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ABSTRACT

Farhand, Sepehr M.S., Purdue University, May 2012. Probabilistic Multi-Compartment
Deformable Model, Application to Cell Segmentation. Major Professor: Gavriil
Tsechpenakis.

A crucial task in computer vision and biomedical image applications is to represent

images in a numerically compact form for understanding, evaluating and/or mining

their content. The fundamental step of this task is the segmentation of images into

regions, given some homogeneity criteria, prior appearance and/or shape information

criteria. Specifically, segmentation of cells in microscopic images is the first step in

analyzing many biomedical applications. This thesis is a part of the project entitled

“Construction and profiling of biodegradable cardiac patches for the co-delivery of

bFGF and G-CSF growth factors” funded by National Institutes of Health (NIH).

We present a method that simultaneously segments the population of cells while

partitioning the cell regions into cytoplasm and nucleus in order to evaluate the

spatial coordination on the image plane, density and orientation of cells. Having static

microscopic images, with no edge information of a cytoplasm boundary and no time

sequence constraints, traditional cell segmentation methods would not perform well.

The proposed method combines deformable models with a probabilistic framework

in a simple graphical model such that it would capture the shape, structure and

appearance of a cell. The process aims at the simultaneous cell partitioning into

nucleus and cytoplasm. We considered the relative topology of the two distinct cell

compartments to derive a better segmentation and compensate for the lack of edge

information. The framework is applied to static fluorescent microscopy, where the

cultured cells are stained with calcein AM.
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1. INTRODUCTION

The development of organized vascular networks requires a series of highly specific

interactions between cells, growth factors and soluble mediators. Among the various

approaches to promote vascular regeneration, therapeutic angiogenesis based on the

delivery of soluble cytokines has generated considerable interest because of its mini-

mal invasiveness and promising pre-clinical success. Guided therapeutic angiogenesis

(i.e. patterned vascular networks) is possible by controlling the spatial and temporal

presentation of soluble mediators at the site of ischemia. By designing nanofibrous

scaffolds that direct the local gradients of angiogenic cytokines we could manipulate

the proper migration of cells that presages vascular patterning.

The aim of this project is to develop a discriminative semi-supervised multitask

learning framework for mixed categorical and numerical observed data, allowing for

the prediction of the biological effect of the growth factor releasing constructs as

a function of fabrication parameters. Input parameters on our model will include

growth factor concentration, type of growth factor (i.e. bFGF alone, G-CSF alone, or

G-CSF+bFGF), and construct fiber orientation and dimensions. Output parameters

will include release kinetics of the growth factors, cell proliferation, capillary sprout-

ing and orientation (Figure 1.1). Our mathematical model will be validated in a limb

ischemic animal model by assessing the angiogenic effect of selected bFGF/G-CSF

releasing matrices.

The output from applying different nanofibrous scaffold architecture (Figure 1.2),

along with different types of growth factors on an ischemic limb can be automati-

cally evaluated using computer vision and machine learning techniques. Microscopic

images at the site of ischemia after this process (Figure 1.3) are used to assess the
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Figure 1.1. Parameter attributes and computational prediction modeling.
After the input data are converted into their appropriate form (e.g., fiber
orientation histogram into the category aligned or random), using either
classification or regression approaches, we will apply a multitask learning
framework to model the mapping scaffold configuration growth factor
delivery. This modeling will be the system’s final prediction module:
for any input parameters for the construct configuration (either in the
form of the input attributes, or as converted attribute types), we will
be able to predict the growth factor delivery, with respect to any of the
output parameters (also as either input attribute or converted attribute
types). manual indicates the description the growth factor concentration
for example, set as low, medium, or high. A and B describe growth factors
bFGF and G-CSF.

population, orientation and density of cells. Our objective is to design an algorithm

compute desired factors from provided images.
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Figure 1.2. Different types of scaffold architecture. The image on the left
side is aligned architecture and the right hand side shows the randomly
aligned architecture.

Figure 1.3. Microscopic images at the site of ischemia after the proposed
treatment.

1.1 Cell segmentation

Cell segmentation has been the area of attention for many researchers dealing

with biomedical applications. The main approaches to address this problem were

deformable models and graph cuts. Wang et al. [1] use texture adaptive geodesic

active contours to bypass internal pseudo-edges and stop on low contract boundaries.
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In another work [2] they use Adaboost [3] algorithm to select discriminative features

of the image which finds the approximate location of each cell. Using the results

from previous step and another set of features (image gradients, intensities and etc.),

they train an Support Vector Machine (SVM) [4] to find the foreground. Finally they

apply watershed [5] algorithm in the foreground areas to get each individual cell.

The databases used in these papers contain monochromic images with good texture

information.

As another deformable model approach, Ali et al. [6] use geodesic active contours

also known as level set deformable models to segment brightfield image cell segmen-

tation. The evolution energy function in this method depends on the smoothness of

the curve, difference between curve orientation and the image orientation, and consis-

tency of phase map on zero level-set. Sample images in this work also have relatively

good contrast information around cells. Other approaches based on deformable mod-

els are [7, 8].

The solution we describe here differs from the existing literature in that (i) we

aim at segmenting cells in static images, without considering any temporal changes;

(ii) most methods in the literature process grayscale microscopic images, while in our

approach we exploit RGB information; (iii) we consider topology constraints of the

cell structure for better segmentation; (iv) we integrate region classification with a

geometric model; (v) we handle local feature variations by both updating the model

interior statistics and employing nucleus membrane relative topology constraints.

Our goal is to model the cell morphology, i.e., extract shapes and relative topol-

ogy of nucleus and membrane. This is to assess the effect of biologically responsive

scaffolds that deliver multiple angiogenic cytokines and/or cells in ischemic regions [9].
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We develop an algorithm, which segments cells from microscopic images of vas-

cular networks in an unsupervised learning manner. Geometric deformable model

techniques are employed in this thesis since they are the most effective methods in

medical image analysis. Having the shape of the target objects not being fixed and in

order to capture the uncertainty of our final model, probabilistic deformable model

framework is the most suitable choice. In this framework, our knowledge of the shape

and membrane-nucleus topology is incorporated in the a priori term.

The input of this method is a set of microscopic images in which nucleus and cyto-

plasm regions are manually stained. Given proposed biomedical process, the output

images can be categorized into three different classes: Aligned, Barewell and Random,

which defines the orientation of vascular networks (Figure 1.4).

Each cell has two compartments: nucleus and cytoplasm (Figure 1.5). The nu-

cleus region (the blue area) has good edge information and high contrast with respect

to the rest of the image. In addition, an eclipse can model the shape of the nu-

cleus region. Thus, segmenting nucleus can be done easily and it can be used to

find the location of the cell in the image. On the other hand, cytoplasm region (the

bright green area) lacks edge information with no shape constraints and cannot be

segmented using traditional image segmentation techniques (Figure 1.6). By consid-

ering the above-mentioned properties of the nucleus and the cytoplasm regions, we

can reassure that the nucleus region can be used as a solid foundation for finding the

cell and controlling the segmentation of the cytoplasm region. Using the result of cell

segmentation, the cell alignment will be computed.
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(a) Aligned (b) Barewell

(c) Random

Figure 1.4. Dataset sample images.

Future work on this project would include evaluating the orientation of a vascular

network automatically from the segmentation output of these microscopic images and

implementing a learning algorithm to define a mapping between the input and the

output.
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Figure 1.5. Given a microscopic image of cells and annotated seeds in
nucleus and membrane, our goal is to segment each of the cells while pre-
serving their structure. Our algorithm runs on an approximate window
with two seeds and, after the termination of the deformable model evo-
lution, the algorithm returns two regions, nucleus and membrane, in the
approximate window.

Our method extracts individual cells from each image and using the provided

stained regions, it evolves nucleus and membrane segments simultaneously. The

method returns a nucleus and a membrane mask for the image after the conver-

gence. Each mask represents the corresponding segmented region (Figure 1.5).

The rest of this thesis gives some background on traditional image segmentation

techniques, introduces previous works on cell segmentation, our methodology to solve

the problem and a brief summary of this work.
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(a) Original Image (b) Otsu’s method [10]

(c) Chan-Vese Segmentation [11] (d) Our approach

Figure 1.6. A comparison between cytoplasm segmentation of a cell using
traditional methods and our approach.
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2. BACKGROUND

“The rapid progress in computerized medical image reconstruction, and the associ-

ated developments in analysis methods a computer-aided diagnosis, has propelled

medical imaging into one of the most important sub-fields in scientific imaging”

(Dougherty, [12]). There are many applications of medical image processing and

this number is growing. This field has enabled scientists to automatically investigate

the affects of different medical experiences over time. Processing digital images in

an automatic manner enables us to analyze large amounts of data in a short time

relative to employing human experts.

Image segmentation highly affects the content extraction process and it also plays

an important role in human visual perception. [13] defines the purpose of segmenta-

tion as to decompose the image into smaller regions for further analysis. It can also be

defined as finding regions of images that are coherent. A segmented image is normally

used as the base data of many pattern recognition or classification tasks. Many ap-

proaches have been proposed to accommodate this task i.e. mean shift, graph-based

techniques, feature space clustering, etc. Different approaches are used depending on

the characteristics of the problem to be solved.

Here, some traditional image segmentation techniques, which segment the input

image into different classes, are briefly discussed:

Thresholding is the most trivial method in image segmentation. The main process

of this technique is to define a threshold and compare pixels to this value. If the pixel

values are higher than this threshold, they will be considered as foreground and oth-

erwise they would be classified as background. This can be done by defined a global
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threshold for the whole image and find the optimal value for it which would be done

through Otsu thresholding by maximizing the between-class variance [10]. Another

method to find this optimal value is “maximum entropy thresholding” which is simi-

lar to Otsu’s method and it maximizes the between-class entropy [14]. In the case of

more than two classes, the Otsu’s method can be extended to the multi-thresholding

technique.

In some images, it is not possible to compute a single global threshold for the

whole image in order to get an optimal segmentation. This can easily happen where

we have different non-homogeneous background. To cope with this issue, we can use

the “local adaptive threshold” method which divides the image into subregions and

applies the mentioned thresholding technique to each region.

Thresholding, in order to acquire a good segmentation result, has a small set of

applications and cannot be applied to complex problems.

Edge-based methods try to find regions enclosed by boundaries made of edges. The

first step is to find the edges of the image using gradient operators. Since the results

from a gradient operator could have discontinuity, there should be some heuristics to

find the relation between detected edges and how to they connect with each other

to construct a closed boundary. There have been some studies over these heuristics

and the results are moderate [15, 16]. In the absence of edge information, noise and

background complexity, these methods are not reliable and could not deliver optimal

segmentation results. Therefore, Region-based methods which are more robust have

been introduced.

The objective of the region-based method is to segment an image into connected

regions which have the most inner-region similarity rather than depending on the

edge information from the image. Region-based segmentation can be performed un-
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der region growing framework. Region growing is a bottom-up approach and used

to implement different techniques of image segmentation as well as region-based seg-

mentation. This method starts with an initial estimate of the region of interest and

at each step, it adds region’s neighboring pixels to this region based on the similarity

to the pixels inside of the region. Having more than one seed and growing all of them

at the same time requires a mechanism to merge seeds that are similar to each other.

Region-based techniques are suitable for the cases edge information is lacking in

the image. They are particularly useful with images which have multi-modal his-

tograms [12].

There exist other segmentation approaches that employ both region-based and

edge-based methods:

2.1 Appearance-Based Methods

This family of segmentation techniques is usually based on the statistics of differ-

ent regions in the image. i.e. watershed [5] segmentation method segments an image

into several catchment basins, which are the regions of an image (interpreted as a

height field or landscape) where rain would flow into the same lake [17]. There are

also a wide range of probabilistic classification approaches based on appearance-based

methods.

For example, Wang et al. in [2] at one step use wavelet filters to extract the dots

corresponding to proteins in the cell nucleus and possible edges relative to membrane

edges. Then he uses Adaboost [3] to choose the best features among the result of this

filter and finds the cell centers. To find the cell region he trains an SVM [4] based on

intensity, gradient and LBP over the whole image. This method cannot be applied

in our work context for three reasons: (1) The first step of this method is majorly
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dependent on the white halo around the membrane and our dataset does not accom-

modate a vivid boundary around the membrane 2.1. (2) The second step is based on

trained SVM over the whole image and in our case, different images would have dif-

ferent intensities over the dataset which we cannot train a normal SVM for the whole

dataset, not to mention the bleaching of parts of images. (3) This method requires

modest user interaction to define positive and negative areas which we intend to avoid.

Figure 2.1. A sample of input image in Wang et al. problem [2].

Yin et al. in [18] use a bag of local Bayesian classifiers that trains a set of local clas-

sifiers from image patches and saves them with their corresponding local histograms.

To classify a new pixel, this method calculates the local histogram around the pixel

and applies weight to each classifier based on similarity of classifier’s histogram to

the pixel’s histogram. Using this method, a soft classification will be applied to

each individual pixels of a new test image. This method may lead to sharp edges,

unconnected membrane region or holes in our final results. Furthermore, it needs

accurate annotated data for every possible situation and intensity of a microscopic

image. Bleaching, changes in the intensity of our colored dataset and adding another

class to the method introduced, might lead to indeterminable results.
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Although appearance-based methods take into account the homogeneity con-

straints and model statistics, they don’t constrain the solution model. This weakness

can be resolved using deformable models.

2.2 Deformable Models

Deformable models are powerful model-based techniques, which are widely used

in image analysis tasks. They exploit (bottom-up) constraints derived from the image

data together with (top-down) a priori knowledge about the location, size, and shape

of these structures [19]. Having a priori knowledge in these techniques gives them the

flexibility of interacting with experts’ knowledge in medical image analysis. Internal

and external forces and constraints control deformable models. These elastic bodies

should minimize the deformation energy function. This deformation energy function

is a combination of smoothness, shape information and constraints.

2.2.1 Parametric deformable models

Snakes or “deformable contour models” are a subcategory of deformable models

proposed in [20] by Kass et al.. “Snakes are two-dimensional generalization of the

1D energy-minimizing splines” (Szeliski, [17]), which define a boundary around the

region of interest (ROI). If (x, y)T is a point on Cartesian coordinates of the image

plane (Ω), the parametric curve on this system is defined by v(s) = (x(s), y(s))T

which is parameterized by s ∈ [0, 1]. The energy function defined for this contour is:

E∗snake =

∫
E(v(s))ds =

∫
U(v(s)) + P (v(s)) ds , (2.1)

where E∗snake is the energy of the curve and U(v(s)) corresponds to the internal

energy of the contour that controls the tension and rigidity [20]. The second term

on the right hand side, P (v(s)), corresponds to the external energy of the contour

and minimization of which forces the contour towards the desired image features. If
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P(v(s)) and S(v(s)) are defined as in [20], the Euler-Lagrange equation for the energy

term E is:
∂E∗snake
∂s

= 0 (2.2)

− ∂

∂s
(w1

∂v

∂s
) +

∂2

∂s2
(w2

∂2v

∂s2
) +∇P (v(s, t)) = 0 , (2.3)

where this equation introduces a balance between the internal and external forces.

Probabilistic deformable models have been introduced by Szelisti [21]. In this

framework the solution can be seen as a model fitting process. Furthermore, it allows

a measure of the uncertainty in the estimated shape parameters [19]. If we consider

u as the shape parameter and I as the observation, we can model the problem as:

p(u|I) =
p(I|u)p(u)

p(I)
, (2.4)

where p(u) is the prior knowledge of the parameters which stands for the internal

energy (smoothness, shape and etc.). p(I|u) is the imaging model which represents

the imaging model (external energy).

2.2.2 Geometric deformable models

Level-set methods introduced by Osher et al. [22] have been used in deformable

models extensively. In these methods, the evolving curve divides the image domain

Ω into region RC enclosed by the curve C and the background Ω\RC [23]. The model

shape is represented implicitly by its distance transform,

ΩC(x) =


0, x ∈ C

+minx∈C ||x− xC ||, x ∈ RC ,

−minx∈C ||x− xC ||, x ∈ Ω\RC

(2.5)
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where x = (x, y) is the image pixel location in Cartesian coordinates. The level-

set function, φ(x, y, t) changes over time to accommodate the evolution of the zero

level-curve. The evolution in general form is presented as:

∂φ(x, y, t)

∂t
= F |∇φ| , (2.6)

where F is the speed of the evolution process which moves the zero level-curve normal

to the curve. Corresponding deformable model and its propagation direction is shown

in Figure 2.2.

Figure 2.2. Deformable model and its propagation.

In [11], Chan et al. use this method with region-based active contours. Their

framework does not depend on the edge information of the image and tries to mini-

mize the inner class variance. This criteria makes this technique and it’s derivatives

i.e. probabilistic level set contours suitable for images with bad edge information. In

the following we describe some works done using geometric deformable models.

In [1], Wang et al. use texture-adaptive geodesic active contours. This solution

proposed by [1] rely on the distinct texture of the image around the membrane bound-
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ary as in [2]. Since this information is not available in our problem, this work cannot

be applied to our situation.

In [24], a new deformable model is introduced named front vector flow guided

active contour. In this work, the regions located between the cell centers and the

cell boundary is homogeneous causing minimum energy for front vector flow at the

membrane boundary. This is mainly impacted by the intensity differences at the

boundary of membrane. This method also cannot be used in our problem due to the

lack of rapid intensity changes in our dataset.

In the work of [8], shape prior information and a new edge detection method is

incorporated in a level-set framework. Shape prior information is applied by a given

set of reference shapes and it is assumed that the final deformable model would have

a combination of these shape priors. This clearly cannot be applied to our dataset

because of different orientation, shape and size of each cell membrane and also non-

satisfactory results on our colored high quality samples (Figure 2.3).

(a) Sample 1 (b) Sample 2

Figure 2.3. Sample input images from Chen et al. paper. As it can be
seen, the shape of the target object has a low variance over the dataset.

In [25], cell segmentation is done using a combination of appearance-based tech-

niques and deformable models. This method estimates the spatial intensity distri-
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bution of nucleus as a Gaussian model and uses level-set method to find the cells

in an image. This method does not work for us because we would like to segment

membrane, which cannot be presented as a Gaussian model. Moreover, this method

assumes a constant intensity background, which in our case the background’s inten-

sity varies and it might overlap with cell intensity values. This would cause numerous

false positives in our dataset.

This thesis draws motivation from the paper by Tsechpenakis and Metaxas [26]

which describes mechanism of using an implicit deformable model driven by Condi-

tional Random Fields (CRFs) [27] to perform topology independent. They define a

simple graphical model representing the problem and achieve the optimal solution for

the deformable model by Maximum A Posteriori estimation. In this thesis we extend

the work of Tsechpenakis et al. by using the a priori knowledge on ROI structure

which allows the evolution of membrane and nucleus in a simultaneous manner.
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3. METHODOLOGY

In our proposed method we combine the region-based geometric models, the graphi-

cal models and the structural information of cells. Here we refer to structure as the

relative position of nucleus with respect to cytoplasm (relative topology). We build

a simple graphical model to solve the joint evolution of two interfaces, namely the

nucleus and membrane boundaries (Figure 3.1). Since the two compartments are

stained in blue and green respectively and red channel does not contribute any infor-

mation about these compartments, we consider green and blue channels to decompose

the input RGB image. Initially, we use the manually stained regions to detect the

pixels that are more likely to belong to each compartment. For this purpose, we use

K-harmonic means clustering (KHM) [28] with K ≥ 3, to over-segment the data and

calculate the highest pixel memberships to the nucleus and cytoplasm compartments.

During evolution, we update the probability field based on the new model position,

which enables us to capture local intensity inhomogeneity in the two compartments.

Ib

Ig

L ψ̂

Figure 3.1. Integration of shape, relative topology, and region classication
in a probabilistic graphical model.

Let x be a pixel location with Cartesian coordinates (x1, x2) in the image domain

Ω and let Ig(x) and Ib(x) be the intensities of the green and blue channel at the pixel
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x respectively. Also, let L = {l(x)}x∈Ω be the set of pixel labels on the image plane.

The label of each pixel can be achieved using l(.) function:

l(xi) =


0, Cytoplasm

1, Nucleus

−1, Background

(3.1)

where i is a pixel index in the image plane.

In order to be able to segment the nucleus and membrane simultaneously, we

have decomposed the cell shape ψ̂ into its compartments ψN and ψC which are signed

distance functions [23] of nucleus and membrane respectively and we define them as:

ψN(x) =


0, x ∈MN

+d(x,MN), x ∈ RN

−d(x,MN), x ∈ Ω\RN

(3.2)

where RN is the nucleus region with boundaries MN , and

ψC(x) =


0, x ∈MC

+d(x,MC), x ∈ RC ,

−d(x,MC), x ∈ Ω\RC

(3.3)

where RC is the cytoplasm region with boundaries MC shown in Figure 3.2.

Our solution for the estimation of the desired boundaries is based on the graphical

model in Figure 3.1 which shows the association between the evolving interfaces (ψ̂),

collection of pixel labels (L) and the image space information (Ig, Ib). To capture

relative topology, we implicitly consider that the regions of interest are conditionally

dependent and do not overlap in the image domain.
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(a) Segmented Cell

(b) Signed distance function of nucleus (c) Signed distance function of cytoplasm

Figure 3.2. Illustrating RN , RC ,MN ,MC , ψN , ψC .

3.1 Deformable model formulation

Deformable model configuration (ψ̂) captures three distinct regions according to

appearance and relative topology of the cell compartments. Our proposed method

is presented in a probabilistic framework. We would like to maximize the posterior

probability of pixel labels and cell deformable model given the image observations:

< ψ̂∗, L∗ >= arg max
(ψ̂,L)

P (ψ̂, L|Î) (3.4)
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Using Bayesian rule we decompose our problem into terms that can be evaluated

using our graphical model (Figure 3.1):

P (ψ̂, L|Î) =
P (ψ̂).P (L|ψ̂).P (L|Î)

P (L)
(3.5)

∝ P (ψ̂).P (L|ψ̂).P (L|Î) (3.6)

3.2 P (ψ̂) : Model prior with relative topology

As it has been discussed in section two, ψ̂ is decomposed into ψN and ψC . The

reason of treating the deformable model this way is that the nucleus and cytoplasm are

topologically dependent and this information can be used in the evaluation process of

the deformable model. Therefore, we include this piece of information as a conditional

dependency between ψN and ψC . Using chain rule we have:

P (ψ̂) = P (ψN , ψC) (3.7)

= P (ψN).P (ψC |ψN)

= P (ψC).P (ψN |ψC)

As it can be seen in 3.7, using the chain rule of probability, the general model

could decompose into two different forms. The confidence in the nucleus position, due

to the shape information and intensity information from the blue channel, is higher

than the cytoplasm. Therefore, we can evaluate the shape of cytoplasm using the

conditional dependency of the cytoplasm given the nucleus (P (ψC |ψN)). This depen-

dency fits into the last line of equation 3.7.

The following is the definition of nucleus internal energy considering its area

A(RN), smoothness and shape as how perfectly it fits an ellipse.

EintN = ε1A(RN) (3.8)

+ ε2

∫ ∫
∂RN

||∇ψN(x)||dx

+ ε3Ellipse(RN) ,
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s.t. ε1, ε2 and ε3 are constants. Minimizing this energy function should maximize the

model prior (Eq. 3.7). ∂RN defines a narrow band around the nucleus boundary in

order to evaluate the smoothness of a local area. For evaluating how perfectly the

nucleus fits an ellipse we used [29]. When the nuclei’s shape becomes closer to an

ellipse, Ellipse(RN) in 3.9 would converge to zero and the energy function decreases.

Ellipse(RN) =
RN ∩R∗e
RN ∪R∗e

, (3.9)

where R∗e is the region enclosed by the ellipse that best ts the nucleus boundaries.

The normalized output of this function is shown in Figure 3.4.

(a) Ellipse(RN ) = 0.1479 (b) Ellipse(RN ) = 0.3298

Figure 3.3. Outputs of Ellipse(.) function.

Similar to [19, 26, 30], in order to use this energy function in our probabilistic

framework, we use Gibbs prior:

P (ψN) = (
1

ZintN
)exp{−EintN} (3.10)

The equation above is the first part of the model prior in the objective form of

equation 3.6:

P (ψ̂) = P (ψN).P (ψC |ψN)
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For the second part of the model prior (P (ψC |ψN)) we define another internal

energy function for the cytoplasm area given the nucleus. In order to make use of

the topology dependency between cytoplasm and nucleus in a cell, we would like to

define a new concept, joint part. A joint part is defined between every two adjacent

regions (objects) with different labels. For this purpose we used the definition of joint

part used in [31]:

Having function δ(O) returning the boundaries of the object O, if Oi and Oj are

two objects sharing a part of their boundary (Oi ∩Oj 6= ∅) and the shared boundary

would be bij = δ(Oi∩Oj) and the boundary of their union would be Bij = δ(Oi∪Oj),

the joint part of Oi and Oi is defined as:

Jij = {x ∈ Oi ∪Oj|min
y∈bij
||x− y|| < min

z∈Bij

||x− z||} (3.11)

(a) Objects in the image (b) Pairwise joint parts

Figure 3.4. Joint part definition [31].

Also, the notion of the first neighbor is introduced to define the label function,

f(x) = j, if x ∈ Oi ∩ Jij,∀(i, j) ∈ [1, 3], i 6= j, (3.12)
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i.e.,

x ∈ Jij, if {l(x), f(x)} = {i, j} or {j, i} (3.13)

Finally, the distance,

ϕf =
3∑

i,j=1,i 6=j

max{ψij, 0} −max{ψi, ψj, 0}, (3.14)

is considered, where ψij is the distance function of Oi∪Oj, and ψi or j = {ψN , ψC , ψB}.

Following the definitions above, the topology and shape of the cell can be modeled

in the image domain by the functions ϕJ and ϕF , and the individual shapes can be

recovered by,

ψi(x) =


ϕJ , if l(x) = i

−ϕJ , if l(x) 6= i and f(x) = i

−ϕJ − ϕF , if l(x) 6= i and f(x) 6= i

(3.15)

Figure 3.5 illustrates the joint parts and the boundaries MN , MC at three instances

(t1, t2, t3) during evolution. Notice that at t1, the joint part JNC (nucleus-cytoplasm)

is empty since the two regions are not adjacent; similarly, for joint part of nucleus-

background at t3, we have JNB = ∅.

Using these definitions we can define the internal energy function corresponding

to cytoplasm as:

EintC = ε4A(RC) (3.16)

+ ε5

∫ ∫
∂RC

||∇ψC(x)||dx

+ ε6
A(JNB)

A(JNC)
,

where ψN(xi) and ε4, ε5 and ε6 are constants. The minimization of this energy, in

a similar way as equation 3.9, enforces minimum area and maximum local shape
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(a) t1 (b) t2 (c) t3

(d) t1 (e) t2 (f) t3

Figure 3.5. Demonstrating the evolution of deformable model on the first
row (t1 < t2 < t3) and corresponding changes to joint parts on the sec-
ond row; where JNB, JCB and JNC are nucleus-background, cytoplasm-
background and nucleus-cytoplasm joint parts respectively.

smoothness, while last term would attract the cytoplasm pixels to the nucleus region

and forces the cytoplasm region to grow around the nucleus region and fill the gap

(background) between cytoplasm and nucleus (i.e. Figure 3.5(c)). Then, the joint

topology likelihood of equation 3.17 is,

P (ψC |ψN) = (
1

ZintC
)exp{−EintC}, (3.17)

where ZintC is the normalization constant.
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3.3 P (L|ψ̂) : Likelihood of L given the model

Dependency of the shape model and pixel labels is defined as:

P (l(xi) = 1|ψ̂) =
g(ψN(xi))

g(ψN(xi)) + g(ψC(xi)) + g(−max(ψN(xi), ψC(xi)))
(3.18)

P (l(xi) = 0|ψ̂) =
g(ψC(xi))

g(ψN(xi)) + g(ψC(xi)) + g(−max(ψN(xi), ψC(xi)))
(3.19)

P (l(xi) = −1|ψ̂) =
g(−max(ψN(xi), ψC(xi)))

g(ψN(xi)) + g(ψC(xi)) + g(−max(ψN(xi), ψC(xi)))
, (3.20)

where g(.) is the Sigmoid function.

The above equations calculate the probability of a pixel’s label based on its dis-

tance to the boundaries of each region. The correctness of this formulation can be

shown by considering a pixel in a region O and away from region O’s boundaries. In

this case, the probability of the pixel belonging to O’s adjacent regions is less than

the probability of the pixel when it is close to O’s boundaries (Figure 3.6).

These equations could also be expressed using Softmax function as follows:

P (l(xi) = 1|ψ̂) =
exp(aN)

exp(aN) + exp(aC) + exp(aB)
(3.21)

P (l(xi) = 0|ψ̂) =
exp(aC)

exp(aN) + exp(aC) + exp(aB)
(3.22)

P (l(xi) = −1|ψ̂) =
exp(aB)

exp(aN) + exp(aC) + exp(aB)
, (3.23)

where aN = ψN(xi), aC = ψC(xi) and aB = ψB(xi) which is the signed distance

function of the background defined in a similar way as ψN(xi) and ψC(xi).

3.4 P (L|Î) : Probability of regions given the image observations

To estimate this probability term, we define a support vector machine (SVM) [4]

which is updated at each step of the deformable model evolution. The feature used in

this SVM is image intensity corresponding to each image pixel and the result would
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(a) Segmentation of a cell. The boundary of the background is anno-

tated by the yellow lines.

(b) Probability of the pixel labels being background along the red line

in 3.6(a).

Figure 3.6. Likelihood of L = “Background” given the model.

be the probability of the pixel belonging to each region. Green and blue channels are

the most informative channels in the image space, so we ignored red channel.

P (L|Î) = P (L|Ib, Ig) (3.24)
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This part of the solution consists of two phases:

3.4.1 Initialization

Initially we apply K-harmonic means clustering [28] on the image intensity fea-

ture space with “k >> number of compartments” (for example K = 7) to obtain

an over-segmentation in this space. This guarantees that we would find at least one

cluster for each of nucleus and membrane areas in the intensity space.

Initial nucleus and membrane clusters are chosen are known given annotated seeds.

The nucleus and membrane segments from the chosen clusters with the most over-

lapped region with the nucleus and membrane seeds are added to the corresponding

seeds, resulting enhanced seeds for nucleus and membrane. The rest of the image is

labeled as background.

3.4.2 Probability field

We train a multi-class support vector machine for this labeled data by employing

“one-vs-the rest” method [32]. This method returns one function for each decision

boundary.


fC(Îi) from the SVM with cytoplasm against others

fN (Îi) from the SVM with nucleus against others ,

fB(Îi) from the SVM with background against others

where Îi is the blue and green intensities of the pixel i. We use the Sigmoid func-

tion [33] to convert the outputs of these functions into probabilities.

P (li = y|îi) =
1

1 + exp(−fy (̂ii))
, (3.25)

where y ∈ {−1, 0, 1}. After each step of the deformable model evolution, updated

information about the pixel labels are used to update SVM. Updated support vector
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machine is used in the Sigmoid function defined above (equation 3.25) at the next

step of posterior probability estimation of labels given the image intensities.

3.5 Finding approximate windows

The proposed probabilistic model can be applied on one cell at a time. In this

section we explain how we can use this model to perform the segmentation on the

original image. The goal of approximate window is to find an approximate window

around a cell with initial seeds for nucleus and membrane and apply the segmentation

model in that window.

We start by applying K-harmonic means on the pixel intensities with K = 7 in or-

der to find initial reliable clusters for nucleus and membrane. We use annotated seeds

to find clusters corresponding to each region. The clusters with the most number of

nucleus and membrane seed pixels are labeled as nucleus and membrane clusters re-

spectively (Figure 3.7).

Due to the high contrast of the nucleus area in our dataset, we can use this area

to find approximate windows for each cell. We know that the nucleus is the heart

of a cell. We want one nucleus in each window and the goal is to have this window

to be as large as possible to contain the whole structure of a the nucleus’s cell while

avoiding to include other cells’ components. This window can be achieved by starting

from the centroid of each nucleus and expand a square window around it. Each side

of this growing window will move with the speed = 1 and normal to itself. Each side

will stop moving when it reaches a neighboring nucleus. The evolution of the square

is implemented using morphological operations. Once all of the sides are fixed, the

approximate window is achieved (Figure 3.8).
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(a) Original Image

(b) Nucleus Cluster (c) Membrane Cluster

Figure 3.7. Intensity clusters selected for each compartment using an-
notated seeds. Centroids of the nucleus segments are marked with red
circles.

Each approximate window contains one nucleus segment and multiple membrane

segments. The membrane segment which is the closest one to the nucleus in each

approximate window will be selected as the initial membrane seed. (Figure 3.9)
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(a) Original Image

(b) Approximate window for cell # 1 (c) Approximate window for cell # 2

Figure 3.8. Approximate windows selected for an image containing two
cells.
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(a) Window 1 (b) Window 2

(c) Window 1 seeds (d) Window 2 seeds

Figure 3.9. Initial seeds in each window. The top row shows each window
with multiple membrane segments. The bottom row shows the selected
seeds for membrane and nucleus in each approximate window.
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4. RESULTS

We applied our method on a set of 20 single cell images cropped from the original

dataset provided by bioengineering department at University of Miami. All experi-

ments were performed on a MAC PRO computer with 3.2 Ghz Quad-Core Intel Xeon

and 12 GB of memory. Performing segmentation on each image takes 10-20 minutes

dependent upon the employed over-segmentation method. As it has been discussed

in previous chapter, simultaneous segmentation of cells in an image can be done using

approximate window and applying the proposed model on each of these windows.

Figures 4.1 and 4.2 show the result of our segmentation method. In some cases

with minimum photo-bleaching, the initialization for the nucleus and/or membrane

regions is very close to the desired boundaries. Therefore, to show the scalability of

our approach, we manually chose seeds among the regions that are initially assigned

to corresponding classes by the K-harmonic means clustering.

In all examined images, our model correctly captures > 97% of the nucleus, with

< 2% of its area false positive assignments, and > 91% of the membrane, with < 4%

of the its area false positives. Due to the topology constraints we imposed between

the two compartments, during evolution the estimated membrane region does not

leak at the sites where the photo-bleaching degree is high.

The choices of the weight parameters in equations 3.9 and 3.17 directly affect

the effectiveness and accuracy of our model. Since the main forces deriving the cell

model are from the ellipse fitting term in equation 3.9 and the joint topology term in
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(a) (b)

(c) (d)

(e) (f)

Figure 4.1. Segmentation results with normalized cuts over-segmentation.
Original images on the left hand side, segmented results on the right hand
side.

equation 3.17, the weights corresponding to these two terms (ε3 and ε6) are assigned

higher values in cases of increased noise. In most of our experiments the choice of the

parameters were {ε1, ε2, ε3, ε4, ε5, ε6} = {0.2, 0.3, 0.5, 0.3, 0.1, 0.6}.

In general, different initialization methods could result in different segmentations

with different accuracies. We claim that using an initialization method, which would
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return a true over-segmentation of the image space, our method can find the opti-

mal segmentation of the cell image. We have applied two different over-segmentation

methods in our experiments: Normalized cuts segmentation (N-cuts) [34] and K-

harmonic means clustering. In 4.1(f), a part of background is segmented as cyto-

plasm due to the under-segmentation of the normalized cuts segmentation method in

this image. This problem will be resolved by changing the input parameters of the

normalized cuts segmentation method in order to obtain the true over-segmentation

of the cell image.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.2. Segmentation results with K-harmonic means over-
segmentation. Original images on the left hand side, segmented results on
the right hand side.
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5. SUMMARY

In this thesis we presented a probabilistic geometric deformable model that simul-

taneously segments the compartments of an object using the relative topology of

compartments with respect to each other. We applied this method to the problem

of segmenting cell populations in order to segment the nucleus and the cytoplasm

regions of this population. This model captures the relative topology of the cell and

manages to perform well on our test data, which lacks edge information.

The dataset used in this project is a set of florescent microscopic images, which is

not monochromic. Furthermore, nucleus and membrane are distinguished using blue

and green colors.

Other than accurate cell segmentation, the benefits of using this framework can

also be noted as the following :

1. Scalability: The probabilistic deformable model for each cell can be applied on

an image with several cells by employing the approximate window technique

discussed.

2. Parallelizable: Since the segmentation algorithm is applied on each approximate

window separately, different windows can be processed in a parallel manner in

order to reduce the running time of cell segmentation on the whole image.

We use our approach to study the cell morphology as outcome of a growth factor

(cytokine) delivery procedure.
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Our future work includes the integration of our framework into a unified opti-

mization approach, where classification and deformable model parameters will be

estimated using an L1-norm logistic classication in a Max-product procedure.
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