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NOMENCLATURE

B-scan In an OCT image volume, one high-resolution image. Image vol-

umes used for the purposes of this thesis each consisted of 61

B-scans.

A-scan In an OCT image volume, one column of voxels. Each B-scan

consists of many A-scans.
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ABSTRACT

Hammes, Nathan M. M.S., Purdue University, May 2015. Segmentation of Human
Retinal Layers from Optical Coherence Tomography Scans. Major Professor: Gavriil
Tsechpenakis.

An algorithm was developed in to efficiently segment the inner-limiting mem-

brane (ILM) and retinal pigmented epithelium (RPE) from spectral domain-optical

coherence tomography image volumes. A deformable model framework is described

and implemented in which free-form deformations (FFD) are used to direct two de-

formable sheets to the two high-contrast layers of interest. Improved accuracy in

determining retinal thickness (the distance between the ILM and the RPE) is demon-

strated against the commercial state-of-the-art Spectralis OCT native segmentation

software. A novel adaptation of the highest confidence first (HCF) algorithm is uti-

lized to improve upon the initial results. The proposed adaptation of HCF provides

distance-based clique potentials and an efficient solution to layer-based segmentation,

reducing a 3D problem to 2D inference.
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1 INTRODUCTION

Glaucoma is one of the leading causes of significant vision loss and blindness through-

out the world [1, 2]. The disease is characteristically defined as a chronic optic neu-

ropathy that results in the loss of retinal ganglion cells and their axons (i.e. the

retinal nerve fiber layer; RNFL), with increased intraocular pressure being the pri-

mary risk factor. It is the cumulative loss of these retinal ganglion cells that leads

to permanent visual field defects and eventual blindness. Thus, the goal of clinicians

is to detect glaucoma as early as possible in the disease process in order to preserve

visual function.

New advances in technology have resulted in the development of quicker, high-

definition spectral-domain optical coherence tomography (SD-OCT) imaging with a

retinal image resolution of 3.9µm [3]. Glaucoma analysis software has been developed

to examine for glaucomatous retinal defects by identifying macular retinal thickness

and asymmetry between the superior and inferior hemifields [4]. Total retinal thick-

ness is calculated as the distance between the inner-limiting membrane (ILM), lying

on the interface between the dark vitreous environment and the bright RNFL, and

the highly reflective retinal pigmented epithelium (RPE), the last clear boundary

between the retina and the vessels of the choroid (Fig. 1.1(a)).

1.1 Related Work

Since the advent of SD-OCT, various automatic segmentation algorithms have

been employed to determine the layers of the human retina and the correspond-

ing thicknesses between layers. A recent review article by DeBuc categorizes these

methods into classification, deformable models, global optimization using graph cuts,

and model-fitting and registration methods [5]. Supervised classification methods,
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especially support vector machine methods, are effective in obtaining desired bound-

aries [6]. For analysis of 3D image stacks, however, the computational complexity of

machine-learning-based approaches is beyond the maximum allowable segmentation

time in clinical settings. Model-fitting and registration methods use a predetermined

shape to fit to a given image feature. If instead a match must be found for an entire

image, an atlas is warped to achieve the mapping. These methods are computation-

ally efficient, but lack robustness when dealing with shape variations beyond their

predetermined model [7]. Lastly global optimization methods mainly arise from the

utilization of the max-flow min-cut algorithm commonly paired with graph models [8].

Additionally, segmentation based upon graph cuts is a fast and robust method for

achieving many-layer segmentation in this scenario. See the preliminary paper by Li

and Wu and the subsequent application of graph theory to layered segmentation of

retinal scans by Garvin et al. [9, 10].

The history of deformable models, the central focus of the model employed by the

author, points to a common source. Kass et al., in 1988, published Snakes: Active

Contour Models [11]. In this paper, an entity with both an internal and external

energy was described. These two energies compete: the internal energy pressures

the object to maintain a simplistic shape, while the external (data) energy deforms

the snake to match an object of interest - an edge, for example. When the overall

energy function is minimized, the model is at an optimal configuration for the given

combination of internal and external energies:

E = Eint + Eext (1.1)

In the subsequent decades, the area expanded into the new ideas offered by a

model whose energy minimization could be applied to the complex task of object seg-

mentation. The task itself is similar to clustering in terms of complexity. In an image,

for example, it may be desired to segment three separate objects from background,

for a total of k = 4 clusters. Given a 100 · 100-pixel image, the total number of

possible clusterings for it is O(410000/4!). For k clusters of n points, O(kn/k!) possible
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(a) ILM

(b) RPE

Figure 1.1.: Three sequential images taken from within an SD-OCT image stack of the

human retina. Note Cartesian axes for future reference. (a) Purple lines denote the

two layers of interest to be segmented: inner-limiting membrane (ILM) above, retinal

pigmented epithelium (RPE) below. In a completely segmented image, the lines would

extend along the layers in both directions. Red arrows indicate potential difficulties

for the ILM: vitreous artifact at left presents an area of continuous contrast similar to

the ILM; topological dip at the foveola is often accompanied by a reduction in absolute

contrast, making a concrete measure of contrast impractical. Green arrows indicate

potential issues for the RPE: both the choroid (left) and inner/outer photoreceptor

segment junction provide areas of contrast similar to that of the RPE. (b) Two lightly-

colored grids demonstrate the final desired result for a 3D segmentation of the two

layers.
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clusterings exist [12]. It is easy to see why establishing a model that is able to control

its own complexity while still allowing flexibility for external information is desirable.

It simplifies the problem drastically and provides an elegant objective function to be

minimized.

1.1.1 Segmentation of OCT Scans using Deformable Models

The realm of deformable models can be divided into two classes: the implicit/geometric

models and the parametric models. Currently, only a few deformable model ap-

proaches have been presented to segment various aspects of OCT images, and all

belong to the parametric model category, including that explained in this article.

In 2005, Cabrera Fernández first demonstrated the utility of parametric deformable

models through demonstration of the accurate segmentation of the fluid-filled regions

common in the OCT’s of patients with age-related macular degeneration [13].

That same year, Mujat investigated a deformable model using splines for retinal

layer segmentation, but limited their analysis of a 3D SD-OCT image stack to se-

quential 2D analysis of the images [14]. Few details of the proposed method were

published, and it is difficult to determine the relatedness of the algorithm to that

demonstrated here due to a dearth of information. Total segmentation time for a

stack using Mujat’s method was given as 62 seconds. In 2009, Mishra et al developed

an algorithm with a basis in active contours to segment multiple layers in the re-

sults of time-domain OCT, a precursor of the significantly higher resolution SD-OCT

technology [15]. Reported segmentation time was considered “highly efficient” at five

seconds per 2D image, also known technically in the world of ophthalmology as a

B-scan.

The parametric deformable models can be subdivided into region-based and edge-

based methods. The most recent example of deformable model-based segmentation is

that of Yazdanpanah et al. In a region-based approach, standalone murine SD-OCT

B-scans were segmented for six retinal layers. Their model self-reportedly is easily
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corrupted by noise and suffers from areas of low contrast [16]. A segmentation time for

the OCT images was also not provided. These previous deformable-model approaches,

while effective with respect to a single slice of an OCT image, lose useful information

that could be harnessed if an integrated 3D volume analysis was performed. No

deformable-model approach has yet been presented that either expands to analyze

the image stack as a whole or integrates edge-based energy into its objective function.

The algorithm developed for this thesis introduces a fast dual-model deformable

spline framework designed to evolve to the ILM and RPE for the purpose of retinal

thickness calculation. This framework is designed with intrinsic smoothness con-

straints both within and between each sheet-like model, and is driven by the mini-

mization of the energy of an overall objective function, similar to most parametric

deformable models. Inclusion of a data energy term based on areas of high rela-

tive edge contrast allows for accurate segmentation despite considerable amounts of

noise. The details of this simple methodology are explained in Chapter 2. Results

are provided in Chapter 3 that demonstrate the effectiveness of this approach. See

Fig. 1.1(a) for a clear representation of the OCT image stack as it relates to this

framework. Despite more accurate segmentation with respect to commercial soft-

ware, initialization of the distance transforms associated with the data energy for

the above approach required improvement. An adaptation of the Highest Confidence

First (HCF) algorithm was recruited for this task; a brief background of the algorithm

is presented here.

1.1.2 Highest Confidence First

The HCF algorithm was originally presented by Chou et al. in 1990 as an “effi-

cient”, “predictable”, and “robust” edge-detection algorithm for 2D images using a

Markov Random Field (MRF) [17, 18]. It has since been used across the computer

vision community for various segmentation tasks including object segmentation in

both 2D and 3D images, object tracking in video sequences, and text and handwrit-
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ing identification [19–22]. HCF operates on an arbitrarily shaped MRF, a structure

generally composed of a layer of interconnected nodes. Each of these is connected

to an additional node that is a representation of a random variable at the connected

node’s location. This is the label for the connected node.

In the field of computer vision, an image is generally represented by the connected

layer of the MRF, where each pixel is a single node at that location. The labels to

be assigned to each pixel are the random variables associated with each node in

the connected layer. Specifically for the HCF algorithm, we consider a set of labels

X = x1, x2, . . . , xn to be assigned to the initially uncommitted node labels x0 of the

MRF. The specific value ωs of a random variable at site s ∈ S may be any xi in X.

The assignment of labels to all variables in the field is called a configuration

Ω, with Ω0 the initial configuration in which all ωs are set to x0. Given a set of

observations O (an image, for example), the prior distribution using clique potentials

P (Ω) =
∑

c∈C ec(Ω) over an MRF, an energy function E of the posterior probability

distribution P (Ω|O) can be derived using Bayes’s Rule:

E(Ω|O) =
∑
c∈C

ec(Ω)−
∑
s∈S

logP (Os|ωs) (1.2)

Minimization of this energy function through maximum a posteriori probability

(MAP) estimation leads to a global optimum for P (Ω|O). HCF seeks to approximate

this inference. The methods chapter explains in detail the proposed adjustments and

improvements to the HCF algorithm, and how they can be used in a 2D or 3D surface

segmentation problem to achieve accurate results.

We incorporate the HCF algorithm as an intermediate step in our approach to

determining the initialization of the data energy Edata of the abovementioned de-

formable models. After, we compare our results to those of expert graders and those

of the Spectralis to assess the validity of our approach, identical to the comparison

performed for the method without the addition of HCF. Finally, the 2 methods are

compared, showing that despite considerable accuracy for the deformable framework
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alone, HCF improves both mean and standard deviation of errors in determining ILM

location, RPE location, and overall retinal thickness.
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2 METHODS

The two open surfaces that evolve as part of the model are targeted to two retinal

layers, the ILM and the RPE, whose vertical difference in distance, the retinal thick-

ness, is the value of interest for this clinical application. Corresponding mathematical

terms will be denoted with a subscript of ILM and I or RPE and R respectively. An

initial flat surface extending through the 768 · 61 · 496 (x · y · z) stack of OCT images

will be said to occupy the x and y axes of the stack. The images themselves each lie

on the x-z plane with dimensions 768 · 496. Evolution of the surface S will propagate

through the z dimension, initially “downward” for SI and “upward” for SR (see Fig.

1.1(b)). The two models, SI and SR, are interconnected through their signed distance

transforms. These transforms can be considered to have the following conditional

breakdown:

ΦILM =


0 z ∈ SI

+ minzSI
∈SI
||z − zSI

|| z ∈ SI+

−minzSI
∈SI
||z − zSI

|| z ∈ SI−

 (2.1)

where SI represents the surface meant to deform from above to the ILM, and SI+ and

SI− are the regions above and below that evolving front, respectively. For comparison,

SR, which evolves from the bottom of the image stack, has regions SR+ below and

SR− above it on the distance volume ΦRPE. z represents all z-values in a Cartesian

coordinate system of the points C in the given image stack. C = (x, y, z).

The deformable model used for this experiment is comprised of two separate sur-

faces whose iterative action is the result of a minimization of an objective function

consisting of two energy-based terms representing topology and data.

Etotal = Edata(ΦG
ILM(z),ΦG

RPE(z)) + Etopology(Φt(z)) (2.2)
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where Edata((ΦG
ILM(z),ΦG

RPE(z)) represents the data-driven external energy,

Etopology(Φt(z)) can be characterized as the classical Eint of deformable models.

2.1 Preprocessing and Energy Initialization

As important, if not more important, than the specification of the deformable

model framework is the development of the features to which the models will evolve.

In order to facilitate accurate segmentation, specific steps were taken to preprocess

the image volumes. Each step is explained here with an accompanying figure. For

clarity, each figure uses the same image as in each of the other preprocessing steps.

These steps end with the initialization of the energies for the two deformable sheets

to minimize.

Image volumes exported from the Spectralis include, in addition to the image

stacks analyzed here, a reference brightfield image showing the location of a specific

B-scan with respect to the retina itself. Scales for each area of the exported volume

are included, along with the date and time of the examination. These much larger

image stacks are trimmed to the mentioned dimensions of 768 · 496 · 61 voxels. An

image volume with these dimensions contains a total of 61 images (again, known

as B-scans in the world of ophthalmology). These images, for an unknown reason,

contain sets of “blank” columns of voxels at the extreme ends of the B-scans. The

number of blank A-scans/columns at either end of a B-scan varies.

Unfortunately, the methods involved in this experiment require that information

be present in each column of a volume and that each B-scan be of equal length. To

allow for segmentation, a volume’s B-scans were initially trimmed from both sides by

the maximum largest set of “blank” A-scans in any image. This process reduced

the number of A-scans per B-scans by at most 100 (from the original 768) and was

improved upon in the second iteration of the algorithm to prevent such a loss of

information. Compare Fig. 2.1(a) with Fig. 2.1(b) to see the amount of cropping

this would typically entail.
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(a) (b) (c)

Figure 2.1.: Effects of initial preprocessing steps on an image in a volume. Original

image (a) is cropped to become (b) by 39 A-scans on the left and 45 on the right due

to “blank” A-scans in other images of the volume. Subfigure (b) is compressed 3-fold

to (c) for efficiency and for reduction in the overall presence of feature ambiguities.

Additional rows of pixels in (c) have been removed in this figure and subsequent ones

only to improve the clarity of the figures; these rows are used for the segmentation

algorithm. Images are to scale.

Because the retinal layers themselves at the provided B-scans’ resolution smoothly

vary, it was decided that an improvement in both segmentation accuracy and effi-

ciency could be achieved by compressing each image by a factor of three along the x

dimension, per the recommendation of Yang et al. [23] (see Fig. 2.1(c)). Following

this “A-scan reduction” technique and the subsequent segmentation, the results are

interpolated back using splines [24] (Fig. 2.2).

Spline interpolation was a natural choice, considering the deformable model frame-

work itself evolves given a carefully selected basis of spline equations. This will be

described in detail in section 2.2.

2.1.1 Contrast Determination

Starting at the top of an image stack and moving downward along its A-scans

(columns of pixels), the first instance of high negative contrast is the ILM, and the

last instance of high positive contrast is the RPE (Fig. 2.3(a,b)). Negative contrast

indicates a transition from a low-intensity area to one of higher intensity. Specifically,
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Figure 2.2.: Final segmentation result for the sample image used for the preprocessing

figures. Results are interpolated back from smaller images created using A-scan re-

duction using spline interpolation. Again, the ILM is the top layer, while the bottom

layer is the RPE.

contrast was determined for each location aj (depth j of A-scan a) by the following

equation:

(
4∑
i=0

aj−i)
2 − (

5∑
i=1

aj+i)
2 (2.3)

This equation gives a smooth representation of the vertical contrast at an area.

One can compare the artifact in the vitreous layer in Fig. 2.1 with the corresponding

contrast values in the same area in Fig. 2.3 to see why such a formulation for contrast

would be beneficial: including a few values both above and below a specific site in the

calculation for contrast eliminates the chance that an artifact will be later mistaken

for one of these surfaces of interest. High values of this contrast are useful for finding

the RPE (Fig. 2.3(b)), while low values (negative values) are used for the ILM (Fig.

2.3(a)). For each surface, points of interest are isolated from the rest. For the RPE,

only the top 25% of contrast values are kept, and only the lower 25% of values are

kept for the ILM. This results in points of interest (with “interest” quantified by

intensity) seen in Fig. 2.3(c,d).

Finally, as shown in Fig. 2.4(a,b), these points of interest are skeletonized into

initial binary estimates of surface location using the MATLAB function imregional-

max() [25]. If, at this point, distance transforms were to be made of these volumes,
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(a) (b)

(c) (d)

Figure 2.3.: First preprocessing steps in determination of ΦG
ILM(z)) (for the ILM,

left column) and ΦG
RPE(z)) for the RPE (right column), the two distance transform

volumes determined from layer-specific contrast. (a,b) Single contrast images from

each volume. (c,d) Contrast images reduced to the most relevant 25% of points for

the ILM and RPE, respectively.
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and the deformable sheets were evolved using their guidance, accuracy would be sub-

stantially compromised. For example, some small specks of high contrast are still

present below the RPE. The model will successfully pass through a small number of

these specks; however, a large amount can significantly diminish segmentation accu-

racy. The specks are removed to give Fig. 2.4(c). Additionally, it is only desired to

direct the two deformable model sheets to the contrast that represents the ILM and

the RPE, while other layers within the retina exhibit extreme contrast (positive or

negative).

One final preprocessing step is used to remove this extraneous contrast from con-

sideration. Focus will first be placed on the RPE. The steps to isolate its contrast

are as follows (and are performed per image):

1. Remove from consideration all points of interest except those that are the first

to be encountered from the bottom of the image.

2. Find all connected components (given a standard 8-voxel neighborhood).

3. Determine the size of each component.

4. Using the largest component as a starting point, grow it outward from both

ends, picking the points of highest contrast (one per A-scan) in a preselected

neighborhood above and below the current depth until the ends of the image

are reached.

The method used to select the contrast was identical for the ILM, except for choice

of neighborhood during the growth phase of this algorithm. The result of this step is

shown in Fig. 2.5. The volumes obtained are termed GILM and GRPE. The result looks

to be quite accurate already; however, the inherent smoothness of the deformable

model ameliorates some of the roughness introduced by the above four-step approach.

Unfortunately, small errors in localization of some layer-specific contrast persist when

using the above approach. An algorithm using HCF was developed to take GILM and
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(a) (b) (c)

Figure 2.4.: (a,b) Binary images resulting from the skeletonization of information

from 2.3(c,d) Nearly fully connected lines are present for both the ILM and the RPE,

demonstrating the utility of this contrast method in detecting these layers. In (c),

(b) has been processed to remove all connected components smaller than five voxels.

Such a step helps to ensure detection of contrast specific to the RPE in the subsequent

step shown in Fig. 2.5.

GRPE as input and output more accurate volumes from which to derive the data

energy.

2.1.2 Distance-based HCF Algorithm

The distance-based HCF algorithm (“the algorithm”) allows for the case of an

MRF in which neighbors in the connected layer impart clique potentials to a site s

with consideration for their distance in the image domain from s. The traditional

notion of an MRF assumes no idea of spatial distance in calculating the interactions of

neighbors, indeed graphs traditionally assume no coordinate space, only containing

a set of nodes and a set of edges. Images, and image stacks, however, are often

modeled by graphs, and it is natural to use information from the image (including

spatial resolutions) as prior knowledge before performing inference.

The principal use of the following algorithm is its ability to reduce the multilayer

segmentation problem to a 2D graph, where each column of the voxels in the image
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(a) (b)

Figure 2.5.: Using the algorithm mentioned in the text and the skeletonized contrast

in 2.4, binary volumes GILM and GRPE are obtained. A representative image pulled

from GILM is seen at left, and one from GRPE is seen at right.

volume represents a graph node. An illustration of this conversion is shown in Fig.

2.6. If we can consider d to be the depth/height in voxels of an A-scan and a to be the

number of crossing or non-crossing surfaces to segment from the image, the classes

to which an A-scan may belong could be as high as da. This is the primary driver of

the complexity of the algorithm. Each time the stability of a site is changed using a

heap implementation, the energetic states of all classes of the site’s neighbors must be

checked, and stability recalculated. For this problem, we segment two non-crossing

surfaces. The total number of possible classes per A-scan in this case is d(d+1)
2

.

Recall equation 1.2, where
∑

c∈C ec(Ω) is representative of the prior information

present in the graph. In the original HCF formulation, the prior information is present

in edges (object boundaries/edges, not graph edges) between pixels, not pixels them-

selves. Specifically, potentials associated with both vertical and horizontal edges and

non-edges are given values that encourage certain neighborhoods of edges, e.g. those

that are straight and continuous. These potentials (especially the smaller one-clique
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(a)

Figure 2.6.: Demonstration of the mathematical concepts as they relate to the exam-

ple application. A set of nine neighboring A-scans all of depth d, shown in various

shades of red, are represented as nodes in an MRF. Nodes of different shades are from

separate images and are spatially much farther away than their neighbors from the

same image. Their clique potential and resulting influence during the algorithm can

be chosen to be modulated by these varying distances. The blue dots represent the

current labels ω = xs ∈ Xs. The first value in a label represents the voxel depth

along an A-scan of estimated top of the RNFL, the second represents that of the

RPE. Here, the central site s’s current label ωs has an estimated depth for the top of

the RNFL that is much higher than that for the neighbor n, with label ωn.

and two-clique configurations) must be carefully selected for each specific segmen-

tation problem. Furthermore, such potentials do not carry as much meaning when

assigned to pixels, which have no inherent directionality.
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Finally, for our particular application the algorithm operates on an initialization

of the labels on the 2D map, specifically, the binary contrast volumes GILM and GRPE.

Each A-scan (site) s is assigned a class, an a-tuple of depths for each of the surfaces

to be segmented:

xs = {xs1, xs2, ..., xsa}, xs1 ≤ xs2 ≤ ... ≤ xsa ≤ d (2.4)

The set of classes to which ωs can be assigned is the set of possible tuple labels X.

This initialization of labels eliminates the initial phase of HCF, and all s begin in

the committed state. Another application may find it suitable to not use a separate

automatic initialization; the algorithm as it is presented here accommodates this

option. An example initialization is shown in Fig. 2.7(a), and corresponds to an

image from the binary volume GILM|GRPE (the binary OR operation between the two

volumes).

The clique potentials that we describe here are to be used when pixels/voxels are

the focus of the segmentation. Potentials among neighbors are chosen to encourage

smoothness, but the influence each potential has in the energy function is mediated

by the distance between those neighbors in the image domain. For reference, an image

volume from the Spectralis machine is 61 images total, and neighboring voxels from

separate images are ∼ten times farther from each other than neighbors in the same

image. It is natural to include this distance in the clique potential calculation. The

clique potential for two neighbors nl, nr ∈ Ns equidistant from and on opposite sides

of s at a distance of dist(n, s) is

ec(s, nl, nr|Ω) =
1

dist(n, s)

a∑
i=1

abs(xnli + xnri − 2xsi) (2.5)

In practice, the spatial resolutions are constant along each dimension, and this

vector of resolutions r only need be passed to an energy function. The sum of these

clique potentials for all pairs nl, nr given class state xs combined with the likelihood

of each class provides the equation for the energy Es(xs) for xs at any given time

during the algorithm’s progress:
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(a)

(b)

Figure 2.7.: Comparison of an initialization of a retinal scan (left) and the result after

processing using HCF (right). (b) included to show a close-up of the changes.

Es(xs) =
∑

nl,nr∈Ns

ec(s, nl, nr|Ω)− λ(P (xs|fs)) (2.6)

As before, a configuration of class labels is denoted Ω. Given the above equation,

it can be seen that assigning a class label xs that will result in surfaces who more

smoothly vary, i.e. have more constant derivatives in all directions, will have more

stability, provided these labels also have salient features fs, whose influence is con-

trolled by a positive parameter λ. HCF proceeds by changing the site whose current

labeled state is least stable. Stability ranges from negative values, signaling instabil-

ity, to ≥ 0 when a site is completely stable. Our formulation does not change from

the original equation for committed sites:
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(a)

Figure 2.8.: Demonstration of the results of the algorithm on sections of three consec-

utive B-scans. Labels are shown in white. Each column of images gives a snapshot of

the algorithm’s progress: initialization of the images is seen at left, and each column

of images shows a progression until convergence in column 5. The distance between

voxels along an image was set to 1, that between images was set to 2, and λ = 30.

Gs(xs) = min
xs∈Xs

(Es(xs)− Es(ωs)) (2.7)

For the committed site, stability is the difference between the lowest non-selected

energy state and the current one, ωs. For uncommitted sites, stability is the negative

difference between the label l that gives the 2nd smallest energy for a site and that
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(a)

Figure 2.9.: Toy demonstration of the algorithm in a 2D scenario, where all likelihoods

are equivalent. The left image represents algorithm initialization, where most site

labels ωs = xb = {2, 9}. As a result, the 3rd and 5th columns/sites are unstable, with

nonnegative stability achieved with site label xb. The algorithm adjusts the label of

the 5th column first due to its more negative stability.

which gives the smallest energy. When stability is ≥ 0 for a site, it will not be

changed, as only an increase in energy can come from changing its state. As previously

explained, almost all applications of HCF in the past have been limited to 2D images

of isotropic dimensions. See Fig. 2.8 for an example of the segmentation progression

of a poor initialization on a subset of three consecutive images of an OCT scan. This

example demonstrates how the algorithm effectively pulls the initialization into a

proper segmentation as unstable sites are converted to more stable ones.

The conversion from an originally 3D problem to 2D inference is a one benefit

of our solution; the second comes from the flexibility provided by distance-based

potentials. For a simple demonstration, please see Fig. 2.9. A heap is desirable for
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the algorithm, as suggested by Chou et al. [18]. We provide here the pseudocode for

the algorithm for reference:



22

Algorithm 1 Distance-Based HCF for Surface Segmentation

r = spatialResolutions

for voxelColumn ∈ Image do

s = voxelColumn

L(s) = calculateLikelihoods(s)

if initialization = automatic then

ωs = initializeSite(s)

Ω(s) = ωs

else

Ω(s) = x0

for s ∈ Ω do

for xs ∈ X do

Es(xs) = Energy(xs, L(s),Ω({s,Ns}), r)

G(s) = Stability(Es)

Heapify(G)

while (Gmin) < 0 do

s = site(Gmin)

Ω = changeLabel(s,Ω)

for xs ∈ X do

Es(xs) = Energy(xs, L(s),Ω({s,Ns}), r)

s.stability = Stability(E(s))

delete(G,Gmin)

insert(G, s)

for n ∈ Ns do

delete(G, n)

for xn ∈ X do

En(xn) = Energy(xn, L(n),Ω({n,Nn}), r)

n.stability = Stability(En)

insert(G, n)
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The remedied output of the HCF algorithm is an adjusted version of the binary

volumes GILM and GRPE. The distance maps of these, calculated for each point in

the image stack using only values directly above and below i.e. based only in the

z-direction, are represented by the unsigned distance maps

ΦG
ILM(z) = min

z∈GI

||z − zGI
||,∀z ∈ Ω (2.8)

ΦG
RPE(z) = min

z∈GR

||z − zGR
||,∀z ∈ Ω (2.9)

which are the argument of the data term of the overall energy functional presented

here. These final unsigned distance maps can be seen in Fig. 2.10.

With the data term explained, we can move on to the topology term of the energy

functional. The topology distance map Φt is derived from the two transforms ΦILM(z)

and ΦRPE(z).

Φt(z) =


|ΦILM(z)+ΦRPE(z)|+β

4
|ΦILM(z) + ΦRPE(z)|+ β > 0

0 otherwise

 (2.10)

Essentially when the models are at a large distance apart, this term will provide

information to each model to pull the two sheets each 1/4 of the distance between

them with β a distance buffer to be kept between them. For this experiment, with

vertical resolution of 3.8717µm/voxel and a maximum allowable retinal thickness of

400µm, β was chosen to be 103. With a description for each distance map to be used

in model evolution in place, the model’s deformations can be described.

2.2 Model Evolution

Free-form deformations (FFD) uses a grid of control points to manipulate a solid

in space [26]. The idea was originally presented as an application to the field of

3D animation, where a simple adjustment in control points would allow for intuitive

adjustment to the solid in areas around those control points. Imagine a user interface

that presents an egg-shaped solid, with a grid overlaid on its surface. The vertices

of the grid are termed control points. Pulling on one of the points stretches the
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(a) (b)

Figure 2.10.: A single image from each of the distance volumes ΦG(z). These volumes

serve as the argument of the data energy: Edata(ΦG
ILM(z),ΦG

RPE(z)).

area around it in a predetermined fashion (based on spline equations), and the result

requires much less work than moving each part of the solid separately. This is a type

of internal smoothness, and is useful for this segmentation application [27]. The grid

overlaid on each of the models for each step of deformations is described as:

L = {(Lx, Ly)|a, b}; (2.11)

where a and b represent integer-valued grid spacing in the x and y directions, respec-

tively. As a practical example of model deformations, we consider the first deforma-

tions of a given iteration. SI, deforms according to the voxel values zILM of ΦILM to

be used in calculating control-point deformations dILM. A single control-point de-

formation is calculated using a weighted map derived using cubic B-spline functions

(Fig. 2.11). This map gives more weight to the voxels in close proximity to the con-

trol point, and varies with the chosen spacing of the grid L overlaid to each model.

Specifically, for a given spacing a, b for a surface, the corresponding map is derived

from the following basis equations
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m = (
1

a
,

2

a
, . . . ,

a

a
)T (2.12)

n = (
1

b
,
2

b
, . . . ,

b

b
)T (2.13)

m1 = (1−m).3 (2.14)

m2 = 3�m.3 − 6�m.2 + 4) (2.15)

Boldface numbers indicate integral vectors the same length as other vectors in an

equation whose lengths are predefined. � indicates the Hadamard product (entrywise

multiplication), and the operation x.y indicates an entrywise power y of the vector x.

The same operations are used with the vector n to form the vectors n1 and n2. Then

to form a quadrant of the deformation map, matrix multiplication is required:

M1 =

m1 · nT1 m1 · nT2
m2 · nT1 m2 · nT2

 (2.16)

Finally, the other quadrants can be made by reversing the order of the elements

of M1 along the first dimension (M2), the second dimension (M3), or both (M4). The

final result is the final deformation map (Fig. 2.11):

M =

M1 M3

M2 M4

 (2.17)

The map is normalized so that its elements sum to 1 after this step. Evolution

using these maps is an iterative process. Deformations of the control-point grid L

overlaid to a deformable sheet are calculated using information present around the

model. Once the grid has deformed, however, the reverse process occurs: each voxel

that is a part of the deformable model is imparted a specific deformation by each of

the control points on which it originally had an effect. This second step of the process

uses an inverse version of the deformation maps. In more technical terms, through

this second map, the 4 ·4 grid of control points around each voxel sector of the current

model imparts weighted deformations to each of zILM. The model SI is moved to the

new voxel locations ẑILM.
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Returning to Fig. 2.11, note the chosen spacing for the control points of the two

models. The ILM displays relatively quick changes in topology due to the presence

of blood vessels just under the surface. A spacing of a = b = 1 for the ILM allows

flexibility and more finely grained deformations than the a = 7, b = 1 spacing selected

for the RPE. Referring to Fig. 2.2, this makes intuitive sense, as the RPE’s slope

is gradually changing; the larger spacing will most likely improve the segmentation.

This is an example of the intrinsic smoothness of using FFD to evolve a deformable

model [27]. Taken from a different perspective, the model SR has less difficulty

moving through a patch of noise when there are more points, i.e. more information

to contribute to each individual deformation and avoid incomplete boundaries.

With the means to minimize the objective function using FFD explained, the

iterative process of minimization can now be explained. The total topology and data

energy terms are described in terms of their arguments:

Etopology(Φt(z)) =

∫∫
Φt(zILM) dz +

∫∫
Φt(zRPE) dz (2.18)

Edata(ΦG
ILM(z),ΦG

RPE(z)) =

∫∫
ΦG

ILM(zILM) dz +

∫∫
ΦG

RPE(zRPE)) dz (2.19)

A single iteration of model deformations, given ẑ as new energy values on a given

map for a given model, results in an energy reduction of

∂Etotal

∂z
=
∂Edata
∂z

+
∂Etopology

∂z
(2.20)

∂Edata

∂z
=

∫∫
ΦG

ILM(zILM − ẑILM) dz +

∫∫
ΦG

RPE(zRPE − ẑRPE) dz (2.21)

∂Etopology

∂z
=

∫∫
Φt(zILM − ẑILM) dz +

∫∫
Φt(zRPE − ẑRPE) dz (2.22)

for each energy term and together the total energy of the models. This process is

repeated until model energy falls below a predetermined ε. Φt(z) will naturally push

the models past outlying noise to within an intuitive range of each other given the β

distance buffer, at which point the topology term effectively drops out of the equation.

The data-driven term provides the precise information past this point for an accurate

segmentation.
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(a) ILM. Spacing: a = b = 1 (b) RPE. Spacing: a = 7, b = 1

(c) (d)

Figure 2.11.: Maps of the weights used to impart deformations dS to control points

of the grid L by surrounding voxels z. For either, the deformation given to the blue

control point at center is a weighting of the deformation values of the surrounding

black squares (voxels) proportional to their size. Voxel values are normalized to

faithfully map vertex distances to appropriate control-point-deformation distances.

(a) For the model evolving to the ILM, each deformation is more flexible with only

16 voxels influencing each control point. (b) Spacing for the model evolving to the

RPE, a = 7, b = 1, allows for more voxels, 112 in total, to contribute each control

point’s deformation. This adds smoothness to the model at the expense of flexibility.

The 3D representations of these pixel grids are included in (c) and (d) for clarity.

In these latter two figures, the intersections represent voxels, and the height of each

intersection is the proportion of influence of that voxel to a control point’s movement.

All proportions sum to 1.
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3 RESULTS AND CONCLUSIONS

Ten healthy study participants were given bilateral macular SD-OCT scans using

the Heidelberg Spectralis SD-OCT tomographer, resulting in 20 full image stacks of

768 · 496 · 61 voxels. Spectralis segmentation results for the ILM and the RPE were

extracted from native Heidelberg Eye Explorer (HEYEX) .vol software files using

the ImageJ plugin Open Heyex Raw [28]. The segmentation results for the authors’

method was obtained using an Intel i7 2.8GHz laptop, and the average segmentation

time for a given image stack was 7 seconds. When including HCF, average segmen-

tation time was 3 minutes per image stack. For clarity’s sake, segmentation data

for a layer is the determined integer-valued voxel height of the layer from the top

of the stack for each column of voxels in the processed image stack. It should also

be noted that though the optic nerve head (ONH) is present at least partially in all

macular images taken by the Spectralis, the area up to and including 1/2 the optic

nerve radius was removed from statistical consideration for this study. Thickness

measurements around the optic nerve head are not used in the clinical testing for

which this method is designed, and the methods used here are unsuitable for such

thickness determination near the ONH.

Two qualified graders were asked to manually segment the RPE and the ILM for 30

images chosen randomly from the set of 20 macular image stacks. Segmentation was

performed in triplicate for each of the 30 images to allow for intra-grader variability.

To demonstrate segmentation efficacy, the error of the proposed method was compared

with that of native Heidelberg Spectralis software, the current state of the art for

retinal SD-OCT methods, for three different datasets: the means of the first grader’s

delineations, those of the second grader’s delineations, and those of both graders

(Table 3.1). The first three rows of the data in Table 3.1 summarize the main points

of the results. For the ILM, the Spectralis software’s mean error is slightly better with
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Table 3.1.: Mean errors and corresponding standard deviations for the proposed

method with and without HCF and the Heidelberg Spectralis software when compared

to both graders or each grader separately. Superior retinal thickness calculation is

achieved by the deformable models. All values are in µm, and for the given application

3.8717µm = 1 voxel.

Error (µm)

ILM RPE Thickness

Grader Method Mean Dev. Mean Dev. Mean Dev.

Both

Deform. 3.33 2.64 4.23 2.77 6.61 3.90

HCF 3.25 2.38 4.22 2.47 6.87 3.69

Heid. 2.74 2.36 6.71 2.26 8.57 3.63

Gr. 1

Deform. 2.90 2.58 3.59 2.63 5.30 3.71

HCF 2.82 2.28 3.58 2.36 5.47 3.57

Heid. 2.48 2.28 5.94 2.32 6.98 3.72

Gr. 2

Deform. 4.07 2.94 5.04 3.20 8.23 4.36

HCF 3.98 2.71 5.01 2.92 8.51 4.14

Heid. 3.38 2.75 7.49 2.78 10.23 4.10

a mean error 2.74µm versus the authors’ program at 3.33µm. The RPE results show

much less error for the authors’ program versus the Spectralis at 4.23 and 6.71 mean

errors respectively. As would be expected, this results in an overall better fit of the

deformable model method over the Spectralis when considering the retinal thickness

calculation SR−SI. Final results show a mean retinal thickness error of 6.61µm versus

8.57µm for the Spectralis. The addition of HCF does not significantly change these

findings. Values are comparable to the deformable-model-only approach for all cells

of the table. This is an expected result; the B-scans used for these results did not

suffer from poor initialization of ΦG
ILM(z) and ΦG

RPE(z). These results demonstrate
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(a) (b) (c)

Figure 3.1.: Results from a graded SD-OCT image. (a) Original image. (b) For a

close-up of a section of (a), graders’ six delineations for the ILM and RPE are shown

in white. Red for the deformable-model method and blue for the native Spectralis

algorithm are shown where not in agreement. Nowhere does our method disagree

with all six delineations at once. (b) The same close-up, but only exhibiting the

deformable models’ results in red, with Spectralis results shown in blue where not

identical. It can be seen that the proposed method more consistently estimates the

RPE to be deeper than the Spectralis.

clearly the effectiveness of both methods in determining retinal thickness, the value

of interest.

Although manually segmented cube-like sections of the image stacks would be

ideal for comparison, or perhaps, in addition to standard images, cross-sections of

the stack would have been more informative, neither time nor feasibility of accurate

segmentation allowed these other manual segmentation applications (Fig. 3.3(c)).

Perpendicular images prove too grainy for accurate segmentation, and cube-like sec-

tions of a stack blind a grader from proper segmentation due to a lack of information.

Given the image data was collected using a Spectralis, it is natural to use the Spec-

tralis segmentation results as benchmarks by which to compare our results with the

graders’ ground truth. A clinical tool as accurate and swift as the current accepted

state of the art is useful in accomplishing the clinical goals of this project. Demon-

stration of the validity of the results is shown in Fig. 3.1.
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Table 3.2.: Mean errors and corresponding standard deviations for the proposed

method with and without HCF from the Spectralis segmentation values for the entire

dataset of 46 total retinal volumes used in the study. Values are included for the

ILM, the RPE and for the determined retinal thickness. The number of data points

successfully segmented is also included. Superior evaluation of layer location as well

as overall retinal thickness is achieved by including HCF in the segmentation process.

All values are in voxels.

Error (voxels)

ILM RPE Thickness Data Points

Alg. Mean Dev. Mean Dev. Mean Dev.

Def. Only .6901 .7061 1.0369 1.1603 .9613 1.2730 1,838,530

With HCF .6189 .7840 .8336 .8352 .8523 1.0393 2,155,008

Finally, we can compare the overall segmentation results directly to the Spectralis

results. This shows that, in the data our graders were unable to grade due to time

constraints (the vast majority of our data), our results do not stray too far from

acceptable. For the 46 total 61-image volumes segmented, including HCF improved

the algorithm’s performance in ILM, RPE, and total retinal thickness segmentation;

see Table 3.2 and Fig. 3.2. Also shown in the table is the number of data points

successfully segmented, showing that an adaptation was made for the second algo-

rithm to be able to segment all areas despite the cropping necessary before due to

“blank” A-scans. This change gives on average 17% more segmentation information

per volume.

This thesis presents a novel approach to the segmentation of the inner and outer

layers of SD-OCT image stacks. Previous studies using deformable models for this

purpose had not exploited the information present between individual B-scans, and

the presented dual-model framework provides accurate segmentation for a 3D image

stack in a time acceptable even for clinical applications. An eventual goal of the
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(a)

(b)

Figure 3.2.: Comparison of segmentations using the initial deformable-model algo-

rithm with the results after inclusion of the proposed HCF method (right). The HCF

method efficiently adjusts some errors in the binary volumes GILM and GRPE to ensure

selected areas of contrast agree with the information present between images.
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(a) (b) (c)

Figure 3.3.: (a) A tendency of the deformable model for the ILM is to underapproxi-

mate sharp peaks in the layer. (b) Example cross-section taken along the y-direction

of an image stack. It was determined that this type of scan could not be manually

graded due to its low resolution. (c) Model results from a highly degraded scan from

a glaucoma patient show promise for the method’s eventual purpose as a clinical tool

to distinguish between glaucoma and healthy patients.

proposed clinical study of which this algorithm is a key part is longitudinal evaluation

of RNFL thickness changes in a larger subset of healthy and glaucoma patients; the

program has covered some ground towards this effort as evidenced by our current

findings. Results on highly degraded scans are promising as can be seen in Fig. 3.3(c)

and also in the additional validation of our results with Heidelberg’s segmentation on

both healthy and glaucoma patient scans. Despite a thinning (less reflective) retinal

nerve fiber layer in glaucoma patients, successful segmentation is possible given the

current methods.

Despite considerable success in segmentation, the algorithm can still be improved.

The errors corrected by the novel application of HCF are not perfect, and instead

of the four-step algorithm for determining the binary volumes GILM and GRPE from

contast, a more content-aware algorithm for following a layer’s contrast could be

developed. For example, during the growth phase (step 4), the use of the contrast

information more than one A-scan ahead (and perhaps from neighboring images)

could better direct the creation of the final binary images.
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One important improvement to the algorithm would be to successfully implement a

multilayer segmentation approach. The proposed method has been designed for many-

surface classification and can be easily extended to segment the remaining retinal

layers. Such multilayer segmentation has immediate applicability to other biomedical

images that involve crossing or non-crossing layers, where a variation of the class

vector xs may be used. For example, an object (instead of thin boundaries) may not

exist in every column of an image volume. Without a constant number of objects to

segment for each column, the vector may be allowed a fixed length d. Values may

be binary in the case of single object, or integer-valued if the number of objects is

greater. The clique potentials defined here would then be adjusted to smooth the

identified locations of the boundaries of the object(s) in the image, specifically, the

locations where the sequential values in xs change.

Attempts were made to segment each of the layers in the OCT using the HCF

approach; however, rarely does enough information exist for each layer to be confi-

dently segmented. One of the most difficult tasks facing a segmentation algorithm

is performing well under ambiguities, but performing reasonably when information is

not present is even more difficult. I am confident that successful segmentation can be

achieved using the approach presented here, provided significant functionality in the

event of a lack of information for a layer is added to the program. A final improve-

ment to the algorithm would add more exact inference by allowing fractional voxel

locations for the deformable models and for the “contrast” locations.
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