wild 
type animals (TMEM67+/+) and homozygous affected animals (TMEM67-/-). (B) Bar graph of vertical head dimension of animals 
treated with DMSO control, agonist (GSK1016797, 0.003mg/kg body weight) and antagonist (HC067047, 0.03mg/kg) are all 
affected animals while normal indicates the normal littermates from day 8 to 17. Antagonist treatment limited cranial enlargement 
(Mean ± SEM, * = <0.01 difference from DMSO control, **= <0.001 difference from TRPV4 agonist).  (C) Histological section 
of H&E stained brains from PD17 rats. The light area (yellow arrows) indicates the fluid that forms the normal ventricles (i) as 
compared to the fluid in a PD17 hydrocephalic Wpk/Wpk animal (ii). (iii) shows decreased ventricle size due to the antagonist 
treatment. 



 

36 

 

Figure 3.1: Effect of TRPV4 agonists on confluent cultures of PCP-R. PCP-R cells were grown on permeable Transwell 
membranes for 10 to 12 days to reach confluence, excised, mounted in an Ussing chamber, and allowed to develop a stable basal 
short-circuit current (SCC). SCC is a measure of net transepithelial ion transport. (A) SCC plots. After stabilization, 
GSK1016790A (5nM) was added to the apical or basal bathing media (time, t= 0) The symbols denote the means of 6 or 63 
experiments ± SE. (B) TER plots: 2mV pulses were induced every 200 seconds and the current displacement during the pulse was 
used to calculate the transepithelial resistance via Ohm’s law. After stabilization, GSK1016790A (5nM) was added to the apical or 
basal bathing media (time, t= 0). The symbols denote the means of 6 or 63 experiments ± SE. 
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Figure 3.2: GSK1016790A mediated ion flux and TER decline is TRPV4 specific. PCP-R cells were grown on permeable 
Transwell membranes for 10 to 12 days to reach confluence, excised, mounted in an Ussing chamber, and allowed to develop a 
stable basal short-circuit current (SCC). SCC is a measure of net transepithelial ion transport. (A) SCC plots: After stabilization, 
HC067047 (100nM) or GSK1016790A (5 nM) were added either to the apical or basal bathing media (time, t = 0 or 10). The 
symbols denote the means of 6 experiments ± SE. Blue line represents the control experiment where only GSK1016790A (5nM) 
was added to the basal bathing media (time, t= 0). The symbols denote the means of 6 experiments ± SE. (*) denotes statistically 
significant SCC change compared to the control experiments (p ≤ 0.05; Student’s t-test). (B) TER plots: 2mV pulses were induced 
every 200 seconds and the current displacement during the pulse was used to calculate the transepithelial resistance via Ohm’s 
law. After stabilization, HC067047 (100nM) or GSK1016790A (5 nM) were added either to the apical or basal bathing media 
(time, t = 0 or 10). The symbols denote the means of 6 experiments ± SE. Blue line represents the control experiment where only 
GSK1016790A (5nM) was added to the basal bathing media (time, t= 0). The symbols denote the means of 6 experiments ± SE. 
(*) denotes statistically significant TER change compared to the control experiments (p ≤ 0.05; Student’s t-test). 
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Figure 3.3 
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Figure 3.3: TRPV4 agonist dose response. PCP-R cells were grown on permeable Transwell membranes for 10 to 12 days to reach 
confluence, excised, mounted in an Ussing chamber, and allowed to develop a stable basal short-circuit current (SCC). SCC is a 
measure of net transepithelial ion transport. (A) SCC plots: After stabilization, 1nM, 1.8nM, 3.3nM, 5.6nM or 10nM 
GSK1016790A (agonist) was added to the basal bathing media (time, t = 0) and HC067047 (antagonist) (100 nM) was added to 
the basal bathing media (time, t=10). The symbols denote the means of 3 or 6 experiments ± SE. 1nM plot was used as the control. 
(*) denotes statistically significant SCC change compared to the control experiments (p ≤ 0.05; Student’s t-test). (B) SCC plots: 
After stabilization, 1nM, 1.8nM, 3.3nM, 5.6nM or 10nM GSK1016790A (agonist) was added to the apical bathing media (time, t 
= 0) and HC067047 (antagonist) (100 nM) was added to the apical bathing media (time, t=10). The symbols denote the means of 3 
or 6 experiments ± SE. 1nM plot was used as the control. 2mV pulses were induced every 200 seconds and the current 
displacement during the pulse was used to calculate the transepithelial resistance via Ohm’s law. (C) TER plots: After 
stabilization, 1nM, 1.8nM, 3.3nM, 5.6nM or 10nM GSK1016790A (agonist) was added to the basal bathing media (time, t = 0) 
and HC067047 (antagonist) (100 nM) was added to the basal bathing media (time, t=600). The symbols denote the means of 3 or 6 
experiments ± SE. 1nM plot was used as a control. (*) denotes statistically significant TER change compared to the control 
experiments (p ≤ 0.05; Student’s t-test). (D) TER plots: After stabilization, 1nM, 1.8nM, 3.3nM, 5.6nM or 10nM GSK1016790A 
(agonist) was added to the apical bathing media (time, t = 0) and HC067047 (antagonist) (100 nM) was added to the apical bathing 
media (time, t=600). The symbols denote the means of 3 or 6 experiments ± SE.  
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Figure 3.4: TRPV4 agonist dose response curve. PCP-R cells were grown on permeable Transwell membranes for 10 to 12 days to 
reach confluence, excised, mounted in an Ussing chamber, and allowed to develop a stable basal short-circuit current (SCC). SCC 
is a measure of net transepithelial ion transport. n (1nM) = 3. n (1.8nM) = 3. n (3.3nM) = 6. n (5.6nM) = 6. 1nM plot was used as 
the control. (*) denotes statistically significant SCC change compared to the control experiments (p ≤ 0.05; Student’s t-test). 
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Figure 3.5 
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Figure 3.5: TRPV4 mediated ion flux activates CFTR in the basolateral membrane and is accompanied by a decrease in TER. 
PCP-R cells were grown on permeable Transwell membranes for 10 to 12 days to reach confluence, excised, mounted in an Ussing 
chamber, and allowed to develop a stable basal short-circuit current (SCC). SCC is a measure of net transepithelial ion transport. 
(A) SCC plots: After stabilization, CFTR inhibitor II, GlyH-101 (50nM) was added either to the apical or basal bathing media 
(time, t= 0) and GSK1016790A (10nM) was added to the basal bathing media (time, t= 12). The symbols denote the means of 5 or 
6 experiments ± SE. Blue line represents the control experiment where only GSK1016790A (10nM) was added to the basal 
bathing media (time, t= 12). The symbols denote the means of 7 experiments ± SE. (B) SCC plots: After stabilization, 
GSK1016790A (10nM) was added to the basal bathing media (time, t= 0) and CFTR inhibitor II, GlyH-101 (50nM) was added 
either to the apical or basal bathing media (time, t= 12). The symbols denote the means of 6 experiments ± SE. Blue line represents 
the control experiment where only GSK1016790A (10nM) was added to the basal bathing media (time, t= 0). The symbols denote 
the means of 7 experiments ± SE. (*) denotes statistically significant SCC change compared to the control experiments (p ≤ 0.05; 
Student’s t-test). 2mV pulses were induced every 200 seconds and the current displacement during the pulse was used to calculate 
the transepithelial resistance via Ohm’s law. (C) TER plots: After stabilization, CFTR inhibitor II, GlyH-101 (50nM) was added 
either to the apical or basal bathing media (time, t= 0) and GSK1016790A (10nM) was added to the basal bathing media (time, t= 
720). The symbols denote the means of 5 or 6 experiments ± SE. Blue line represents the control experiment where only 
GSK1016790A (10nM) was added to the basal bathing media (time, t= 720). The symbols denote the means of 7 experiments ± 
SE. (D) TER plots: After stabilization, GSK1016790A (10nM) was added to the basal bathing media (time, t= 0) and CFTR 
inhibitor II, GlyH-101 (50nM) was added either to the apical or basal bathing media (time, t= 720). The symbols denote the means 
of 6 experiments ± SE. Blue line represents the control experiment where only GSK1016790A (10nM) was added to the basal 
bathing media (time, t= 0). The symbols denote the means of 7 experiments ± SE. 
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Figure 3.6 
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Figure 3.6: TRPV4 mediated ion flux activates TMEM16A in the basal membrane and is accompanied by a reversal in TER 
change. PCP-R cells were grown on permeable Transwell membranes for 10 to 12 days to reach confluence, excised, mounted in 
an Ussing chamber, and allowed to develop a stable basal short-circuit current (SCC). SCC is a measure of net transepithelial ion 
transport. (A) SCC plots: After stabilization, T16Ainh – A01 (10µM) was added either to the basal or apical bathing media (time, 
t= 0) and GSK1016790A (10nM) was added to the basal bathing media (time, t= 10). The symbols denote the means of 6 
experiments ± SE. Blue line represents the control experiment where only GSK1016790A (10nM) was added to the basal bathing 
media (time, t= 10). The symbols denote the means of 7 experiments ± SE. (*) denotes statistically significant SCC change 
compared to the control experiments (p ≤ 0.05; Student’s t-test). (B) SCC plots: After stabilization, GSK1016790A (10nM) was 
added to the basal bathing media (time, t= 0) and T16Ainh – A01 (10µM) was added either to the apical or basal bathing media 
(time, t= 12). The symbols denote the means of 6 experiments ± SE. Blue line represents the control experiment where only 
GSK1016790A (10nM) was added to the basal bathing media (time, t= 0). The symbols denote the means of 7 experiments ± SE. 
(*) denotes statistically significant SCC change compared to the control experiments (p ≤ 0.05; Student’s t-test). 2mV pulses were 
induced every 200 seconds and the current displacement during the pulse was used to calculate the transepithelial resistance via 
Ohm’s law. (C) TER plots: After stabilization, T16Ainh – A01 (10µM) was added either to the apical or basal bathing media 
(time, t= 0) and GSK1016790A (10nM) was added to the basal bathing media (time, t= 600). The symbols denote the means of 6 
experiments ± SE. Blue line represents the control experiment where only GSK1016790A (10nM) was added to the basal bathing 
media (time, t= 600). The symbols denote the means of 7 experiments ± SE. (D) TER plots: After stabilization, GSK1016790A 
(10nM) was added to the basal bathing media (time, t= 0) and T16Ainh – A01 (10µM) was added either to the apical or basal 
bathing media (time, t= 720). The symbols denote the means of 6 experiments ± SE. Blue line represents the control experiment 
where only GSK1016790A (10nM) was added to the basal bathing media (time, t= 0). The symbols denote the means of 7 
experiments ± SE. (*) denotes statistically significant TER change compared to the control experiments (p ≤ 0.05; Student’s t-
test). 
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Figure 3.7 
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Figure 3.7: NKCC1 is apical in PCP-R. PCP-R cells were grown on permeable Transwell membranes for 10 to 12 days to reach 
confluence, excised, mounted in an Ussing chamber, and allowed to develop a stable basal short-circuit current (SCC). SCC is a 
measure of net transepithelial ion transport. (A) SCC plots: After stabilization, bumetanide (100µM) was added either to the apical 
or basal bathing media (time, t= 0) and GSK1016790A (5nM) was added to the basal bathing media (time, t= 10). The symbols 
denote the means of 5 or  6 experiments ± SE. Blue line represents the control experiment where only GSK1016790A (5nM) was 
added to the basal bathing media (time, t= 10). The symbols denote the means of 6 experiments ± SE. (B) SCC plots: After 
stabilization, GSK1016790A (5nM) was added to the basal bathing media (time, t= 0) and bumetanide (100µM) was added either 
to the apical or basal bathing media (time, t= 10). The symbols denote the means of 6 experiments ± SE. Blue line represents the 
control experiment where only GSK1016790A (5nM) was added to the basal bathing media (time, t= 0). The symbols denote the 
means of 6 experiments ± SE. (*) denotes statistically significant SCC change compared to the control experiments (p ≤ 0.05; 
Student’s t-test). 2mV pulses were induced every 200 seconds and the current displacement during the pulse was used to calculate 
the transepithelial resistance via Ohm’s law. (C) TER plots: After stabilization, bumetanide (100µM) was added either to the basal 
bathing media (time, t= 0) and GSK1016790A (5nM) was added to the basal bathing media (time, t= 600). The symbols denote the 
means of 5 or 6 experiments ± SE. Blue line represents the control experiment where only GSK1016790A (5nM) was added to the 
basal bathing media (time, t= 600). The symbols denote the means of 6 experiments ± SE. (D) TER plots: After stabilization, 
GSK1016790A (5nM) was added to the basal bathing media (time, t= 0) and bumetanide (100µM) was added either to the apical 
or basal bathing media (time, t= 600). The symbols denote the means of 6 experiments ± SE. Blue line represents the control 
experiment where only GSK1016790A (5nM) was added to the basal bathing media (time, t= 0). The symbols denote the means of 
6 experiments ± SE. 
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Figure 3.8 
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Figure 3.8: TRPV4 mediated ion flux and TER decline is not effected by acetazolamide. PCP-R cells were grown on permeable 
Transwell membranes for 10 to 12 days to reach confluence, excised, mounted in an Ussing chamber, and allowed to develop a 
stable basal short-circuit current (SCC). SCC is a measure of net transepithelial ion transport. (A) SCC plots: After stabilization, 
acetazolamide (100µM) was added either to the apical or basal bathing media (time, t= 0) and GSK1016790A (5nM) was added to 
the basal bathing media (time, t= 10). The symbols denote the means of 6 experiments ± SE. Blue line represents the control 
experiment where only GSK1016790A (5nM) was added to the basal bathing media (time, t= 10). The symbols denote the means 
of 6 experiments ± SE. (B) SCC plots: After stabilization, GSK1016790A (5nM) was added to the basal bathing media (time, t= 0) 
and acetazolamide (100µM) was added either to the apical or basal bathing media (time, t= 10). The symbols denote the means of 
6 experiments ± SE. Blue line represents the control experiment where only GSK1016790A (5nM) was added to the basal bathing 
media (time, t= 0). The symbols denote the means of 6 experiments ± SE. 2mV pulses were induced every 200 seconds and the 
current displacement during the pulse was used to calculate the transepithelial resistance via Ohm’s law. (C) TER plots: After 
stabilization, acetazolamide (100µM) was added either to the apical or basal bathing media (time, t= 0) and GSK1016790A (5nM) 
was added to the basal bathing media (time, t= 600). The symbols denote the means of 6 experiments ± SE. Blue line represents 
the control experiment where only GSK1016790A (5nM) was added to the basal bathing media (time, t= 600). The symbols 
denote the means of 6 experiments ± SE. (D) TER plots: After stabilization, GSK1016790A (5nM) was added to the basal bathing 
media (time, t= 0) and acetazolamide (100µM) was added either to the apical or basal bathing media (time, t= 600). The symbols 
denote the means of 6 experiments ± SE. Blue line represents the control experiment where only GSK1016790A (5nM) was added 
to the basal bathing media (time, t= 0). The symbols denote the means of 6 experiments ± SE. 
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Figure 3.9 
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Figure 3.9: TRPV4 mediated ion flux and TER decline is not effected by apamin. PCP-R cells were grown on permeable 
Transwell membranes for 10 to 12 days to reach confluence, excised, mounted in an Ussing chamber, and allowed to develop a 
stable basal short-circuit current (SCC). SCC is a measure of net transepithelial ion transport. (A) SCC plots: After stabilization, 
apamin (100nM) was added either to the apical or basal bathing media (time, t= 0) and GSK1016790A (5nM) was added to the 
basal bathing media (time, t= 10). The symbols denote the means of 6 experiments ± SE. Blue line represents the control 
experiment where only GSK1016790A (5nM) was added to the basal bathing media (time, t= 10). The symbols denote the means 
of 6 experiments ± SE. (B) SCC plots: After stabilization, GSK1016790A (5nM) was added to the basal bathing media (time, t= 0) 
and apamin (100nM) was added either to the apical or basal bathing media (time, t= 10). The symbols denote the means of 5 or 6 
experiments ± SE. Blue line represents the control experiment where only GSK1016790A (5nM) was added to the basal bathing 
media (time, t= 0). The symbols denote the means of 6 experiments ± SE. 2mV pulses were induced every 200 seconds and the 
current displacement during the pulse was used to calculate the transepithelial resistance via Ohm’s law. (C) TER plots: After 
stabilization, apamin (100nM) was added either to the apical or basal bathing media (time, t= 0) and GSK1016790A (5nM) was 
added to the basal bathing media (time, t= 600). The symbols denote the means of 6 experiments ± SE. Blue line represents the 
control experiment where only GSK1016790A (5nM) was added to the basal bathing media (time, t= 600). The symbols denote 
the means of 6 experiments ± SE. (D) TER plots: After stabilization, GSK1016790A (5nM) was added to the basal bathing media 
(time, t= 0) and apamin (100nM) was added either to the apical or basal bathing media (time, t= 600). The symbols denote the 
means of 5 or 6 experiments ± SE. Blue line represents the control experiment where only GSK1016790A (5nM) was added to the 
basal bathing media (time, t= 0). The symbols denote the means of 6 experiments ± SE. 
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Figure 3.10 
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Figure 3.10: TRPV4 mediated ion flux is fully reversed and TER decline is partially reversed by fluoxetine. PCP-R cells were 
grown on permeable Transwell membranes for 10 to 12 days to reach confluence, excised, mounted in an Ussing chamber, and 
allowed to develop a stable basal short-circuit current (SCC). SCC is a measure of net transepithelial ion transport. (A) SCC plots: 
After stabilization, fluoxetine (100µM) was added either to the apical or basal bathing media (time, t= 0) and GSK1016790A 
(5nM) was added to the basal bathing media (time, t= 10). The symbols denote the means of 6 experiments ± SE. Blue line 
represents the control experiment where only GSK1016790A (5nM) was added to the basal bathing media (time, t= 10). The 
symbols denote the means of 6 experiments ± SE. (*) denotes statistically significant SCC change compared to the control 
experiments (p ≤ 0.05; Student’s t-test). (B) SCC plots: After stabilization, GSK1016790A (5nM) was added to the basal bathing 
media (time, t= 0) and fluoxetine (100µM) was added either to the apical or basal bathing media (time, t= 10). The symbols denote 
the means of 6 experiments ± SE. Blue line represents the control experiment where only GSK1016790A (5nM) was added to the 
basal bathing media (time, t= 0). The symbols denote the means of 6 experiments ± SE. (*) denotes statistically significant SCC 
change compared to the control experiments (p ≤ 0.05; Student’s t-test). 2mV pulses were induced every 200 seconds and the 
current displacement during the pulse was used to calculate the transepithelial resistance via Ohm’s law. (C) TER plots: After 
stabilization, fluoxetine (100µM) was added either to the apical or basal bathing media (time, t= 0) and GSK1016790A (5nM) was 
added to the basal bathing media (time, t= 600). The symbols denote the means of 6 experiments ± SE. Blue line represents the 
control experiment where only GSK1016790A (5nM) was added to the basal bathing media (time, t= 600). The symbols denote 
the means of 6 experiments ± SE. (*) denotes statistically significant TER change compared to the control experiments (p ≤ 0.05; 
Student’s t-test). (D) TER plots: After stabilization, GSK1016790A (5nM) was added to the basal bathing media (time, t= 0) and 
fluoxetine (100µM) was added either to the apical or basal bathing media (time, t= 600). The symbols denote the means of 6 
experiments ± SE. Blue line represents the control experiment where only GSK1016790A (5nM) was added to the basal bathing 
media (time, t= 0). The symbols denote the means of 6 experiments ± SE. (*) denotes statistically significant TER change 
compared to the control experiments (p ≤ 0.05; Student’s t-test). 
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Figure 3.11 
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Figure 3.11: CFTR is activated by forskolin induced cAMP. PCP-R cells were grown on permeable Transwell membranes for 10 
to 12 days to reach confluence, excised, mounted in an Ussing chamber, and allowed to develop a stable basal short-circuit current 
(SCC). SCC is a measure of net transepithelial ion transport. (A) SCC plots: After stabilization, CFTR inhibitor II, GlyH-101 
(50nM) was added either to the apical or basal bathing media (time, t= 0) and forskolin (5µM) was added either to the apical or 
basal bathing media (time, t= 10). The symbols denote the means of 6 experiments ± SE. Blue line represents the control 
experiment where only forskolin (5µM) was added either to the apical or basal bathing media (time, t= 10). The symbols denote 
the means of 6 experiments ± SE. (*) denotes statistically significant SCC change compared to the control experiments (p ≤ 0.05; 
Student’s t-test). (B) SCC plots: After stabilization, forskolin (5µM) was added either to the apical or basal bathing media (time, t= 
0) and CFTR inhibitor II, GlyH-101 (50nM) was added either to the apical or basal bathing media (time, t= 10). The symbols 
denote the means of 6 experiments ± SE. Blue line represents the control experiment where only forskolin (5µM) was added either 
to the apical or basal bathing media (time, t= 0). The symbols denote the means of 6 experiments ± SE. (*) denotes statistically 
significant SCC change compared to the control experiments (p ≤ 0.05; Student’s t-test). 2mV pulses were induced every 200 
seconds and the current displacement during the pulse was used to calculate the transepithelial resistance via Ohm’s law. (C) TER 
plots: After stabilization, CFTR inhibitor II, GlyH-101 (50nM) was added either to the apical or basal bathing media (time, t= 0) 
and forskolin (5µM) was added either to the apical or basal bathing media (time, t= 600). The symbols denote the means of 6 
experiments ± SE. Blue line represents the control experiment where only forskolin (5µM) was added either to the apical or basal 
bathing media (time, t= 600). The symbols denote the means of 6 experiments ± SE. (D) TER plots: After stabilization, forskolin 
(5µM) was added either to the apical or basal bathing media (time, t= 0) and CFTR inhibitor II, GlyH-101 (50nM) was added to 
the basal bathing media (time, t= 600). The symbols denote the means of 6 experiments ± SE. Blue line represents the control 
experiment where only forskolin (5µM) was added either to the apical or basal bathing media (time, t= 0). The symbols denote the 
means of 6 experiments ± SE. 
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Figure 3.12 
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Figure 3.12: TMEM16A is not activated by forskolin and does not affect the TER. PCP-R cells were grown on permeable 
Transwell membranes for 10 to 12 days to reach confluence, excised, mounted in an Ussing chamber, and allowed to develop a 
stable basal short-circuit current (SCC). SCC is a measure of net transepithelial ion transport. (A) SCC plots: After stabilization, 
T16Ainh – A01 (10µM) was added either to the apical or basal bathing media (time, t= 0) and forskolin (5µM) was added either to 
the apical or basal bathing media (time, t= 10). The symbols denote the means of 6 experiments ± SE. Blue line represents the 
control experiment where only forskolin (5µM) was added either to the apical or basal bathing media (time, t= 10). The symbols 
denote the means of 6 experiments ± SE. (B) SCC plots: After stabilization, forskolin (5µM) was added either to the apical or 
basal bathing media (time, t= 0) and T16Ainh – A01 (10µM) was added either to the apical or basal bathing media (time, t= 10). 
The symbols denote the means of 6 experiments ± SE. Blue line represents the control experiment where only forskolin (5µM) 
was added either to the apical or basal bathing media (time, t= 0). The symbols denote the means of 6 experiments ± SE. 2mV 
pulses were induced every 200 seconds and the current displacement during the pulse was used to calculate the transepithelial 
resistance via Ohm’s law. (C) TER plots: After stabilization, T16Ainh – A01 (10µM) was added either to the apical or basal 
bathing media (time, t= 0) and forskolin (5µM) was added either to the apical or basal bathing media (time, t= 600). The symbols 
denote the means of 6 experiments ± SE. Blue line represents the control experiment where only forskolin (5µM) was added either 
to the apical or basal bathing media (time, t= 600). The symbols denote the means of 6 experiments ± SE. (D) TER plots: After 
stabilization, forskolin (5µM) was added either to the apical or basal bathing media (time, t= 0) and T16Ainh – A01 (10µM) was 
added either to the apical or basal bathing media (time, t= 600). The symbols denote the means of 6 experiments ± SE. Blue line 
represents the control experiment where only forskolin (5µM) was added either to the apical or basal bathing media (time, t= 0). 
The symbols denote the means of 6 experiments ± SE. 
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Figure 3.13 
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Figure 3.13: NKCC1 is apical in PCP-R. PCP-R cells were grown on permeable Transwell membranes for 10 to 12 days to reach 
confluence, excised, mounted in an Ussing chamber, and allowed to develop a stable basal short-circuit current (SCC). SCC is a 
measure of net transepithelial ion transport. (A) SCC plots: After stabilization, bumetanide (100µM) was added either to the apical 
or basal bathing media (time, t= 0) and forskolin (5µM) was added either to the apical or basal bathing media (time, t= 10). The 
symbols denote the means of 6 or 7 experiments ± SE. Blue line represents the control experiment where only forskolin (5µM) 
was added either to the apical or basal bathing media (time, t= 10). The symbols denote the means of 6 experiments ± SE. (B) SCC 
plots: After stabilization, forskolin (5µM) was added either to the apical or basal bathing media (time, t= 0) and bumetanide 
(100µM) was added either to the apical or basal bathing media (time, t= 10). The symbols denote the means of 6 or 7 experiments 
± SE. Blue line represents the control experiment where only forskolin (5µM) was added either to the apical or basal bathing 
media (time, t= 0). The symbols denote the means of 6 experiments ± SE. 2mV pulses were induced every 200 seconds and the 
current displacement during the pulse was used to calculate the transepithelial resistance via Ohm’s law. (C) TER plots: After 
stabilization, bumetanide (100µM) was added either to the apical or basal bathing media (time, t= 0) and forskolin (5µM) was 
added either to the apical or basal bathing media (time, t= 600). The symbols denote the means of 6 or 7 experiments ± SE. Blue 
line represents the control experiment where only forskolin (5µM) was added either to the apical or basal bathing media (time, t= 
600). The symbols denote the means of 6 experiments ± SE. (D) TER plots: After stabilization, forskolin (5µM) was added either 
to the apical or basal bathing media (time, t= 0) and bumetanide (100µM) was added either to the apical or basal bathing media 
(time, t= 600). The symbols denote the means of 6 or 7 experiments ± SE. Blue line represents the control experiment where only 
forskolin (5µM) was added either to the apical or basal bathing media (time, t= 0). The symbols denote the means of 6 
experiments ± SE. 
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Figure 3.14 
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Figure 3.14: Forskolin mediated ion flux is reversed by BaCl2 when added on the basolateral side of the membrane. TER is not 
effected. PCP-R cells were grown on permeable Transwell membranes for 10 to 12 days to reach confluence, excised, mounted in 
an Ussing chamber, and allowed to develop a stable basal short-circuit current (SCC). SCC is a measure of net transepithelial ion 
transport. (A) SCC plots: After stabilization, BaCl2 (1mM) was added either to the apical or basal bathing media (time, t= 0) and 
forskolin (5µM) was added either to the apical or basal bathing media (time, t= 10). The symbols denote the means of 6 
experiments ± SE. Blue line represents the control experiment where only forskolin (5µM) was added either to the apical or basal 
bathing media (time, t= 10). The symbols denote the means of 6 experiments ± SE. (*) denotes statistically significant SCC change 
compared to the control experiments (p ≤ 0.05; Student’s t-test). (B) SCC plots: After stabilization, forskolin (5µM) was added 
either to the apical or basal bathing media (time, t= 0) and BaCl2 (1mM) was added either to the apical or basal bathing media 
(time, t= 10). The symbols denote the means of 6 experiments ± SE. Blue line represents the control experiment where only 
forskolin (5µM) was added either to the apical or basal bathing media (time, t= 0). The symbols denote the means of 6 
experiments ± SE. (*) denotes statistically significant SCC change compared to the control experiments (p ≤ 0.05; Student’s t-
test). 2mV pulses were induced every 200 seconds and the current displacement during the pulse was used to calculate the 
transepithelial resistance via Ohm’s law. (C) TER plots: After stabilization, BaCl2 (1mM) was added either to the apical or basal 
bathing media (time, t= 0) and forskolin (5µM) was added either to the apical or basal bathing media (time, t= 600). The symbols 
denote the means of 6 experiments ± SE. Blue line represents the control experiment where only forskolin (5µM) was added either 
to the apical or basal bathing media (time, t= 600). The symbols denote the means of 6 experiments ± SE. (D) TER plots: After 
stabilization, forskolin (5µM) was added either to the apical or basal bathing media (time, t= 0) and BaCl2 (1mM) was added either 
to the apical or basal bathing media (time, t= 600). The symbols denote the means of 6 experiments ± SE. Blue line represents the 
control experiment where only forskolin (5µM) was added either to the apical or basal bathing media (time, t= 0). The symbols 
denote the means of 6 experiments ± SE. 
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Figure 4.1: Schematic representation of the ion transporters in choroid plexus. TRPV4 might be on the basal membrane. CFTR 
might be located in both side of the membrane, whereas TMEM16A is basal and SK1 and/or SK4 might be located in the apical 
membrane. NKCC1 might also be located in the apical membrane. cAMP activated potassium channels are located in the 
basolateral membrane. 


