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ABSTRACT

Iyer, Neeraj. M.S., Purdue University, May 2012. Machine Vision Assisted In Situ
Ichthyoplankton Imaging System. Major Professor: Gavriil Tsechpenakis.

Recently there has been a lot of effort in developing systems for sampling and auto-

matically classifying plankton from the oceans. Existing methods assume the speci-

mens have already been precisely segmented, or aim at analyzing images containing

single specimen (extraction of their features and/or recognition of specimens as single

targets in-focus in small images). The resolution in the existing systems is limiting.

Our goal is to develop automated, very high resolution image sensing of critically

important, yet under-sampled, components of the planktonic community by address-

ing both the physical sensing system (e.g. camera, lighting, depth of field), as well

as crucial image extraction and recognition routines. The objective of this thesis is

to develop a framework that aims at (i) the detection and segmentation of all or-

ganisms of interest automatically, directly from the raw data, while filtering out the

noise and out-of-focus instances, (ii) extract the best features from images and (iii)

identify and classify the plankton species. Our approach focusses on utilizing the full

computational power of a multicore system by implementing a parallel programming

approach that can process large volumes of high resolution plankton images obtained

from our newly designed imaging system (In Situ Ichthyoplankton Imaging System

(ISIIS)). We compare some of the widely used segmentation methods with emphasis

on accuracy and speed to find the one that works best on our data. We design a

robust, scalable, fully automated system for high-throughput processing of the ISIIS

imagery.
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1 INTRODUCTION

The name plankton is derived from the Greek adjective planktos, meaning “errant”,

“wanderer” or “drifter” [1]. Plankton typically flow with ocean currents. They are a

crucial source of food to larger aquatic organisms such as various fishes and whales.

Planktonic photosynthesis accounts for roughly half of the primary productivity on

earth and plays an important role in the ocean’s carbon cycle. Plankton abundance

and distribution are strongly dependent on factors such as ambient nutrient concen-

tration, the physical state of the water column, and the abundance of other plankton.

The study of plankton is termed Planktology and an individual plankton is referred

as a plankter.

By studying the patterns in plankton distribution we can learn about the effects of

climate change on the marine ecosystem. Since plankton are not harvested or ex-

ploited like fish or intertidal organisms, adjustments in distribution and abundance

can be attributed to changing environmental factors [2]. As plankton are indicators

of healthy aquatic environments, long-term studies have been carried out on plankton

since the 1930s with numerous research projects continuing today [2].

Current plankton net-based approaches as shown in Fig. 1.1 to studying meso- and

macro-zooplankton distributions result in many preserved samples. When high fre-

quency net sampling is conducted, the resulting effort to sort, identify, and quantify

organisms in the net samples can be extreme (e.g. our Straits of Florida (SOF)

study of billfish larvae yielded 156 net samples every month for two years, which

required ca. 12 person-years of microscope time to analyze). In comparison, digitally

collected data have the potential advantage of being sampled and analyzed much

more rapidly [3]. Where higher frequency (and higher resolution) sampling can be
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Figure 1.1. Collection of plankton using nets

accomplished while at the same time allowing for much faster data analysis, there is

tremendous capacity for improved scientific inquiry and monitoring.

With plankton net in hand as shown in Fig. 1.2(a), you can collect both microscopic

and macroscopic organisms that form the base of the marine food chain. The species

of plankton collected would be dependent on the depth of the water column being

sampled and the mesh size of the net. After the towing process is complete, rinse

the sides of the net with salt water. This pushes any plankton that are caught

in the mesh. Thus a concentrated sample of plankton would be obtained at the

bottom of the net. These samples can be observed using various magnifying devices.

Current technologies available for the study of many zooplankters remain limited

in comparison to the spatial-temporal resolution and data acquisition rate available

for physical oceanographic measurements. Though net technology has become quite

sophisticated (e.g. MOCNESS), enabling vertically discrete net samples coupled with

detailed environmental data, net samples still require the task of being processed

manually, a time-consuming and costly effort. The use of nets significantly reduces

resolution as the nets integrate the organisms over the sampling distance and depth.

Biological oceanographers have been advancing methodologies for more rapid, higher

resolution sampling of phyto- and zooplankton via various acoustic and video tech-

nologies (e.g. OPC [4], VPR [5], ZOOVIS [6], SIPPER – see Wiebe and Benfield
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(a) Obtaining Planktons from

the Nets

(b) Planktons under the mi-

crosope

(c) Planktons under the mi-

crosope

Figure 1.2. ISIIS

2003 for major review of zooplankton sampling advancements). These technologies

resulted in high-resolution data suitable for identifying copepods and benthic inver-

tebrate larvae with spectacular results (Davis et al. 1992). However, these techniques

are typically not applicable to the substantially rarer meso- and macro-zooplankton

owing to small image volumes.

The critical issue for our interests (i.e. Ichthyoplankton and other dilute plankton)

is that the VPR (Video Plankton Recorder), and its cousins, sample a relatively small

volume of water that is inadequate to quantify plankton in a wider size range. For

example, while copepods and some invertebrate larvae may exceed densities of 1-10 l-

1, ichthyoplankton and larger zooplankton typically occur at densities of ca. 0.01-0.1,

i.e. 1-2 orders of magnitude less. To more broadly sample rarer zooplankters, other

techniques (SIPPER and OPC) have involved imaging and/or counting plankters by

size as they pass through a narrow tube, but this approach does not enable in situ

observations and can distort fragile plankton into non-identifiable shapes.
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Figure 1.3. [3]. The number of in situ imaging systems is increasing
rapidly. These are examples of some zooplankton and micronekton imag-
ing systems (A-J) along with their corresponding (a-j) representative re-
gions of interest (ROI’s). Note that in most cases, the ROI’s have been
cropped from a larger image and have been resized to fit in the figure.
None of the ROI s are to the same scale. A. Ocean DiVA: Digital Video
Acquisition System. Image: C. Pilskaln, SMAST B. ISIIS : In Situ Ichthy-
oplankton Imaging System. Image: R. Cowen, RSMAS C. LOPC: Laser
Optical Plankton Counter mounted in a ring net. Image: A. Herman,
DFO Canada D. SIPPER : Shadowed Image Particle Profiler and Eval-
uation Recorder mounted below an autonomous pontoon vehicle. Image:
A. Remsen, USF E. UVP: Underwater Video Profiler. Image: G. Gorsky,
Laboratoire Oceanography Villefranche surmer F. VPR: Video Plankton
Recorder mounted on BIOMAPPER II vehicle. Image: M. Benfield, LSU
G. VPR II : Video Plankton Recorder II mounted in the Flying Fish high-
speed towbody. Image C. Davis, WHOI H. LAPIS : Large-Area Plank-
ton Imaging System. Image: E. Horgan, WHOI I. ZOOVIS -SC: Self-
Contained Zooplankton Visualization System. Image: M. Sutor, LSU J.
ZOOVIS : Zooplankton Visualization System. Image: M. Benfield, LSU.
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Table 1.1
Comparison of plankton imaging systems

System sampled

volume

Pixel

Resolu-

tion

Size of smallest object

theoretically resolved

(based on 10 pixel ob-

ject)

Deployment

speed

ZOOVIS 1 L/s 56 m 0.5 mm 0.5 m/s

VPR 2 L/s 10 m 0.1 mm 6 m/s

SIPPER 10 L/s 50 m 0.5 mm 1 m/s

UVP 6 L/s 175 m 0.2 mm 1.5 m/s

LAPIS 360 L/s 500 m 5 mm 1 m/s

ISIIS-1 70 L/s 70 m 0.7 mm 2.5 m/s

ISIIS-2 140 L/s 70 m 0.7 mm 2.5 m/s

Figure 1.4. Plankton Size and Density
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These approaches to plankton classification either assume that specimens or regions

of interest (ROIs) are already segmented (this is done manually) and thereby focus

on the recognition methodology or they focus on the visual features to be used for

recognition, assuming that the data is free of noise (intensity ambiguities). Thus

the first step involves a tedious work of manually segmenting large amounts of data,

which produces isolated plankton images which are easy to recognize. The second

approach assumes the existence of a single extracted specimen in the examined image,

where the specimen outline or region features can be clearly distinguished visually

and computationally. They focus on the visual features to be used for recognition,

assuming that the data is free of noise (intensity ambiguities) [3, 7].

To address these problems, a high-resolution towed plankton imaging system, the

In-Situ Ichthyoplankton Imaging System (ISIIS) as shown in Fig. 1.5(a), was built,

capable of imaging water volumes sufficient to accurately quantify even rare plank-

ton (e.g. larval fish) in situ [8]. This imaging system produces very high resolution

imagery at very high data rates, necessitating automated image analysis. Since the

goal is the identification and quantification of a large number of specimens, whose

shapes can be relatively similar to each other, an automated system for detection and

recognition of specimens of interest is developed using computer vision and machine

learning tools.

We use the In Situ Ichthyoplankton Imaging System (ISIIS) to get high resolution

images of the planktons (see Fig 1.5(b). The vehicle frame is divided into four com-

partmentalized enclosures with imaging and optical equipment seamlessly integrated

into ISIIS ventral housings, with environmental sensors (e.g. CTD, O2, PAR, fluo-

rometry, ADCP) and electronics in the dorsal housings. The dive fins are positioned

ahead of the vehicle aligned with the tow point and away from the imaging pods. The

vehicle is designed to undulate between the surface and a maximum depth of 200 m.



7

(a) Launching of ISIIS-2 (b) Scanned Planktons

Figure 1.5. ISIIS

This Thesis describes an approach that automatically extracts and classifies speci-

mens of multiple classes of plankton from the digital images. In this work our goal is

to segment individual planktons from raw images and extract the best features from

a very large volume of data which will be used for classification and recognition of

planktons. We tackle both the problems of automatic segmentation of planktons and

recognition of multiple classes (around 20) in a scalable and efficient way. The data

collected by the ISIIS during few hours of collection would need atleast 20 man years

for manual processing which is not practical. If we cannot process this vast amount

of data faster the data would be use useless. Thus our challenge is not only to achieve

accuracy but also achieve high speed which can make the whole process of segmen-

tation, recognition and classification of plankton a fully automated high throughput

system.

We focus on achieving a balance between accuracy and speed for processing this

large amount of data. Some plankton are deformable and may have different shapes

depending on the point of view. They can vary in size and some of them can be

identifiable only if some small parts of the planktons are identified. The quality of
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Figure 1.6. Example images from each of 4 unique water columns: a) 5 m
depth at Stellwagen Bank, b) 15 m in southern California Bight, c) 10 m
in Monterey Bay, d) 30 m 40 km south of Rhode Island. Note differences
in background particles, ranging from very dense copepods (ca. 100 l-1)
in a), relatively clear water in b) very dense particulates in c) to dense
diatoms and some marine snow in d).
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the images also varies a lot depending on the quality of the water bodies. Different

planktons have different features which have to be used to classify them. We cannot

give the same weight to a set of features across all the classes. Thus all these issues

can make identifying planktons very difficult.

In our first part we focus on segmentation of ISIIS images to extract separate plankton

images and extract a set of features that are used for recognition. We did a compar-

ative study by implementing various segmentation algorithms. In order to achieve

high throughput we implement parallel algorithms and try to incorporate high level

as well as low level parallelism. For the segmentation we performed speed and ac-

curacy analysis to determine which algorithm works better in our particular case.

We implemented segmentation using K-means, Fuzzy C-means, Isodata Clustering,

Spectral clustering and K-harmonic means based clustering.

The issues we had to deal with during segmentation were preprocessing for removal

of noise, accurate segmentation and distinguishing noise and dust particles from the

plankton images. These images would then be used during the recognition phase to

quantify the various plankton.

Recognition of various plankton has its own set of challenges such as the plankton

may be deformable, the images being affected by the position with respect to the

line scanner and the quality of the water sampled. Therefore we cannot have a fixed

model for each plankton class. Also we cannot give the same weight to some features

over all classes. To overcome these issues we build a classification tree based on intra

class similarity and inter class variance. The tree is build bottom up with each leaf

node representing a concrete class, the internal nodes representing group of classes

having similar features and the edges of the tree having the set of features that distin-

guish the classes. Our method is different from the existing methods in the way that

our method is scalable to higher number of classes and gives different importance to
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features for different classes of plankton. Once the tree is built using the training

samples we simply traverse the tree based on the features instead of a “one vs one”

comparison to classify the plankton. Thus our method scales well even as the number

of classes increase.
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2 PREVIOUS WORKS

This thesis draws motivation from the work done by R.K. Cowen, C. Guigand, C.

Cousin, G. Tsechpenakis [9–13] which describes the ISIIS device and the methods

that have been implemented for recognition of plankton from the ISIIS images. This

thesis takes a different approach from what has already been explored in [9]. In [9],

they use the Scale Invariant Feature Transform (SIFT) for matching between the

detected regions and the organism images in our database. This method does not

scale well with the huge dataset of unknown images and with the increase in the

number of plankton classes. In [13] an active learning approach was taken to visual

multiple object class recognition, using Conditional Random Field (CRF) formula-

tion. This approach worked better but involved a human oracle that was responsible

for selecting the samples for active learning and therefore was not suitable for huge

volumes of data. Speed and Scalability was again an issue here. There have been

similar attempts in automatic classification and quantification of plankton. Some of

the approaches are explained below.

Current larval fish sampling studies are typically carried out with towed net systems,

which offer limited versatility and data analysis [10]. Nets collect organisms over the

sampling distance/depth profile(s) and hence do not provide a fine scale resolution

of organism population. Though net technology has become quite sophisticated e.g.,

the multiple opening/closing net and environmental sensing system), enabling vertical

resolution coupled with detailed physical data, Net tows require massive sums of time

to perform data analysis (approximately one man-year of post-processing work for

every two days at sea). Also since this system does not work in situ, it can damage

the more delicate planktons. Due to these major disadvantages, there has been more

focus on Visual Recorders for physical sampling of plankton. The visual recorders can
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be dividied into particle detection and image-forming systems. The particle detectors

e.g. optical plankton counter [4] use the interruption of light source by plankton to

detect and count the targets as they pass through a sampling tunnel. These might

damage volatile plankton while passing through the tunnel.

(a) Plankton tow net, 153-m pore size, 0.5-m

diameter (D:L=1:3)

(b) Multiple opening/closing net system

Figure 2.1. Net system for plankton study

Image-forming optics put to use various cameras to capture the organisms while tow-

ing the instrument. These began with a photographic camera in a net and currently

include towed system as the camera net system [14], the ichtyoplankton recorder [15],

Video plankton recorder (VPR) [5], in situ video recorder [16], in situ ichthyoplank-

ton recording system [9] and the shadowed Image Particle platform and Evaluation

Recorder (SIPPER) [17]. Also there are profiling systems, such as underwater video

profiler (UVP) [18] and holographic instruments [19, 20]. See Wiebe and Benfield [6]

for a review.

The majority of optical systems use video and typically scan small volumes of water

to achieve acceptable image resolution characteristics. The VPR scans plankton of

size between 0.1 mm to 1 cm [5]. It is capable of scanning 60 images per second.
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It is an in situ imaging system. It Cannot identify plankton to species level and

undersamples rare taxa (e.g., < 50/m3). The VPR and the scanned plankton are

shown below.

Figure 2.2. Video Plankton Recorder

(a) Copepod (b) Jelly Fish (c) Jelly Fish

Figure 2.3. VPR Scanned Plankton

[21] was one of the early Automatic Plankton Image Recognition systems that used

the images obtained from the VPR. they combined traditional invariant moment fea-

tures and Fourier boundary descriptors with gray-scale morphological granulometries

to form a feature vector capturing both shape and texture information of plankton

images. They used a Learning Vector Quanitization (LVQ) neural network classi-
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fier. [7] uses texture based feature, co-occurance matrices (COM) as the feature, and

a Support Vector Machine (SVM) as the classifier. This method does not scale well

with large data set and a large number of plankton classes.

The Zooplankton Imaging System (ZOOVIS) [22] has a camera is aimed downward

into a sheet that is 12 cm wide and 3 cm deep. By setting the depth of field to

match or slightly exceed the depth of the light sheet, only targets that are in focus

are illuminated. It has a depth range of 0-250 m, sampling rates of up to 4Hz. They

are typically limited to macrozooplankton (0.1 cm to 10 cm) and provide resolution

of 50 microns. It scans relatively small volumes of water.

Figure 2.4. ZOOVIS Zooplankton Imaging System

Figure 2.5. Image of a ciliate (Laboea, panel A), dinoflagellate (Protoperi-
dinium, panel B), and radiolarian taken with ZOOVIS-SC in Monterey
Bay in July 2006
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SIPPER [17] was developed by Center for Ocean Technology of the College of Marine

Sciences at USF in St.Petersburg. It uses a line scan laser camera to take a cross

section of all particles that flow through a 4 by 4 tube. This results in a continu-

ous digital image that is 4 inches wide. Its purpose is to enable scientists to get an

accurate count of types of marine plankton in a region of water. It uses High-speed

digital line-scan cameras and scans 36000 lines per second. It scans plankton of size

< 100µm at 96mm depth of field and 96 mm width. The towing speed is 3 knots and

scans 14 litres/sec. It does not scan in-situ and scans images and therefore might

affect the plankton while flowing through the tube.

In [23] an active learning approach for multiclass SVM classification was proposed.

From the training samples they select 15 strongest features from 29 features and the

recognition is based on these 15 features. These 15 features have the same weightage

across all the plankton classes. Multiclass SVM is basically multiple bi-class SVM.

Thus this method cannot scale well with the number of plankton classes.

(a) Sipper device (b) Tube through which planktons

pass

(c) sample SIPPER Image

Figure 2.6. SIPPER Images
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The Optical Plankton Counter (OPC) was originally designed at the Bedford In-

stitute of Oceanography as a remotely-towed sensor providing continuous real-time

information on zooplankton [24, 25]. The OPC complemented information obtained

from net tows and povided information overlap and higher resolution measurements.

(a) Optical Plankton Counter (b) Tube through which planktons

pass

(c) OPC Image

Figure 2.7. Optical Plankton Counter Images

The ISIIS [9] uses line scan cameras from the machine vision industry to scan the

water and provide a continuous imaging with 60 micron pixel at 4-5 knots speed.

The line scan camera is coupled with a back illumination technique (shadowgraph)

that provides exceptional resolution and depth of field while providing a telecentric

image (magnification is not affected by distance from object to lens). The data is

either ported to shipboard via Fiberoptic towing cable or recorded internally. ISIIS

instruments are designed to image large volume of water in order to study relatively

rare organisms. The vehicles and their imaging system are configurable and give the

versatility needed for studying a range of organism from small, abundant plankton, to

larger and rarer specimens (i.e fish larvae). It has a depth rating of 200m, the vehicle

is capable of pre-programmed undulation and can be towed off the side of the ship
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to avoid the disturbances created by the tether. Particular attention has been given

to provide for undisturbed flow path in front of the imaging viewports. This vehicle

is equipped with environmental sensors (CTD, PAR, Fluorometer) and a navigation

ADCP. Plankton images are transferred via fiber-optic to the ship. Below is the ISIIS

instrument and the images obtained from the device.

(a) ISIIS-device version 1 (b) ISIID-Device version 2

Figure 2.8. ISIIS device used to record plankton images

The ISIIS system utilizes a high-resolution, line-scanning camera with a Light Emit-

ting Diode (LED) light source, modified by plano-convex optics, creating a collimated

light field to back-light a parcel of water (Fig. 2.10). The imaged parcel of water

passes between the forward portions of two streamlined pods (pressure housings),

and thereby remains unaffected by turbulence. This results in very high-resolution

plankton images in their natural orientation and position. Quantification of organism

concentration and fine scale distribution is possible when a sufficient volume of water

is imaged this way. The imaging data and associated oceanographic data is ported

to the surface via 0.322 in copper/fiber optic oceanographic wire and recorded onto

a computer controlled raid array.
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(a) Larval Fish (b) Polychaete larva (c) Ctenophore

Figure 2.9. ISIIS scanned plankton

Figure 2.10. Light scheme using shadowgraph technique

Light passes through plano-convex lenses thereby establishing a pseudo-collimated

light beam. This is then refocused by a second field lens and it then impinges on

an imaging lens. The advantages this approach offers over other lighting techniques

include: high depth of field (Arnold and Nuttall-Smith 1974, Settles 2001), very sharp
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outlines of organisms and internal structures (facilitate automated recognition) and

telecentric image (magnification level not affected by distance from object to the lens).

Since the light rays are directed toward the imaging sensor, extremely low intensity

of light is required compared to any other lighting technique. Due to this we do

not need to use bright light that may deter organisms away from the imaging area.

We used a line-scan camera for imaging. This type of camera creates a continuous

image at high speed scanning rates, which allows for high-resolution images (vertical

resolution of 2048 lines and a 36 KHz scanning rate). This combination provides for

a continuous visual field that is approximately 13.5 cm tall with a 40 cm depth of

field [10]. Vertical lines on the plane are put together to form “continuous” images:

the horizontal direction corresponds to recording time.

The ISIIS provides high resolution images and scans a large volume of water compared

to the other instruments. The challenge here is that the data is so overwhelming that

we need to come up with parallel processing that is highly efficient in both speed

and accuracy inorder to quantify the plankton from the images obtained. The table

below shows the comparison between ISIIS with the other systems. We therefore use

the ISIIS images to develop an automated segmentation and recognition system that

is able to segment the planktons from the ISIIS raw images, extract the features and

is able to recognize and quantify them in a highly efficient manner. It performs the

scan in situ i.e. the planktons are not disturbed and therefore provide better images.
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3 METHODOLOGY

This thesis is broadly divided into two parts: segmentation and recognition. Seg-

mentation process involves an extensive comparative study to determine which seg-

mentation method works better than segmentation results in terms of speed and

accuracy. For classification we compare K-means [26], Fuzzy C-means [27], Isodata

Clustering [28,29], Spectral Clustering [30] and K-harmonic means [31]. For plankton

recognition and classification, we propose a novel classification tree approach which is

highly scalable. This chapter contains detailed descriptions of all work done as part

of this thesis.

3.1 Preprocessing and Noise Removal

Due to the use of line scanners any dust or particles on the sensor will appear to be a

line over the course of the entire scan. Other errors include blurring, spurious region

pixels. In order to remove the vertical lines introduced due to the dust or particles on

the sensor we take the fourier transform of the image, shift the fourier transform to

the origin and mask the mid range and then reverse shift and take the inverse fourier

transform. This eliminates the vertical lines as shown in Fig. 3.1.
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Figure 3.1. Example of original and cleaned image

3.2 Plankton Segmentation

Every single image obtained from the ISIIS contains multiple planktons of different

types. In order to be able to be able to quantify those we need to identify them

individually. Segmentation is very crucial for feature extraction and recognition. Ac-

curate segmentation is challenging because quality of images vary depending on water

quality, level of noise introduced, relative position of plankton with respect to the

system. The plankton are deformable and there are multiple classes of plankton, we

therefore cannot find predict the shape of the plankton to use during segmentation.

Segmentation methods have not been explored as most of the recognition systems

focus on recognition by assuming perfect segmented images. The existing plankton

classification systems assume that the images are manually segmented. This is not

possible due to the large volume of data and therefore we need an automated segmen-

tation process to achieve this. We concentrate on segmentation of the ISIIS images

to segment planktons by reducing the noise. We need to find the minimum bounding
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polygon which can hold the entire plankton in a way such that we are able to ex-

tract the best features to distinguish the planktons. Some of these are the shape and

appearance features such as transparency ratios, convex hull ratios, eigenvalues, mor-

phological granulometric features, geometric moments, intensity distribution. Due to

the challenges involved in identifying the planktons, care has to be taken to avoid

any loss of data during the segmentation phase. The segmentation process should be

able to neglect the noise and still be able to identify and extract the planktons. As

we scan a large volume of water, processing of these images at real time is also one of

the major challenges. This challenge is tackled by exploiting the power of multicore

systems by introducing different levels of parallelism. The end goal is to have a single

system on board the ship that can process these images as they are captured by the

ISIIS-2 equipment. We discuss the parallelism introduced in later sections. Thus

we work with the constraint of having a single system with multiple cores instead of

processing these images off shore on a distributed system of multiple processors.
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Figure 3.2. ISIIS Sample Image
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Figure 3.3. Identifying plankton

Figure 3.4. Planktons Segmented from ISIIS Image

Image segmentation [32] is considered to be the most common problem in computer

vision. It refers to the process of partitioning a digital image into multiple segments.
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The goal is to extract meaningful information from the images. Image segmentation

is typically used to locate objects in images. Image segmentation finds use in a wide

variety of applications such as medical imaging, face recognition, machine vision,

biomedical and biological applications etc. Many algorithms have been suggested in

this regard. Finding a best segmentation method is a non-trivial process. Also with

the large quantity of data, the speed of processing is also an important factor. We at-

tempt to find an approach that would run efficiently on a single system which could be

used on the ship to process the images at real time instead of transferring these huge

volumes of data to be processed elsewhere. Thus the challenge is to fully utilize a sin-

gle system in terms of efficiency without compromising on the quality of results. We

introduce different levels of parallelism in our approach to make the solution as effi-

cient as possible and to utilize the full functionality of a current multicore system [33].

Some of the methods of image segmentation are model based and appearance based.

The simplest form of segmentation is thresholding [32]. Thresholding classifies the

pixels of a given image into two groups (e.g. foreground and background). One group

would be the pixels with their gray values above a certain threshold while the other

group being those wth gray values equal to below the threshold. This approach is

very naive and as the appearance of plankton changes over time, spatially and over

different water quality / depth it is difficult to set a threshold. Model based segmen-

tation assumes the regions to be segmented have a repetitive form of geometry. As

we are scanning a large volume of data for multiple planktons, we cannot restrict our

segmentation to look for a particular set of shapes or geometry. Therefore we cannot

use model based techniques. The other approach could be supervised or unsupervised

clustering. As we have no training samples to start with we cannot use supervised

clustering. This leads us to unsupervised clustering. Unsupervised clustering refers

to the problem of trying to find hidden structure in unlabeled data.
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The simplest and widely used unsupervised learning is clustering. Since the intensity

of the pixels is the key feature to separate the foreground and the background we

have used some well known center based clustering and a graph based clustering. We

implemented the segmentation of planktons using K-means clustering [26], iterative

K-means, Fuzzy C-means [27, 34, 35], Isodata clustering [28, 29], K-harmonic Means

algorithm [31] and Spectral Algorithm (Shi and Malik) [30]. Many algorithms offer

better clustering than K-means [26]. We implemented both sequential and parallel

versions of these algorithms. The constraints for parallelism is to have the system

work on a single multicore system instead of a cluster of systems. This constraint

will allow us to process the image at real time on the ship itself while capturing the

images from the ISIIS-2 equipment. We found that K-harmonic means provided the

best balance in terms of speed and accuracy for the ISIIS images and therefore used

this in our system of automatic segmentation and recognition.

3.2.1 K-means

K-means is one of the simplest unsupervised learning algorithms that solves the well

known clustering problem proposed by MacQueen in 1967 [26]. It classifies a given

data set into “K” number of clusters, “K” being fixed a priori. The centroids are

initially selected randomly and each point is associated to the nearest centroid. Then

the centroids for each cluster are recalculated based on the number of points associ-

ated to that cluster. This process continues till the point the centroids no longer move.

Consider N data points and K disjoint subsets Sj containing Nj data points so as

to minimize the sum-of-squares criterion which is the euclidean distance in the given

feature space [26].

J =
K∑
j=1

∑
nεSj

|xn − µj|2 (3.1)
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where xn is a vector representing the nth data point and µj is the geometric centroid

of the data points in Sj. We use pixel intensity to calculate the centroids using the

Euclidean distance. The K-means finds clusters and stops when the clusters are fairly

constant over multiple runs. K-means is simple and easy to implement, it is very fast

and provides decent clustering. It however depends on the initial clusters that are

selected, it finds local instead of global maxima.

Complexity: Let tdist be the time to calculate the distance between two objects.

Each iteration time complexity O(KmNtdist) where

K = number of clusters (centroids)

m = number of dimensions

N = number of data points

For average I iterations to converge giving O(IKmNtdist)

The timing and accuracy results are provided in the experiments section.

3.2.2 Iterative K-means

K-means results are dependent on the initial clusters that are selected. Thus the

quality of K-means is highly dependent on the initial clusters and might vary with

different set of initial clusters. In order to eliminate the dependence on the initial

clusters selected, we could run the K-means multiple times with different initializing

centroids and then take the best result from the different runs. This will help us

eliminate the dependence on the initial clusters. It can be noted that due to multiple

runs, this method is will take a longer time to yield the clusters.

Suppose the K-means is run ‘p’ times to find the best clustering. The complexity

would be O(IKmNptdist) where all the other terms are similar to the K-means.

Though iterative K-means could give better result for some images, the same number

of runs might not be needed to process the other images. Thus deciding how many
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times to run the K-means depends on the images and therefore cannot be adjusted

or decided separately for each image. Therefore this approach is not very practical

under our current constraints.

3.2.3 Fuzzy C-means

K-means divides the sample space into clusters in a way such that each data point can

belong to only 1 cluster. This is considered to be hard membership. There is a notion

of assigning each data point to multiple clusters depending on the probability of each

data point belonging to each cluster. In Fuzzy clustering, each point can belong to

multiple clusters to a certain degree instead of belonging to just one cluster. The

points on the edge of a cluster, maybe in the cluster to a lesser degree than points

in the center of cluster. An overview of the various fuzzy clustering algorithms is

available in [36].

Consider N data points and K disjoint subsets so as to minimize the sum-of-squares

criterion which is the as shown below.

J =
K∑
j=1

N∑
i=1

wpi,j |xn − µj|2 (3.2)

where p is a parameter that determines the influence of the weights pε[1..∞], xn is

a vector representing the nth data point and µj is the centroid of the data points in

cluster j.

µj =

∑
xwk(x)x∑
xwk(x)

(3.3)

Any point x has a set of coefficients giving the degree of being in the Kth cluster wk(x).

With fuzzy C-means, the centroid of a cluster is the mean of all points, weighted by

their degree of belonging to the cluster.
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The degree of belonging, wk(x), is inversely proportional to the distance from x to

the cluster in the previous pass. It is also dependent on a parameter m which controls

how much weight is given to the closest center. The fuzzy C-means algorithm is very

similar to the K-means algorithm [27].

3.2.4 Isodata clustering

K-means, Fuzzy C-means have to set the number of clusters fixed a priori. But there

are situations when we would want the number of clusters to vary depending on

the situation. The Isodata clustering helps us to do the same. The Iterative Self-

Organizing Data Analysis Technique (ISODATA) method is a modification of the

K-means clustering developed by Ball et al. [28]. The ISODATA algorithm is similar

to the K-means algorithm with the distinct difference that the ISODATA algorithm

allows for different number of clusters while the K-means assumes that the number

of clusters is known a priori.

The procedure of the ISODATA is as follows:

1. Parameters required for the algorithm such as convergence condition for rear-

rangement, deciding small clusters, conditions for splitting and merging clusters

are determined and the initial cluster centroids are selected.

2. According to the convergence condition, clusters are rearranged using the K-

means method.

3. If all the clusters are in the given threshold and there is no variation, the

processing terminates.

4. Clusters are merged if either the number of members (pixel) in a cluster is less

than a certain threshold or if the centers of two clusters are closer than a certain

threshold. Clusters are split into two different clusters if the cluster standard
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deviation exceeds a predefined value and the number of members (pixels) is

twice the threshold for the minimum number of members.

Though the ISODATA method can adjust the number of clusters by division and

fusion, global optimal cannot be guaranteed and as it has more parameters than the

K-means method, adjustment of the parameter is still more difficult.

3.2.5 Spectral Algorithm

As opposed to K-means clustering, which results in convex sets, spectral clustering

does not make any assumptions on the form of the cluster. It can therefore solve

problems, such as intertwined spirals [30]. Spectral clustering foots on graph theory

and appeals to intuition. We take the help of adjancency matrix for partitioning the

data. An adjacency matrix is a means of representing which vertices (or nodes) of a

graph are adjacent to which other vertices. We explain below how such a matrix can

help in efficiently clustering the data points.

Given our data points x1, ..., xn, we construct a graph on the n objects where 2 objects

are connected by an edge if they are sufficiently similar. The similarity condition can

be any condition such as the distance between the 2 points. For e.g. we can add an

edge between every set of objects xi , xj whose distance is less than any ε. Other

ways to create this graph would be to use K-nearest neighbor graphs.

For every graph of this form, we can construct an n x n matrix M which is the ad-

jancency matrix, where Mij = 1 if there is an edge between xi and xj and Mij = 0

otherwise. We look at the eigen values and eigen vectors of this matrix to use for

clustering. Let us see how the eigen values and eigen vectors can help us with clus-

tering.
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Consider a very basic example, where we have 2 clusters and when we construct a

graph, we put edges between every pair of objects in the same cluster, and put no

edges across clusters. In this case, the adjacency matrix M of the graph is block

diagonal. (Assuming 4 objects in this example)

M =


1 1 0 0

1 1 0 0

0 0 1 1

0 0 1 1


The eigenvectors of this matrix are

(
1 1 0 0

)T
and

(
0 0 1 1

)T
. If we con-

sider the first one of these, the coordinates for which the eigenvector is 1 correspond

exactly to the items in the first cluster and the second eigen vector identifies the

objects in the 2nd cluster. In this simple example we can see how the eigen values

can help us in clustering the data. We can extend this to k clusters by using k eigen

vectors (corresponding to the largest eigenvalues). In the example we assumed there

are no edges between clusters, usually that is not the case. For these problems we

take the knowledge of graph cut to partition the data.

Given a similarity graph with adjacency matrix W, the simplest and most direct way

to construct a partition of the graph is by solving the mincut problem. For a given

number K of subsets, the mincut approach simply consists in choosing the partition

A1...Ak which minimizes

cut(A1, ..., Ak) =
1

2

k∑
i=1

W (Ai, Ai′) (3.4)

Where Ai′ is the complement of A. Here factor 1/2 is for consistency reasons, as we

are dealing with undirected graphs. For k > 2 we use the following equation given

by [30]

Ncut(A1, ..., Ak) =
1

2

k∑
i=1

W (Ai, Ai′)
vol(Ai

=
k∑
i=1

cut (Ai, Ai′)
vol (Ai)

(3.5)
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The running time of the normalized cut algorithm is O(mn) where n is the number

of pixels and m is the number of steps, the eigensolver takes to converge. Spectral

algorithms offer better segmentation results than K-means or other center based al-

gorithms but is comparatively slower. Thus processing of large volumes of data takes

fairly long time and it fails in the constraints of processing the images at real time.

3.2.6 K-harmonic Means

The performance of K-means depends on the initialization of the centers. This is

a major problem and can vary the quality of clustering results. K-harmonic means

algorithm (KHM) is a center-based clustering algorithm which uses the harmonic

averages of the distances from each data point to the centers as components to its

performance function [31]. It has been proven that K-harmonic means is insensitive

to the initialization of the centers. KHM is an interative algorithm that refines the

K clusters.

Let C = {cj|j = 1, ..., K} be K centers and

S = {xi|i = 1, ..., N} be N given data points, the KHMs performance function is

PerfKHM

(
[xi]i=1..n, [cj]j=1..k

)
=

N∑
i=1

K∑k
j=1

1
||xi−cj ||2

(3.6)

The quantity inside the outer summation is the harmonic average of K squared dis-

tances. The K-harmonic means has a “built-in” dynamic weighting function, which

boosts the data that are not close to any center by giving them a higher weight in

the next iteration. The complexity of K-harmonic means is the same as K-means.

It results in very good clustering results and is insensitive to the initial points cho-

sen. Thus on most occasions it provides better results over K-means and also has

a competitive speed when compared to the other segmentation methods. Thus for

our segmentation problem we use this inorder to achieve highly accurate segmenta-

tion results at a fairly high speed. The results and comparison of the performance is

provided in the experiments section.
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3.3 Recognition

Recognition of plankton is the major portion of the thesis work. There have been

many methods that have been tried and tested for plankton recognition. This is not

a trivial job for the following reasons:

1. The planktons of the same class may vary in size and also shape to some degree.

2. The images are dependent on the position of the plankton with respect to the

instrument.

3. They might be partially occluded due to the noise, dirt or other plankton.

4. Same set of features cannot be used for recognition across all the plankton.

5. Some plankton are rare with less training samples.

6. Many classes of plankton and large data set of unknown images.

7. Image quality varies depending on quality of water sampled.

8. Inter class similarity.

9. Intra-class variance.

Figure 3.5. ISIIS images from varying water quality
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There have been a variety of efforts directed at the computer-based analysis and

recognition of plankton images, from a theoretical, general and system-specific per-

spective (see overview by Benfield et al. 2007 [3]). Recent community efforts have

attempted to evaluate the most promising image analysis approaches, with an eye

to future developments in computing power and imaging capabilities. A variety of

image analysis techniques have resulted in success at categorizing extracted images

using both support vector machines (SVMs) that learn vector quantization (LVQ)

and artificial neural networks [7, 23,37]

Existing methods assume the specimens have already been precisely segmented, or

aim at analyzing images containing single specimens (extraction of their features

and/or recognition of specimens as single targets in-focus in small images. To the

best of our knowledge, even software that process images that contain more than one

specimen (e.g. ZooImage) cannot be used for large-scale processing of raw data for

three main reasons.

1. Such approaches largely depend on the clarity and resolution of the images,

which limits their scalability and robustness. Our goal is a recognition system

that is robust to noisy information directly from the acquired data, without the

need of any human interaction.

2. The recognition is often based on large amounts of manually cropped and labeled

specimens that are used for training the classification modules. This means that

tedious manual work is required to build extensive training libraries. One of

our goals is to minimize the manual effort for such libraries, using 10-30 sample

specimens per category.

3. The classifiers used for recognition strongly depend on the “goodness” of the

estimated specimens’ features (appearance), which implies that only “entirely

in-focus” specimens can be reliably recognized (again implying “perfect” data).
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As there are more than 15 classes of plankton, we cannot have a “one vs one” com-

parision to determine which class the plankton belongs to. Also we cannot build a

model for each plankton as the planktons can be deformable and the images are also

dependent on their position relative to the ISIIS system. We therefore propose a de-

cision tree based approach that has loose constraints as to how to define a class and

how to distinguish between plankton of different classes. We take the help of inter

class variance and intra class similarity to create a classification tree from the training

samples. The tree is generated in a bottom up fashion and depend on a probabilistic

model that decides how similar 2 classes are. A set of granulometric features are ex-

tracted from each of the plankton image. The following sections explain the feature

extraction, construction of the decision tree and the recognition of plankton species

using this decision tree.

3.3.1 Feature Extraction

We extract general granulometric features. As we cannot model the plankton class

granulometric features are ideal enough and any additional features might result in

overfitting problem where the model becomes so tight that slighly varying shapes of

the planktons might be misinterpreted as some other class or an unknonwn class.

Features used are in the following table.
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Table 3.1
Features extracted

Feature Description

Histogram

Min-Max Axis Ratio

Solidity Area
ConvexArea

Eccentricity The relative difference in

magnitude of the eigenval-

ues are thus an indication

of the eccentricity of the im-

age, or how elongated it is.

Mass

Hu Moment [38] moments which are in-

variant under translation,

changes in scale, and also

rotation [38].

Transparency Ratio #pixels in original image
#pixels within the contour

Convex Ratio #pixels in original image
#pixels in the convex hull

Eigen Value Ratio min(f1,f2)
max(f1,f2)

where f1, f2 are

egienvalues of cov(X,Y)
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We extract features for the training samples and use these feature vectors in the

construction of the Classification Tree. The same set of features are extracted from

unknown images for recognition process. The set of featues play an important part

in how accurately you are able to classify the plankton.

3.3.2 Recognition

There are many different classes of plankton. We group the classes based on simi-

larity and differences of features. we construct a tree based on these similarities and

differences of features. The tree is constructed in a bottom up fashion with each leaf

node representing a concrete class. The recognition process can be divided into 2

parts.

1. Building the tree (training) - A bottom up approach

2. Recognition (Testing) - A top down approach

In training, we start from the leaves that are our desired classes. Each class has

Feature Vectors. In order to see which 2 classes are highly similar we calculate the

feature difference between every 2 classes and select the classes which have the least

feature difference. We merge those two classes to make a parent class. This new class

is now used again with the remaining classes to find the feature similarity and the

process is repeated until we reach the root node. Once we obtain the root node we

can start with the recognition process. The leaf nodes represent the concrete classes.

The intermediate nodes represent the node generated from similar classes and the

edges of the tree represent the features that distinguish the left and right child of the

node.

In the recognition process (test) we start from the root node. We first extract the

features of the unknown image and calculate the feature difference of this unknown

image with the left and right child of the root. We then traverse to the node that
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has the minimum feature difference. We repeat this process until we reach a leaf

node. This leaf node is then recorded as the class of the unknown image. The figure

represents the feature vector from training samples for the various classes.

Figure 3.6. Leaf nodes of the tree

Figure 3.7. Feature Difference

Assuming X̄1 and X̄2 are highly similar, we combine those two classes to form a

parent node.
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Figure 3.8. Merging 2 leaf nodes to generate an intermediate node

We follow the same process until we obtain the root node. A sample tree is shown

below

Figure 3.9. Final Tree Generated
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Various methods have been proposed and implemented for recognition. These meth-

ods do not scale well as the number of classes increase. With many classes we can

no longer go for one vs one type of comparision to classify the plankton. The other

alternative to this is to use a decision tree. The tree gives us some advantages over

the other implementations. The complexity for recognition of each plankton after the

tree is constructed is O(lg n). Plankton as we know are deformable and therefore

it is hard to model and then fit the plankton. We therefore build an intuitive way

of distinguishing and thus classifying the plankton based on feature similarities and

differences.

We calculate the feature difference among every 2 class combinations. This feature

difference vector is the measurement of how much each feature varies from the other.

Each class can contain different number of feature vectors. We combine these feature

vectors to get a single feature vector for each class using histogram normalization as

it performs better than considering the mean value of the feature vectors. We use

histogram difference for the features and this would give us n∗(n−1)
2

difference vectors.

From these feature difference vectors we find which vector has the maximum number

of minimum values with respect to each feature.

We can thus obtain the 2 classes that are highly similar with respect to all the other

classes. The features that were the minimum are the features that are highly similar

and all other features can distinguish between these 2 classes. We merge the features

of these 2 classes to form a parent node. The distinguishing features are put on the

edges of this parent node which will be used during the recognition testing process.

In the list of tree nodes we replace the 2 leaf nodes with this parent node and repeat

the same process of feature difference, comparison and merging till there is just 1 node.

The edges in the tree are features that can distinguish between a left child and a right

child. Thus this method is an adaptive tree construction which will give different im-
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portance to different features (based on level) and requires no additional information

about the classes to be provided manually. This approach is highly scalable and works

quite well for large number of classes (15-20).

Once the tree is constructed, recognition process is fairly trivial. Firstly the feature

vector for the unknown image is calculated. Then we start from the root node and

get the probability of that feature value to the left and right child. This probabilistic

distribution will give us an idea about the inclination of the class to the left or right

node. Only the features on the edges are taken into consideration as the other features

are fairly similar. For each feature either the left or right node gets a point based

on how close it was to the value of the unknown plankton. We then traverse to the

child which gets the most score in this process. We continue the same process until

we reach a leaf node. The leaf node is then recorded as the class of the unknown

plankton. It can thus be seen that the recognition process takes O(lg n) time on

average where n is the number of classes. We only compare the features present on

the edges of the tree. Thus this method is very fast. The results and performance of

the classification and recognition are explained in the Results section.

3.4 Parallelism

The ISIIS scans a huge volume and transfers around 80Mb/sec. The data is so large

that processing them in a sequential fashion would take a lot of time. Also our at-

tempt was to build a system that could be used on the deck of the ship that could

process these images at real time. Image processing has a huge scope of parallelism

and we wanted to exploit this to our advantage.

Multicore processors have become the new mainstream architecture, and hence require

great attention from software developers. Multi-core chips will become ubiquitous in

the next few years. Soon embedded systems will have multicore chips as with a small
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increase in power, there will be a large increment in computational power. The ability

to utilize the full potential of multiple execution cores in a single chip for software has

proven to be difficult. Some of the challenges with programming parallel programs

are finding and implementing parallelism, dealing with race conditions and deadlocks

and eliminating performance bottlenecks. Determining how many cores should be

allocated for an application, use of heterogeneous cores for specific applications is

also a big challenge. Different types of parallelism can be achieved. These can be

fine grained parallelism (Instructions are executed in parallel, these require frequent

communication between threads), coarse-grained parallelism (block of codes run in

parallel, communication among the threads is not so frequent), Task Decomposition,

Data decomposition and data flow decomposition.

Deciding which parallelism would work best for a particular requirement is a tough

task and requires a lot of experience. With an improper parallelism option, the

speedup could be negative and thus the resulting solution could be much slower than

the actual single processor solution. Ideally, multiple cores should offer linear speedup.

But more often it is observed that sub-linear is achieved. This is due to the sequential

part of the program. If an application has half part parallelized and the other half

sequential, the speedup achieved would be only 75% instead of 100%. Other reasons

for the sub linearity of the code include hardware bottlenecks. Adding more threads

increases the communication and synchronization cost between the threads and could

also to contention of resources. This could decrease the throughput of the system.

As we can see, the process of segmenting and recognizing the plankton images is an

embarrasingly parallel situation where multiple images can be processed in parallel.

We try to introduce as much parallelism as possible to increase the speed of process-

ing. As our final goal is to build a system that can utilize the multicore features if

available, we identify parallel sections and test if introducing this parallelism would

be beneficial. As these images are high resolution we cannot process a large number
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of images in parallel due to memory restrictions. Thus our problem is to determine

at what granularity the parallism has to be introduced. We have a bit of coarse

grain parallelism where we try to process multiple images at the same time. Some

mid-level parallelism where processing of single image is split in parallel and also fine

grain parallelism where a set of independent instructions are executed in parallel. The

center based clustering methods are a perfect example where low level parallelism can

be highly exploited as the pixel level operations can be done in parallel. We have

not worked on specialized parallel algorithms for the segmentation but have worked

with parallelism as an add-on feature by recognizing the code sections that could

be parallelized without compromising on the quality and performance of the overall

system. The overall goal was to develop a system that does not necessarily need

a multicore system but would be able to utilize them if available. Also the system

would be on board the ship which should be able to provide real time processing of

the images. this restricts us from using multiple systems and processing the images

in a distributed environment.

Apart from the parallelism in the segmentation, the recognition is also parallelized

with the system recognizing multiple unknown plankton in parallel. The code for

feature extraction has also been improved with the addition of various parallel con-

structs in the code by extracting different features simultaneously and also optimizing

each feature extraction.

3.4.1 Sequential K-means pseudocode

K-means algorithm can be explained easily as below [39].

1. Choose some manner in which to initialize the mi to be the mean of each group

(or cluster), and do it.

2. For each example in your set, assign it to the closest group (represented by mi).
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3. For each mi, recalculate it based on the examples that are currently assigned

to it.

4. Repeat steps 2-3 until mi converge.

3.4.2 Parallel K-means pseudocode

This section adds coarse grain parallelism where multiple images are processed in

parallel. The code itself is sequential but each core is assigned a separate entity to

work with coarse grain parallelism. Calculating the distance of each pixel from the

centroid can be simultaneously done in parallel for all the data points. This can be

easily parallelized by parallelizing the for loop.

Figure 3.10. Coarse Grain Parallelism
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Figure 3.11. K-means Pseudocode

3.4.3 Sequential Isodata Clustering

This algorithm is based on the K-means algorithm, and employs processes of elimi-

nating, splitting, and clustering [35].

3.4.4 Sequential Isodata Clustering

Along with processing multiple images at the same time similar to the code shown

for K-means we can introduce parallelism in the isodata clustering to speed up the

process. As isodata clustering is similar to K-means to find the centroids, we can use

the same logic as in the parallel K-means to compute the euclidean distance of each
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point with the centroid in parallel. If there are more than 2 clusters that need to be

merged, the same can also be done in parallel.

3.4.5 Parallel Isodata Clustering

Along with processing multiple images at the same time similar to the code shown

for K-means we can introduce parallelism in the isodata clustering to speed up the

process. As isodata clustering is similar to K-means to find the centroids, we can use

the same logic as in the parallel K-means to compute the euclidean distance of each

point with the centroid in parallel. If there are more than 2 clusters that need to be

merged, the same can be also be done in parallel. Thus the pseudocode for this is as

shown below.
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Figure 3.12. Isodata Pseudocode
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3.4.6 Sequential K-harmonic Means Clustering

1. Choose any k points from N.

2. Calculate distances from all points in N to all centers in K.

3. Nmin = minimum distance for to any center for each point in N.

4. Recompute harmonic Averages and update K.

3.4.7 Parallel K-harmonic Means Clustering

As K-harmonic means is similar to K-means and works on each data point individually

we can easily parallelize the code along with processing multiple images at the same

time. The pseudocode is shown below.

1. Choose any k points from N.

2. Calculate distances from all points in N to all centers in K.

3. Nmin = minimum distance for to any center for each point in N.

4. Recompute harmonic averages and update K.
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Figure 3.13. K-harmonic Pseudocode
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4 RESULTS

We run our system for the evaluation of the Gulf of Mexico oil spill. By quantifying

and classifying the various plankton, the marine biologists can conclude the extent of

the effects of the oil spill.

We conducted our experiments on various systems with multicore processors and

found that the K-harmonic means provides better balance of accuracy and speed

in comparison with the other segmentation approaches. We also noticed that the

parallel implementation provides a better speedup compared to sequential approach.

We developed the code using OpenCV and OpenMP. The images were of 2048 x 2048

resolution gray scaled images. A single image could contain multiple planktons of

the same type or of different types. Quality of each image could be different for each

image which makes prediction of noise even more difficult.

4.1 Accuracy

Speed alone is not important. We need to get highly accurate segmentation results

to improve the recognition phase.

1. Accuracy (AC) is the proportion of the total number of predictions that were

correct. It is determined using the equation:

AC =
# correct predictions of positive and negative instances

# of predictions
(4.1)
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2. Recall or true positive rate (TP) is the proportion of positive cases that were

correctly identified.

TP =
# correct predictions of positive instances

(# incorrect predictions of negative instances +
(4.2)

# correct predictions of positive instances.)

3. False positive rate (FP) is the proportion of negative cases that were incorrectly

classified as positive.

FP =
# incorrect predictions of positive instances

(# correct predictions of negative instances +
(4.3)

# incorrect predictions of positive instances.)

4. True negative rate (TN) is defined as the proportion of negative cases that were

classified correctly, as calculated using the equation.

TN =
# correct predictions of negative instances

(# correct predictions of negative instances +
(4.4)

# incorrect predictions of positive instances.)

5. False negative rate (FN) is the proportion of positive cases that were incorrectly

classified as negative, calculated using the equation:

FN =
# incorrect predictions of negative instances

(# incorrect predictions of negative instances +
(4.5)

# correct predictions of positive instances.)

6. Precision (P) is the proportion of predicted positive cases that were correct.

P =
# correct predictions positive instances

(# incorrect predictions of positive instances +
(4.6)

# correct predictions of positive instances.)

We used 2000 images to determine the percentage of properly segmented planktons.

The results for various algorithms are as follows.
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4.2 Segmentation Results

In this section we discuss the timing and accuracy results for the segmentation alone.

Table 4.1
Confusion Matrixfor K-
means clustering

Predicted

Negative Positive

Actual Negative 300 200

Positive 180 1340

Table 4.2
Confusion Matrix for iter-
ative K-means clustering

Predicted

Negative Positive

Actual Negative 320 110

Positive 170 1400

Table 4.3
Confusion Matrix for fuzzy
C-means clustering

Predicted

Negative Positive

Actual Negative 290 190

Positive 190 1370

Table 4.4
Confusion Matrix for ISO-
DATA clustering

Predicted

Negative Positive

Actual Negative 400 90

Positive 70 1440

Table 4.5
Confusion Matrix for Spec-
tral clustering

Predicted

Negative Positive

Actual Negative 410 35

Positive 25 1530

Table 4.6
Confusion Matrix for K-
harmonic means clustering

Predicted

Negative Positive

Actual Negative 400 55

Positive 45 1500
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Table 4.7
Segmentation Results

Algorithm Accuracy TP FP TN FN P

K-means 0.82 0.88 0.40 0.60 0.11 0.87

Iterative K-means 0.86 0.89 0.25 0.74 0.10 0.92

Fuzzy C-means 0.88 0.93 0.39 0.60 0.13 0.87

ISODATA 92 0.95 0.18 0.81 0.04 0.94

Spectral 97 0.98 0.07 0.92 0.016 0.97

K-harmonic Means 95 0.97 0.12 0.87 0.02 0.96

Figure 4.1. Speedup for different cores where the y axis represents the
time in seconds
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Table 4.8
Percentage scaleup between a sequential process and a parallel implemen-
tation run on a 12 core system. The speedup is the ratio of the best
sequential running time of that particular algorith to the parallel imple-
mentation of that same algorithm.

Approach Sequential Parallel

Implemen-

tation

Speedup

K-means 0.33 0.183 1.80

Iterative K-means 0.75 0.46 1.63

Fuzzy C-means 0.89 0.58 1.53

ISODATA 1.103 0.78 1.41

Spectral 2.233 1.39 1.67

K-harmonic Means 0.624 0.39 1.60

4.3 Classification Results

For classification we first generate the classification tree based on training data. After

the tree is generated we supply a set of unknown images to recognize.

Table 4.9
Confusion Matrix for Nar-
comedusae class

Predicted

Negative Positive

Actual Negative 1665 94

Positive 70 720

Table 4.10
Confusion Matrix for
Copepod class

Predicted

Negative Positive

Actual Negative 1940 55

Positive 119 440
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Table 4.11
Confusion matrix for 4 classes

Actual-

predicted

Narcome-

dusae

Jelly Chaeto-

gnath

Copepod

Narcomedusae 780 30 20 16

Jelly 40 290 0 35

Chaetognath 0 0 190 20

Copepod 25 30 20 480

Table 4.12
Confusion matrix for 5 classes

Actual-

predicted

Narcome-

dusae

Jelly Chaeto-

gnath

Copepod Appendi-

cularian

Narcomedusae 720 30 10 15 15

Jelly 55 340 0 40 0

Chaetognath 0 0 230 0 30

Copepod 24 15 20 440 60

Appendicularian 20 10 50 0 430

The following is the tree generated while with 5 classes. Classes having common

parent are highly similar with the distinguishing features on the tree edges. Thus

inorder to distinguish between 2 classes of the same parent only the features on the

edges are enough and every feature need not be compared.
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Figure 4.2. Tree for 5 classes

Thus we obtain accuracy upto 95 %. The implementation is not specific on the classes

of planktons. The tree generation process is generic and will adapt to the different

classes based on how similar or different the features are with respect to the other

classes. It takes O(lg n) time to recognize each unknown image. where n is the number

of unknown classes. Thus this approach is much better than the existing approaches

in that it gives the result in logarithmic time. Also since not all the features are

actually compared it fares faster.
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5 SUMMARY

As part of my thesis work we have developed the automated system for processing

the large volumes of high resolution ISIIS images. With this automated system we

are now in a position to make use of the large data that is collected that we have and

can quantify and classify the different plankton accurately and efficiently. We are

able to segment and recognize the plankton obtained by sampling water at different

depths and different quality of water. Without this system we could not make sense

of the large volumes of data obtained from the ISIIS image. Existing systems are

able to recognize only 6-8 classes and do not scale well with increasing number of

plankton classes. Our approach is highly scalable and yields results at a much higher

speed. We also did a comparative study of the various segmentation methods and

their performance with respect to our problem and found that K-harmonic means

works better than other clustering methods for automatic segmenation of the ISIIS

images.

The future work would be to tune the system to improve the accuracy, to add much

more levels of parallelism to achieve higher throughput and to see if this system

works well in the recognition of other organisms or in other domains. The approach

is simple, yet effective and could be targeted to be an industry standard atleast in

the plankton recognition system. Along with various performance tuning, feature set

could be improved by exploring other features that could improve the accuracy. Also

a way to design a system that recognizes new classes instead of misclassification could

be a considered a part of future work.
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