
Graduate School Form
30 Updated

PURDUE UNIVERSITY
GRADUATE SCHOOL

Thesis/Dissertation Acceptance

This is to certify that the thesis/dissertation prepared

By

Entitled

For the degree of

Is approved by the final examining committee:

To the best of my knowledge and as understood by the student in the Thesis/Dissertation
Agreement, Publication Delay, and Certification Disclaimer (Graduate School Form 32),
this thesis/dissertation adheres to the provisions of Purdue University’s “Policy of
Integrity in Research” and the use of copyright material.

Approved by Major Professor(s):

Approved by:
Head of the Departmental Graduate Program Date

Konstantinos Raptis

THE CLASH BETWEEN TWO WORLDS IN HUMAN ACTION RECOGNITION: SUPERVISED FEATURE TRAINING
VS RECURRENT CONVNET

Master of Science

Gavriil Tsechpenakis
Chair

Jiang Yu Zheng

Mihran Tuceryan

 Gavriil Tsechpenakis

Shiaofen Fang 12/2/2016

THE CLASH BETWEEN TWO WORLDS IN HUMAN ACTION RECOGNITION:

SUPERVISED FEATURE TRAINING VS RECURRENT CONVNET

A Thesis

Submitted to the Faculty

of

Purdue University

by

Konstantinos Raptis

In Partial Ful�llment of the

Requirements for the Degree

of

Master of Science

December 2016

Purdue University

Indianapolis, Indiana

ii

TABLE OF CONTENTS

Page

LIST OF TABLES . iv

LIST OF FIGURES . v

ABBREVIATIONS . vi

ABSTRACT . vii

1 INTRODUCTION . 1

1.1 Problem Statement and Challenges 2

1.2 Thesis Outline . 4

2 BACKGROUND . 5

2.1 Holistic Representations . 5

2.2 Part based representation . 6

2.3 Local feature based methods . 6

2.4 Deep Neural Networks . 8

3 DENSE TRAJECTORIES . 10

3.1 Our approach . 10

4 RCN . 15

4.1 CNN-RNN . 15

4.1.1 CNN . 15

4.1.2 RNN-LSTM . 19

4.1.3 TensorFlow and Inception in TensorFlow 20

4.1.4 DarkNet YOLO . 23

4.2 Our approach . 23

5 EXPERIMENTS-RESULTS . 28

5.1 Datasets . 28

5.2 Results . 30

iii

Page

5.3 Comparison . 34

6 CONCLUSIONS-FUTURE WORK . 35

REFERENCES . 37

iv

LIST OF TABLES

Table Page

5.1 Hollywood 2 classes . 29

5.2 Dense Trajectories vs RCN . 31

5.3 Dense Trajectories descriptors . 31

5.4 Comparison between state of the art methods 32

v

LIST OF FIGURES

Figure Page

1.1 Samples from Hollywood2 . 3

1.2 Samples from HMDB51 . 3

3.1 Surf features Hollywood2 . 11

3.2 Surf features HMDB51 . 12

3.3 Optical �ow . 12

4.1 A Neural Network. 15

4.2 Convolutional Neural Networks. 16

4.3 Typical CNN architecture. 18

4.4 A simple LSTM block. 20

4.5 Inception . 22

4.6 YOLO . 24

4.7 YOLO output . 24

4.8 Bounding box Hollywood2 . 25

4.9 Bounding box HMDB51 . 25

4.10 RCN architecture . 27

vi

ABBREVIATIONS

CNN Convolutional Neural Network

DIT Dense Improved Trajectories

GMM Gaussian Mixture Model

HOG Histogram of Oriented Gradients

HOF Histograms of Optical Flow

KLT Kanade-Lucas-Tomasi

LSTM Long Short-Term Memory

LTC Long-term Temporal Convolution

NN Neural Network

MBH Motion Boundary Histograms

PCA Principal Component Analysis

RCN Recurrent Convolutional Network

ReLU Recti�ed Linear Unit

RNN Recurrent Neural Network

SIFT Scale-Invariant Feature Transform

SURF Speeded Up Robust Features

SVM Support Vector Machines

TDD Trajectory-pooled Deep-Convolutional Descriptors

YOLO You Only Look Once

vii

ABSTRACT

Raptis, Konstantinos. M.S., Purdue University, December 2016. The Clash between
two worlds in Human Action Recognition: Supervised Feature Training vs Recurrent
ConvNet. Major Professor: Gavriil Tsechpenakis.

Action recognition has been an active research topic for over three decades. There

are various applications of action recognition, such as surveillance, human-computer

interaction, and content-based retrieval. Recently, research focuses on movies, web

videos, and TV shows datasets. The nature of these datasets make action recognition

very challenging due to scene variability and complexity, namely background clutter,

occlusions, viewpoint changes, fast irregular motion, and large spatio-temporal search

space (articulation con�gurations and motions). The use of local space and time

image features shows promising results, avoiding the cumbersome and often inaccurate

frame-by-frame segmentation (boundary estimation). We focus on two state of the

art methods for the action classi�cation problem: dense trajectories and recurrent

neural networks (RNN). Dense trajectories use typical supervised training (e.g., with

Support Vector Machines) of features such as 3D-SIFT, extended SURF, HOG3D, and

local trinary patterns; the main idea is to densely sample these features in each frame

and track them in the sequence based on optical �ow. On the other hand, the deep

neural network uses the input frames to detect action and produce part proposals, i.e.,

estimate information on body parts (shapes and locations). We compare qualitatively

and numerically these two approaches, indicative to what is used today, and describe

our conclusions with respect to accuracy and e�ciency.

1

1. INTRODUCTION

Humans are capable to detect objects, distinguish di�erent types of motion patterns

and analyze complex interactions and temporal events. We can instantaneously de-

termine whether a person is shooting a ball, waving, answering the phone or hugging

another person even in the presence of cluttered background, occlusions, and/or illu-

mination changes. However, understanding complex events is hard even for a human.

Improving our interaction with machines and take advantage of them would have

great bene�ts in our everyday life.

Applications such as autonomous vehicles or surveillance systems would play a

big role in our life in the very near future. The decreasing amount of car accidents

and the identi�cation of abnormal events are considered an important problem that

has to be solved. In order to attain these goals, smart systems need to be developed

for monitoring and understanding our surroundings using images, videos, sensors,

or depth cameras. The area of Computer Vision has evolved and is now capable

of building such smart systems and solving these kind of problems. Several models

have been developed for addressing problems such as object detection and action

recognition.

This thesis focuses in the analysis and classi�cation of human activities. The

nature of these data make the action recognition problem very challenging due to

scene variability and complexity, namely background clutter, occlusions, viewpoint

changes, fast irregular motion, and large spatio-temporal search space (articulation,

con�gurations and motions). In addition, recognizing the behavior of a person in a

video is challenging due to the variability of ways that di�erent people perform a par-

ticular action. For instance, di�erent people run in di�erent pace or style of motion.

Problems are also encountered due to cluttered background in images. Moreover, the

high dimensionality of the data are also signi�cant challenges for the classi�cation

2

problem. The goals of this thesis are the development and extraction of low level fea-

tures, the development of learning algorithms for recognizing human action in videos

and a comparison of two of the most sophisticated algorithms used in this problem

(dense trajectories and recurrent neural networks).

We focus on two state of the art methods for the action classi�cation problem:

dense trajectories and Recurrent Neural Networks (RNN). Dense trajectories use

typical supervised training (e.g., Support Vector Machines) of features such as 3D-

SIFT, extended SURF, HOG3D, and local trinary patterns; the main idea is to densely

sample these features in each frame and track them in the sequence based on optical

�ow. On the other hand, the deep Neural Network uses the input frames to detect

action and produce part proposals, i.e., estimate information on body parts (shapes

and locations). We compare qualitatively and numerically these two approaches,

indicative to what is used today, and describe our conclusions with respect to accuracy

and e�ciency.

We apply our methods on two di�erent datasets. The hollywood 2 [1] and the

HDMB 51 [2] dataset. In Figures 1.1-1.2 we can see some examples of several ac-

tions from both datasets. Hollywood2 has been collected from 69 di�erent hollywood

movies including 12 classes of actions. It contains 1707 videos split into a training

set of 823 videos and a test set of 884 videos. Train and test videos are split on

the movies, such that a movie can only appear on either the train or the test set.

HDMB51 is collected from movies and YouTube videos. There are 51 di�erent ac-

tions in a total of 6766 video sequences with three train-test splits. For every class

and split there are 70 training and 30 testing videos.

1.1 Problem Statement and Challenges

Human action recognition is the problem of identifying an action performed by

one or more humans from a collection of observations,in our case image sequences.

More speci�cally, given a video sequence, the goal is to determine which, of a set

3

Fig. 1.1. Samples of several actions from Hollywood2 dataset. From
left to right the corresponding actions are: Stand up, Answer phone,
Drive, Run.

Fig. 1.2. Samples of several actions from HMDB51 dataset. From left
to right the corresponding actions are: Smoke, Brush hair, Laugh,
Climb stairs.

4

of prede�ned action classes, can be more successfully assigned to the sequence. For

example, we want to classify a sequence of a new video to action labels, such as

answer phone, waving, shooting ball, stand up etc.. As mentioned above, the task of

action recognition can be particularly di�cult due to scene variability and complexity

namely background clutter, occlusions, viewpoint changes, fast irregular motion, and

large spatio-temporal search space (articulation, con�gurations and motions).

1.2 Thesis Outline

The remaining of the thesis is organised as follows. In Chapter 2, we review

existing work in the action recognition area and discuss some of the most popular

techniques. Detailed explanation of our methods are discussed in Chapters 3 and 4.

We present experiments, results and comparison in Chapter 5 and conclusions as well

as future work in Chapter 6.

5

2. BACKGROUND

In this chapter, we review existing work in the area of action recognition. The exist-

ing approaches can be separated into four main categories. We will give a detailed

explanation of the two methods that we use along with the related work in each �eld

and we will brie�y describe the two remaining methods.

1. Holistic representations. Global information is extracted from every image of a

video in order to perform human detection. These features are focused on the

person that performs an action.

2. Part based representations. That is, the middle level representation of an action,

based on local spatio-temporal characteristics in a sequence of images.

3. Local-feature based methods. That is, the representation of the entire video as

a group of descriptors obtained from regions of interest, without pre-processing

steps such as tracking and segmentation.

4. Deep Learning. Most of state of the art approaches use Convolutional Neural

Networks (CNN) or Recurrent Neural Networks (RNN). They attempt to learn

3D spatio-temporal �lters over raw sequence data and frame-to-frame repre-

sentations. RNN are considered as �deep in time� models while CNN �deep in

space� models.

2.1 Holistic Representations

These approaches extract global information from every image of a video in or-

der to perform human detection. Global information is focused on the person that

performs an action and is represented by features that are obtained from pixel infor-

mation of regions of interest, in our case the human body. These features capture

6

the essence of the human body shape and more importantly the di�erence between

two human silhouettes. The feature extraction is determined by �preprocessing� algo-

rithms such as background subtraction [3, 4], person detection [5�7] or tracking [8, 9]

and their ability to extract these global features. A static background or a scene that

makes tracking less complicated are required in order for these algorithms to have

the anticipated outcome. Other than using the human body shape to represent an

action, dense optical �ow can be used in the detected area. The advantage of dense

optical �ow over the silhouette based method is that it avoids the often inaccurate

frame-by-frame segmentation.

2.2 Part based representation

Part based representation decomposes an action into several parts capturing local

spatio-temporal characteristics in the data. A part-based model represents the human

body as a set of rigid parts (e.g., head, leg, etc.) constrained in a way. The used

constraints are mainly tree-structured kinematic constraints between body parts. Two

major components are of importance. Part appearances specify the appearance of

each body part in the image, and con�guration priors specify the arrangement of

parts with respect to each other. Most of the approaches use sequential data models

to represent the temporal variability [10�13]. It is common to use time series of

activity codewords, and for each frame it detects �interesting� regions as a part of

an action and enforcing the temporal consistency. Each frame is usually segmented

with the mean-shift algorithm [14]. As descriptors, local based methods use spatio-

temporal HOGs [5,15].

2.3 Local feature based methods

Local feature based methods represent the video as a group of descriptors, captur-

ing shape and motion characteristics from spatio-temporal regions. These methods

can be described in three steps. First, we need to �nd the points of an image that

7

correspond to points on another image. These points are usually the local maximum

of image functions such as SIFT, SURF, etc. and are tracked over time. The next

step is to apply feature descriptors on these points. The most common descriptor is

the Histogram of Oriented Gradient (HOG). During the last years, several descrip-

tors were proposed such as Motion Boundary Histogram (MBH), Histogram Of Flow

(HOF), which is usually based on a dense optical �ow, see [16]. The �nal step, is

the representation of the video. The most common approach is to use Bag of Fea-

tures or Fisher Vector [16, 17]. Finally, an action is usually classi�ed using Support

Vector Machines (SVM) either linear or kernel. There are several approaches that

extract spatio-temporal features in videos. In [18], Dollar et al. propose a method

for detection of spatial interest points and extensions to the spatio-temporal domain

using a a combination of a 2D Gaussian �lter in space and a 1D Gabor �lter in time.

In [19], this previous work has been extended by using a 2D Gabor �lter of di�erent

orientations. In [20], Scovanner et al. introduce a 3D SIFT descriptor for video.

In [15], Klaser et al. introduce the HOG3D descriptor. Willems et al., in [21], present

spatio-temporal interest points that are both scale invariant and densely cover the

video content.

Several methods related to trajectories have been developed. Trajectories capture

motion information given a spatial point. In [22], Messing et al. extract feature

trajectories using Birch�eld's implementation of the KLT tracker on videos. In [23],

a method for motion, based on quantized trajectory snippets of tracked features,

was presented which is very computationally e�cient. In [24], the spatio temporal

context information is modeled in a hierarchical way. They match SIFT descriptors in

consecutive frames. A unique match between the frames is required and matches that

are far apart are rejected. In [16,17], Wang et al. propose a method where points are

densely sampled and tracked using a dense optic �ow �eld. Dense sampling is used

in order to have a good coverage of the video with features and optic �ow is used to

improve the quality of trajectories. Motion Boundary Histograms (MBH) represent

8

the gradient of optic �ow. In this way camera motion is suppressed but information

about the �ow �eld changes are kept.

2.4 Deep Neural Networks

Although Deep Learning methods may fall in one of the previous categories, such

as local features based methods, we want to dedicate a separate section for these kind

of models. Research on CNN and RNN is either new or recently reintroduced. We

estimate in the following years more applications that use CNN or RNN will emerge.

We describe the most notable research for both CNN and RNN in computer vision

area, especially for action recognition.

In [25], Simonyan and Zisserman used deep CNN for action recognition in videos.

The Convolutional Network incorporated spatial and temporal networks and was

trained on a dense optical �ow. Tran et al. in [26] propose an approach to learn spa-

tial and temporal features using deep 3D ConvNets pointing out the adnantages of 3D

ConvNets compared to 2D ConvNets for spatiotemporal feature learning. Donahue et

al., in [27], propose a model suitable for large-scale visual understanding tasks using

RNNs. Unlike previous models, it makes use of not only spatial but also temporal

dimensions. The recurrent sequence models are connected to the convolutional net-

work model and they can be trained jointly in order to learn temporal dynamics. As

a result, they have many advantages compared to models that are separately de�ned

or optimized. In [28], Ji et al. developed a 3D CNN for action recognition in image

sequences. Taylor et al., in [29], perform convolutional learning of spatio-temporal

features using pairs of successive images. In [30], Wang et al. use hand-crafted as

well as deep learned features for action recognition in a method called trajectory-

pooled deep convolutional descriptor (TDD). In [31] Baccouche et al. propose an

action classi�cation method. It is based on the extension of CNNs to 3D in order to

learn the features and then a RNN is trained to classify each sequence of the learned

features. In [32], Peng et al. propose a Multi-Region two stream R-CNN for action

9

recognition. Faster R-CNN is used for frame level action detection to combine motion

and appearance region proposals. In [33] Grushin et al. use LSTM-RNN for robust

action recognition in real world scenarios i.e. poor video quality, small quantities

of training data, tighter deadlines to make a decision. These models use unidirec-

tional LSTM-RNNs with one hidden layer. Lefebvre et al., in [34], present a robust

method for 3D gesture recognition using a bidirectional LSTM-RNN where a forward

hidden layer and a backward hidden layer are used. In most of the cases, motion

based CNNs have better performance than CNN representations learned for RGB

inputs [25]. Moreover, CNN with 3D convolutions extend the 2D shift invariance to

invariance to translation in time [26, 28, 29]. All of the methods mentioned above

learn videos with RGB input and the video sequences are relatively small (around 15

frames). In [35], Varol et al. use Long-term Temporal Convolutions (LTC) in order

to apply CNN to longer videos. In [36], Karpathy, et al. classify over 1 million videos

into 487 classes by �fusing� the representation of frames over time. In [37], Du et

al. propose a hierarchical RNN for skeleton based action recognition by dividing the

human skeleton into 5 parts.

10

3. DENSE TRAJECTORIES

Among the local feature based methods, dense trajectories [16,17] seem to have better

performance on a variety of datasets. The main idea is to densely sample feature

points in each frame and track them through the video using optical �ow. During

the process, multiple descriptors are computed for capturing shape, appearance and

motion information.

3.1 Our approach

Our approach has many similarities with the Dense Improved Trajectories (DIT),

[17]. More speci�cally, we use the same camera motion estimation technique, the

same method for trajectory features and also one of the approaches mentioned for

feature encoding. The DIT approach can be separated into �ve parts: camera motion

estimation, removing inconsistent matches due to humans, trajectory features, feature

encoding and classi�cation.

Camera motion estimation

We assume that two frames in a row are related by a homography in order to

estimate the global background motion. We make this assumption based on the

fact that usually the global motion between two frames is small, excluding objects

like humans and vehicles. 15 frames are used in our case to estimate the camera

motion. To estimate the homography, we �nd the correspondences between two

frames. At �rst, we extract SURF features,see Figure 3.1-3.2, and match them with

a nearest neighbor algorithm. SURF features have the advantage of being robust to

motion blur. Then, we sample motion vectors from optical �ow, see Figure 3.3. This

11

Fig. 3.1. Examples of SURF features extraction on Hollywood2 dataset.

technique provides us with dense matches between frames. The optical �ow algorithm

we use was implemented by [38]. These two approaches are complementary, SURF

focuses on blob structures, whereas optic �ow focuses on corners and edges. We

estimate the homography using RANSAC [39] as in [16]. This allows us to remove

camera motion.

Removing inconsistent matches due to humans

In the majority of datasets, an action is centered around humans . As humans

are the main focus point in the image, problems arise for the camera motion esti-

mation since human motion is not consistent with it. Moreover, many di�culties

12

Fig. 3.2. Examples of SURF features extraction on HMDB51 dataset.

Fig. 3.3. Example using dense Optical �ow on two stacked frames.

13

are encountered due to the fact that in action recognition datasets the human body

is not easily identi�ed. For this reason, we use a HOG human detector, created by

combining part-focused detectors, which is trained with the PASCAL VOC07 data.

The bounding boxes are used to remove matches that don't correspond to camera

motion. Finally, we are able to extract the trajectory features.

Trajectory features

Di�erent descriptors are computed for each trajectory (Trajectory, HOG, HOF,

MBH). The Trajectory descriptor is a concatenation of normalized displacement vec-

tors. The rest of the descriptors are computed in the space-time volume aligned with

the trajectory. HOG, as the name implies, is formed of the oriented gradients and

captures appearance information. HOF and MBH are based on optical �ow, therefore

they capture motion information. The feature points are tracked for 15 frames. The

dimensionality of the descriptors is as follows: Trajectory 30, HOG 96, HOF 108 and

MBH 192.

Feature encoding

In order to encode features, we use Fisher vector with identical settings to [16].

Fisher vector encodes �rst and second order statistics between the video descriptors

and a Gaussian Mixture Model (GMM). As in [16], we start by reducing the descrip-

tors' dimensionality using PCA (Principal components Analysis). The number of

Gaussians we use for the GMM is K = 256. A random set of features is taken from

the training set to estimate GMM. Each video is represented by a 2*D*K long �sher

vector for each descriptor, where D is the descriptor dimension after dimensionality

reduction. Finally, power and L2 normalization are applied to Fisher Vector as in [40].

14

Classi�cation

For classi�cation, a Linear SVM with C=100 is used. We use a one-versus-the-rest

approach since the nature of the data require a multi-class classi�er.

15

4. RCN

In our approach we combine several state of the art algorithms, the highlight being the

combination of CNN and RNN. We name our model recurrent convolutional network

(RCN)and we implement it with TensorFlow 0.10. We use DarkNet (YOLO) for

human detection, as CNN we used the Inception v3.

4.1 CNN-RNN

In the next section we discuss in detail the characteristics of both CNN and RNN,

Tensor�ow, YOLO and Inception v3.

4.1.1 CNN

Fig. 4.1. An arti�cial neural network. Each circular node represents
a neuron and each arrow represents a connection from the output of
one neuron to the input of another [41].

A Neural Network is �...a computing system made up of a number of simple,

highly interconnected processing elements, which process information by their dy-

16

Fig. 4.2. Left: CNN layers arranged in 3 dimensions [42]. Right:
Neurons of a convolutional layer, connected to their receptive �eld
[43].

namic state response to external inputs.� (In �Neural Network Primer: Part I� by

Maureen Caudill, AI Expert, Feb. 1989). Neural Networks use forward feeding,

which means that they pass signals along the input-output channel in a single di-

rection, without allowing signals to loop back into the network, Figure 4.1. While

Neural Networks are very successful for image recognition, they come with a great

cost. This method requires all neurons to be connected and as a result the network

becomes very complex. As the size of the datasets becomes larger, more limitations

are encountered.

In order to overcome this problem, Convolutional Neural Networks (CNNs) were

created. Figure 4.3 shows the typical CNN architecture. Unlike Neural Networks,

they are sparsely connected on the input layer. CNNs are inspired by the cat's visual

cortex which contains an arrangement of cells that are sensitive to small regions of

space. These regions overlap to cover the entire visual �eld. The cells act as �lters that

process input images and are later passed to subsequent layers. The most commonly

used layers are Convolutional, Pooling, Recti�ed Linear Units, Fully Connected and

Loss layer.

17

Convolutional layer

The convolutional layer consists of learnable �lters. These �lter cover small regions

of space but they extend through the full depth of the input volume, Figure 4.2. Each

�lter represents a feature of interest and they are translational invariant.

Pooling layer

The pooling layer is where a subsampling occurs in order to reduce the �lter

sensitivity to variation and noise. Another reason that subsampling is used, is to

reduce the parameters and the computations. Subsampling is usually performed

between two convolutional layers.

ReLU layer

Recti�ed Linear Units (ReLU) layer deals with how the signal travels from one

layer to another. There are multiple activation functions, the most commonly used

is ReLU f(x)=max{0,x} because of its fast training time. After applying several

convolutional and subsampling layers, another layer is applied.

Fully Connected layer

In fully connected layer, neurons of preceding layers are connected to all neurons

in the following layer similarly to neural networks.

Loss layer

The Loss layer is usually the last layer of the network. During training it speci�es

the penalization between the predicted and the true values. There are several loss

functions such as Softmax, Sigmoid, cross-entropy and Euclidean loss function.

18

Fig. 4.3. Typical CNN architecture [44].

19

4.1.2 RNN-LSTM

A recurrent neural network (RNN) is a subset of neural networks where a connec-

tion between units form a directed cycle. Given an input sequence x =
(
x0, ..., xT−1

)
,

we can derive the hidden states of a recurrent layer h =
(
h0, ..., hT−1

)
as well as the

output of a single hidden layer y =
(
y0, ..., yT−1

)
as follows:

ht = H
(
Wxhx

t +Whhh
t−1 + bh

)
yt = O

(
Whoh

t + b0
)

where Wxh, Whh and Who denote the weights of the connections between the layers

x and h, h and h and h and o respectively. H and O are the activation functions

at the hidden and output layer and bh and bo are two bias vectors. An important

limitation of Convolutional Neural Networks is that their input and output is a �xed

sized vector, which means that inputs and outputs are independent from each other.

The amount of computational steps is also �xed (number of layers in the model).

What makes a RNN more interesting is that it operates on sequences of vectors.

In other words, RNNs have a memory that keeps information about what has been

calculated so far. Although in theory we can use long sequences, practically there

are limitations to the number of steps we can look back to. In order to train a RNN,

we use a backpropagation algorithm. Since all time steps share the parameters, the

gradient depends on calculations of the current time step as well as on preceding

time steps. In practice, di�culties are very often encountered when a RNN is trained

(especially deep RNN) when activation functions such as sigmoid and tanh are used

due to the vanishing gradient problem.

In order to solve this problem, the Long-Short Term Memory (LSTM) architecture

was introduced in 1997 by Hochreiter and Schmidhuber [45]. LSTMs are designed to

deal with the error blowing up problem. By default, LSTMs remember information

for long time periods. The di�erence between standard RNNs and LSTMs is that the

sequence of repeating modules that we encounter in RNNs has a di�erent structure

in the case of LSTMs. It contains a memory cell and three multiplicative units where

20

Fig. 4.4. A simple LSTM block with only input, output, and forget
gates. LSTM blocks may have more gates [46].

information of the temporal sequence is stored, written to and read from. Figure 4.4

shows the activation memory cell c and the three multiplicative units, where i is the

input gate, f is the forget gate and o is the output gate. The activation of c and the

gates are given as follows:

it = σ
(
Wxix

t +Whih
t−1 +Wcic

t−1 + bi
)

f t = σ
(
Wxfx

t +Whfh
t−1 +Wcfc

t−1 + bf
)

ct = f tct−1 + ittanh
(
Wxcx

t +Whch
t−1 + bc

)
ot = σ

(
Wxox

t +Whoh
t−1 +Wcoc

t + bo
)

ht = ottanh
(
ct
)

where W represents the connection weights between two units and σ is the sigmoid

function.

4.1.3 TensorFlow and Inception in TensorFlow

TensorFlow is the second generation machine learning tool developed by Google

[47]. DistBelief [48], Google's �rst generation machine learning tool, was targeted to

neural networks and was di�cult to con�gure. For this reason, in November 2015

Google released TensorFlow which is easier to use, more general and in many cases

much faster than DistBelief. A program using TensorFlow can be used in a variety of

21

systems, from mobile devices to GPU cards. It has been used for research as well as

for production in many di�erent areas of computer science such as computer vision,

speech recognition, natural language processing, etc. It is also used by Google's prod-

ucts such as Gmail, Google Photos and Google search. The numerical computations

use data �ow (directed) graphs, where each node represents mathematical operations

and the values that �ow along the edges represent multidimensional data arrays called

tensors. There also exist edges in the graph, where no data �ow along them, called

control dependencies.

Inception [49], is a deep convolutional neural network architecture, Figure 4.5.

It is based on [50] where micro neural networks with more complex structures were

built to compress the data in the receptive �eld in an attempt to increase the rep-

resentational power of neural networks. By stacking these micro neural networks, a

deep neural network can be implemented. In [49], a 22 layers deep network called

GoogLeNet was used for detection and classi�cation in the ImageNet Large-Scale Vi-

sual Recognition Challenge 2014 (ILSVRC14) with great results. In this method, the

computer resources inside the network are used in an improved way, and as a result,

the depth and width of the network are increased while the computation time is kept

constant. A Hebbian principle and multi-scale processing were used for the architec-

tural decisions in order to optimize quality. In [51], further improvements were made.

The design principles that seem to improve the model include avoiding bottlenecks,

increasing the activations per tile in order to train the networks faster, using spatial

aggregation over lower dimensional embeddings and having a balance between the

width and the depth of the network. Deviations from these principles seem to give

worse results, but this does not mean that they straightforwardly improve the quality

of the networks when used.

22

Fig. 4.5. Schematic diagram of Inception-v3 [52]

23

4.1.4 DarkNet YOLO

Human vision allows us to interpret an image instantaneously. We identify the

objects in an image and the interactions between them by looking at the image only

once. This is also the idea behind the YOLO (You Only Look Once) system for object

detection [53]. The goal is to develop an algorithm as fast and accurate as human

vision in order to process real-time scene information. To perform detection, current

detection systems alter the use of classi�ers, by evaluating a classi�er for an object

in various locations and scales in an image. R-CNNs for example, propose several

bounding boxes and use a classi�er on them. Then, the bounding box is re�ned, the

duplicate detections are eliminated and the bounding box is given a new score based

on the other objects in the image [54]. These procedures are slow and di�cult to

optimize since every component is trained separately. In this work, object detection

is considered a single regression problem (from pixels to bounding box coordinates to

class probabilities). A single neural network is used to predict bounding boxes and the

associated class probabilities simultaneously (in one evaluation), Figure 4.6-4.7. This

way you only look once to predict the objects and their position in an image, thus,

the detection performance is optimized. YOLO can process 45 frames per second

while Fast YOLO processes 155 frames per second.

4.2 Our approach

RCN can be divided in three steps. The �rst step is human detection and extrac-

tion of the detected areas. YOLO, a powerful and fast R- CNN implementation is

used for that purpose, which is way faster than Faster R-CNN with similar results

concerning the accuracy. It is trained with PASCAL VOC12 dataset, see Figure 4.8-

4.9. The main problem that human detection algorithms encounter is humans can be

partially occluded or out of view.

The next step of our method is feature extraction. For feature extraction, we

use Inception v3 with a pre-trained model (on ImageNet dataset). Although we use

24

Fig. 4.6. A single NN is applied to the image. This network divides
the image into regions and predicts bounding boxes and probabilities
for each region. These bounding boxes are weighted by the predicted
probabilities [55].

Fig. 4.7. Results after thresholding the detections by some value to
only see high scoring detections [55].

25

Fig. 4.8. Examples of human detection using YOLO algorithm from
Hollywood2 dataset. We can observe that YOLO fails to detect the
person in the �rst image. It successfully performs human detection in
the other two images.

Fig. 4.9. Examples of human detection using YOLO algorithm from
HMDB51 dataset. We can observe that YOLO fails to detect the
person in the �rst image. It successfully performs human detection in
the other two images.

26

many data, they are still not su�cient to train a CNN from scratch as a result we

transfer the learning (weights) from the Inception model to ours. The dimension of

the Inception model, and hence for our model, is 2048 features for each frame. In

our approach, we use the advantages of RNN in order to handle sequential data. We

�t our RNN model with the sequenced features that we extracted using Inception

and we perform classi�cation with softmax regression. This method combines the

strengths of CNNs in visual recognition problems, and RNN in time-varying inputs

and outputs. RCN processes the variable-length visual input with a CNN, whose

outputs are fed into a stack of recurrent sequence models. That produce a variable-

length prediction with shared weights across time, resulting in a representation that

scales to long sequences. The method is complementary, CNN are considered as deep

in space while RNN deep in time. The architecture of the RCN model is as follows:

we pass each visual input xt which is a frame through a feature transformation ϕV

with aprameters V (Inception), to produce a 2048 long vector representation for each

frame, ϕV (xt). Then the outputs of ϕV are passed into a RNN. The RNN model has

parameters W . The input xt and a previous time step hidden state ht−1 are mapped

to an output zt and an updated hidden ht. Thus, we run the inference sequentially,

we �rst compute h1 = fW (x1, h0), then h2 = fW (x2, h1), etc., where h0 = 0. In order

to predict that a distribution P (yt)over outcomes yt ∈ C at time t, where C is the set

of outcomes, the outputs ztof the RNN are passed through a linear prediction layer

ŷt = Wzzt + bz, Wz and bz are learned parameters. The predicted distribution P (yt)

is computed by taking the softmax of ŷt:

P (yt = c) = softmax (ŷt) =
exp (ŷt,c)∑

c′∈C exp (ŷt,c′)
.

The parameters of softmax are optimize using Adam Optimizer [56]. Adam Optimizer

is an algorithm for �rst-order-gradient based optimization of stochastic functions,

based on adaptive estimates of lower-order moments. The algorithm is e�cient, does

not require a lot of memory and is invariant to diagonal rescaling of the gradient.

The parameters have intuitive interpretation, thus, there is no reason for tuning. In

27

Fig. 4.10. Architecture of our model, RCN. It accepts as input a se-
quence of raw images, it performs human detection with YOLO and
extracts features from bounding boxes using Inception v3. It per-
forms sequence learning using LSTM-RNN. Y is the output, classi�ed
images.

our model, we only set the learning rate and the initial forget bias parameter, which

is later handled by the algorithm. See Figure 4.10 for the architecture of our model.

28

5. EXPERIMENTS-RESULTS

5.1 Datasets

We brie�y describe the two datasets that we used in our experiments. These

datasets are among the most challenging datasets in the literature.

Hollywood2

It has been collected [1] from 69 di�erent hollywood movies. The actions that are

included are twelve. It contains 1707 videos split into a training set of 823 videos and

a test set of 884 videos. Train and test videos are split on the movies, such that a

movie can only appear on either the train or the test set. The dataset includes the

actions shown in Table 5.1.

The movies that they used for extracting the clips are the following: Training

movies: American Beauty, As Good as It Gets, Being John Malkovich, The Big

Lebowski, Bruce Almighty The Butter�y E�ect, Capote, Casablanca, Charade, Chas-

ing Amy, The Cider House Rules, Clerks, Crash, Double Indemnity, Forrest Gump,

The Godfather, The Graduate, The Hudsucker Proxy, Jackie Brown, Jay and Silent

Bob Strike Back, Kids, Legally Blonde, Light Sleeper, Little Miss Sunshine, Living in

Oblivion, Lone Star, Men in Black, The Naked City, Pirates of the Caribbean: Dead

Man's Chest, Psycho, Quills, Rear Window, Fight Club.

Test movies: Big Fish, Bringing Out The Dead, The Crying Game, Dead Poets

Society, Erin Brockovich, Fantastic Four, Fargo, Fear and Loathing in Las Vegas, Five

Easy Pieces, Gandhi, Gang Related, Get Shorty, The Grapes of Wrath, The Hustler, I

Am Sam, Independence Day, Indiana Jones and The Last Crusade, It Happened One

Night, It's a Wonderful Life, LA Con�dential, The Lord of the Rings: The Fellowship

29

Table 5.1.
The 12 classes and the number of train and test samples of the Hol-
lywood 2 dataset.

Training subset Test subset

AnswerPhone 66 64

DriveCar 85 102

Eat 40 33

FightPerson 54 70

GetOutCar 51 57

HandShake 32 45

HugPerson 64 66

Kiss 114 103

Run 135 141

SitDown 104 108

SitUp 24 37

StandUp 132 146

All Samples 823 884

30

of the Ring, Lost Highway, The Lost Weekend, Midnight Run, Misery, Mission to

Mars, Moonstruck, Mumford, The Night of the Hunter, Ninotchka, O Brother Where

Art Thou, The Pianist, The Princess Bride, Pulp Fiction, Raising Arizona, Reservoir

Dogs.

HMDB51

The data set is collected from movies and YouTube videos. There are 51 di�erent

actions in total of 6766 video sequences. There are three train-test splits [2]. For

every class and split there are 70 videos for training and 30 videos for testing.

The actions categories can be grouped in �ve types:

General facial actions: smile, laugh, chew, talk. Facial actions with object manip-

ulation: smoke, eat, drink. General body movements: cartwheel, clap hands, climb,

climb stairs, dive, fall on the �oor, backhand �ip, handstand, jump, pull up, push

up, run, sit down, sit up, somersault, stand up, turn, walk, wave. Body movements

with object interaction: brush hair, catch, draw sword, dribble, golf, hit something,

kick ball, pick, pour, push something, ride bike, ride horse, shoot ball, shoot bow,

shoot gun, swing baseball bat, sword exercise, throw. Body movements for human

interaction: fencing, hug, kick someone, kiss, punch, shake hands, sword �ght.

5.2 Results

Both of the algorithms are implemented in Python. We use several python tools:

OpenCV, Anaconda, numpy, scikit-learn, etc.. We run YOLO on bash terminal and

we use the python wrapper for TensorFlow. We perform the experiments on a OSX

with an i7 processor and 8Gb RAM. Although we do not run RCN with the help of a

GPU, the time performance is still pretty good. The most time consuming process is

YOLO algorithm. It takes about 5 sec to detect a human in one frame. The feature

extraction with Inception v3 takes less than an hour and the training of the RNN

takes from a couple of hours to a couple of days depending on the con�guration. The

31

Table 5.2.
Accuracy of Dense Trajectories and RCN on Hollywood 2 dataset.

Hollywood2 HMDB51

Dense Trajectories 59.2 50.3

RCN 52.1 48.7

Table 5.3.
Accurancy of each descriptor on Dense Trajectories.

Hollywood2 HMDB51

HOG 43.1 35.7

HOF 54.8 43.9

MBH 56.5 48.1

dense trajectories implementation is in general faster. For each dataset we follow the

instructions of the authors to perform evaluation of our models [1, 2].

The accuracy of the two methods are comparable, none of the two outperforms

the other by far. As we can observe in table 1, dense trajectories implementation

has the best accuracy in both datasets. RCN outruns the performance of Dense

Trajectories in HMD51 dataset when only one descriptor is used. In Hollywood2,

RCN outruns Dense Trajectories with HOG descriptors but both HOF and MBH

descriptors outperform RCN.

Table 2 compares our models with state of the art methods. The highest accuracy

is achieved by Long-term Temporal Convolutions. They perform a 67.2 % accuracy in

HMDB51 and this is the best result to our knowledge. Wang et.al combines the dense

trajectories with pool trajectories exctracted by CNN and outperform the accuracy

of the simple dense trajectories implementation.

As we can see from the results, the performance of RCN in the two datasets

has smaller variance than Dense Trajectories (9 points for Dense Trajectories, 3 for

32

Table 5.4.
Comparison between state of the art methods and our models on both datasets.

Hollywood2 HMDB51

DIT 64.3 57.2

RCN 52.1 48.7

Dense Trajectories 59.2 50.3

LTC - 67.2

Pool Trajectories - 65.9

CNN �ow - 59

33

RCN). Unfortunately, we do not know a NN method that has been evaluated with

the Hollywood 2.Dense trajectories have better performance in Hollywood2 dataset

(59.2% over 50.3% for HMDB51).

We also experimented on combinations of the two methods. For example, we use

features we extract from Inception for 15 frames for creating feature encoders using

the method we described for dense trajectories, �sher vectors. First, we use PCA

for reducing the features from 2048 to 512. Then, we �t a GMM with K=256 with

our training examples and calculate the �sher vector for each video. After that, we

applied again PCA to reduce the dimensionality from more than 100.000 features to

200. We train a linear SVM with C=100 with accuracy around 28%. We observe that

feature encoding methods perform very poorly, we strongly believe that is the result

of ignoring temporal characteristics.

As we can see in table 3, the performance of DIT is better than ours although

some of the same algorithms are implemented. We ascribe this result to the fact

that we are running our method for less frames than in the original paper and we

also used PCA after the concatenation of the descriptors. The reason we decided to

use 15 frames is to make our algorithm faster and also to perform a more accurate

comparison for the two methods we implemented.

We run the RCN with several di�erent con�gurations. For instance, 1-3 LSTM

cells, 128-1024 features in hidden layers, learning rate 0.0001-0.001, di�erent optimiza-

tion algorithms than Adam Optimizer such as gradient descent. The best performance

was achieved with 2 LSTM cells, 256 num of features in hidden layers and learning

rate 0.001. We would also like to mention the severe over�tting problem. In many

con�gurations, after a few iterations the model seems to be trained well. The loss is

small and the accuracy for each batch is near 100%, nevertheless the performance in

the test data is poor (30-40% in Hollywood 2).

34

5.3 Comparison

In the next paragraphs we will show the advantages and disadvantages of each

method for action recognition.

Dense Trajectories are easy to implement. There are many libraries such as

OpenCV, where the majority of the algorithms are already implemented. It is gener-

ally a fast method and it does not require a lot of samples for training. For example,

Hollywood 2 dataset has only 800 video clips. It takes into consideration both mo-

tion and spatial features. On the other hand, there is not much left to do in order to

improve the results of dense trajectories. The best accuracy using this method was

achieved in 2013 and no improvements were made since.

RCN still has room for improvement. The methods used in RCN are either new

or recently reintroduced (NN, RNN). Thus, further improvements are expected the

following years. Furthermore, RCN takes into consideration both motion and spatial

features.It is also more suitable (than other NN methods) for videos since it takes

into account the image sequences. The disadvantages of RCN include the big amount

of data that is required. For instance, the 800 training samples in Hollywood2 are

not su�cient. As a result, over�tting problems are often encountered. For object

detection problems, models use more than 1.000.000 images. Also, the parameters are

hard to estimate. A small change may cause unpredictable behavior. Documentation

is also a principal issue. TensorFlow is a new library, therefore documentation is

still at early stages. Google recently opened its source and therefore we expect that

documentation will be improved. Finally, a disadvantage of major importance is the

computational time. A powerful GPU (CUDA) is required, if not training might take

days or even weeks.

35

6. CONCLUSIONS-FUTURE WORK

This thesis presents two approaches for human action recognition. The �rst approach

is a supervised method for training local features such as HOGs, SURF, etc. For the

second approach, we introduce a new model, RCN, which combines three state of the

art algorithms namely YOLO, Inception v3 and RNN.

We demonstrate the advantages and disadvantages of each model. The main ad-

vantage of supervised learning in local features is the simple implementation, the

capability of learning with few data and the low computational cost. But few ame-

liorations can be made. The main advantage of deep learning methods is the room

for improvement with the main disadvantage being the high computational cost. The

great amount of data needed causes many problems like extreme over�tting.

The literature review indicates that much research has been devoted to recognition

of human activities from videos. This claim certainly holds in cases where local

features and space-time volume is used. Deep learning algorithms that use appearance

regional or time regional representations increased and recently, new approaches, that

combine the two representations, have been developed.

The choice of data play a major role in the action recognition problem. Most

popular test datasets are still simple, constrained, and created in structured environ-

ments, therefore, most action recognition algorithms can achieve high accuracy. More

realistic datasets like Hollywood2 and HMDB 51 have proved to be very challenging

and the reported accuracy is still low, which leaves room for further improvements.

The increment of applications in di�erent �elds will emerge new domain speci�c tech-

niques and cross domain frameworks that will improve these results.

36

Future work

As we mentioned above, there is plenty of room for improvements for the RCN

method and probably enough space to improve dense trajectories. Initially, the human

detector can be improved with the help of faster R-CNN method. Although the

computational time will dramatically increase, faster R-CNN seem to have better

results regarding the accuracy. As a consequence, the Inception model will improve

and more representative features will be extracted. Another variation of our model

that will, potentially, further improve the results, is to train the detector (faster R-

CNN, YOLO) to detect not only humans but objects that are representative of a class.

Detection of phones is most likely to improve the prediction in the �answer phone�

class and detection of swords will improve the prediction in the �sword� class since it

is rather unlikely that a sword will exist in an image of another class. In addition,

although we use sequential learning, we could also use Inception for extracting, not

only appearance region representations, but also time region representation with the

help of a state of the art optical �ow. In [35], an algorithm called Epic Flow is used,

showing the importance of a good optical �ow. Lastly, RNN is sensitive to variations

in parameters. As we mentioned above, even the smallest change of a parameter, such

as the number of features for each LSTM, might dramatically change the behavior of

the model. Sampling more than 15 frames from each video, might further improve the

results of our model since the outliers will be a much smaller percentage of the video

representation. Dense trajectories could be improved by using a better optical �ow

as the one mentioned above, a more suitable algorithm for dimensionality reduction

and a more sophisticated method for feature encoding. Finally, there is a plethora

of classi�cation algorithms that can be used, kernel SVM, Random Forest, Logistic

Regression, etc..

REFERENCES

37

REFERENCES

[1] M. Marszalek, I. Laptev, and C. Schmid, �Actions in context,� in 2009 IEEE
Computer Society Conference on Computer Vision and Pattern Recognition
(CVPR 2009), 20-25 June 2009, Miami, Florida, USA, 2009, pp. 2929�2936.

[2] H. Kuehne, H. Jhuang, E. Garrote, T. Poggio, and T. Serre, �Hmdb: a large
video database for human motion recognition,� in Proceedings of the Interna-
tional Conference on Computer Vision (ICCV), 2011.

[3] A. M. Elgammal, D. Harwood, and L. S. Davis, �Non-parametric model for back-
ground subtraction,� in Proceedings of the 6th European Conference on Computer
Vision-Part II, ser. ECCV '00. Springer-Verlag, 2000, pp. 751�767.

[4] T. Ko, S. Soatto, and D. Estrin, �Background subtraction with distributions,� in
Proceedings of the European Conference on Computer Vision, 2008.

[5] N. Dalal and B. Triggs, �Histograms of oriented gradients for human detection,�
in Proceedings of the 2005 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR'05) - Volume 1 - Volume 01, ser. CVPR
'05. IEEE Computer Society, 2005, pp. 886�893.

[6] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan, �Object
detection with discriminatively trained part-based models,� IEEE Trans. Pattern
Anal. Mach. Intell., vol. 32, no. 9, pp. 1627�1645, sep 2010.

[7] P. Dollar, S. Belongie, and P. Perona, �The fastest pedestrian detector in the
west,� in Proc. BMVC, 2010, pp. 68.1�11.

[8] M. Kass, A. Witkin, and D. Terzopoulos, �Snakes: Active contour models,� IN-
TERNATIONAL JOURNAL OF COMPUTER VISION, vol. 1, no. 4, pp. 321�
331, 1988.

[9] G. Sundaramoorthi, J. D. Jackson, A. J. Yezzi, and A. Mennucci, �Tracking with
sobolev active contours,� in IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR), 2006, pp. 674�680.

[10] A. D. Wilson and A. F. Bobick, �Parametric hidden markov models for gesture
recognition.� IEEE Trans. Pattern Anal. Mach. Intell., vol. 21, no. 9, pp. 884�
900, 1999.

[11] P. P. Yang Song, Xiaolin Feng, �Towards detection of human motion,� IEEE Con-
ference on Computer Vision and Pattern Recognition, vol. 1, pp. 810�817vol.1,
2000.

[12] N. Ikizler and D. Forsyth, �Searching video for complex activities with �nite
state models,� IEEE Conf. on Computer Vision and Pattern Recognition, pp.
1�8, 2007.

38

[13] K. Prabhakar, S. M. Oh, P. Wang, G. D. Abowd, and J. M. Rehg, �Temporal
causality for the analysis of visual events.� in CVPR. IEEE Computer Society,
2010, pp. 1967�1974.

[14] D. Comaniciu and P. Meer, �Mean shift: A robust approach toward feature
space analysis,� IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 24, pp. 603�619, 2002.

[15] A. Klaser, M. Marszalek, and C. Schmid, �A spatio-temporal descriptor based
on 3d-gradients,� in In BMVC '08, 2008.

[16] H. Wang and C. Schmid, �Action recognition with improved trajectories,� in
ICCV 2013 IEEE International Conference on Computer Vision. Sydney, Aus-
tralia: IEEE, Dec 2013, pp. 3551�3558.

[17] H. Wang, A. Klaser, C. Schmid, and C.-L. Liu, �Dense trajectories and motion
boundary descriptors for action recognition,� International Journal of Computer
Vision, vol. 103, no. 1, pp. 60�79, May 2013.

[18] P. Dollar, V. Rabaud, G. Cottrell, and S. Belongie, �Behavior recognition via
sparse spatio-temporal features,� in Proceedings of the 14th International Con-
ference on Computer Communications and Networks, ser. ICCCN '05. IEEE
Computer Society, 2005, pp. 65�72.

[19] M. Bregonzio, S. Gong, and T. Xiang, �Recognising action as clouds of space-time
interest points,� in CVPR, 2009.

[20] P. Scovanner, S. Ali, and M. Shah, �A 3-dimensional sift descriptor and its ap-
plication to action recognition,� in Proceedings of the 15th ACM International
Conference on Multimedia, ser. MM '07. New York, NY, USA: ACM, 2007, pp.
357�360.

[21] G. Willems, T. Tuytelaars, and L. Gool, �An e�cient dense and scale-invariant
spatio-temporal interest point detector,� in Proceedings of the 10th European
Conference on Computer Vision: Part II, ser. ECCV '08. Springer-Verlag,
2008, pp. 650�663.

[22] R. Messing, C. Pal, and H. Kautz, �Activity recognition using the velocity his-
tories of tracked keypoints,� in ICCV '09: Proceedings of the Twelfth IEEE
International Conference on Computer Vision. Washington, DC, USA: IEEE
Computer Society, 2009.

[23] P. K. Matikainen, M. Hebert, and R. Sukthankar, �Trajectons: Action recogni-
tion through the motion analysis of tracked features,� in Workshop on Video-
Oriented Object and Event Classi�cation, ICCV 2009, September 2009.

[24] J. Sun, X. Wu, S. Yan, L. F. Cheong, T.-S. Chua, and J. Li, �Hierarchical spatio-
temporal context modeling for action recognition.� in CVPR. IEEE Computer
Society, 2009, pp. 2004�2011.

[25] K. Simonyan and A. Zisserman, �Two-stream convolutional networks for action
recognition in videos,� in Advances in Neural Information Processing Systems 27,
Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger,
Eds. Curran Associates, Inc., 2014, pp. 568�576.

39

[26] D. Tran, L. D. Bourdev, R. Fergus, L. Torresani, and M. Paluri, �Generic features
for video analysis,� CoRR, 2014.

[27] J. Donahue, L. A. Hendricks, S. Guadarrama, M. Rohrbach, S. Venugopalan,
K. Saenko, and T. Darrell, �Long-term recurrent convolutional networks for vi-
sual recognition and description,� CoRR, 2014.

[28] S. Ji, W. Xu, M. Yang, and K. Yu, �3d convolutional neural networks for human
action recognition,� IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, pp. 221�
231, jan 2013.

[29] G. W. Taylor, R. Fergus, Y. LeCun, and C. Bregler, �Convolutional learning of
spatio-temporal features,� in Proceedings of the 11th European Conference on
Computer Vision: Part VI, ser. ECCV'10. Berlin, Heidelberg: Springer-Verlag,
2010, pp. 140�153.

[30] L. Wang, Y. Qiao, and X. Tang, �Action recognition with trajectory-pooled deep-
convolutional descriptors,� in CVPR, 2015, pp. 4305�4314.

[31] M. Baccouche, F. Mamalet, C. Wolf, C. Garcia, and A. Baskurt, �Sequential deep
learning for human action recognition,� in Proceedings of the Second International
Conference on Human Behavior Unterstanding, ser. HBU'11. Berlin, Heidelberg:
Springer-Verlag, 2011, pp. 29�39.

[32] X. Peng and C. Schmid, �Multi-region two-stream r-cnn for action detection,� in
ECCV 2016 - European Conference on Computer Vision, Amsterdam, Nether-
lands, Oct 2016.

[33] A. Grushin, D. Monner, J. A. Reggia, and A. Mishra, �Robust human action
recognition via long short-term memory.� in IJCNN. IEEE, 2013, pp. 1�8.

[34] G. Lefebvre, S. Berlemont, F. Mamalet, and C. Garcia, �Blstm-rnn based 3d
gesture classi�cation,� in International Conference on Arti�cial Neural Networks
(ICANN 2013), sep 2013, pp. 381�388.

[35] G. Varol, I. Laptev, and C. Schmid, �Long-term temporal convolutions for action
recognition,� CoRR, 2016.

[36] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and L. Fei-Fei,
�Large-scale video classi�cation with convolutional neural networks,� in Proceed-
ings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition,
ser. CVPR '14. IEEE Computer Society, 2014, pp. 1725�1732.

[37] Y. Du, W. Wang, and L. Wang, �Hierarchical recurrent neural network for skele-
ton based action recognition,� in The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), June 2015.

[38] G. Farneback, �Two-frame motion estimation based on polynomial expansion,�
in Proceedings of the 13th Scandinavian Conference on Image Analysis, ser.
SCIA'03. Springer-Verlag, 2003, pp. 363�370.

[39] M. A. Fischler and R. C. Bolles, �Random sample consensus: A paradigm for
model �tting with applications to image analysis and automated cartography,�
Commun. ACM, vol. 24, no. 6, pp. 381�395, jun 1981.

40

[40] F. Perronnin, J. Sanchez, and T. Mensink, �Improving the �sher kernel for large-
scale image classi�cation,� in Proceedings of the 11th European Conference on
Computer Vision: Part IV, ser. ECCV'10. Springer-Verlag, 2010, pp. 143�156.

[41] Glosser.ca. (2013) Colored neural network. [Online]. Available: https:
//commons.wikimedia.org/wiki/File:Colored_neural_network.svg

[42] Aphex34. (2015) Conv layers. [Online]. Available: https://commons.wikimedia.
org/wiki/File:Conv_layers.png

[43] Aphex34b. (2015) Conv layer. [Online]. Available: https://commons.wikimedia.
org/wiki/File:Conv_layer.png

[44] Aphex34c. (2015) Typical cnn. [Online]. Available: https://commons.wikimedia.
org/wiki/File:Typical_cnn.png

[45] S. Hochreiter and J. Schmidhuber, �Long short term memory,� Neural Comput.,
vol. 9, no. 8, pp. 1735�1780, nov 1997.

[46] BiObserver. (2015) Lstm. [Online]. Available: https://commons.wikimedia.org/
wiki/File:Long_Short_Term_Memory.png

[47] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado,
A. Davis, J. Dean, M. Devin, S. Ghemawat, I. J. Goodfellow, A. Harp, G. Irving,
M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mane,
R. Monga, S. Moore, D. G. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner,
I. Sutskever, K. Talwar, P. A. Tucker, V. Vanhoucke, V. Vasudevan, F. B. Viegas,
O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, �Ten-
sor�ow: Large-scale machine learning on heterogeneous distributed systems,�
CoRR, 2016.

[48] J. Dean, G. S. Corrado, R. Monga, K. Chen, M. Devin, Q. V. Le, M. Z. Mao,
M. Ranzato, A. Senior, P. Tucker, K. Yang, and A. Y. Ng, �Large scale distributed
deep networks,� in NIPS, 2012.

[49] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, �Going deeper with convolutions,� in Com-
puter Vision and Pattern Recognition (CVPR), 2015.

[50] M. Lin, Q. Chen, and S. Yan, �Network in network,� CoRR, 2013.

[51] C. Szegedy, V. Vanhoucke, S. Io�e, J. Shlens, and Z. Wojna, �Rethinking the
inception architecture for computer vision,� CoRR, 2015.

[52] Google. (2015) Inception. [Online]. Available: https://research.googleblog.com/
2016/03/train-your-own-image-classi�er-with.html

[53] J. Redmon, S. K. Divvala, R. B. Girshick, and A. Farhadi, �You only look once:
Uni�ed, real-time object detection,� CoRR, 2015.

[54] R. B. Girshick, J. Donahue, T. Darrell, and J. Malik, �Rich feature hierarchies
for accurate object detection and semantic segmentation,� CoRR, 2013.

[55] J. Redmon. (2016) Yolo. [Online]. Available: http://pjreddie.com/darknet/yolo/

41

[56] D. P. Kingma and J. Ba, �Adam: Method for stochastic optimization,� CoRR,
2014.

[57] A. D. Wilson and A. F. Bobick, �Hidden markov models.� World Scienti�c Pub-
lishing Co., Inc., 2002, ch. Hidden Markov Models for Modeling and Recognizing
Gesture Under Variation, pp. 123�160.

	form30
	KRaptis_thesis_v3

