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ABSTRACT

Bagheri, Saeid M.S., Purdue University, December 2014. Temporal Profile Summa-
rization and Indexing for Surveillance Videos. Major Professor: Jiangyu Zheng.

Surveillance videos are recorded continually and the retrieval of such videos cur-

rently still relies on human operators. Automatic retrieval has not reached a sat-

isfactory accuracy. As an intermediate representation, this work develops multiple

original temporal profiles of video to convey accurate temporal information in the

video while keeping certain spatial characteristics. These are effective methods to

visualizes surveillance video contents efficiently in a 2D temporal image, suitable for

indexing and retrieving a large video database. We are aiming to provide a compact

index that is intuitive and preserves most of the information in the video in order to

avoid browsing extensive video clips frame by frame.

By considering some of the properties of static surveillance videos, we aim at

accentuating the temporal dimension in our visualization. We have introduced our

framework as three unique methods that visualize different aspects of a surveillance

video, plus an extension to non-static surveillance videos.

In our first method ”Localized Temporal Profile”, by knowing that most surveil-

lance videos are monitoring specific locations, we try to emphasize the other dimen-

sion, time, in our solution. we focus on describing all the events only in critical

locations of the video. In our next method ”Multi-Position Temporal Profile”, we

generate an all-inclusive profile that covers all the events in the video field of view.

In our last method ”Motion Temporal Profile” we perform in-depth analysis of scene

motion and try to handle targets with non-uniform, non-translational motion in our

temporal profile. We then further extend our framework by loosening the constraint

that the video is static and including cameras with smooth panning motion as such
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videos are widely used in practice. By performing motion analysis on the camera,

we stabilize the camera to create a panorama-like effect for the video, allowing us

to utilize all of the aforementioned methods. The resulting profiles allows temporal

indexing to each video frame, and contains all spatial information in a continuous

manner. It also shows the actions and progress of events in the temporal profile.

Flexible browsing and effective manipulation of videos can be achieved using the

resulting video profiles.
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1 INTRODUCTION

The amount of recorded surveillance video is growing at a very fast pace. Viewing and

analyzing such footage become labor-intensive and time consuming tasks as massive

amounts of videos are obtained on a daily basis. Problems with storage, indexing

and retrieval of such video databases arise when the data growth rate is high. Videos

are also far more difficult to browse and search as compared to images due to its

large data size and sequential data structure. Thus, it becomes an important topic

to summarize the videos in compact files that are intuitive and preserves most of the

information in the video.

Current video indexing is mainly based on key frames [1] from coarse thumbnails

and fine storyboards [2] to tapestries [3] for searching and editing. The spatial mo-

saicing is the extension of key frames to a larger field of view covered by the video

movement [4]. They can index to a clip but not a frame. For a large volume of

surveillance video from static cameras, several works have removed segments without

events and thus shorten the video length. Video synopsis [5], [6], [7], [8] based on

spatial mosaicing methods [9], [10] compose different actions of targets at different

time instances in a single key frame. However, such effort has limitations on repre-

senting temporal changes for long videos because it becomes cluttered and confusing

as the video length and number of targets increases. It also fails to present the time

instance of the actions, thus it will not serve very well for indexing purposes [11].

In contrast to such spatial indexing composed of multiple frames, a compact tem-

poral profile has been sought [12], [13]. In this work, we proposed a thorough frame-

work that summarizes a video for static surveillance cameras, providing a high reso-

lution profile of video that preserves the temporal order of frames. We then extend

our work to a create a permeating framework that is applicable to a vast majority

of problems concerning surveillance videos. Such extension was realized to deal with
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four major problems that are introduced in surveillance videos. We will proceed

by identifying these problems, analyzing the constraints and finally introducing our

solution to the problem.

1.1 An Overview of Our Framework

The amount of recorded surveillance video is growing at a tremendously fast pace.

Current video retrieval still relies on human operators because automatic search has

not reached a satisfactory accuracy. Viewing and analyzing such footage has become

a labor-intensive and time consuming task. Captured by a static camera, surveillance

videos are usually aimed at monitoring specific areas and observing critical locations

where targets pass through. Hence the background is static throughout the entire

video and the flow of background is along the time axis in the video volume. However,

a moving object leaves a trace non-parallel to the time axis. Therefor, we are aiming to

provide a compact index that is intuitive and preserves most of the information in the

video in order to avoid browsing extensive video clips frame by frame. By taking into

consideration that the video is static, and it is aimed at monitoring specific locations,

we try to emphasize the other dimension, time, in our solution. The next three

frameworks we introduced are based on these constraints and all aim at accentuating

the temporal dimension in our visualization. We introduced temporal slices that are

generated by sampling a 2D plane in the 3D volume of surveillance video. Temporal

slices are an important building block of this study and will be used throughout this

work as base for our solutions. Chapter 2 explains the theory behind temporal slices

in detail, describes the implementation and expands on some characteristics of the

temporal slice. This temporal slice, however, is subject to to shape deformation as

it is a reduction from the 3D space of the video volume to a compact 2D image. In

addition to that, the temporal slice alone fails to include some important information.

As mentioned earlier, the temporal slice is sampled on a single plane in the video

volume. This means that we are reducing one of the spatial spaces by holding it
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constant. Thus, while the temporal slice shows that the target has crossed a certain

location at a certain time, it does not show the direction in which the target crossed

the location (i.e. from left to right or from right to left). To solve this problem, the

”Localized Temporal Profile” was introduced that samples three planes in the field of

view at positions that are sufficiently far apart, but still fall into the same monitored

location [14]. We blend all the slices at different locations into a single temporal profile

and use transparency to indicate spatial positions of slices. The localized temporal

profile is a very intuitive and efficient profile that describes part of the field of view

and it has been described in fine detail in chapter 3.

Localized Temporal Profile, as the name suggests, is designed to represent parts

of the video volume. This means that information in other parts of the field of view

may be missed in this form of representation. This was our motivation in extending

our work to a profile that would include more global information while preserving

the accuracy on the temporal axis, as well as the space efficiency. In chapter 4,

we will introduce the ”Multi-position Temporal Profile” that intents to capture all

motion information in either horizontal or vertical direction. We will then continue

by investigating the information represented by this profile and how to interpret it.

Nonetheless, preserving the temporal quality of the profiles comes at a cost. The

spatio-temporal sampling in the video volume will introduce some shape deformations

to the shapes that the targets leave in the profiles. For instance, take the example

of a person walking through a doorway. If the person smoothly, walks past the door-

way, the methods introduced above will capture all the necessary motion information

successfully. However, if the person decides to stay in the doorway before passing

the door completely, or if he walks through with non-uniform translational motion

aforementioned methods might not work. For non-translational motions such as a

person dancing in a monitored area, or any arbitrarily motion such as waving of the

leaves in a scene, the traces will not leave very helpful information in the temporal

slice. This motivated us to introduce a profile that takes the velocity of objects into

account, called ”Velocity Based Temporal Profile”. The motion temporal profile gives
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more visual weight to objects with higher image velocity. This means that motions

such as slow waving or swaying from left to right in the same position will not clutter

the profile and leave room for more important information such as a person running

away. The visual weights of targets are assigned by measure their image velocity and

assigning a transparency value to the accordingly. Chapter 5 will start by an in-depth

description of the profile and further explain the implementation process.

We then further extend our framework by loosening the constraint that the video is

static and including cameras with smooth panning motion as such videos are widely

used in practice. Chapter 6 describes a simple and robust method to generate a

stabilized, panorama-like video using a ”motion-condensed image” (1.2). All of the

methods described above can then be utilized on such video, as it is most similar to a

static video. All these profiles described in this framework extremely space efficient for

storing large surveillance video. Furthermore, they are computationally in-expensive

and can be performed on the fly on a video stream. These methods can also be used

in combination to increase the robustness of presented information, while measuring

significantly smaller in size than the video and with very little performance overhead.

1.2 Condensed Images

As we stated earlier, motion analysis of videos is a key element of our work and

optical flow is an important characteristic that helps us analyze videos. The cost of

optical flow computation for large video database is high and the results are unstable

for scenes with deformation, arbitrary motion and scenes without many features. As

introduced in [15], condensed images are an efficient and robust way to represent

important motion in the video. Two condensed images were employed to reflect

the motion of objects in the video in horizontal and vertical direction. The vertical

condensed image is an average of intensity values along the y axis, C(x, t), and the
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Table 1.1.
Terminology and symbols used

Name Symbol used Description

Temporal Slice I(t, l) Sampled in the video volume along

arbitrary line

Vertical Temporal Slice Ii(t, y) Sampled in the video volume along

y axis

Horizontal Temporal Slice Ij(t, x) Sampled in the video volume along

x axis

Horizontally Condensed Slice Īx(t, y) Average pixel intensities along x

axis for N columns

Vertically Condensed Slice Īy(t, x) Average pixel intensities along y

axis for N columns

Horizontally Condensed Image C(y, t) Average pixel intensities along x

axis for all columns

Vertically Condensed Image C(x, t) Average pixel intensities along y

axis for all rows

Temporal Profile Pi(t, y) Result of blending temporal slices

together
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horizontal condensed image is obtained through averaging pixel intensities along the

x direction, C(y, t):

C(x, t) =
1

Y

Y∑
y=0

I(x, y, t)

C(y, t) =
1

X

X∑
x=0

I(x, y, t)

(1.1)

where X and Y are the width and height of video frame respectively, as depicted in

figure 1.1.

Figure 1.1. Generating condensed images in the x and y direction

In case of static cameras, condensed images will consist of two major part. The

background will appear as parallel lines stretched along the time axis and the fore-

ground motion will appear as traces non-parallel to the time axis. In this study, we

will use vertically condensed images to quantify the motion of foreground objects. In

case of cameras with smooth panning motion, the vertically condensed image is used

to determine the major flow in the video and determine the direction and velocity of

camera motion. This information is the used to stabilize the video to prepare it for

the preceding steps of generating the temporal profile.
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2 TEMPORAL SLICE

Captured by a static camera, surveillance videos are usually aimed at monitoring

specific areas and observing critical locations where targets pass through. Hence

the background is static throughout the entire video and the flow of background is

along the time axis in the video volume. However, a moving object leaves a trace

non-parallel to the time axis as illustrated in figure 2.1(a).

(a) An illustration of video volume with

foreground flow (colored tubes). The

plane intersecting the volume is the tem-

poral slice obtained from sampling a pixel

line continuously over time.

(b) A foreground object passing the

sampling line with the moving direction.

Figure 2.1. Sampling foreground motion with a line.



8

2.1 Implementation

If we set a line in the video frame and sample the pixel data on it over consecutive

frames, obtaining a temporal slice, I(t,y), in the volume. If the line orientation is set

non-parallel to the motion direction of foreground flow in the image, the foreground

will leave some shapes in the temporal slice, otherwise known as flow traces. As a

real example, figure 2.2 shows several frames and an obtained temporal slice in the

video volume. This gives the first criterion to set the sampling line.

Figure 2.2. Cutting a temporal slice along the time axis at a location
in the video with apparent motion. As you can see shape and motion
information is revealed in the temporal slice I(t,y)
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Figure 2.3. A condensed image of video obtained from averaging the
pixel values in y direction in the volume to observe the flow. The
traces of people are visible in the condensed image.

Criterion 1: The fixed sampling line to obtain a temporal slice in the video should

not be set parallel to the flow direction.

Now, what direction is better to fix the sampling line in the frame after excluding

the flow direction? Assume a path exists in the camera view that causes a major

foreground flow with a certain variation for individual targets as in figure 2.1(b). The

path direction for targets to path is m=(u, v) possible to be considered as speed

vector. We also consider the basic poses of targets, p, in their up-right direction in

the image for improving the generated shapes.
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Criterion 2: A sampling line is set to cross the foreground flow either in vertical

or in horizontal direction so that the line is more orthogonal to the major flow and

more aligned with the normal target pose.

Although a slanted sampling line is possible to be set orthogonal to the major flow

in the view, we select a horizontal or vertical line here to maintain the quality and

Sampling cost of temporal slice. A coordinate system O-xy is set on the sampling

line. The flow vector passing the line for an individual target is denoted as vector

in figure 2.1(b), where u is the component orthogonal to the line (in x direction) for

revealing shapes, and v is the component parallel to the line that leaves skewed shape

in the slice. A condensed image of video [15] accumulated along y direction indicates

the global motion trajectories in the video. In Figure 2.3, we can observe traces

of background parallel to the time axis and the foreground flow moving in different

directions.

We sample the pixels on the selected line at each frame to obtain an array of

pixels, and the arrays from consecutive frames are connected along time axis. This

results in a temporal slice in the spatial-temporal volume as shown in figure 2.3. The

slice thus shows very accurate temporal information, and is able to preserve certain

characteristics of target shape and environment as shown in figure 2.4. From the slice,

we can index to a frame t at the precision of 1/60 second, if the interlace format is

used in the sampling.

This is much more accurate than the indexed resolution of a clip by mosaicing [5],

[6], [7], [8] or tapestry [3]. Sometimes slicing at an obscured location can even reveal

acute and deliberate details in the video, often unnoticed by the human. In figure

2.5, the visual attention may not notice an object (marked in green) sneaking past a

certain point, while it appears clearly in the temporal slice.

Similar to the aforementioned method, we can sample pixels on a line parallel

to the x axis to construct a horizontal temporal slice. Figure 2.6 shows an example

where a horizontal temporal slice reveal the vertical motion of objects in a video.
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Figure 2.4. Original resolution of temporal slice I(t,y) where people
are detailed enough for identification. It is compatible to the original
resolution in the frame in the y direction.

Figure 2.5. A temporal slice that captures a passing car in complete
shape (right), which is unnoticeable as a complete shape in the video
frame (left). The red line is sampled for the temporal slice.

2.2 Characteristics of Temporal Slice

Subject to certain shape deformations, the temporal slice reveals all the passing

targets in the video that pass through the sampled space.In case of uniform, trans-

lational motion, these deformations are negligible and the shapes revealed in the

temporal slice can be used for retrieval purposes. It is worth mentioning that the

deformation also reflects some valuable information about the foreground targets.
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Figure 2.6. A horizontal line samples apparent vertical motion to
obtain a temporal slice. The targets are skewed due to slanted motion
vector with respect to the sampling line (non-zero v component). The
high image quality allows capturing deliberate details.

• The length of a target in the temporal slice is related to its image velocity, i.e.,

its length is inversely proportional to u at the sampling line. If the target crosses

the sampling line at a high velocity, its shape appears narrow in the slice. On

the contrary, if its velocity is low, its shape appears stretched in the slice.

• If the slanted axis or pose p of a target passes the sampling line with an angle

β in the image, the projected shape is skewed along the t direction in the slice.

This may happen when the camera overlooks a site from a high position under

perspective projection.

• The v component of image flow extends the height of the targets in the temporal

slice, which can be restored by an inverse-skew operation after detecting the

dynamic targets, as will be described later in chapter 3.

• All targets face the same direction in a single temporal slice; it lacks the spa-

tial location and moving direction of foreground, because targets are scanned

at their front when they move forward. This can be improved by multi-line

sampling in the following.
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2.3 Skewed Traces in the Temporal Slice

When a frame is covered by denser sampling lines, it is possible that a target has

both vertical and horizontal motions at a sampling location. If velocity component v

parallel to the sampling line is large, its shape will be stretched along the spatial axis

in the temporal slice. Hence, the traces left in the temporal slice will have a skew

distortion factor. If the passing velocity component u 6= 0, we have an opportunity

to skew the foreground target in y direction to improve the shape. Before blending

slices into the temporal profile, we skew the bounding boxes enclosing the targets in

the temporal slice according to the direction of m. Figure 2.7 shows such skewed

results, where local shapes of targets are improved and the moving direction in the

temporal profile (moving up or down in the view) is preserved. The condition u 6= 0

can be examined as traces in the condensed image are non-parallel to the time axis.

If those targets have u=0, additional horizontal sampling lines can be set to obtain

another temporal profiles (e.g., figure 2.6).

Figure 2.7. Inverse-skew operation for shape improvement in the tem-
poral profile. (left) An indoor area where passing flows (yellow) are
very slanted in the camera view. (middle) Original temporal profile.
(right) Inverse-skewed profile in dynamic foreground regions.
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3 LOCALIZED TEMPORAL PROFILE

Because the space a surveillance camera focuses on is fixed, we focus on representing

the precise time progress of dynamic events in the video happening at critical posi-

tions. We introduce an original method that will create a temporally accurate profile

of a video in a 2D image while preserving some shape and spatial information. The

most important information in a video recorded with a static camera is the foreground

motion. Therefore, we develop a technique to present the motion intuitively and pre-

serve the temporal context in video. Previous research by Zheng and Sinha [16] has

realized a line sensor to capture dynamic targets through a monitored line for tem-

poral video profiling. However, the spatial information is lost when a temporal slice

is cut from the spatial-temporal volume of video. To solve this problem, this work

samples multiple lines in the field of view at critical positions with major motion flow

in the video to capture major motion in the entire volume. In addition, we blend all

the slices at different locations into a single temporal profile and use transparency to

indicate spatial positions of slices. A diagram of the approach is shown in figure 3.1.

The resulting profile is easy for measuring the time instance and duration of actions.

Multiple targets can be compared in the time domain as well. Some other temporal

methods that visualize brief summaries of video along the time axis [2], [3], the time

instance of actions and events are not accurate.

3.1 Foreground Extraction in Temporal Slice

In order to overcome the problem of a temporal slice lacking spatial information,

we set multiple parallel slices at critical locations in the video to sample dynamic

events. If these lines are spatially apart from each other with the distances in between

wider than target widths, a target will not pass them simultaneously. Thus the
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Figure 3.1. Framework of generating temporal profile from video.

foreground flow crossing these slices will have delays, and the shapes appearing in

the temporal slices will not overlap exactly. This temporal order in the slices helps

to determine the motion direction of target. Therefore, we blend these slices together

according to their spatial locations to create a temporal profile of video that shows

the dynamic flow of foreground clearly.

In each temporal slice, background is visible as parallel stripes along time axis

as depicted in figure 2.2, and it will occlude other slices in the blending. Analysis

of the temporal slice alone can yield sufficient information for background removal,

which deals a smaller data set than analyzing the video volume [17], [18], and thus

we perform a series of steps to remove the background in each slice, as depicted in

the diagram in figure 3.2.

For temporal slice Ii(t, y) sampled at position i, we define the temporal derivative

of the slice as:

I ′i(t, y) =
∂Ii(t, y)

∂t
(3.1)
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Figure 3.2. Foreground detection from temporal differentiation and
background subtraction in each temporal slice.

which is implemented by Sobel operator and the output is mapped to range [0, 1].

Since each background pixel leaves a uniform trace parallel to the time axis, it will

be removed after temporal differentiation with a threshold τ1. The foreground may

include some slow movements such as the waving of leaves, flag, and water as dynamic

scenes.

We use this differential image to produce and update a background map, Bi(y),

which will be further used for foreground extraction. For time instances tj(j < N)

without foreground activities, i.e., |I ′i(ti, y)| < τ1, the background map is estimated

as the average of those columns.

Bi(y) =
1

N

N∑
j=0

Ii(tj, y) (3.2)
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We then subtract the temporal slice from this background array to get foreground

regions; the resulting value of subtraction is thresholded by a threshold value τ2.

Fi(y) =

0, |Bi(y)− Ii(t, y)| < τ2

1, otherwise

(3.3)

This output is further combined with the result from equation 3.1 to generate a mask

of dynamic foreground as the maximum of background subtraction and temporal

differentiation.

maski(y) = max

{
Fi(t, y),

dIi(t, y)

dt

}
(3.4)

It is worth mentioning that the differences are all performed in three color channels,

and the result is converted to an 8-bit gray scale image. Figure 3.3 is an example of

detected foreground from temporally sampled slice. The resulting masks are used for

blending multiple slices.

Figure 3.3. Mask generated for foreground objects from temporal slice.

3.2 Integrating Slices to Temporal Profile of Video

At a critical location, a temporal profile is integrated from three different tem-

poral slices sampled on parallel planes. We blend slices with different transparencies

according to their spatial locations in the video frame. Denote I0(t, y), I1(t, y) and

I2(t, y) as the slices on locations from left to right in the video frame respectively,

each slice has a blending coefficient αi that determines its contribution to the final
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temporal profile. In general, assume the video is sampled at n different locations,

where n ≥ 3, e.g., as depicted in figure 3.4, we blend slices as follows:

Pi(t, y) = [1− αimaski(t, y)]Pi−1(t, y) + αimaski(t, y)Ii(t, y)

P0(t, y) = I0(t, y), i = 1, ..., n
(3.5)

Figure 3.4. Temporal profile of a video recording an indoor environ-
ment by sampling three slices (red lines) with the transparency of
slices increasing from left to right. The arrows on top of targets show
the motion directions of passing people in left or right direction.

where P0 is the slice at location 0. It contains background to provide the profile

with a context and it is not influenced by background removal. If the value of maski

at a position is zero, the color value in Pi−1 is used. As long as the slices are blended

in such spatial order, the motion direction will be clear in the resulting profile. An

example is shown in figure 3.4, where α1 and α2 for slices I1(t, y) and I2(t, y) are set

as 0.7 and 0.5, respectively. Therefore, one can observe that, if a target moves to

the right in the frame, the shapes will be more and more transparent in the profile.

Inversely, a leftward motion generates shapes more and more opaque in the profile.

This solves the moving direction problem in a single profile.



19

4 MULTI-POSITION TEMPORAL PROFILE

The proposed idea in this work is to watch the video volume sideways in the time

domain (figure 4.1), which yields a 2D temporal profile with one axis as the time and

the other as an axis in the space. For static camera field of view (FOV), we create this

continuous visual index for precise time progress of dynamic events at all positions,

while preserving shape for target identification. Also, the temporal profile includes an

embedded background to provide space context. Thus, it can present motion targets

intuitively in the time domain with the spatial information embedded.

To reflect target motions in the entire view as complete as possible, we consider

sampling all positions in the frame to generate the temporal profile. If the sampling

lines are vertical, they will capture the horizontal motions, while if we choose the

sampling lines horizontally, the vertical motion in the video will appear in the profile.

The sampling locations are chosen at evenly distributed locations, and the slices are

integrated to show a variety of motion in the entire video. Although the interval of

sampling lines can be arbitrary small, the integrated profile may become cluttered.

We then blend all the slices into a single temporal profile and adjust the slice trans-

parencies according to their image positions to show a haze effect. For the static

background and less dynamic targets, another slice is further cut diagonally across

background flow in the volume to reflect the background in the profile and provide

spatial context. In addition, a strategy is designed to align a sampling line with a

principal pose axis of passing object to improve the target shapes in the resulting

temporal profile.

As depicted in figures 4.1 and 4.2, for a video volume I(x,y,t) a temporal slice i

is a 2D image Ii(t, l), such that for any pixel p ∈ Ii(t, l), we have p ∈ I(ax, by, t).

The t axis indicates the time and the other axis l is a linear combination of x and y.

Time stamp t provides the precise frame number of a target for further investigation
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Figure 4.1. Observing a video volume from the side for precise time
profile. Three temporal slices are cut and blended together with trans-
parency values α0, α1 and α2. A background slice is also cut (diago-
nally) to provide spatial context.

around after its brief identification in the profile; the profile thus serves as a video

index. The mapping from the volume to the 2D profile reduces the data dimension

but keeps the time information. Our goal is to expand spatial probing across the

field of view in order to include more targets in the temporal profile. In addition to

the time, shape and location should be preserved for target identification and action

understanding.

Assuming targets such as humans and vehicles have an obvious translation di-

rection M on the 3D world, then there is a principal pose direction H associated
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Figure 4.2. Cutting a temporal slice along the time axis in the video
at a location where apparent motion exists. (a) Video frames, (b)
Temporal slice, (c) A condensed image of video obtained by averaging
pixel values in the volume in y direction for observing flow. The traces
of people are visible in it. (d) A histogram of flows in the condensed
image.

with target objects. The projection of the object motion in the image is m=(u,v)

known as image velocity, and the projection of principal pose direction in the image is

h = (hx, hy). E.g., H can be the standing direction of humans in case of pedestrians,

or a horizontal direction on a vehicle orthogonal to its moving direction. Figures

4.3(a) and 4.3(b) is an illustration of objects with principal pose directions in the im-
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age and in general, M ⊥ H. Other 3D motion of targets such as rotation, translation

along a camera ray, deformable and articulate body motion, and shaking or waving

of natural objects are projected to the camera as minor motion.

(a) (b)

Figure 4.3. Sampling foreground motion with a line in the video frame.
A foreground object with a principle pose direction passes a sampling
line with the flow vector m in the view. Such a setting preserves the
shape of object with minor deformations.

4.1 Directional Flow for Locating Sampling Lines

Because the background is static in a video, m=0, and its trace is along the time

axis throughout the video volume. However, a translating object as foreground leaves

a trace non-parallel to the time axis, i.e., m 6= 0. We obtain a temporal slice Ii(t, l),

as described in chapter 2, by sampling the pixel data on a line l over consecutive

frames, where l satisfies the equation (a, b) · (x, y) = c. In case of the temporal profile

described in chapters 2 and 3, l satisfies the equation x = c. So for simplicity, l

can be parameterized by y (or x) only so that the temporal slice becomes Ii(t, y)

(or Ii(t, x)) with y mapped from l. If the orientation of l is set non-parallel to local

motion direction m in the video, the foreground will leave shapes in the temporal
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slice. Hence, we choose the orientation of line to sample apparent translational flow

as follows:

Condition 1 : The fixed sampling line l should be set to intersect a translational

flow to capture meaningful shape in the temporal slice, rather than aligning it with the

flow, note l×m 6= 0.

Under this condition, a sampling line is as orthogonal to flow m as possible, subject

to another condition next for generating better shapes of targets in the temporal slice.

Condition 2 : Sampling line l should be aligned with one of principal poses h

that is more orthogonal to motion m in the view. Thus, a target moving across l will

not leave skewed shape in t direction in the slice.

Many surveillance cameras have a tilt angle overlooking a large area from a high

position (bridge or building). Vertical direction H determines poses h to be slightly

slanted at different locations in the video frame. The h directions pass through a

vanishing point far below the frame, because vertical vectors are parallel to H in

3D space. If a vertical pixel line is used to sample the motion in the frames, the

shape of object will be skewed along t axis in the profile, which may increase the

difficulty in recognizing the object appearance. We avoid this skew of upright poses

by following condition 2. By selecting several building rims or poles in the view, the

vanishing point can be computed at the crossing of their extensions. The pose h at

each image position is the vector connecting the vanishing point and that position.

Such a sampling line captures close-to-horizontal m in the frame. If a close-to-vertical

motion appears in the video, the sampling line will be chosen to align with the second

principal direction more orthogonal to m.

4.2 Spatially enhancing the profile by blending temporal slices

As discussed above, we set multiple lines in the field of view along the principal

pose of targets to sample the video volume. These lines are set at equidistant intervals

that are wider than the object size, in order to avoid a target crossing two sampling
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lines simultaneously and cluttering the profile. We blend these slices together ac-

cording to their spatial locations to create a multi-position temporal profile of video

that shows the foreground flow clearly. The algorithm for blending is similar to that

mentioned in chapter 3 and depicted in figure 3.1. The only difference is that there is

more than 3 slices involved in the blending process. A foreground extraction scheme

described in 3.1, was used so that a slice without target passing will not contribute

to the final profile. A target may pass one or more sampling lines and leave multiple

copies in the profile. Although the interval of sampling lines can be set small, the

integrated profile may become dense with targets. We thus keep a limited number

of sampling lines to avoid cluttering the profile. In order to probe locations with

apparent motion flow, we measure the flow amount in the FOV. A condensed image

as described in chapter 1.2 was used to build a motion histogram. As visible in fig-

ure 4.2 (c), motion condensed image indicates the global motion trajectories in the

video. Background traces are parallel to the t axis and it can be inferred that edges

non-parallel to the t axis present horizontal motion in video. By differentiating the

condensed image along t direction, we remove the background and find foreground

traces. Then we accumulate the number of foreground traces in t direction, and find

the spots with large values in the histogram (figure 4.2(d)). Locations for line cutting,

though not necessary to be unique, are obtained.

Condition 3: The sampling locations of lines are obtained at the places where

the amount of translational flow are high.

This condensing process is also implemented horizontally for selecting close-to-

horizontal lines to sample the camera view. The lines can cover a large span in the

view for finding flows in vertical direction.

To include all the moving targets from the entire FOV as complete as possible, we

blend vertically orientated temporal slices together for the final 2D temporal profile.

To reflect more spatial information in this dimension-reduced profile, we use different

transparencies for slices according to their spatial positions in the video frame. This
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creates a haze effect for visualizing the distance of slices from one margin of the video

volume, either left or right depending on the 3D scenes.

Similar to what was discussed in chapter 3, each temporal slice Ii(t, l) has a

blending coefficient αi that determines its contribution to the final temporal profile.

The profiles are blended using equation 3.5. In other words, we blend consecutive

slices of extracted targets onto a background slice to provide a context independent

of background removal. If the value of maski is zero at a position, the color value in

Pi−1 is used. The coefficients αi decrease for slices away from a frame margin such

that targets fade away in depth. As long as the slices are blended in such a spatial

order, the motion direction can be recognized in the resulting profile. Figure 4.4 shows

the final results of multi-position temporal profile for observing opacity changes on

moving targets.

Figures 4.5, 4.6 show examples where pedestrians walk on campus and vehicles

move at an intersection. Moreover, through a series of copies of a target, its image

velocity can be estimated by matching them in consecutive foreground slices (fig-

ure 4.5), under the condition that the different targets are not occluding each other

severely.

Figure 4.4. Temporal profile of a video recording a path by sampling
slices (red lines) with the opacity reduction from left margin.

4.3 Haze Effect and Background Embedding

The order of transparency changes from opaque to transparent to show an in-

creasing depth in the scene. Now let us determine the order to fade temporal slices.
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Figure 4.5. Setting sampling lines evenly at all positions for a profile.
(left) An interface for specifying sampling locations (red lines). (right)
Temporal profile of the entire video. The passing directions of people
can be figured out from the change of transparency. The higher the
transparency, the more the target appears on right in the space.

Figure 4.6. Global motion in temporal profile generated at an inter-
section. Series of copies of cars are extracted when they move from
right to left in the view (from transparent to opaque in profile). The
vertical displacement in the profile is due to image velocity compo-
nent v than in the y direction. The time delay is shorter for cars than
for pedestrians because of a faster speed of cars in the view.

Taking the example of close-to-vertical slice for near-horizontal motion/path, scene

layout can be close at either margin of the frame as shown in figure 4.7. This is

determined by the camera orientation: (a) right facing, (b) orthogonal, or (c) left

facing with respect to a path regardless of the camera tilt. Here we denote left-close

scene (a) and right-close scene (c) as LC and RC layouts, respectively. In addition,

a lower position in the frame normally has a closer depth, if the camera viewpoint

is set high. Overall, the transparency assigned to different slices should reflect the

target depth.
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Figure 4.7. Determining the transparency in blending slices to reflect
depth in 3D scene layout. (Top) Camera orientations w.r.t. major
motion. Green dash lines show major two-way path. (Bottom) Tem-
poral profile with opacity changes on moving targets and background.

We select the left margin to be opaque for LC layout, and right margin to be

opaque for RC layout. For orthogonal case (b) or multiple paths without a dominant

one, either side can be selected as the opaque margin. The transparency then increases

(α decreases) towards the other frame margin as described equation 3.5. Using this

strategy, the generated temporal profile shows a close target at a low position with

high opacity. If the target is away at a far depth, it becomes small at a higher

position in the temporal profile, rendered more transparent as illustrated in figure

4.7. Based on this design, the transparent-to-opaque change of target along the

temporal profile indicates a leftward motion in LC layout, or a rightward motion in
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RC layout. Inversely, the moving direction presented by an opaque-to-transparent

transition can also be derived for LC and RC layouts easily.

With dynamic targets listed along the temporal profile, one still cannot grasp

the scene layout. Targets with less movement are also missed in temporal slices.

Our next effort is to embed the entire background view into the temporal profile to

remind the spatial locations and target existence. This embedding is implemented in

the period without foreground to avoid overlapping with dynamic targets and yielding

incorrect spatial relation. We cut a diagonal slice in such a static period across all the

background traces in video as shown in figure 4.1. The cutting direction is from left to

right in the volume for all layouts. This makes background visible from sideways and

keeps the definition of temporal profiling correct, i.e., for any point visible in Pi(t, y),

it is in frame t in the video. We also fade background slice to show the depth hazing

effect. The opacity is proportional to the image position x changing from opaque to

transparent for LC layout and from transparent to opaque for RC layout along the

time axis, respectively. This is consistent with the order for temporal slices in varied

depths. Figure 4.8 shows the results with LC background embedding. This work has

also been publish by us in [19].

Figure 4.8. Results of temporal profiles from surveillance video with
background embedding and foreground hazing. Original frames are
also shown.
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5 VELOCITY BASED TEMPORAL PROFILE

In chapters 3 and 4, we proposed solutions to generate an intuitive representation

of the video. However, this framework still has shortcomings in handling special

cases. For example, if the targets in the video have non-translational motion, such

as a person standing in the same place while delivering a speech, or dancing the

aforementioned solutions do not perform well. To handle targets with non-uniform,

non-translational motion in our temporal profile we will need fine level motion analysis

on targets. This means that we will need pixel level velocity information about the

video volume. This is a classic problem and many works have proposed methods

to measure the optical flow in the video, [20], [21]. However, in addition to being

extremely expensive to compute, optical flow methods tend to estimate optical flow

for regions of images. This means that an object could be estimated as multiple

regions with different flow values and this would not be ideal for our work as part of

the object will have ”false” zero values because they fall on the boundaries of these

approximated regions.

We thus take a simple, yet effective approach to estimate the image velocity of

each pixel in the video. In the following sections we will give a complete overview

of our approach to estimate image velocity. Once we have calculated the image

velocity for each pixel, we can use this information to enhance our temporal profile

and extend it one step further. We will then explain how we utilized this to form a

new representation of video and construct a ”Velocity Based Temporal Profile”.

5.1 Object Motion and Image Velocity

A more general analysis of objects in the scene is possible, but for the purpose

of this study we focus on motion analysis of objects with regards to a static camera.
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In other words, the only apparent motion in the scene is from the foreground object.

Assume an object is located at point P1 = (X1, Y1, Z1) in the 3D world at time t1,

and at point P2 = (X2, Y2, Z2) at time t2. The projection of these points onto the

video volume will be p1 = I(x1, y1, t1) and p2 = I(x2, y2, t2) respectively. Considering

the brightness consistency constraint, we can say that the intensity value of voxel p1

at time t1 equals to that of point p2 at time t2.As mentioned in [22] this results in

the following equation:

∂I

∂x

dx

dt
+
∂I

∂y

dy

dt
+
∂I

∂t

dt

dt
= 0 (5.1)

And we can equally write

Ixu + Iyv = −It (5.2)

where u and v are the components of velocity along the x axis and y axis respec-

tively in each frame of the video, and Ix, Iy and It are the derivatives of image at

(x,y,t) in the corresponding directions. So we can re-write the equation as :

∇I · ~m = −It (5.3)

Figure 5.1 is a clear illustration of this movement in the video volume.

5.2 Our Approach to Calculating Image Velocity

In order to study the horizontal motion of objects in the video, we can decompose

the video volume into horizontal temporal slices. If we set a sampling line at each row

of video frames, we can get h temporal slices Ij(t, x), j = 1, ..., h for a video volume,

where h is the frame height. These temporal slices reveal motion traces of objects for

the duration of video, and by analysis of the motion in these slices, we can obtain

image velocity values for each pixel position. Id est, each one of these slices can be

used to find the image velocity of one row of our temporal slice at the time targets

cross it.
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Our task therefore is to find the horizontal component of image velocity,u in each

slice. Image velocity of objects on our vertical sampling slice, equals the slope of the

trace it leaves horizontally at each time instance t. As depicted in figure 5.2, the

velocity along x axis noted u captured in our horizontal slice equals the displacement

along the x axis between each two frames; Hence we calculate the horizontal velocity

by calculating the gradient in each horizontal slice. For objects with non-uniform

motion, for parts of the object that cross our sampling line slowly, the traces look

stretched and tend to clutter the temporal profile. The information that these near-

static parts of video provide is not key, and it might even be undesirable as they

occlude and destroy other parts of the object that would otherwise appear clearly.

For example, the waving of the tree leaves in the wind might cause some of the leaves

to cross the slices back and forth while others might stay static. If we analyze the

motion of the leaves, we would want to see the ones crossing back and forth, but not

the ones that are static.With this said, it makes sense to give more weight to objects

passing the slice with higher velocity than those otherwise. We use the velocity of

each pixel calculated at the time it crosses our profile to determine the contribution

of that pixel to the final profile. Since the vertical velocity of the object v only leaves

skewed shapes in the slice as mention in 2.3, we only consider u as a weight. Hence

we will find u by finding the slope of the traces in the horizontal slice Ij(t, x).

Due to the nature of temporal slices, once an object crosses the slice it leaves a

clear trace on it. This means that we will get clear edges that helps us determine

the velocity of the object when passing the slice. However, because we are cutting

the object off by sampling it we are creating false edges that do not represent the

motion of the object. These edges are usually because the object has some vertical

motion v and so it does not stay at the same height for the duration of the video.

They represent the boundary of object when they are crossing the horizontal slice

and usually form edges along the x axis in the slice Ij(t, x).
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Figure 5.1. Diagram of an object moving from point p1 to p2 in the
video volume. The object has both vertical and horizontal motion
(m=(u,v))

We work our way around these ”false edges” by averaging the horizontal slices to

get a more robust slice that is representative of object motion. We utilize a horizontal

condensed image, similar to 1.2 as

Īy(t, x) = I(x, y, t) ∗ g(y) (5.4)

where

g(y) =

1, |y| ≤ N
2

0, otherwise

(5.5)

and N is the number of frames averaged vertically. The false edges along the x

axis would not appear as strong because they are not representing the motion of the
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Figure 5.2. Projection of motion vector m unto the horizontal slice
Ij(t, x). Only the horizontal motion is apparent in the horizontal slice.

object, hence by averaging along the y axis they become weaker. The real edges

however preserve their strength as they are representing the motion of the object. It

is noteworthy that the choice of N is not very critical for serving our purpose, and it

can be chosen anywhere between 5 and 10.

figure 5.3 shows A clear flow diagram of our approach to calculating the image

velocity of objects for the temporal profile. After obtaining the condensed image,

we calculate the gradient in the x and t directions denoted ∇xĪy(t, x) and ∇tĪy(t, x).
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Based on the values of these differentiations, we can compute the orientation and

magnitude of the gradients at each point as:

γ(t, x) =

arctan(∇tĪy(t,x)

∇xĪy(t,x)
), ∇xĪy(t, x) 6= 0

±π
2
, otherwise

(5.6)

‖∇Īy(t, x)‖ =
√

(∇xĪy(t, x))2 + (∇tĪy(t, x))2 (5.7)

Where γ(t, x) is the computed gradient orientation for each point and ‖∇Īy(t, x)‖

is the magnitude for each point. However, the gradient image ∇Īy(t, x) will contain

some noise due to camera shakes and illumination variations in the scene. To handle

such noise, we use the neighboring information of the pixels to determine a more

robust direction for each location. We apply a median filter on the orientations

(independent of magnitude), to get a more smooth orientation for each region. Our

task is then, to find a major orientation for each row in the condensed image, that is

for each time instance. We should explain that the magnitude ‖∇Īy(t, x)‖ is not very

meaningful in the condensed image or the horizontal slice because it represents the

strength of the edges found; This means that an object that has more contrast with

the background will have stronger edges. However, we can still use the magnitude the

determine the more important orientations in the image. For example the gradient

orientation for position x0 at time t0 in the image may equal to zero γ(x0, t0) = π
2
.

This might mean that the gradient orientation at point (x0, t0) is equal to π
2

or that

∇tĪy(t, x) = 0,∇xĪy(t, x) = 0. This is where we can use magnitude to rule out these

unwanted cases and get more robust major orientation for each time instance of the

condensed image. Here γ(t, x) is the major orientation of the gradient. However,

to find the velocity of the objects, we need to find the tangent of the traces. So

we will find the tangent direction of a gradient vector denoted θ(t, x) as the vector

perpendicular to γ(t, x) such that it is pointing to the direction where t is increasing:
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θ(t, x) =


γ(t, x)− π

2
, −π ≤ γ(t, x) ≤ −π

2

γ(t, x) + π
2
, −π

2
≤ γ(t, x) ≤ π

2

γ(t, x)− π
2
, π

2
≤ γ(t, x) ≤ π

(5.8)

Where θ(t, x) is between −π and π. We want to take the average of orientation

values where the magnitude values is more than a threshold δm. Since θ(t, x) is

a circular value, we have to take the average of each component separately. This

actually simplifies our work since we are only interested in the horizontal component

u. Thus we calculate the normalized horizontal velocity denoted as:

u(t, x) =
1

tan(θ(t, x))
, ∀

{
θ(t, x)

∣∣∣∣ ‖∇Īy(t, x)‖ > δm

}
(5.9)

And the average of normalized horizontal velocity as:

¯u(t) =
1

Nm

Nm∑
u(t, x) (5.10)

Where Nm is the number of elements that satisfy the condition in equation 5.9

Each condensed image Īy(t, x) will the contribute to calculate one row of the velocities

in our motion temporal profile Ii(t, y).
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Figure 5.3. Flow diagram of determining image velocity of objects
from horizontally condensed images. Each condensed image provides
velocity values for one row of our velocity based temporal profile
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6 PROFILES FOR PANNING CAMERAS

In this chapter we will cover an extension of our work that will make it usable for

videos with smooth panning motion. Aside from static surveillance cameras, panning

cameras are the most commonly obtained surveillance video cameras. Panning is

usually achieved by the means of a motor rotating the camera along an axis with

a constant velocity. Hence it is reasonable to assume smooth panning motion for

surveillance videos. Figure 6.1 shows the panning motion of a surveillance camera.

Figure 6.1. Panning motion of a camera along the x axis.

In this chapter we will analyze the motion of the camera, in order to transform the

panning camera video to a panorama-like static video. We can then use any of the

above mentioned techniques to obtain a temporal profile from this video sequence.

For simplicity, we will focus on cameras with smooth panning motion along the x

axis, but this study can easily be generalized to cameras with smooth motion along

one arbitrary axis.
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Let us assume that a camera overlooking a scene is smoothly panning with the

constant angular velocity ωc. So the movement of objects in the scene will be with the

same velocity but in the opposite direction denoted −ωc. If we obtain a condensed

image of this video, C(x,t) as described in section 1.2, all of the traces will be facing

the direction opposite to that of the camera movement, as you can observe in figure

6.2.

Figure 6.2. Condensed image of a camera with smooth panning motion.

According to section 5.2, we know that the velocity of the camera movement equals

the slope of the trace it leaves in the condensed image. Zheng and Cai give a more

detailed explanation on how the traces are connected in the velocity of the camera

in [12] and [23].

Hence by performing edge detection on images, we will find a displacement be-

tween two frames and correct the position of the video frames so that the will appear

as static. Figure 6.3 shows a flow diagram of detecting the camera pan speed, very

similar to that of figure 5.3 with the exception that we want to find the pan direction

as well as the magnitude.

Figure 6.4 is a condensed image of hand-held panning video. The video is panning

from left to right and the direction and magnitude of panning is detected.

Once we have detected the motion of camera, we can compensate for it by zero

padding the missing pixels in the video. This would mean we would have a smaller

field of view as we are panning out of the current field of view. We translate the

pixels back by the amount of motion, so that we get a stabilized video looking like
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Figure 6.3. Flow diagram of determining camera motion for panning cameras.

Figure 6.4. Condensed image of a video panning left and right repeat-
edly. Our method successfully detected the direction and magnitude
of camera motion.

a static video that gets smaller. Figure 6.5 is an example of the corrected video by

our method. Figure 6.5(a) is 3 frames of the original video, and the corrected video

frames are visible in figure 6.5(b). Figure 6.6(a) shows the results of the camera
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motion detection in the condensed image. After the correction we can obtain a

temporal slice as described in 2, by cutting the regions that stay in the field of video.

Figure 6.6(b) is an example of a temporal slice obtained after stabilizing the video.

(a) A video with smooth panning camera motion.

(b) Static video created by compensating the panning motion of the camera.

Figure 6.5. The original panning video (a) and the corrected static video (b)
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(a) Condensed Image of a video with smooth panning camera motion. The direction and magnitude

of the motion is shown as the blue bar chart in the middle of the image.

(b) The resulting temporal slice cut in the corrected video.

Figure 6.6. Detecting the motion of panning camera, correcting the
video and cutting a temporal slice in the video.
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7 RESULTS AND DISCUSSIONS

7.1 Localized Temporal Profile

We have tested various experimental videos including indoor and outdoor scenes.

For each long video, sampling locations are set manually at critical locations according

to the layout of the site in the field of view and motion directions there. A graphical

user interface is developed to perform video profiling on PCs in real time (60 frames

per second). The quality of the figures in profile is compatible to that in video frame

in most cases. Figure 7.1 displays several video profiles at different locations. We use

multi-lines to capture temporal slices with synchronized time stamps. Background

and foreground separation is implemented stably in the slices. Blending of slices

gives a natural visual effect. By incorporating the shape and temporal information

acquired in the profiles, we obtain global motion directions in the video. Finding the

frames with passing targets in the video becomes extremely efficient by scanning the

temporal profile. Furthermore, cutting off segments without targets from profiles is

straightforward.

Compared to tracking a target path in video frames, our framework yields the mo-

tion transition between critical locations as shown in figure 7.2. Distributed surveil-

lance cameras, even with non-overlapping viewing sights can take advantage of tem-

poral profiles. Because the spatial relation of distributed cameras is known, we can

model the cameras as a graph. Once a target is spotted in a camera, we only need

to search the neighboring cameras after that time instance. Determining the path of

target then becomes a single source shortest path problem. With temporal profiles

generated from all nodes, the search of following node becomes the search of profiles

with neighboring relations.
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(a) Temporal profile generated for a 2:31 min long video.

(b) Profile at two paths on two sides of a river, where aspect rates are different for people walking

at almost same speed at different depths.

(c) Sampling at an outdoor area with multiple paths. Leave waving is also observed in green part.

(d) Profile from a surveillance video at the entrance of a building with multiple targets crossing in

different directions at the same time.

(e) Sampling at an intersection where pedestrians and vehicles appear.

Figure 7.1. Experimental results of localized temporal profiles from
surveillance video, time axes are horizontal.

7.2 Multi-Position Temporal Profile

We have tested various videos including indoor and outdoor scenes. A GUI is

developed to perform the localization of sampling lines through the vanishing point

and profiling of entire video in real time. The spatial resolution of figures in profile

is the same as in video, except the deformation in the time domain. The background
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estimation on temporal slices uses a median filter on 400 lines but still maintains a low

cost in sorting to generate temporal profile in real time. The quality of background

removal does not affect the results very much because the extracted foregrounds

are displayed in transparent regions on a sampled slice without being influenced by

segmentation. Figure 7.3 shows some results of the Multi-Position Temporal Profile.

In many cases, the temporal width of a target is squeezed due to the limited

frame rate (60Hz) on close objects with fast speeds (figure 4.6). This distortion can

be reduced by selecting a camera direction less orthogonal to M in the 3D space

(as LC or RC layouts), which results in small —m— in video. A distant target has

wide shape, but pushing it far away sacrifices its resolution. The fading direction is

determined from the path/scene layout by human once for a surveillance camera.

By incorporating the layout and temporal information in the profiles, we can

obtain global motion directions in the video. The density or interval of target copies

in the profile is controlled by the interval of cutting lines, and is influenced from

target moving speed and depth. With close target intervals, temporal profile can

even be utilized to show actions in the video with efficiency. Targets may have a

collision in the temporal profile if they simultaneously appear on their sampling lines

at the same height, which can be separated by directing the camera to a side of

the path overlooking the ground (less horizontal or orthogonal to the path). Even if

targets collide, further examination around nearby frames can be trigged by clicking

the position in the temporal profile. The temporal profile can be viewed by human

operators in scrollable windows for target identification or analyzed by algorithms in

the future. The 2D profile has a much compact data size as compared to synopsis

video and can be further shortened by removing long periods without target motion.

It is not necessary to be the optimal video summary, but is particularly efficient for

surveillance video browsing.
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7.3 Velocity Based Temporal Profile

We have generated a mask using the method described in 5 and used this trans-

parency mask to blend our foreground into the traces obtained as the background

model. As you can see in figure 7.4 the velocity based temporal profile helped remove

some of the unnecessary artifacts created by non-translational motion of objects on

the sampling line. As you can see, the resulting profile is much more pleasant and

informative. Another example is visible in figure 7.5.

However, there are short coming related to this work. Similar to the Localized

Temporal Profile and Multi-Position Temporal Profile, the resolution of the profile

is dependent on the temporal resolution of the video. The cut position and angle is

chosen manually and greatly affects the spatial quality of the profile. The calculation

method is based on extracting a major gradient direction from the horizontal slice,

which means it could be subject to noise. As the major gradient direction is obtained

from averaging a neighborhood around the temporal slice cut position, objects that

occlude each other may introduce some noise in the profile.

7.4 Profiles for Panning Cameras

We have included a wide range of videos in our results. Figure 7.6 shows some

of such results. You can see that there is some shaking artifacts in the resulting

corrected video. This is due to minor shakes in the videos. As we mentioned before,

we are detecting the motion of cameras based on the fact that cameras are panning

with smooth motion. In future, we might want to remove such noise before detecting

the camera motion velocity.

However, simply using the condensed image might not give very robust motion

estimation for the camera. If a moving target is covering most of the field of view,

it will leave strong traces in the condensed image that will interfere with detecting

the major flow. Because such traces will have strong edges, the gradient orientation

detection will detect them as major flow. This means that they either interfere
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with the correctly detected flow, or they themselves are detected as major flow. As

a workaround about this problem, we can utilize the horizontally condensed slices

again.The idea is that objects that leave traces in parts of the video, will not be

apparent in all of th video height at all times. We can divide the video volume

into multiple non-overlapping sub-volumes, such that each sub-volume will have the

same width as the original video, but only a fraction of the original video height.

A condensed image is the calculated for each of these sub-volumes and the camera

motion is estimated for each. The major flow of the camera motion is the mode of

the detected motion in each slice.

7.5 Discussion

For the purpose of this study, we have built a database of more that 120 video

clips, all shot by us using an HD video recorder. These clips include videos of indoor

scenes as well as outdoor, with static shots and panning camera shots. Targets with

different motion characteristics such as humans, bicycles and cars were some of the

subject recorded for our study.

Furthermore, we developed a GUI to facilitate and advance our tests. Windows

was used as the main platform for our tests and all the code was written in C# in

a windows forms framework. Emgu CV library was utilized in most of our code to

accelerate the process and help with our proof of concepts. Our tests were run on a

Dell XPS desktop with 16 GB of RAM and i7-3770 3.40 GHz.

For all of the algorithms above, a non-parallel implementation has been provided

that leads to linear run time with regards to the video length. For a 2 minute video,

any of the above mentioned profiles will take less than 10 seconds to generate. The

velocity based temporal profile is has a preprocessing step that will sample the video

at all of the rows, which might take longer, but unfortunately a more detail run-time

analysis has not been done for this work.
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The current framework provides a linear mapping between the time in the video

and the spatial resolution in the image. As a future work, it is possible to generate

a non-linear profile that accentuates the events rather than the time. Such profile

will be extended longer for more eventful durations and will provide a more concise

representation of the non-eventful parts of the video. So a dynamic sampling rate

algorithm has to be implemented to sample more frames for the eventful parts of

video (maximum 60 fps) and less frames for the other segments. As another future

development direction, we could increase the density of sampling in the FOV as

opposed to a fixed set of sampling lines to capture events in periods when the field of

view is more busy to reflect on busy frames rather than frames with scarce motion.

This requires some analysis of the video frames and there would always be a trade-

off between the computational complexity and the amount of concise information

provided in each case.
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(a) Critical locations and their spatial relations,colors indicate transitions.

(b) Profiles showing transitions from one location to another.

Figure 7.2. Localized temporal profiles from four different locations
for finding transitions of people between locations.
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(a) A global temporal profile of scene with a path orthogonal to a horizontal camera direction. Tree

waving on a slice is included in foreground.

(b) Sampling at an outdoor path orthogonal to the camera with tilt down. Some targets only pass

three lines when the clip starts.

(c) Profile from a surveillance video at a building entrance with multiple targets passing in two

directions.

Figure 7.3. Experimental results of multi-position temporal profiles
from surveillance videos with background embedding and foreground
hazing. Original frames are also shown.
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(a) The initial temporal slice

(b) The mask used to generate the velocity based temporal profile. As you can see, areas with faster

motion have higher alpha values

(c) The velocity based temporal profile

Figure 7.4. Result of our Velocity Based Temporal Profile
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(a) The initial temporal slice

(b) The alpha mask used to generate the velocity based temporal profile. It is

apparent that the vehicles have higher velocity than bicyles, and bicycles are

faster than pedestrians.

(c) The velocity based temporal profile

Figure 7.5. Another example of Velocity Based Temporal Profile



52

(a) A panning video monitoring an intersection.

(b) A video panning a busy street.

Figure 7.6. Generating a temporal slice after correcting a panning video.
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8 CONCLUSION

This study proposed three original methods to generate a temporal profile of surveil-

lance video without time limit. The temporal profiles will not only provide an intuitive

summary of surveillance video, but also have accurate time-stamp on the moving tar-

gets. Moreover, they also provide certain spatial and shape information of targets

for further examination in the video frames. The image quality is compatible to the

video itself. It can greatly facilitate the fast searching and retrieval targets in large

databases of surveillance video. Different from spatial indexing methods, the pro-

posed profiles are continuous in time domain without length limitation, and displays

shape and spatial relationship in an inexpensive way.
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