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ABSTRACT

Singh, Vidya Bhushan M.S., Purdue University, May 2014. User Modeling and Op-
timization for Environmental Planning System Design. Major Professor: Snehasis
Mukhopadhyay.

Environmental planning is very cumbersome work for environmentalists, govern-

ment agencies like USDA and NRCS, and farmers. There are a number of conflicts

and issues involved in such a decision making process. This research is based on

the work to provide a common platform for environmental planning called WRE-

STORE (Watershed Restoration using Spatio-Temporal Optimization of Resources).

We have designed a system that can be used to provide the best management prac-

tices for environmental planning. A distributed system was designed to combine high

performance computing power of clusters/supercomputers in running various environ-

mental model simulations. The system is designed to be a multi-user system just like

a multi-user operating system. A number of stakeholders can log-on and run environ-

mental model simulations simultaneously, seamlessly collaborate, and make collective

judgments by visualizing their landscapes. In the research, we identified challenges

in running such a system and proposed various solutions. One challenge was the lack

of fast optimization algorithm. In our research, several algorithms are utilized such

as Genetic Algorithm (GA) and Learning Automaton (LA). However, the criticism is

that LA has a slow rate of convergence and that both LA and GA have the problem

of getting stuck in local optima. We tried to solve the multi-objective problems using

LA in batch mode to make the learning faster and accurate. The problems where

the evaluation of the fitness functions for optimization is a bottleneck, like running

environmental model simulation, evaluation of a number of such models in parallel

can give considerable speed-up. In the multi-objective LA, different weight pair solu-
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tions were evaluated independently. We created their parallel versions to make them

practically faster in computation. Additionally, we extended the parallelism concept

with the batch mode learning. Another challenge we faced was in User Modeling.

There are a number of User Modeling techniques available. Selection of the best user

modeling technique is a hard problem. In this research, we modeled user’s preferences

and search criteria using an ANN (Artificial Neural Network). Training an ANN with

limited data is not always feasible. There are many situations where a simple mod-

eling technique works better if the learning data set is small. We formulated ways to

fine tune the ANN in case of limited data and also introduced the concept of Deep

Learning in User Modeling for environmental planning system.



1

1 INTRODUCTION

This thesis is based on the work we did for designing an Environmental Planning

System. The Environmental planning is a decision making mechanism that considers

several parameters as social, political, economic, and governance factors to plan vari-

ous practices to protect the interests of both the natural environment and the public

by making compromising but optimal decisions. The system being built is a decision

support system that can be used to make environmental planning decisions.

We are working on this environmental watershed optimization problem to pro-

vide the best farming practices so as to minimize the soil erosion, fertilizer loss, and

maintain water quality of the region while maximizing the profit of farmers. We are

extending the work of [1] by implementing a similar concept to provide the Best

Management Practices (BMP) to the Eagle Creek Watershed, located North West of

Indianapolis, shown in Fig. 1.1. The entire Eagle Creek is divided into total 2,953

potential wetlands. A distributed hydrology model was built using SWAT (Soil and

Water Assessment Tool) [2] and [3]. The total wetlands are divided into 130 aggre-

gated wetlands as shown in Fig.5.1. To perform the optimization efficiently, we have

developed a system that uses the fast computing power of clusters/supercomputers

and involves human users to visualize the problems and help the overall search pro-

cess.

The decision support system is needed because the environmental planning is

a difficult work especially due to a number of conflicting issues between different

stakeholders. Due to lack of proper planning and management system, the effect on

the natural environment is very severe. We frequently have the problem of flooding or

drought in many regions, due to which the climate of the region is unpredictable. The

flooding of the region reduces the fertility of the soil, decrease the quality of drinking

water and many other problems while drought causes decrease in the harvest of crops
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Photo credit:Ref. Omkar [4]

Figure 1.1. Counties, Reservoir, Streams of Eagle Creek Watershed.



3

that impact the economy. One possible way of solving this situation is to reduce the

amount of flood damage by storing the excess floodwater.

So the farmers, the environmentalists, the government agencies like USDA, and

NRCS need a decision support system that they can use to visualize the landscape

by implementing certain practices and make a collective decision. e.g., a network of

wetlands can be designed that improves the upland storage in the watershed.

Now there are many ways a particular practice can be implemented, and there

are an infinite number of possible solutions. The problem is how to decide what

particular solution to choose and how to minimize the number of possible solutions.

The Human guided search based interactive optimization is one of the techniques that

can be used.

Human guided search is a method of solving problems whose search space is very

large. The search space may be so broad that neither a human nor the most powerful

supercomputer alone can solve the problem because it is an NP-Hard problem. The

human brain is very good in visualizing data for analysis [5]. If the NP-Hard problem

involves visualizing the solutions, then a human can participate in the search process

in and during the advisory role [6]. The expectation is that the human will help the

search to proceed in the correct direction and decrease the total search space that

will help the computer to solve the problem in a reduced amount of time.

In interactive optimization, a human user’s preference is considered to compute

the design alternatives so that the optimization algorithm will generate the optimal

solution of design. It may not be the best overall optimal design for the user, but

because it uses the user specified criterion, the total search space will be decreased as

in a greedy choice. This can be visualized as user trimming the search space based

on his/her preference criterion as given in Trade-off Plane Cutting Algorithm [7].

But there is a limitation beyond which a human can not participate in the search

completely, due to human fatigue [8]. So some mechanism is needed to relieve the

human in a long search process. One way of doing this is by learning the choices

made by the human using some machine learning algorithms, such as an ANN, fuzzy
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logic, or other linear/non-linear modeling techniques. That will create a surrogate

function [8] which we called Simulated Decision Maker (SDM). The SDM is used

to search a large set of population of designs and provide feedback on behalf of the

user. There are many machine learning techniques that can be used to model the

user’s preferences, but finding the most suitable machine learning algorithm in itself

is a hard problem especially if the domain’s (e.g., environmental planning) data is

highly stochastic. Although the user’s preference criterion is consistent for a short

duration in which the domain’s search data is not very stochastic, over a long time

scale it may exhibit randomness and non-stationary behavior. These preferences are

modeled using a robust, noise-tolerant machine learning techniques such as ANN and

fuzzy logic, in order to use them in an efficient search and optimization.

The same approach can also be extended to search with multiple human users, in

a collaborative problem-solving approach. The preference considerations of multiple

users should decrease the overall search space based on overlapping preference crite-

rion as in the collaborative filtering based technique [9]. The preferences vary based

on users, as a landowner, stakeholders, or government agencies like USDA and NRCS,

and farmers. Finding their priorities and constraints universally is not an easy task.

In this research, we designed a distributed system that involves multiple com-

puters, and clusters to run various environmental model simulations in an efficient

manner. We needed a distributed system because running a large number of envi-

ronmental model simulations and managing data of multiple users is not possible for

ordinary computers. Different components of the distributed system were designed

based on the need and availability of resources. More description of the distributed

system is given in the upcoming sections.

During the design of the system, we encountered several challenges. Out of those,

two big challenge viz. a faster optimization algorithm [10] and user modeling [11]

are discussed, and some solutions are proposed in this thesis.
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2 RELATED WORK

There are many environmental planning systems built in the past for various different

kinds of optimization.

The interactive genetic algorithm (IGA) has been used in Ground Water Mon-

itoring problems [1], in which the mixed initiative approach was used to solve the

multiobjective problem. Their concept was, in a search there are many qualitative

criteria that cannot be expressed using any mathematical model. The real human is

much better in understanding the qualitative criteria. The human expert can partici-

pate in the search process using interactive search algorithms like Genetic Algorithm

(GA).

Human Guided Search is being performed by [12] in which the computer finds the

local minimal, using simple hill climbing search, while the human directs the search

using visualization so that the search can escape the local minimal.

Reinforcement Learning is used by [13] and [14] as Learning Automata (LA) learn-

ing technique. LA takes a lot of time to converge to a good solution, so multiple

studies have investigated faster learning approaches via parallelization [13]. The par-

allelization techniques were done for common pay-off games, parameterized learning

automata and pattern classification problems. The motivation [13] was N indepen-

dent Agents acting simultaneously should speed-up a process roughly by a factor of

N, similar to a population as in GA. But this parallelization was tested for direct

learning algorithm such as LRI Algorithm. In our work, the N LA’s take M indepen-

dent actions at a time. Combining all the automatons and their actions will create a

set of actions to be performed by the system, this is like an individual in GA or one

individual design of SWAT [15]. In Batch Mode, we created multiple such individual

designs. As execution and reward for each individual design is independent of each
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other, a PRAM (Parallel Random Access Machines) based algorithm can be used to

evaluate them independently.

Batch mode learning is one of the popular learning techniques used in ANN.

In batch mode [16], the learning of the ANN is done by taking the average over

all training patterns before changing the weights. Choosing a very small learning

parameter is not realistic as smaller the learning, the longer it takes to converge.

So based on availability of resources and time, learning parameter can be chosen.

Batch Mode learning is also done in text categorization [17], where a batch of text

documents is used instead of just one. Batch Mode learning is used in medical Image

classifications [18] and Content based Image retrieval [19] where instead of selecting

a single unlabeled example, a number of unlabeled examples were selected for manual

labeling. A discriminative batch mode active learning is done by [20].

People also have tried to combine the LA and GA [21] to escape the problem of

local optima. In StGA [22], the authors created a small number of actions of the

Learning Automata, which were sampled to construct a population, from which the

sampling action was done adaptively by genetic operations. Some authors have also

tried to combine the GA with other algorithms as Simulated Annealing to solve some

NP-Hard Problems [23].

Another big challenge of performing interactive optimization is User Modeling.

The challenge in our case is limited feedback data from the user. There are many

scenarios where the total data we have will not be the proper distribution of human

ratings. In such a case, an ANN trained network might get stuck to one particular

rating. So we formulated a technique of user modeling where this scenario can be

avoided, in case of limited data.

A lot of research on user modeling has been done in many disciplines [24] like

Human-Computer Interaction, Intelligent Interfaces, Adaptive Interfaces, Cognitive

Engineering, Intelligent Information Retrieval, Intelligent Tutoring, Active and Pas-

sive Help Systems, Guidance Systems, Hypertext Systems, and Expert Systems, to

name just the most prominent application areas. But the user modeling in the domain
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of Environmental Science is still in its infancy. User modeling is performed in informa-

tion retrieval systems [25] where the user’s domain experiences and inquiry interests

are modeled by the system. Another promising method of user modeling, using an

Artificial Neural Network (ANN), was done by [26] where news were shown to the

user based on personal interest. The ANN tries to model the interests of the user and

then rank the incoming news as relevant or irrelevant. ANN and GA hybrid, ANN-

GA [27], is used to solve water quality modeling problems. The hybrid system was

created because the total search space was too big and computationally not feasible.

Fuzzy Model and ANN are used in estimating the sediment concentration [28]. ANN

is used to model rainfall/runoff [29] and to model daily sediment yield [30] in various

fields of hydrology. People [31] compared user modeling techniques like ANN, fuzzy

logic, etc. for adaptive hypermedia systems and recommended their usage in different

scenarios. Huang et.al. [32] used ANN to do multi-objective interactive optimization

for reliability optimization.

Some of the popular predictive statistical models are linear models, TFIDF-

based models, Markov models, ANN, classification and rule-induction methods, and

Bayesian networks [33]. Of those models, ANN is good in expressing non-linear de-

cision [33]. The two of the main issues that user modeling faces are user model

representation and acquisition [34]. Generic user modeling technique has been de-

veloped by [35]. A user modeling toolkit for cooperative user modeling is done by

[36].

Deep Learning is also one of prominent machine learning algorithm used by many

people especially in handwriting recognition [37] and [38]. A faster implementation

of Deep Learning is done [39] using GPUs, which are fast computing hardware.

In chapter 3, we have provided the description of the system we have built. In

chapter 4, we have described the environmental resource optimization problem. In

chapter 5, we have discussed various optimization algorithms we can use and proposed

our new optimization algorithm. In chapter 6, we have discussed different machine
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learning algorithm that we can use. In chapter 7, we discussed different experiments

that we performed.
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3 THE IGAMI2 DISTRIBUTED SYSTEM

IGAMI2 is Interactive Genetic Algorithm with Mixed Initiative (version 2). We

redesigned the IGAMII system used in [1], with a lot of new modifications and added

many important features (described below) based on the new set of problems we

identified.

The IGAMI2 system is a distributed system which spans a number of computers,

clusters, and supercomputers that can be used to run a number of environmental sim-

ulations, manage data and provide the decision support for environmental planning.

The abstract diagram of the IGAMI2 System is given in Fig. 3.1.

Using this system, we evaluate multiple different environmental designs using

faster cluster computers. The designs are shown to the users for their feedback.

Their feedback is then used to train the simulated decision maker (SDM), which tries

to mimic the preferences made by the user. A set of small searches is performed to

learn the preferences of the user. Based on training and learning speed of the SDM,

if the learning error is acceptable, then the SDM will be started to search a better

set of designs on behalf of the user with a very large set of designs. When the search

finishes, the set of optimal solutions is shown to the user, to contemplate with their

opinion. The similar process is repeated a number of times, unless the user is satisfied

with a sufficient number of good designs.

The IGAMI2 Kernel and DB Server runs on the Master computer while the actual

model simulation is done using the HPC System.
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Figure 3.1. IGAMI2 System Abstract Diagram



11

Figure 3.2. IGAMI2 Main Kernel
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3.1 Main Components of the System

a. IGAMI2 Kernel: The core of the system is the IGAMI2 Kernel as shown in Fig.

3.2, whose job is to manage different components of the system as described

below:

i. IGAMI2 Main (kernel): The main program that adds and removes users

from the system.

ii. Mixed Initiative Manager (MIM): It manages the mixed initiative approach

of the search, i.e., either Human Search or Automated Search. It acts as

a central controller during the search.

iii. SDM Manager (SDMM): It manages different Simulated Decision Makers

(SDM), which are created using different machine learning algorithms. The

best SDM is chosen to perform an Automated Search on behalf of human.

iv. Email Manager (EmailM): It handles the emails of the system.

v. HPC Controller: It is used to connect the system to clusters/supercomputers,

allocate and manage various clusters and clouds.

vi. DB Manager (DBM): It manages the data and interacts with the database,

Hibernate framework is also used.

vii. Optimization Manager (OM): It manages different types of optimization

algorithms. Currently, we are using a genetic algorithm - NSGA2 [40] as

the main optimization algorithm, but other optimization algorithms can be

used simultaneously or inter-mixing with other optimization algorithms.

viii. Visualization Manager (VM): It is used to display data in various different

ways. It can also be used to show the simulation in 3D.

ix. Introspection Manager (Intro.M): It manages different introspection ses-

sions during the search. An Introspection session is the session in which the

user contemplate with their previously found solutions during the search.
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x. Individual Design Manager (IDM): It manages different individual designs

and perform a number of operations.

b. Data Base Server: It manages the database.

c. High Performance Computing (HPC) system: The powerful computers running

the actual simulation. Currently we are using cluster computers to run our

model simulations and Big Red II supercomputer for data analysis. The system

also supports heterogeneous systems and cloud computers.

d. Web Server (show the User Interface): The web server hosts the website from

where users can visualize the designs and give their feedback.

3.2 The Working of IGAMI2

The working of the IGAMI2 system is shown in the Fig. 3.3. A number of

users log-in via the User Interface and start their search by specifying their search

parameters. The IGAMI2 kernel initiates a search for every user. An initial set of

designs is created for each user. The user gives ratings to those designs using the

Visualization Interface as shown in Fig. 4.10 and Fig. 4.11. The ratings of the user

are used to perform a non-dominated sorting and an initial search begins. A NSGA2

search is initiated with small population fed from the initial set of designs. The HPC

Controller sends the designs for evaluation to the HPC System. Once the evaluation

of the models finishes the results are passed to respective users for their feedback.

Steps Involved in the IGAMI2 Search are:

i) A user log-in and start the search by specifying the search parameters using the

visualization interface via the Web Server.

ii) The IGAMI2 Kernel creates a user search by initializing Managers - MIM, DBM,

IM and IDM; and calls the MIM.
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Figure 3.3. Working of IGAMI2
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iii) The MIM initializes different search parameters and initializes other Managers

- OM, SDMM, and STATM and starts the search.

iv) Search begins with first Introspection. MIM load the initial set of designs from

Case Based Memory (CBM) (located in Data Base) and calls the Introspection

Manager (IM).

v) The IM sends the designs for Human User’s feedback using IDM.

vi) The data received from first Introspection session is saved to CBM.

vii) The MIM begins the NSGA2 search by creating initial set of parent population

that is fed with 20 % of designs from the CBM.

viii) The Population Evaluator sends the population to the HPC system for evalua-

tion.

ix) The evaluated population is sent for Human User’s feedback using IDM.

x) After the users have given their feedback, the designs are saved to the HDM

Archive.

xi) The MIM calls the Optimization Manager to begin the NSGA2 optimization.

xii) A new generation of child population is being created from the parent.

xiii) The Population Evaluator sends the child population to the HPC system for

evaluation.

xiv) The evaluated population is sent for Human User’s feedback using IDM.

xv) After the user gave their feedback, the designs are saved to HDM Archive (lo-

cated in the Data Base).

xvi) A non-dominated sorting is performed by the NSGA2 to find the optimal designs

for current generation.
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xvii) The Statistics Manager (STATM), for further analysis, saves the users average

confidence values.

xviii) The steps xii) to xvii) are repeated until enough number of generations reached.

xix) After the Optimization is finished, the final population of the NSGA2 search is

saved to the CBM.

xx) The Introspection Manager performs a second introspection from the CBM.

xxi) The MIM calls the SDM Manager to perform various machine learning algo-

rithms to find a better SDM.

xxii) A test is performed, to check the next initiative to be HS (Human Search) or

AS (Automated Search), based on the number of searches being performed and

change in user’s confidence values.

xxiii) In case of a Human Search (HS), everything is repeated from step vii) to xxii).

xxiv) In case of an Automated Search (AS), the same process is repeated from step

vii) but instead of human giving the rating, the best SDM Model performs the

rating on behalf of the human user.

xxv) The search stops after the last Introspection finish.

Further description is given in MIM section below.

The following sections give a short description of different Managers, their roles

and how they work:

3.3 IGAMI2 Kernel

IGAMI2 Kernel is the core of the distributed system. It runs on the Master

Computer of the system.
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3.3.1 Roles of IGAMI2 Kernel

a) Wait for any new user to log-in to the system.

b) Allocate System Resources to the new user like unique system Id.

c) Deallocate system resources and do system wide cleanup when the user abort

or finish the search.

d) Forcefully remove the user if needed by the Admin.

e) Add/remove availability of multiple clusters at run-time it helps in better cluster

management.

f) Monitor changes in Clusters like decrease or increase in number of nodes.

3.3.2 Working of IGAMI2 Kernel

a) The kernel periodically monitor for log-in of a user.

b) When a new user log-in via Webserver, IGAMI2 Kernel Allocates the resources

for the user.

c) The user process begins which does the initialization of different Managers for

the user.

d) The MIM is called which beings the search for the user.

e) Kernel periodically monitors for any changes in the configuration of the HPC

System.

f) Kernel also monitors if a user has to be removed from the system.

g) When a user finish or abort their search or if user has to be removed forcefully,

the kernel free the system resources and remove the user from the system.
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3.4 DBManager

The job of the DBManager is to manage the database connection, store and re-

trieve the user’s data. It passes the user’s data from the system to the database and if

needed load the data from the database to the system. If we have multiple databases

the DBManager will keep track of their usage. Apart from traditional jdbc connec-

tion, I have also used Hibernate to implement the POJO (Plain Old Java Object)

feature of the Java. The System work with both the connections.

3.5 Simulated Decision Maker Manager (SDMM)

It acts as a manager to manage different types of simulated decision maker(SDM).

3.5.1 Roles of SDM

a) Manage different types of SDMs.

b) Normalize training data.

c) Perform SDM rating during the Automated Search. The best SDM is used to

perform the rating.

3.5.2 Working of SDM

a) SDMM is called by MIM to create SDMs.

b) It normalizes the data for training and testing.

c) The SDMM initialize different Neural Net Managers (NNM) for creating differ-

ent types of ANN.

d) Create Different linear/non-linear models.

e) Create ANFIS Model if needed.
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f) Check total test error and find the best ANN, which can be used to do SDM

Rating.

g) Do the SDM Rating during the Automated Search.

3.6 Individual Design Manager (IDM)

It acts as an intermediary of storing data in memory, moving it between different

managers and performs a number of operations during the search. The IDM stores

all the individual design solutions generated during the search and pass it between

different managers as needed.

3.7 Mixed Initiative Manager (MIM)

Mixed Initiative Manager act as a central manager to control all the other Man-

agers, perform search for the user.

3.7.1 Roles of MIM

a) Manager all other Managers.

b) Configure Search parameters, local subbasin information, etc. for the user.

c) Initialize different managers for the user.

d) Decide next initiative for the search, whether a Human Search or an Automated

Search.

e) Call different managers based on their need during the search.
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Figure 3.4. Flow Chart working of IGAMI2 Search and Learning
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3.7.2 Working of MIM

The Working of MIM is given in Fig. 3.4. IGAMI2 Kernel start the search for the

user by creating a User Search that does the initialization of different managers and

call MIM. MIM initialize different search parameters, managers and start the search.

i) The search begins with the First Introspection that is done using the IM (In-

trospection Manager).

ii) The IM sends the data for the User’s Feedback to the IDM (Individual Design

Manager).

iii) If the feedback data came from Introspection, then it is checked to be from First

Introspection, in which case the HS (Human Search) is performed.

iv) The NSGA2 Search begins with small population size.

v) The Population Evaluator sends the population for Evaluation to the HPC

System.

vi) The feedback on population is taken from the Human User.

vii) If the feedback is not from the Introspection, the data is given to the OM for

performing the optimization.

viii) If sufficient number of generations has not reached, another generation is being

evolved.

ix) The population for the new generation is sent for the Evaluation.

x) The steps vi) to ix) are repeated until sufficient number of generations is reached.

xi) If sufficient number of generations reached, then second introspection session is

performed.

xii) After the second introspection, a SDM (Simulated Decision Maker) is trained.
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xiii) Based on the performance of SDM and learning confidence of the Human, next

initiative is decided if it will be a HS or an AS.

xiv) If the next initiative is a HS then steps iv) to xiii) are repeated.

xv) If the next initiative is an AS then NSGA2 Search begins with a very large

population size (say 100) and goes for a very large number of generations (say

100).

xvi) The population is sent for the Evaluation to the HPC System.

xvii) The SDM gives the rating instead of the Human User.

xviii) The data is given to the OM for performing the optimization.

xix) If sufficient number of generations has not reached, another generation is being

evolved.

xx) The population for the new generation is sent for the Evaluation.

xxi) The steps xvii) to xx) are repeated until sufficient number of generations is

reached.

xxii) If sufficient number of generations reached, then the last introspection session

is performed.

xxiii) The search finishes after the last introspection.

3.8 The Distributed System

The distributed system contains a number of computers performing different roles

to act as a single entity. The HPC part of the distributed system is used to run a

number of SWAT evaluation in parallel on various supercomputers/clusters or cloud

clusters. The infrastructure diagram of the HPC System is shown in Fig. 3.5. In

the HPC System we are using IU’s Future Grid’s Windows HPC shared Cluster, a
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dedicated cluster at Oregon State University and one small local cluster at IUPUI.

We are using IU’s Big Red II Supercomputer to run data analysis and create User

Models.

Figure 3.5. HPC System Infrastructure
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3.8.1 Components of the Distributed System

Different components of the HPC System are as follows:

a. HPC Controller: It runs on the Master Computer of the Distributed System.

b. Head Node Cluster Controller: It is run on the Head Node of every cluster. It

manages all VA and schedule jobs to different nodes. The Head Controller needs

to run Head Node Cluster Controller program, which registers all the virtual

agents and distribute the jobs to various VA efficiently.

c. Virtual Agents (VA): Each Node runs a Virtual Agent, which runs different

Model simulations. Each Virtual Agent has the capacity to run a number of

independent SWAT [15] (Soil and Water Assessment Tool) evaluation. All the

virtual agents run Agent Main program which is used to register the VA to

the Head Node Cluster Controller of the cluster, receives the jobs and send the

results back.

3.8.2 HPC Controller

It is part of the IGMAI2 System.

Roles of HPC Controller

a) Allocate and manage resources of different clusters/supercomputers to different

users.

b) Keep track of number of free nodes of clusters.

c) Runs a Job Scheduler to submit jobs to different clusters.

d) Distribute the job to different clusters based on the size of job and availability

of the nodes.
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e) If none of the clusters are free then the job is put in the waiting queue.

f) If any node is free, the job is allocated to that node.

Working of HPC Controller

a) Every user has a population Evaluator handle that they can use to run SWAT

evaluation for a set of designs.

b) The population Evaluator put the job to job waiting queue of the HPC Con-

troller and call the job scheduler.

c) The Job Scheduler check if any cluster has a free node. It send the job to that

cluster if it has some free nodes.

d) If there is no free node, then the job will be kept in the job-waiting queue.

e) Whenever a node is freed, any waiting job is sent to that node.

f) The results of population evaluations are being sent to respective users.

3.8.3 Head Node Cluster Controller

It runs on the head node of every cluster.

Roles of Head Node Cluster Controller

a) Allocate and manage different nodes called as VA (Virtual Agents) of the clus-

ters.

b) Runs a job scheduler to allocate jobs to different nodes.

c) Distribute the job to different nodes based on the size of the job and availability

of nodes.
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d) Two different types of job waiting queue, single node waiting queue and multiple

node waiting queue.

e) A multiple node waiting queue is used if more than one VA are needed to

complete a job.

f) A single node waiting queue is given priority over multiple node waiting queue

to prevent starvation of small job.

Working of Head Node Cluster Controller

a) When the HPC Controller gives the job to the Head Node Cluster Controller,

it puts the job in the single node waiting queue or multiple node waiting queue

depending upon the job size.

b) The job scheduler is called which allocates a particular VA for the evaluation

of the job.

c) If sufficient VA is not available then job is kept in the waiting queue.

d) Whenever a VA is freed, any waiting job is sent to that VA.

e) The results of the population evaluation are being sent to the HPC Controller.

3.8.4 Virtual Agent

It runs on every node of a cluster. It is a Virtual Agent that performs various

environmental simulations in parallel.

Roles of Virtual Agent

a) Inform the availability of VA to the head node.

b) Perform a number of SWAT evaluation in parallel.
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c) Initialize the SWAT IO Files to begin fresh evaluations.

d) Copy a new SWAT software if needed.

e) Cleanup the SWAT IO Files to save disk memory.

Working of Virtual Agent

a) VA waits for a new job from the Head Node Cluster Controller.

b) Once it receives a new job, it creates a number of Parallel threads to run each

model simulations.

c) It performs the SWAT evaluation in parallel.

d) Send the result back to the Head Node Cluster Controller.

e) If the Head Node Cluster Controller ask to initialize, copy or delete SWAT IO

Files, it perform respective actions.

Details about various parts of the HPC System (clusters/Supercomputer) used

for our experiments are shown in tables Table. 3.1, Table. 3.2, Table. 3.3 and Table.

3.4.

3.8.5 HPC Infrastructure

The HPC System is capable of running around 1016 parallel independent SWAT

evaluation on all the available clusters. Based on our current capacity of compute

nodes around 40 users can log-in and run their search simultaneously. If more number

of user will come, they will be either queued or more computing resources will be

needed to fulfill the demand.

a. Amazon EC2 (Elastic Compute Cloud) is one of the popular cloud computing

system that can be used to meet real time demands of high computing power.
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Table 3.1
TEMPEST Cluster

Name TEMPEST Cluster

CPU Intel Xeon E7450

Cores per Node 24 (4 Processors)

Clock Speed 2.4 GHz

Memory per Node 48 GB

Memory/core 2 GB

Nodes (total) 32

CPUs (total) 768

Operating System Windows HPC 2008R2

SWAT (no. of evaluations) 768

Table 3.2
OSU Cluster

Name OSU Cluster

CPU Intel Xeon E5-2690

Cores per Node 32 (2 Processors)

Clock Speed 2.9 GHz

Memory per Node 96 GB

Memory/core 3 GB

Nodes (total) 7

CPUs (total) 224

Operating System Windows Server 2008 R2

SWAT (no. of evaluations) 224
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Table 3.3
ESAIG Cluster

Name ESAIG Cluster

CPU Intel Core i7 870

Cores per Node 4

Clock Speed 2.93 GHz

Memory per Node 16 GB

Memory/core 4 GB

Nodes (total) 6

CPUs (total) 24

Operating System Windows Server 2008 R2

SWAT (no. of evaluations) 24

Table 3.4
Big Red II Supercomputer

Name Big Red II Supercomputer

CPU AMD Opteron (16 core)

Cores per Node 32

Clock Speed 2.93 GHz

Memory per Node 64 GB

Memory/core 2 GB

Nodes (total) 1,020

CPUs (total) 21,824

Operating System Cray Linux (SUSE Linux)

SWAT (no. of evaluations) NA
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The IGAMI2 system is connected to Amazon Web Services EC2 Cloud service.

If more number of nodes is needed to perform large number of simulations, a

cloud based cluster can also be connected to run the SWAT evaluation. AWS

(Amazon Web Service) provides three types of pricing options for Amazon EC2

viz On-Demand Instances, Reserved Instances and Spot Instances. In prelim-

inary test I used the Spot Instance for c3.4xlarge instance that is Compute

Optimized instance which has capability to run sixteen SWAT evaluation in

parallel. The advantage of using AWS EC2 is if we want to run ten thousand

independent SWAT evaluations in parallel for a short duration then Amazon

EC2 can be used. But till now our problem has not scaled to that kind of

requirement yet, but it maybe used in future.

b. Big Red II Supercomputer can also be used to run a number of SWAT evalu-

ation but our current SWAT software can not run on it as the version is not

compatible. A newer version of SWAT software can be used on Big Red II. One

challenge on Supercomputer is, as it is a shared system, a real time evaluation

of SWAT is not feasible. But it can be used to run automated search or SWAT

evaluations for research.

The distributed system is based on JAVA RMI (Remote Method Invocation) in

asynchronous mode, as shown in Fig. 3.6. The requests are being transferred from

one component to another in an asynchronous manner. The system is a multi-user

system, just like a multi-user operating system. A number of users can log-in at the

same time and run their SWAT evaluations, independent of knowing whose model

runs where.

3.9 Enhancements from the Older System

Some of the enhancements from the old IGAMII system are as follows:

a. Emailing System: The system sends emails to the users when their designs are

ready for feedback. It helps in solving the human fatigue problem.
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Figure 3.6. HPC System Working
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b. Multi-user system: The system is a multi-user system. It provides simultaneous

use of the system by many users, which is useful in a multi-user collaborative

search.

c. Running the simulations on powerful computers: Each individual design evalu-

ation takes a lot of time to evaluate on a normal computer. To run many sim-

ulations in parallel, we created a distributed system that connects the system

with powerful supercomputers/clusters, which can be a heterogeneous system.

This helps in reducing the overall waiting time.

d. Data management using Data Base: A lot of data is being generated in each

search, so a DBMS is good tool to manage data for analysis. We used the open

source MySQL as the DBMS server.

e. Different types of SDM: To create the simulated decision maker, different types

of machine learning techniques can be used like ANN, Fuzzy inference system,

SVM, Bayesian Network, etc. The machine learning algorithm that performs

the best is chosen to mimic the human preferences and helps in the collaborative

search. Currently we are focusing on ANN and comparing its performance with

Fuzzy and other linear/non-linear modeling techniques.

f. Different types of Optimization Algorithms: For the optimization many different

kinds of optimization algorithms can be used like NSGA2 [40], Decentralized

Pursuit Learning Automata, PSO, etc. Currently we are using the distributed

version of NSGA2 called Distributed NSGA2 to do the optimization [10].

3.10 Factors Affecting the Experiments

Some of the factors that affects the experiments:

a. Human Fatigue: A human can work for a limited amount of time and can not

work on a large set of data. Rating merely 20 designs at a time is a cumbersome
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work. Also, there is a maximum limit, the number of times a human can perform

such feedback.

b. Long waiting time: Each feedback session takes around 13 minutes. The ad-

vantage is, because of long waiting time; the human has time to relax for the

next session. But because of human fatigue, there is a limitation to number of

such feedback sessions that can be performed in any experiment.

c. Compute Intensive Simulations: In this project, each model takes around 10 to

13 minutes to run each simulation. With the help of distributed system and

HPC System we achieved evaluating many simulations at the same time.

d. Resource allocations: Managing multi-users has its own set of challenges. One

of them is the allocation of compute nodes. To solve this problem we created

client server type hierarchical system described above in the HPC System.

e. Limited learning Data: Because of human fatigue, we can perform the feedback

sessions only a limited number of times, so data generated for learning is limited.

To solve this problem we used other machine learning techniques to generate

more data from this limited data set.

f. Correct Machine Learning Algorithm: Because of the limited amount of learning

data, it is difficult to determine which machine learning algorithms will perform

better. Also, human personal biases and randomness in rating are other factors

that affect in deciding the correct learning algorithm.
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4 METHODOLOGY

The IGAMI2 System allows users to test multiple solutions (alternatives) for locating

and designing conservation practices in a simulated environment of their watershed

landscape. Based on the overall performance of the practices in the simulated en-

vironment, users can then identify alternatives most suitable to their needs. The

interactive framework takes feedback from the users and then uses an iterative search

and learning method to search for better potential solutions that incorporate the

user’s feedback. For example, a farmer concerned with the problem of erosion on

land can explore multiple types of best management practices and locations where

the practices can be implemented on landscape. The following components are de-

rived from our project website.

4.1 Eagle Creek Watershed

Eagle Creek Watershed is located North West of Indianapolis, as shown in Fig.

1.1.

The IGAMI2 is used to simulate seven different Best Management Practices(BMP)

(described in later section) and four optimization functions on these practices.

The seven BMPs are:

• Wetlands

• Filter Stripes

• Grassed Waterways

• Crop Rotation

• No Till
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Photo credit:wrestore.iupui.edu

Figure 4.1. Outline of Eagle Creek.

The outline of Eagle Creek Watershed is shown in Fig. 4.1.
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Photo credit:wrestore.iupui.edu

Figure 4.2. Subbasins of Eagle Creek Watershed.

The Eagle Creek Watershed is divided into 130 subbasins as shown in Fig. 4.1.

Sub basins are smaller set of water bodies.
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Photo credit:wrestore.iupui.edu

Figure 4.3. Subbasin IDs of different subbasins

Fig.4.1 shows subbasin IDs given to different subbasins in the Eagle Creek Water-

shed. These IDs are used by the system to generate different solutions and perform

optimization.
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Photo credit:wrestore.iupui.edu

Figure 4.4. Streams

Various streams of water flow in Eagle Creek are shown in Fig. 4.1.
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Photo credit:wrestore.iupui.edu

Figure 4.5. Potential Wetland Storage

Potential storage locations in Eagle Creek are shown in Fig. 4.1. These storage

locations are water storage bodies like wetlands, ponds, etc. Which can be used to

store excess water. These water storage locations helps in preventing soil erosion and

fertilizer loss. It also increases the availability of water for usage during dry seasons

and prevents drought situation.
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Photo credit:wrestore.iupui.edu

Figure 4.6. Land use of Eagle Creek

Land use land cover is shown in Fig. 4.1.
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Photo credit:wrestore.iupui.edu

Figure 4.7. Soil Information of Eagle Creek

Soil types and their draining characteristics are shown in Fig. 4.1.
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• Strip Cropping

• Cover Crops

4.2 Fitness Functions for Optimization

The different fitness functions for optimization are as follows:

A. Peak Flow Reduction (f0): f0 is the normalized value of Peak Flow Reduction

Function. It is used to show decrease in the flooding of the region.

B. Economic Cost (f1): f1 is the normalized value of Economic Cost Function. It is

used to show decrease in the total economic cost for different farming practices

being used.

C. Soil Erosion Reduction (f2): f2 is the normalized value of Nitrate Reduction

Function. It is used to show decrease in the total soil erosion of the land.

D. Nitrate Reduction (f3): f3 is the normalized value of Soil Erosion Reduction

Function. It is used to show decrease in the total fertilizer loss.

E. Human Rating (f4): A human rating is given by the real human or SDM.

4.3 Individual Design Solution

An individual design solution is one of the solution in the search space. An

individual design solution is defined as a string of values assigned to different subbasins

for a BMP or set of BMPs. The subbasins and their IDs are shown in Fig. 4.1.

Although there are 130 subbasins but in our research we have used only 108 subbasins,

because in certain subbasins many of the practices can not be implemented. So in

our research an individual design solution is a string of values for 108 subbasins for

every BMPs.

For every BMP a subbasin can have values:
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• Binary Values: 1 (practice is implemented) or 0 (practice is not implemented).

So there are total 2108 possible individual design solutions.

• Real Number Values (R): A number can be between [−∞,+∞]. So there are

R108 possible individual design solutions. Although the actual number of solu-

tions are much lesser depending upon number of possible assignments a practice

can take.

Figure 4.8. Alternatives for Strip Cropping

Individual Design Solution alternatives for Strip Cropping.

e.g., for Strip Cropping a subbasin can have values 0 or 1. As shown in Fig. 4.8 as

we can see that for different alternatives individual design solutions some subbasins

are colored i.e., value 1 (Strip Cropping is implemented) or not colored i.e. value 0

(Strip Cropping is not implemented).

For every individual design solution a SWAT evaluation is performed and fitness

function values are computed at both subbasin level and at the entire watershed

level. These fitness function values viz. peak flow reduction, economic cost, soil
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erosion reduction and nitrate reduction, can then be used for optimization or for

analysis by the user using the visualization interface.

4.4 SWAT

SWAT stands for Soil and Water Assessment Tool [3]. SWAT is software devel-

oped by USDA Agricultural Research Service(USDA-ARS) and Texas A&M AgriLife

Research to simulate the quality and quantity of surface and ground water and pre-

dict the environmental impact of land use, land management practices, and climate

change for a particular watershed. It is used for soil erosion prevention and control,

non-point source pollution control and regional management in watersheds.

4.5 User Interface

Figure 4.9. Users Working simultaneously on the System
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Figure 4.10. Visualization of different BMP

Figure 4.11. Visualization for various Subbasins
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The working of User Interface is shown in Fig. 4.9. A number of Users log-in

to the system via Web Server. The Web Server connect to the IGAMI2 System and

pulls the data for respective users and show that to each user.

The Visualization is provided at two different levels, one at the entire Watershed

Level and another at the Subbasin Level. The Filed Scale Level [41] can also be

shown in later version of our system. Fig. 4.10 shows the values for different BMP

values in color coded format for various subbasins.

Fig. 4.11 shows the values of different fitness functions used for optimization viz.

Peak Flow Reduction, Economic Cost, Sediment Reduction and Nitrate Reduction.

These values can be visualized for entire watershed as well as for particular subbasins.

Based on above visualizations the users provide their feedback by giving rating 1

(bad), 2 (Neutral) or 3(Good). These ratings are used by the NSGA2 to run genetic

search and involve the user’s feedback as an additional criteria for optimization.

The optimization is performed for seven BMPs and the five fitness functions. For

every BMP or a pair of BMPs the values of the fitness functions are calculated. The

values are calculated for each subbasin and the entire watershed. The users then

visualize these using the visualization interface as shown in the Fig. 4.10 and Fig.

4.11. The users make fuzzy decision about rating the designs, give their feedback and

specify how much confident they are about their ratings.

SDM Modeling: Based on the feedback of the user, a machine learning algorithm

is used to mimic the preferences made by the user. In which these fitness functions

data for the watershed or the subbasins are mapped to the user’s feedback data.

4.6 Different Best Management Practices

Different Best Management Practices are described in the following sections, the

contents are derived from the Wrestore Project Website: http://wrestore.iupui.

edu/resources/best-management-practices/ (accessed Jan, 21, 2014).

http://wrestore.iupui.edu/resources/best-management-practices/
http://wrestore.iupui.edu/resources/best-management-practices/
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4.6.1 Wetlands

Photo credit:USDA-NRCS

Figure 4.12. Wetlands

Wetlands are unique ecosystems that often occur at the edge of aquatic (water,

fresh to salty) or terrestrial (upland) systems. They may be wet year-round, wet

during certain seasons, or wet during part of the day. Wetlands generally include

swamps, marshes, bogs, and similar areas.

Benefits of Wetlands:

• Flood damage reduction: Wetlands can be used to reduce the flood damage of

the region.

• Erosion control: By dissipating wave energy and stabilizing shorelines, wetland

vegetation buffers the adjacent upland from wave action and intensive erosion.
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• Water quality: Wetlands play a major role in maintaining water quality. Wet-

lands absorb excess inorganic and organic nutrients such as farm fertilizers and

septic system runoff, filter sediments such as eroded soil particles, and trap pol-

lutants such as pesticides and some heavy metals. These materials can seriously

degrade the quality of groundwater and surface water resources, but wetlands

trap and hold them, recycling some of them within the wetland system.

• Aesthetics and recreation: Wetlands can be used for aesthetics and recreation

activities.

4.6.2 Filter Strips

Photo credit:USDA-NRCS

Figure 4.13. Filter Strips
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A filter strip is an area of vegetation, generally located at the lower edge of a

field, established for the purpose of removing sediment, organic material, and other

pollutants from runoff and waste water. Filter strips remove pollutants from runoff

before the material enters a body of water. They also serve as a buffer between water

and the fields above the water so that pesticides and other chemicals are not applied

directly adjacent or into the water body.

Benefits of Filter Strips:

• Decrease maintenance.

• Enhance wildlife habitat.

• Provide additional income.

• Improve water quality.

• Increase aesthetic value.

• Reduce stream bank cutting.

• Provide year long access.

• Increase safety.

4.6.3 Grassed Waterways

A grassed waterway is a natural or constructed channel that is shaped or graded to

required dimensions and established with suitable vegetation. Grassed waterways are

used to convey runoff from concentrated flow without causing soil erosion, to control

gully erosion, and/or to protect and improve water quality. Depending on the type

of vegetation established, grassed waterways may also provide wildlife habitat for a

variety of farmland wildlife such as quail, pheasants, and rabbits. The width of the

grassed waterway depends upon several factors including the slope of the field, the

soil type, the drainage area, and the conservation practices used in the field.
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Photo credit:USDA-NRCS

Figure 4.14. Grassed Waterways
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Benefits of Grassed Waterways:

• Excess surface water from natural drainage areas or constructed structures (e.g.,

terraces, diversions, etc.) can be safely disposed.

• Gully formation is inhibited by vigorous, dense vegetation.

• The vegetation also reduces pesticides and other soluble nutrients in surface

water because of improved infiltration.

• Decrease in sediments and chemicals in surface water increases availability of

dissolved oxygen for growth of aquatic life.

4.6.4 Crop Rotation

Crop Rotation involves growing various crops on the same field in a planned

sequence. The rotation usually involves growing forage crops in rotation with various

field crops. Crop rotation also means that succeeding crops are of a different genus,

species, subspecies, or variety than the previous crop. Examples would be barley

after wheat, row crops after small grains, grain crops after legumes, etc.

Benefits of Crop Rotation:

• Reduced runoff and erosion.

• Increased organic matter.

• Improved soil tilth.

• Reduced pests.

• Fewer chemicals needed.

• Better moisture efficiency.

• Higher yields.

• Improved aesthetics and wildlife habitat.
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Photo credit:USDA-NRCS

Figure 4.15. Crop Rotation
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4.6.5 No Till

Photo credit:USDA-NRCS

Figure 4.16. No Till

No-till is a conservation practice that leaves the crop residue undisturbed from

harvest through planting except for narrow strips that cause minimal soil distur-

bance. Crop residues are materials left in an agricultural field after the crop has been

harvested. These residues include stalks and stubble (stems), leaves and seed pods.

Benefits of No-Till:

• Increased earthworm populations that improve soil quality.

• Increased water in filtration.

• Reduced tilling time per acre by as much as two-thirds.



55

• Improved wildlife habitat.

• Optimized soil moisture, thereby, enhancing crop growth in dry periods.

4.6.6 Strip Cropping

Photo credit:USDA-NRCS

Figure 4.17. Strip Cropping

Strip cropping is growing crops in a systematic arrangement of strips across the

field to reduce soil erosion by water and/or wind. This practice is used on cropland

and certain recreation and wildlife lands where field crops are grown. The crops are

arranged so that a strip of grass or close-growing crop is alternated with a clean tilled

strip or a strip with less protective cover. Generally the strip widths are equal across

the field. On sloping land where sheet and rill erosion are a concern, the strips are
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laid out on the contour or across the general slope. Where wind erosion is a concern,

the strips are laid out as close to perpendicular as possible to the prevailing erosive

wind direction.

Benefits of Strip Cropping:

• Reduced sheet and rill erosion.

• Reduced wind erosion.

• Increased infiltration and available soil moisture.

• Reduced dust emissions into the air.

• Improved water quality.

• Improved visual quality of the landscape.

4.6.7 Cover Crops

Cover crops are an excellent option for producers to consider for protecting their

soil and increasing productive capacity for succeeding years. Cover crops are grown

between regular crop rotations like corn, soybean and wheat. Examples of cover crops

are annual rye-grass, crimson clover, oats, oil-seed radishes, and cereal rye. A key

concept is to ensure that vegetation is green and growing during all times of the year.

Cover crops are essential during summer months when primary crops are not feasible

(such as when crops are damaged and it is too late for replanting) and during the

fall/winter months following harvest. Cover crops are not intended as a harvest crop,

but are grown to enhance productivity.

Benefits of Cover Crops:

• Improving soil structure by increasing soil organic matter and root penetration.

• Protecting otherwise bare soil from wind and water erosion.

• Using nitrogen left in the soil, thereby, preventing it from polluting waterways.
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Photo credit:USDA-NRCS

Figure 4.18. Cover Crops
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• Cycling nutrients back into the soil that will be available for corn and soybean

crops.

• Increase biodiversity.

• Promote biological nitrogen fixation and reduce energy use.

• Suppress weeds.



59

5 OPTIMIZATION ALGORITHMS

One of the challenges that we faced is the fast optimization algorithm. There are a

number of multi-objective optimization algorithms that can be used in our research.

From the work of [4] we created some faster optimization algorithms which are

described in the sections below.

Learning Automaton has been used for a long time for solving problems [42] like

identical pay-off games, etc. In this research we are using the Learning Automaton

to solve the multi-objective problems as done in [4]. The Learning Automaton we

used is Decentralized Pursuit Learning Gaming Algorithm. It is an indirect learning

method.

The use of learning automaton has been applied in ground water monitoring prob-

lems in Environmental Science [43]. We have used NSGA2 [40] as the genetic algo-

rithm, which is one of the most popular multi-objective GA available today.

We implemented multi-objective version in LA by assigning multiple weights to

the different functions and evaluating the population over a period of time. It gives

the result comparable to GA, we call it era, as each weight pair set is independent

of other weight pairs. Since the objective functions and their weight pairs, i.e. eras,

are independent, we can use PRAM (Parallel Random Access Machine) based algo-

rithms to run the entire multi-objective eras in parallel. Based on the availability of

computational power we can use smaller weight pairs, i.e. smaller slices of eras, for

more precision and accuracy. GA is often criticized as slow in the cases where the

evaluation of fitness function is very slow. Since the fitness function we are using

in this work is very slow, we created distributed version of the NSGA2, called dis-

tributed NSGA2 based on the work of [44]. To make the work faster we implemented

the parallel work at two levels, one at processor level and other at machine level.
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5.1 Similar Work

Reinforcement Learning is used by [13] and [14] as a learning technique in LA.

LA takes a lot of time to converge to good solutions, so multiple studies have inves-

tigated faster learning approaches via parallelization [13]. The parallelization tech-

niques were done for common pay-off games, parameterized learning automata, and

pattern classification problems. The motivation [13] was N independent Agents act-

ing simultaneously should speed-up a process roughly by a factor of N, similar to a

population as in GA. But this parallelization was tested for direct learning algorithm

such as LRI Algorithm. In our work, the N LA’s take M independent actions at a

time. Combining all the automatons and their actions will create a set of actions to

be performed by the system, this is like an individual in GA or one design of SWAT.

In Batch Mode, we created multiple such individuals. As execution and reward for

each individual is independent of one another, a PRAM based algorithm can be used

to evaluate them independently. Batch mode learning is one of the popular learning

techniques used in ANN. In batch mode [16], the learning of the ANN is done by

taking the average of all training patterns before changing the weights. Choosing a

very small learning parameter is not realistic as the smaller the learning, the longer it

takes to converge. So based on availability of resources and time, learning parameter

can be chosen.

Batch Mode learning is also done in text categorization [17], where batch of text

documents are used instead of just one. Batch Mode learning is used in medical

Image classifications [18] and Content based Image retrieval [19] where instead of

selecting a single unlabeled example, a number of unlabeled examples were selected

for manual labeling. A discriminative batch mode active learning is done by [20].

People also have tried combining the LA and GA [21] to escape the problem of local

optima. In StGA [22], the authors created a small number of actions of the Learning

Automata which were sampled to construct a population, from which the sampling

action was done adaptively by genetic operations. Some authors have also tried to
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combine the GA with other algorithms like Simulated Annealing to solve some NP-

Hard Problems [23].

5.2 Theory

Our concept used here is similar to the one used by [4]. One of the objectives is

to minimize the flooding of water by creating small watersheds throughout the Eagle

creek by using minimum area. The total wetlands are divided into 108 aggregated

wetlands. For a binary problem of choosing or not choosing a wetland, the total search

space will be 2108 which is computationally not feasible, so it was divided into eight

regions. Currently we ran the tests for region seven, Fig. 5.1 to test our algorithms.

Photo credit:Ref. Omkar [4]

Figure 5.1. Sub-basins and Potential wetland polygons
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The multiple objectives were to minimize the root mean-square error between

flows in streams when all the regions were installed, with the minimum area. Learning

automata are implemented by assigning one learning automaton for each sub-basin,

which decides if it will participate or not in the system. It is similar to identical

pay-off game model. Two scaling parameters, Si
Area and Si

F low, for region i, to scale

the values of area and flow. Si
Area is the total area of all the aggregated wetlands as

shown below.

Si
Area =

∑
j

Areaij (5.1)

Si
F low is calculated based on baseline flow data set (Baseline) and running the SWAT

software, and using the following equations:

Si
F low =

∑
region

ln(1 + [Baseline−OutputnoWetlands]
2) (5.2)

P i
F low = 1−

∑
region

ln(1 + [Baseline−OutputsubsetOfWetlands]
2) (5.3)

P i
Area = 1−

∑
region

(flagij × Areaij) (5.4)

Where,

flagij =

1, if wetland j in region i is installed

0, if wetland j in region i is not installed

The common pay-off is calculated using:

P i
Total = WArea × P i

Area +WFlow × P i
F low (5.5)

In the DPLA algorithm only one individual design was created at random for each

iteration. The design was created by randomly selecting the actions of the automaton

based on their action probability vector. We call it individual design, as used in GA.

In the distributed version of the DPLA, called Dist DPLA, all the weight pairs

were run separately as they were independent of each other. Applying the similar

parallelization concept and the batch mode technique we created different distributed
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versions of DPLA, we call it RLBM (Reinforcement Learning in Batch Mode) where

a set of multiple individual designs were created. We can get more accuracy as more

and more individual designs are being evaluated and learning is done from multiple

individual designs. It is similar to taking opinions from many individuals instead of

just one individual. The opinion can be taken in many different ways. We tried three

different ways of taking the opinion and perform the learning.

For each weight pair, all LAs together create a set of designs, instead of just one as

in the previous work. The multiple set of designs are similar to multiple individuals

of the GA.

Now there are multiple ways we can use these set of designs to do the learning.

• i) Do the learning based on average of all the solutions.

• ii) Do multiple learning instead of just one time. (Converge faster, but compro-

mise accuracy).

• iii) Do the learning based on the best solutions from all the individual designs

(optimal weight pair).

In our current research, we tried type I, type II and type III, but other techniques

can also be tried.

5.3 The Algorithms

We are using the DPLA algorithm as proposed by [4].

5.3.1 DPL Game Algorithm

The DPL game algorithm proceeds as follows:

1. At every time step, the ith automaton chooses action αi at instant k, based on

the probability distribution pi(k).
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2. Each automaton i obtains a common pay-off β(k) based on the set of all actions.

3. Based on the pay-off, each automaton i updates its own R, Z and D̂ matrices.

where, R, Z and D̂ are vectors used for total reinforcement received, number of

times a particular action is chosen and to model the environment and do the learning,

respectively.

The action probability vector is updated as follows:

p(k + 1) = p(k) + λ(eM(k) − p(k)),

where,

• 0 < λ < 1 is the learning parameter,

• eM(k) is a Unit Vector used to store information about various actions,

• An action has value of 1 if it correspond to maximum element of D̂, otherwise

its value is 0,

• index M(k) is determined by D̂M(k) = maxjD̂
i
j(k).

We created the distributed version of the algorithm, in the following three ways:

5.3.2 RLBM Type I

Reinforcement Learning in Batch Mode, Type I:

1. For each weight pair of the multi-objective, run in parallel.

2. Create a set of n individual designs at instant k, each individual design has

3. The ith automata randomly chooses action αi, based on the probability distri-

bution pi(k).

4. Evaluate the individual designs in parallel.

5. Take the average of the all individual designs.
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6. Each automaton i obtains a common pay-off β(k) based on the set of all actions.

7. The actions which was chosen most is rewarded.

8. Based on the pay-off, each automaton i updates its own R, Z and D̂ matrices.

The action probability vector is updated as the above algorithm. The number n

must be an odd number to make sure that one action will be selected most, in our

test we used n = 7, based on computational power we had during the research.

5.3.3 RLBM Type II

Reinforcement Learning in Batch Mode, Type II

1. For each weight pairs of the multi-objective, run in parallel

2. Create a set of n individual designs at instant k, each individual design has

3. The ith automata randomly chooses action αi, based on the probability distri-

bution pi(k).

4. Evaluate the individual designs in parallel.

5. Use all the individuals to do the learning one by one randomly or sequentially.

6. Each automaton i obtains a common pay-off β(k) based on the set of all actions.

7. Based on the pay-off, each automaton i updates its own R, Z and D̂ matrices.

The action probability vector is updated as the above algorithm.

5.3.4 RLBM Type III

Reinforcement Learning in Batch Mode, Type III

1. For each weight pairs of the multi-objective, run in parallel
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2. Create a set of n individual designs at instant k, each individual design has

3. The ith automata randomly chooses action αi, based on the probability distri-

bution pi(k).

4. Evaluate the individual designs in parallel.

5. Use a set of best or average of best individuals to do the learning one by one

randomly or sequentially.

6. Each automaton i obtains a common pay-off β(k) based on the set of all actions.

7. Based on the pay-off, each automaton i updates its own R, Z and D̂ matrices.

The action probability vector is updated as the above algorithm. In our current

experiments we used the top three best individuals based on their pay-off.

Using Type I, we can get more accuracy as more and more individuals are being

evaluated and learning is done from multiple individuals. It is similar to taking

opinions from many individuals instead of just one individual. As we are taking the

average, the final reward is given to that action of automaton which is selected the

most. Each automaton is capable of performing only two actions [4]. Like in the

voting system, the most selected action of design set is being rewarded. The process

goes to multiple generations aka iterations, unless some convergence criteria are met.

Also, the learning parameter and convergence criteria can be varied, to get more

accuracy or speed.

Using Type II, we can get a faster convergence. Learning is performed from the

opinion of multiple individuals, who are siblings, instead of just one. Instead of taking

their average opinion, the automata are rewarded directly from all the individuals. It

is similar to taking the opinion of everybody, considering all the opinions to be equally

true. There will be some loss of accuracy as multiple learning steps are performed

using the same action probability; instead of getting one feedback, the automata

are getting multiple feedback. In this way the algorithm converges very fast. To

compensate the loss of accuracy, we can decrease the step size of learning.
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Using Type III, we can get a compromise of speed and accuracy. It is kind of

hybrid of Type I and Type II. The opinion can be taken as average or all of the

best. The selection of the best individual is a big task in this algorithm. In our

current experiments we used the top three individuals, based on pay-off, but other

techniques can also be used to find the best set of individuals. To perform the

learning, the individuals can be selected randomly from all the individuals, generated

for learning, or simply perform the learning in the order the individuals are generated,

i.e sequentially.

5.4 Limitation of RLBM and DPLA

RLBM and DPLA both work on the principles of Reinforcement Learning, i.e., for

the problems where number of actions are limited. The action probability vector can

only be computed if the number of actions are discrete. But what if the number of

actions are in a continuous domain? Using the RL as an optimization for a continuous

domain is not feasible. In some cases the domain’s data is highly stochastic and the

actual action does not matter as long as it is close to some optimal point. In such a

scenario the domain of action can be changed to discrete classes. An action can be

defined as the value falling in that class. Then we can implement RLBM or DPLA

optimization algorithm in such cases. Although actual implementation needs further

investigation.
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6 MACHINE LEARNING ALGORITHMS

Another Big challenge that we faced was finding a good machine learning algorithm in

the domain of environmental planning. In this work we tried to formulate mechanisms

that can map the environmental data to user’s feedback data.

On the one hand in the domain of Environmental Science, the data is highly

stochastic. On the other hand in the case of interactive optimization the number of

data points, that can be gather, is limited due to human fatigue. Training an Artificial

Neural Network might not always give the accurate results when we have limited data.

There are many situations where a simple linear/non-linear modeling technique works

better than ANN. In such cases we can fine tune the ANN by generating more data

from the other models.

Deep Learning is also one of the prominent machine learning technique that can

be used in our research. In Deep Learning, the leaning is done at multiple levels of

abstraction. In our research we tried to formulate ways of implementing deep learning

for environmental planning system design.

6.1 Challenges in Creating a SDM

1 High number of input parameters: The Number of input parameters can be

very high depending upon the subbasins and BMP selected by the user.

2 Varying size of input parameters: The input parameter can vary from one user

to another based on the selection of the subbasins.

3 Limited Feedback from the User: The user can not give a lot of feedback because

of human fatigue; therefore, the data available to train the SDM is very limited.
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4 Limited number of output parameters: The number of output parameters is

only one with three possible options viz., rating 1, 2 or 3.

5 Skewed Training data: The SDM training data might be skewed to only a few

ratings.

6.2 Varying Number of Parameters

In the Environmental Planning System domain the number of output parame-

ter is only one which can take three values. The number of input parameters vary

tremendously. The problem can be formulated as a three class classification problem

with varying number of input dimensions.

• Total Number of Fitness functions can vary from 1 to 4.

• Total Number of BMPS can vary from 1 to 7.

• Total Number of Subbasins can vary from 0 to 108.

The number of input parameters vary as

f(x, y) = 4 + (4 + x)) ∗ y (6.1)

where 1 <= x <= 7 and 0 <= y <= 108

This gives the range of input parameters as [4,1192]. Although the actual number

of input parameters depends upon the number of subbasin a user is interested in.

Although the number of input dimensions varies, in the simulated user’s exper-

iments that we performed, we kept the size to four inputs only so that the model

comparisons could be done. Also, as we can see the size of input dimension varies a

lot, we can use different dimension reduction techniques like kohonen maps to reduce

the total input dimension. Decision variable prediction algorithm can also be tried

to find what particular subbasin a user is actually interested in.
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6.3 Why Artificial Neural Network is the Best Choice?

The multi-layer perceptron (MLP) Artificial Neural Network is the universal func-

tion approximator [45]. A proof has been [46] provided that a specific recurrent

architecture with rational valued weights has the full power of a Universal Turing

Machine using a finite number of neurons and standard linear connections.

In our research we needed a machine learning algorithm technique which can adapt

changes as user’s needs and performances vary over time. ANN is the best candidate

to adapt these changes. Also, as the number of input dimension vary for different

users, the ANN will be able handle high dimensional input variables. ANN works

better than other linear modeling techniques [47] [48] as the other linear models are

good in global approximation while ANN works for both local and global situation.

6.4 Scaling Online Data

Another challenge we faced is scaling the parameter values. Because the data

values are generated online, finding precise values of the actual maxima and minima

prior to experiment is not possible. If the data is not scaled properly it would not

give a good result.

The biggest challenge was having a limited amount of data and how could we

use that limited data to use for training a better SDM . One of the solutions that

we proposed is using the other machine learning algorithms to fine tune the ANN as

described in the upcoming sections.

6.5 Artificial Neural Network

An ANN is a parallel, distributed information processing structure consisting of

processing elements (which can possess a local memory and can carry out localized

information processing operations) interconnected together with unidirectional signal

channels called connections. Each processing element has a single output connection
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which branches (“fans out”) into as many collateral connections as desired (each

carrying the same signal - the processing element output signal). The processing

element output signal can be of any mathematical type desired. All of the processing

that goes on within each processing element must be completely local: i.e., it must

depend only upon the current values of the input signals arriving at the processing

element via impinging connections and upon values stored in the processing element’s

local memory [49].

A diagram of feed forward ANN is shown in Fig. 6.1

Figure 6.1. A Feed Forward Artificial Neural Network

6.6 Similar Work

Many user modeling techniques have been used in the past in various fields. user

modeling is performed in the fields like in information retrieval systems [25] where

the user’s domain experiences and inquiry interests are modeled by the system. The

main need of user modeling systems is the proper representation of the user model

and the acquisition of assumptions about the user [50]. Another promising method

of user modeling, using an ANN, was done by [26] where news were shown to the
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user based on personal interest. The ANN tries to model the interests of the user and

then rank the incoming news as relevant or irrelevant.

ANN and GA hybrid, ANN-GA [27], is used to solve water quality modeling

problems. The hybrid system was created because the total search space was too

big and computationally unfeasible. Fuzzy Model and ANN are used in estimating

the sediment concentration [28]. ANN is used to model rain fall/runoff [29] and to

model daily sediment yield [30] in various fields of hydrology. People [31] compared

user modeling techniques like ANN, fuzzy logic, etc. for adaptive hypermedia systems

and recommended their usage in different scenarios. Huang et.al. [32] used ANN to

do multi-objective interactive optimization for reliability optimization. Some of the

popular predictive statistical models are linear models, TFIDF-based models, Markov

models, ANN, classification and rule-induction methods, and Bayesian networks [33].

Of those models ANN is good in expressing non-linear decisions [33].

Deep Learning is also one of prominent machine learning algorithm used by many

people especially in handwriting recognition [37] and [38]. A faster implementation

of Deep Learning is done [39] using GPUs which are fast computing hardware.

6.7 Limitations of SDM using ANN

Training an ANN with a limited set of data, especially if the number of output

parameters is low, while the number of input parameters is very high, is not success-

fully done. We tried to formulate methods to train ANN for interactive optimization

specific to environmental planning systems, where the number of input parameters is

very high and the number of output parameters is very low. The advantage of train-

ing the ANN in such a manner is that the ANN will be able to capture randomness

more effectively. The ANN is good at capturing non-linearity [33] in data; it is a very

useful way of extending the performance of the ANN in situations where we have very

limited data. Since the ANN is good in adapting to the changes [51], via change in
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the neuron’s weight, this technique is helpful in simulating the behavior of humans

which changes with time.

In our current work, we have run simulated user experiments in which the human

rating criteria is provided using simple/complex functions as described in Tables 7.1

and 7.2. Also, we have shown that the situations where ANN fails to learn because of

limited learning data, we can use other learning methods to generate more learning

data and incorporate that in ANN to get better performance by minimizing the

learning error.

6.8 SDM Using ANN

Simulated Decision Maker Learning using ANN. Four different types of ANN are:

a) Simple Neural Network.

b) Neural Network with Extended Data.

c) Neural Network with Cumulative data ( from previous generations).

d) Neural Network with Cumulative data with Extended Data.

The extended data Neural Network is created using the data generated from Multi

Variant Normal Random Distribution of one of the best-fit linear/non-linear models.

6.9 SDM Using Other Models

A number of Simulated Decision Maker using other Models are being created.

Different kinds of linear and non-linear modeling machine learning techniques are

used to model the users search preferences.

6.9.1 ANFIS

Fuzzy Model: We have used Fuzzy model ANFIS [52] [53], which is an adaptive

network based fuzzy inference system.
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Limitation of ANFIS: Although ANFIS is a good machine learning model that can

be used for user modeling but its limitation is for high dimensional input data it takes

lot of time to create rule base which is computationally not feasible, [54]. Although,

using powerful GPUs, this problem can be solved. Because the fuzzy rules can be

created in parallel, GPUs can be used to create large rule based for high dimensional

data, [55].

6.9.2 Linear/Non-linear Classification Models

We also used different linear and non-linear modeling techniques to create different

kinds of SDM. Various different Classification models that we used in our research

are:

• linear: Fits a multivariate normal density to each group, with a pooled estimate

of covariance.

• diaglinear: Similar to linear, but with a diagonal covariance matrix estimate

(naive Bayes classifiers).

• quadratic: Fits multivariate normal densities with covariance estimates strati-

fied by group.

• diagquadratic: Similar to quadratic, but with a diagonal covariance matrix

estimate (naive Bayes classifiers).

• mahalanobis: Uses Mahalanobis distances with stratified covariance estimates.

• Least Square Fit using Matrix Inversion.

(sources Matlab 2011 Statistics Toolbox)

For every NSGA2 search with small populations size, we create around ten differ-

ent SDM Models. The six models are linear classification models and four others are

different kinds of Neural Network Models described above. Out of these models, the



76

classification models are used to fine-tune the ANN for their extended versions. The

simulated experiments show promising results in using such method.

6.9.3 SDM Using Deep Network

Because the accuracy of ANN is still limited based on the availability of good

training and testing data, we have used Deep Learning technique to create Deep

Network to get more accurate SDM. In Deep Learning, learning of the network is

done at multiple levels of abstractions [56]. The Higher level of abstraction is defined

using the lower levels.

Figure 6.2. Deep Network

The Deep Network, as shown in Fig. 6.2, in our research is a two layer Network

in which the first layer is Self Organizing Map(SOM) aka Kohonen Map. The second

layer is created as two layer Multi Layer Perceptron (MLP). The training of each

layer is done as greedy layer wise training [57].
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Table 6.1
Deep Network

Model Name SOM Nodes Model Number

Deep1 SOM 10 1

Deep2 SOM 25 2

Deep3 SOM 50 3

Deep4 SOM 100 4

Deep5 SOM 200 5

Deep6 SOM 250 6

Deep7 SOM 500 7

To Create Deep Network, we have used the training data from different Searches

and used that data to create a pre-training of Deep Network, which is done as creating

the SOM. After pre-training the deep network an ANN is trained and tested for

different search data. By applying this technique the first layer acts as a filter or

an abstraction of the input data which is then transferred to Next Layer for further

processing.

For the experiments we created Seven different Deep Networks whose details are

shown in Table 6.1. The SOM nodes tells how many nodes are used to create the

map.
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7 EXPERIMENTS AND DISCUSSION

In this chapter I discussed various experiments we performed to prove the effectiveness

of our algorithms in running the environmental planning system.

7.1 Experiments Batch Mode Learning

We did experiments for different optimization algorithms for the region 7 of Eagle

Creek Watershed as shown in Fig. 5.1. These experiments prove the successful usage

of different optimization algorithms that we have developed.

7.1.1 Optimal Solution

Since the search space was small, we exhaustively obtained all the possible solu-

tions as shown in Fig. 7.1 for the region 7 of Eagle Creek. We choose small search

space to compare the performance of different Algorithms. If the search space will

be very large like the entire watershed, then comparing the algorithm with optimal

solution would be difficult. We have generated the optimal pareto-front denoted as

Optimal, from those solutions using Non-Dominated Sorting Algorithm of NSGA2.

Based on the optimal solution we compared the results of NSGA2, Dist. NSGA2,

DPLA, Dist. DPLA, Dist. RLBM (Reinforcement Learning in Batch Mode) Type I,

Type II and Type III.

7.1.2 NSGA2 Vs Dist NSGA2

Test results are shown in Fig. 7.2 for the NSGA2 and Dist. NSGA2 Algorithms.

The tests were done for twenty-eight individuals for over twenty generations. We can

see that except a few points Dist. NSGA2 performed closer to NSGA2. But the Dist.
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Figure 7.1. All Solutions
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NSGA2 was much faster in execution as the entire generation was evaluated at once,

but in NSGA2 the individuals were evaluated in sequence.

Figure 7.2. NSGA2 Vs Dist. NSGA2

7.1.3 DPLA

Tests were performed for DPLA and Dist. DPLA. As show in Fig. 7.3 we can

see that at some point Dist. DPLA gave better results than DPLA while at some

points DPLA is better, otherwise the results are almost the same for both. However,

in Dist. DPLA all the weight pairs were run separately as they were independent of
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each other, which gave almost 9X speed-up to actual DPLA algorithm, which was

sequential. So, Dist. DPLA is much faster than DPLA.

Figure 7.3. DPLA

7.1.4 NSGA2 Vs DPLA

Comparing the results of NSGA2 with DPLA as shown in Fig. 7.4, we can see

that NSGA2 and Dist. NSGA2 gave better results than DPLA. However at some

points Dist. DPLA gave better results than others. But the running time of NSGA2

is much higher in this case. When we use Dist. NSGA2, its running time was much
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less than DPLA, while Dist. DPLA was much faster than all the others. Overall Dist.

NSGA2 is better in speed and accuracy.

Figure 7.4. NSGA2 Vs DPLA

Based on the above observations and applying the concept of Batch mode learning

in Dist. DPLA, the following set of RLBM algorithms have been tested.

7.1.5 RLBM

As we can see in Fig. 7.5 , based on points which are close to optimal, of all the

three types, Type I gave better result than all others, while the result of Type III is

in between Type I and Type II. In case of speed Type II is the fastest, while Type

III is slower than Type II and Type I is the slowest of all.
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Figure 7.5. RLBM
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7.1.6 DPLA vs RLBM

Here we compared the test results for DPLA, Dist. DPLA, RLBM Type I, RLBM

Type II and RLBM Type III as shown in the Fig. 7.6. We can see that DPLA,

Dist. DPLA, RLBM Type I, RLBM Type II and RLBM Type III, all intersected the

Optimal line.

Figure 7.6. DPLA vs RLBM

Convergence Time

As shown in Fig. 7.7 and Fig. 7.8, when we compare the number of iterations and

time of convergence, we find that RLBM Type II is the fastest of all while RLBM
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Type I is the slowest. RLBM Type III takes time in between Type I and Type II,

while Dist. DPLA takes time little higher than RLBM Type III. DPLA takes time

higher than Dist. DPLA. Note that the time for DPLA is cumulative as it is a

sequential algorithm, so at the end of the search the overall time will be the sum of

all the convergence time for DPLA.

The number of Iterations and actual time differ for some algorithms because in the

case of DPLA and Dist. DPLA only a single SWAT evaluation was performed while

in the case of RLBM a set of seven SWAT evaluations were performed (A batch of

individuals). Running a set of seven SWAT evaluations was much slower than running

a single SWAT evaluation. This is one of the reason RLBM Type I is very slow apart

from the slow rate of convergence.

Figure 7.7. No. Of Iterations
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Figure 7.8. Time to Converge
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7.1.7 Comparing All

Overall, all the algorithms gave comparatively similar results as shown in Fig. 7.9.

Some are better in convergence time and some are better in accuracy.

Figure 7.9. Compare All

In these experiments, we successfully tested the performance of Batch Mode Learn-

ing Technique in Decentralized Distributed Pursuit Learning Automata in multiple

ways. These algorithms can be used to optimize various problems in the environmen-

tal system domain. We can see that the faster optimization algorithm can produce

results faster and easy in decision making.
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Table 7.1
Simple Rating Functions

Name Rating Function 1 2 3

f0 f0 ∗ 1000 <= 700 > 700 and <= 725 > 725

f1 f1 ∗ 1000 <= 670 > 670 and <= 730 > 730

f2 f2 ∗ 1000 <= 640 > 640 and <= 675 > 675

f3 f3 ∗ 1000 > 670 <= 670 and > 635 <= 635

7.2 Experiments User Modeling - Simulated Users

We performed the user modeling using simulated user to test the working of our

system. We created different rating functions as simple functions and mixed functions.

Simple Functions are based on only single fitness function. The Simple Functions’

ratings are computed based on the rules shown in Table. 7.1. Mixed Functions are

created randomly based on linear/non-linear combination of simple functions. The

Mixed functions ratings are computed based on the rules shown in Table 7.2. These

rating functions are created by empirically analyzing the previously collected data by

running simple genetic optimization. The functions created are mathematically linear

and non-linear. Although in the real world, a user’s preferences are hardly linear, we

used these functions to check the performance of our system. Our assumption is if

the system will be able to mimic these rating functions then it will also be able to

map the actual human rating criterion.

We compared the performance of the system by creating different SDM using ma-

chine learning techniques like ANN, Fuzzy Logic (ANFIS), and other simple linear/non-

linear modeling techniques. The job of the SDM is to map the environmental data

to the rating criteria specified by the user, which in the current case are the rating

functions.
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Table 7.2
Some Linear and Non-linear Mixed Rating Functions

Name Rating Function 1 2 3

F0 (f0 + f1 + f2 + f3) ∗ 1000/4 <= 700 > 700 and <= 725 > 725

F1 (f02 + f12 + f22 + f32) ∗

1000/4 + 200

<= 670 > 670 and <= 730 > 730

F2 (4f0 + 3f1 + f2 + f3/2) ∗

1000/8

<= 640 > 640 and <= 675 > 675

F3 (f0 ∗ f3/f1 ∗ f2) ∗ 1000/2 > 670 <= 670 and > 635 <= 635

F4 (f0 ∗ f2/f1 ∗ f3) ∗ 1000/2 > 520 <= 520 and > 490 <= 490

F5 (f0 ∗ f1/f2 ∗ f3) ∗ 1000/2 <= 270 > 270 and <= 300 > 300
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7.2.1 Simulated Users Preliminary Test

For each rating function, a simulated user was created to provide a rating mim-

icking as a real user. Three different SDM models were created for each function. To

create a SDM model, we collected 120 different designs based on the rating given by

the simulated user.

Legend for the figures:

• HR-Human Rating is the rating given by the Simulated Human using the above

rating functions.

• NNR-Neural Network Rating is the rating given by the SDM created using

ANN.

• ANFISR- Adaptive Network based Fuzzy Inference System Rating is the rating

given by the SDM created using ANFIS.

• LSFR - Least Square Fit using Matrix Inversion Rating is the rating given by

the SDM created using Least Square Fit.

In the following figures, we are showing different ratings given to the testing

individuals for different models by different functions. The simulated ratings for

simple functions are shown in figures Fig. 7.10, Fig. 7.12, and 7.13. While the

simulated ratings for the mixed functions are shown in figures Fig. 7.11, Fig.7.14,

and Fig. 7.15.

As we can see in the Fig. 7.10 and Fig. 7.11, the ratings given by ANN is

consistent with the actual human rating (HR).

As shown in figures Fig. 7.12, 7.13, Fig.7.14, and Fig. 7.15, we see that there

are many places where ANN did not capture the correct rating criteria. As we can

see, the solid dot (shown as Neural Network Rating) is constant, i.e., Neural Network

gave the same rating. Although the ANN was slightly better at capturing variation

in ratings for mixed functions, in the case of simple functions f2 and f3, the rating

is constant. This shows that the ANN is able to capture non-linearity for mixed
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Figure 7.10. Simulated User with Rating f0

Figure 7.11. Simulated User with Rating F0



93

Figure 7.12. Simulated User with Rating f2

Figure 7.13. Simulated User with Rating f3
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Figure 7.14. Simulated User with Rating F2

Figure 7.15. Simulated User with Rating F5
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functions better when compared to simple functions, in the case of limited data. The

ANFIS is also good in predicting the user’s rating criteria, but it doesn’t work for

high dimensional data [54].

7.2.2 Simulated Users Improved Model Test

To solve the problem created by the limited data, we used the other linear/non-

linear modeling techniques to generate more random data to train Neural Network

(NN Ext.). The extra data is used to fine-tune the ANN. We assumed that the data

is normally distributed, which is true in the cases when the number of samples tends

to infinity. The data is generated using Multi Variate Normal Random Distribution.

One of the linear/non-linear models having min error is used to generate more random

data. We ran the tests for the different rating functions using the simple function

and mixed functions. We also performed a test using Random rating to check the

effectiveness of this technique.

The graphs in figures Fig. 7.16, Fig. 7.17, and Fig. 7.18, show the improvement

in ANN created by using data generated by linear/non-linear modeling techniques

over the previous ANN. As we can see, there are many places where the NN Ext

Error (the number of errors from Modified Neural Network) is lesser than the NN

Error (the number of errors from the original Neural Network). In the graphs we

can see the values for triangle (NN Ext Error) is less than square (NN Error). Thus,

fine tuning the ANN is possible in case of limited data where we can generate more

random data using other linear/non-linear modeling technique.

7.3 Experiments User Modeling - Real Human Stake Holders

We ran the tests with the help of real human stake holders. Every user worked

on either their local subbasin or on the entire watershed. They used the visualization

data of their subbasin or watershed to give the feedback rating. The rating criteria

is solely formulated by the user, based on their preference. Three different SDM
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Figure 7.16. Mixed Rating Functions
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Figure 7.17. Simple Rating Functions
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Figure 7.18. Random Rating Function



99

Table 7.3
SDM Model - Data Selection Criteria

Model Name Data Selection from

SDM1 data from Search1

SDM2 data from Search2

SDM3 data from Search3

SDM4 data from Search1 and Search2

SDM5 data from Search1, Search2 and Search3

Searches were performed for every user. Five different SDM models were created

based on the search data. Because the data is limited we used all the available data

to create different SDMs.

As shown in Fig. 7.19, Fig. 7.20 and Fig. 7.21 we can see that Neural Network

Ext. performed much better than Neural Network in each cases. In some of the cases

ANFIS Ext. performed better than ANFIS. The Ext. model is created using data

generated from one of the linear/non-linear models to fine tune the Neural Network

or ANFIS as proved in the previous section, simulated user experiment.

7.4 Experiments User Modeling - Effect of Local Decision Making

The SDM models are created at three different levels of subbasins. Levels of

Subbasins:

• Watershed Level: The fitness functions at the entire Watershed Level are used

as input variable to SDM.

• Local Subbasin Level: The fitness functions at the Local Subbasin Level are

used as input variables to SDM.
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Figure 7.19. Real Stake Holder User I
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Figure 7.20. Real Stake Holder User II
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Figure 7.21. Real Stake Holder User III
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Table 7.4
SDM Model - Other Models

Model Name Model Number

Linear Model 1

Diaglinear Model 2

Quadratic 3

DiQuadratic 4

Mahalanobis 5

Least Square Fit 6

ANFIS 7

ANFIS Ext 8

Neural Network 9

Neural Network Ext 10

• Combined Level (Watershed + Local Subbasin): The fitness functions of both

the Watershed Level and the Local Subbasin Level, together are used as input

variables to SDM.

In this experiment we tried to identify which level fits the SDM perfectly to the

user’s rating criteria.

As shown in Fig. 7.28, Fig. 7.29, and Fig. 7.30 we can see that SDM created at

Watershed level is the worst. The SDM created using either combined level or only

local subbasins level are the best way of creating the SDM. One possible reason for

this is because the user formulated the rating criteria based on his/her local subbasins

instead of the watershed level.
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Figure 7.22. Local Decision Result - User I

For Details about Models Refer Table 7.4.



105

Figure 7.23. Local Decision Result - User II

For Details about Models Refer Table 7.4.
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Figure 7.24. Local Decision Result - User III

For Details about Models Refer Table 7.4.
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7.5 Experiments User Modeling - Deep Learning

To check the performance of deep learning network, we performed a number of

experiments and compared its performance with other linear/non-linear modeling

techniques, ANFIS, and ANN.

A set of seven different Deep Network Models were created for every level of

subbasins. In the figures Fig. 7.25, Fig. 7.26, and Fig. 7.27 different deep networks

are shown as Models numbered from 1 to 7. The details of different Deep Network is

show in Table 6.1. The information about Other linear/non-linear models are given

in the Table 7.4.

The SDM “Deep Using Search 1,2,3” is the deep network created using the data

of Search 1,2,3 as the pre-training data of the SOM Layer. While in other Deep

Networks, all the data from previously performed searches were used to do the pre-

training. The main reason for the Deep Network created using Search 1,2,3 to perform

better than the others is due to less noise in the data. So pre-training a Deep Network

with a lot of data is not effective and bring unnecessary noise.

We can see the following observations about the Deep Networks using the Figures

Fig. 7.25, Fig. 7.26 and Fig. 7.27:

• The Deep Networks created at the Watershed level performed better than the

Watershed Other Models. The ANN shown as big blue dot did not perform as

good as the Deep Network.

• The Deep Network created at the Combined level performed better than the

Combined Other Models.

• The Deep Network created at the Local level performed better than the Local

Other Models.

• The Deep Network created using the data from Search 1,2,3 is the best SDM

model created with minimum error.

Thus, the Deep Network created using Search 1,2,3 is the best SDM model.
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Figure 7.25. Deep Learning Result - User I

For Details about Models Refer Table 7.4.



109

Figure 7.26. Deep Learning Result - User II

For Details about Models Refer Table 7.4.
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Figure 7.27. Deep Learning Result - User III

For Details about Models Refer Table 7.4.
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Effect of Local Decision Making

As we have seen the effect of local decision making in the other models we can see

the same pattern in the Deep Network as well.

Figure 7.28. Deep Learning local decision Result - User I

As shown in Figures Fig. 7.28, Fig. 7.29, and Fig. 7.30 we can see that the

SDM created at the Watershed level is the worst. The SDM created using either the
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Figure 7.29. Deep Learning local decision Result - User II
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Figure 7.30. Deep Learning local decision Result - User III
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combined level or only the local subbasins level are the best way of creating the SDM.

The user formulated the rating criteria based on their local subbasins instead of the

watershed level.

7.6 Experiments Decision Variable Analysis

In this experiment we tried to find which subbasins a user had used to formulate

his/her rating criteria. Every user is assigned a set of subbasins as his/her local

subbasins or the entire watershed (subbasin 0). The users formulated their own

rating criteria based on the subbasin assigned to them as shown below:

• User I is assigned Subbasins 0, 103, 105, 106, 121 and 122.

• User II is assigned Subbasins 0, 10, 11, 14 and 15.

• User III is assigned Subbasins 0, 58, 59, 61 and 63.

• User IV is assigned Subbasin 0 i.e., watershed only.

A deep network is used to identify the decision variables from all the possible

combinations of different subbasins. Three different pairs were used to check which

set of subbasins fit perfectly to the user’s rating criteria. One big computational

challenge was running so many different user modeling programs in parallel. So we

used the IU’s Big Red II Supercomputer to speedup the work.

7.6.1 Decision Variable - One Subbasin

Only one Subbasin is used to formulate the rating criteria. A deep network is

created using the data from only one subbasin. All possible subbasins are tried on

Big Red II Supercomputer.

As shown in Table 7.5, we can see that User I mostly formulated the rating criteria

using subbasin 106. The rating criteria of User II did not match to any local subbasin.
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Table 7.5
Decision Variable - One Subbasin

User Name SDM Error(%) Subbasin

User I SDM1 0.125 106

User I SDM2 0.033333333 106

User I SDM3 0 104

User I SDM4 0.110416667 106

User I SDM5 0.094444444 106

User II SDM1 0.075 31

User II SDM2 0.045833333 16

User II SDM3 0.0625 103

User II SDM4 0.089583333 16

User II SDM5 0.123611111 17

User III SDM1 0.158333333 34

User III SDM2 0.1 63

User III SDM3 0.054166667 59

User III SDM4 0.185416667 59

User III SDM5 0.1625 59

User IV SDM1 0.1 0

User IV SDM2 0.016666667 0

User IV SDM3 0.0125 0

User IV SDM4 0.072916667 0

User IV SDM5 0.058333333 0
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Table 7.6
Decision Variable - Two Subbasin

User Name SDM Error(%) Subbasin I Subbasin II

User I SDM1 0.083333333 17 122

User I SDM2 0.033333333 3 97

User I SDM3 0 0 106

User I SDM4 0.079166667 11 91

User I SDM5 0.066666667 16 106

User II SDM1 0.045833333 45 106

User II SDM2 0.029166667 11 15

User II SDM2 0.029166667 14 15

User II SDM3 0.041666667 4 103

User II SDM3 0.05 10 32

User II SDM4 0.060416667 17 106

User II SDM5 0.079166667 10 15

User III SDM1 0.133333333 97 123

User III SDM2 0.079166667 38 63

User III SDM3 0.045833333 3 59

User III SDM4 0.141666667 47 60

User III SDM4 0.14375 59 61

User III SDM5 0.143055556 59 104

User III SDM5 0.144444444 59 106

User III mostly used subbasin 59. User IV used subbasin 0 i.e. entire watershed to

give the feedback, which is accurate as the user was not assigned any other subbasin.
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7.6.2 Decision Variable - Two Subbasins

A pair of two subbasins are used to formulate the rating. A deep network is

created from the data from a pair of two subbasins. All possible combinations of

subbasins are tried on Big Red II Supercomputer.

As shown in Table 7.6, we can see that rating criteria for User I matches to

subbasin 0-106. For User II, there are a number of subbasin pairs which match the

criteria viz 11-15 and 10-15. So User II has used a pair of subbasins to formulate the

rating criteria. For User III, pair 59-61 is the subbasin pair for rating.

7.6.3 Decision Variable - Three Subbasins

A pair of three subbasins are used to formulate the rating. A deep network is

created from the data from a pair of three subbasins. All possible combination of

subbasins are tried on Big Red II Supercomputer.

As shown in Table 7.7, we can see that rating criteria for User I matches for 0-106-

122 subbasins pair. This means that User I has used this pair to formulate the rating.

As we can see, for the other users the pairs do not match for their local subbasins.

That means the user has not used a pair of three subbasins, but a smaller number of

subbasins, to formulate their rating criteria as given in the previous tables.

Overall we can see that the decision variable analysis test shows how effective the

user was in formulating their rating criteria for specific set of subbasins. When we

asked the users what particular subbasins they were interested in

• User I told us that the user was mostly interested in subbasin 106 to formulate

the rating criteria while sometimes subbasin 122 was also used.

• User II told us that the user gave equal consideration to all the subbasins

however subbasin 15 played a big role in formulating the rating criteria.

• User III told us that the user formulated the rating criteria based on subbasin

59 as proved in this experiment.
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Table 7.7
Decision Variable - Three Subbasin

User Name SDM Error(%) Subbasin I Subbasin II Subbasin III

User I SDM1 0.05 9 34 103

User I SDM2 0.020833333 0 37 97

User I SDM2 0.025 1 65 103

User I SDM3 0 0 106 122

User I SDM3 0 103 105 106

User I SDM3 0 103 106 121

User I SDM4 0.05625 47 106 121

User I SDM5 0.044444444 32 104 121

User II SDM1 0.033333333 16 103 125

User II SDM2 0.016666667 9 32 34

User II SDM2 0.016666667 14 16 112

User II SDM3 0.025 10 43 91

User II SDM3 0.025 14 26 92

User II SDM4 0.045833333 8 16 31

User II SDM5 0.056944444 17 37 126

User II SDM5 0.059722222 2 10 15

User III SDM1 0.095833333 5 36 91

User III SDM2 0.058333333 0 20 63

User III SDM3 0.033333333 30 37 59

User III SDM3 0.033333333 56 60 63

User III SDM4 0.10625 17 61 125

User III SDM5 0.116666667 30 59 123

User III SDM5 0.119444444 59 64 65



119

• User IV used entire watershed to formulate the rating criteria because the user

was not assigned any other local subbasins and this experiment proves that the

user had used entire watershed only to formulate the criteria for rating.
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8 FUTURE WORK

During the design and development of the system, I found a number of ideas that can

be implemented to perform different tests and make improvement in the system.

8.1 Future Work for Batch Mode Learning

1. To overcome the limitation of using RLBM for a problem in continuous domain,

the continuous domain can be transformed to discrete domain. The continuous

set of actions is changed to a finite set of discrete sets. In case of Environmental

Science the discrete set would not affect much accuracy as the data itself is

generated in stochastic manner. Using this approach, the batch mode technique

can be used for continuous domain problem.

2. Time based adaptive algorithm can be tried with the Batch Mode. As the

learning rate and the batch of designs being selected for learning can vary. An

adaptive algorithm can be tried to do the optimization.

3. We can continue the implementation of Batch Mode learning techniques in

other different ways. It’s multi-objective version can be applied on more than

two objectives. Based on availability of computational resources the slicing of

weights can be increased to get more accuracy. We can run these stochastic

algorithms on powerful machines like Supercomputers or GPUs to attain more

precision at very high speed and accuracy.
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8.2 Future Work User Modeling

There are a number of user modeling techniques available. But finding the correct

user modeling in itself is a hard problem. In this research I mostly tried ANN to model

user’s rating preferences. But there are many other techniques which can tried. A

number of supervised learning techniques like Support Vector Machines, Naive Bayes,

decision tree, logistic regression, etc. can be tried.

8.3 Future Work Collaborative Search

Human computer collaborative search, where the human group do the collabo-

ration with computer. A number of collaborative problem solving approaches can

be tried. Similarity-based approach and the aggregation function-based approach of

multi-criteria rating system can be tried [58].

8.3.1 Different collective judgment approaches are

• Based on crowd wisdom (Independent): Every person is given the same job.

The final solution is derived as intersection of all the solutions.

• Based on Collaboration (Citizen Science): The total search space is divided into

N (no of people) parts. Each person is assigned one part to search for best set

of designs. After everybody solved their parts, the solutions are joined to find

the best from all.

8.3.2 Implementation of collective judgment approaches

• Crowd wisdom approach: The same problem given to all humans independently.

– Democracy Approach: In this approach correct rating for a design in found

in a democratic manner. A single search is performed and all the stake-

holders work on their terminals simultaneously. The search continues when
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all the stakeholders give their feedback and correct rating is determined

in a democratic manner. Which can be considered as a majority opinion.

The SDM being trained is based on majority opinion.

– Recommendation Approach: In this approach all the stakeholders run their

experiments independently, although they have to run their work simulta-

neously. In this approach, the stakeholders will communicate with other

stakeholders and recommend good designs to other stakeholders for their

opinion.

• Based on Collaboration (Citizen science): Different parts of the same problem

given to all the users, because the problem is too big for either human or

computer or group. Just like in online citizen science projects like zoouniverse,

The Milky Way Project [59] where a number volunteer citizens work together

to classify galaxies which is impossible even for supercomputers to classify them

alone.

– The final solution cab be obtained by union of all solutions.

– The final solution can be obtained by finding a global optimal from those

solution.

8.3.3 Collaborative Filtering Technique

Just like in information science, filtering technique is one way of discarding unnec-

essary data, the same technique can be tried here as well. The user is allowed to add

constraints based on his/her preferences. The search begins with a large population

size, say 100. Although the user is not capable of rating 100 designs, but the filter

is used to discard those designs which the user is not interested. In this way more

accuracy can be obtained because a large set of population is considered for search.
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9 SUMMARY

I would like to conclude this thesis with a short summary of the work I did and some

future prospects.

First of all the thesis defines the problem of environmental planning using inter-

active optimization in which the human users collaborate with computers and they

search for better answers. The designing an environmental planning system is very

cumbersome work, and there are a number of issues involved in designing such a

system.

In this thesis, I discussed what are the challenges we faced and proposed different

solutions to solve those challenges. One of the biggest challenge that I faced was run-

ning a number of environmental simulations simultaneously. To solve that problem,

I worked in making the parallel version of NSGA2 called dist. NSGA2 based on the

work of [44]. So that, a number of swat evaluations can be run in parallel on various

cluster computers in an efficient manner.

The development of the IGAMI2 System in itself was very hard work. I faced a

lot of challenges found in a distributed system as handling data, managing clusters,

managing nodes, etc. Managing multi-user data was also not an easy task. I used

the open source MySql database to manage data, which gave us a lot of advantages

in managing users’ data efficiently.

In this thesis, I also described different components of the IGAMI2 distributed

system that we developed that can be used to provide Best Management Practices

for Environmental Planning.

We created a Batch Mode Learning algorithm called RLBM which is an extension

of Decentralized Pursuit Learning Algorithm developed by [4] to implement Batch

Mode technique, as commonly used in Neural Network, in the Reinforcement Learning

based optimization. The RLBM optimization can be used if a faster optimization is
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needed. Although, RLBM works only if the number of actions is discrete and limited.

For those problems whose actions are in a continuous domain, some mechanism of

transforming actions from continuous to discrete sets would be needed to implement

the RLBM.

We also proposed the idea of fine tuning the Artificial Neural Network (ANN)

in situations where the number of learning data points are very less, and if some

linear or non-linear technique can be used to generate additional data. This helps in

increasing the accuracy of ANN in situation of limited data. If the learning data is

small and is skewed to some specific rating class, the ANN training becomes biased,

and it starts giving the same rating for any input. In such scenario adding a random

noise, can prevent the ANN from giving biased ratings. In the experiments, we used

the help of other linear/non-linear machine learning techniques to fine tune the ANN.

The simulated users experiment and the real stakeholder’s experiments both showed

promising results.

We tried Deep Learning as an additional machine learning technique in which

the Network was pre-trained before training the actual ANN. The pre-training was

done using SOM aka Kohonan Map. We showed that use of Deep Learning to model

user’s rating criteria performs much better than other linear/non-linear, ANFIS and

Neural Network machine learning techniques. Deep Learning can be very useful in

user modeling especially in the case of Environmental Planning.

We showed that SDM created using the data from local-subbasin worked better

than the global as the stakeholders were mostly interested in optimization of local

subbasins.

We also found that the stakeholders formulated their rating criteria using a par-

ticular subbasin or a pair of subbasins. The experiments showed which stakeholder

used what particular subbasin or pair of subbasins to formulate their rating criteria.
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[45] Balázs Csanád Csáji. Approximation with artificial neural networks. Faculty of
Sciences, Etvs Lornd University, Hungary, page 24, 2001.

[46] Hava T. Siegelmann and Eduardo D. Sontag. Turing computability with neural
nets. Applied Mathematics Letters, 4(6):77 – 80, 1991.

[47] Jane M. Binner *, Rakesh K. Bissoondeeal, Thomas Elger, Alicia M. Gazely, and
Andrew W. Mullineux. A comparison of linear forecasting models and neural
networks: an application to euro inflation and euro divisia. Applied Economics,
37(6):665–680, 2005.

[48] Hsiao-Tien Pao. A comparison of neural network and multiple regression analysis
in modeling capital structure. Expert Systems with Applications, 35(3):720 – 727,
2008.

[49] R. Hecht-Nielsen. Theory of the backpropagation neural network. In Neural Net-
works, 1989. IJCNN., International Joint Conference on, pages 593–605 vol.1,
1989.

[50] Wolfgang Pohl. Learning about the user - user modeling and machine learning.
In ICML’96 Workshop Machine Learning meets Human-Computer Interaction,
pages 29–40, 1996.

[51] Stefano Nolfi and Domenico Parisi. Learning to adapt to changing environments
in evolving neural networks. Adaptive behavior, 5(1):75–98, 1996.

[52] Jyh-Shing R. Jang. Fuzzy modeling using generalized neural networks and
kalman filter algorithm. In Proceedings of the ninth National conference on Ar-
tificial intelligence - Volume 2, AAAI’91, pages 762–767. AAAI Press, 1991.



131

[53] J.-S.R. Jang. Anfis: adaptive-network-based fuzzy inference system. Systems,
Man and Cybernetics, IEEE Transactions on, 23(3):665–685, 1993.

[54] Chia-Feng Juang and Chin-Teng Lin. An online self-constructing neural fuzzy
inference network and its applications. Fuzzy Systems, IEEE Transactions on,
6(1):12–32, 1998.

[55] Chia-Feng Juang, Teng-Chang Chen, and Wei-Yuan Cheng. Speedup of imple-
menting fuzzy neural networks with high-dimensional inputs through parallel
processing on graphic processing units. Fuzzy Systems, IEEE Transactions on,
19(4):717–728, 2011.

[56] Yoshua Bengio. Learning deep architectures for ai. Found. Trends Mach. Learn.,
2(1):1–127, January 2009.

[57] Yoshua Bengio, Pascal Lamblin, Dan Popovici, and Hugo Larochelle. Greedy
layer-wise training of deep networks. Advances in neural information processing
systems, 19:153, 2007.

[58] Gediminas Adomavicius, Nikos Manouselis, and YoungOk Kwon. Multi-criteria
recommender systems. In Francesco Ricci, Lior Rokach, Bracha Shapira, and
Paul B. Kantor, editors, Recommender Systems Handbook, pages 769–803.
Springer US, 2011.

[59] R. J. Simpson, M. S. Povich, S. Kendrew, C. J. Lintott, E. Bressert, K. Arvidsson,
C. Cyganowski, S. Maddison, K. Schawinski, R. Sherman, A. M. Smith, and
G. Wolf-Chase. The milky way project first data release: a bubblier galactic disc.
Monthly Notices of the Royal Astronomical Society, 424(4):2442–2460, 2012.


	ETDForm9
	Thesis
	LIST OF TABLES
	LIST OF FIGURES
	ABBREVIATIONS
	ABSTRACT
	Introduction
	Related Work
	The IGAMI2 Distributed System
	Main Components of the System
	The Working of IGAMI2
	IGAMI2 Kernel
	Roles of IGAMI2 Kernel
	Working of IGAMI2 Kernel

	DBManager
	Simulated Decision Maker Manager (SDMM)
	Roles of SDM
	Working of SDM

	Individual Design Manager (IDM)
	Mixed Initiative Manager (MIM)
	Roles of MIM
	Working of MIM

	The Distributed System
	Components of the Distributed System
	HPC Controller
	Head Node Cluster Controller
	Virtual Agent
	HPC Infrastructure

	Enhancements from the Older System
	Factors Affecting the Experiments

	Methodology
	Eagle Creek Watershed
	Fitness Functions for Optimization
	Individual Design Solution
	SWAT
	User Interface
	Different Best Management Practices
	Wetlands
	Filter Strips
	Grassed Waterways
	Crop Rotation
	No Till
	Strip Cropping
	Cover Crops


	Optimization Algorithms
	Similar Work
	Theory
	The Algorithms
	DPL Game Algorithm
	RLBM Type I
	RLBM Type II
	RLBM Type III

	Limitation of RLBM and DPLA

	Machine Learning Algorithms
	Challenges in Creating a SDM
	Varying Number of Parameters
	Why Artificial Neural Network is the Best Choice?
	Scaling Online Data
	Artificial Neural Network
	Similar Work
	Limitations of SDM using ANN
	SDM Using ANN
	SDM Using Other Models
	ANFIS
	Linear/Non-linear Classification Models
	SDM Using Deep Network


	Experiments and Discussion
	Experiments Batch Mode Learning
	Optimal Solution
	NSGA2 Vs Dist NSGA2
	DPLA
	NSGA2 Vs DPLA
	RLBM
	DPLA vs RLBM
	Comparing All

	Experiments User Modeling - Simulated Users
	Simulated Users Preliminary Test
	Simulated Users Improved Model Test

	Experiments User Modeling - Real Human Stake Holders
	Experiments User Modeling - Effect of Local Decision Making
	Experiments User Modeling - Deep Learning
	Experiments Decision Variable Analysis
	Decision Variable - One Subbasin
	Decision Variable - Two Subbasins
	Decision Variable - Three Subbasins


	Future Work
	Future Work for Batch Mode Learning
	Future Work User Modeling
	Future Work Collaborative Search
	Different collective judgment approaches are
	Implementation of collective judgment approaches
	Collaborative Filtering Technique


	Summary
	LIST OF REFERENCES




