

DESIGN, DEVELOPMENT AND EXPERIMENTATION OF

A DISCOVERY SERVICE WITH MULTI-LEVEL MATCHING

A Thesis

Submitted to the Faculty

of

Purdue University

by

Lahiru Sandakith Pileththuwasan Gallege

In Partial Fulfillment of the

Requirements for the Degree

of

Master of Science

August 2013

Purdue University

Indianapolis, Indiana

ii

To Amma and Thaththa

iii

ACKNOWLEDGMENTS

Being a graduate student at the Department of Computer and Information Science

at IUPUI (Indiana University-Purdue University, Indianapolis) has been an immense

learning experience for me. The knowledge gained will be valuable to my career,

as I step into the computer science research community. I will always cherish my

experience and memories of working as a teaching assistant and research assistant as

a part of this Institution. I would like to take this opportunity to remember many

people who have been very supportive throughout my graduate studies.

First and foremost I would like to thank my advisor, Professor Rajeev R. Raje,

for his constant encouragement and guidance through the courses of my graduate

studies. He constantly encouraged me to achieve higher goals and help me to realize

my goals as a research student. I would also like to thank Prof. Mihran Tuceryan

and Prof. James Hill for agreeing to be part of my Thesis Committee and providing

their valuable feedback.

I would like to thank my colleagues at our lab (SL 116) for being there to support

my research and experimentation. Special thanks goes to my colleague Ketaki for

her assistance with the development and testing of the proURDS prototype. I would

also like to thank the department staff and IT support staff (especially Nicole, Nancy,

Scott and Debby) for their support. I like to thank all the faculty and colleagues at the

Department of Computer and Information Science for their cooperation. Also I would

like to thank the staff of the Purdue School of Science Graduate Office (especially

Debra and Mark) for their help during the thesis formatting reviews.

Finally, I would like to thank my parents, Chandima and Rehan for their uncon-

ditional love and support.

iv

TABLE OF CONTENTS

Page

LIST OF TABLES . vi

LIST OF FIGURES . vii

ABBREVIATIONS . x

ABSTRACT . xi

1 INTRODUCTION . 1
1.1 Objectives . 3
1.2 Organization . 4

2 RELATED WORK . 5
2.1 Simple attribute-based matching . 5
2.2 Ontology-based matching . 6
2.3 Hierarchy-based matching . 7
2.4 Cloud-based matching . 7

3 UNIFRAME OVERVIEW . 10
3.1 The UniFrame Approach (UA) . 10
3.2 UniFrame Resource Discovery Service (URDS) 12

3.2.1 Internet Component Broker (ICB) 13
3.2.2 Headhunter (HH) . 14
3.2.3 Active Registries (AR) . 14

4 PROURDS APPROACH . 17
4.1 Knowledge base . 18
4.2 Service Management and Monitoring 21
4.3 Multi-level Matching . 23

4.3.1 Multi-level specification of the proURDS 23
4.3.2 Matching operators of the proURDS 25

4.4 The proURDS Implementation . 26
4.5 The proURDS validation with the URDS 29

5 EXPERIMENTATION, RESULTS AND ANALYSIS 32
5.1 Experimentation . 32

5.1.1 The proURDS dataset . 32
5.1.2 The proURDS experimental setup and operation 33

5.2 Results and Analysis . 35

v

Page
5.2.1 UDDI vs proURDS Evaluation 36
5.2.2 Quality Evaluation . 38
5.2.3 Performance Evaluation . 41
5.2.4 Matching with Timing Constraints 43

5.3 Case Study : Cloud Service Selection 45
5.3.1 Cloud Service Selection . 46
5.3.2 Multi-level Specification (of a Cloud Service) 48
5.3.3 Scenario Motivation . 48
5.3.4 Service Selection for EEEFS 51
5.3.5 Results and Performance Evaluation 51

6 CONCLUSION AND FUTURE WORK 60

LIST OF REFERENCES . 62

APPENDICES

APPENDIX A THE PROURDS USER GUIDE 66

APPENDIX B THE DESIGN DIAGRAMS 74

APPENDIX C THE SOURCE CODE . 78

vi

LIST OF TABLES

Table Page

5.1 MLM Levels and Operators . 39

5.2 Exact Matching Results . 40

5.3 Relaxed Matching Results . 42

5.4 Land Cover Service Query Results Comparison 53

5.5 EEEFS Relaxed Matching Criteria . 55

5.6 Exact Matching Results for each type of Query 57

5.7 Relaxed Matching Results for each type of Query 58

vii

LIST OF FIGURES

Figure Page

3.1 UniFrame Approach . 11

3.2 URDS Architecture . 13

3.3 Federated ICB hierarchy . 15

4.1 proURDS Architecture . 17

4.2 Design of the Knowledge base (KB) . 19

4.3 Sample of the partial Knowledge base 20

4.4 Design of the Service Management and Monitoring Module (SMM) . . 22

4.5 Sample partial multi-level specification 24

4.6 Communication protocols used in different messages of the proURDS . 27

5.1 Sample proURDS multi-level query . 36

5.2 Response Time Comparisons . 37

5.3 Comparison of the Quality of Result (Exact Matching) 38

5.4 Comparison of the Quality of Result (Relaxed Matching) 41

5.5 Individual Matching Times . 43

5.6 Tq as a Function of Size of Service Space 44

5.7 Matching with Time Constraints . 45

5.8 Environmental Science Service Clouds and CSS 47

5.9 Multi-level specification of a Land Cover Data Service 49

5.10 Architecture of the EEEFS . 50

5.11 Partial Knowledge base . 52

5.12 Sample Query for Type exact matching 52

5.13 Sample Query for Type relaxed matching 53

5.14 Sample Query for All-level relaxed matching 54

5.15 Comparison of the Quality of Result (Exact and Relaxed Matching) . . 56

viii

Figure Page

5.16 Individual Matching Times . 59

A.1 SMM Startup Screen of the proURDS 66

A.2 Login screen of the proURDS . 66

A.3 Administration screen of the proURDS 67

A.4 Configuration page of the proURDS . 67

A.5 Sample configuration file of the proURDS 68

A.6 Started proURDS Registry Manager UI 68

A.7 Started proURDS Headhunter UI . 69

A.8 Query interface for the user provided by the SMM 69

A.9 A partial query configuration part of a query 70

A.10 Results obtained from only one HH for a sample query 70

A.11 Results obtained from two HHs for the same query 70

A.12 Different levels of query configuration provided by the user interface . . 71

A.13 Sample results for the initial query with relaxed matching enabled . . . 71

A.14 Sample multi-level query configuration file 72

A.15 Sample results for a query with relaxed matching enabled 72

A.16 Sample of the partial Knowledge base 73

A.17 Logoff screen of the proURDS . 73

B.1 Partial Class Diagram of the Contract interfaces 74

B.2 Partial Class Diagram of the Headhunter (HH) interfaces 75

B.3 Partial Class Diagram of the Active Registry (AR) interfaces 76

B.4 Partial Class Diagram of the Dataset implementation classes 77

C.1 Contract interface of proURDS code 78

C.2 Serializeable message interface of the proURDS 79

C.3 Control interface of the proURDS distributed setup 79

C.4 Part of the proURDS server code base 80

C.5 Part of the source code of the Headhunter (HH) thread 80

C.6 Part of the source code of the Active Registry (AR) thread 81

ix

Figure Page

C.7 Part of database setup script of the proURDS 81

C.8 Partial code of the matching algorithm 82

C.9 Part of the code base of a jsp page . 83

C.10 Part of the deployment script (web.xml) of the servlet container 84

C.11 Part of Maven 2 build script of the proURDS project 85

x

ABBREVIATIONS

DCS Distributed Computing Systems

CBSD Component Based Software Development

URDS UniFrame Resource Discovery Service

MLM Multi-level Matching

QoS Quality of Service

UA UniFrame Approach

AR Active Registry

HH Headhunter

SMM Service Management and Monitoring

DSM Domain Security Manager

proURDS Enhanced UniFrame Resource Discovery Service

xi

ABSTRACT

Pileththuwasan Gallege, Lahiru Sandakith. M.S., Purdue University, August 2013.
Design, Development and Experimentation of a Discovery Service with Multi-level
Matching. Major Professor: Rajeev R. Raje.

Emerging technologies and demanding applications have forced the transition of

the computing paradigm from a centralized approach to a distributed approach. This

shift leads to the concept of Distributed Computing Systems (DCS). The traditional

way of software development lacks the capabilities to address the challenges in soft-

ware realization of large scale DCS. Out of many methods proposed to develop DCS,

one promising approach is the Component Based Software Development (CBSD).

The UniFrame approach, an approach developed at IUPUI, follows the concepts

of CBSD and addresses the design and integration complexity of DCS. The UniFrame

approach provides a comprehensive framework which enables the discovery, interoper-

ability, and collaboration of components via generative software techniques. It unifies

existing and emerging distributed component models to a common meta-model. This

framework enables the creation of high-confidence DCS using existing and newly de-

veloped distributed heterogeneous components. One essential part of UniFrame is

the UniFrame Resource Discovery Service (URDS). URDS is used for the discov-

ery of components that are deployed on the network. Initially, the architecture for

URDS was proposed in terms of addressing the objectives of dynamic discovery of

heterogeneous software components and selection of components to meet the neces-

sary functional as well as non-functional requirements (Quality of Service - QoS).

Many contracts contain information in terms of functional and QoS hence, the dy-

namic discovery of components which are deployed over the network is a non-trial

task. The majority of the components’ repositories provide a simple search technique

xii

which is based on string matching of listed attributes. However, the search space of

components is large and the information provided by each component is also non-

trivial to be represented as attributes. Therefore, a simple attribute-base search is

not sufficient to address the requirements of users.

Due to the limitations of the simple attribute based representation of contracts

and basic textual matching, the URDS proposes the concepts of Multi-level contract

representation and Multi-level Matching (MLM). The URDS contract provides infor-

mation at many levels including: General, Syntactic, Semantic, Synchronization, and

QoS. Matching of component contracts is performed according to the valid match-

ing operations proposed at each of the levels. This narrows down the search space

according to the individual requirements at a corresponding level. Hence, based on

each operator’s capability, related components have a better chance of being included

in the result list. However, the validation of a system which integrates URDS and

MLM was not present to be experimented. Therefore, as the main contribution of this

thesis, the proURDS was developed as a distributed setup by enhancing the URDS

architecture which was deployed over the network with real component contracts.

The contribution of this thesis focuses on addressing the challenges of improving

and integrating the URDS and MLM concepts. The objective was to find enhance-

ments for both URDS and MLM and address the need of a comprehensive discovery

service which goes beyond simple attribute based matching. It presents a detailed

discussion on developing an enhanced version of URDS with MLM (proURDS). Af-

ter implementing proURDS, the thesis includes details of experiments with different

deployments of URDS components and different configurations of MLM. The exper-

iments and analysis were carried out using proURDS produced MLM contracts. The

proURDS referred to a public dataset called QWS dataset. This dataset includes

actual information of software components (i.e., web services), which were harvested

from the Internet. The proURDS implements the different matching operations as

independent operators at each level of matching (i.e., General, Syntactic, Semantic,

Synchronization, and QoS). Finally, a case study was carried out with the deployed

xiii

proURDS. The case study addresses real world component discovery requirements

from the earth science domain. It uses the contracts collected from public portals

which provide geographical and weather related data.

1

1 INTRODUCTION

The current software systems are inherently complex in nature. With advancement

of computing architectures, new demanding applications and technical breakthroughs

have forced the transition of computing paradigms from a centralized approach to a

distributed approach. This has led to the concepts of Distributed Computing Systems

(DCS).

The traditional method of software development lacks the capability to address the

challenges (e.g., heterogeneity and scalability) present in Distributed Computing Sys-

tems. Out of many proposed approaches for realizing DCS, one promising approach

is the Component Based Software Development (CBSD) [1]. One such realization

of CBSD is the UniFrame Approach (UA) [2, 3]. It provides a comprehensive frame-

work by unifying existing (and emerging) distributed component models to a common

meta-model. The UniFrame meta-model enables the discovery, interoperability, and

collaboration of components via generative software techniques.

The UniFrame framework enables creation of high-confidence DCS using indepen-

dently developed and deployed distributed heterogeneous components (or services,

i.e., the terms component and services are used interchangeably and refer to the pub-

licly discoverable software entities). Before such systems are created, there is a need

to locate appropriate individual components. This task in UniFrame is delegated to

a special entity called the UniFrame Resource Discovery Service (URDS) [4, 5]. The

entity is responsible for the discovery of heterogeneous services that are deployed on

the network. The URDS involves matching and selection of software components

based on component contracts (i.e., software specifications).

Many component contracts contain information in terms of functional and QoS

hence, the dynamic discovery of components which are deployed over the network

is a non-trial task. The majority of the components repositories (e.g., UDDI) pro-

2

vide a simple search technique which is based on string matching of listed attributes.

However, the search space of components is large and the information provided by

each component can be too non-trivial to be represented as attributes. Therefore, a

simple attributed base search is not sufficient to address the requirements of users.

Performing simple attribute based matching could either produce a result list which

consists of many components or a result list which fails to include a related compo-

nent. The reasons for the above problems can be: 1) the provided few attributes are

common with many components, however most of the components are not related to

the search, or 2) the attributes are directly not matching with a component however

that component is related to the search. Therefore, based on these complex con-

tracts, the process of matching and selection of the software components presents a

challenge.

Due to these limitations of textual matching the concept of the Multi-level Match-

ing (MLM) [6] has been proposed. It is based on the design by contract principles

proposed in [7, 8]. To perform MLM, the contract should provide specific details at

all levels including general, syntactic, semantic, synchronization and QoS. Once the

details are available, the matching of component contracts is done using the appro-

priate matching operators proposed for all the levels. This narrows down the search

space while filtering the existing components according to the requirements at each

level. For example, if the result list is large the operators at each level can perform a

strict operation or if necessary the operators can relax their matching criterion based

on a type hierarchy to include subtypes. The initial experiments of MLM were car-

ried out using a prototype with a database of contracts and database query language

implementation of matching operators.

The initial prototype of URDS [9] was developed to experiment on the high-level

objectives of discovery of heterogeneous software components from software contracts

of components meeting the necessary functional as well as non-functional requirements

including QoS. However, the validation of a system which integrates URDS and MLM

was not present to be experimented. The initial experiments used a database of

3

contracts and database query language implementation of matching operators. This

included only a proof of concept framework, but not in an actual distributed system

setup. The simulations indicated the effectiveness of MLM in locating the most

relevant services for a particular query. Also, the experiments did not provide a

merger of the discovery and the matching parts of the URDS. These experiments were

reported in [4, 5]. Therefore, as the main contribution of this thesis, the proURDS

was developed as a distributed setup by enhancing the URDS architecture which was

deployed over the network with real component contracts.

The contributions of this report focus on addressing the challenges of integrating

the two concepts of distributed URDS and MLM within the context of the UniFrame

approach. The resulting setup is called the proURDS. The objective was to come up

with enhancements for both URDS and MLM by validating the need for a comprehen-

sive Discovery Service. From now onwards the URDS refers to the initial prototype

and proURDS refers enhanced version of URDS (proURDS). The later section of the

thesis discusses the challenges in producing proURDS including implementation of

the matching operators. The proURDS architecture is validated using software com-

ponent contracts from QWS Dataset [10]. This dataset contains information from

existing services which were harvested from the Internet. The proURDS produced

MLM contracts by referring to the QWS dataset. The experiment and result sets were

produced by matching contracts at each level. In summary, the goal of the proURDS

and its experimental analysis was to indicate the benefits of multi-level matching

as opposed to a traditional string matching. Also, another goal was to explore the

matching process with a performance evaluation of different queries.

1.1 Objectives

The specific objectives of this thesis are :

• To enhance the existing URDS architecture by incorporating the MLM match-

ing operators.

4

• To deploy the enhanced URDS (proURDS) in a distributed setup.

• To experimentally validate proURDS by using the QWS dataset [11].

• To provide a case study of the system using components from earth science

domain [12].

1.2 Organization

This thesis is organized into eight chapters. Chapter 1 provides introduction and

objectives and Chapter 2 presents the related approaches. Chapter 3 describes the

summary of previous work as necessary background information for the UniFrame ap-

proach. Chapter 4 presents the design, development and integration challenges and

proposed solutions (proURDS) pertaining to integration of the URDS with Multi-

level matching. Chapter 5 presents the experimentation details with different config-

urations of proURDS. Chapter 6 consists of experimental results and their detailed

analysis. Chapter 7 contains a case study from the domain of Earth Sciences. Chapter

8 presents conclusions and future work. Finally, the supplementary appendix covers

some details of source code.

5

2 RELATED WORK

Efforts of designing discovery systems can be classified according to the semantics of

the matching and customization. Most of the current efforts do not go beyond simple

text based name-value pair matching. Also, most component (also service, i.e., terms

components and services are used interchangeably) selection efforts do not consider

the notion of customization with respect to service matching. Based on the matching

techniques current discovery systems can be divided into three main categories: sim-

ple attribute-based matching, ontology-based matching, and hierarchy-based match-

ing. The notion of discovery is also recently used in Cloud Computing (CC) and

hence, a brief survey of Cloud-based efforts are also included in this chapter.

2.1 Simple attribute-based matching

In this category, the attribute-space is flat and matching is done by direct com-

parison of respective attribute-value pairs. Example discovery systems that use this

approach are Jini [13, 14], Universal Plug and Play (UPnP) [15], Service Location

Protocol (SLP) [16, 17], UDDI [18], CORBA Trader [19], Monitoring and Discov-

ery Service (MDS Globus) [20], Agora [21], Ninja [22,23], Web Services Peer-to-Peer

Discovery Service (WSPDS) [24].

Jini presents a homogeneous view of services. The services register themselves

with the lookup service and thus the matching is performed during the lookup phase

based on the simple textual attribute comparisons (e.g., type, name). It supports

dynamic downloading of service proxies. UPnP matching mechanism uses vendor

specific attributes and syntactical details present in the service descriptions. This

also uses a homogeneous approach while matching. The SLP uses special kinds of

6

service requests, however it also matches the service type against available textual

attributes. Other related work such as Ninja and WSPDS, do allow more complex

matching techniques which go beyond the basic string matching. However, all of

them still follow the concepts of annotated attributes and associated values for the

matching. The main drawback in each of these systems is that they fail to provide

any customization while performing matching operations.

2.2 Ontology-based matching

In this category, ontology or a similar knowledge representation is created for the

attributes of the service. In this context, ontology could be used to represent service

related taxonomic hierarchies of service classes, their definitions, and relationships.

Then, these service attributes can be matched consulting the ontology. This method

provides a more complex type of matching technique than simple attribute matching,

so that a particular search for query may return other approximate match results. Ex-

ample discovery systems that use this approach are DReggie [25] and Ontology-based

Interoperability Services [26, 27]. DReggie is based on Jini with Semantic Service

Discovery and it attempts to take Jini and similar service discovery systems beyond

their simple syntax-based service matching techniques by adding semantic matching

capabilities to the service description facilities. DReggie uses DARPA Agent Markup

Language (DAML) [28] and intelligent reasoning modules to carry out an ontological

matching process. Recent developments around DAML, such as the DAML-S [29]

and DAML+OIL [30] go beyond simple matching to more customizable matching.

Work done on Ontology-based Interoperability Services improves simple matching

and presents an approach to semantic-based web service discovery and a prototypical

tool based on syntactic and structural schema matching. The matching is based on

an input ontology which describes a service request. The requests are matched with

the web services descriptions at the syntactic level through Web Services Description

Language (WSDL) or, at the semantic level, through service ontologies.

7

2.3 Hierarchy-based matching

In this approach, services are arranged in a hierarchy based on their types. This

hierarchical structure is similar to the DNS hierarchy structure and types are do-

main dependent (e.g., weather service, stock service, etc). The attribute matching

is done by traversing the hierarchy until a leaf node is encountered and matching

the attributes of individual services present. Example discovery systems that use

this approach are GloServ [31], Concept-Based Discovery of Mobile Services (CB-

DMS) [32] and OCTOPOS [33]. CBDMS propose a dynamic overlay network by

grouping together semantically related services in a hierarchy. Each such group of

services is termed a community and communities are organized in a global taxonomy

whose nodes are related contextually. The taxonomy can be seen as an expandable

distributed semantic index over the system services, which aims at improving service

discovery and matching. GloServ is global service discovery architecture in a flexible

hierarchical ordering using the Resource Description Framework (RDF) [34]. GloServ

querying can either be done manually or automatically using sensor technology which

results in a seamless discovery of services. Recent development of GloServ [35] com-

bines with ontology-based matching to make it a customizable hybrid system. OC-

TOPOS adopts a dynamic hierarchical tree structure and service aggregation for

scalability and availability. It also introduces multiple matching mechanisms which

contain an attribute and a semantic matching engines which can be categorized as

an effort to provide customization on matching at two levels.

2.4 Cloud-based matching

Although there have been many attempts to design discovery services in the con-

text of service-oriented systems, there are only a few efforts that aim to discover

cloud-based services. For the sake of brevity, only the efforts from the domain of

Cloud Computing (CC) are discussed in this section. The term Cloud Service Dis-

covery System (CSDS) was introduced in [36]. The CSDS helps the users find the

8

relevant services of interest and the cloud ontology consists of taxonomy of concepts

of different cloud services. The CSDS is realized by building an agent-based discovery

system that consults ontology to retrieve information (e.g., similarities of attributes

of services) about services. The CSDS consists of a search engine and the three

agents: Query Processing Agent (QPA), Filtering Agent (FA) and the Cloud Service

Reasoning Agent (CSRA). The QPA is responsible for searching the websites using

conventional search engines. The FA filters the many results of the QPA using evi-

dence phrases, frequency analysis of these phrases and the nearness (string similarity,

for example, using hamming distance) amongst the keywords. The CSRA performs

reasoning to find the similarity between services and rating of the services.

The work proposed by Zeng et al. [37] provides an architecture for the cloud

services along with algorithms to measure their performance. The main aim of this

work is to perform the service selection with adaptive performances and minimum

cost. Their service selection algorithm is based on two-steps. The first step is the

selection of the available service (basic keyword search) and the second step is the

optimized service selection by using maximized gains and minimized cost of selection.

The work proposed by Sheu et al. [38] applies the semantic computing concepts

to CC. They describe a Semantic Search Engine (SSE) that provides users’ with a

friendly problem-driven interface to search services that would be used to build a

solution according to users requirements. The architecture of SSE presents a UI for

the user to enter his query in natural language. The Interpreter converts this query

to Service Query Description Language (SQDL). SQDL is a machine decodable query

language used by SSE to describe the intention of the user. This SQDL is matched

against the Service Capability Description Language (SCDL) by a Matcher and the

right services are selected. If no single service can fulfill the requirement, the matcher

will decompose the SQDL query into several simpler queries, and try to find a series

of services that may answer the query. Finally, the service invoker finds the right

services. The problem with SSE is that it is biased toward semantics matching,

which suppresses the other selection criteria of cloud services.

9

The work proposed by Raichura et al. [39] highlights the benefits of CC and

describes the cloud service discovery as being one of the following: a) keyword search,

b) provider search, or c) service interface information. The advanced search options

in this proposal include searching by service providers, technology platform and other

meta-data information. Also, the Web Service Level Agreement Language (WSLA)

and the associated framework proposed by Ludwig et al. [40] are capable of addressing

the service selection problem, however, within the WS service interface restrictions.

The work proposed by Patel et al. [41] applies the SLA concept into CC using the

WSLA framework developed for SLA monitoring and enforcement in a Service Ori-

ented Architecture. SLA@SOI [12] describes the Open Cloud Computing Interface

as an emerging standard that can be used to integrate different SLA management

layers to control the life-cycle of the Cloud Services. Services can discover and in-

teroperate by using the Open Cloud Computing Interface API and provide hybrid

services. This approach does not include the service semantics and QoS information

during the service selection. Although a few of these approaches use limited semantic

techniques, others use the conventional approach of attribute-based matching. Such

a simplistic view is not adequate to identify the most relevant services for complex

CC-based applications.

In summary, the main drawback of all of the above systems is that the matching is

done based on simple attributes, where the services are represented using string based

attribute-value pairs. By implementing MLM inside proURDS, the work proposed in

the following chapters tries to address this challenge. Hence, the next two chapters

discuss these challenges in detail and present how proURDS addresses them.

10

3 UNIFRAME OVERVIEW

The proposed work is closely related to UniFrame approach [2,3], hence, this chapter

provides an overview of UniFrame. It will set a proper background to present the

proposed proURDS system in the next chapter.

3.1 The UniFrame Approach (UA)

Despite the current improvements in software engineering, the development of

scalable distributed systems is still a major challenge. Thus, there is a need for a

framework that is flexible and cost effective in developing reliable distributed systems.

The UniFrame Approach [2, 3] focuses on exploring innovative approaches to repre-

sent knowledge of distributed components and proposing a comprehensive framework,

which allows a seamless interoperation of heterogeneous distributed components. The

UA creates standards as its meta-model (UniFrame Meta Model - UMM) which can

indicate the contracts and the constraints of the components. Having this as part of

the framework allows the service assemblers or the component integrators to generate

a software solution (for a particular DCS) in a fully or semi automatic way. Thus the

knowledge of the UMM can consist of entities such as components, guarantees, and

infrastructure related information.

Figure 3.1 presents the UniFrame Approach (UA). UA’s main aim is to provide

means for an automatic or semi-automatic creation of DCS. The UA provides a frame-

work that helps the component developers to create, test and verify components and

DCS from the point of view of functional and QoS. The domain experts create the

standards for automatic integration of systems using individually developed compo-

nents. These standards are categorize according to the domains and provide the

starting blueprints for systems. For example, these standards include component in-

11

Figure 3.1. UniFrame Approach

terfaces and deployment configurations. These set of standards and expert knowledge

are collected into a machine readable format at the Knowledge base (KB). Creating

and maintaining this KB is an iterative activity and all the stakeholders of the UA

(such as domain experts, component developers, quality measures and integrators)

are responsible for updating the KB. Once the standards are in place, the component

12

developers can browse the standards and KB and decide to start producing individual

components of their own. This yields heterogeneous components for the same require-

ment, which are produced by different developers. After the components pass their

quality measures and satisfy the needs of the quality measures then the components

are deployed.

After many components become public, the resource discovery service (later the

implementation of this service is called as UniFrame Resource Discovery Service

(URDS)) starts to aggregate information about available components. The speci-

fications are created to represent each of the components according to their inter-

faces and other related information. The UA suggests to organize these component

specifications into multiple levels (later these specifications are known as Multi-level

specifications). The system integrators initiate queries to discover components for

their systems. The URDS is responsible to find relevant components and reply back

with a list of matching components to the system integrators. During this search the

URDS performs Multi-level Matching (MLM), which was defined in [7, 8] and [42].

The MLM produces the result list of matching components for a given input query

for the URDS. When all the components are discovered and integrated, the system is

validated again as a whole for its quality requirements. The KB is updated with the

details of successes and failures and if failed, the UA process starts again iteratively.

Finally, if validated, the iterative process of UA ends at the point of the successful

deployment of the integrated system.

3.2 UniFrame Resource Discovery Service (URDS)

UniFrame Resource Discovery Service (URDS) [4, 9] is an important part of the

UA framework and represents the infrastructural part of the UMM. It provides the

functionality of search and selection of software components or services.

13

Figure 3.2. URDS Architecture

The architecture of URDS is shown in Figure 3.2. The main components of the

URDS are the Internet Component Broker (ICB), Headhunters (HH) and Active

Registries (AR). The following subsections describe each component of URDS.

3.2.1 Internet Component Broker (ICB)

The ICB is similar to the Object Broker in CORBA. The ICB handles authenti-

cation and authorization, decodes, directs and routes user queries and presents the

matching results back to the user. The main four components of the ICB are: Domain

Security Manager (DSM), Query Manager (QM), Adapter Manager (AM), and Link

Manager (LM). The Domain Security Manager (DSM) is responsible for maintain-

ing the authorization information about all the entities in the system. The Query

Manager (QM) is responsible for mapping and routing queries on behalf of the client

of the URDS. The Adapter Manager (AM) handles heterogeneity of the system by

providing adapter components into the system. The Link Manager’s (LM) job is to

link different ICBs together. Such a collection of links forms a discovery service fed-

14

eration, which also includes various mappings of different protocols. Therefore, the

ICBs make sure the correct back and forth navigation of queries and the generation

of results within the ICB.

3.2.2 Headhunter (HH)

The Headhunter (HH) is the main entity in the URDS. It decodes the propagated

query and initiates the discovery process of software specifications and also performs

the matching. HHs can be either homogeneous or heterogeneous. A set of homo-

geneous HHs contain the same matching capabilities and algorithms, while a set of

heterogeneous HHs can contain different matching capabilities and matching tech-

niques. HHs can also be either general purpose or serve a special purpose. A general

purpose HH accepts specifications from any kind of service, and in contrast, a spe-

cial purpose HH accepts service specifications belonging to specific types of services

or services from a specific domain. Headhunters keep the details of specifications in

associated Meta-Repositories. Upon receiving a routed query from the QM, the HHs

are actively involved in searching for the most suitable matching components.

3.2.3 Active Registries (AR)

Active Registries (AR) act as the entry points for the new components in the

URDS. New components register themselves with respective ARs by presenting their

multi-level specifications. Service Exporters register their components and services

with ARs by presenting their information in a specification format. New service en-

try produces a intermediate specification. These specifications are matched against

queries generated by the system integrators’ needs for components, for their system of

interest. This registration process can be active as well as passive. ARs contain het-

erogeneous details about components, however they can also be rearranged according

to specific types and domains. In addition to accepting the registration of services,

15

Figure 3.3. Federated ICB hierarchy

ARs communicate with HHs on a routine basis to provide details about the service

specifications to the HHs.

The UniFrame Resource Discovery Service (URDS) architecture can be organized

as a federated hierarchy in order to achieve scalability. The architecture of federated

URDS is shown in Figure 3.3. This shows the hierarchical organization of ICBs.

Every ICB has single level hierarchy of zero or more Headhunters attached to it.

These ICBs are linked together with unidirectional links to form a directed graph. As

mentioned in Section 3.2.1, the LM links different ICBs to form a Discovery Service

Federation. Such a federation of multiple URDSes achieves better coverage of a larger

service space and thus provides the necessary scalability.

In summary, the URDS is an important entity invoked by the other entities of the

UA. The following list is a collection of the drawbacks of the initial URDS prototype

had with its operations. As Figure 3.1 indicates, the KB is critical for the UA process

16

and is being communicated by all other entities. However, the initial prototypes of

URDS did not use a KB for its operation. The UA motivates the arrangement of

component information into levels inside the specification. Although initial versions

had incorporated this using a database, there was no actual service specifications

available for the registries. Earlier versions of the URDS was not using all these

specification levels at the same time during the matching process and only created

simulations using the principles of Multi-level Matching. These experiments showed

that the URDS returns more relevant services for a given query compared to the

other matching schemes which are based on attributes. Finally, the earlier setup

did not deploy entities of URDS over the network as proposed by UA. Therefore,

considering scalability of the system, it was not a good approach. However, without

the distributed registries and HHs, the management and monitoring did not become

an issue. These drawbacks motivated the design and development of the proURDS

by incorporating the multi-level matching principles into the URDS architecture.

The next two chapters describe the proURDS within the general domain of service-

oriented systems and how it is found to perform better than other approaches, while

selecting the relevant services. The proURDS applicability in the context of cloud-

based services is described in the subsequent section as a case study from environ-

mental science.

17

4 PROURDS APPROACH

The proposed proURDS is an extended version of the URDS. Similar to the URDS,

the proURDS implements a hierarchical and proactive discovery service. Figure 4.1

presents the architecture of proURDS showing its entities. As seen in Figure 4.1,

the Active Registries (ARs) act as the entry point to the services. However, unlike

the URDS, they are independent entities distributed over the network. Similar to

the URDS, the Headhunters (HHs) in proURDS provide the functionalities of ser-

vice selection and matching. They proactively collect multi-level specifications of

services from different ARs and perform the multi-level matching (described shortly

in Subsection 4.3).

Figure 4.1. proURDS Architecture

18

The proURDS enhances the URDS by achieving: 1) the incorporation of the nec-

essary contextual knowledge to support multiple matching, and 2) a provision for an

effective management and monitoring of the distributed discovery system. Therefore,

the proURDS architecture includes two additional modules - the Knowledge base

(KB) module and the System Management and Monitoring (SMM) module, which

are highlighted in Figure 4.1. The proURDS uses a Knowledge base in its match-

ing operations to improve the process of matching by exacting additional information

such as type relations, constraints, and preferences. One other drawback of the URDS

is that the experiments of Multi-level Matching (MLM) were not performed in a dis-

tributed setup. The proURDS provides the distributed experimental setup wherein

the HHs and ARs are distributed over the network. The SMM module is added to

provide the management and monitoring of the distributed setup.

Also, other improvements from the URDS to proURDs are that the Multi-lvel

Matching features of HHs are enhanced to support different operators with different

semantics. The implemented operators are categorized into each level of matching

such as at the type level (as described in Section 4.3.2), the proURDS implements

type synonyms, type inclusion (i.e., super-type sub-type relations) and type coercion

operators. Also, for each matching operator, exact and relaxed types of operational

modes are implemented. Finally, the system is deployed in a distributed setup and

is experimented with performance and results quality (the experiments and results of

the proURDS are presented in Section 5). A discussion of each of these improvements

is presented in the following sections of this chapter.

4.1 Knowledge base

The URDS proposed a generalized architecture of the KB which was discussed in

details in [43]. This proposed KB design is consistent with the concept of Generative

Domain Model [44]. The KB is assumed to be created by the domain experts and

contains domain specific information that is updated and maintained periodically.

19

The KB contains information including the type and configuration to provide solu-

tions for the design of a family of systems. The existing prototypes of the URDS did

not incorporate an actual KB.

Figure 4.2. Design of the Knowledge base (KB)

In proURDS, the KB contains the necessary information to decode a query and

to perform multi-level matching. By using the related information gathered from the

KB, the users (i.e., system integrators who are searching for services for their systems)

of proURDS construct an XML based query. This query is matched against many

instances of its service type using multi-level matching supported by the HHs in the

proURDS. Figure 4.2 presents the design and structure of the KB.

The knowledge information is organized according to different service domains

such as financial and environmental. Inside each domain, the KB is organized ac-

cording to valid service categories (i.e., called as service types). Inside each service

type, the structure need to match with existing levels of matching. Hence, the KB

is also organized into five levels, each corresponding to the level of matching namely:

20

type, syntax, semantics, synchronization and QoS (described in Section 4.3). For

example, for the type levels, the KB contains information about that services’ valid

types and their synonyms, type hierarchy (if applicable), and information about type

compatibility. For the syntax level the KB contains information about the number

and order of the arguments, and the return values of the syntactic contract. Similarly,

for the semantic level, the KB indicates the key terms and their relations that are used

in defining pre-conditions, post-conditions, and invariants for different services. The

section in the KB which corresponds to the synchronization level includes information

about various synchronization policies. The section in the KB which corresponds to

the QoS level includes the appropriate quantification metrics of QoS parameters.

Figure 4.3. Sample of the partial Knowledge base referred by the
proURDS matching operators

21

This KB is internally represented using XML and Figure 4.3 shows a sample

partial Knowledge base used by the proURDS. Related to a query, the HHs could

refer the KB multiple times while performing the matching process. For example, in

Figure 4.3 type relations contain synonyms of the service type of that domain and

replaceable service types for a super type using a sub type. The notation super and

sub indicates that super type can be replaced by sub type. In syntactic relations, the

sample KB contains types which can be coerced from one another. Similarly, other

relations contain range and compatibility information such as for this service type

anonymous access is compatible with authorized access. Having this KB improved

both the querying and matching process.

4.2 Service Management and Monitoring

The Service Management and Monitoring (SMM) module is developed to manage

and monitor the distributed setup of the proURDS when it is deployed over the

network. It is developed as a Web application using Apache Tomcat servlet container

and deployed independently of the other entities of the proURDS. The SMM is the

entity with a user interface to control and monitor the system.

Figure 4.4 presents the design of the SMM. The operation of the SMM is based on

periodic client server interactions of remote nodes (i.e., physical machines connected

over a network) with a monitor node. Periodically the SMM requests information from

the nodes about its state and its hosting entities (i.e., HHs and ARs). Hence, using

this server, the SMM (which acts as the client) can deploy a given configuration of the

proURDS entities (i.e., HHs, ARs etc.) over the network. It can remotely start and

terminate proURDS entities and check their availability using frequent heartbeats.

There are two options that the proURDS user can take. Either the user can use a

configuration file to start entities or alternatively start each entity one by one. This

SMM module has other useful capabilities such as the ability to capture a particular

22

Figure 4.4. Design of the Service Management and Monitoring Module (SMM)

snapshot of the system, to direct and propagate queries to different HHs, and to

collect, organize and display the matching service results for different queries.

The advantage of having the SMM module is that it provides the capability of

handling a large set of remote entities (such as HHs and ARs) of the proURDS. Also,

the other advantage is to monitor the communication happening over the network.

The SMM module monitors both unicast communication and multicast communica-

tion between HHs and ARs using RMI and Jini Frameworks. The SMM module does

not read the content of the communication happen between entities. However it keeps

log entries about those communications. It manages the connections to the ARs and

HHs internal databases (which keep their own collection of service specifications for

fast access) using JDBC APIs, and it also does interactions with the proURDS users

(i.e., system integrators) using web based HTTP communication. In the current de-

sign of proURDS, the SMM and the Internet Component Broker (ICB) are tightly

coupled. The main reason for this was the design choices which are made in favor of

rapid implementation of the system.

23

4.3 Multi-level Matching

In proURDS, a multi-level matching of a service matches different facets of a

multi-level specification of a service. The details of Multi-level specifications and

matching operators are described in the following two subsections.

4.3.1 Multi-level specification of the proURDS

The proURDS uses the multi-level specifications to represent the services. It is an

implementation of the multi-level contracts proposed in the URDS. This specification,

in addition to providing a clear separation of multiple facets of a service, helps to

perform the operation of multi-level matching. Earlier implemented versions of URDS

did not use actual specifications corresponding to existing services.

This multi-level specification contains five different levels. The levels are named:

type, syntax, semantics, synchronization and QoS. Hence, each service, in addition to

indicating its basic details, may also specify additional details such as the functional

details and quality of the service details offered. Initially, the URDS specifications

are informally indicated using natural language that includes the computational, co-

operative, auxiliary attributes, and QoS metrics of the service. Within proURDS,

these specifications are refined into standard XML based specification.

This specification serves two purposes: a) it provides a separation of concerns while

designing services, and b) it enables multi-level matching that is more comprehensive

than a single dimensional matching based on attributes. An example of a partial

multi-level specification (in XML) for a weather service is indicated in Figure 4.5. This

partial specification shows four levels: a) Syntactic, b) Semantic, c) Synchronization,

and d) QoS. The type level is considered as only the type of the service. In addition,

it also indicates other important general features such as deployment and auxiliary

attributes.

The functional attributes of a service contain its syntactic interface, along with the

necessary pre-conditions and post-conditions, and synchronization schemes employed

24

Figure 4.5. Sample partial multi-level specification

(if any). The non-functional (or QoS) attributes represent the QoS parameters sup-

ported by the service, along with their values that are guaranteed by its service owner

in a specific deployment environment. Services may exhibit special characteristics,

such as mobility, security features, and fault-tolerance, which are indicated in their

auxiliary attributes. Additionally, the service can include user-defined attributes, for

example, the dependencies of the service and its deployment attributes. The entries

25

in these multi-level specifications have a direct relation to the KB. For example, for

the specification entries at the type and the syntax levels, the KB contains informa-

tion about the structure of types and their synonyms. Therefore, the service provider

should refer to the KB while creating the multi-level specifications. If a new service

type is created, the service provider updates the KB with possible details at each

level.

4.3.2 Matching operators of the proURDS

The challenge with implementing the proURDS matching algorithm is to imple-

ment the operators which are needed for each level of matching of a service specifica-

tion. The proURDS has identified a set of operators to implement at each level of the

matching algorithm. The proURS matching operators are implemented to support

matching of four out of five different levels (type, syntax, semantics, and QoS). At the

type level, the proURDS implements type synonyms, type inclusion (i.e., super-type

sub-type relations) and type coercion operators. At the syntactic level, the service

specification is matched against three operators, namely, method name, its parameter

list and its return parameter. Therefore, in addition to the type operators performed

on types of the three syntactic sections, the operators which check for default pa-

rameters and order of the parameters are implemented. At the semantics level the

proURDS implements an assertion proving mechanism using a theorem prover to

check implication, reverse implication and equivalence of assertions. The matching

operators of synchronization and Quality of Service levels are implemented to check

the compatibility of text list and numeric values (including ranges). Each matching

operator has two versions: exact and relaxed. For example, at the type level the

relaxed match translates to “is a” relation, i.e., type inheritance.

The technology used while implementing different operators has effects on the

operation complexity of the MLM Algorithms. For example, Java Theorem Prover

(JTP) [45] is chosen as the main theorem prover to handle the contracts’ seman-

26

tics matching. Table 5.1 in Section 5.1 displays a summary of these identified and

implemented operators at each level of multi-level matching algorithm. HHs in the

proURDS can implement any or all of these matching operators, thereby provid-

ing the heterogeneity of the matching operations. When performing the multi-level

matching for each of the operators, the KB can be invoked to obtain the necessary

contextual information. The operator usage of the KB is in relation to the matching

level to get appropriate details required for the process (for example, at type level -

type hierarchy). New operators can be added at each level by extending the MLM

algorithm with corresponding modifications made to the KB. A discussion about the

usage of the matching operators and their results is provided in the Section 5 while

describing experiments and results.

4.4 The proURDS Implementation

Many efforts of designing discovery systems can be classified according to the us-

age of semantics matching and ability of customization. Most current efforts do not

consider the notion of customization with respect to service matching, because the

matching is done based on attributes of a service which were represented using many

attribute-value pairs. Based the above argument of categorizing upon the seman-

tics of attribute matching, the current discovery systems can be divided into three

main areas: simple attribute-based matching, ontology-based attribute matching and

hierarchy-based attribute matching. The design of proURDS could be categorized as

a hybrid approach merging related technologies at necessary places.

The proURDS is developed with the Java programming language adhering to Ob-

ject Oriented (OO) programming systems design and best practices. The technologies

involved are Java 1.5, Java RMI, Jini 2.0, MySQL, JTP (A Java based reasoning en-

gine which provides the Theorem Prover [45] capability) and Apache Tomcat 5.0

web and servlet container. The Active Registry (AR) is developed by wrapping Jini

Lookup Service [13, 14] which is customized for the proURDS needs. Its plug and

27

play method of multicasting feature was used for communicating updates of ser-

vices to Headhunters. Entities such as the Domain Security Manager (DSM), Active

Registries (AR) and Headhunters (HH) are Java Remote Method Invocation (RMI)

standalone entities. Java RMI is used by HHs in back and forth communication with

the service query users and Service Monitoring and Management (SMM) unit. The

Management and Monitoring (SMM) system is developed as a web application de-

ployed on servlet container. All the communication and data representation are done

using XML based technologies by serializing over the network. MySQL database tech-

nologies are used for all the Databases present in the system, in particular SMM’s

database. JTP is used for semantic level matching as a part of multi-level matching

algorithm present in the HHs matching algorithm. The technologies used to create

the proURDS and how the entities communicate are shown in Figure 4.6.

Figure 4.6. Communication protocols used in different messages of the proURDS

28

The main challenge with the implementation of the proURDS was to integrate the

independently developed entities of proURDS (i.e., ARs and HHs) with Multi-level

Matching (MLM). Design choices were made to develop MLM matching algorithms as

plugins, so that they can independently perform selected operations at each matching

level. This gives the flexibility to extend the MLM algorithm for future needs of differ-

ent matching techniques. The new DS was developed to address the need of reducing

the complexity in integrating, controlling and monitoring of all the components of

the enhanced discovery service.

The integration phase should consider the effective ways of communicating and

getting the information to flow. For example, the MLM operators and HH are si-

multaneously invoking KB for additional information. Thus it is important to find a

balance in communicating with the KB, such that the discovery process works with-

out delays. Each partition of the KB accessible to entities without waiting for others

and this improves the proURDS performance. However, the updates to the KB had

to be done in a non-blocking fashion. It is known that updates to the KB mainly

happen offline, hence this was not considered as an issue. The SMM follow similar

guidelines to collect, display and control proURDS entity related information. For

example, configuration updates such as starting and terminating entities like HHs are

handled after all the queries served by that entity. Many challenges with proURDS

and MLM integration are handled by following the best practices such as following

design patterns and implementing mutual exclusions.

Although some of the components in the current design of proURDS are tightly

coupled, the attempt was made to design SMM to move closer to real world inde-

pendent entity interactions. For example, the SMM supports the construction and

destruction of a proURDS instance using user provided configurations. It also acts as

the container for central system control and monitoring of the proURDS. A system

developer can specify a configuration by indicating the number of entries (HHs and

ARs) and capabilities of each entity. For example, a user can indicate the access

privileges of a HH, and degrees of matching (e.g., how many levels) that the HH

29

provides. The MMM also has other useful features such as providing a snapshot of

the proURDS and recording the history of its execution. The MMM can also display

the query execution results graphically.

4.5 The proURDS validation with the URDS

The initial proposal of the URDS indicates many goals during a design of a dis-

covery service. The main goals were to handle service heterogeneity, different com-

munication patterns, complexity of the distributed setup, failures of entities, and

experiments with a data set. The following discussion provides details about vali-

dation of the proURDS according to the Uniframe proposal goals of a the discovery

service and how the proURDS was designed and developed to address them.

The proURDS handles the service heterogeneity at the AR level by abstracting

them into multi-level service specifications. The heterogeneous services could register

their specifications with any registry, which service can access. At the HH level it

is done by abstracting different capabilities to each HH. For example, different HHs

provide the same interface for different clients who are searching for the suitable

service which matches with their requirements.

Handling the challenge related to different communication patterns in the system

is achieved by using different methods of communication (e.g., HTTP, Java-RMI, Jini

Multicast) for different layers (such as, HHs and ARs) of the proURDS architecture

(Figure 4.6). Unicast communication is used for the communication between client

(here the SMM) and different HHs. This communication is based on Java-RMI. To

provide a seamless integration within discovery service, multicast communication is

used between HHs and ARs. This communication is achieved through Multicast

Sockets based on UDP/IP provided by the Jini Framework. The connections to the

HH’s internal databases AR database and the SMM database are established using

JDBC APIs at the levels of both HHs and ARs. Interactions between the clients

30

(users) and the Service Management and Monitoring (SMM) component are based

on HTTP protocol.

The complexity of the proURDS setup is addressed by giving the SMM the ability

to deploy different configurations over the network. Having a Java-RMI server node

is the only requirement for a node (in this case a physical machine) to be a part of

the proURDS deployed configuration. The SMM acts as Java-RMI clients to these

server nodes, which are recognized as one per node. After that, all nodes are checked

for activeness by a configurable heartbeat which is a randomly communicated signal

which can be initiated either by the SMM or the server nodes. If this signal was

designed to be a synchronous activity, then the network would have been flooded.

Therefore, the ability of each entity to configure and initiate communication at its

own time and speed asynchronously makes the proURDS more scalable. The Service

Monitoring and Management (SMM) system was designed to handle this complexity,

as the deployed proURDS could handle any number of server nodes. In addition the

resource consumption of each entity (such as HHs and ARs) is within the reachable

limits (around 1 megabyte of physical memory). For example, with a node with

1GB physical memory it was tested that more than 500 entities could be started and

communicated as active. This is well over the required limit, since distributed systems

presume the entities are distributed. Communication delays are noticed when the

overall entity (i.e., HHs and ARs) limit exceeds around 215 with the total proURDS.

This could be due to the synchronized functional methods which are present in HHs,

when HHs communicate with each other.

The proURDS is designed to handle failures through periodic announcements such

as heartbeat probes and information caching (at the levels of ARs and HHs). Lack of

communication from the entities of proURDS (i.e., HHs and ARs) beyond a threshold

time (which can be set at the SMM) is considered as a failure of that entity, and the

state of the system is accordingly reset. The caches of the Headhunter and Link

Manager are updated based on the responses received from Active Registries and

Link Managers in other ICBs, respectively, or purged based on their availability.

31

However, one of the issues related to proURDS validation is the availability of a

good dataset with valid services. To address multi-level matching at each level of the

specification, the proURDS proposes the operators (discussed in Subsection 4.3.2)

which themselves should be flexible enough to handle different datasets. The main

dataset of services chosen was the Quality of Web Services (QWS) Dataset [10] from

the University of Guelph, Canada. This dataset has collected over 5,000 web services

and performed various measurements on Quality of Service (QoS) of each individ-

ual service. The detailed discussion of the dataset is included in the experiments

Section 5.

The next section on experimentation (Section 5) describes the experimentation

setup, the results and analysis.

32

5 EXPERIMENTATION, RESULTS AND ANALYSIS

5.1 Experimentation

This chapter describes the various experiments carried out using the proURDS pro-

totype to assess the benefits of multi-level matching and associated tradeoffs between

the performance and quality of the results. Two important parts of these experiments

are the dataset and the experimental setup of the proURDS. The next two subsections

describe these two parts in details.

5.1.1 The proURDS dataset

The main dataset of services chosen for the empirical validation is the Quality

of Web Services (QWS) Dataset [10] from the University of Guelph, Canada. This

dataset contains 5,000 web services with their Quality of Service (QoS) parameters.

The services in the QWS Dataset were collected using the Web Service Crawler Engine

(WSCE) from public sources on the web including Universal Description, Discovery,

and Integration (UDDI) registries, search engines, and service portals. The measure-

ments of each service in this dataset consist of nine entries with QoS attributes and

other general service details, such as Response Time, Availability, Throughput, Suc-

cessability, Reliability, Compliance Best Practices, Latency, Documentation, WsRF,

Service Classification, Service Name, and WSDL Address. This dataset is used during

the proURDS experimentation with modifications. Since the time from the dataset

published, some of the services have relocated to different web addresses. There-

fore, after verifying the WSDL cached on web search engines at the old location with

the new location, the dataset was updated with the new locations of the services.

33

The other update was done related to the “Service Classification” parameter of the

dataset. The experiments replaced this parameter with the service type.

As the services in the QWS dataset did not contain multi-level specifications,

the first step is to create such multi-level specifications for a subset of services from

the QWS dataset. The synchronization level is not used in the proURDS matching

process as the synchronization contracts for these services could not be created due to

the unavailability of their source code. Many instances of these services are created

and deployed, along with their specifications, in the experiments that are carried out

with the proURDS. These services are distributed randomly into the active registries.

5.1.2 The proURDS experimental setup and operation

The experimental setup had ten Dell PCs connected through the Local Area Net-

work (LAN) and running windows XP. The impact of network topology and geo-

graphical separation to the service discovery time is not considered to be a part of

the current set of experiments and is a part of the future work. The experiments with

the proURDS are initiated by starting the proURDS remote server endpoints of each

node (i.e., physical machine) and starting the SMM on any of the nodes. Later the

entities (i.e., the HHs the ARs) can be started according to a selected configuration

using the SMM. On startup, the proURDS Active Registries (which are extended na-

tive registries developed by wrapping Jini Lookup Service) refresh themselves with

the currently available services list and then obtain a multicast group address from

the DSM and listen for multicast messages from the Headhunters on these multicast

groups. Once deployed in the proURDS environment, the Headhunters periodically

communicate to their multicast group. These multicast groups are listed by both the

Headhunters and Active Registries. They are actively involved in locating accessible

ARs according to the policies obtained from the DSM. When Active Registries receive

a multicast message from a particular Headhunter with its location they respond to

the message by unicasting their location information to that Headhunter.

34

The Headhunters maintain a cache of pairs (registry address, Last updated time-

stamp) to validate the liveness of the meta-data of the services that they stores in

their meta-repositories. The Headhunter uses these registry locations to query the list

of accessible Active Registries to get the meta data of the interested services. During

the registration, the Headhunter stores all the details of the services of interest into

the its meta-repository, including the multi level specifications. This stored infor-

mation is used during the multi level matching process by the Headhunters where it

tries to find services that satisfy the computational, cooperation, auxiliary attributes

and QoS metrics specified in the search query. A particular service may be regis-

tered with multiple Headhunters when the system progresses according to the DSM

policies. The services are identified by their service offers comprising of service type

name, the proURDS specification which includes all the multi-level details of the ser-

vice for example, zero or more syntactic contracts and QoS values for that service.

The specification is stored as an XML file at the AR level and the details are stored

in a private database of each HH. As mentioned in previous Section 4.3.1, these spec-

ifications are the XML based Multi Level Specifications (as presented in Figure 4.5)

and the information is ordered in multi-level

Many instances of the services (from the QWS Dataset) are deployed, along with

their specifications, in the experiments that are carried out with the proURDS. These

services are distributed randomly into the active registries and queries are manually

written and validated with the knowledge of existing services. At each AR, the

specifications are ordered for specific domains such as Financial Services, Health

Care Services, and Stock Services. This defines the AR’s specialty of the domains of

services. When the system integrator identifies the needed components for its DCS

construction, queries for each service are passed to the Query Manager(QM) in the

SMM which in turn produce a multi-level query to select a subset of accessible HHs

in the proURDS. An example of a partial multi-level query is indicated in Figure 5.1.

The queries used in these experiments are a subset of service specifications and are

expressed in XML.

35

The proURDS produced query (which is shown in Figure 5.1) describes different

facets of the desired service together with the query configuration. The query con-

figuration part contains matching related settings, such as which version (from exact

or relaxed) and semantics of the associated operators at each level to use during the

matching process. The “query config” element contains the configuration for match-

ing. Inside this element of the query, the details of the semantics of the associated

operators are provided. For example, this sample query contains type level relaxed in

operators for type synonyms, inheritance and coercion. The elements following the

“query config” contain multi-level query information expressed as service attributes

at each level such as type (component), syntax, sementics, and QoS. For example,

“QoS Attributes” element contains the query information related to the reliability

and the response time of the service that this query is searching for.

When a HH receives the Multi Level Query, it queries the KB to obtain necessary

domain information which is essential in decoding the query and also in performing the

MLM. For example, the Semantic level matching needs the service of a TheoremProver

to perform matching of assertions such as the equivalence and the implication. The

proURDS invokes the Java Theorem Prover [45] which is an object-oriented modular

reasoning system based on a simple and general reasoning architecture. When the

MLM completes the matching at a level the results are injected to the next level for

further processing. The list of results is routed back to the end user via the HHs and

QM of the proURDS.

Multiple experiments are carried out to test different levels of multi-level match-

ing, query evaluation and performance evaluations of the proURDS prototype. The

following section discusses the details of the results and their analysis.

5.2 Results and Analysis

The results which are described in this section are related to a particular multi-

level query which is submitted to the proURDS. In each experiment, a query is

36

Figure 5.1. Sample proURDS multi-level query

displayed with the results and special attention is needed to differentiate the different

facets of the query from the query configuration.

5.2.1 UDDI vs proURDS Evaluation

The first experiment compared the proURDS with a publicly available prototype

of UDDI, the jUDDI [46]. jUDDI supports simple attribute-level matching, which is

a subset of the matching supported by the proURDS. Figure 5.2 shows the outcome

of this experiment. The y−axis of Figure 5.2 represents the average response time of

37

the discovery service (i.e., in this case both jUDDI and proURDS) and the x− axis

denotes different numbered Multi-level queries. In this experiment, randomly gener-

ated queries are sent to the jUDDI and two versions of the proURDS. One version

of proURDS supports only the exact type matching and the other version supports

relaxed matching at four levels (i.e., Type, Sysntax, Semantics and QoS). Because

synchronization details are not present in these services, they are not included. The

response time (Tq) for each query is measured by repeating the same query one hun-

dred times and taking the average of the response times obtained in each of these

iterations. As seen from Figure 5.2, the jUDDI and the proURDS containing only the

type matching require comparable times to service these queries and both of these

systems yielded identical services for each of these queries. The MLM for different

queries, as shown in Figure 5.2 resulted in a higher response time, as expected. This

increase is due to the cost of implementing the additional matching operations.

Figure 5.2. Response Time Comparisons

38

5.2.2 Quality Evaluation

The next set of experiments compared the quality of the results returned by the

jUDDI and proURDS prototypes. These results (i.e., number of services returned

after the matching process) were manually inspected for their quality (i.e., their rel-

evance for a particular query).

Figure 5.3. Comparison of the Quality of Result (Exact Matching)

Figure 5.3 shows the outcome of this experiment. The y − axis of Figure 5.3

represents the number of matching service contracts resulting from the discovery ser-

vice (i.e., in this case both jUDDI and proURDS) and the x− axis denotes different

numbered Multi-level queries where exact matching is enabled. As the jUDDI sup-

ports only the type level matching, it returned the same number of relevant services

as those returned by the proURDS with type matching semantics. The number of

services that returned with all the four levels of matching, for a particular service, is

39

typically much smaller than those returned at the end of only type matching as seen

from Figure 5.3. However, these services are more relevant to the query than the ones

obtained at the end of only the first level of matching. Hence, the quality of results

(i.e., degree of relevance) increases as the levels of matching increases at the cost of

higher response time (shown in Figure 5.3).

Table 5.1
MLM Levels and Operators

Level Operator

Type Synonym (Exact)

Inheritance (Relaxed)

Coercion (Relaxed)

Syntax Synonym (Exact)

Inheritance (Relaxed)

Coercion (Relaxed)

Default Parameters (Relaxed)

Parameter Order (Relaxed)

Semantics Equivalence (Exact)

Implication (Relaxed)

Reverse Implication (Relaxed)

Synchronization Compatibility

QoS Comparability

In the second part of the query evaluation experiment, the precision and recall

of the results, returned by the proURDS, were computed. The precision is defined

as the number of relevant services retrieved by a query divided by the total number

of services retrieved by that query, and recall is defined as the number of relevant

services retrieved by a query divided by the total number of existing relevant services

(which should have been retrieved). In these experiments, exact matching operators,

40

listed in Table 5.1, were used. Since the response time is not a consideration in these

experiments, only the results obtained by the use of exact matching were considered.

These results are listed in Table 5.2.

Table 5.2
Exact Matching Results

Query No Total

No of

Relevant

Services

No of

Returned

Services

Resulted

No of

Relevant

Services

Precision

%

Recall %

Query 1 2 1 1 100 50

Query 2 1 1 1 100 100

Query 3 1 0 0 0 0

Query 4 7 5 4 80 57

Query 5 6 5 5 100 83

It can be seen from Table 5.2, the higher the precision (optimal 100%), the higher

the quality of the results returned. Also, the higher the recall (Optimal 100%), the

better the quality of the results. According to Table 5.2, only query 2 is able to

achieve optimal results, but all the other queries yielded acceptable results approach-

ing the optimal, except query 3. It failed to produce any results - the reason as seen

from Figure 5.3, is that at the QoS level no service contracts were able to fulfill the

requirement of the query.

The same experiment was repeated with relaxed matching semantics for all the

operators. Figure 5.4 shows the outcome of this experiment. The y−axis of Figure 5.4

represents the number of matching service contracts resulting from the discovery

service (i.e., in this case both jUDDI and proURDS) and the x−axis denotes different

numbered Multi-level queries where relaxed matching is enabled. Figure 5.4 shows

an increase in the results returned at each level when compared with the Figure 5.3.

41

Figure 5.4. Comparison of the Quality of Result (Relaxed Matching)

This is as expected, as relaxed matching, due to its inherent nature, will return more

services. The precision and recall evaluation for the experiment are indicated in

Table 5.3.

When the results in Table 5.3 are compared with the results in Table 5.2, most of

the queries were able to reach the optimal results. This is, again, as expected due to

the relaxed nature of the operators.

5.2.3 Performance Evaluation

Additional experiments were conducted to test the performance of the proURDS

prototype. In addition to Tq, the Matching Time (Tm) is used as a metric in these

experiments. Tm is defined as the time taken by a HH to perform the MLM depending

42

Table 5.3
Relaxed Matching Results

Query No Total

No of

Relevant

Services

No of

Returned

Services

Resulted

No of

Relevant

Services

Precision

%

Recall %

Query 1 2 2 2 100 100

Query 2 1 1 1 100 100

Query 3 1 1 1 100 100

Query 4 7 7 6 85 85

Query 5 6 6 6 100 100

on its capabilities. If a HH performs matching at all the five levels then Tm is the

sum of matching times observed at each level. Tq is summation of Tm and the time

required for propagating a query to a particular HH and bringing the results back

from that HH.

Figure 5.5 shows the matching times required at each level for five random queries.

The y− axis of Figure 5.5 represents Tq as the response time taken by the proURDS

to perform matching and the x− axis denotes different numbered level of matching

(from level 1-4) as Type, Syntax Semantics and Qos. As expected, each level of

matching increases the response time. However, the increase in the time required for

the semantic matching is substantially more than the other levels, as it involves the

use of a theorem prover to establish the equivalence relation between the query and

the set of available services.

Figure 5.6 shows the increase in Tq as a function of number of services. Again, as

expected, with the increase in service space, the response time increases proportion-

ately for a set of queries.

43

Figure 5.5. Individual Matching Times

5.2.4 Matching with Timing Constraints

As seen from Figures 5.2 and 5.4, there is a tradeoff associated with the response

time and the quality of the results returned for a particular query - typically, the

higher the quality (i.e., number of relevant services returned), the higher the response

time, and matching at more levels is needed to achieve the high quality. Hence, the

final experiment was carried out to study this tradeoff. In this case, an upper limit,

arbitrarily chosen, for the Tq was set and the services returned were inspected for their

quality when this limit expired. Figure 5.7 shows the outcome of this experiment.

The first bar indicates the results returned when the upper limit was reached,

while the second bar indicates the results when there was no upper limit. For all

five queries, the quality of the results when the limit was reached was lower than the

case with no limit, again, as expected. The degree of loss in the quality will depend

upon many factors such as the value of the upper limit, the nature of the query, and

44

Figure 5.6. Tq as a Function of Size of Service Space

the number of services matching the query. Hence, if an application is time sensitive,

then it can probably accept not the most relevant service but a “close-enough” service.

On the other hand, if the service selection is an off-line process (i.e., carried out as

a separate phase from the service compositional phase) then a higher response time

can be tolerated to obtain the most relevant service(s) for a particular query.

In summary, the results described in the above set of experiments indicate that

the proURDS is able to find relevant services with better quality. The quality im-

provements of the services returned by the proURDS is verified in terms of precision

and recall. This improvement is possible as a result of the multi-level matching se-

mantics the proURDS. However, the increased result quality is achieved at the cost

of increased response time. When compared to the other alternatives such as UDDI,

the average response time of the proURDS is high, however this was expected due

to the additional work performed by the multi-level matching. Hence, a need arises

to test the proURDS with real world requirements, and therefore the next section

45

Figure 5.7. Matching with Time Constraints

provides a case study to explain how proURDS can be used with the services from

environment sciences domain.

5.3 Case Study : Cloud Service Selection

As a consequence of the results section (i.e., Section 5.2), the need appears to test

the proURDS with a real world service requirement. Therefore, the proURDS is tested

with the service requirements for environmental science domain as a case study in the

following sections. This case study describes the background and the application of

the proURDS to the domain of cloud-based services from the Environment Sciences

domain. Also, it presents the experiments and results of the proURDS behavior in

this context.

46

5.3.1 Cloud Service Selection

Cloud Computing (CC) promises to deliver computing as a utility. Users can

request on-demand access to software services hosted inside clouds. For a given ap-

plication, many similar services, that are developed independently, could be hosted

in a cloud. Hence, automatically selecting an appropriate service from these available

choices to fulfill a particular requirement is a challenge. CC provides flexible ways for

hosting, consuming, and delivering Internet-based services. Mainly due to the reasons

of economy, ease of creation and use, flexibility, and scalability, software realizations

of CC-based applications would be achieved as coalitions of independently created

services that are deployed in clouds, public and/or private. Selecting appropriate

cloud-based services is a critical step in composing CC-based applications. Consider

a typical environmental monitoring system which can be created as an ensemble of

many independently developed services. For example, such a system can be used

to monitor the effects of a contaminant spill in a large body of water. To create

this system, scientists from the Environmental Sciences domain will need to integrate

data-set monitoring services with different environmental simulation (e.g., watershed

models, climate models, and ecological models) services. When a team of Earth Scien-

tists searches for Precipitation, Land Cover, Water Flow, Water Quality, and Weather

Forecast services, multiple instances for each type of these services (e.g., deployed by

USGS [47], USDA [48], NASA [49], and NOAA [50]) may be available that the team

can choose from. These instances might be hosted in public or private clouds (as

shown in Figure 5.8) along with the necessary datasets. This selection function could

be made available as a feature of a cloud-based middleware. For example, in the

Environmental Science domain, there is a frequent need to select appropriate data

services from the available choices and integrate them to create an environmental

monitoring and decision support system. The prevalent cloud related service selec-

tion methods employ simple attribute-based matching which may not yield the most

relevant alternatives for such an application from Environmental Sciences.

47

Figure 5.8. Environmental Science Service Clouds and CSS

Due to the large number of such available individual services, their possible per-

mutations, and the associated inherent complexity, this task of discovery and selection

of relevant service instances is highly time consuming and error prone, especially if

the team has a specific bias or is not very familiar with a particular model of service.

Also, a specific service may not be able to easily couple with another particular ser-

vice, if these services operate at different time and spatial scales. In addition, these

datasets and modeling services will usually have different formatting requirements,

different software designs and technologies, different storage requirements, different

computational requirements (especially syntactic and semantics) and different op-

erational and concurrency semantics. And finally, some of these services might be

available freely from national agencies (e.g., NASA and NOAA) and could be hosted

in a public cloud, while others may be hosted in private clouds and their owners might

charge for these services. All these factors will further increase the complexity of the

selection process. Hence, the discovery and selection of appropriate services from the

available ones in clouds need to consider many dimensions such as the underlying al-

48

gorithmic and technological techniques used, the nature and types of the inputs, the

Quality of Service (QoS) associated with the results, the ability to handle concurrent

requests, the cost of using the services, etc. The prevalent CC-based service selection

methods use simplistic matching semantics that use a limited set of attributes. Such

an approach is not suitable in many complex applications from a variety of scientific

domains including Environmental Sciences.

The task of applying the principles of the proURDS to this case study of selecting

earth science services is far from trivial due to: a) the inherent complexity (e.g., the

number of available services and their peculiarities) of the Environmental Sciences

domain, b) the unavailability of multi-level specifications for these services, and c)

the continuous need for the involvement of an expert from that domain to decide the

matching semantics and to assess the quality of the results (i.e., number of services)

returned.

5.3.2 Multi-level Specification (of a Cloud Service)

Multi-level specifications (or contracts) and associated multi-level matching for

software services is presented in Subsection 4.3.1 and Subsection 4.3.2. An example

of a partial multi-level specification (in XML) for a Land Cover Data Service (from

the domain of Environmental Sciences) is indicated in Figure 5.9. This partial spec-

ification shows six levels: a) General b) Syntactic, c) Semantic, d) Synchronization

e) QoS and f) Auxiliary. How these different attribute levels of the specifications are

matched by the Headhunters of the proURDS is also presented in Subsection 5.2 and

the Table 5.1.

5.3.3 Scenario Motivation

The domain of Environmental Sciences frequently involves handling of the envi-

ronmental preservation activities. In such situations, teams of Earth Scientists need

to perform the cause-effect analyses to conclude about the health of certain ecological

49

Figure 5.9. Multi-level specification of a Land Cover Data Service

systems. These analyses are achieved by the creation of distributed software systems

that are composed from a variety of individual services. At present, such research

teams mostly depend on human intervention to make ad-hoc choices about relevant

services. For example, an ecological monitoring system called as Emergent Environ-

ment Effects Forecasting System (EEEFS) that monitors the effects of an oil spill

50

on a body of water may consist of different types of environmental services that are

hosted in public and/or private clouds along with the necessary data sets. Figure 5.10

shows the types of the services needed for composing the EEEFS.

Figure 5.10. Architecture of the EEEFS

Selecting a proper instance of each of these types of services is based on a spe-

cific criterion that depends on the inherent nature of each type of service and also

compatibility between various instances of different types. For example, the selection

of an appropriate instance of the Weather Service may include considering the in-

put/output parameter syntax details, associated semantics, and the QoS values. Due

to the inherent complexity and various permutations between different instances, the

EEEFS is an ideal choice to act as a case study to assess the applicability of the

proURDS principles in the context of a cloud-based discovery.

51

5.3.4 Service Selection for EEEFS

To study the applicability of the proURDS and associated multi-matching princi-

ples in the context of EEEFS, the experimental infrastructure that simulated services

from the categories of watershed modeling (water-flow and water quality) and spa-

tial data modeling (land, soil, and elevation) and forecasting (weather forecasting) is

created. Publically available services such as USGS [47], USDA [48], NLCD [51],

SSURGO [52], and STATSGO [53] are used in the experiments. These existing

services did not contain multi-level contracts and hence, their multi-level specifica-

tions are created. The main challenge in this step is to identify different instances of

services (which required domain knowledge) and extract the details for each level of

the multi-level specification of these services. Instances of these services specifications

are deployed in the experimental setup. These services are distributed randomly into

the active registries of the proURDS and queries were manually written and validated

against the experts domain knowledge of existing services. Also, a sample KB for this

domain is created in consultation with the domain expert. Figure 5.11 shows a part

of this KB. As indicated earlier, the KB is consulted during the query process.

5.3.5 Results and Performance Evaluation

The experiment setup is made up of ten Dell machines running XP. Around 100-

120 services are created for each category of services for EEEFS to test suitable

services. All the levels of matching are performed except the synchronization level,

because the synchronization contracts for the existing Environmental Science services

could not be extracted due to the unavailability of their source code, and because

most of the services use the default Web session synchronization technique. Also,

the exact and relaxed matching semantics at each of the four levels are included in

the experiments. Multi-Level Queries (MLQ) are issued to find the most appropriate

services out of these instances. The MLQs used in the following experiments are a

subset of Multi-level service specifications and are expressed in XML.

52

Figure 5.11. Partial Knowledge base

The first set of experiments compares the quality of the results returned by the

proURDS prototype. The quality is measured as the number of relevant services

returned for a particular query along with the usual metrics of precision and recall.

These results of this experiment are manually inspected for their relevance. An ex-

ample of such a MLQ for a Land Cover Service is shown in Figure 5.12.

Figure 5.12. Sample Query for Type exact matching

53

Figure 5.13. Sample Query for Type relaxed matching

As seen from Figure 5.12, each query is associated with a unique ID. The query

configuration level indicates how many levels of the multi-level specification should

be used in the process of matching. For example, in Figure 5.12 this attribute is 0,

indicating that the matching should only take place at level 0, i.e., only at the type

level. Also, in this query, relaxed matching semantics is not required. This is achieved

by setting that specific attribute to false. This query resulted in 51 relevant services.

The sample query 2, shown in Figure 5.13, is used to retrieve Land Cover Services

with a relaxed matching semantics only at the level of type.

The relaxed matching will not only retrieve services of type Land Cover, but also

return services of type Forest Cover, as these two types are related by inheritance.

Hence, more services (in this case 65) are returned for this query.

Table 5.4
Land Cover Service Query Results Comparison

Query Level Type Syntax Semantics QoS

Exact

Matching

51 22 6 0

Relaxed

Matching

65 25 8 2

54

Figure 5.14. Sample Query for All-level relaxed matching

Figure 5.14 indicates another query, for the Land Cover Service, which uses the

relaxed semantic for all the levels of the specification. Hence, it consists of the details

for all the levels of the multi-level specification and is more comprehensive than the

first two queries.

Table 5.4 indicates the comparison of results for the query presented in Figure 5.14.

As seen from Table 5.4, the exact matching at all levels does not yield any results

55

Table 5.5
EEEFS Relaxed Matching Criteria

Weather Possible Relaxed Matching Criterion

Precipitation (1) Minimize the distance from desired latitude-

longitude or any other location indicator, (2) minimize

cost

Water Flow (1) Minimize the time duration overlap, (2) minimize

the cost

Water (1) Minimize the distance from desired latitude-

longitude or any other location indicator, (2) maximize

the overlapping time duration with respect to the de-

sired time duration, (3) minimize cost

Quality (1) Maximize the overlapping water quality parameters

with respect to the desired water quality variables

Land Cover (1) Maximize the overlap time of the map published,

(2) minimize the distance between the grid size and the

desirable grid size

for the Land Cover Service. However, relaxing the semantics of the operators at each

level resulted in addtional matching instances for the Land Cover Service. Table 5.5

indicates the relaxed selection criteria, specified by the domain expert, used in this

experiment.

Many more queries are executed in the given experimental setup with both the

exact and relaxed matching semantics. Figure 5.15 shows the results of a few of

these experiments. Here, for various types of queries the number of matching services

returned after each level of matching and with exact and relaxed semantics is shown.

As seen from the Figure 5.15, there is an increase in the number of matching services

56

Figure 5.15. Comparison of the Quality of Result (Exact and Relaxed Matching)

in the case of the relaxed semantics as opposed to the exact matching semantics. This

is expected due to the inherent nature of the relaxed matching operators.

Tables 5.6 and 5.7 indicate the precision and recall values for these queries using

the exact and relaxed matching semantics respectively. As seen from these tables, it

is evident that relaxed matching results in better precision and recall values.

Additional experiments are conducted to test the performance, as indicated by

the time required to carry out the matching operations of the proURDS prototype.

The Matching Time (Tm) is used as a metric in this set of experiments. Tm is defined

as the time taken by the proURDS Headhunter (HH) to perform the MLM depending

on its capabilities. If a HH performs matching at all the five levels then Tm is the sum

of matching times observed at each level. Tq is the summation of Tm and the time

57

Table 5.6
Exact Matching Results for each type of Query

Query No Total

No of

Relevant

Services

No of

Returned

Services

Resulted

No of

Relevant

Services

Precision

%

Recall %

1.Land

Cover

Query

2 0 0 0 0

2.Weather

Query

6 5 4 80 66

3.Precipi

-tation

Query

5 5 3 60 60

4.Water

Quality

Query

3 3 1 50 33

5.Water

Flow

2Query

4 3 2 66 50

required for propagating a query to a particular HH and bringing the results back,

and thus, indicates the end-to-end response time for a query.

Figure 5.16 shows the matching times required at each level for the both the

semantics (exact/relaxed) of five types of EEEFS queries. As expected, each level

of matching increases the response time. It is evident, from Figure 5.16, that the

increase in the time required for the semantic matching is substantially more than the

other levels, as it involves the use of a predicate proving with theorem prover [45] to

58

Table 5.7
Relaxed Matching Results for each type of Query

Query No Total

No of

Relevant

Services

No of

Returned

Services

Resulted

No of

Relevant

Services

Precision

%

Recall %

1.Land

Cover

Query

2 2 2 100 100

2.Weather

Query

6 6 6 100 100

3.Precipi

-tation

Query

5 5 5 100 100

4.Water

Quality

Query

3 3 3 100 100

5.Water

Flow

2Query

4 4 3 75 75

establish necessary relation between the semantic part of the query and the semantic

specifications of the available Environmental Sciences services. Also it can be seen

that among the two groups of queries, there is a tendency to increase response time

in relaxed matching due to weaker matching semantics and associated KB inferences.

Similarly, it is evident that Tm increases as a function of number of services.

In summary, selecting appropriate services from a set of available ones deployed

in a cloud is a crucial, laborious, and possibly error-prone step. This case study has

59

Figure 5.16. Individual Matching Times

empirically validated the applicability of the proURDS in this context. The results

indicate that proURDS returns relevant cloud services as a result of the multi-level

matching semantics.

60

6 CONCLUSION AND FUTURE WORK

Selecting services from a set of available ones over a network is a crucial step in

developing distributed systems that are composed of individual services. Various

techniques, ranging from simplistic attribute comparisons to multi-level matching,

can be used for matching a query against a set of service specifications. Selecting

appropriate services from a set of available ones deployed in the cloud is also a crucial,

laborious, and possibly error-prone step. However, this step is essential in developing

distributed applications that are composed of individual services which are deployed

in the clouds. Hence, an automated and more extensive approach (than the prevalent

ones) is needed to discover and select such relevant services. The URDS is one such

hierarchical discovery system that uses the principles of multi-level specifications and

associated matching.

The work presented (proURDS) in this thesis indicates an improved architecture

from the previous version of URDS. The proURDS enhances the URDS by conducting

the service discovery experiments in a distributed setup using actual services from a

public dataset. The addition of the two new modules namely: the Knowledge base

(KB) module and the Service Management and Monitoring (SMM) module enhance

the URDS architecture by providing necessary domain knowledge and control, man-

agement and monitoring capabilities. Also the case study has presented an empirical

validation of the proURDS using environmental science services. It also compared

the performance of the proURDS with jUDDI, a publicly available discovery service

implementation.

The results described in this thesis indicate that the proURDS returns relevant

services (i.e., services with better quality) as a result of the multi-level matching

semantics at the cost of increased response time. The quality of the services returned

by the proURDS is measured in terms of precision and recall. Although the average

61

response time of the proURDS is high, this was expected due to the extra work

performed by the multi-level matching.

Future work will include, in addition to more comprehensive experimentation,

the investigation of multi-level matching in the context of uncertainty and incom-

plete service specifications. Other directions include further experimentation with

the proURDS to investigate the effects of cloud service distribution topology on the

matching process, creation and experimentation of additional levels of specification

and matching, for example, trust contracts, economics contracts, and legal contracts.

LIST OF REFERENCES

62

LIST OF REFERENCES

[1] Carney D. Foreman J. Haines, G. Component-based software development and
cots integration. http://www.sei.cmu.edu/str/descriptions/cbsd.html, 2007.

[2] Olson, A., Raje, R., Bryant, B., Auguston, M., Burt, B. UniFrame - A Unified
Framework for Developing Service-oriented, Component-based Distributed Soft-
ware Systems. In Stojanovic, Z. and Dahanayake, A, editor, Service-Oriented
Software System Engineering: Challenges and Practices, pages 68–87, IGI Pub-
lishing Hershey, PA, USA, 2005.

[3] Olson, A., Raje, R., Bryant, B., Auguston, M., Burt, B. UniFrame - Automat-
ing the Construction of Large-Scale Distributed Systems. In Dai, Y., Pan, Y.,
and Raje, R, editor, Advanced Parallel and Distributed Computing: Evaluation,
Improvement, and Practice, New York, 2006.

[4] Siram, N. An Architecture for the UniFrame Resource Discovery Service. Mas-
ter’s thesis, Indiana University Purdue University Indianapolis, 2002. Depart-
ment of Computer and Information Science.

[5] Devaraju, B. Enhancement of the UniFrame Resource Discovery Service. Mas-
ter’s thesis, Indiana University Purdue University Indianapolis, 2005. Depart-
ment of Computer and Information Science.

[6] Katuri, P. Experimenting with Multilevel Matching Concepts for Software Com-
ponents. Master’s thesis, Indiana University Purdue University Indianapolis,
2006. Department of Computer and Information Science.

[7] Zaremski, A., and Wing, J. Specification matching of software components. In
Proceedings of SIGSOFT’95 Third ACM SIGSOFT Symposium on the Founda-
tions of Software Engineering, pages 6–17, October 1995.

[8] Zaremski, A. and Wing, J. Specification Matching of Software Components.
ACM Transactions on Software Engineering, 6(4):333–369, 1995.

[9] Siram, N., Raje, R., Bryant, B., Olson, A., Auguston, M., and Burt, C. An
Architecture for the UniFrame Resource Discovery Service. In Proceedings of
SEM 2002, the 3rd International Workshop on Software Engineering and Mid-
dleware, Springer-Verlag Lecture Notes in Computer Science, Vol. 2596, pages
20–35, 2003.

[10] The QWS Dataset,
URL: http://www.uoguelph.ca/ qmahmoud/qws/index.html, 2000.

[11] Lahiru S Gallege, Ketaki P Pradhan, and Rajeev R Raje. Experiments with a
multi-level discovery system. In Proceedings of the series International Confer-
ence in Computing (ICC 2010), New Delhi, India, 2010.

63

[12] Lahiru S Gallege, Aboli Phadke, Meghna Babbar-Sebens, and Rajeev R Raje.
Cloud service selection for earth science domain. In the 2nd International Confer-
ence on Recent Trends in Information Technology and Computer Science (ICR-
TITCS 2012), International Journal of Computer Applications (IJCA), 2012.

[13] Sun Microsystems. Jini Specifications V2.0.

[14] J Newmarch. A Programmer’s Guide to Jini Technology. Apress, 2000. ISBN
1-893115-80-1.

[15] UPnP Organization. UPnP Home Page
URL: http://www.upnp.org, 2005.

[16] J Kemp. Service Location Protocol for Enterprise Networks. Wiley and Son Inc.
ISBN 0-47-3158-7.

[17] OpenSLP Organization. OpenSLP Home Page
URL: http://www.openslp.org, 2005.

[18] UDDI Technical White Paper,
URL: http://www.uddi.org/pubs/Iru UDDI Technical White Paper.pdf, 2000.

[19] Trading Object Service Specification,
URL: ftp://ftp.omg.org/pub/docs/formal/00-06-27.pdf, 2000.

[20] Globus Toolkit,
URL: http://www.globus.org/toolkit/, 2007.

[21] Seacord, R., Hissam, A., Wallnau, K. AGORA: A Search Engine for Software
Components. IEEE Internet Computing, 1998.

[22] Ninja Project,
URL: http://ninja.cs.berkeley.edu, 2005.

[23] von Behren, J., Brewer, E., Borisov, N., Chen, M., Welsh, M., MacDonald, J.,
Lau, J., Culler, D. Ninja: A Framework for Network Services. In Proceedings of
USENIX Annual Technical Conference, 2002.

[24] Banaei-Kashani, F., Chen, C., Shahabi, C. WSPDS: Web Services Peer-to-
Peer Discovery Service. In Proceedings of International Conference on Internet
Computing, 2004.

[25] Chakraborty, D., Perich, F., Avancha, S. and Joshi, A. DReggie: A Smart
Service Discovery Technique for E-Commerce Applications. In Proceedings, 20th
Symposium on Reliable Distributed Systems, October 2001.

[26] Di Martino, B. Semantic web services discovery based on structural ontology
matching. In Proceedings of IJWGS, 2009.

[27] Lin, C., Wu, Z., Deng, S., Kuang, L. Automatic Service Matching and Service
Discovery Based on Ontology. In GCC Workshops, 2004.

[28] DARPA. The DARPA Agent Markup Language,
URL: http://www.daml.org/, 2006.

64

[29] Ankolenkar, A., Burstein, M., Hobbs, J., Lassila, O., Martin, D., McDermott, D.,
McIlraith, S., Narayanan, S., Paolucci, M., Payne, T., Sycara, K. DAML-S: Web
Service Description for the Semantic Web. In Proceedings of First International
Semantic Web Conference, 2002.

[30] Horrocks, I. DAML+OIL: a reason-able web ontology language. In Proceedings
of Extending Database Technology, 2002.

[31] Arabshian, K. and Schulzrinne, H. GloServ: global service discovery architecture.
Mobile and Ubiquitous Systems: Networking and Services, pages 319–325, 2004.

[32] Chara Skouteli, George Samaras, and Evaggelia Pitoura. Concept-based dis-
covery of mobile services. In MDM ’05: Proceedings of the 6th international
conference on Mobile data management, pages 257–261, New York, NY, USA,
2005. ACM.

[33] Gu, T., Qian, H., Yao, J., Pung, H. An Architecture for Flexible Service Dis-
covery in OCTOPUS. In Proceedings of 12 th ICCCN, 2003.

[34] W3C. Resource Description Framework,
URL: http://www.w3.org/RDF/, 2004.

[35] Arabshian, K., Dickmann, C., Schulzrinne, H. Ontology-Based Service Discovery
Front-End Interface for GloServ. In Proceedings ESWC , 2009.

[36] Taekgyeong Han and Kwang Mong Sim. An ontology-enhanced cloud service
discovery system. Computer, I:644–649, 2010.

[37] Wenying Zeng, Yuelong Zhao, and Junwei Zeng. Cloud service and service se-
lection algorithm research. Proceedings of the first ACMSIGEVO Summit on
Genetic and Evolutionary Computation GEC 09, page 1045, 2009.

[38] Phillip C-y Sheu, S H U Wang, Q I Wang, K E Hao, and R A Y Paul. Se-
mantic computing, cloud computing, and semantic search engine. 2009 IEEE
International Conference on Semantic Computing, 1:654–657, 2009.

[39] Raichura Bhavin and Agarwal Ashutosh. Infosys cloud computing white paper.
http://www.infosys.com/cloud-computing/white-papers/Documents/service-
exchange-cloud.pdf, 2009.

[40] Heiko Ludwig, Alexander Keller, Asit Dan, Richard P King, and Richard Franck.
Web service level agreement (wsla) language specification. Language, pages 1–
110, 2003.

[41] Pankesh Patel, Ajith Ranabahu, and Amit Sheth. Service level agreement in
cloud computing. Cloud Workshops at OOPSLA09, pages 1–10, 2009.

[42] R. Raje, P. Katuri, A. Kumari, and O. Tilak. Experiments with a multi-level
discovery system. In Proceedings of the International Conference on Computer
Communication and Instrumentation, Mumbai, India, 2009.

[43] Jejurikar, A. Knowledgebase Architecture for Distributed Computing Systems.
Master’s thesis, Indiana University Purdue University Indianapolis, 2007. De-
partment of Computer and Information Science.

65

[44] Eisenecker U. Czarnecki, C. Generative Programming. Addison-Wesley, 2000.

[45] The Java Theorem Prover, An object-oriented modularreasoning system,
URL: http://www-ksl.stanford.edu/software/jtp/, 2000.

[46] UDDI Reference Implementation for Java (Apache jUDDI),
URL: http://ws.apache.org/juddi/index.html, 2000.

[47] United Stated Geological Survey (USGS),
URL: http://eros.usgs.gov, 2012.

[48] United Stated Department of Agriculture (USDA),
URL: http://www.ers.usda.gov/Data/MajorLandUses/, 2012.

[49] National Aeronautics and Space Administration (NASA) ,
URL: , 2012.

[50] National Oceanic and Atmospheric Administration (NOAA),
URL: http://www.ngs.noaa.gov/productsservices.html, 2000.

[51] National Land Cover Data (NLCD),
URL: http://www.usgsquads.com/prodNLCD.htm, 2012.

[52] Soil Survey Geographic Data (SSURGO),
URL: http://soils.usda.gov/survey/geography/ssurgo/, 2012.

[53] United Stated General Soil Map (STATSGO),
URL: http://soils.usda.gov/survey/geography/statsgo/, 2012.

APPENDICES

66

APPENDIX A THE PROURDS USER GUIDE

This appendix presents a user (i.e., service integrators point of view) guide for the

proURDS. The guide is explained with respect to a sample scenario associated with

the discovery service operation. The experimental setup of this guide contains three

machines as experimental nodes. It presents a series of screen captures which illustrate

how to create the sample setup of proURDS and how to query and obtain results.

Figure A.1. SMM Startup Screen of the proURDS

Figure A.2. Login screen of the proURDS

67

Figure A.3. Administration screen of the proURDS which allows to
monitor the distributed setup

Figure A.4. Configuration page of the proURDS which allows to con-
figure (i.e., deploy a configuration or manually start and stop entities)
the setup

68

Figure A.5. Sample configuration file of the proURDS which is used
to start entities

Figure A.6. Started proURDS Registry Manager UI which displays a
list of available contracts and the event log

69

Figure A.7. Started proURDS Headhunter UI which displays a list
of currently acquired contracts (from various registries) and its event
log.

Figure A.8. Query interface for the user provided by the SMM which
allows either use of a query configuration file or use of the user inter-
face controls

70

Figure A.9. A partial query configuration part of a query (type configuration)

Figure A.10. Results obtained from only one HH for a sample query
(with no relaxed operations)

Figure A.11. Results obtained from two HHs for the same query (with
no relaxed operations)

71

Figure A.12. Different levels of query configuration provided by the user interface

Figure A.13. Sample results for the initial query with relaxed match-
ing enabled and the maximum level of matching set to syntax

72

Figure A.14. Sample multi-level query configuration file which allows
setting of different operators at different levels including details for
exact and relaxed matching

Figure A.15. Sample results for a query with relaxed matching en-
abled and the maximum level of matching set to QoS

73

Figure A.16. Sample of the partial Knowledge base which referred by
the matching operators of the proURDS

Figure A.17. Logoff screen of the proURDS which allows to go back
or to terminate the setup

74

APPENDIX B THE DESIGN DIAGRAMS

This supplement appendix displays partial class diagrams of some selected packages

of the proURDS source code.

Figure B.1. Partial Class Diagram of the Contract interfaces and
implementation classes

75

Figure B.2. Partial Class Diagram of the Headhunter (HH) interfaces
and implementation classes

76

Figure B.3. Partial Class Diagram of the Active Registry (AR) inter-
faces and implementation classes

77

Figure B.4. Partial Class Diagram of the Dataset implementation classes

78

APPENDIX C THE SOURCE CODE

This supplement appendix displays a list of sample source code snippets taken of the

proURDS. The list includes the contract interface, the message interface, the control

interface, the Headhunter (HH) and the Active Registry (AR) threads, the match-

ing algorithm (which performs multi-level matching), a sample web application user

interface page (Java Server Page) which displays results, the web application config-

uration (web.xml) file, a sample Maven build script and part of the database setup

script. For more details of the proURDS source code, please refer to the UniFrame

project website or email the project team (unframe@cs.iupui.edu).

Figure C.1. Contract interface of proURDS code

79

Figure C.2. Serializeable message interface of the proURDS

Figure C.3. Control interface of the proURDS distributed setup

80

Figure C.4. Part of the proURDS server code base which implements
the control interface

Figure C.5. Part of the source code of the Headhunter (HH) thread

81

Figure C.6. Part of the source code of the Active Registry (AR) thread

Figure C.7. Part of database setup script of the proURDS

82

Figure C.8. Partial code of the matching algorithm which is performed by the HHs

83

Figure C.9. Part of the code base of a jsp page which displays the
matching results for different queries

84

Figure C.10. Part of the deployment script (web.xml) of the servlet container

85

Figure C.11. Part of Maven 2 build script of the proURDS project

