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ABSTRACT 

Author: Chakravarty, Shubham. PhD 

Institution: Purdue University 

Degree Received: August 2017 

Title: Molecular Mechanisms of Cytotoxicity Regulation in Pseudomonas aeruginosa by 

the Magnesium Transporter MgtE 

Major Professor: Gregory Anderson 

 

The Gram-negative bacterium Pseudomonas aeruginosa causes numerous acute and 

chronic opportunistic infections in humans. One of its most formidable weapons is a type 

III secretion system (T3SS), a multi-protein molecular syringe that injects powerful toxins 

directly into host cells. The toxins lead to cell dysfunction and, ultimately, cell death. 

Identification of regulatory pathways that control T3SS gene expression may lead to the 

discovery of novel therapeutics to treat P. aeruginosa infections. In a previous study, it was 

found that expression of the magnesium transporter gene mgtE inhibits T3SS gene 

transcription. MgtE-dependent inhibition appeared to interfere with the synthesis or 

function of the master T3SS transcriptional activator ExsA, although the exact mechanism 

was unclear. In this work, we demonstrate that mgtE expression acts through the GacAS 

two-component system to activate transcription of the small regulatory RNAs RsmY and 

RsmZ. This event ultimately leads to inhibition of exsA translation. Moreover, our data 

reveal that MgtE acts solely through this pathway to regulate T3SS gene transcription. Our 

study reveals an important mechanism that may allow P. aeruginosa to fine-tune T3SS 

activity in response to certain environmental stimuli. 

 

In addition, a previous study has shown that the P. aeruginosa gene algR abrogates mgtE 

mediated regulation of cytotoxicity. AlgR has pleiotropic effects in P. aeruginosa, 
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including regulation of synthesis of the exopolysaccharide alginate. In the second part of 

my thesis, I show that algR and mgtE genetically crosstalk to inhibit ExsA driven T3SS 

gene transcription. This genetic interaction between algR and mgtE seems to be specifically 

directed towards regulation of T3SS gene expression rather than having an indiscriminate 

effect on multiple virulence attributes in P. aeruginosa. Additionally, we have further 

demonstrated that AlgR inhibits mgtE transcription. These studies suggest the presence of 

a T3SS inhibitor that is inhibited by both AlgR and MgtE. Future work will involve 

transcriptomic and proteomic analysis to identify such an inhibitor. 

 

Taken together, this study provides important insight into the molecular mechanisms of 

mgtE expression and function in P. aeruginosa. We have established that mgtE has 

pleiotropic effects on cytotoxicity in P. aeruginosa. Thus, given the role that cytotoxicity 

regulation plays in shaping P. aeruginosa pathogenesis and associated clinical outcomes, 

mgtE might be an interesting drug target, though extensive future studies are required to 

validate this proposition. Nevertheless, this research, provides clues for identification of 

novel therapeutic targets in P. aeruginosa. Hence this work, in the long run, serve to 

ameliorate the morbidity and mortality in patients infected with P. aeruginosa.  
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 INTRODUCTION 

This chapter in part, has been published in references (1) and (2). Required permissions 

have been obtained. 

 

Pseudomonas aeruginosa is a Gram-negative pathogen implicated in a multitude of acute 

and chronic infections (3). Like other members of the bacterial genus Pseudomonas, they 

are ubiquitous in soil and water ecosystems (4). Their genetic flexibility, versatility in 

optimizing the usage of a vast array of organic and inorganic compounds, and innate 

capability to survive under diverse, often trying, environmental conditions are the key 

factors behind their successful inhabitation of most environmental niches found on our 

planet. These characteristics also enable them to become notorious opportunistic pathogens. 

From the point of view of mankind, this genus is threatening indeed due to its inherent and 

acquired antibiotic resistance (5). It is not surprising therefore, that it has been increasingly 

implicated in nosocomial infections and deaths (5). This, and its involvement in the 

permanent lung infections in cystic fibrosis patients (described later), which severely 

increase morbidity and mortality, warrants the study of its virulence mechanisms and their 

regulation.  

 

1.1 Taxonomy 

P. aeruginosa is part of the bacterial family Pseudomonadaceae, which is also comprised 

of Azotobacter, Azomonas, Cellvibrio, and Azorhizophilus, among others. 

Pseudomonadaceae are commonly characterized as chemoorganotrophic, aerobic, and 

incapable of photosynthesis. These are also able to survive under a myriad of nutritional 
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environments (6). While the common methods of taxonomical organization of the 

Pseudomonas genus include cell morphology, pigment types, nutritional behaviors, and 

genetic organization (7), the widespread phenotypic characteristics mostly studied are 

carbon utilization patterns, antibiotic resistance, and antibiotic and amino acid synthesis 

(8).  Over 30 species exist in the genus Pseudomonas (7), and 13 species (and numerous 

strains thereof) are sequenced and annotated, P. aeruginosa amongst them. While the 

benefits of chemotaxonomic studies have been widely published (9), it is generally 

accepted that gene sequencing studies hold the greatest promise for solving Pseudomonas 

taxonomic issues (7).  

 

1.2 Cellular Characteristics 

P. aeruginosa is Gram-negative, catalase and oxidase positive. These microbes are slightly 

curved or linear rod-shaped cells, having a maximum length of approximately 4 μm. They 

are often motile via polar flagella, although lateral flagella are occasionally found, usually 

associated with swarming (6, 10). The flagellar number is decided by FleN, a putative 

ATP–GTP binding protein (6). Pili have been reported and are particularly studied for their 

role in pathogenesis in P. aeruginosa (11); nevertheless, other typical nonpathogenic 

Pseudomonas species like P. fluorescens have also been cited to possess pili (12). 

Intriguingly, low G + C content of pilin genes, in relation to the higher average 

chromosomal G + C, indicates horizontal acquisition of pilin genes by Pseudomonas 

species (13). Pseudomonas species produce a number of colored pigments. For instance, 

under limiting iron conditions, they produce iron chelator molecules that fluoresce under 

UV light (14). Other pigments are non-fluorescent and participate in other processes. P. 
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aeruginosa commonly produces the pigments pyocyanin, pyoveridin and pyorubin. 

Intracellularly, Pseudomonas species form inclusion bodies of various substances. For 

instance, under nitrogen-deficient conditions, Pseudomonas accumulates poly-β-

hydroxybutyrate (PHB) granules. When growing on gluconate or alkanes, they are found 

to assemble poly-hydroxyalkanoates. 

 

1.3 Physiology and Metabolism 

As mentioned, P. aeruginosa exhibits great metabolic plasticity (6), and extensive analysis 

has been performed to elucidate Pseudomonas metabolism. The TCA cycle has been 

reported in P. aeruginosa and in all other species of Pseudomonas. The Entner–Doudoroff 

glycolytic pathway often prevails over the Embden–Meyerhof pathway due to the lack of 

6-phosphofructokinase in many species. The Pentose Phosphate pathway, the glyoxylate 

shunt, and other important metabolic pathways are also widespread in this genus. 

Catabolite repression is also reported in Pseudomonas (15, 16), which allows 

Pseudomonas to utilize a medley of available carbon sources in a preferential and orderly 

manner. Organic and amino acids are preferred to glucose (17), followed by mannitol and 

histidine. Catabolite repression is facilitated by Crc and other signal transduction proteins 

(18, 19). Intriguingly, in some cases, like during repression of phenol metabolism in P. 

putida, cells mediate catabolite repression by discerning the redox state of respiratory 

chains. 

 

P. aeruginosa has a propensity to use amino acids as carbon and nitrogen sources. Using 

specific membrane permeases, amino acids available in the environment are translocated 
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into the cell cytoplasm (20). The ability of using amino acids as nutrients poses a great 

advantage to Pseudomonas because amino acids can be readily assimilated into the cell 

biomass with minimal processing. Alternatively, amino acids can be further metabolized 

to enter central metabolism. Among amino acids, arginine metabolism, especially, is key 

in Pseudomonas biochemistry, with a number of catabolic pathways identified for breaking 

down this substrate (21, 22). In P. aeruginosa, numerous arginine-responsive genes are 

controlled by the arginine regulatory protein ArgR (23).  

 

Though typically considered a strict aerobe, P. aeruginosa can perform fermentations 

and/or anaerobic respiration as a facultative anaerobe. Specifically, arginine (24) and 

pyruvate fermentation (24) pathways have been reported. Additionally, it utilizes 

nitrogenous substances, like nitrate, as terminal electron acceptors for anaerobic respiration 

(25).  

 

1.4 Habitat 

P. aeruginosa is ubiquitous in the environment, which is attributed to its metabolic 

versatility (26). It can be found in soil and water environments, as well as plant and animal 

tissues and many other niches. P. aeruginosa cells have even been found in hospital saline 

solutions (27), Antarctic cyanobacterial mats, and in water from plumbing fixtures (28). It 

grows over a temperature range of 4°C–42°C, and pH 4–8 is considered favorable. Though 

culture-dependent studies indicate that P. aeruginosa might be an important soil 

microorganism (29), culture-independent methods, such as metagenomics, suggest that 

Pseudomonas species actually might be relatively scarce in the soil environment. 
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Nevertheless, when growing in soil, Pseudomonas does so in conjunction with other 

bacteria, like Streptomyces, that supply monomeric carbon compounds (6). Pseudomonas 

is considered extremely suited to thriving in the rhizosphere (30), the territory impacted by 

vegetation. Importantly, Pseudomonas outcompetes other microorganisms to optimize 

their hold on the rhizosphere. While some species, like P. syringae, are epiphytic in nature 

and effectively colonize plant leaves and other plant surfaces to cause disease (31), and 

others benefit the plant by producing phytohormones (32), P. aeruginosa is a saprophyte 

or pathogen, found to be scavenging organic matter (33). 

1.5 Control of Gene Expression 

P. aeruginosa has one of the largest genomes among sequenced bacteria, containing over 

6 Mbp, and over 5,000 genes. Expression of these numerous genes is controlled by a 

complex network of transcriptional and post-transcriptional regulatory mechanisms (34). 

Several of these regulatory mechanisms are discussed later. 

 

1.5.1 Quorum Sensing 

P. aeruginosa uses three overlapping quorum sensing (QS) systems to regulate gene 

expression. QS facilitates coordinated gene expression in response to environmental 

signals and bacterial population density. Thus, QS is used to coordinate population-wide 

gene expression for pathogenesis, metabolism, and many other processes (35). Two of 

these systems, Las and Rhl, produce acylhomoserine lactone (AHL) autoinducers, while 

the third involves the quinolone molecule PQS (35). QS controls expression of type II 
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secretion (T2SS), elastase, pyocyanin, and pyoverdine in P. aeruginosa, among other 

factors (35). 

 

1.5.2 Two-Component Systems 

There are about 130 genes involved with two-component systems (TCSs) in P. aeruginosa 

(36). TCS are commonly found also in other species belonging to this genus. These 

regulatory systems mediate a variety of functions for the microbes (Table 1.1). 
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Table 1.1: Some Important Two-Component Systems in P. aeruginosa and Their 

Functions (1) 

 

Sensor Histidine Kinase Response Regulator Function 

PilS PilR Pilus gene expression 

NtrB NtrC Nitrogen metabolism 

PhoR PhoB Phosphate assimilation 

FleS FleR Motility and adhesion properties 

GacS GacA Pathogenesis 

PfeS PfeR Iron Uptake 

 

 

1.5.3 Sigma Factors 

A large number of sigma factors have been reported in Pseudomonas species, and these 

sigma factors are critical for optimal RNA polymerase-mediated gene transcription activity. 

Some important ones are described below. 

 

1.5.3.1 σ70 

This sigma factor is important for housekeeping gene transcription (37). The consensus 

sequence found in σ70-dependent promoters in P. aeruginosa has similarity to that found 

in Escherichia coli. 
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1.5.3.2 Extracytoplasmic Function Sigma Factors 

This subgroup of σ70 family factors is important for control of extracytoplasmic stress (38). 

An important extracytoplasmic function (ECF) sigma factor is AlgU, which regulates 

biosynthesis of the secreted polysaccharide alginate (39). It is also considered to regulate 

heat shock sigma factor σ32, and hence is implicated to be a global gene regulator (40). 

Another ECF sigma factor, PvdS, regulates pyoverdine siderophore biosynthesis. A 

sequence at the −35 position, known as the “IS box,” is critical for PvdS-dependent 

promoter functioning (41). Interestingly, orthologues of the P. aeruginosa PvdS have been 

reported in P. putida (strain KT2440) and P. fluorescens (42). 

 

1.5.3.3 σ54 

This sigma factor is encoded by rpoN and is distinct from the σ70 family. Some of the major 

functions of RpoN include regulation of glutamine synthetase and urease in P. aeruginosa, 

as well as some virulence factors. The number and function of σ54-dependent genes varies 

greatly among various Pseudomonas species (43, 44). For example, it is involved in the 

regulation of the phytotoxin coronatine in P. syringae. 

 

1.5.4 Other Transcriptional Regulators 

There are quite a few families of transcriptional regulators found in P. aeruginosa, 

including members of the AsnC, GntR, LacI, LuxR, and MarR families (1). For catabolism 

of aromatic hydrocarbons, various species use σ54-dependent regulator families such as 

XylR, TouR, and DmpR (45).  
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1.5.5 Post-Transcriptional Regulation 

Post-transcription regulation has also been reported in P. aeruginosa. For example, the 

TCS GacAS and the membrane bound proteins RetS and LadS regulate transcription of 

two small noncoding regulatory RNAs: RsmY and RsmZ (3) (Fig. 1.1). These RNAs 

control the intracellular concentration of free RsmA, a prominent member of the CsrA 

family of RNA-binding proteins. RsmA controls translation of certain transcripts by 

binding to conserved 5′-ANGGAN-3′ motifs present within stem-loop secondary structures 

of target mRNAs, such as those for type III secretion system (T3SS) genes. Such binding 

sites often overlap or are proximal to the ribosome binding site of these target mRNAs (46, 

47), and thus RsmA binding blocks ribosome recognition and translation initiation. RsmA 

also post-transcriptionally stimulates gene expression through effects on mRNA stability 

and secondary structure (48, 49). RsmY and RsmZ each have 4–6 RsmA binding sites. 

Thus, presence of these regulatory RNAs controls the free concentration of RsmA and its 

ability to bind target mRNAs (3). Post-transcriptional regulation is reported in other 

Pseudomonas species as well. As an example, in P. fluorescens, the hcnABC operon 

(involved in expression of hydrogen cyanide synthase expression) is under control of the 

small noncoding RNAs RsmA and RsmE (50, 51). 
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Figure 1.1. Post transcriptional regulation by small RNAs RsmY and RsmZ. 

The inner membrane (IM) associated sensor kinase GacS, phosphorylates and activates its 

cognate response regulator GacA, which directly binds to and activates transcription of 

regulatory small RNAs RsmY and RsmZ. Increased rsmY/rsmZ levels, in turn, sequester 

RsmA, preventing it from enhancing translation of exsA, thus inhibiting T3SS. RetS forms 

a heterodimer with GacS and prevents it from activating GacA, while LadS activates GacA 

phosphorylation by an unknown mechanism (see text for details).  

 

1.6 Pathogenesis of P. aeruginosa 

P. aeruginosa causes infection in a wide range of different host organisms, including 

humans. The importance of P. aeruginosa as an opportunistic pathogen stems from three 

major concerns: high incidence of infection, high morbidity and mortality, and 

recalcitrance to immune or antibiotic clearance (52). P. aeruginosa is the leading 

pathogen causing acute respiratory infections in mechanically ventilated and 

immunocompromised individuals and chronic infections in the airways of individuals 
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with cystic fibrosis (CF) (53, 54). P. aeruginosa has also been implicated in other 

opportunistic diseases such as those of the urinary tract, eye, skin, and burn wounds (55). 

 

1.6.1 General Pathogenicity Attributes 

During infection, P. aeruginosa is thought to be acquired from the environment, 

including, importantly, the hospital. Bacterial cell surface virulence factors, such as 

flagella, pili, and lipopolysaccharide (LPS), aid in initial adhesion to the host epithelial 

layer (52). This is often followed by injection of effector molecules (ExoU, ExoS, ExoT, 

ExoY) into the host epithelium through the T3SS. These effectors facilitate host cell 

cytoskeleton rearrangement, escape from host cell phagocytic engulfment, and 

cytotoxicity leading to tissue necrosis (55). Other secreted virulence factors involved in 

host cell cytotoxicity and tissue destruction include elastase, phospholipase C, and 

pigments such as pyoverdine and pyocyanin (56, 57). Production of this arsenal of 

virulence factors is tightly regulated by an intricate network of QS, TCSs, stress response 

systems, and other factors (55, 58, 59). 

 

1.6.1.1 Cell Surface Virulence Factors 

As the name suggests, these factors are localized on the cell surface. They mediate 

bacterial motility and the early stages of infection, such as initial adhesion to the host cell 

surface. 
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 Flagella 

In addition to providing motility for P. aeruginosa, flagella bind to asialoGM1, a normal 

constituent of the host epithelial cell membrane (60). They are also known to prompt an 

NFκB mediated inflammatory reaction, such as production of interleukin IL-8, by 

interacting with TLR2 and TLR5 (61). Because flagella are immunogenic, they often are 

downregulated during infection, especially in chronic infections like those in the CF 

airways (see below). Immunogenicity of flagellar proteins has been exploited by 

researchers to develop immunological products targeted towards them (62). 

 

 Pili  

Pili are also critical for P. aeruginosa virulence (63), particularly for adherence to the 

host cell surface by binding to asialoGM1 (64, 65). They are also involved in twitching 

motility, which is dependent upon retractile movement of the pili. This activity leads to 

spreading, rather than swimming, of the bacterial population on the host tissue surface. 

This kind of locomotion is especially prevalent in respiratory tract infections (66). 

Because of the importance of pili for virulence, immunological targeting of pili is a major 

area of research (67-69). 

 

 LPS  

LPS is crucial in P. aeruginosa pathogenesis (69). LPS assists P. aeruginosa in binding 

to asialoGM1 (65) and elicits pro-inflammatory cascades through interaction of lipid A 

with TLR4/CD14 (70). 
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1.6.1.2 Type III Secretion System 

T3SS is a complex molecular syringe that is used by P. aeruginosa to inject four effector 

toxins (ExoU, ExoS, ExoT, and ExoY) into the host cell cytosol. Intriguingly, it has been 

reported that mutants that lack effectors, but still express the T3SS structure are still 

virulent (71), indicating that the T3SS needle complex by itself might be important in P. 

aeruginosa pathogenesis. PcrV is an important structural protein making up the tip of the 

T3SS needle (72), and immunotherapeutics targeted at PcrV have achieved some success 

(73). 

 

 ExoU  

ExoU is the most potent of the P. aeruginosa T3SS effectors (71, 74) and it is the 

predominant cytotoxin injected by the T3SS (74, 75). It destroys host cell membranes 

through its phospholipase/lysophospholipase activities (76, 77). Anti-ExoU 

immunotherapy has been generally unsatisfactory (52), but some success has been 

achieved with phospholipase A2 inhibitors in vitro (78). As the mechanism of ExoU 

activity becomes clearer, newer therapeutic strategies will emerge. 

 

 ExoS  

The ExoS cytotoxin (71) disrupts the host cell cytoskeleton through two different 

activities (52). The C-terminus, which requires a 14–3–3 cofactor protein, contains ADP-

ribosyltransferase activity (74, 79) and the N-terminal domain acts as a Rho GTPase 

activating protein (GAP). ExoS provokes inflammatory responses through TLR2 and 

TLR4 (80). 
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 ExoT  

ExoT is regarded a minor effector (74). This toxin contains domains similar to ExoS, 

although the ADP-ribosyltransferase domain in ExoT affects a more restricted subset of 

host cellular proteins, including Crk (81). ExoT induces cytoskeletal rearrangements, 

leading to inhibition of P. aeruginosa internalization and stunted wound healing (82). 

Some studies have reported that ExoT production decreases ExoU-mediated cell 

cytotoxicity (71). 

 

 ExoY  

ExoY functions as an adenylate cyclase (55), and upon being injected into the host cell 

cytoplasm, increases intracellular cAMP levels (83). Increased host intracellular cAMP 

leads to increased tissue porosity, especially in lung infections (84). 

 

1.6.1.3 Other Secreted Virulence Elements 

P. aeruginosa secretes a number of other factors that contribute to disease progression. 

These factors, such as secreted pigments, enzymes, and proteases, destroy host tissues, 

increase tissue porosity, and induce host inflammatory reaction, among other functions 

(Table 1.2) (52).  
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Table 1.2: Secreted Virulence Factors in Pseudomonas aeruginosa and Their Functions 

(1) 

Factor Description/Function 

Pyocyanin Blue pigment; induces IL-8 expression and apoptosis of neutrophils; 

causes oxidative damage in 

host cells 

Pyoverdine Siderophore for iron chelation and uptake; virulence regulator 

controlling secretion of exotoxin A 

and itself 

Alkaline 

protease 

Cleaves fibrin in host tissue; prevalent in corneal infections and in 

lung disease 

Protease IV Important in keratitis caused by P. aeruginosa; also implicated in 

airway infections due to 

destruction of lung surfactant proteins A, B, and D 

Elastase Metalloproteinase secreted into the extracellular space; 

destroys tight junctions leading to porosity of airway epithelial 

tissue; induces inflammation by 

recruiting neutrophils and eliciting IL-8 response; also reported to 

disrupt lung surfactant proteins 

A and D 

Phospholipase 

C 

Secreted into the extracellular space; disrupts host cell membrane 

phospholipids, 

especially in acute lung disease; participates in surfactant 

destruction, inflammation induction, and 

inhibition of neutrophil oxidative burst 

Exotoxin A Functions as an ADP-ribosyltransferase that blocks elongation factor 

2, leading to impaired protein synthesis and host cell death 
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1.6.1.4 Biofilm formation 

By definition, ‘biofilms’ are ‘matrix enclosed bacterial populations adherent to each other 

and/or to surfaces or interfaces’ (85). Thus, a surface attached bacterial sedentary biofilm 

lifestyle is markedly different from a ‘planktonic’ or free-swimming one. There are four 

distinct stages of biofilm formation in P. aeruginosa. The first stage involves initial 

attachment to a biotic (eg. host epithelium) or abiotic surface. The second phase is 

characterized by microcolony formation, wherein microbes cluster with each other and 

the sedentary surface. In stage three, the microcolonies progress in size and complexity to 

develop into the mature three-dimensional biofilm structure, with water channels and an 

exopolysaccharide matrix. This is followed by the final stage, biofilm dispersion, wherein 

some bacteria detach from the biofilm, switch to a planktonic mode of growth and leave, 

either to remain planktonic or to form a biofilm elsewhere (also known as ‘biofilm 

cycling’). Changes in gene expression occur at each stage as the bacteria transit from the 

planktonic phase and slowly adapt to the biofilm lifestyle. 

 

Though biofilms are ubiquitously found in various natural environments (86), in the 

clinical setting, biofilm formation is severely problematic as it renders survival advantage 

to the pathogen. Typically, biofilms are associated with higher recalcitrance to clearance 

by the host immune system and to antimicrobial therapy (87). There are three main 

mechanisms to account for this. One, the biofilm matrix (composed mainly of 

exopolysaccharides and extracellular DNA and protein) provides a mechanical barrier to 

host immune system based cells and chemicals and other foreign antimicrobials such as 

antibiotics from reaching the bacterial population. Secondly, due to altered gene 

regulation in biofilm-associated bacteria, stress response genes become transcriptionally 
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activated, further resulting in high antibiotic resistance. Additionally, oxygen and nutrient 

deprivation in the center of the biofilm render the bacteria non-growing and thus 

impervious to antibiotics. 

 

P. aeruginosa biofilms generally display lower expression of acute virulence factors like 

the T3SS and diminished cytotoxicity, but importantly, increased production of factors, 

like exopolysaccharide, that enhance persistence (88). Indeed, P. aeruginosa biofilms are 

widely implicated in chronic infections like that in a diabetic foot wound, on prosthetic 

devices and, as a prototype example, in the airways of CF patients.   

   

1.6.2 P. aeruginosa Pathogenesis in the CF Lung Environment 

CF is a congenital genetic disease, marked by improper chloride secretion across cell 

membranes (89). Particularly in the airway epithelium, this defect leads to unusually 

excessive amounts of mucus building up (89), which provides an excellent niche for 

microbes to proliferate. Though there are multiple pathogens that colonize the CF lung, P. 

aeruginosa predominates from adolescence though adulthood (90). 

 

P. aeruginosa causes a persistent, lifelong infection in the airways of individuals with CF 

(90). These chronic infections initiate as P. aeruginosa adjusts to the CF airway 

environment and transitions to a biofilm lifestyle (91). As mentioned previously, this 

biofilm infection in CF lungs is strikingly dissimilar to acute P. aeruginosa infections. 

T3SS and expression of toxins like elastase are diminished. Virulence features that trigger 

host immunity, like flagella and pili, are downregulated once the pathogen has established 
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adherent contact with the host respiratory epithelium. On the other hand, biofilm bacteria 

produce vast amounts of the exopolysaccharide alginate, leading to a highly mucoid 

phenotype (92). 

 

P. aeruginosa biofilms in the context of CF airways hold serious clinical implications (93). 

Firstly, CF biofilms are nearly impossible to eradicate due to elevated antibiotic resistance 

(94). Secondly, despite intense host immune infiltration, bacteria are protected from 

destruction within the biofilm. Moreover, inflammation leads to damage of surrounding 

host tissues (92). Thus, P. aeruginosa persists for the life of the individual, and it is 

recognized as the leading cause of morbidity and mortality in CF patients (95). Thus, 

understanding the molecular cascades that enable P. aeruginosa to form biofilms has been 

the focus of much research. 

 

1.7 Relevant background studies 

Because the P. aeruginosa biofilm lifestyle is associated with much poorer clinical 

outcomes (96), it is pivotal to elucidate the genes and biochemical pathways that help the 

bacteria either 1) switch to the biofilm form from the acute (high T3SS) lifestyle, or 2) 

maintain the biofilm lifestyle. The key to the identification of such genes, is to investigate 

the pathogen in conditions which best simulate those where P. aeruginosa indeed forms 

antibiotic resistant biofilms (like that in the CF airway environment). 
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1.7.1 A co-culture biofilm system to simulate the CF lung environment 

A major hindrance to studying microbial pathogenesis in the CF lung is the lack of suitable 

animal models possessing the CF phenotype and sustaining chronic microbial infection (97, 

98). To overcome this, a novel tissue culture based model system was developed (87, 91), 

wherein P. aeruginosa forms biofilms directly on an immortalized human CFBE cell 

monolayer in culture. Such a co-culture model is more physiologically relevant than 

biofilms grown on abiotic surfaces such as plastic, because of their distinctive response to 

stimuli like antibiotics (91). In other words, this model, to a considerable extent, simulates 

the actual P. aeruginosa pathogenesis going on in the CF airway environment.  

 

1.7.2 MgtE modulates virulence in P. aeruginosa 

Using the co-culture model described above, it has been shown that the P. aeruginosa inner 

membrane magnesium transporter MgtE is a virulence modulator (91). Specifically, 

biofilm formed by a ΔmgtE isogenic deletion strain exhibits higher cytotoxic effects 

towards cultured airway cells compared to the wild type P. aeruginosa strain. Furthermore, 

complementation of the mutant with a plasmid expressing mgtE results in restoration of 

the wild type phenotype. Genetic analyses revealed that mgtE inhibits cytotoxicity in P. 

aeruginosa by decreasing transcription the T3SS. Additionally, mgtE was found to inhibit 

T3SS expression also in liquid (non-biofilm, free swimming lifestyle) culture (99). Because 

cytotoxicity inhibition is a prominent feature of the biofilm lifestyle, these results suggest 

that MgtE might be a key signaling molecule facilitating the transition of the bacteria 

between the acute and chronic phases of growth. Intriguingly, MgtE’s toxin modulating 

function appear to be separate from its transport functions (99).  
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1.7.3 MgtE is a putative antibiotic-stress response regulator 

Recent studies showed that the antibiotic tobramycin, which is extensively used clinically 

to treat P. aeruginosa airway infection in CF patients (100), enhanced MgtE transcription 

in co-culture biofilms (91). It was additionally found that multiple antibiotics (9 out of 12 

tested) induced mgtE expression in P. aeruginosa (2). This indicates that MgtE responds 

to antibiotic stress, possibly in connection with its role as a virulence modulator. Since the 

CF lung environment challenges P. aeruginosa with a wide range of stresses, including 

antibiotic stress, MgtE might be an important molecule necessary for P. aeruginosa 

growing predominantly in its biofilm lifestyle to survive in the CF lung.  

 

1.7.4 AlgR inhibits MgtE’s activity 

AlgR is pleiotropic response regulator in P. aeruginosa, known to affect T3SS transcription 

(101) as well as production of the biofilm exopolysaccharide alginate (102), among other 

things. Through a genetic screen of putative virulence modulators, mutation of algR 

disrupted mgtE’s activity (2). Specifically, a ΔmgtE/ΔalgR double isogenic mutant led to 

decreased toxicity (Fig.1.2), instead of the expected toxicity increase.  
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Figure 1.2. AlgR disrupts the cytotoxicity phenotype of mgtE.  

The ∆mgtE and algR::Tn strains both display increased cytotoxicity, compared to WT, 

when grown as biofilms on cultured CFBE cells. However, mutation of both in the same 

strain leads to decreased cytotoxicity. Figure courtesy Carly V. Redelman (2). 

1.8 Vital Questions 

These previous studies have provided valuable insight into a novel mechanism by which 

P. aeruginosa regulates virulence during biofilm formation in chronic infections. However, 

these studies failed to elucidate the exact molecular mechanism by which mgtE affected 

T3SS. Furthermore, it was unclear how MgtE and AlgR cooperated to alter toxicity. 

Addressing these vital questions will provide novel understanding of how P. aeruginosa 

responds to environmental cues to appropriately regulate transitions between planktonic 

and biofilm lifestyles. 
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1.9 Study Aims 

The overall goal of my research is to discern the molecular mechanisms of mgtE-mediated 

regulation of cytotoxicity in P. aeruginosa. This was accomplished by elucidating the 

pathway through which mgtE inhibits the T3SS, as well as investigating the molecular basis 

of the genetic interaction between algR and mgtE, whereby these two genes crosstalk to 

exert effects on the T3SS. Though the role of mgtE in T3SS regulation in P. aeruginosa 

was first discovered using P. aeruginosa biofilms growing in vitro on CFBE cells (91), in 

this study, the mechanistic characterization of mgtE’s effect on the T3SS has been done 

using planktonic cultures of P. aeruginosa instead of biofilm models of the bacteria. This 

is because of two reasons: 1) mgtE mediated regulation of T3SS gene expression is 

conserved between both the biofilm and the planktonic modes of growth in P. aeruginosa 

(99) and 2) ease of experimentation using planktonic P. aeruginosa cultures as opposed to 

its biofilms. The studies done shed more light on the virulence regulatory networks in P. 

aeruginosa, and bacterial pathogenesis in general, which going forward, would help in the 

development of novel therapeutic targets against P. aeruginosa.   
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 SOLUBILIZATION AND SELECTIVE 

PROTEOMIC ANALYSIS OF MGTE IN PSEUDOMONAS 

AERUGINOSA 

2.1 Introduction 

As described in Chapter 1, the T3SS is a molecular syringe-like apparatus that is employed 

by Pseudomonas aeruginosa to inject toxins into host cells to facilitate cytotoxicity. 40 

gene products, which include proteins that form the injectisome, chaperones and effector 

toxins, constitute the T3SS in P. aeruginosa. The proteins which control the central or 

‘intrinsic’ regulation of the T3SS are also among these 40 genes. The whole of the T3SS 

regulon (i.e. these 40 proteins) is transcribed from 10 operons, and it is dependent upon 

free levels of the master T3SS transcription factor ExsA, which regulates its own 

transcription as well (55). Under conditions of low or no T3SS, another protein, ExsD, 

sequesters ExsA and prevents it from binding to its target promoters. Under these 

conditions, 2 other regulatory proteins ExsE and ExsC remain bound to each other. Under 

conditions that upregulate the T3SS in P. aeruginosa (such as host cell contact, serum, or 

low Ca2+), ExsE is transported out of the cell, thus liberating ExsC. This free ExsC then 

binds to and sequesters ExsD away from ExsA, hence increasing free levels of ExsA in the 

cell. ExsA in turn, binds to all the T3SS promoters (including the operon from which it is 

transcribed) and turns on T3SS gene expression (55) (Fig. 2.1). The proteins ExsE, ExsC, 

ExsD and ExsA constitute the ‘intrinsic’ regulatory machinery of the P. aeruginosa T3SS. 
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Figure 2.1. Schematic representation of the ‘intrinsic’ regulation of the P. aeruginosa 

T3SS and autoregulation of ExsA. See text for details. 

 

Previous studies have shown that MgtE, an inner membrane magnesium transporter (99), 

inhibits ExsA-driven T3SS gene transcription in P. aeruginosa (91, 99). Further, mgtE was 

found to bypass the intrinsic regulatory steps governed by exsE, exsC and exsD and act at 

the level of exsA, but the exact mechanism was unknown. Considering the protein/protein 

interactions involved in the intrinsic regulatory cascade, we hypothesized that MgtE might 

also be sequestering ExsA directly (like ExsD), thus preventing it from facilitating T3SS 

gene transcription. In this chapter, I describe my exploration of this hypothesis.   

2.2 Materials and Methods 

Bacterial strains, plasmids and culture conditions. The bacterial strains used in this 

study are wild type (WT) P. aeruginosa strain PA14 and isogenic deletion mutants in mgtE 

(∆mgtE) and exsA (∆exsA). All of these strains have been reported earlier (99). Strains were 

transformed with plasmid pmgtE (PA14 mgtE with N-terminal 6x histidine tag cloned into 
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vector pMQ72) (99) or its empty backbone vector pMQ72 (103) by electroporation. 

Plasmids were maintained in Escherichia coli S17 (99) cultured on LB agar plates or LB 

containing 10 µg/mL gentamicin. Transformed P. aeruginosa was cultured in LB agar 

plates with 60 µg/ml gentamicin, and the presence of the respective plasmids was 

confirmed by performing PCR with primers p729 (5’ CAGACCGCTTCTGCGTTCTG 3’) 

and p730 (5’ GCAACTCTCTACTGTTTCTCC 3’) (2). For biochemical analysis, 

overnight cultures of respective strains with the respective plasmids were subcultured 

(1:1000 dilution) in LB containing 60 µg/ml gentamicin and 2mM EGTA (2) and grown 

to OD600=1.0. 

 

Preparation of whole cell lysate and Western blotting. Whole cell lysates were prepared 

as previously described (3). Briefly, 1.25 ml of cells from the respective cultures (grown 

to OD600=1.0) were pelleted by centrifugation at 10,000 rpm. The pellet was thereafter 

washed with PBS (phosphate buffered saline), resuspended in 250 µl SDS-PAGE sample 

buffer, sonicated for 10s and finally boiled at 950C for 5mins. The whole cell proteome 

samples from different strains were analyzed by SDS-PAGE, followed by Western blotting 

using either anti-ExsA (3) antibody (1:1000) (kind gift from Dr. Timothy L. Yahr, 

University of Iowa) or anti-Histidine antibody (1:1500) (Qiagen) as the primary antibody. 

Appropriate fluorescent tagged (Alexa Fluor 690 or 780, Thermofisher or Jackson 

Immunologicals) secondary antibodies (1:10000) (donkey anti-rabbit and donkey anti-

mouse for anti-ExsA and anti-His primary antibodies respectively) were utilized and 

fluorescence was measured by Image Studio (LI-COR Biosciences, Lincoln, NE) as 

described previously (104). 
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Cell lysis, solubilization of inner membrane proteins, protein purification, Western 

blotting and mass spectroscopic analysis. P. aeruginosa cultures were grown to an 

optical density of OD600=1.0. For crosslinking of proteins, formaldehyde was added to the 

respective cultures at 0.6% final concentration and incubated for 20mins at 370C, as 

described previously for crosslinking inner membrane and cytosolic proteins in Gram-

negative bacteria (105). This was followed by harvesting of cells by centrifugation at 

10,000 rpm and washing them with Tris-HCl buffer (20mM Tris-HCl, 0.5M Sucrose, pH 

8.0). Subsequently, spheroplasts were prepared by incubating the harvested cells in 

lysozyme (2mg/ ml in 0.1M EDTA, pH 7.5) for 30mins at 40C. Spheroplasts thus obtained 

were harvested by centrifugation at 2700xg for 30mins, resuspended in a lysis buffer 

composed of 20mM Tris-HCl, pH 8.0 containing the protease inhibitor PMSF at 0.1mM 

concentration and lysed by either 4 1min pulses of sonication (105, 106) (30% power, 

alternating 10s on and off) on ice, by using a French pressure cell (107) (courtesy 

department of Biochemistry, IUSM), or by bead beating (107) (courtesy Dr. Richard 

Gregory). Unlysed cells and cellular debris were eliminated by centrifugation for 10mins 

at 10,000xg in a microcentrifuge. To separate cytosolic proteins from those in the inner 

membrane, ultracentrifugation (100,000xg) (Beckman, rotor type 70Ti) was performed for 

30mins. To solubilize proteins from the inner membrane, the pellet containing the 

membrane fraction from the previous step was resuspended in the lysis buffers containing 

different concentrations (1%, 2%, 3%, 4%) of the detergent sodium dodecyl maltoside 

(SDDM) (105) followed by stirring for 1hr at 40C. Since 2% SDDM was the most effective 

in solubilizing MgtE out of the inner membrane (see Results), this concentration was used 

in subsequent experiments. Following solubilization, the insoluble fraction was separated 
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from the solubilized membrane proteins by ultracentrifugation (100,000xg) for 30mins, as 

above. Solubilized MgtE (containing 6x histidine tag) was purified as described previously 

(104, 105) with a few modifications. The solubilized membrane fraction was treated with 

anti-His antibody at a final concentration of 5µg/ml and incubated for 1hr at 40C with 

constant stirring. Magnetic Protein G beads were then added to the samples followed by 

rotation for 2hrs at 40C. The beads were then magnetically separated and washed thrice 

with the lysis buffer containing 0.05% SDDM. SDS-PAGE sample buffer (SDS 20g/L, 

Tris-base 9.7g/L, b-mercaptoethanol 7.5mL/L, glycerol 100mL/L, bromophenol blue 

100mG/L, pH 6.8) was added to the beads thus obtained, followed by heating for 10mins 

at 700C, protein separation by SDS-PAGE and subsequent mass spectroscopic analysis or 

Western blotting for ExsA or MgtE-6xHis (as described above). For mass spectroscopy, 

the immunoprecipitates resolved by SDS-PAGE were stained with Imperial Stain (104) 

(ThermoFisher). Several acrylamide gel regions were excised (courtesy Dr. Michael Edler, 

Baucum lab, IUPUI), and mass spectroscopy was performed as described previously (104) 

by Dr. Lisa Jones (Department of Chemical Biology, IUPUI) and analyzed using the 

annotated genome of P. aeruginosa strain PA14 (courtesy Dr. AJ Baucum). 

2.3 Results and Discussion 

Standardization of the anti-His and anti-ExsA Western blots. Various blocking buffer 

compositions, incubation times, primary and secondary antibody conditions were tested to 

standardize the anti-His (Fig 2.2A) and anti-ExsA (Fig 2.2B) immunoblots in our 

laboratory. The best blocking appeared to be in 5% non-fat dry milk in buffer composed 

of 150 mM NaCl, 50 mM Tris-HCl pH 7.5 and 0.5% (v/v) Triton X-100 with overnight 

incubation at 40C. The ideal treatments for the anti-His and anti-ExsA Western blots 
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seemed to be 1:1500 and 1:1000 primary antibody dilutions in blocking buffer (150 mM 

NaCl, 50 mM Tris-HCl pH 7.5, 0.5% (v/v) Triton X-100, 5% non-fat dry milk), 

respectively.  

 

Figure 2.2. Anti-MgtE-6xHis (A) and anti-ExsA (B) immunoblots.  

As described in the Materials and Methods, anti-His primary antibody was used to identify 

MgtE-6xHis (55kDa) (A) and anti-ExsA primary antibody was used to detect ExsA (31.6 

kDa) (B). Donkey anti-mouse and donkey anti-rabbit secondary antibodies were used in 

(A) and (B) respectively. 

 

MgtE expression does not lead to localization of ExsA to the inner membrane. Despite 

being an inner membrane protein in P. aeruginosa (99), MgtE has been reported to have 

cytosolic domains (108). Thus, we hypothesized that MgtE, by its cytoplasmic domains, 

directly binds to and sequesters ExsA, thereby preventing it from binding to its target 

promoters and activating T3SS gene transcription. To test this hypothesis, we lysed the 

cells, separated the membrane fraction from the cytosolic proteins and performed anti-

ExsA immunoblot on the membrane lysate to see if ExsA co-localized to the inner 

membrane under elevated levels of mgtE expression (from a plasmid), keeping a ∆mgtE 

mutant as the negative control. As evident, ExsA did not localize to the membrane fraction 

even high MgtE expression (Fig. 2.3). 
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Figure 2.3. Anti-ExsA immunoblot to test for membrane localization of ExsA under mgtE 

overexpression.  

∆mgtE strain with empty vector (Vector) and wild type (WT) strains with either vector or 

pmgtE (mgtE-6xHis cloned into vector) were cultured, membrane fractions were separated 

from cytosolic proteins (see Materials and Methods), resuspended in SDS- PAGE sample 

buffer and immunoblotted for ExsA. Whole cell lysates from the WT and ∆exsA strains 

were used as positive and negative controls respectively.  

 

A major caveat in this experiment is the absence of crosslinking. Also, there is a 

possibility that MgtE does not tether ExsA directly, but indirectly affects ExsA by 

binding to some other protein.  

 

Standardization of the detergent concentration for MgtE solubilization out of the 

inner membrane. We wanted to quantitatively identify any protein(s) that potentially co-

immunoprecipitated with MgtE. Thus, we first solubilized MgtE out of the inner membrane 

using 4 different concentrations of the detergent Sodium Dodecyl Maltoside (SDDM). As 

shown in Figure 2.4, solubilization using 2% SDDM yielded the best results. 
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Figure 2.4. Standardization of MgtE solubilization from the inner membrane.  

MgtE-6xHis was solubilized out of the inner membrane using 4 different concentrations of 

the detergent SDDM and the solubilized MgtE-6xHis in the supernatant was quantitatively 

detected using anti-His Western blot. 

 

We then purified MgtE from membrane preparations using an anti-His antibody (as 

described in the Materials and Methods) and Protein A beads, unconjugated it from the 

beads by heating, and analyzed the samples by SDS-PAGE to see if any protein(s) co-

precipitated with MgtE, keeping the ∆mgtE mutant strain as negative control. As seen from 

Figure 2.5, there are multiple bands that we found in the lanes corresponding to the 

immunoprecipitated (with MgtE-6xHis) lysate under high expression of MgtE (pmgtE) 

with either formalin crosslinking and non-crosslinking, as compared to that in the ∆mgtE 

mutant. We cut these bands out and analyzed by mass spectroscopy. This analysis indicated 

that these bands were truncated forms of MgtE. There were a few other proteins that were 

identified in our study, but the corresponding spectral counts were negligible as compared 

to those for MgtE. 
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Figure 2.5. SDS-PAGE analysis for selective proteomics of MgtE.  

∆mgtE strain with pmgtE (mgtE-6xHis cloned into vector) was cultured, membrane 

fractions were separated from cytosolic proteins (see Materials and Methods), solubilized 

using 2% SDDM and MgtE-6xHis was purified using Protein A beads and the respective 

immunoprecipitates were analyzed by SDS-PAGE using Imperial stain. –CL and +CL 

indicates absence and presence of crosslinking by formalin. The 55kDa MgtE protein and 

the bands excised and sent for mass spectroscopic analysis are highlighted in boxes. The 

∆mgtE strain with empty vector (Vector) was used as the negative control. 
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These results suggest that MgtE does not directly bind to ExsA. We recognize two caveats. 

First, the protein-protein interactions we were looking for might be transient and thus could 

have been cleaved during the process of MgtE solubilization and purification. Though we 

used formalin crosslinking, it might not be the most appropriate reagent for our purpose. 

Second, we analyzed only the prominent bands in the immunoprecipitated eluate, rather 

than the whole eluate. Thus, proteins that were immunoprecipitated in very low amounts, 

such that they did not show up as prominent bands on the SDS-PAGE, were not analyzed 

at all. However, considering the low likelihood of finding a binding interaction, versus the 

efforts required to optimize additional co-immunoprecipitation experiments, we decided to 

take a more genetic approach to uncover the mechanisms behind MgtE-mediated regulation 

of T3SS, as detailed in Chapters 3 and 4.   
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 THE PSEUDOMONAS AERUGINOSA 

MAGNESIUM TRANSPORTER MGTE INHIBITS TYPE III 

SECRETION SYSTEM GENE EXPRESSION BY STIMULATING 

RSMYZ TRANSCRIPTION 

3.1 Introduction 

The Gram-negative bacterium Pseudomonas aeruginosa is implicated in a wide range of 

opportunistic infections in humans (109, 110). A major virulence factor used by P. 

aeruginosa to initiate acute infections is a type III secretion system (T3SS) (81, 111). This 

macromolecular apparatus spans the bacterial cell envelope and acts like a syringe, 

injecting several toxins directly into host cells (112). This leads to actin cytoskeleton 

rearrangement, host cell rounding, and cell death (112, 113). These actions promote tissue 

damage and decrease phagocytic clearance (71, 88, 114). In addition to acute infections, P. 

aeruginosa is also able to establish chronic infections through biofilms formation, most 

notably in the airways of cystic fibrosis (CF) patients (88, 115). During P. aeruginosa 

biofilm formation, altered gene regulation typically leads to a reduction in T3SS gene 

expression (88, 116-119). Additionally, isolates from chronically colonized CF patients 

usually contain mutations that decrease T3SS production (88, 120). Thus, during both acute 

and chronic infections, P. aeruginosa appears to tightly regulate T3SS gene expression in 

response to environmental conditions. 

 

P. aeruginosa T3SS gene expression is controlled by the master transcription factor ExsA, 

which is responsible for activating transcription of all T3SS genes, including exsA itself by 

autoregulation (55). Under non-inducing conditions, ExsA is bound by the anti-activator 

protein ExsD and is unable to bind to its target promoters to initiate gene transcription. 
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Two other proteins important for T3SS regulation, ExsC and ExsE, form a separate 

complex. Under inducing conditions (contact of P. aeruginosa with host cells, the presence 

of serum, or low Ca2+ conditions), ExsE is secreted through the T3SS apparatus, thus 

permitting ExsC to sequester ExsD. ExsA, released from ExsD, subsequently activates the 

T3SS regulon. This mechanism has been referred to as ‘intrinsic regulation’ (55) (Fig. 2.1). 

 

In addition to the ExsDCE network, several other pathways also control exsA expression 

and/or synthesis (55, 88). These pathways work concurrently but distinctly from ‘intrinsic 

regulation’ to further control T3SS gene expression and are referred to as ‘extrinsic 

regulation’. One example of extrinsic regulation is the RsmA/RsmY/RsmZ signaling 

cascade (Fig. 1.1). RsmA is an RNA binding protein belonging to the CsrA family (121). 

CsrA family members regulate gene expression at the post-transcriptional level by binding 

to target mRNAs at conserved sequence motifs and impacting their stability and/or 

translation (121). RsmA appears to control T3SS gene expression by increasing exsA 

translation through an undetermined mechanism (3). This activity depends upon the 

concentration of free RsmA in the cell and is controlled by two non-coding RNAs, RsmY 

and RsmZ (3, 122). RsmY and RsmZ function by directly sequestering RsmA from target 

mRNA (3, 123-125) and are thus negative regulators of ExsA synthesis. Transcription of 

rsmYZ is directly controlled by the GacAS two-component system (TCS) (3, 121, 126, 

127). The environmental signals governing RsmY and RsmZ expression are poorly 

understood but include two additional sensor kinases, LadS and RetS. Both GacS and LadS 

are able to phosphorylate the GacA response regulator to enhance rsmY and rsmZ 

transcription (128, 129). In contrast, RetS inhibits GacA-mediated rsmY and rsmZ 
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transcription by forming a heterodimer with GacS and preventing GacA phosphorylation 

(130).  

 

Previous studies found that the P. aeruginosa inner membrane magnesium transporter 

MgtE inhibits T3SS gene expression (99). Whereas an mgtE mutant demonstrates 

enhanced T3SS gene expression, mgtE overexpression inhibits the T3SS (99). The 

mechanism by which mgtE inhibits the T3SS was not elucidated in these prior studies, 

although the effect of MgtE on T3SS gene expression is distinct from its role as a Mg2+ 

transporter in P. aeruginosa (99). In the current study, we show that mgtE expression 

inhibits ExsA translation by increasing rsmY and rsmZ transcription. We also demonstrate 

that mgtE acts exclusively through the RsmA/RsmY/RsmZ signaling pathway to inhibit 

ExsA-mediated T3SS gene transcription. Because mgtE transcription is significantly 

upregulated by growth under low Mg2+ conditions and in the presence of some antibiotics 

(2, 106), this pathway may provide a mechanism for P. aeruginosa to modulate T3SS gene 

expression in response to signals encountered during infections. 

3.2 Materials and Methods 

Bacterial strains and culture conditions. The bacterial strains used in this study are listed 

in Table 3.1. Plasmids were maintained in Escherichia coli S17 (99) cultured on LB agar 

plates or LB containing 10 µg/mL gentamicin. Plasmids were isolated from E. coli using 

QIAprep Spin Miniprep kit (Qiagen) according to the manufacturer’s instructions and 

electroporated into appropriate P. aeruginosa strains. Transformed P. aeruginosa was 

cultured in Vogel Bonner Minimal (VBM) medium (3, 131) agar plates with 60 µg/ml 

gentamicin, and the presence of the respective plasmids was confirmed by performing PCR 
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with primers p729 (5’ CAGACCGCTTCTGCGTTCTG 3’) and p730 (5’ 

GCAACTCTCTACTGTTTCTCC 3’) (2). For beta-galactosidase assays, P. aeruginosa 

strains were cultured overnight on VBM agar plates with gentamicin. Cells were sub-

cultured the next day to a starting concentration of OD600=0.1 in Trypticase Soy Broth 

(TSB) supplemented with 100 mM monosodium glutamate and 1% glycerol (3). 2 mM 

EGTA was added to the media to induce T3SS gene expression (132, 133). 

Table 3.1. Bacterial strains used in this study. 

Bacterial Strains Relevant Characteristics References 

PA103 PexsD-lacZ WT strain, with the ExsA-dependent PexsD-

lacZ reporter chromosomally integrated at 

the CTX site 

(3, 81, 115, 

134) 

UY241 Constitutive transcription of exsCEBA in 

PA103 PexsD-lacZ background 

(135) 

PA103 PlacUV5-

exsCEBA’-’lacZ 

PlacUV5-driven exsA translational reporter 

integrated at the CTX site 

(3) 

PA103 PlacUV5-

exsCEB’-’lacZ 

PlacUV5-driven exsB translational reporter 

integrated at the CTX site 

(3) 

PA103 PlacUV5-

exsCE’-’lacZ 

PlacUV5-driven exsE translational reporter 

integrated at the CTX site 

(3) 

PA103 PlacUV5-

exsC’-’lacZ 

PlacUV5-driven exsC translational reporter 

integrated at the CTX site 

(3) 

PA103 CVS 

Reporter 

PlacP1-lacZ reporter for cAMP-Vfr Signaling (136) 
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Table 3.1 continued 

PA103 PexsD-lacZ                

∆vfr 

Isogenic deletion of vfr in PA103 PexsD-lacZ 

background 

(3) 

PA103 PexsD-lacZ 

∆algZR 

Isogenic deletions of algZ and algR in PA103 

PexsD-lacZ background 

(3) 

PA103 PexsD-lacZ 

∆rsmYZ 

Isogenic deletions of rsmY and rsmZ in 

PA103 PexsD-lacZ background 

(3) 

PA103 PrsmY-lacZ rsmY transcriptional reporter chromosomally 

integrated at the CTX site 

(3) 

PA103 PrsmZ-lacZ rsmZ transcriptional reporter chromosomally 

integrated at the CTX site 

(3) 

PA103 PrsmA-lacZ 

 

PA103 PrsmY-lacZ 

∆gacA 

 PA103 PrsmY-lacZ 

∆gacS 

PA103 PrsmZ-lacZ 

∆gacA 

PA103 PrsmZ-lacZ 

∆gacS 

rsmA transcriptional reporter chromosomally 

integrated at the CTX site 

Isogenic deletion of gacA in PA103 PrsmY-

lacZ background 

Isogenic deletion of gacS in PA103 PrsmY-lacZ 

background 

Isogenic deletion of gacA in PA103 PrsmZ-

lacZ background 

Isogenic deletion of gacS in PA103 PrsmZ-lacZ 

background 

(3, 137) 

 

(3) 

 

(3) 

 

(3) 

 

          (3) 

 



38 

 

Beta-galactosidase assays. P. aeruginosa was grown to OD600=1.0 and beta-galactosidase 

activity was measured as reported earlier (3). Ortho-nitrophenyl-β-D-galactopyranoside 

(ONPG) was used as the substrate for beta-galactosidase in all the beta-galactosidase 

assays involving transcriptional reporters; chlorophenol red–β-d-galactopyranoside 

(CPRG) was used as the substrate in assays involving translational reporters (3, 138). 

Plasmid pmgtE (99), and its empty backbone vector pMQ72 (103), were used to assess the 

effect of mgtE expression on transcription and translation. 

 

RNA isolation and quantitative real time PCR (qRT-PCR). P. aeruginosa strains were 

cultured as above for beta-galactosidase assays and harvested at OD600=1.0, whereupon the 

pellet was washed with phosphate buffered saline (PBS). This was followed by RNA 

isolation using the RNeasy Plus kit (Qiagen) according to the manufacturer’s instructions. 

A few modifications were made to the protocol, as described earlier (2). Briefly, the RNA 

was subjected to on-column DNase digestion prior to elution. Additionally, after elution, a 

second DNase digestion was performed, followed by the RNA Cleanup procedure. These 

digestions result in negligible DNA contamination of the final isolated RNA sample (2). 

cDNA was synthesized from the RNA using the Superscript III First-Strand Synthesis 

System for RT-PCR (Invitrogen), according to the manufacturer’s guidelines (2). DNA 

contamination of the RNA preparations was tested in control reactions by performing 

cDNA synthesis in the absence of reverse transcriptase. Quantitative Real Time PCR (qRT-

PCR) was performed as previously reported (2) using primers lacZRTfor (5’ 

CAACTGTTTACCTTGTGGAG 3’) and lacZRTrev (5’ TATGAACGGTCTGGTCTTTG 

3’), which bind to a central region in the exsA-lacZ transcript. Samples were normalized to 
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the fbp transcript using primers PA5110for (5’ CCTACCTGTTGGTCTTCGACCCG 3’) 

and PA5110rev (5’ GCTGATGTTGTCGTGGGTGAGG 3’) (2, 91, 99, 139). 

 

Statistical analyses. At least three independent experiments were performed for each assay. 

Two-sample Student’s T test was used to determine statistical significance (p<0.05). 

3.3 Results 

MgtE inhibits T3SS gene expression at the post-transcriptional level. Previous studies 

found that mgtE expression inhibits T3SS gene transcription (99). We considered three 

possibilities to account for the inhibitory effect of mgtE expression: 1) reduced exsA 

transcription, 2) reduced ExsA synthesis, and/or 3) impaired ExsA function. Because exsA 

regulates its own transcription (by acting at the PexsC promoter to control transcription of 

the exsCEBA operon) (140), it was necessary to uncouple exsA transcription from its own 

control to analyze potential mgtE effects on exsA transcription. To this end, we used the 

previously described P. aeruginosa UY241 strain (135), in which the ExsA-dependent 

PexsC promoter has been replaced with a constitutive variant of the PlacUV5 promoter (Pcon). 

As a control, PexsD-lacZ reporter activity (as a marker for ExsA-dependent transcription) 

was measured in wild type (WT) PA103 and the UY241 strain following growth under 

non-inducing (high calcium, –EGTA) and inducing (low calcium, +EGTA) conditions for 

T3SS gene expression (133, 141, 142). Whereas ExsA is sequestered by ExsD in the WT 

strain under non-inducing conditions and PexsD-lacZ reporter activity is low, EGTA 

stimulation results in the release of ExsA from ExsD and induction of PexsD-lacZ reporter 

activity (Fig. 3.1A) (143). Strain UY241 also demonstrates EGTA-dependent induction of 

PexsD-lacZ reporter activity, but the overall level of activity is reduced due to the lack of 
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ExsA autoregulation at the PexsC promoter (Fig. 3.1A). We next expressed mgtE in the WT 

(Fig. 3.1B) and UY241 strains (Fig. 3.1C) and measured PexsD-lacZ reporter activity. In 

both the WT and UY241 strains, mgtE expression resulted in a significant reduction in 

PexsD-lacZ reporter activity. These data suggest that MgtE inhibits T3SS gene expression 

at a post-transcriptional level. 

 

Figure 3.1. mgtE inhibits T3SS gene expression at the post-transcriptional level. 

(A) PA103 PexsD-lacZ (WT) and UY241 were assayed either under T3SS non-inducing (–

EGTA) or inducing (+EGTA) conditions and assayed for beta-galactosidase activity from 

the PexsD-lacZ reporter construct. Percent activity was calculated considering the PexsD-lacZ 

activity in EGTA-treated WT as 100%. *p<0.0005, n.s.=not significant. (B) PA103 PexsD-

lacZ (WT) with either vector control or pmgtE was assayed under T3SS inducing 

conditions and beta-galactosidase activity from the PexsD-lacZ construct was measured. 

Percent activity was calculated considering the PexsD-lacZ activity in WT with blank vector 

as 100%. **p<0.05. (C) Strain UY241 with either vector control or pmgtE was assayed 

under T3SS inducing conditions and beta-galactosidase activity from the PexsD-lacZ 

construct was measured. Percent activity was calculated considering the PexsD-lacZ activity 

in UY241 with blank vector as 100%. ***p<0.005. 

 

ExsA translation is repressed by mgtE expression. We next tested the hypothesis that 

mgtE expression inhibits ExsA translation. We introduced the mgtE expression vector 

(pmgtE) into a panel of WT PA103 strains carrying lacZ translational reporters fused to 

exsC, exsE, exsB, or exsA (fused in-frame with lacZ at codons 15, 15, 2, and 77, 

respectively) (3). Each reporter is integrated in single copy on the chromosome at the CTX 

phage attachment site and transcribed from a constitutive PlacUV5 promoter. Whereas 

plasmid-expressed mgtE reduced exsCEBA’-‘lacZ translational reporter activity by almost 
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3-fold (Fig. 3.2A), mgtE had no negative impact on the exsC’-‘lacZ (Fig. 3.2B), exsCE’-

‘lacZ (Fig. 3.2C), or exsCEB’-‘lacZ reporter activities (Fig. 3.2D). These data suggest that 

mgtE expression inhibits ExsA translation and that this activity is specific to exsA in the 

exsCEBA operon. For reasons that are unclear, the exsCEB’-‘lacZ reporter showed a 

significant increase upon mgtE expression. 

 

Figure 3.2. mgtE expression specifically represses exsA translation.  

Translational reporter strains of (A) exsA (exsCEBA’-’lacZ), (B) exsC (exsC’-’lacZ), (C) 

exsE (exsCE’-’lacZ), and (D) exsB (exsCEB’-’lacZ), with either vector control or pmgtE 

were assayed under T3SS inducing (+EGTA) conditions for beta-galactosidase activity. 

Percent activity was calculated considering the lacZ activity from the respective strains 

with the blank vector as 100%. The reporter constructs were transcribed from a constitutive 

PlacUV5 promoter. *p<0.005, **p<0.05, n.s.=not significant. 

 

The small intergenic region between exsB and exsA contains a Vfr-dependent promoter 

(PexsA) (144). Because the PexsA promoter is present in the exsCEBA’-‘lacZ translational 

reporter, we considered the possibility that mgtE inhibits PexsA promoter activity, thus 

accounting for the observed reduction in exsCEBA’-‘lacZ activity. To investigate this 

hypothesis, we monitored the effect of mgtE expression on a cAMP-Vfr signaling (CVS) 

reporter (136). The CVS reporter consists of lacZ fused to the cAMP- and CRP/Vfr-

dependent lacP1 promoter from E. coli. As shown in Fig. 3.3A, mgtE expression had no 

significant effect on CVS reporter activity. This result is further supported by the finding 

that mgtE expression in a vfr mutant still inhibits PexsD-lacZ activity (Fig. 3.3B). We infer 
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from these data that mgtE does not alter transcription from the PexsA proximal promoter by 

acting through vfr.    

 

Figure 3.3. The CVS cascade is not required for mgtE-mediated inhibition. 

(A) mgtE expression does not repress CVS reporter activity. PA103 CVS reporter strains 

with either vector control (Vector) or pmgtE were assayed for beta-galactosidase activity 

from the CVS reporter under T3SS inducing conditions (+EGTA). n.s.=not significant. (B) 

mgtE inhibits T3SS gene transcription in a ∆vfr background. ∆vfr strains with either vector 

control (Vector) or pmgtE were cultured under T3SS inducing (+EGTA) conditions and 

assayed for beta-galactosidase activity from the PexsD-lacZ reporter construct. Percent 

activity was calculated considering the PexsD-lacZ activity in the ∆vfr strain with blank 

vector as 100%. *p<0.005.  
 

It is also possible that mgtE inhibits steady state levels of exsA mRNA rather than 

specifically inhibiting exsA translation. To distinguish between these two possibilities, we 

isolated mRNA from strains carrying the exsCEBA’-‘lacZ translational reporter with either 

a vector control or pmgtE and performed quantitative real time PCR (qRT-PCR) using 

primer pairs designed for a region central to the exsA-lacZ transcript. Intriguingly, mgtE 

expression increased exsA-lacZ transcript levels (Fig. 3.4). This finding suggests that mgtE 

might have positive effects on exsA mRNA steady state levels, but more importantly, it 

strongly suggests that the post-transcriptional inhibition on ExsA synthesis by mgtE is due 

to repression of ExsA translation as opposed to impaired exsA mRNA levels. 
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Figure 3.4. exsA mRNA remains stable upon mgtE expression.  

mRNA was isolated from the exsA’-’lacZ translational reporter strain containing either the 

vector control or pmgtE, and exsA transcript stability was analyzed by qRT-PCR. lacZ 

transcript abundance was normalized to that of the control transcript of fbp. *p<0.05. 

 

mgtE upregulates rsmY and rsmZ transcription in a GacAS dependent manner.  We 

next examined possible mechanisms for the mgtE-mediated exsA inhibition. We reasoned 

that since mgtE is an inner membrane protein (99), its translation repressive effects on exsA 

were likely indirect, possibly by stimulating one of the established signaling pathways that 

control ExsA translation. For this reason, we investigated whether mgtE affected 

RsmA/RsmY/RsmZ signaling (3). To explore this hypothesis, we measured PrsmY-lacZ, 

PrsmZ-lacZ, and PrsmA-lacZ transcriptional reporter activity (3) and found that mgtE 

expression significantly upregulates rsmY and rsmZ transcription by approximately 2.5-

fold and 2-fold, respectively (Fig 3.5A-B). Interestingly, mgtE expression also stimulated 

rsmA transcription (Fig. 3.5C), but to a smaller degree than measured for rsmY and rsmZ.  

Because the GacAS two-component system is essential for rsmY and rsmZ transcription 

(17, 18, 23, 24), we hypothesized that the mgtE effect requires GacAS. As evident from 
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Fig. 3.5A-B, mgtE expression failed to stimulate PrsmY-lacZ and PrsmZ-lacZ reporter 

activities in the absence of either gacA or gacS, thus supporting a role for GacAS in mgtE-

mediated rsmYZ regulation.   

 

Figure 3.5. mgtE expression affects rsm signaling by a GacAS-dependent mechanism. 

Transcriptional reporter strains of (A) rsmY (PrsmY-lacZ), (B) rsmZ (PrsmZ-lacZ), and (C) 

rsmA (PrsmA-lacZ), in WT, ∆gacA, and ∆gacS backgrounds with either vector control or 

pmgtE were assayed under T3SS inducing (+EGTA) conditions for beta-galactosidase 

activity. Percent activity was calculated considering the lacZ activity from the respective 

WT reporter strains with the blank vector as 100%. *p<0.005, **p<0.05. 

 

mgtE expression in an rsmY/rsmZ mutant fails to inhibit T3SS gene expression. Since 

our data suggest that mgtE affects RsmA/RsmY/RsmZ signaling to inhibit exsA translation, 

we next tested whether the effect of MgtE functions solely through RsmA/RsmY/RsmZ 

signaling to inhibit ExsA-dependent transcription by expressing mgtE in an rsmY/rsmZ 

double mutant. Consistent with a previous report (55), the rsmY/rsmZ mutant demonstrates 

increased PexsD-lacZ reporter activity when compared to WT (Fig. 3.6). Whereas mgtE 

expression significantly inhibited PexsD-lacZ reporter activity in the WT background, 
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reporter activity was unaffected in the rsmY/rsmZ mutant (Fig. 3.6). These data suggest 

that mgtE works solely through the RsmA/RsmY/RsmZ signaling cascade to inhibit exsA 

translation. 

 

Figure 3.6. RsmYZ are required for MgtE-mediated inhibition of T3SS gene 

transcription.  

PA103 PexsD-lacZ and ∆rsmYZ PexsD-lacZ strains with either vector control or pmgtE were 

assayed under T3SS inducing (+EGTA) conditions for beta-galactosidase activity from the 

PexsD-lacZ reporter construct. Percent activity was calculated considering the PexsD-lacZ 

activity in WT with blank vector as 100%. *p<0.0005, **p<0.005, n.s.=not significant.  

3.4 Discussion 

The central role of ExsA as the primary regulator of P. aeruginosa T3SS makes it an 

attractive target for therapeutic development (55). Defining signaling networks that control 

exsA expression, synthesis, and activity is critical to realizing that goal. Previous work 

found that the MgtE magnesium transporter inhibits T3SS gene expression (99). In this 

study, we demonstrate that MgtE accomplishes this activity by inhibiting exsA translation 

(Fig. 3.7). 
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Figure 3.7. A model for mgtE-mediated translational repression of exsA.  

MgtE affects signaling through GacAS, through an unknown mechanism, to stimulate 

transcription of rsmY and rsmZ. Increased rsmY/rsmZ levels, in turn, sequester RsmA, 

preventing it from enhancing translation of exsA, thus inhibiting T3SS. 

 

MgtE-mediated inhibition of exsA translation appears to occur through the 

RsmA/RsmY/RsmZ pathway (Figs. 3.5-3.6). Increased RsmY and RsmZ levels sequester 

RsmA, resulting in decreased exsA translation. Importantly, we found that mgtE expression 

does not decrease exsA transcript levels (Fig 3.4), further supporting the conclusion of a 

specific effect on translation. Additionally, lack of involvement of Vfr in MgtE-mediated 

T3SS gene transcription inhibition strongly indicates that exsA translation inhibition is not 

the result of decreased transcription activity from the PexsA promoter located on translational 

fusion constructs (Fig. 3.3). The fact that MgtE does not inhibit other genes in the exsCEBA 

operon (Fig. 3.2) suggests that there may be regulatory sequences specific to exsA 

translational control. 
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Overexpression of mgtE also enhances rsmA transcription (Fig. 3.5C), although to a much 

lesser degree than rsmY and rsmZ (Fig. 3.5A and B). As was proposed in another study, it 

is plausible that the net result from increased rsmA, rsmY, and rsmZ transcription is reduced 

RsmA availability (3). First, RsmA positively regulates rsmY and rsmZ transcription, 

which likely plays a role in maintaining homeostasis (3, 145). Second, RsmA binds to its 

own mRNA to repress translation (146). Therefore, the mgtE-dependent increase in rsmA, 

rsmY, and rsmZ expression could result in reduced RsmA availability and decreased exsA 

translation (see Fig. 3.2).  

 

MgtE lacks helix-turn-helix or other DNA binding motifs (108, 147), which would be 

needed to directly impact transcription. Therefore, it seems that the positive effect of MgtE 

on rsmY and rsmZ transcription is indirect. This is indeed supported by our data that mgtE 

expression fails to affect rsmY and rsmZ transcription in both a gacA and a gacS mutant 

(Fig. 3.5A-B). These results also establish that MgtE influences rsmY and rsmZ 

transcription through GacAS. As a membrane protein, MgtE could be involved in direct or 

indirect binding interactions with GacS, LadS, RetS, or a novel membrane protein that 

affects signaling through GacS. Because MgtE signals through GacA and GacS, it would 

be interesting to investigate whether MgtE expression leads to higher phosphorylated states 

of GacA. It is important to note that RetS was found to regulate biofilm formation in 

response to magnesium limitation (148), a condition that also enhances mgtE transcription 

(106). Future work will investigate the mechanism by which mgtE affects GacAS signaling. 
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It is noteworthy that mgtE transcription is significantly upregulated in low Mg2+ and high 

antibiotic conditions (2, 106), commonly found during host infections like the CF lung 

environment (149-155). We expressed mgtE from a plasmid to simulate the effects of high 

mgtE expression, such as could occur during host infection. Thus, our study describes a 

mechanism that might allow P. aeruginosa to respond to the host environment and 

optimize T3SS gene expression. Additionally, because MgtE signals through GacAS, our 

results indicate two environmental signals encountered by P. aeruginosa during infection 

(low Mg2+ and high antibiotics during infection) that potentially affect the GacAS signaling 

pathway. Thus, it is possible that MgtE serves as a sensor, altering T3SS expression in 

response to changes in the extracellular environment (i.e. magnesium levels and 

antibiotics). Because the effect on exsA levels and T3SS gene expression are modest (Figs. 

3.1-3.2, 3.6) (99), we suggest that MgtE “fine-tunes” the T3SS response in accordance with 

the chemical environment, rather than acting as a binary on/off switch.    

 

MgtE is important for the pathogenesis of other microorganisms, such as Aeromonas 

hydrophila and Campylobacter jejuni (156, 157). A. hydrophila, in particular, has both a 

T3SS and an RsmA homologue (158, 159). An intriguing avenue of future research will be 

to investigate whether MgtE homologs in other pathogens inhibit T3SS through a 

conserved mechanism of action (i.e. modulation of RsmA activity). Similar to MgtE in P. 

aeruginosa, the housekeeping Mg2+ transporter CorA, found in numerous bacteria, is 

reported to transport Mg2+ and modulate virulence as two distinct functions (160). Future 

work will investigate whether CorA signaling is similar to that of P. aeruginosa MgtE. 
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Taken together, our current study describes the mechanism by which MgtE inhibits T3SS 

gene transcription in P. aeruginosa. This signaling cascade is one mechanism used by P. 

aeruginosa to respond to Mg2+ scarcity and high antibiotic conditions. Additional 

characterization of upstream events of this signaling cascade (i.e. how MgtE affects 

GacAS signal transduction) would further increase our understanding of the mechanism 

used by P. aeruginosa to orchestrate signaling pathways in response to the host 

environment. 
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 MGTE AND ALGR GENETICALLY INTERACT TO 

AFFECT THE T3SS IN PSEUDOMONAS AERUGINOSA 

This chapter in part, has been published in reference (2). Required permission has been 

obtained. 

4.1 Introduction 

Pseudomonas aeruginosa possesses an intricate network of signaling pathways to regulate 

cytotoxicity. Typically, cytotoxicity is downregulated in chronic P. aeruginosa infections, 

wherein they form antibiotic resistant biofilms, as in the CF airways (3). The gold standard 

antibiotic used to treat P. aeruginosa biofilm infections in the CF lungs is tobramycin (161), 

which still fails to completely eradicate the pathogen, because of inherent antibiotic 

resistance mechanisms and robust transcription of stress response genes (162). In a 

previous study, to identify the genes in P. aeruginosa biofilms which are upregulated upon 

tobramycin treatment, a co-culture of P. aeruginosa biofilms growing on CFBE cells was 

treated with physiologically relevant levels of tobramycin, followed by microarray analysis 

(91). One of the major genes in P. aeruginosa that was found to be transcriptionally 

upregulated was the inner membrane Mg2+ transporter gene mgtE. Additionally, as 

mentioned in Chapters 2 and 3, mgtE was found to inhibit cytotoxicity in P. aeruginosa. A 

follow up study by our lab revealed that, in P. aeruginosa biofilms, several other antibiotics 

(in addition to tobramycin) enhance mgtE transcription (2). This indicates that mgtE might 

be involved in stress response pathways in P. aeruginosa.  

 

A transposon mutagenesis screen, to elucidate the pathways through which mgtE might be 

signaling, revealed that the P. aeruginosa gene algR abrogated mgtE mediated inhibition 
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of cytotoxicity (Fig 1.1) (2). This indicates a genetic crosstalk between algR and mgtE. 

AlgR has pleiotropic effects in P. aeruginosa (163). It is a response regulator involved in 

production of the biofilm polysaccharide alginate by binding to the algD promoter and 

activating transcription (164).  AlgR also activates various stress response cascades. 

Importantly, algR is responsive to several antibiotics, including tobramycin (91), imipenem 

(165) and numerous cell wall-active antibiotics (166). Additionally, it inhibits cytotoxicity 

in P. aeruginosa by at least two different mechanisms (3). 

 

In this current study, I have shown that mgtE may react particularly to antibiotics, among 

stress conditions. Also, in spite of enhanced transcription under antibiotic pressure, mgtE 

does not confer antibiotic resistance to P. aeruginosa. Further, I have attempted to 

characterize the genetic crosstalk between mgtE and algR in P. aeruginosa. Specifically, I 

have established that a ΔmgtE/ΔalgR double mutant inhibits cytotoxicity in P. aeruginosa 

(Fig 1.1) due to inhibition of T3SS gene transcription. My data also reveals that the algR-

mgtE genetic interaction is specifically targeted towards regulation of the T3SS in P. 

aeruginosa, rather than indiscriminately affecting other virulence phenotypes. To further 

elucidate the interaction between mgtE and algR, I demonstrate that algR inhibits mgtE 

transcription, but not vice versa. Taken together, this study sheds more light on the 

complicated signaling networks that govern biofilm formation, cytotoxicity and stress 

tolerance in P. aeruginosa. 
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4.2 Materials and Methods 

Strains and plasmids. Bacterial strains and plasmids used in this study are listed in Table 

4.1. Primers used in this study are listed in Table 4.2. 

 

 

 

Table 4.1. Strains and plasmids used in this study 

 

Strain or 

plasmid 

Relevant genotype or description Reference or 

source 

PA14 WT P. aeruginosa burn wound isolate (167) 

SMC3604  

PA14 ∆mgtE 

(91) 

GGA225 PA14 ∆algR This study 

GGA226 PA14 : : PmgtE–lacZ  This study 

 

GGA231 PA14 ∆mgtE ∆algR This study 

 

SC100 PA14 : : PalgR–lacZ This study 

SC101 SMC3604 : : PalgR–lacZ  This study 

 

SC102 GGA225 : : PmgtE–lacZ This study 

 

SMC4405 PA14 : : PexsD–lacZ (91) 

SMC4406 SMC3604 : : PexsD–lacZ (91) 

PA14 PexsA-

lacZ 

PA14 WT having PexsA-lacZ reporter 

chromosomally integrated at the CTX site  

This study 
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Table 4.1 continued 

PA14 PexsA-lacZ ∆mgtE 

∆algR 

Isogenic deletion of mgtE and algR in PA14 

PexsA-lacZ background 

This study 

S17-1 Escherichia coli laboratory strain for cloning (91) 

Saccharomyces 

cerevisiae 

 

InvSc1: In vivo cloning; ura3-52/ura3-52  Invitrogen 

 

pMQ30 Allelic replacement vector, yeast cloning (168) 

pMQ70 PBAD expression vector; Cb (168) 

pMQ72 PBAD expression vector; Gm (168) 

pSMC233 mgtE deletion; pMQ30 backbone; Gm (91) 

pSMC233-Amp mgtE deletion; pMQ30 backbone; Amp This study 

pSMC291 mgtE complementation; pMQ70 backbone (91) 

pSC1 algR deletion; pMQ30 backbone; Gm This study 

pMQ30-lacZ Promoterless lacZ in pMQ30; Gm This study 

pGA233  pMQ30-PmgtE–lacZ; Gm This study 

pSC2 pMQ30-PalgR–lacZ; Gm This study 

 

Table 4.2. Primers used in this study 

Primer Sequence (5’– 3’) 

913for CCCATGGACTTACCCAGTAG 

913rev CCGTCGACGAGTATTTCGTC 

p729 CAGACCGCTTCTGCGTTCTG 

p730 GCAACTCTCTACTGTTTCTCC 
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Table 4.2 continued 

30AMPfor TAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCAATG

A TGAGCACTTTTAAAGT 

30AMPrev AATCAATCTAAAGTATATATGAGTAAACTTGGTCTGACAGTTA

C CAATGCTTAATCAGTG 

AlgRKO#1 TCGACTGAGCCTTTCGTTTTATTTGATGCCTGGCAGTTCCCTGG 

ACCTGTCCGACCTGTT 

AlgRKO#2 CATGCAGGAAGCCTGAGCTTCACTCGGGTTCGAACTGTTA 

AlgRKO#3 GGAATTGTGAGCGGATAACAATTTCACACAGGAAACAGCTGT

A GGTGTTCGAGACGAAAG 

AlgRKO#4 TAACAGTTCGAACCCGAGTGAAGCTCAGGCTTCCTGCATG 

AlgRKOU

P 

CTTATCTATGGCATCCAGCC 

AlgRKOD

OWN 

CTTGACGAACAGGCCCTTGC 

LacZfor GGAATTGTGAGCGGATAACAATTTCACACAGGAAACAGCTAA

GATCCAAATGACCATGATTACGGATTC 

LacZrev AGGCAAATTCTGTTTTATCAGACCGCTTCTGCGTTCTGATTTAT

T TTTGACACCAGACCA 

MgtEProm

LacZfor 

GGAATTGTGAGCGGATAACAATTTCACACAGGAAACAGCTGC

C TTTTTCGTCTTCGTCTC 

MgtEProm

LacZrev 

GTTGTAAAACGACGGCCAGTGAATCCGTAATCATGGTCATAG

C GCGCTCCACCCCCAGTA 
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Table 4.2 continued 

AlgRPromFor GGAATTGTGAGCGGATAACAATTTCACACAGGAAACAGC

TTGT TCATGTGCACGTCTTCC 

AlgRPromLacR

ev 

GTTGTAAAACGACGGCCAGTGAATCCGTAATCATGGTCA

TCGA CAGAGTTTCCGCAAGGC 

 

 

Genetic manipulations. Construction of isogenic deletion mutants. Isogenic deletion 

mutants were created as described previously elsewhere (91, 168). For deleting the algR 

gene, algR flanking regions were amplified by PCR with primer pairs 

AlgRKO#1/AlgRKO#2 and AlgRKO#3/AlgRKO#4, and the resultant PCR fragments 

were joined to suicide vector pMQ30 via homologous recombination in Saccharomyces 

cerevisiae (168). This deletion vector, pSC1, was then electroporated into Escherichia coli 

S17-1 cells and plasmid construction was confirmed by restriction digestion. The deletion 

vector harbored by S17-1 transformants was transferred by conjugation into target P. 

aeruginosa strains. Exconjugants were isolated on selective agar plates (either 50 mg 

gentamicin/ ml and 30 mg nalidixic acid/ ml or 250 mg carbenicillin/ ml and 30 mg 

nalidixic acid/ ml). Following the selection, the exconjugants were grown overnight in LB, 

and spontaneous excision of the vector was selected for by plating on 10% sucrose/LB 

plates. Mutations were confirmed by PCR, using primer pair AlgRKOUP/AlgRKODOWN, 

and sequencing. For deletion of mgtE, we started with the plasmid pSMC233, which has a 

gentamicin selective cassette (91). However, because the transposon mutants that we used 

already have gentamicin resistance, we generated pSMC233-AMP, which is pSMC233 

with a carbenicillin gene cassette replacing the gentamicin cassette. This was accomplished 

by PCR-amplifying the bla gene from pMQ70 using primer pair 30AMPfor/30AMPrev. 
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The resultant PCR fragment was mixed with BglII-digested pSMC233, and, using the S. 

cerevisiae homologous recombination technique (168), the bla gene replaced the aacC1 

gene on pSMC233, thus creating pSMC233-AMP. Deletions of mgtE were confirmed via 

PCR using the primers 913for and 913rev. 

 

Transcriptional fusions with lacZ. The PexsD–lacZ reporter constructs were reported earlier 

(141). We created algR and mgtE isogenic deletions in strains carrying the PexsD–lacZ 

construct (99) as described above. To create strains with PalgR–lacZ and PmgtE–lacZ 

transcriptional fusions, we first generated plasmid pMQ30-lacZ, which carries a 

promoterless lacZ gene on plasmid pMQ30, which is a suicide vector in P. aeruginosa. 

This was accomplished by amplifying the lacZ gene from E. coli S17-1 using primers 

LacZfor and LacZrev. This PCR fragment was recombined with BamHI-digested pMQ30 

via homologous recombination in S. cerevisiae, as above. Next, the putative promoter 

regions of mgtE and algR were PCR amplified using primers MgtEPromLacZfor and 

MgtEPromLacZrev, or AlgRPromFor and AlgRPromLacRev. These PCR fragments were 

recombined with BamHI-digested pMQ30-lacZ via homologous recombination in S. 

cerevisiae, creating plasmids pGA233 (PmgtE–lacZ) and pSC2 (PalgR–lacZ). These plasmids 

were then electroporated into E. coli S17-1 cells and plasmid constructs were confirmed 

via restriction digestion. Plasmids were transferred to P. aeruginosa strains by conjugation, 

and exconjugants were identified via selective agar plates (LB with 50 mg gentamicin/ ml 

and 30 mg nalidixic acid/ ml). These exconjugants contained a single crossover insertion 

of the plasmid at the mgtE or algR native sites (strains GGA226 and SC100 in the PA14 

background, and strains SC102 and SC101 in the ΔalgR or ΔmgtE backgrounds, 
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respectively), which positioned the promoterless lacZ gene immediately downstream of the 

mgtE or algR promoters. The pMQ30 plasmid contains strong transcriptional terminators 

downstream of the lacZ gene (168). 

 

Complementation of strains. The plasmid pSMC291 contains full length mgtE, and it has 

been previously described (99). 

 

Beta-Galactosidase assays. The Miller assay was carried out as we have previously 

performed (99) with a few modifications. Overnight cultures of bacterial strains were 

subcultured 1:100 into LB with 2 mM EGTA (to chelate calcium for enhancing T3SS 

stimulation), and these subcultures were grown until mid-exponential phase (OD600~0.5). 

Subsequently, the cultures were diluted in appropriate volumes of Z buffer [16.1 g 

Na2HPO4. 7H2O/ l, 5.5 g NaH2PO4.4H2O/ l, 0.75 g KCl/ l, 0.246 g MgSO4.7H2O/ l, 2.7 ml 

beta-mercaptoethanol (pH 7.0)], and then 40 ml chloroform and 10 ml 0.1% SDS were 

added to each of the aliquots. This solution was vortexed for 10 s and incubated at 300C 

for 5 min. A total of 200 ml (4 mg/ml) ONPG was added for 30 min at 300C, and then 0.5 

ml 1 M Na2CO3 was added to stop the reaction. Expression of lacZ was determined by the 

standard Miller unit equation (Miller Units=1000*(OD600/ (time in mins*volume of 

culture*OD600)) wherein the data were normalized to the OD600 value of the bacterial 

culture, as we have previously calculated (99). Chlorophenol red–β-d-galactopyranoside 

(CPRG) was used as the substrate in assays involving the PexsA-lacZ transcriptional reporter 

(144). Data are representative of three independent experiments. For the beta-galactosidase 
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assay of the PmgtE–lacZ and PalgR–lacZ strains, the same procedure as above was followed, 

except that EGTA was omitted. 

 

For testing of stresses on the PmgtE–lacZ construct, we subcultured WT P. aeruginosa from 

overnight cultures into 1.5 ml fresh LB in 24-well plates. Plates were incubated for 12 h, 

statically, and then bacteria were subjected to the indicated stresses for 30 min. The  M63 

salts consisted of 15 g KH2PO4/ l, 35 g K2HPO4/ l, 10 g (NH4)2SO4/ l in water. Beta-

galactosidase assays from co-culture biofilms were performed as previously described (99). 

 

Twitching motility. Twitching-motility assays were performed by dipping a pipette tip 

into overnight cultures of the indicated bacterial strain and then stabbing the tip to the 

bottom of an LB agar plate, as described elsewhere (169). Plates were incubated at 370C 

for 24 h, then for an additional 24 h at room temperature. Then, the agar was removed, and 

the plate was stained with 0.1% crystal violet for 10 min. Twitching zone sizes were 

determined by measuring three diameters for each zone and averaging. Each strain was 

tested in three independent experiments with three to six replicates each. 

 

Rhamnolipid production. To detect rhamnolipids, we prepared M8 medium 

supplemented with 1 mM MgSO4, 0.2% glucose, 0.5% casamino acids, 0.2% 

cetyltrimethylammonium bromide (CTAB), 0.0005% methylene blue, and 1.5% agar, as 

described elsewhere (170). Overnight culture of each strain (5 ml) was spotted on the 

surface of the agar and the plates were incubated at 370C for 24 h, then for an additional 

24 h at room temperature. Secreted rhamnolipid is precipitated by the CTAB and thus 
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forms a halo around each colony, with the diameter related to the amount of rhamnolipid 

produced. Diameters were measured as above for twitching. Each strain was tested in three 

independent experiments with three to six replicates each. 

 

Pyocyanin production. Pyocyanin production was assessed by chloroform extraction of 

filter-sterilized overnight culture supernatants, as previously described (91). OD376 was 

measured in a SpectraMax M2 spectrophotometer as a measure of relative pyocyanin levels. 

Each strain was tested in three independent experiments with three to four replicates each. 

 

AlgR biochemical studies. AlgRD54E, a phosphomimetic form of AlgR (164) was used 

to test whether AlgR directly binds to the mgtE promoter in vitro. Expression and 

purification of AlgRD54E was previously described (164). For the electrophoretic mobility 

shift assay (EMSA), the previously described protocol was used (164). For the assay, 6 

different concentrations of purified AlgRD54E were used (0.15 µM, 0.3 µM, 0.6 µM, 1.25 

µM, 5 µM and 10µM). The test oligonucleotide encompassed the mgtE promoter region 

containing the putative AlgR binding site (shown in bold: 5’-

CAGTTTCCCGTTTGACCAATCAC-3’). The algD promoter was used as positive 

control (5’-TGGCGCTACCGTTCGTCCCTCCGA-3’, AlgR binding site shown in bold. 

These experiments were performed by Dr. Michael Schurr, University of Colorado. 

 

Statistical analysis. Statistical significance was determined via a P value <0.05 using a 

two-tailed Student’s t-test with Sidak adjustment for multiple comparisons. 
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4.3 Results 

MICs are unaffected by changes in magnesium concentration. It is possible that 

increased expression of mgtE could affect antibiotic resistance. Because MgtE is a 

magnesium transporter, and because magnesium limitation increases mgtEexpression 

(171), we wondered whether incubation in decreased magnesium levels resulted in greater 

antibiotic resistance. We assayed the MIC of tobramycin, gentamicin, ciprofloxacin and 

imipenem, as representatives of the three modes of action of the antibiotics that were tested 

previously (2) (protein synthesis inhibition, replication inhibition, cell wall inhibition). We 

found that the MIC remained the same (Table 4.3), despite growth in magnesium 

concentrations that stimulate (0.1 mM) or repress (1 mM) mgtE transcription (171). 

Combined with our previous observation that antibiotic sensitivity was unaffected by 

isogenic deletion of mgtE (91), it seems that mgtE expression exerts only a minor role, if 

any, on antibiotic resistance. The antibiotic-resistance phenotype is likely multifactorial. 

Table 4.3. Minimum Inhibitory Concentrations of P. aeruginosa in Different Magnesium 

Levels 

 Tobramycin Gentamicin Ciprofloxacin Imipenem 

1 mM Mg2+ 3 4 0.5 1.5 

0.1 mM Mg2 3 4 0.5 1.5 

0.01 mM Mg2 3 4 0.5 1.5 

 

Effect of various stresses other than antibiotics on mgtE transcription. Since mgtE 

transcription was upregulated in antibiotic treated P. aeruginosa biofilms, we tested 

whether mgtE transcription upregulation was part of a general stress response pathway in 

P. aeruginosa, or whether the response was largely restricted to antibiotic pressure. To 
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this end, we constructed an mgtE transcriptional reporter in P. aeruginosa by fusing a 

lacZ gene downstream of the proposed mgtE promoter. This reporter strain was grown 

under various stress conditions (Table 4.4) and mgtE transcription was measured by beta-

galactosidase activity. Treatment with 5X M63 salts resulted in increased beta 

galactosidase activity, while 20% glucose and growth at 550Cinhibited transcription. 

Activity after treatment with 10% ethanol, 100 mM KCl, and 100 mM MgSO4 remained 

unchanged compared to untreated controls. This data indicates that mgtE transcription is 

upregulated only under very specific types of stresses and may not be part of a 

generalized stress response pathway in P. aeruginosa.  

Table 4.4. Activity of PmgtE-lacZ under various stresses. Values represent average of at 

least 3 independent experiments (+/- standard deviation). ns= not significant, compared to 

untreated 

Stress Condition Miller Units Significance 

Untreated 469 (+/-109)  

10% Ethanol 460 (+/-66) ns 

100 mM KCl 543 (+/-98) ns 

100 mM MgSO4 460 (+/-142) ns 

20% Glucose 244 (+/-81) p<0.05 

5X M63 Salts 870 (+/-183) p<0.05 

550C 176 (+/-92) p<0.05 

 

algR genetically interact with mgtE to affect T3SS gene transcription in P. aeruginosa. 

A previous study from our lab showed that algR abrogates the cytotoxicity phenotype of 

mgtE (Fig. 1.2) (2). To investigate the mechanism behind this observation, we tested 
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whether this effect on cytotoxicity is mediated through effects on T3SS gene transcription; 

cytotoxicity in P. aeruginosa, in large part, is due to the T3SS (91). For this experiment, 

we used the previously described PexsD-lacZ T3SS transcriptional reporter in P. aeruginosa 

(see Chapter 3) and assayed the effects of the WT, ∆mgtE, ∆algR and ∆mgtE/∆algR on 

T3SS gene transcription. As evident from Fig 4.1, mutation in algR disrupts the enhancing 

effect of the mgtE mutant on T3SS gene transcription, indicating that the effect of the 

∆mgtE/∆algR double mutant on cytotoxicity in P. aeruginosa is likely mediated through 

effects on T3SS gene transcription. To further elucidate the nature of the algR-mgtE genetic 

crosstalk, we tested whether expression of mgtE in a ΔalgZR mutant can inhibit T3SS gene 

transcription, like that in the WT P. aeruginosa (Chapter 3). mgtE still significantly 

reduced PexsD-lacZ reporter values even in the ΔalgZR mutant (Fig 4.2), indicating complex 

genetic interaction between mgtE and algR.  
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Figure 4.1. Mutation in algR disrupts the enhancing effect of the mgtE mutant on T3SS 

gene transcription.  

For examining the T3SS promoter activity in the PA14 strain under different mutant 

conditions, beta-galactosidase activity (Miller units) was measured from the PexsD–lacZ 

construct in the WT, ∆mgtE, ∆algR and ∆mgtE/∆algR strains grown as planktonic, broth 

cultures. The data are representative of five independent experiments. *p<0.05, compared 

to WT; #p<,0.05, compared to all other strains.  
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Figure 4.2. mgtE inhibits T3SS gene transcription in a ∆algZR background.  

∆algZR strains with either vector control or pmgtE were assayed under T3SS inducing 

(+EGTA) conditions for beta-galactosidase activity from the PexsD-lacZ reporter construct. 

Percent activity was calculated considering the PexsD-lacZ activity in the ∆algZR strain with 

blank vector as 100%. *p<0.0005. 

 

The ∆mgtE/∆algR mutation does not inhibit transcription from the proximal PexsA 

promoter. As mentioned in Chapter 3, ExsA is transcribed from a polycistronic operon 

and it regulates its own expression from the PexsC promoter. However, there is a small 

proximal promoter PexsA immediately upstream of the exsA gene that is independent of 

ExsA. Since the ∆mgtE/∆algR mutation inhibits T3SS gene transcription, one possibility 

is that this double mutation inhibits exsA transcription from the proximal promoter PexsA. 

To test this possibility, we assayed whether the ∆mgtE/∆algR mutation reduced lacZ 

expression from the PexsA-lacZ transcriptional reporter, as compared to what is seen in the 

WT. As shown in Fig. 4.3, the ∆mgtE/∆algR mutation does not inhibit exsA transcription 

from the PexsA promoter. 
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Figure 4.3. ∆mgtE/∆algR does not inhibit exsA transcription from the PexsA promoter. 

WT and ∆mgtE/∆algR mutant strains were assayed under T3SS inducing (+EGTA) 

conditions for beta-galactosidase activity (expressed as Miller units) from the PexsA-lacZ 

reporter construct. n.s.=not significant. 

 

algR is an inhibitor of mgtE transcription. To further analyze the relationship between 

MgtE and AlgR, we investigated whether mutation of one gene led to altered expression 

of the other. Toward that end, we generated lacZ transcriptional fusions to the putative 

promoters of mgtE and algR, as described in Material and Methods, and measured beta-

galactosidase production in WT and mutant strains. In this manner, we found little 

difference in algR promoter activity between WT and ΔmgtE strains (Fig. 4.4A). However, 

transcription from the mgtE promoter was greatly enhanced by mutation of algR compared 
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to the WT strain (Fig. 4.4B). Interestingly, in silico analysis found a putative AlgR binding 

sequence around 65 bases upstream of the mgtE start codon (Fig 4.5A). To further 

investigate whether AlgR represses mgtE transcription by directly binding to the mgtE 

promoter region, electrophoretic mobility shift assay (EMSA) was performed (courtesy Dr. 

Michael Schurr, University of Colorado) using a phosphomimetic AlgR (AlgRD54E) 

which has a high affinity for DNA binding and the oligonucleotide 5’-

CAGTTTCCCGTTTGACCAATCAC-3’, which represents the segment of the mgtE 

promoter region containing the putative AlgR binding sequence (Fig. 4.5B). The AlgR 

binding site in the algD promoter region (164) was used as the positive control (Fig. 4.5C). 

There appears to be a faint bandshift when 10µM AlgRD54E is used (Fig. 4.5B), indicating 

that AlgR directly binds, albeit weakly, to the mgtE promoter region in vitro.  
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Figure 4.4. AlgR negatively regulates mgtE promoter activity.  

(A) Beta-Galactosidase activity (Miller units) was measured from the PalgR–lacZ construct 

in the WT and ∆mgtE strains grown as planktonic, broth cultures. Data are representative 

of three independent experiments, each containing triplicate or quadruplicate samples. (B) 

Transcriptional activity of the mgtE promoter was analyzed by the beta-galactosidase assay 

(Miller units) using the PmgtE–lacZ construct in the WT and ∆algR strains grown as 

planktonic, broth cultures. Data are representative of three independent experiments, each 

containing triplicate or quadruplicate samples. *p<0.05, compared to WT. 
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Figure 4.5. AlgR weakly binds to the mgtE promoter region.  

(A) In silico analysis reveals a putative AlgR binding site (shown in bold) in the mgtE 

promoter region. The mgtE start codon is demarcated by large font. (B) EMSA was 

performed using varying concentrations (0.15-10µM) of purified AlgRD54E protein with 

the oligonucleotide containing the putative AlgR binding site in the mgtE promoter or with 

the oligonucleotide containing the AlgR binding site in the algD promoter (C). 50nm 

oligonucleotide was used in both experiments. The base pairs in the putative AlgR binding 

region in the mgtE promoterthat are mismatched from the consensus AlgR binding 

sequence are marked in red. The faint bandshift highlighted with the box is indicative of 

weak but direct binding of AlgR to the putative binding site in the mgtE promoter. 

(Courtesy Dr. Michael Schurr).  
 

Examination of other algR and mgtE regulated phenotypes. Since the genetic crosstalk 

between algR and mgtE was evident on regulation of T3SS gene transcription, we tested 

whether this genetic interaction affected other virulence phenotypes as well in P. 

aeruginosa. For this, we tested the effects of the WT, ∆mgtE, ∆algR and ∆mgtE/∆algR on 

twitching motility, rhamnolipid production and pyocyanin synthesis in P. aeruginosa. As 

shown in Fig 4.6, the mgtE-algR genetic interaction is not evident in regulation of these 

virulence phenotypes, indicating that this crosstalk is specifically directed towards T3SS 

regulation in P. aeruginosa. 
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Figure 4.6. Examination of other AlgR and MgtE regulated phenotypes.  

(A) Twitching motility was assessed for the individual mutants and for the ∆mgtE/∆algR 

double mutant, compared to WT. In the top panel, mean twitching zones for each strain are 

reported. *p<0.05, compared to WT and ∆mgtE. The bottom panel depicts representative 

images of crystal violet-stained twitch zones for each strain. (B) Rhamnolipid secretion of 

mutants was assessed by zone size of CTAB/rhamnolipid precipitant, compared to WT. In 

the top panel, mean zone size for each strain is reported. *p<0.05, compared to WT. The 

bottom panel depicts representative images of colonies and CTAB/rhamnolipid precipitant 

zones. (C) Pyocyanin production of WT and mutants was assessed as described in Methods. 

*p<0.05, compared to WT and ∆algR. 
 

4.4 Discussion 

MgtE, a magnesium transport protein, has been identified as a virulence modulatory protein 

in P. aeruginosa (91, 99), and a virulence and biofilm modulatory protein in several other 

bacteria (156, 157, 172). However, the regulation of mgtE and the environmental signals 

that influence mgtE transcription (and thus affect downstream virulence pathways) are 
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poorly understood. In previous studies, we found that mgtE could affect bacterial 

cytotoxicity through modulation of T3SS (99) and that tobramycin and various other 

antibiotic treatments resulted in a significant increase in mgtE transcript levels (91). 

Importantly, isogenic deletion of mgtE resulted in WT levels of antibiotic sensitivity (91), 

suggesting that mgtE induction might play only a minor role in antibiotic resistance. In 

accordance with these previous findings, we also observed that incubation in decreased 

levels of magnesium, which can stimulate mgtE transcription, has little effect on MIC 

(Table 4.3). Instead, we hypothesized that antibiotics act as signals that induce mgtE 

transcription, as part of an effort to downregulate production of factors associated with 

acute infections (e.g. T3SS) during biofilm development. 

 

AlgR is a regulatory protein that functions in many different pathways, most notably the 

alginate biosynthesis pathway. Induction of this pathway results in a mucoid P. aeruginosa 

phenotype, due to production of copious amounts of alginate. The mucoidy phenotype is 

evident during chronic infection of the CF airway and it enhances biofilm formation. AlgR 

is part of the AlgR–AlgZ two component regulatory system, which interacts with AlgU 

(92), the sigma factor that activates many genes essential for induction of the alginate 

pathway, including algR. Furthermore, algR is an important gene for P. aeruginosa 

pathogenesis, as an algR mutant is less virulent than a WT strain in an acute septicemia 

mouse model of infection (173). AlgR is also required for twitching motility, which is 

associated with increased virulence (174). 
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This evidence, as well as proteomic analysis of an algR mutant (173), suggests that AlgR 

is a global regulator impacting the expression of many different genes, including the T3SS 

genes. When AlgR is mutated, an increased expression of certain T3SS genes, such as exsA 

and exoS, is observed. ExsA is the master regulator for the T3SS in P. aeruginosa (55), 

and prior and recent findings (Chapter 3) suggest that MgtE may be indirectly affecting 

this protein to inhibit T3SS. Indeed, increased expression of mgtE leads to decreased T3SS 

production and lowered cytotoxicity. These results imply important but complex 

interactions of AlgR with other virulence pathways in P. aeruginosa. 

 

Our findings also support a possible interaction between algR and mgtE (Fig. 1.1), because 

deletion of algR in the ∆mgtE strain led to decreased transcription from the PexsD promoter 

(Fig. 4.1). Also, our results suggest that algR has negative regulatory effects on mgtE 

transcription (Fig. 4.4). Interestingly, in silico analysis has identified a putative AlgR 

binding site upstream of the mgtE promoter (Fig 4.5A). Further, in collaboration with Dr. 

Michael Schurr, we have identified a weak but direct binding of AlgR to the mgtE promoter 

in vitro (Fig 4.5B). Ongoing studies are aimed at further investigating this interaction 

between AlgR and the mgtE promoter. 

 

Altogether, these data imply that there is a peculiar cross-talk between algR and mgtE in 

regulating the T3SS, and this effect seems to be specific to T3SS (Fig. 4.6). Because 

reduction in T3SS is an important component of P. aeruginosa biofilms in the CF lung, 

these data support the hypothesis that mgtE can influence the biofilm phenotype in response 

to CF-relevant signals. We speculate that MgtE and AlgR both inhibit the function of a 
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T3SS repressor, either separately or in concert. In this scheme, mutation of either mgtE or 

algR is compensated by the presence of the other, but when both are mutated, high-level 

activity of the repressor prevents T3SS transcription and cytotoxicity (Fig 4.7). However, 

it is also possible that MgtE and AlgR could be acting independently on T3SS. Further 

studies are needed to fully characterize the relationship between these two proteins, and 

whether MgtE regulation of T3SS is mediated by the observed mgtE regulation by AlgR 

(Figs. 4.4 and 4.5). Among efforts directed at elucidating the nature of the algR-mgtE 

genetic interaction in P. aeruginosa, we are performing transcriptomic (RNAseq) and 

proteomic analysis of the WT, ∆mgtE, ∆algR, and ∆mgtE/∆algR strains. 

 

Figure 4.7. Hypothetical model to account for the inhibition of T3SS gene transcription in 

the ∆mgtE/∆algR strain of P. aeruginosa. 

AlgZR and the inner membrane (IM) Mg2+ transporter MgtE, by an unknown mechanism 

inhibits a third cryptic inhibitor (I), which inhibits T3SS gene expression. This inhibitor is 

inhibited by both mgtE and algR. Therefore, when both mgtE and algR are mutated, this 

inhibitor gets upregulated (synthetically or functionally) and inhibits T3SS gene 

transcription. Dashed red lines indicate inhibition. Additionally, AlgR, putatively by 

directly binding to the mgtE promoter, downregulates mgtE transcription, as we have 

shown in this Chapter.  
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Previous studies in our lab have clearly demonstrated that numerous antibiotics can 

enhance mgtE transcription, possibly as the result of activation of stress responses. Indeed, 

AlgR is regulated by the sigma E homologue AlgU, which responds to heat shock, among 

other envelope stresses. Thus, inhibition of mgtE transcription at 550C (Table 4.4) could 

be the result of repression by elevated levels of AlgR under these conditions. Additionally, 

it is possible that mgtE is activated by the stringent response (175), as evidenced by 

increased mgtE transcription in the nutrient-limited M63 medium (without carbon or amino 

acids sources) (Table 4.4). Enhanced mgtE expression could result in biofilm phenotype 

changes by decreasing T3SS (99) and possibly interacting with other known virulence 

pathways as shown in Chapter 3. A greater understanding of mgtE regulation could lead to 

novel methods of inhibiting biofilm formation and bacterial toxicity. Our data suggest that 

AlgR might act as a link between external signals like antibiotics and mgtE transcriptional 

responses. As we dissect the complex relationship between mgtE, biofilm formation and 

toxicity, we can devise novel methods for treatment of this recalcitrant microbe. 
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 FINAL DISCUSSION AND FUTURE 

PERSPECTIVES 

A major global health problem is the rise in antibiotic resistance in pathogenic bacteria 

(176). Pseudomonas aeruginosa is one of the antibiotic recalcitrant ESKAPE 

(Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter 

baumannii, Pseudomonas aeruginosa, and Enterobacter species) superbugs (177). 

Antibiotic-resistant P. aeruginosa is listed as one of the top 18 drug-resistant threats in the 

United States (listed as Hazard Level Serious) by the Centers for Disease Control and 

Prevention (178), and one of the top 12 Priority Pathogens for development of new 

antibiotics (Priority 1: Critical) by the World Health Organization (179). In addition to its 

inherent and acquired antibiotic resistance mechanisms, the capability to form clinically 

relevant biofilms is an important weapon possessed by P. aeruginosa, that renders it even 

more immune to antibiotic therapies. Though the regulatory pathways governing biofilm 

formation, maintenance, and dispersal in P. aeruginosa are diverse and complicated, the 

common feature is a reciprocal regulation between high cytotoxicity and increased biofilm 

forming lifestyles (88). It is important to elucidate these regulatory mechanisms to identify 

novel therapeutic targets in P. aeruginosa to both i) prevent it from forming antibiotic 

resistant biofilms and ii) reverting it to the planktonic lifestyle which is more susceptible 

to antibiotics. 

 

This current study describes two different mechanisms by which P. aeruginosa 

downregulates its cytotoxicity, thereby making it adapt to the biofilm lifestyle (Fig. 5.1). 

T3SS is a predominant feature behind cytotoxicity in P. aeruginosa (91). In Chapter 3, I 
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describe one molecular pathway through which mgtE inhibits the T3SS: through Rsm-

mediated translation inhibition of ExsA. These results largely illuminate cytotoxicity 

regulatory cascades in P. aeruginosa and once again confirm mgtE as a virulence regulator 

in P. aeruginosa. In Chapter 4, I have established algR as a regulator of mgtE expression 

and signaling, adding to its already reported pleiotropic role in P. aeruginosa. This AlgR 

data also suggest a second means for regulating T3SS: a potential unknown inhibitor that 

is inhibited by both AlgR and MgtE (Fig. 5.1). 

 

Figure 5.1. Pleiotropic effects of MgtE in P. aeruginosa pathogenesis. 

Low Mg2+ and high antibiotic conditions (as in CF lungs) activate mgtE transcription by an 

unknown mechanism. This results in higher levels of MgtE in the inner membrane (IM), 

which activates rsmY and rsmZ expression, through GacAS (Chapter 3), resulting in 

reduction in ExsA translation. AlgR, upon being phosphorylated by AlgZ, also activates 

RsmY and RsmZ expression (3). On the other hand, as discussed in Chapter 4, AlgR 

inhibits mgtE transcription. Also, AlgR and MgtE seem to simultaneously inhibit a third 

cryptic inhibitor (I), because of which a double mutation in algR and mgtE results in 

upregulation of this inhibitor and reduction in T3SS. Broken and solid green arrows depict 

activation by unknown and known mechanisms respectively; broken red lines indicate 

inhibition by a poorly understood mechanism.   
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It is unclear how these two pathways intersect to regulate T3SS. I have presented two key 

pieces of data to elucidate this issue. First, mgtE expression loses T3SS inhibiting effect in 

a Δrsm strain (Fig. 3.6), suggesting that mgtE acts exclusively through Rsm alone. It was 

recently shown that AlgR impacts T3SS activation by modulating the Rsm pathway (3), 

and it is tempting to speculate that MgtE figures into this process. However, our data (Fig 

4.2) demonstrate that T3SS transcription can be inhibited by mgtE expression even in a 

ΔalgR mutant. Thus, while it is possible that MgtE acts through an AlgR-mediated pathway 

to affect Rsm, and hence T3SS activation, this mechanism would likely be a minor activity. 

 

Alternatively, MgtE could impact T3SS through two separate avenues. In addition to 

inhibiting T3SS through a GacAS-Rsm pathway to decrease ExsA translation, MgtE could 

also be inhibiting a T3SS transcriptional inhibitor. In this scenario, AlgR would also be 

inhibiting this hypothetical inhibitor. Thus, mutation of either mgtE or algR could still lead 

to T3SS transcriptional enhancement, due to sequestration of the inhibitor by the other 

molecule, but deletion of both factors would lead to freeing of the inhibitor, resulting in 

T3SS downregulation (Fig. 4.7). 

 

In either case, we see a clear effect of decreased T3SS transcriptional activation upon mgtE 

expression. While there are numerous two-component, quorum sensing, adenylate cyclase, 

and other regulators that impact T3SS and biofilm establishment in P. aeruginosa, the 

signals that initiate these signaling cascades remain undefined. Research from our 

laboratory has shown that antibiotics as well as limiting magnesium conditions stimulate 

mgtE transcription. Furthermore, my research has shown that mgtE expression intimately 
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ties into the biofilm signaling networks (Fig. 3.7). Thus, we propose that limiting 

magnesium and high antibiotic levels are two factors that activate biofilm pathways, 

shifting the bacterium toward a chronic, biofilm lifestyle. Importantly, these are both 

signals present in the CF lung environment; patients are treated with high levels of 

antibiotics, and also exhibit decreased lung and serum magnesium levels, compared to non-

CF individuals (149, 150). Thus, MgtE could be a key factor modulating biofilm signaling 

during infections (Fig. 5.1). 

 

Future experiments would aim to further characterize mgtE expression and signaling in P. 

aeruginosa. Specifically, the precise protein-protein interactions that mediate mgtE 

regulation of GacASsignaling (Fig. 3.5) is an important milestone for research in our 

laboratory. Another important goal would be to characterize the mechanism behind algR-

driven mgtE transcription inhibition. Preliminary studies (Fig. 4.5) indicate that AlgR 

might be directly binding to the mgtE promoter. Ongoing studies to further characterize 

this DNA-protein interaction are underway. Also, it will be important to elucidate the exact 

mechanism behind the unique cytotoxicity inhibitory phenotype in the ΔalgR/ΔmgtE 

double mutant in P. aeruginosa. 

 

mgtE has been implicated as a virulence modulator in other organisms as well (106). Thus, 

the mechanism by which mgtE signals in these pathogens is an intriguing avenue for 

research. Interestingly, rsm homologues exist in some of the organisms where mgtE is 

implicated in pathogenesis (159). If future studies indicate that mgtE signals through a 
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conserved mechanism, that would set an important paradigm in membrane transporter 

biology. 

 

Given the role that mgtE plays in cytotoxicity regulation, it might be an interesting drug 

target, though extensive future studies are required to explore this proposition. Taken 

together, this research, provides clues for identification of novel therapeutic targets in P. 

aeruginosa. Drugs that modulate the biofilm phenotype (possibly through MgtE) such 

that bacteria emerge from the biofilm phenotype (and are thus killable) but maintain a 

low toxicity phenotype would revolutionize biofilm therapies. Thus, my work can serve 

as the foundation for studies to ameliorate the morbidity and mortality of patients 

affected by P. aeruginosa.   
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