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ABSTRACT

Satyanarayana, Geetha R. MS, Purdue University, August 2016. A Quantitative
Comparison & Evaluation of Prominent Marshalling/Un-Marshalling Formats in Dis-
tributed Real-time & Embedded Systems. Major Professor: James H. Hill.

This thesis demonstrates a novel idea on how components in a distributed real-time

& embedded (DRE) system can choose from different data interchange formats at run-

time. It also quantitatively evaluates three binary data interchange protocols used in

distributed real-time & embedded (DRE) systems: the Common Data Representation

(CDR), which collects data “as-is” into a buffer; Binary JSON (BSON), which enables

“on the fly” discovery of elements in a message; and FIX Adapted for Streaming

(FAST), which is a binary compression algorithm popularly used for data exchange

in financial stock market domain. We compare these three data exchange formats

to determine if it is possible to minimize the data usage without compromising CPU

processing times, data throughput, and data latency. The lack of such a study has

made protocols such as CDR popular based on the assumption that collecting data

“as-is” will consume less processing time and send with high throughput.

We perform the study in the context of an Open Source Architecture for Software

Instrumentation of Systems (OASIS). To perform our study, we modified its existing

data interchange framework to flexibly and seamlessly integrate either format, and let

the components choose a format at run-time. The experiments from our study shows

that as data size increases, the throughput of CDR, BSON, and FAST decreases

by 96.16%, 97.23%, and 84.41%, respectively. The increase in packaging and un-

packaging times are 1985.12% and 1642.28% for FAST, compared to 3158.96% and

2312.50% for CDR, and 5077.98% and 3686.48% for BSON.
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1 INTRODUCTION

Distributed real-time & embedded (DRE) systems are composed of many compo-

nents, which perform various tasks by interchanging data with each other over a

network [1]. Although there are many data interchange protocols available on the

market today, DRE system designers use the protocol provided by the architecture

they use for the system. For example, Common Data Representation (CDR) [2] is

a binary data interchange syntax defined by the Object Management Group (OMG)

that maps OMG’s Interface Definition Language (IDL) data types into a low-level

binary representation. CDR is the default format used in the Common Object Re-

quest Broker Architecture (CORBA) [2] and Data Distribution Services (DDS) [3].

Binary JSON (BSON) [4] is a binary discovery interchange format, that enables “on

the fly” discovery of elements when the sender and receiver have not agreed upon

the elements in a message. BSON is popularly used in architectures that are based

on MongoDB [5]. FIX Adapted for Streaming (FAST) [6] is a binary compression

interchange format, developed by FIX Protocol Ltd. (FPL), and is widely used in the

financial stock markets to interchange data with high throughput and low latency.

Instead of choosing the default formats specified by the architectures, DRE system

designers and developers must gain in-depth knowledge about the available formats,

do a quantitative evaluation of their performance, and be able to choose from them

based on the requirements for their system. If given a choice, DRE system designers

choose simple formats like CDR or Google’s ProtoBuf [7], which append new data

to a buffer and send it across the network. This popular choice is based on the

assumption that such protocols will consume less CPU processing time and latency

by simply collecting the data “as-is” and sending it. DRE system designers are not

aware of frameworks that can let components choose from different formats at run-

time.
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To date, there exists no quantitative studies to determine whether binary data

compression formats, such as FAST, or binary discovery formats, such as BSON, can

perform better than traditional formats, such as CDR, and provide better processing

times, throughput, and/or latency. With this understanding, the contributions of

this thesis are:

• It details how to engineer a framework that allows DRE system designers to

flexibly and seamlessly integrate different data interchange formats so that com-

ponents can choose what format to use at configuration time.

• It evaluates and compares traditional formats, like CDR, against binary com-

pression formats, like FAST, and binary discovery formats, like BSON, (1) to

analyze if it is possible to minimize the data usage without compromising CPU

processing times, data throughput, and data latency; and (2) to answer the

question if a compression technique, like FAST, will make any difference in to-

day’s high speed Internet,which is in the range of Gigabits per second (Gbps).

We perform the quantitative evaluation in the context of an Open Source Archi-

tecture for Software Instrumentation of Systems (OASIS) [8]. OASIS is a framework

that instruments distributed software systems without a priori knowledge of the in-

strumentation data transmitted over the network. To support our work, we modified

the OASIS framework to enable seamless integration of either data exchange format.

Lastly, our experiments show that with increase in the data size, the throughput

of FAST decreases only by 84.41%, whereas for CDR and BSON it is 96.16% and

97.23% respectively. The latency to send each packet increases by 2510.73% for

CDR, 3522.69% for BSON, and 541.3% for FAST. The increase in packaging and

un-packaging times are 1985.12% and 1642.28% for FAST, compared to 3158.96%

and 2312.50% for CDR, and 5077.98% and 3686.48% for BSON. Our results therefore

suggest using compression algorithms like FAST decreases memory usage while not

compromising on CPU and network times.
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1.1 Thesis Organization

The rest of this thesis is organized as follows: Chapter 2 discusses some simi-

lar works that were done to compare different data interchange formats. Chapter 3

provides a brief introduction to OASIS, and the CDR, BSON and FAST data mar-

shalling formats. Chapter 4 gives a detail description of how we re-engineered OASIS

to support interchange of different data exchange formats. Chapter 5 discusses our

experimental results. Lastly, Chapter 6 concludes this thesis with a brief summary

and a future research directions.
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2 RELATED WORKS

We discuss related works that compare different data interchange formats in this

chapter.

2.1 Native Data Representation

Bustamante et. al. [9] propose a flexible messaging format called the Native Data

Representation (NDR). In this format, a sender places the data on the wire in the

format that it maintains, i.e., it provides a record like structure, and provides the

names, the data types, the sizes, and the position of the elements in the record.

The receiver too specifies such a structure, and compares the incoming message with

its own structure by the element names, without giving much importance to the

size or position of the element. Their implementation of NDR, Portable Binary I/O

(PBIO), can perform translation if there are differences in byte ordering, size of data

representations, or the compiler’s structure layout.

They compare PBIO with traditional message passing formats used in high perfor-

mance computing, such as Message Passing Interfaces (MPI) [10], Remote Procedure

Call (RPC) [11], and XML-based marshalling. They make MPI as their baseline, and

show that the encoding time of PBIO is better by three times, decoding by one time,

than MPI and also show a 45% reduction in the round-trip time from the sender to

the receiver.

However, the record format of PBIO is very similar to a FAST message, except

the field names and types are exchanged before hand by the sender and receiver.

FAST also contains a field presence map in its message that is very similar to NDR.

Therefore, the size of message produced by FAST and the time taken to package and

send it, will be less than PBIO.
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2.2 Lightweight Communication & Marshalling

Huang et. al. [12] describe a lightweight communication and marshalling (LCM),

a publisher-subscriber message passing system, which can simplify sending low la-

tency messages in real-time robotics applications. LCM decouples message imple-

mentation from its description by providing a platform and language independent

type-specification language. It provides easy to use and highly efficient tools for ana-

lyzing, marshalling and communicating data. An LCM encoded message begins with

a message header, that contains a magic number, the version of the encoding protocol,

sequence number, channel number that denotes the channel on which the message

arrived, and a 8 byte hash value computed for all the field names, and field type

tuples for validating on the receiver side to decide whether the message was correctly

received.

In their paper, Huang et. al also examine the bandwidth, latency and message

loss of the C and Java implementations of LCM, Inter-Process Communication (IPC)

and the TCP transport of Robotic Operating System (ROS) [13]. They also compare

the efficiency of the data interchange computations in these three formats, by sending

data from a laser scanner, a grayscale image from a camera, a list of 50 points in a

path.

Their results show that LCM performs better when both the amount of traffic

and the number of subscribers are more. With only one subscriber, IPC performs

well, but doesn’t scale well when the number of subscribers increase. ROS has high

throughput when its maximum queue length is infinity, but this costs message latency.

Their encoding experiments showed that LCM C implementation performed better

for messages that describe a path and images, whereas ROS C++ implementation

was the best for sending data from a laser scanner.

LCM encoding is very similar to CDR encoding in the way it sends the header

information. Although this research is very specific to robotics applciations, they

provide very good performance comparisons. However, this is different form our
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research because they are benchmarking LCM while comparing it to other message

passing formats, whereas we are comparing only binary data interchange formats to

suggest which one is better to use.

2.3 Self adaptive data marshalling

Andrade et. al. [14] perform a systematic evaluation of Google’s Protobuf, LCM,

and their own self-adaptive data marshalling approach. Their self adaptive data

marshalling approaches uses a delta comparison to monitor two consecutive packets

that are sent and only sends the difference. Their research goals were to find how

marshalling formats can be systematically evaluated, and to know the performance

of these formats under different application-independent contexts.

They perform a quantitative analysis of the three formats for integer and double

fields to compare the data sizes of the three protocols. They suggest Google Proto-

Buf is a better choice when using all integer fields. When the number of message

fields increase LCM sends more compact data. Their self adaptive approach tends to

perform better when there are large number of non-integer (double) fields because it

assumes that the difference between two consecutive messages sent in a short span of

time is very small.

However, Andrade et. al. do not provide any evaluation of performance, network

delays, etc., only evaluating based on data sizes. An interesting observation from

this research is that their self adaptive approach is very similar to field operators in

FAST, which can perform delta, increment, or other operations on data.

Although these related works compare different data interchange formats, they

propose a new data interchange format and benchmark them by comparing it with

other formats. This is different from this thesis because we show how components

can choose a data interchange format at run-time and quantitatively evaluate three

existing formats to suggest when to use which format.
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3 BACKGROUND

We provide a brief overview of OASIS, and the CDR, BSON and FAST data inter-

change formats that we used to perform this quantitative analysis.

3.1 Open Source Architecture for Software Instrumentation of Systems

Open Source Architecture for Software Instrumentation of Systems (OASIS) is a

service-oriented architecture that instruments DRE systems without a-priori knowl-

edge about them. Figure 3.1 gives a high-level overview of the different components

in OASIS.

A Software Probe collects metrics of interest from DRE systems at the applica-

tion or system level, such as processor or memory or network information, and sends

 

SoftwareProbe 

<<interface>> 

ProcessorProbe MemoryProbe NetworkProbe 

EINode 
mana ges 

DRE Application Context 

DataChannel 
<<interface>> 

LocalDataChannel TAODataChannel 

p
ro

vi
d

es
 

uses 

DataAcquisitionController 
 

provides 

u
se

s 

u
se

s 

DataHandler 
<<interface>> 

OASIS Context 

T&E Manager 

1..* 

lists 

Figure 3.1.: High level overview of OASIS.
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it to an Embedded Instrumentation Node (EINode). A probe definition language

(PDL) compiler generates the stubs and skeletons required for marshalling the data

and sending it across the network.

An Embedded Instrumentation Node (EINode) manages all the software

probes in an application context. An EINode is identified by a Universally Unique

Identifier (UUID), and a human readable name. In the current OASIS framework,

the EINode provides the software probes with a CDR packager to marshall the data.

We changed this framework to flexibly integrate other data interchange formats, and

this is discussed in details in chapter 4.

A Local Data Channel is an abstraction that sends instrumentation data, lo-

cally from the different software probes to the EINode in their context. This abstrac-

tion allows implementation to strategize the data locally before sending it across the

network, such as collecting the packets in a queue or speculating them.

A Data Channel abstraction allows the EINode to send instrumentation data to

the Data and Acquisition Controller (DAC) over the network. DACs can choose from

different middleware technologies, such as CORBA or DDS, to send the instrumented

data. The TAODataChannel implementation shown in the Figure 3.1, is the CORBA

implementation of the data channel.

The DAC receives the instrumented data from various EINodes, and controls

access to it. External clients can connect to the DAC to get the collected instrumen-

tation data. The DAC also manages various data handlers that un-package the data

and store it in a file or database. JavaScript Object Notation (JSON) [15] data han-

dler, Websocket [16] data handler, SQLite data handler are some of the data handlers

that currently exist in OASIS.

Test and Execution Manager (TnE) is the main entry point for external

clients to access the data from the DAC. It acts as naming service to list all the

existing DACs.
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3.2 Binary JSON

JSON is a data interchange format that transmits human-readable data in the

form of attribute-value pairs. It has largely replaced XML in asynchronous communi-

cation systems, and enables humans to read and write data easily while also making

it easy for machines to parse and generate it. A JSON documents consist of either

attribute/value pairs of data or a collection of data, such as arrays or vectors, other

embedded JSON documents, or a combination of them. The elements in a JSON

document are differentiated by braces or brackets.

BSON is a lightweight binary-encoded data interchange format that serializes

JSON documents, and is the primary storage and transfer format in MongoDB. Unlike

JSON, elements in a BSON document are stored in an ordered list, consisting of its

names, types and values and not differentiated by brackets. Table 3.1 [4] shows

element types of various basic data types in BSON.

Element type Data type

0x01 Double - 64-bit binary floating point

0x02 String

0x05 Binary data

0x08 Boolean

0x09 UTC datetime

0x10 32-bit integer

0x11 Timestamp

0x12 64-bit integer

0x0A Null value

0x03 Embedded Document

0x04 Array

Table 3.1.: Element types in BSON for standard data types
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BSON provides a wider range of data types than JSON, and also supports embed-

ded documents and arrays. Custom data types can also be represented using BSON

extensions. The “schema-less” property of BSON makes it more flexible when com-

pared to formats such as Protobuf [7]. BSON minimizes the spatial overhead and the

element scan speed considerably when compared to JSON—making it lightweight and

easily traversable. Because it uses C-like data types, it performs efficient encoding

and de-coding of data.

For example, to encode the value system time:1345, where system time is the

key, and 1345 is the value, the BSON document would look as shown in Listing 3.1.

(0 x16 0x00 0x00 0x00 ) 0x10 ( s y s t e m t i m e 0x00 )

(0 x05 0x41 0x00 0x00 ) 0x00

Listing 3.1: Data marshalled using BSON

In Listing 3.1, the parenthesis are for illustration purposes only. The first set of

parenthesis represent the size of the document, which is 22. The next byte represents

the element type, which is 32-bit integer. The second set of parenthesis represent the

null-terminated key system time. The third set of parenthesis represent the value

1345 in hexadecimal. Finally, the document terminates with the null-byte 0x00.

The corresponding JSON document will look as shown in Listing 3.2.

{ system time : 1345}

Listing 3.2: Data marshalled using JSON

In Listing 3.2, the braces are part of the format. The BSON implementation that

we integrated into OASIS is BiSON [17].

3.3 Common Data Representation

CDR is a data interchange format specified by the OMG that maps OMG’s Inter-

face Definition Language (IDL) data types into an octet stream for transfer between

different Object Request Brokers (ORBs) and Inter-ORBs. Octets are defined as



11

8-bit values, and an octet stream is a memory buffer that can to be sent over the

network. Octet streams have a well-defined beginning, are arbitrarily long, but finite

and contain n octets, indexed from 0 to n-1.

CDR defines two kinds of octet streams: messages and encapuslations. The basic

units of information exchange in General Inter ORB Protocol (GIOP) are messages.

A message contains a message header followed by the message data. A message header

contains the following fields:

• Magic that identifies GIOP messages, whose value is always the four uppercase

characters “GIOP” encoded in ISO Latin-1 (8859.1).

• Version specifies the major and minor versions of GIOP that is being used.

• Byte Ordering specifies if the rest of the message follows big-endian represen-

tation, denoted by 0, or little-endian representation, denoted by 1.

• Message type: specifies the message type such as request, reply, etc. as an

enum value.

• Message size: specifies the number of octets in the data that follows the

header. This is also encoded by the byte ordering specified above.

Octet streams that are marshalled independently from any particular message

context are called encapsulations. An encapsulated octet stream can be represented

as the OMG IDL’s opaque data type sequence <octet>, which can be included in

another message or encapsulation for subsequent marshaling without changing the

data or the byte ordering in the encapsulation’s octet stream.

CDR moves values of primitive data types in and out of octet streams by aligning

them at the size of their type. If necessary, the value of a primitive data type will

be preceded by an alignment gap, i.e., an unknown value of octets. The alignment

gap is equal to the minimum size required to align the primitive that is being fol-

lowed. Table 3.2 [?] shows the alignment requirements for the OMG IDL primitive
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Primitive type Octet Alignment

char 1

wchar 1

octet 1

short 2

unsigned short 2

long 4

unsigned long 4

long long 8

unsigned long long 8

float 4

double 8

long double 8

boolean 1

enum 4

Table 3.2.: Octet Alignment requirements of primitive data types in CDR.

types. Alignment permits efficient data handling by different architectures, since no

information of the underlying types is given in the message and assumes that the

sender and receiver have prior agreement on the types. However, CDR can enable

communication between machines that have different byte ordering because it can

translate from big-endian to little-endian or vice versa.

For constructed types, such as structures, unions, arrays, sequences, etc. there

is no alignment specified except for those of the primitive types of which they are

composed.
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To send the message idle time:1234, system time:3451, user time:2341, where

the values are long (4-byte integer) values in CDR, it would be encoded in big-endian

format as shown in Listing 3.3.

(00000000 00000000 00000100 11010010)

(00000000 00000000 00001101 01111011)

(00000000 00000000 00001001 00100101)

Listing 3.3: Data marshalled using CDR

The parenthesis are for illustration purposes and denote the values of idle time,

system time and user time, respectively, along with their alignment. Notice that

there is no information about the types of data or the entities that they belong to

present in the message. This implies that the sender and the receiver have to agree

upon the entities, their types, and their order in the message before hand.

The Adaptive Communication Environment (ACE) [18] implementation of CDR

is integrated into OASIS.

3.4 Financial Information eXchange (FIX) Adapted for STreaming

FAST is a binary compression algorithm developed by FIX Protocol Ltd. (FPL)

to encode message oriented data streams. It was developed to transmit high volume

market data with high throughput and low latency using significant compression.

Data interchange using FAST is performed based on an XML document, called the

template, that defines how to encode an instance of a message or group of messages in

an application into a stream of bytes. A template is similar to an agreement between

the two parties that send and receive FAST encoded data. The template is identified

by a name and an id. The template specifies a sequence of instructions, which can be

of two types: field instructions and template reference instructions. Field instructions

define the structure of a field (i.e., name and type), the field operator, and the

binary encoding representations. Fields can be defined as mandatory or optional.

Template reference instructions provide a way to reference parts of a template by
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other templates. The order of the instructions in the template is important as it

corresponds to order of the data in the data stream.

FAST encoding compresses the data in two stages. First, field operators leverage

data similarities in a stream and remove redundant data. This is done by maintaining

a dictionary to store the previous values sent so that compressing based on the field

operators specified. Next, the remaining data is serialized using binary encoding

which uses self-describing field lengths and bit maps that indicate the presence, or

absence, of fields. The following field operators can be specified in a FAST template,

which help in compression.

• Constant operator specifies that a field value never changes.

• Default operator specifies to use the initial value, if a field value is not specified.

• Copy operator specifies to copy the previous value, if a field value is not present.

If a field value is present, then it becomes the new previous value.

• Increment operator specifies to increment the previous value by one, if a field

value is not present. If a field value is present, then it becomes the new previous

value.

• Delta operator specifies that a delta value is present in the stream, and the

field value can be calculated by adding or subtracting the previous value with

the previous, or base value. For ASCII strings, the subtraction length of delta

specifies the number of characters to be deleted from the end. If the length is

negative, then characters are deleted from the front.

• Tail operator specifies that the field value is obtained by combining the tail

value with the base value. It is applicable only for ASCII or Unicode strings and

byte vectors. For ASCII strings, the length denotes the number of characters

to be removed from the back of the base value and the tail value contains the

characters to be appended at the end of the base string.
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A FAST encoded data stream consists of sequences of messages or blocks, each

containing one or more message segments. A message segment consists of a presence

map, an optional template identifier, and a sequence of fields and subsegments, if

applicable. All integer fields are represented in big endian format.

A key property of the FAST algorithm is stop bit encoding of entities, where the

most significant bit in each byte tells whether the next byte is part of the current

entity or not. If this bit is set, it means that this is last byte that belongs to the

current entity. If it is not set, then the next byte belongs to the current entity. The

seven bits after the stop bit are the significant data bits, and correspond to the entity

value. The stop bit in each byte of an entity should be removed before calculating

the entity value.

Listing 3.4 is a sample FAST template for the Processor probe in OASIS. It consists

of three 64-bit unsigned integer fields, with the delta field operator. There can be

one or more templates for a message being encoded, and the encoder can select one

of them. The compression of a particular message is dependent on the template that

is being encoded.

1 <?xml ve r s i on = ‘ ‘1 .0 ’ ’ encoding= ‘ ‘UTF−8 ’ ’ ?>

2 <templates xmlns= ‘ ‘ h t tp : //www. f i x p r o t o c o l . org /ns/ f a s t / td /1 .1 ’ ’>

3 <template id = ‘ ‘1 ’ ’ name= ‘ ‘ ProcessorProbe ’ ’>

4 <uInt64 name= ‘ ‘ i d l e t ime ’ ’><de l t a /></uInt64>

5 <uInt64 name= ‘ ‘ system time ’ ’><de l t a /></uInt64>

6 <uInt64 name= ‘ ‘ u se r t ime ’ ’><de l t a /></uInt64>

7 </ template>

8 </ templates>

Listing 3.4: FAST template for Processor probe

To send the message idle time:1234, system time:3451, user time:2341 FAST

would be encoded it as shown in listing 3.5.

11111000 10000001 00001001 11010010

00011010 11111011 00010010 10100101

Listing 3.5: Data marshalled using FAST
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The underlined bits are for illustration purposes and represent the stopping bits.

The first byte 11111000 represents the presence map of the stream. Here the first

bit, 1, tells that it is the last byte in the presence map, the second bit indicates that

a template id is present in the stream, and the rest of the bits correspond to each of

the fields in the order specified in the template, 1 indicating that a field is present

and 0 indicating that a field is absent. There are several rules that govern when fields

occupy a bit in the presence map, and when they do not. We do not include the rules

here since it is outside the scope of this thesis. You, however, can learn more about

the rules in the FAST specification [6].

In the next byte 10000001, the stop bit 1 indicates that this is the only byte with

the template id, and the remaining significant bits denote the template id, 1, that

is used. The next bytes in the stream represent the values of the fields, idle time,

system time, user time, in the order specified in the template.

To send a second message with the values, idle time:1256, system time:3460,

user time:2356 it would be encoded as shown in Listing 3.6.

10111000 10010110 10001001 10001111}

Listing 3.6: Second message marshalled using FAST

Here, the first byte is the presence map, whose significant bits indicate that there

is no template id present in the stream and the fields idle time, system time,

user time are present. The template id contains a copy field operator, which suggests

to use the previous value if not present. Furthermore, the values of the fields are the

corresponding differences between the values sent in the previous stream, which are

idle time:12, system time:9, user time:15.

We have integrated QuickFAST [19], a C++ implementation of FAST written by

the OCI Web community, into OASIS. QuickFAST is freely available in open source

format at https://github.com/objectcomputing/quickfast.



17

4 INTEGRATING VARIOUS DATA INTERCHANGE FORMATS INTO OASIS

This chapter discusses how we implemented a novel idea to allow components in a

DRE system to choose from various data interchange formats available at run-time,

in the context of OASIS. For completeness, we first provide a brief discussion of the

current data interchange design in OASIS, and its shortcomings. We then introduce

our new framework and how it can be used.

4.1 Challenges with the Existing Data Interchange Framework in OASIS

As discussed in chapter 3, CDR was the only data interchange format supported

by OASIS. The UML class diagram of the existing data packaging framework is shown

in Figure 4.1. As shown in the UML diagram, the DataChannel interface contains

a pointer to the SoftwareProbeDataPackager. The child class of the DataChannel,

the LocalDataChannel, creates a new CDRSoftwareProbeDataPackager and uses it.

   

 

uses 

uses 

uses 

 

uses 

uses 
1 

CDR_Software_Probe_Data_Packager 

Data_Channel 

<<Interface>> 

 

# packager_: Software_Probe_Data_Packager * 

Local_Data_Channel 

<<Interface>> 

1 Software_Probe_Data_Packager 

<<Interface>> 

packager_ = new CDR_Software_Probe_Data_Packager ( ); 

Software_Probe_Impl 

 

# packager_: Software_Probe_Data_Packager * 

# data_channel_: Local_Data_Channel * 

1 

packager_ = this->data_channel_->get_packager (); 

Figure 4.1.: Existing packaging framework in OASIS
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The packager created by the LocalDataChannel, i.e, the

CDRSoftwareProbeDataPackager, is used by the SoftwareProbeImpl, which

is the parent class of all the probes in OASIS. When the instrumentation data is

available to be sent, the probes use this packager to write the data to a CDR stream.

Note that the CDRSoftwareProbeDataPackager class in the OASIS framework

acts as a Wrapper Facadé [20] to the ACEOutputCDR class provided by the ACE

framework. The shortcomings of this design are as follows:

1. The DataChannel dictates to the SoftwareProbeImpl which packager to use.

In reality, the DataChannel, and its subclasses, must only be responsible for

sending out the marshalled data. The two concerns, packaging the data and

sending the data, must be independent of each other.

2. This design is not flexible enough to add new packaging formats. Although new

packaging formats can inherit from the SoftwareProbeDataPackager interface

to provide their own implementations, it is not easy for the probes to choose

from different packagers available. The probes must be easily able to choose

between different packaging formats and switch, if required, based on some

run-time configuration.

The rigidity of design is a lot more during the un-packaging that happens while

handling data by the DAC. As shown in Figure 4.2, the different handlers registered

with the DAC use the SoftwareProbe class to un-package the data related to the

different probes. The SoftwareProbe class and its child classes directly use the

ACEInputCDR, provided by the ACE framework class to un-package the data.

This is not a hindering design because adding new un-packaging formats requires

writing new concrete classes for each of the probes to directly use these formats, which

is time-consuming and tedious. Also, because the packaging and un-packaging code

is auto-generated by OASIS PDL (see Section 3.1), it would require updating OASIS

PDL to support the different data interchange formats.



19

 

uses 

Software_Probe 

 

# recall (const char * data, size_t length, int byte_order): int 

# recall (ACE_InputCDR & input) 

ACE_InputCDR 

OASIS framework 

DAC 

Data_Handler 

<<Interface>> 

uses 

JSON_Handler Archive_Handler Websocket_Handler 

uses uses uses 

Figure 4.2.: Existing un-packaging framework in OASIS
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4.2 The New Data Interchange Framework in OASIS

We redesigned the data interchange framework in OASIS using the strategy and

abstract factory design patterns [20], as shown in Figure 4.3. Since the different data

interchange formats vary only in the way they package data, i.e, their behavior, we

chose the strategy pattern to implement them.

The interfaces DataPackager and DataUnpackager define the required methods

for packaging and un-packaging different commonly used data types. These methods

appear as writeXXX and readXXX methods where XXX denotes the data type of the

element that is packaged. The concrete classes CDRDataPackager, BSONDataPacakger

and FASTDataPackager implement its respective algorithm(s) to package data.

Similarly, the concrete classes CDRDataUnpackager, BSONDataUnpacakger and

FASTDataUnpackager implement its respective algorithm(s) to un-package data.

The abstract factory pattern is used to create the different packagers and un-

packagers. The factory enables easy creation of a family of classes, like the differ-

ent classes in a strategy. The interface CodecFactory declares methods to create

references to the interfaces DataPackager and the DataUnpackagers. The concrete

factories, i.e., the CDRCodecFactory, BSONCodecFactory and the FASTCodecFactory

create the respective concrete data packagers and un-packagers.

Note that the classes that work with the packagers and un-packagers in this sys-

tem only interact with the DataPacakger, DataUnpackager and the CodecsFactory

interfaces. In this way, we are depending on the abstractions, and not the concretions.
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Figure 4.3.: New packaging/un-packaging framework in OASIS
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The data interchange format to be used is decided at run-time based on the

configuration specified in the EINode, to send the data, and the DAC, to receive the

data. This enables the creation of the DataPackager and the DataUnpackager at

run-time, and also acts as an agreement between the sender and receiver on the data

interchange format to be used.

A sample EINode configuration file is shown in Listing 4.1. This file specifies

the name and UUID of the EINode, the packager to be used, the data channel

that connects to the DAC, and the location of the DAC. Specifically, the lines 4

and 5 inform the EINode to load the make fast codec factory () symbol from

the OASISCodecs library. The arguments –template= ./FASTCodecsTemplate.xml

–template id=2 –fields=10 are initializing parameters for the packagers. Here, these

parameters inform the FASTDataPackager the name of the XML template file, the

template Id to be used, and the number of fields in the template. Currently, CDR

and BSON packagers do not require any initializing parameters.

1 Name : Daemon EINode

2 Uuid : 6429FC2A−0A40−4BB5−BF7F−A0FB19B1BFA8

3

4 Codec : OASIS Codecs : mak e f a s t c o d e c f a c t o r y ( )

5 ”−−template=./FASTCodecsTemplate . xml −−t emp la te id=2 −− f i e l d s =10”

6

7 DataChannel :

8 dynamic TaoChannel Se rv i c e Ob j e c t ∗

9 OASIS Tao DataChannel Client : make OASIS Tao Data Channel Client ( )

10 ”−ORBInitRef DataChannel=corba loc : i i o p : 1 9 2 . 1 6 8 . 2 . 1 0 1 : 3 0 000/ DataChannel −−run−orb”

Listing 4.1: EINode configuration file

Similarly, the DAC configuration file, as shown in listing 4.2, tells the DAC the

un-packager to be used, the registered data handlers and the data channels to be

used. The grammar for specifying the un-packager on the DAC is similar to that of

the EINode.

1 Codec : OASIS Codecs : mak e f a s t c o d e c f a c t o r y ( )

2 ”−−template=./FASTCodecsTemplate . xml −−t emp la te id=2 −− f i e l d s =10”

3

4 s e c t i o n DataHandlers :
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5 dynamic J s o nF l a t f i l ePub l i s h e r S e r v i c e Se rv i c e Ob j e c t ∗

6 OASIS DAC Json Flat f i l e Pub l i sher Serv i ce :

7 make OASIS DAC Json Flat f i l e Publ i sher Serv ice ( ) ””

8

9 s e c t i o n DataChannels :

10 dynamic TaoChannel Se rv i c e Ob j e c t ∗ OASIS Tao DataChannel :

11 make OASIS Tao Data Channel Service ( ) ””

Listing 4.2: DAC configuration file

The EINode and the DAC use loadcodecsfactory () method in the

CodecsLoader helper class to load the codec factory that is specified in its con-

figuration, as shown in Figure 4.4. This method takes as parameters the name of

the library, i.e., the OASISCodecs library, and the name of the method that creates

the required factory. It dynamically loads the factory creating method from the li-

brary, executes it, and returns the object of the factory that is created. Here the

method make fast codec factory () is a C-style method that returns a new ob-

ject to the FASTCodecFactory. The EINode and the DAC use the factory returned

by the loadcodecsfactory () to create the corresponding concrete packager or the

un-packager.

Since the EINode is responsible for managing the software probes, as discussed

in Section 3.1, it provides the data packager to be used to the SoftwareProbeImpl

class, and its child classes. Similarly, the DAC passes on the data un-pacakger to be

used while notifying the handlers to handle the instrumentation data that is received.
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Figure 4.4.: Using the new packaging/un-packaging framework
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This design overcomes the two challenges that were inherent in the previous design.

It decouples the behaviour for sending the data and packaging the data, making the

data channels only responsible for sending the marshalled data across the network.

Secondly, it enables the data interchange format to be chosen based on configuration.

The strategy pattern for integrating new data interchange formats made it very easy

to integrate the FAST and the BSON formats into OASIS.

4.3 Sending Data Encapsulations

OASIS uses CDR messages to send instrumentation data, both locally and over the

network, and its contents was discussed in detail in Section 3.3. When CDR messages

are used, data marshalled in any format is again marshalled using CDR, adding an

extra indirection while sending data. To overcome this challenge, we modified the

OASIS framework to send data encapsulations instead of CDR messages.

Two new abstractions, DataPacket and NodePacket, were defined to send the

data. A DataPacket contains the data that is locally sent from a probe to the

EINode. A NodePacket contains one more DataPacket(s) sent from the EINode to

the DAC, after adding information specific to the EINode. This enables the EINode

to collect data packets from one or more probes into a NodePacket and send it at

once to the DAC. Although the current EINode only sends one data packet per node

packet, a future extension can be easily made to collect a few data packets and send

it at once.

A data packet contains (a) UUID of the software probe, (b) time stamp when the

data packet was sent, (c) sequence number of the packet, (d) the instance name of

the software probe, (e) the size of data, and (f) the packaged data, which is the data

encapsulation. Similarly, a node packet contains the UUID of EINode that is sending

the node packet, the time stamp of when the node packet was sent, and one or more

data packets.
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Figure 4.5.: Data Packet Channel & Node Packet Channel

To support these abstractions, and differentiate between sending a data packet

and node packet, we removed the DataChannel abstraction, and created a

DataPacketChannel that locally sends a data packet, and a NodePacketChannel

that sends a node packet across the network, as shown in Figure 4.5.

4.4 Optimizing the Integration of QuickFAST for Better Performance

FAST is a data compression algorithm, designed to send data with high through-

put, low latency and minimal CPU costs, as discussed in Section 3.4. However, the

Message class, used to encode data, provided by the QuickFAST implementation was

not designed efficiently to minimize the CPU costs. Our hypothesis and most of our

experiments failed, because of excessive memory allocation that increased the CPU

time a lot more than CDR and BSON.
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After doing some research over the Internet, we found that other QuickFAST

users had similar issues while encoding using the Message class [21]. The Quick-

FAST developers acknowledge this issue and state that this design was developed

as a generic solution that fits all FAST messages that might be sent using Quick-

FAST. To overcome this, they suggest not to use the Message class that they pro-

vide, and instead develop our own class that implements their MessageAccessor

interface and provide the encoder with the field values, when it calls the getXXX

methods of the MessageAccessor. By doing this, applications can directly supply

values to the encoder from its own data structure, without needing to use the generic

QuickFAST message. Therefore, the design of FASTDataPackager class, discussed

in Section 4.2, was changed to inherit from both the QuickFAST::MessageAccessor

and the OASIS::DataPackager classes to integrate this new design into OASIS.

The probe in OASIS does not use any kind of data structure to relate between

the name of a particular element and its value. It directly provides the name of

the element (as a string) to be packaged, and its value to the packager by calling

the writeXXX methods, making the integration of this new design challenging. To

overcome this, the FASTDataPackager class in OASIS had to maintain a mapping

between the element name and its value, which was flexible enough to hold a value

of any data type, or a sequence, or a group of values.

To overcome this challenge, we designed a FASTField interface that defines meth-

ods for accessing the values of different data types. The concrete implementations of

the FASTField class contains a reference to a probe variable, and override the acces-

sor methods for the corresponding data type, as shown in Figure 4.6. Currently, the

support for FAST sequences and groups is not integrated into this design, but can

be done so easily by inheriting from the FASTField class and providing appropriate

implementation in the FASTDataPackager.
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Figure 4.6.: Framework Changes to improve performance of FAST
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Finally, we introduced initXXX methods in the DataPackager class to reduce the

excessive memory allocations that take place when software probes call the writeXX

methods for every message. The software probes can call the initXXX methods for

each of their probe variables to initialize the DataPackager with their references. At

this time, the FASTDataPackager creates appropriate concrete implementation of the

FASTField, based on the data type of the probe variable, and initializes it with the

reference to the probe variable. After this one time initialization, the software probes

need not make calls to the writeXXX methods in the FASTDataPackager every time

new data has to be packaged. When the probe needs to send the packaged data, it calls

the getdata () method on the packager, which triggers the FAST encoding process

to take place. When the QuickFAST encoder calls the FASTDataPackager to provide

the values of various fields, it looks up in its map for the field name and provides

the value to the encoder. The encoded data is then provided to the probe to send it

across the network. A similar framework is designed for the FASTDataUnpackager.

Since CDR and BSON marshall based on copying the values, this one time ini-

tialization is not possible and every time a new value has to be written, the software

probe needs to call the corresponding writeXXX on their packagers.

To summarize, in this chapter, we discussed the challenges in integrating different

data interchange formats into OASIS and how it is possible for components in a DRE

system to choose from different formats based on configuration.
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5 EXPERIMENTATION, ANALYSIS & DISCUSSION

In this chapter, we discuss some qualitative differences between CDR, BSON and

FAST, the experiments that we performed to quantitatively evaluate them and ana-

lyze the results from our experiments.

5.1 Qualitative differences between CDR, BSON & FAST

In applications like OASIS, CDR is the most prominently used data interchange

formats because it just appends byte data to a buffer and sends it across the network,

and is assumed to take less CPU time. However, CDR has various shortcomings

because packaging happens based on alignment of the buffer at boundaries of different

types.

Consider the example of the CDR message discussed in Section 3.3. To send

message idle time:1234, system time:3451, user time:2341, where the values are

long (4-byte integer) values, the bytes received by the receiver are shown in Listing 5.1.

(00000000 00000000 00000100 11010010)

(00000000 00000000 00001101 01111011)

(00000000 00000000 00001001 00100101)

Listing 5.1: Data marshalled using CDR

The challenges while sending and un-packaging these bytes are:

1. The number of bytes sent are more than the number of bytes that actually

represent the data. This is because of the boundary alignment of CDR. In this

example, although only 6 bytes represent the actual values, the sender sends 4

bytes for each of the three 4-byte integer fields, i.e, a total of 12 bytes. This is

more when the integer bytes are represented as 8 byte integers, but only 1 or
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2 bytes represent actual data. This difference makes a significant slow down in

the network when a huge amount of data has to be sent across the network.

2. There is no way the receiver can correspond the received values to the elements

they represent, unless the sender and receiver have a prior agreement on the

order of value and the data type of values, and their correspondence. In this

example, if the order of un-packaging is different than the packaging, then the

values of idle time, system time, user time can be interchanged. Further-

more, if they are of different types, there may be exceptions while un-packaging

because the un-packager assumes the data is not properly aligned.

BSON eliminates one of the challenges in CDR, by enabling binary discovery.

The data sent using the BSON packager contains the name of the element and its

value, hence giving correspondence between them and eliminating the chance of mis-

interpreting the values to other elements. However, this takes up some extra CPU

time, and also increases the amount of data that has to be sent across the network

because it sends the extra null bytes when the number of bytes in the value is less

than the size of the data type, and also adds the field names, data types, etc., as

discussed in section 3.2.

FAST compresses the data significantly, sending the bytes that only correspond

to the actual values and also compressing the data based on the templates, as dis-

cussed in detail in section 3.4, overcoming both the challenges in CDR. However, this

compression might take more CPU time, which might have been the reason why it is

not as popular as CDR.

5.2 Experimental Setup

Our experiments were run on emulab [22], a network test-bed and emulator, so

that we can easily emulate real-time distributed systems. Our experiments consists of

two nodes, each running UBUNTU-12 64 bit systems. The EINode runs on one of the

nodes where the software probes run as threads to collect different instrumentation
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data. The DAC runs on the other node, and receives the data sent by the EINode

from the various probes.

The standard system probes in OASIS, like processor probe, memory probe, etc.,

contain only a few probe elements, 3 to 10 elements, mostly of integer data type. To

expand the scope of our experiments, we created some test probes that contain many

probe elements, in the range of 10 - 500 elements, of different data types, such as

strings, integers, booleans, characters, etc. The stubs for these probes were automat-

ically generated using the PDL files that were written for each of them. Note that

the PDL application was changed to generate the new data interchange framework

discussed in Chapter 4. We also created the FAST templates for these probes, and

each element had one of the various field operations discussed in Section 3.4. List-

ings 5.2 and 5.3 show a sample PDL file and the corresponding FAST template for a

test probe with 10 elements.

1 module CodecsTest {

2 [ uuid (0D1F63DC−0AC4−43C5−A366−C89D0A5F3ACD) ; v e r s i on ( 1 . 0 ) ]

3 probe Codecs Test {

4 boolean boo l va l u e 1 ;

5 s t r i n g s t r i n g v a l u e 1 ;

6 in t8 cha r va lu e 1 ;

7 u int8 uchar va lue 1 ;

8 in t16 i n t 1 6 va l u e 1 ;

9 u int16 u in t 16 va lu e 1 ;

10 in t32 i n t 3 2 va l u e 1 ;

11 uint32 u in t 32 va lu e 1 ;

12 in t64 i n t 6 4 va l u e 1 ;

13 uint64 u in t 64 va lu e 1 ;

14 } ;

15 }

Listing 5.2: PDL file Codecs Test probe

1 <?xml ve r s i on=” 1 .0 ” encoding=”UTF−8”?>

2 <templates>

3 <template id=”2” name=” template2 ”>

4 <i n t 8 name=” boo l va l u e 1 ”>

5 <copy value = ”0”/>

6 </ in t8>

7 <s t r i n g cha r s e t=” a s c i i ” name=” s t r i n g v a l u e 1 ”>
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8 <constant value = ”He l lo World ! ”/>

9 </ s t r i n g>

10 <s t r i n g cha r s e t=” a s c i i ” name=” cha r va lue 1 ”>

11 </ s t r i n g>

12 <s t r i n g cha r s e t=” a s c i i ” name=” uchar va lue 1 ”>

13 </ s t r i n g>

14 <i n t16 name=” in t 1 6 va l u e 1 ”>

15 <de l t a />

16 </ int16>

17 <uInt16 name=” u in t16 va lu e 1 ”>

18 <de l t a />

19 </uInt16>

20 <i n t32 name=” in t 3 2 va l u e 1 ”>

21 </ int32>

22 <uInt32 name=” u in t32 va lu e 1 ”>

23 <copy value = ”0”/>

24 </uInt32>

25 <i n t64 name=” in t 6 4 va l u e 1 ”>

26 <increment value = ”−100”/>

27 </ int64>

28 <uInt64 name=” u in t64 va lu e 1 ”>

29 <de l t a />

30 </uInt64>

31 </ template>

32 </ templates>

Listing 5.3: FAST template for Codecs Test probe

We created a test probe, that inherits from the stubs generated, to randomly

change the values of all the elements in the probe. This emulates real-time system

instrumentation and sends different element values each time.

Finally, we created a script to perform different experiments, that runs continu-

ously for a specified amount of time to collect the data, package it and send it across

the network.
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5.3 Experiment 1: Size of packaged data

The goal of this experiment to quantify the amount of data sent over the network

in various data interchange formats, and compare the compression rate of FAST with

the data sizes of CDR and BSON.

5.3.1 Setup & Results

We setup the experiment as discussed in Section 5.2, and measured the size of the

packaged data after the probe packages the data. We ran the experiment in a loop

to send 10000 probe packets, to get the size of the data. The results are shown in

Figure 5.1.
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Figure 5.1.: Packaged data size (in bytes) for each of the data interchange for varying

number of probe elements.
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5.3.2 Analysis

For every probe with ‘n’ elements, the data size for CDR and BSON is a constant

value for each message packaged. However, the data sizes for FAST vary depending

on the values and field operators in the template. For example, an increment field

operator on an element does not send anything if its current value = previous value

+ 1. Otherwise, it sends the new value as the value for that field. Also, the first

packet sent using FAST contains all the initial values to initialize the un-packager

with. Even if no field operators are specified for one or all of the fields in the FAST

template, FAST compresses data considerably because of significant bit encoding

that was discussed in Section 3.4. However, not using any field operators defeats the

purpose of using an algorithm like FAST. Therefore, the values for FAST shown in

the graph represent the maximum number of bytes that were sent for a probe with

‘n’ elements, excluding the first packet.

Our results show that the number of bytes sent using CDR is directly proportional

to the total size of all the data types of the probe elements. The size for BSON

increases quickly because of the addition of field names. However, for FAST, the

maximum amount of data sent is compressed, as expected. For smaller amounts of

data, i.e., 10 probe elements, when CDR sends 96 bytes of data, BSON sends 215 bytes

of data, and FAST only sends 10 bytes, which is 10% of CDR and 4.6% of BSON. For

larger number of probe elements, i.e., 500 probe elements, when CDR sends almost

4800 bytes of data and BSON sends 10915 bytes of data, FAST compresses it to

send only 279 bytes, which is only 5.8% of CDR and 2.5% of BSON. As discussed

above, although the compression is based on the templates and the field operators,

the results from this experiment shows that the compression is more when the data is

more, because the amount of data for CDR and BSON is proportional to the number

of elements.

Our next experiments show how this increase in data relates to sending the data

over the network and the CPU processing times.
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5.4 Experiment 2: Throughput & Latency

The goal of this experiment is to quantitatively measure how the size of the data,

discussed in section 5.3, relates to sending it over the network. For this, we selected

the two measures throughput, which denotes the number of messages sent in a given

amount of time, and latency, which denotes the time taken to send one message.

5.4.1 Setup & Results

We setup the experiment as discussed in Section 5.2. We emulated the network

to send data over TCP/IP at a speed of 8 Mbps. The DAC data handlers were

disabled so that the CORBA call made by the EINode to send the message returns

back indicating receipt of a message, and for the EINode to continue sending further

messages. We did this to emulate real-time systems where the sender does not have to

worry about how the receiver handles the data, and is only concerned about the receipt

of the packet. We ran the experiments five times for five minutes, and measured the

throughput and latency.

Figures 5.2 and 5.3 show the throughput and latency (in microseconds) for each

of the data interchange for varying number of probe elements.
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Figure 5.2.: Average Throughput for each of the data interchange for varying number
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Figure 5.3.: Average Latency (in microseconds) for each of the data interchange for

varying number of probe elements.

5.4.2 Analysis

As seen in Figure 5.2, the throughput is higher for FAST as compared to CDR

or BSON. The throughput decreases very rapidly for CDR and BSON because of the

rapid increase in the data size. However, for FAST the decrease is slow. For 10 probe

elements, the throughput is 4959 for CDR, 2911 for BSON and 7740 for FAST. For

500 probe elements, the throughput values decrease to 190 for CDR, 80 for BSON and

1206 for FAST. From this, we calculated the percentage decrease in throughput to be

96.16% for CDR, 97.23% for BSON and only 84.41% for FAST, for the corresponding

increase in data sizes from 10 probe elements to 250 probe elements.
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Since latency is the inverse of throughput, latency increases very rapidly for BSON

and CDR when compared to FAST, as shown in Figure 5.3. The percentage increase

in latency for 2510.73% for CDR, 3522.69% for BSON, and 541.3% for FAST.

This experiment shows that an increase in the data size has a direct impact on

network, increasing the time taken send each packet, and thus decreasing the number

of packets for sent in a given unit of time.

5.5 Experiment 3: Processing times

The goal of this experiment is to evaluate the cost for CPU processing time for

packaging and un-packaging the data, for the compression, high throughput and low

latency possible through FAST in comparison to CDR and BSON.

5.5.1 Setup & Results

We setup the experiment as discussed in Section 5.2 and calculated the time for

the software probe to package its instrumentation data.

To calculate the un-packaging time, we created a no operation data handler for

the DAC, that only un-packages the received data and does not perform any other

operation such as writing to a file or a database. This makes it easy for us to calculate

the time only for un-packaging the data, without including the times for writing to file

or database or perform other operations, which was common in other data handlers

that were already integrated into OASIS.

We ran the experiment in a loop continuously to send 10000 data packets, similar

to calculating the data sizes, and the median of packaging and un-packaging times is

shown in Figures 5.4 and 5.5.
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Figure 5.5.: Average Un-Packaging time (in nanoseconds) for each of the data inter-

change formats for varying number of probe elements.

5.5.2 Analysis

Figure 5.4 shows the packaging times, in nanoseconds, for various data interchange

formats for varying data sizes. It shows that CDR takes the least amount of CPU

time, since it just appends the data to a buffer. FAST takes a little more time than

CDR, but considerably less than BSON. Moreover, our data points show that at 10

elements, the time for packaging in FAST is 3.1 times the time for packaging in CDR.

However, this time difference rapidly decrease as the data size increases, making the

time for packaging using FAST is 2.1 times that of using CDR for 500 elements.

Based on our results, the calculated percentage increase in packaging times from 10
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probe elements to 500 elements for CDR, BSON, and FAST are 3158.96%, 5077.98%

and 1985.12% respectively.

Figure 5.5 shows the un-packaging times, in nanoseconds, for various data inter-

change formats for varying data sizes. Similar to the packaging times, CDR takes

the least amount of time to un-package the data. However, the percentage increase

in un-packaging time with the increase in data size is 2312.50% for CDR, 3686.48%

for BSON, 1642.28% and BSON.

By extrapolating the results, we infer that when the data size increases consider-

ably, the time to package and un-package using FAST will become less than that of

CDR.

5.6 Discussion 1: Packaging Time Vs. Throughput

From our experiments, we concluded that the packaging time increases while

throughput decreases. We wanted to further compare the rate of increase in packag-

ing time with the rate of decrease int he throughput to get a better idea. Figure 5.6

shows a graph between the average packaging time (in nanoseconds) and the through-

put (number of packets per second) for different data interchange formats for varying

probe number of probe elements.
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the data interchange formats

Figure 5.6 shows that there is a sharp decrease in the throughput of CDR with

slight increase in the packaging time. For FAST, although the packaging time is

quickly increasing there is a steady decrease in the throughput. BSON performs the

worst with high processing time and very low throughput.

For probe with 10 elements, the ratios of packaging time to throughput are 1.34

: 1 for CDR, 6.9 : 1 for BSON and 2.92 : 1 for FAST. For probe with 500 elements,

the same ratios are 1147.62 : 1 for CDR, 12977.15 : 1 for BSON and 391.17 : 1 for

FAST.

We can, therefore, conclude that although the packaging time for FAST is more,

the throughput is very high when compared to CDR or BSON. Also, the rate of

decrease in throughput with increase in packaging time is very less for FAST, when

compared to CDR and BSON.
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5.7 Discussion 2: Packaging Time Vs. Latency

Similar to the previous discussion, we also wanted to compare the rate of increase

in the packaging time with the rate of increase in latency. Figure 5.7 shows a graph

between packaging time (in nanoseconds) and latency (in microseconds) for different

data interchange formats for varying probe number of probe elements.
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for each of the data interchange formats

In section 5.4 we saw that latency increases as the data size increases. From

Figure 5.7, we observe that latency increases with packaging time too. The increase

in latency for FAST with increase in packaging time is smaller than that in CDR and

BSON. For probe with 10 elements, the ratios of latency to packaging time (both in

microseconds) is 1806.93 : 1 for CDR, 1022.10 : 1 for BSON, and 342.21 for FAST.

The ratios for probe with 500 elements are 1447.52 : 1 for CDR, 715.09 : 1 for BSON

and 105.25 : 1 for FAST.

From the ratios, it is clear that although the packaging time is more for FAST,

the increase in latency with increase in packaging time is minimal when compared to
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CDR and BSON. We can, therefore, say that FAST sends data with low latency even

if the packaging time is higher than CDR.

5.8 Discussion 3: Extrapolation of Results

Although, we did not have enough data to send very large sizes of data and did

not have enough resources to emulate very high speed network connections, in the

range gigabytes per second, we can infer some valid conclusions for such kind of data

and networks from the results that are summarized above.

Consider a probe with 15,625,000 elements, all as 64 bit integers, which implies

the actual size of data to be 1,000,000,000 bits (1 Gb). This acts as a good example to

discuss the impact of sending such huge amount of data over very high speed network,

for e.g, 1 Gigabit per second.

Based on the current percentages of probe with 500 elements, CDR sends almost

1.2 Gb of data, and BSON sends almost 2.73 Gb, whereas FAST sends only 66.52

Mb of data. Based on result 4, we infer that the time for packaging/un-packaging

each packet with CDR becomes considerably slower than FAST. With the speed of 1

Gbps, CDR will take almost 1.2 seconds to send those packets, and BSON will take

a little over 2.7 seconds, whereas FAST will send it across in 66.5 milliseconds. Note

that the packaging time and size of data is based on the current percentages, and the

actual sizes may slightly vary due to the rate of increase.

From this, we infer that although CDR conserves processor time to marshall

smaller amounts of data, the network latency decreases. For huge data sizes, the

processing performance of CDR also starts to decrease, along with the decrease in

network latency. However, CDR can be used when one wants to send data as is,

and does not mind paying for the extra CPU and network costs. Similarly, although

BSON enables “on the fly” discovery of elements, it also consumes too much of CPU

and network for any size of data. However, from our experiments we can conclude

that binary compression algorithms like FAST perform better, conserving the mem-
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ory, processor and network, when huge amounts of data have to be sent across the

network.

5.9 Summary of Experimental Results

To conclude this chapter, we provide a brief summary of the results and discussion.

1. As the data size increases, the compression of data in FAST increases in com-

parison to CDR and BSON.

2. As the data size increases, the throughput decreases. However, the rate of

decrease is significantly less in FAST than in CDR and BSON.

3. As the data size increases, the latency increases. However, the rate of increase

in latency using FAST is significantly less than the rate of increase using CDR

and BSON.

4. Although the packaging and un-packaging times for FAST is more than CDR,

our experiments show that the rate of increase in these times for FAST is sig-

nificantly less than CDR and BSON.

5. The rate of decrease in throughput with increase in packaging time is very less

for FAST, when compared to CDR and BSON.

6. For FAST, the increase in latency with the increase in packaging time is minimal

when compared to CDR and BSON.

7. By extrapolation, we can say that FAST conserves memory, processor and net-

work when huge amounts of data has to be sent over high speed network.
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6 CONCLUSION & FUTURE WORKS

Although there are many data interchange protocols in market today, DRE system

designers use the ones provided by the architecture they are using or use simple

formats such as CDR that append data to a buffer “as-is”. Instead DRE system

designers, must understand the protocols, and be able choose them based on a quan-

titative analysis. To help DRE system designers with making such choices this thesis

has implemented a novel idea that can allow components in a DRE system to choose

a data interchange format at run-time and has quantitatively compared traditional

formats like CDR, with binary discovery formats like BSON, and binary compression

formats like FAST.

Our experiments showed that with increase in the data size, the throughput of

FAST decreases only by 84.41%, whereas for CDR and BSON it is 96.16% and

97.23% respectively. The latency to send each packet increases by 2510.73% for

CDR, 3522.69% for BSON, and 541.3% for FAST. The increase in packaging and un-

packaging times are 1985.12% and 1642.28% for FAST, compared to 3158.96% and

2312.50% for CDR, and 5077.98% and 3686.48% for BSON. Therefore, our results

suggest using compression algorithms such as FAST decreases memory usage, while

not compromising on CPU and network times.

FAST has revolutionized the way in which financial institutions send high volumes

of market data, and this should also be the “go-to” format for DRE system developers

if they want to minimize data usage, without compromising on the CPU, network and

memory usage provided by formats such as CDR. It is worth mentioning that various

commercial implementations of the FAST marshalling format, other than the open

source QuickFAST that we have used, provide better performance, and may out

perform CDR better than the QuickFAST implementation.
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However, formats such as CDR and BSON are useful in certain scenarios. Our

experiments show that CDR marshalling processes smaller data sizes quicker than

FAST, although it takes slightly more memory and network. On the other hand,

BSON is a very good marshalling format when there is no a priori agreement between

the sender and receiver about the messages that are being sent. It learns about the

data “on the fly”, and thus no two packets have to be the same.

6.1 Future Works

Based on the contribution from this thesis, we can move ahead in the following

research direction.

6.1.1 Algorithm to choose from different formats based on the data

Our research showed that some data interchange protocols, such as CDR, are bet-

ter for smaller sizes of data, while protocols such as BSON enable binary discovery,

and protocols like FAST provide significant compression. Although FAST out per-

forms CDR and BSON, these formats should be chosen depending on the nature of

the application, and of the data being sent.

An interesting research direction is to develop an algorithm that can switch be-

tween different formats based on the different properties of data. The algorithm can

also learn about the data for a period of time, and choose the best one. This can be

done by comparing the processing times, memory usage, and network latency that

we suggested.

6.1.2 Comparison of different binary compression formats

Our research concluded that sending compressed data, using algorithms such as

FAST, minimizes data usage while not compromising on the processing times and net-

work latency. Although, we used FAST in our research study, there are several other
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compression formats such as UBJSON [23] that compress data. It would be an inter-

esting research to understand more about such formats and perform a quantitative

analysis about them.
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