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ABSTRACT

Liu, Junfeng M.S., Purdue University, May 2018. Machine Learning Methods for
Better Drug Prioritization. Major Professor: Xia Ning.

Effective prioritization is critical in drug discovery and precision medicine. Various

computational tools have been developed and utilized in different applications for the

development and the use of drugs.

In the early stages of drug discovery, compound prioritization is largely used in

high throughput screening to help identify drug candidates for further investigation.

For a compound to be a successful drug, it has to exhibit certain promising biological

properties (e.g., compound activity, selectivities, toxicity, etc.). Compound prior-

itization methods prioritize the drug candidates based on such properties so that

the compounds that exhibit more drug-like properties could be prioritized over those

compounds that are less likely to become drugs.

After drugs are developed, drug prioritization is also essential to develop better

treatment plans in precision medicine. One of the primary goals of precision medicine

is to select the right drugs for the right patients. For instance, when selecting drugs

for patients of different cancer types, sensitive drugs for patients of certain types of

cancers should be prioritized over insensitive drugs, even if these insensitive drugs

might be sensitive to patients of other cancer types.

Current development of computational methods for compound prioritization and

drug prioritization suffer from three major issues, and we have developed novel ma-

chine learning methods to tackle each of them, respectively.

First, existing methods for compound prioritization are largely focused on devis-

ing advanced ranking algorithms that better learn the ordering among compounds.

However, such methodologies are fundamentally limited by the scarcity of available
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data, particularly when the screenings are conducted at a relatively small scale over

known promising compounds. To tackle this problem, we explore the structures of

bioassay space and leverage such structures to improve ranking performance of an ex-

isting strong ranking algorithm. This is done by identifying assistance bioassays and

assistance compounds intelligently and leveraging such assistance within the existing

ranking algorithm. By leveraging the assistance bioassays and compounds, the data

scarcity can be properly overcome. Along this line, we developed a machine learning

framework MACPAU, which consists of a suite of assistance bioassay selection methods

and assistance compound selection methods. Our experiments demonstrate an overall

8.34% improvement on the ranking performance over the current state-of-the-art.

Second, current computational methods for compound prioritization usually focus

on ranking compounds based on one property, typically activity, with respect to a

single target. However, compound selectivity is also a key property which should be

deliberated simultaneously so as to minimize the likelihood of undesired side effects of

future drugs. To solve this problem, we present a novel machine-learning based differ-

ential compound prioritization method dCPPP. This dCPPP method learns compound

prioritization models that rank active compounds well, and meanwhile, preferably

rank selective compounds higher via a bi-directional selectivity push strategy. The

bi-directional push is enhanced by push powers that are determined by ranking differ-

ence of selective compounds over multiple bioassays. Our experiments demonstrate

that the new method dCPPP achieves significant improvement on prioritizing selective

compounds over baseline models.

Third, conventional methods for drug selection are unable to effectively prioritize

sensitive drugs over insensitive drugs, and are unable to differentiate the orderings

among sensitive drugs. We have formulated the cancer drug selection problem as to

accurately predict 1). the ranking positions of sensitive drugs and 2). the ranking

orders among sensitive drugs in cancer cell lines based on their responses to cancer

drugs. We have developed a new learning-to-rank method, denoted as pLETORg,

that predicts drug ranking structures in each cell line using drug latent vectors and



xiii

cell line latent vectors. The pLETORg method learns such latent vectors through

explicitly enforcing that, in the drug ranking list of each cell line, the sensitive drugs

are pushed above insensitive drugs, and meanwhile the ranking orders among sensitive

drugs are correct. Genomics information on cell lines is leveraged in learning the

latent vectors. Our experimental results on a benchmark cell line-drug response

dataset demonstrate that the new pLETORg significantly outperforms the state-of-the-

art method in prioritizing new sensitive drugs.
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1. INTRODUCTION

1.1 Background

Effective prioritization plays critical roles in drug discovery and precision medicine.

Drug discovery is a time-consuming and costly process. For a drug candidate to be-

come an approved drug, it has to pass several stages, including initial screening,

preclinical research, clinical trials, FDA review and post-market drug safety morn-

itoring ∗. Such process could take at least 10 to 15 years and $500 million to $2

billion to introduce a new drug to market [1]. In precision medicine, the drug se-

lection process also involves substantial wet-lab experiments on various drugs before

a sensitive drug is selected for a specific patient. Compared to traditional in vivo

and in vitro methods, in silico prioritization methods are considered as efficient and

economical alternatives to perform compound and drug prioritization tasks. These

in silico methods could be used in various applications. One research area on these

in silico methods is focused on the high throughput screening (HTS) in the early

stages of drug discovery. In HTS, the number of compounds to be tested is large

and thus it is expensive to conduct wet-lab experiments over all the compounds. The

in silico methods could be adopted to identify potential drug candidates effectively

and economically. Another area of interest within in silico methods is selecting sen-

sitive drugs for patients in precision medicine. In drug selection, various drugs will

be tested on a specific cell line for a specific patient. The in silico drug prioritization

methods are able to to accelerate drug selection process, so that the right drugs could

be selected to the right patients in clinical trials or in real treatments.

In silico compound prioritization, which learns computational models to rank

compounds in terms of their drug-like/disease-specific properties (e.g., efficacy, speci-
∗https://www.fda.gov/ForPatients/Approvals/Drugs/default.htm
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ficity), has been attracting increasing attention, due to the emerging focus on precision

medicine [2]. In silico compound prioritization has been attracting increasing atten-

tion, due to the emerging focus on precision medicine [2]. The in silico compound pri-

oritization methods learn computational models to rank compounds in terms of their

drug-like/disease-specific properties (e.g., efficacy, specificity), so that the promising

drug candidates could be identified via prioritization. In many applications of preci-

sion medicine (e.g., cancer drug selection [3]), before precise measurements of disease-

specific compound properties need to be considered, a set of promising compounds

(typically drugs) should be first selected for future investigation. The foundation of

these in silico methods is laid down by the pioneering work of Hansch et al. [4; 5],

which revealed the existence of the mathematical relations between the biological

activity of a chemical compound and its physicochemical properties.

In silico drug prioritization for precision medicine, which learns computational

models to rank drugs for specific patients, is also gaining attention in research in

recent years. The primary goal of precision medicine is selecting the right drugs for the

right patients, so that the patients could receive customized and effective treatments.

When a disease could be treated by different drugs (e.g., many cancer drugs are

able to kill various cancer cells), it is necessary to consider which drug is the best

for the disease, or even for a specific patient. One emerging application is precision

cancer drug selection for a specific patient or a specific cell line. The landscape of

cancer genomics and recent pan-cancer evidence from theories and practices (e.g.,

the Molecular Analysis for Therapy Choice Trial at National Cancer Institute†, The

Cancer Genome Atlas‡, etc.) have laid the foundation for joint analysis of multiple

cancer cell lines and their drug responses to prioritize and select sensitive cancer

drugs.
†https://www.cancer.gov/about-cancer/treatment/clinical-trials/nci-supported/nci-match
‡https://cancergenome.nih.gov/
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1.2 Existing Problems and Solutions

1.2.1 Compound Prioritization

A first step in drug discovery is to conduct bioassays [6] that screen a large set of

promising compounds. The outcomes from these bioassays inform the following drug

discovery steps [1]. Successfully identifying the promising drug candidates in early

stages is critical in drug discovery. If the right drug candidates are not successfully

selected for further investigation, or those drug candidates that are not promising

to be successful drugs are selected, the substantial efforts that are invested in the

following investigations will be wasted.

Knowledge discovery from bioassay data is critical to learn the compound physico-

chemical properties towards certain targets or diseases. Substantial research effort in

this area is dedicated to establishing the relationship between the structures of chemi-

cal compounds and their bio-chemical properties expressed in the bioassays, for exam-

ple, Structure-Activity Relationship (SAR) [4] and Structure-Selectivity Relationship

(SSR) [7]. Traditional research in in silico studies for drug discovery is currently

facing several problems. Conventional in silico studies for drug discovery have been

dominated by classification and regression methods. Classification methods assign

each candidate compound a label, typically “active” or “inactive”, to determine which

compounds are selected for further investigation. Regression methods approximate

certain measurements of drug-like/disease-specific properties for each candidate com-

pound (e.g., efficacy, specificity), and further indicate which compounds should be se-

lected for further investigation. Popular classification and regression methods include

Support Vector Machines (SVM) [9], Partial Least-Squares [10], random forests [11],

Bayesian matrix factorization [12], and Naïve Bayesian classifiers [13], etc. In many

regression-based SAR models, the objective is typically to minimize the overall errors

between the predicted IC50 values (a metric used to measure compound activities in

inhibiting their targets or other biological entities [14]) and true IC50 values. How-

ever, the regression models can be easily biased by the values of majority under
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the minimal-error objective. Compared to regression, classification-based SAR mod-

els suffer more from mis-ordering because majority of classification approaches only

learn from and predict class labels. Their predicted quantitative measurements are

not intended for ranking purposes. Compared to regression and classification, rank-

ing models represent a more natural way to prioritize the drug candidates based on

certain biological properties.

Another problem that is challenging the in silico studies on compound priori-

tization is the availability and quality of the data. Existing research on in silico

compound prioritization methods is mainly focused on devising advanced ranking

algorithms that better learn the ordering among compounds [15].

However, such methodologies are fundamentally limited by the scarcity of available

data, particularly when the screenings are conducted at a relatively small scale over

known promising compounds.

To address the aforementioned problems in compound prioritization, we develop

the Multi-Assay-Based Compound Prioritization via Assistance Utilization method [8]

(denoted as MACPAU). In MACPAU, we focus on improving the compound ranking

performance based on a single property (i.e., compound activity to a specific target).

Instead of devising more advanced ranking algorithm, we take the complementary

aspect, that is, using an existing strong ranking algorithm, we improve its performance

by delicately incorporating more useful information in model training. Specific, we

address the questions of whether we can leverage the structures of the chemical space

and the bioassay space, and collectively build and improve individual ranking models.

We develop a unified system in which improved compound prioritization models are

achieved through three decoupled steps: 1). select a set of additional bioassays which

are very likely to exhibit useful information for a better ranking model for the target

of interest; 2). select a set of compounds from these bioassays that are very likely to

help improve the ranking model quality; and 3). incorporate such compounds together

with the known compounds for the target of interest and build a ranking model. Our
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experiments show that the MACPAU method is able to improve the compound ranking

performance by 8.34% over the state-of-the-art method.

1.2.2 Compound Prioritization Based on Multiple Properties

Current compound prioritization typically focuses on one single compound prop-

erty [16], for example, biological activity. Biological activity of a compound can be

initially tested in a target-specific bioassay [6] by measuring whether the compound

binds with high affinity to the protein target that it is aimed to effect. Activity is

a critical property that a compound needs to exhibit in order to act efficaciously as

a successful drug. Compound prioritization in terms of activity needs to rank most

active compounds on top of less active compounds.

Compound selectivity is another key property that successful drugs need to ex-

hibit [17]. Selectivity measures how a compound can differentially bind to only the

target of interest with high affinity (i.e., high activity) while binding to other pro-

teins with low affinities. Therefore, the compound selectivity prioritization needs

to consider the prioritization difference of a compound in the activity prioritization

structures of multiple targets. Specifically, the compound selectivity prioritization

needs to follow a combinatorial ranking criterion that 1). it ranks all the compounds

well based on their activities; and meanwhile, 2). it ranks strongly selective com-

pounds preferably higher, probably even higher than more active compounds that

are not selective. These criteria correspond to that in real applications, active and

highly selective compounds are preferred over highly active but also highly promis-

cuous compounds [18] to minimize the likelihood of undesirable side effects.

Existing computational methods in bioassays analysis, particularly in finding SAR

and SSR, have been dominated by regression and classification as well. In these meth-

ods, compounds are typically represented by certain chemical fingerprints, for exam-

ple, Extended Connectivity Fingerprints (ECFP)§ and Maccs keys ¶. Compound ac-
§Scitegic Inc, http://www.scitegic.com.
¶Accelrys, http://accelrys.com
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tivity and selectivity are used as a label/numerical target of the compounds. Popular

classification and regression methods include Support Vector Machines (SVM) [9],

Partial Least-Squares [10], random forests [11], Bayesian matrix factorization [12],

and Naïve Bayesian classifiers [13], etc. These classification and regression methods

also suffer from the similar problems as identified in Section 1.2.1. Ranking methods,

compared to classification and regression, are less developed for bioassay analysis.

Additionally, to the best of our knowledge, there is no existing method that is able to

tackle both compound activity prioritization and selectivity prioritization problems

at the same time.

We develop the Differential Compound Prioritization via Bi-Directional Selectiv-

ity Push with Power method [19; 20] (denoted as dCPPP) to tackle both compound

activity ranking and selectivity prioritization problems within one differential model.

In specific, the dCPPP method consists of three components:

1. A compound scoring function, which produces a score for each compound in a

bioassay that will be used to rank the compound in the bioassay. The scoring

function uses bioassay-specific compound features to calculate the scores.

2. An activity ranking model, which learns the compound scoring function and

approximates the ranking structure among all compounds in a bioassay. The

learning is via minimizing the pairwise ordering errors introduced by the scoring

function.

3. A bi-directional selectivity push strategy, which preferably pushes up selective

compounds in the activity ranking model of a bioassay, and pushes down the com-

pounds in the model that are selective in a different bioassay. The bi-directional

push strategy leverages the ranking difference of selective compounds across mul-

tiple bioassays and alters the activity ranking by pushing selectivity-related com-

pounds in two directions with specific powers.

These three components will be learned simultaneously within one optimization for-

mulation. To the best of our knowledge, this is the first work in which the activity
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and selectivity are both tackled within one differential prioritization model that in-

tegrates multiple bioassays simultaneously. Our experiments demonstrate that the

dCPPP method is able to improve the compound selectivity ranking by 47.00% over

the baseline method while maintaining good ranking structures among both selective

and active compounds.

1.2.3 Precision Drug Selection

While in silico methods for bioassay analysis and compound prioritization help

identify promising drug candidates, the primary goal of precision medicine is to select

the right drugs to the right patients and treat the diseases effectively. Here, we

consider the problem of selecting specific cancer drugs for specific patients.

An appealing option for precision cancer drug selection is via the pan-cancer

scheme [21] that examines various cancer types together. The landscape of can-

cer genomics reveals that various cancer types share driving mutagenesis mechanisms

and corresponding molecular signaling pathways in several core cellular processes [22].

This finding has motivated the most recent clinical trials (e.g., the Molecular Analysis

for Therapy Choice Trial at National Cancer Institute‖) to identify common targets

for patients of various cancer types and to prescribe same drug therapy to such pa-

tients. The pan-cancer scheme is also well supported by the strong pan-cancer muta-

tions [23] and copy number variation [24] patterns observed from The Cancer Genome

Atlas∗∗ project. The above pan-cancer evidence from theories and practices lays the

foundation for joint analysis of multiple cancer cell lines and their drug responses to

prioritize and select sensitive cancer drugs.

Another appealing option for precision cancer drug selection is via the popular off-

label drug use [25] (i.e., the use of drugs for unapproved therapeutic indications [26]).

This is due to the fact that some aggressive cancer types have very limited existing

therapeutic options, while conventional drug development for those cancers, and also
‖https://www.cancer.gov/about-cancer/treatment/clinical-trials/nci-supported/nci-match
∗∗https://cancergenome.nih.gov/
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in general, has been extremely time-consuming, costly and risky [27]. However, a key

challenge for off-label drug use is the lack of knowledge base of preclinical and clinical

evidence, hence, the guidance for drug selection in practice [28].

Current computational efforts for precision cancer drug selection [29] are primarily

focused on using regression methods (e.g., random forests [30], kernel based meth-

ods [31], ridge regression [32], deep neural networks [33]) to predict numerical drug

sensitivity values (e.g., in GI50
††, IC50

‡‡), and selecting drugs with optimal sensitivi-

ties in each cell line [34]. The existing regression methods for drug selection, however,

also suffer from the problems as mentioned in Section 1.2.1. That is, the regression

models tend to fit insensitive drugs better than sensitive drugs when the majority of

the drugs are insensitive in a cell line. This situation is even more likely when the cell

line response values for sensitive drugs follow very different distributions than those

of insensitive drugs, and thus appear like outliers. The challenge is that this situation

occurs very frequently in read datasets.

To address the problems in precision drug selection, we develop the Drug Selection

via Joint Push and Learning to Rank method [35] (denoted as pLETORg). In pLETORg,

our goal is to improve the ranking performance of cancer drugs in cancer cell lines for

drug selection. To induce correct ordering of drugs in each cell line in terms of drug

sensitivity, for each involved drug and cell line, we learn a latent vector and score

drugs in each cell line using drug latent vectors and the corresponding cell line latent

vector. The ranking positions of the drugs in a cell line are determined by the scores

generated from drug latent vectors and cell line latent vector. We learn such latent

vectors through explicitly enforcing and optimizing that, in the drug ranking list of

each cell line, the sensitive drugs are pushed above insensitive drugs, and meanwhile

the ranking orders among sensitive drugs are correct.We simultaneously learn from all

the cell lines and their drug ranking structures. In this way, the structural information

of all the cell lines can be transferred across and leveraged during the learning process.

We also use genomics information on cell lines to regularize the latent vectors in
††https://dtp.cancer.gov/databases_tools/docs/compare/compare_methodology.htm
‡‡https://www.ncbi.nlm.nih.gov/books/NBK91994/
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learning to rank. Our experimental results show that the pLETORg method is able to

improve the ranking performance of sensitive drugs by at least 5.81% with statistical

significance over the baseline method.

1.3 Organization

In this thesis, three novel machine learning methods are developed to tackle

the problems in compound prioritization, compound prioritization based on multiple

properties and drug prioritization. Comprehensive experiments and result analysis

are also presented respectively. The rest of this thesis is organized as follows. Chap-

ter 2 presents the problems in compound prioritization and the corresponding solu-

tion, Multi-Assay-Based Compound Prioritization via Assistance Utilization method

(MACPAU), along with the experimental results and analysis. Chapter 3 presents the

problems in compound prioritization based on multiple properties and the correspond-

ing solution, Differential Compound Prioritization via Bi-Directional Selectivity Push

with Power method (dCPPP), along with the experimental results and analysis. Chap-

ter 4 presents the problems in drug prioritization and the corresponding solution,

Drug Selection via Joint Push and Learning to Rank method (pLETORg), along with

the experimental results and analysis. Chapter 5 summarizes the three solutions and

experimental results.
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2. MULTI-ASSAY-BASED COMPOUND PRIORITIZATION
VIA ASSISTANCE UTILIZATION

2.1 Introduction

Drug discovery is a time-consuming and costly process. It is estimated to take

at least 10 to 15 years and approximately $500 million to $2 billion to bring a new

drug to market [1]. To accelerate this process, in silico methods have been exten-

sively developed and adapted as alternatives to in vivo and in vitro methods. These

in silico methods are particularly used for identifying potential drug candidates dur-

ing the early stages of drug discovery, when the number of compounds to be tested

is large and thus it is expensive to conduct wet-lab experiments over all the com-

pounds. The foundation of these in silico methods is laid down by the pioneering

work of Hansch et al. [2; 3], which revealed the existence of the mathematical relations

between the biological activity of a chemical compound and its physicochemical prop-

erties. Since then, significant research efforts have been dedicated to the development

of quantitative methods for modeling Structure-Activity Relationship (SAR) mathe-

matically and predicting compound activities from compound 2D/3D structures and

other properties, etc [4; 5]. Such SAR models have demonstrated a great success in

assisting and accelerating drug discovery [6]. Recent advancement on SAR modeling

is further enabled by more powerful techniques developed from machine learning and

data mining communities [7]. In addition, the scalability of SAR modeling has also

been substantially improved so that much larger regions of the chemical space can

Reprinted (adapted) with permission from J. Liu and X. Ning, “Multi-assay-based compound
prioritization via assistance utilization: a machine learning framework,” Journal of Chemical In-
formation and Modeling, vol. 57, no. 3, pp. 484–498, 2017. Copyright 2017 American Chemical
Society.
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be effectively explored to identify drug-like compounds, owing to the development in

Big Data analytics [8].

On the other hand, compound prioritization, a qualitative counterpart of quantita-

tive SAR modeling, was less emphasized historically but has been recently attracting

attention increasingly, due to the emergence of precision medicine [9]. In many ap-

plications of precision medicine, before the quantitative measurements of compound

activities need to be considered, a set of promising compounds (particularly drugs)

should be first selected for any future investigation. The problem herein naturally

boils down to compound ranking/prioritization, in which only the ordering of com-

pounds matters. Conventional SAR methods cannot be directly adapted to solve the

compound prioritization problem, largely due to the fact that many SAR modeling

approaches have their optimization objectives that do not directly translate to the

objectives for prioritization. For example, in many regression-based SAR models, the

objective is typically to minimize the overall errors between the predicted IC50 values

(a metric used to measure compound activities in inhibiting their targets or other

biological entities [10]) and true IC50 values. However, since the IC50 values for active

compounds can have a wide spread and orders of magnitude difference (e.g., from

1nM to 1µM), the regression models can be easily biased by the values of majority

under the minimal-error objective. Thus, the predicted IC50 values from such regres-

sion models may lose the structural relations in terms of their value ordering. Very

complicated regression models can be applied to deal with the order difference among

IC50 values, but they tend to be overfitted, particularly when the value distribution is

highly screwed. Compared to regression, classification-based SAR models suffer from

mis-ordering even worse because majority of classification approaches only learns from

class labels and predicts class labels. Their predicted quantitative measurements are

not intended for ranking purposes.

In this manuscript, we present our systematic studies on compound prioritiza-

tion and our new machine learning approaches to conduct and improve compound

prioritization. Current development on computational approaches for compound pri-
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oritization is mainly focused on devising advanced ranking algorithms that better

learn the ordering among compounds [11]. However, such methodologies are funda-

mentally limited by the scarcity of available data, particularly when the screenings

are conducted at a relatively small scale over known promising compounds. In this

work, we take a complementary perspective, that is, using an existing strong rank-

ing algorithm, we improve its performance by delicately incorporating more useful

information in model training. In specific, we address the questions whether we can

leverage the structures of the chemical space and the bioassay space, and collectively

build and improve individual ranking models. We propose a unified system in which

improved compound prioritization models are achieved through three decoupled steps:

1). select a set of additional bioassays which are very likely to exhibit useful informa-

tion for a better ranking model for the target of interest; 2). select a set of compounds

from these bioassays that are very likely to help improve the ranking model quality;

and 3). incorporate such compounds together with the known compounds for the

target of interest and build a ranking model.

We have developed different approaches for selecting additional assistance bioas-

says and assistance compounds. The bioassay selection methods are developed based

on the intuition that if two bioassays have similar compounds and similar orders

among the compounds, then they are likely to provide useful information to each

other. Therefore, a critical component of the proposed system is to measure bioassay

similarities that capture the most pertinent signals for potential model improvement.

We have developed a suite of assistance bioassay selection methods that measure

bioassay similarities based on their involved compounds and their orders. Similarly,

we have developed a set of assistance compound selection methods based on com-

pound similarities and their positions in compound ranking. Our experiments over a

large collection of bioassays demonstrate an overall 8.34% improvement on the rank-

ing performance over the state of the art. We also provide guided solutions as to

which selection methods to use based on bioassay properties. Note that compound

ranking does not require that the involved bioassays have to be of same type or follow



18

a same protocol. Therefore, the proposed framework has a much larger use scenario

and is able to connect heterogeneous bioassays (i.e., target-specific and cell-based).

The rest of the article is organized as follows. Section 2.2 presents the literature

review on related work. Section 2.3 presents the overview on the new developed meth-

ods for better compound prioritization. Section 2.4 presents the assistance bioassay

selection methods. Section 2.5 presents the assistance compound selection methods.

Section 2.6 presents the assistance compound incorporation approaches. Section 2.7

provides the fundamental computational tools. Section 2.8 presents the experimental

results. Section 2.9 presents the conclusions and discussions.

2.2 Related Work

2.2.1 In Silico Methods for Bioassay Data Analysis

A bioassay is a type of scientific experiment used to determine the biological activ-

ities of compounds [12]. The results from bioassays inform and direct the entire drug

discovery process [1]. Significant amount of research efforts in knowledge discovery

from bioassay data is on finding the the relations between the chemical structures of

compounds and their bio-chemical properties expressed in the bioassays [13]. For ex-

ample, Structure-Activity Relationship (SAR) [2; 3], the relation between compound

bioactivity (i.e., the capability of binding to targets with high affinities) and their

physicochemical structures, is among the most interested relations from binding bioas-

says. Another interested relation is Structure-Selectivity Relationship (SSR) [14] that

measures the relation between compound selectivity (i.e., the capability of binding to

its target with much higher affinity than to other proteins) and their physicochemical

structures.
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Classification and Regression Methods

Classification and regression have dominated the computational methods to ana-

lyze bioassay data, particularly in finding SAR and SSR. These methods typically rep-

resent each compound in the bioassays by certain fingerprints that capture compound

characteristics and properties, and then build a classification or regression model over

the compounds using their fingerprints. Popular features include Extended Connec-

tivity Fingerprints (ECFP)∗, Maccs keys†, and Frequent Sub-structures [15]. These

computational methods include Support Vector Machines (SVM) [16; 17], Support

Vector Regressions (SVR) [18], Neural Networks [19], Partial Least-Squares [20; 21],

Kernel Partial Least-Squares [22], random forests [23], Bayesian matrix factoriza-

tion [24], and Naïve Bayesian classifiers [25].

These classification and regression approaches typically use both active and inac-

tive compounds which together provide differentiable signals. However, in compound

prioritization applications, typically only active compounds are available and their

correct ranking orders are interested. This results in fewer, and in principle more

similar, training data for compound prioritization, and thus the ranking problem

becomes more difficult.

Model Improving Schemes

Various computational schemes have also been developed to improve computa-

tional methods for bioassay data analysis. Such schemes include semi-supervised

learning [26; 27], in which additional useful (un-labeled) compounds from different

bioassays are incorporated to improve model performance; multi-task learning [27; 28;

29; 30], in which multiple related models for multiple bioassays are learned together

to improve model performance and generalizability; classifier ensembles [27; 31; 32],

in which multiple models are combined to produce more robust and accurate results;
∗Scitegic Inc, http://www.scitegic.com.
†MDL Information Systems Inc, http://www.mdl.com.
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and active learning [33], in which additional compounds are actively selected and used

to train a better model.

In terms of SAR modeling schemes, a special class of methods is based on multi-

assay “affinity fingerprint” [34; 35; 36; 37; 38; 39]. In Villar’s pioneering Target-Related

Affinity Profiling (TRAP) method [34; 35; 36], the affinity profiles of compounds

against a set of diverse bioassays are used as the fingerprints of the compounds. Such

affinity fingerprints represent signals of assessible features and shapes of the com-

pounds across bioassays, and they can be used to prioritize compounds for a target

of interest. In Bender’s method [37], instead of real affinity values, Bayes scores pro-

duced from empirical Bayesian SAR models over a set of targets are used as the Bayes

affinity fingerprints for compounds. Such fingerprints are used for database search

and thus compound prioritization. Similarly, Lessel et. al. [38] use the docking scores

of compounds against a set of reference binding sides as the compound fingerprints.

Martin’s profile-QSAR method [39] use empirical Bayesian SAR’s to first predict and

profile activities of compounds against a set of targets within a same protein family.

Such profiles are further used in a regression for direct activity prediction for a new

target. All these methods combine activity information from other assays within the

assay of interest to improve virtual screening.

The reason why many of these schemes are able to improve computational ap-

proaches in SAR and SSR is largely due to the well established chemogenomics princi-

ples [40; 41; 42], which demonstrate that proteins belonging to a same protein family

tend to bind to similar compounds. Therefore, by collectively learning models for

proteins from a same protein family and having the signals from those proteins trans-

ferred across, the model performance for each involved protein could be improved.

However, in the case of compound ranking, the chemogenomics principles may not

necessarily be an optimal scheme. Actually, it may hinder the ranking performance

improvement. For example, if two proteins of a same family have similar active com-

pounds of very different orders, the model from one protein may substantially confuse

that of the other one. Thus, new schemes beyond chemogenomics are desired to work
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for compound ranking. In this manuscript, we develop such schemes from a purely

data-driven perspective. In addition, the existing methods do not easily scale to a

large and heterogeneous set of targets (e.g., a large set of protein targets from dif-

ferent protein families), but require normalization among the involved targets and

their SAR models (e.g., the predicted affinity scores need to be calibrated in order to

be comparable in affinity fingerprints). In this manuscript, the schemes that we will

develop will be easily scalable and do not require normalization across targets.

2.2.2 Learning to Rank

Learning to rank (LETOR) [43; 44] is a research area in Computer Science, where

the focus is on developing ranking models via learning. It has drawn tremendous in-

terest in the past decade particularly in Information Retrieval (IR). Existing LETOR

methods fall into three categories: 1). pointwise methods [45], 2). pairwise meth-

ods [46] and 3) listwise methods [47]. Listwise methods model the full combinatorial

structures of ranking lists, while pairwise methods model pairwise ranking relations

and pointwise methods model individual scores that are used later for sorting (similar

to regression).

The idea of using LETOR approaches to prioritize compounds has also drawn

some attention [48]. For example, Agarwal et al. [11] developed the idea of bipartite

ranking [49] to rank chemical structures such that active compounds and inactive

compounds are well separated in the ranking lists. Thus, inactive compounds are

used in the ranking algorithm, which could provide substantial information to push

active compounds toward the top of the ranking lists. However, in many applications,

inactive compounds are not trustworthy due to, for example, the lack of elaborate

evaluation and validation. In addition, the ordering among inactive compounds is

less interested. Pointwise methods include those of Jorissen et al. [50] and Geppert

et al. [51]. They use SVMs to rank compounds in a bioassay to detect active com-

pounds and perform similarity search, respectively. However, these methods do not
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optimize compound ranking structures. They utilize the scores produced from SVMs

for ranking, which are originally intended for classification. The above methods are

all applied on bioassays that are relatively large, which can be distant from real ap-

plications. Meanwhile, they all focus on ranking within one bioassay and thus lack

the capability of exploring beyond the particular bioassay.
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Table 2.1.: Notations

(a) Bioassays and Compounds

notations meanings
c compound
B bioassay
Ci the set of compounds in Bi

RMi ranking model learned from Ci (also denoted as bSim0)
Bj

i the j-th assistance bioassay for Bi

Cj
i the set of compounds in Bj

i

B+
i the set of assistance bioassays for Bi (i.e., B+

i = ∪jBj
i)

C+
i the set of assistance compounds for Bi (C+

i ⊆ ∪jC
j
i )

RM+
i ranking model learned from Ci ∪ C+

i

ri ground-truth ranking list for Ci

r̃i predicted ranking list of Bi using RMi

r̃i→j predicted ranking list of Bj using RMi

(b) Bioassay Similarity

notations meanings
bSimx cross-ranking based bioassay sim-

ilarity
bSimcix bSimx using CI

bSimalx bSimx using ranking alignment
bSimp profiling based bioassay similarity
bSimalp bSimp using ranking alignment
bSimcsp bSimp using compound similarity

(c) Aggregated Compound Similarity

notations meanings
cSimmax the maximum compound sim-

ilarity
cSimmin the minimum compound simi-

larity
cSimavg the average compound simi-

larity
cSimpos the ranking position dis-

counted compound similarity

(d) Scoring Schemes for Ranking Alignment

notations meanings
alinScidn compound identity based scoring
alinScsim compound similarity based scoring
alinSrpos scoring with ranking position discounted

(e) Other Notations

notations meanings
CI concordance index
Tanimoto Tanimoto compound similarity
cp �r cq cp is ranked higher than cq in ranking list

r
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2.3 Method Overview

Inspired by our previous work on multi-assay based SAR modeling [27], we decom-

pose the problem of improving compound ranking for a bioassay Bi into the following

three sub-problems:

• Which bioassays can be used to improve Bi’s ranking model RMi;

• Which compounds from such bioassays can be utilized to improve RMi; and

• How such compounds can be incorporated to improve RMi.

Here the bioassay Bi, whose ranking model RMi is to be improved, is denoted as

the target bioassay. The other bioassays that are selected to help improve the tar-

get bioassay’s ranking model are thus denoted as the assistance bioassays, and the

compounds from such assistance bioassays that are incorporated for better RMi are

denoted as the assistance compounds. In addition, the improved RMi is denoted as

RM+
i , Thus, the ranking model improvement procedure is decomposed into three steps

in sequence: 1). assistance bioassay selection, 2). assistance compound selection, and

3). assistance compound incorporation. The overview of the framework is presented

in Figure 2.1. Such a decomposition is expected to significantly reduce the complexity

target
bioassay Bi

assistance
bioassays B+

i

assistance
compounds C+

i

new training
data Ci ∪ C+

i

original
model RMi

new model RM+
i

assistance bioas-
say selection
bSimalx , bSimcix ,
bSimalp , bSimcsp

assistance com-
pound selection
cSimmax, cSimmin,
cSimavg, cSimpos

compound in-
corporation

Fig. 2.1.: Framework Overview

of the problem, and meanwhile enable necessary interpretability along the course. In

the rest of this section, we discuss our approaches for each of the steps. Table 2.1 lists

all the notations that are used in this manuscript. In Section 2.4, Section 2.5 and
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Section 2.6, we discuss assistance bioassay selection, assistance compound selection

and assistance compound incorporation, respectively. In Section 2.7, we discuss the

computational tools that are used in the system.

2.4 Assistance Bioassay Selection

The ideal assistance bioassays for the target bioassay Bi are expected to provide

auxiliary information, carried out by consequential assistance compounds, with which

Bi’s ranking model RMi can be improved. A key question here is what such auxiliary

information could be in the context of ranking. In active learning for classification,

auxiliary information could be additional strong positive/negative signals that help

bias the classification boundary toward the right direction. In the context of regres-

sion, auxiliary information could be additional data samples that help better reveal

the underlying data distribution. Unfortunately, such options from classification and

regression do not directly apply for ranking as ranking focuses on the ordinal relations

across multiple instances. Thus, we expect that auxiliary information from assistance

bioassays could be the information that helps strengthen, remedy or reconstruct the

desired reference/ordinal structures among the compounds in the target bioassay.

Furthermore, assistance bioassays should be the ones that sufficiently exhibit such

information.

In order to identify sensible assistance bioassays, we need quantitative measure-

ments to evaluate how much auxiliary information each candidate bioassay carries.

However, it is non-trivial to quantify such information content and volume. Instead,

we surrogate them by the similarity between the target bioassay and a candidate as-

sistance bioassay in terms of their ordinal structures, under the hypothesis that if two

bioassays are significantly similar in their ordinal structures, one of them carries aux-

iliary information for the other. In specific, we develop the similarities by comparing

the ordinal structures from the following two aspects:
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• How the target bioassay Bi’s model RMi performs on the candidate assistance bioas-

say. This method represents an indirect comparison of the ordinal structures; and

• How the target bioassay and the candidate assistance bioassay are similar in their

compounds and compound rankings. This is a direct comparison of the ordinal

structures.

These two similarities lead to the following two assistance bioassay selection schemes:

cross-ranking based assistance bioassay selection, and profiling based assistance bioas-

say selection, respectively. From all the candidate bioassays, we select the assistance

bioassays into a set denoted as B+
i , where all the assistance bioassays have the re-

spective bioassay similarities that fall in 98 percentile of all the bioassay similarities.

2.4.1 Cross-Ranking based Bioassay Similarities

The first bioassay similarity measurement is inspired by our previous work that has

been applied for target fishing [52]. The idea is, for the target bioassay Bi, if its ranking

model RMi performs well on another bioassay Bj, then Bi and Bj are similar in terms

of their ranking structures. The underlying assumption is that model RMi captures

and models the signals from Bi’s compound ranking, and the good performance of

RMi on Bj indicates that such signals align well with those from Bj’s ranking. Under

this assumption, the problem further boils down to measuring the performance of

RMi on Bj. Such cross-ranking based assistance bioassay selection scheme is denoted

as bSimx.

To measure the performance of RMi on Bj, we devise the follow two approaches:

1). the first approach, denoted as bSimcix , relies on a standard ranking evaluation

metric; and 2). the second approach, denoted as bSimalx , utilizes sequence-alignment

based ranking comparison. Note that in bSimx we only use RMi on Bj in order to select

assistance bioassays to improve RMi. We don’t use RMj on Bi for RMi improvement

purposes because in addition to RMi, it requires the availability of Bj’s model RMj,

and thus depends on the quality of RMj.
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Concordance Indexing for bSimx (bSimcix )

We first use concordance index (CI; will be discussed later in Section 2.7.2) to

evaluate the ranking performance of RMi on Bj. In this case, RMi ranks Bj into a

ranking list r̃i→j, and CI is then calculated on r̃i→j with respect to Bj’s true ranking

list rj. The higher the CI is, the better the ranking model RMi can predict the

ranking relations in Bj, and thus the more similar Bi and Bj are. Please note that

the similarities calculated from bSimcix are not necessarily symmetric because the CI

calculated from r̃i→j (i.e., ranking that RMi produces for Bj) and ri is not necessarily

the same as the CI calculated from r̃j→i (i.e., ranking that RMj produces for Bi) and

rj.

Ranking Alignment for bSimx (bSimalx )

The concordance index CI measures the entirety of the ranking structures. How-

ever, it is possible that only a certain portion of the ranking structures in Bj will

help, while CI cannot indicate such scenarios. Thus, we develop an alignment based

ranking performance measurement bSimalx (details on ranking list alignment will be

discussed later in Section 2.7.3). The key idea of bSimalx is to identify locally con-

served ranking structures among r̃i→j and rj. If the alignment reveals strong block

structures between r̃i→j and rj, it indicates that RMi is able to reproduce a certain

chunk of orderings in rj, which would be considered for auxiliary information.

2.4.2 Profiling based Bioassay Similarity

The second bioassay similarity measurement is based on the comparison of com-

pound profiles of two bioassays without modeling any of them. If two bioassays have

similar rankings over similar compounds, we consider them as similar and hypothesize

that they carry useful information that can be utilized to assist each other. Under this

hypothesis, the problem can be casted to that, for bioassay Bi and Bj, we compare
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the two ranking lists ri and rj. We develop the following two approaches for ranking

list comparison: 1). the first approach, denoted as bSimalp , compares two ranking

lists ri and rj using alignment; and 2). the second approach, denoted as bSimcsp , com-

pares two sets of compounds Ci and Cj regardless of ranking structures. The approach

bSimcsp is for approach comparison purposes and to make the study complete.

Ranking Alignment for bSimp (bSimalp )

The key idea in profiling-based ranking alignment approach bSimalp is very similar

to that of bSimalx , that is, to measure how similar two rankings are. In specific, we

look at to what extent similar compounds are ranked in similar orders. However, in

bSimalp , instead of aligning r̃i→j and rj as in bSimalx , we align ri and rj and use the

alignment to measure the similarity between Bi and Bj.

Compound Similarities for bSimp (bSimcsp )

In bSimcsp , we compare Bi and Bj by looking at how similar their compounds are,

and thus, the similarity between Bi and Bj is calculated as the average compound sim-

ilarities (Compound similarity will be discussed later in Section 2.7.1). This approach

ignores the ranking ordering among the compounds.

2.5 Assistance Compound Selection

From the identified assistance bioassays, we need to select assistance compounds

that will best help improve the target bioassay Bi’s ranking model. We develop vari-

ous compound similarities to score compounds for selection purposes. We select the

assistance compounds into a set denoted as C+
i which have the respective compound

similarities that fall in 90 percentile of all compound similarities. The selected as-

sistance compounds will be further incorporated with Bi’s original compounds Ci to

train a better ranking model RM+
i for Bi.
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2.5.1 Aggregated Compound Similarities

In order to select assistance compounds from Bi’s assistance bioassays B+
i , we

first union all the compounds from the assistance bioassays into ∪jCj
i . We score each

compound c in ∪jCj
i \ Ci using the maximum/minimum/average of all the similarities

between c and all the compounds in Ci (pairwise compound similarity will be discussed

later in Section 2.7.1). The scoring functions are available in Equation S6, S7 and

S8 in the supporting information. These compound scoring functions are denoted as

cSimmax, cSimmin and cSimavg, respectively.

2.5.2 Discounted Compound Similarities

The above cSimmax, cSimmin and cSimavg compound scoring measurements do not

consider the ranking structures of Bi or B+
i . In order to identify assistance compounds

that could be most useful with respect to the ranking structures of Bi, we score

each compound c in ∪jCj
i \ Ci using its weighted sum of compound similarities with

compounds in Ci, where the weights are defined as a function of the reciprocal of Ci’s

ranking positions. The scoring function is available in Equation S9 in the supporting

information. This compound scoring function is denoted as cSimpos.

2.6 Assistance Compound Incorporation

In order to incorporate the selected assistance compounds in C+
i to improve RMi,

a key question is where to incorporate the new compounds from C+
i into ri for fur-

ther training. We develop the following interpolation scheme to do the assistance

compound incorporation. We first use RMi (i.e., Bi’s baseline model without new

compounds incorporated) to test Ci ∪ C+
i (i.e., Bi’s own compounds Ci and the new

assistance compounds C+
i ). In this way, RMi will generate rankings, denoted as r̃+

i ,

for Ci ∪ C+
i , and thus distribute C+

i ’s compounds among Ci. For each compound in

C+
i , we use its surrounding compounds in r̃+

i that belong to Ci and their true scores



30

in ri (i.e., not the predicted values in r̃+
i ) to interpolate linearly a score for the new

compound. Figure 2.2 demonstrates the linear interpolation.

Ci ∪ C+
i true scores in ri ∪

interpolated scores for C+
i

c1 9.00

c2 7.50

c3 6.00

c4 5.50

c5 4.33

c6 3.17

c7 2.00

r̃+
i

compounds in C+
i

compounds in Ci

= 6.0+1×9.0−6.0
2

= 2.0+2×5.5−2.0
3

= 2.0+1×5.5−2.0
3

Fig. 2.2.: Linear Interpolation

Note that it is possible that when RMi is not strong enough, a new compound

in C+
i can be ranked in between a nonconcordant pair of compounds from Ci. Even

though, since the interpolation uses the true scores from ri, not the predicted scores

from r̃+
i , the interpolated score will still reflect the most possible ordering among

the pair of compounds and the new compound (i.e., the new compound is ranked in

between the old compounds).

2.7 Computational Tools

In this section, we discuss the computational building blocks and concepts that

will be used in the three sub-problems.
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2.7.1 Compound Similarities

In our methods, each compound is represented by their PubChem compound

substructure fingerprints‡. The fingerprints are composed of 881 substructure-keys,

each corresponding to a predefined substructure. If a substructure is present in a

compound, the corresponding dimension in the fingerprint of that compound is set to

1, otherwise 0. The similarity between two compounds c1 and c2 will be computed as

the Tanimoto coefficient [53] of their fingerprints f1 and f2. The Tanimoto coefficient

is calculated as follows,

Tanimoto(c1, c2) =

n∑
k=1

f1kf2k

n∑
k=1

f1kf1k +
n∑
k=1

f2kf2k −
n∑
k=1

f1kf2k

(2.1)

where k goes over all the n (n = 881) dimensions of the fingerprints, and f1k/f2k

is the value at the k-th dimension of f1/f2. Compound similarities calculated as in

Equation 2.1 will be used for compound ranking as in Section 2.8.3, etc.

2.7.2 Concordance Index

Given a true ranking list r and a predicted ranking list r̃, concordance index

(CI) [54] calculates the ratio of correctly ranked pairs (i.e., concordant pairs) in r̃ as

follows,

CI(r, r̃) =
1

|{cp, cq|cp �r cq}|
∑

{cp,cq |cp�rcq}
I(cp �r̃ cq), (2.2)

where cp �r cq represents a pair of compounds cp and cq such that cp is ranked higher

than cq in r, and I is the indicator function,

I(x) =

1, if x is true

0, otherwise
(2.3)

‡ftp://ftp.ncbi.nlm.nih.gov/pubchem/specifications/pubchem_fingerprints.pdf
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A higher CI(r, r̃) value indicates better r̃ (i.e., more concordant pairs are predicted

correctly).

2.7.3 Ranking List Alignment

To align two ranking lists ri and rj, we adopt the popular Smith-Watermann dy-

namic programming algorithm [55] with scoring function variations from two aspects:

1). compound-identity based scoring and 2). compound-similarity based scoring. In

addition, we incorporate a ranking position-specific discount into the scoring func-

tions. The ranking list alignment starts from the top-ranked compounds. The ranking

alignment algorithm is available in Algorithm S1 in the supporting information.

Compound Identity-based Scoring (alinScidn)

In conventional pairwise sequence alignment, the notation of “match” or “mis-

match” between two symbols is defined when the two symbols are same or different.

When there is a “match” or “mismatch”, fixed scores are used to measure its contribu-

tion to the alignment. In aligning ranking lists of compounds using the conventional

pairwise sequence alignment algorithm, the “match” and “mismatch” correspond to

same and different compounds that are aligned, respectively. The scoring algorithm

is available in Equation S4 (line 3 of Algorithm S2) in the supporting information.

We denote this compound identity-based scoring scheme as alinScidn.

Compound Similarity-based Scoring (alinScsim)

We further relax alinScidn to allow “match” and “mismatch” between different and

same symbols (i.e., compounds), respectively, and in this case the score is calculated as

the similarity between the symbols (compounds). Thus, if two compounds are similar,

the algorithm will promote the alignment between them, and ultimately encourage

the alignment between similar subsequences of similar compounds (i.e., the locally
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conserved ranking structures). The scoring algorithm is available in Equation S5

(line 6 of Algorithm S2) in the supporting information. We denote this compound

similarity-based scoring scheme as alinScsim.

Ranking Position-Specific Discount (alinSrpos)

When the top rankings are more concerned, the ranking alignment should focus

more on the top portion of the ranking lists. To differentiate rankings at different

positions of the ranking lists, we incorporate ranking positions in the scoring scheme.

That is, when we score each alignment, we include a ranking position-specific discount

in addition to the alignment score. The ranking position-specific discount increases as

the ranking positions decrease, that is, larger discounts are applied for lower ranked

compounds. The discount function is available in Equation S1 (line 21 of Algo-

rithm S2) in the supporting information. We denote this ranking position-specific

discount as alinSrpos. If alinSrpos is applied together with alinScidn and alinScsim,

the scoring methods are denoted as alinSrposcidn and alinS
rpos
csim, respectively.

2.8 Experiments

2.8.1 Data Preparation

We select a set of bioassays from PubChem BioAssay [56] according to the follow-

ing protocol:

1. Identify all the in vitro and confirmatory bioassays that are biochemical binding

bioassays and that test chemical compounds over only one specific single target;

2. From all the above identified bioassays, find all the bioassays that include at least

one FDA-approved drug ;

3. From all such drug-included bioassays, select all the bioassays that use IC50 [10]

as the activity measurement (i.e., inhibition bioassays);
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4. From all such inhibition bioassays, select a set of bioassays that have 20 - 200

active compounds, where the activity is defined by respective bioassay depositors

based on IC50 thresholds; and

5. From the selected bioassays as above, only use the active compounds and discard

the inactive compounds.

The reason we choose bioassays that have known drugs tested is for applying our

prospective ranking improvement methods in future research as will be discussed in

Section 2.9, where ranking drugs will be the focus. We use inhibition bioassays in order

to have a relatively homogeneous type of bioassays and ground-truth scores. However,

our methods are not restricted to only homogeneous bioassay types. The reason we

further choose bioassays with a certain number of active compounds is to avoid trivial

cases when there are sufficient compounds to train a strong baseline ranking model,

or when there are way too few compounds that limit any ranking algorithms. We only

use active compounds because it is closer to the real scenario when active compounds

(drugs) need to be prioritized, while including inactive compounds may bias the

ranking algorithm to produce good ranking results on inactive compounds that are

not interested.

It is possible that in one bioassay, there are multiple different compounds with

same IC50 values and thus should be ranked same. In this case, we randomly select

one of such compounds and remove the rest from the dataset. This is just to reduce

ties in the rankings and thus unnecessary obstacles for the ranking algorithm as the

purpose is to demonstrate the effectiveness of ranking improvement schemes, not

the ranking algorithms themselves. Out of the above protocol, we end up with 665

bioassays and 11,310 unique compounds involved in these bioassays. On average, each

bioassay has 30.6 compounds, and each compound is involved in 1.80 bioassays. The

statistics over these bioassays is presented in Table 2.2. Figure 2.3 shows the number

of compounds in each of the 665 bioassays. The average number of compounds in the

bioassays is 30.6. The protein targets and encoding genes for these bioassays are listed

in Table S1 in the supporting information. Given the small number of compounds
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Fig. 2.3.: Bioassay Size

in each bioassay and the high compound similarities, the compound prioritization

problem is expected as sufficiently difficult.

Table 2.2.: Dataset Description

#bioassays #compounds avg #cmps avg #bsys avg comp sim

665 11,310 30.6 1.80 0.7854

The column “#bioassays” has the number of bioassays in the dataset. The column
“#compounds” has the total number of unique compounds in the dataset. The
column “avg #cmps” has the average number of compounds in each bioassay. The
column “avg #bsys” has the average number of bioassays that each compound is
involved in. The column “avg comp sim” has the average compound similarity in
each of the bioassays.

2.8.2 Evaluation Metrics

We use the popular concordance index (CI) as discussed in Section 2.7.2 to evaluate

the ranking performance. We did not use Normalized Discounted Cumulative Gain

(NDCG) [57], which is another popular ranking metric. We found in our experiments,

the gains are not well defined, and a careless assignment of gain values will lead to

strong bias in the evaluation, or insensitive NDCG values to the model improvement.



36

We did not use precision@k or accuracy@k either, because all the compounds involved

are all positive compounds and thus precision is not defined.

2.8.3 Ranking Algorithm

We use the ranking algorithm SVMrank [58] and its implementation § as the basic

ranking algorithm. The key idea of SVMrank is to decompose a ranking list into

a set of instance pairs, and assign a positive label to each concordant pair and a

negative label to each nonconcordant pair. Then the ranking problem is converted

to a standard classification problem which is solved by Support Vector Machines

(SVM). Previous research [48] demonstrates that SVMrank is a strong algorithm

for compound ranking tasks. There exist other ranking algorithms [11] which show

superior performance on certain large datasets. We compared such algorithms with

SVMrank in training baseline ranking models and observed that SVMrank has even

better performance (average CI 0.679) than these algorithms on our datasets (e.g.,

the algorithm in [11] has average CI 0.514). This could be due to the fact that the

bioassays used in the experiments are small and contain only active and very similar

compounds compared to the benchmark SAR datasets used in other work [11; 48],

which are typically large and have dissimilar compounds. Given this observation,

we use SVMrank as the ranking algorithm in our experiments. We use Tanimoto

coefficient as defined in Equation 2.1 in Section 2.7.1 as the kernel in SVMrank.

It is demonstrated that Tanimoto coefficient is a valid kernel (i.e., positive semi-

definite) [53].

2.8.4 Experimental Protocol

We apply 5-fold cross validation [59] in evaluating ranking performance. Each

bioassay is randomly split into 5 folds of compounds for 5 runs of experiments. In

each run, 4 folds are used for training and the rest fold is used for testing. The perfor-
§https://www.cs.cornell.edu/people/tj/svm_light/svm_rank.html
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mance is the averaged result from the 5 experiments. All the involved parameters are

optimized via grid search. In each experiment, all the bioassay similarities are calcu-

lated using the compounds from training data only. That is, we ensure that all the

testing data is not observed during training. Note that through the above 5-fold cross

validation protocol, parameters for each model on a bioassay (e.g., the baseline SVM

models) are selected via grid search, and therefore, the 5-fold cross validation protocol

enables model selection for each model type on each bioassay. In addition, the cross

validation protocol also enables model selection from multiple different models (i.e.,

assistance bioassay selection methods and assistance compound selection methods)

so as to decide for each bioassay which improvement model is optimal. This is done

by using the 4-fold training data in each run for bioassay similarity calculation with

other bioassays (all their 5-fold data), and thus the corresponding assistance bioas-

say selection. Similarly, the compound similarities are calculated using the 4-fold

training data and the compounds from the selected bioassays. For each bioassay, we

tested all the combinations of assistance bioassay selection and assistance compound

selection methods. The combination that produces the best average improvement on

the baseline models over the 5 folds will be identified as the optimal improvement

method.

2.8.5 Experimental Results

Baseline Model Performance

We train the standard (i.e., no assistance compounds incorporated) SVMrank

models for each bioassay as the baseline. These baseline models are trained using

their respective optimal parameters (e.g., c in SVMrank), which are identified through

grid search and cross validation. The baseline model performance is presented in

Figure 2.4. The average CI for the 665 bioassays is 0.679, with a standard deviation

0.108. Out of the 665 bioassays, 34 bioassays have baseline CI below 0.5 (i.e., the

baseline model performance is even worse than random).
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Fig. 2.4.: Baseline Model Performance

Figure 2.5 shows the relation between the average compound similarity within

a bioassay and the baseline model performance, and Figure 2.6 shows the relation

between the bioassay size (i.e., number of compounds in a bioassay) and baseline

model performance. These 34 bioassays, which have baseline CI below 0.5, have rel-
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Fig. 2.5.: Bioassay Compound Similarity vs Baseline Model Performance

atively large compound similarities and small bioassay size. Both of the two factors

contribute to the significant difficulties of the ranking problems, because the baseline

models have to differentiate and rank similar compounds from only very limited in-

formation. Overall, however, Figure 2.5 does not show a strong negative correlation

between compound similarity within a bioassay and baseline performance as typi-

cally observed in many classification problems. Similarly, Figure 2.6 does not show

a strong positive correlation between bioassay size and baseline performance. These
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Fig. 2.6.: Bioassay Size vs Baseline Model Performance

two observations indicate that the involved ranking problems could be highly non-

trivial and heterogeneous, and therefore different bioassays may require very different

approaches to improve their ranking performance.

Overall Best Performance Comparison

In this section, we show the best performance over all the bioassays. That is, for

each bioassay, we look at its best improved model and the corresponding assistance

bioassay and assistance compound selection methods. We will evaluate individual

assistance bioassay selection and assistance compound selection methods later in Sec-

tion 2.8.5 and Section 2.8.5, respectively.

Best Performance Analysis Table 2.3 shows the overall performance of the new

methods on the top-10 bioassays whose baseline model performance is above 0.5 and

on which the ranking performance is improved most significantly (i.e., the methods

are the ones that introduce the most significant improvement for the bioassays. The

10 bioassays are the ones which have the most significant improvement in all the

bioassays). The complete overall performance results are available in Table S3 in the

supporting information. Out of the 665 bioassays (including the 34 bioassays whose

baseline model performance is below 0.5), the new developed methods are able to

improve the ranking performance for 607 bioassays (i.e., 91% of all the bioassays)
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Table 2.3.: Overall Performance Comparison

Bi |Ci| RMi RM+
i imprv (%) bSim alinS |B+

i | cSim |C+
i |

261405 16 0.533 0.800 50.00 bSimcsp - 9 cSimavg 43

149865 22 0.533 0.747 40.00 bSimcix - 6 cSimmax 29

264807 18 0.600 0.833 38.89 bSimcsp - 3 cSimavg 24

274062 22 0.653 0.867 32.65 bSimalx alinS
rpos
cidn 7 cSimmax 42

241231 21 0.633 0.840 32.63 bSimalp alinS
rpos
csim 5 cSimmax 28

626142 26 0.513 0.680 32.47 bSimalp alinScsim 7 cSimmin 18

389657 26 0.587 0.773 31.82 bSimalx alinS
rpos
cidn 8 cSimmax 35

260896 22 0.553 0.700 26.51 bSimcix - 4 cSimmax 32

319592 20 0.633 0.800 26.32 bSimalx alinS
rpos
csim 6 cSimpos 44

255080 20 0.633 0.800 26.31 bSimalp alinS
rpos
csim 3 cSimmax 30

The column corresponding to “Bi” has the bioassay AIDs from PubChem. The column corre-
sponding to “ |Ci|” has the bioassay size. The column corresponding to “RMi” shows the baseline
model performance. The column corresponding to “RM+

i ” has the best improved model perfor-
mance. The column corresponding to “imprv (%)” has the improvement of the best model (i.e.,
RM+

i ) over the baseline model (i.e., RMi) in percentage. The columns corresponding to “bSim”
and “cSim”, respectively, show the assistance bioassay selection method and the assistance com-
pound selection method that result in the best improvement. The column corresponding to
“alinS” has the ranking list alignment scoring schemes used in cSim, if applicable. The columns
corresponding to “ |B+i |” and “|C+i |”, respectively, show the number of assistance bioassays and the
number of assistance compounds incorporated in the improved model.

with 9.24% best improvement on average. For all the 665 bioassays, the average

best improvement is 8.34%. Each bioassay needs 5.23 assistance bioassays and 25.41

assistance compounds on average in the new methods of best improvement. Compared

to the average size of the bioassays (i.e., 30.6), the best methods require about same

number of compounds to achieve significant improvement. We conducted a paired

t-test on the baseline model performance and the best model performance for those

607 bioassays. The test shows a p-value 1.08× 10−135, demonstrating the significance

of the performance improvement.
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For the rest 58 bioassays whose baseline models are not really improved, we ob-

served that these bioassays have an average intrinsic compound similarity as 0.8155,

while the average intrinsic compound similarity of those 607 improved bioassays is

0.7824. This indicates that a possible reason for no improvement over the 58 bioassays

is the high homogeneity of their compounds and thus more difficulties in ranking.

For those 34 bioassays whose baseline model CI is below 0.5, 25 bioassays have

their improved CI above 0.5. For those 25 improved bioassays, we conducted a t-test

over random model performance (i.e., 0.5) and the best improvement from the new

developed method. This t-test shows a p-value 2.5× 10−3, demonstrating the signif-

icant difference of the improved performance from random performance. Excluding

these 34 bioassays, out of the 631 bioassays whose baseline model CI is above 0.5, the

new developed methods are able to improve the ranking performance for 573 bioas-

says (i.e., 91% of all the bioassays) with 8.04% best improvement on average. For all

the 631 bioassays, the average best improvement is 7.20%.

Figure 2.7 shows the relation of baseline model performance and performance im-

provement (in percentage). Table 2.4 presents the performance improvement with

respect to different baseline model performance. Both Figure 2.7 and Table 2.4

demonstrate that the new methods are particularly effective in improving ranking

performance when the baseline ranking performance is poor.
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Fig. 2.7.: Baseline Model Performance vs Best Improvement
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Table 2.4.: Best Performance Improvement

baseline [0.2, 0.3) [0.3, 0.4) [0.4, 0.5) [0.5, 0.6)

best imprv (%) 68.75 28.39 26.73 12.57)
baseline [0.6, 0.7) [0.7, 0.8) [0.8, 0.9) [0.9, 1.0]

best imprv (%) 8.55 4.75 3.83 0.35

The rows corresponding to “baseline” present the baseline model per-
formance (characterized into intervals). The rows corresponding to
“best imprv (%)” present the corresponding average improvement of
the best model over the baseline model in percentage.

Figure 2.8 presents the number of bioassays that can be improved by certain com-

binations of assistance bioassay selection and assistance compound selection methods.

Figure 2.9 presents the average percentage of improvement from such combinations.

In terms of the number of improved bioassays, the top-5 best performing combina-

tions of assistance bioassay selection and assistance compound selection methods are:

bSimcsp

bSimcix

bSimalp (alinS
rpos
cidn)

bSimalp (alinScidn)

bSimalp (alinS
rpos
csim)

bSimalp (alinScsim)

bSimalx (alinS
rpos
cidn)

bSimalx (alinScidn)

bSimalx (alinS
rpos
csim)

bSimalx (alinScsim)

cSim avg

cSim max

cSim min

cSim pos

230

250

270

290

Fig. 2.8.: Number of Improved Bioassays by Different Methods

1. bSimalx (alinScsim) + cSimmax (296 improved bioassays)

2. bSimalx (alinSrposcsim) + cSimpos (286 improved bioassays)



43

3. bSimalx (alinScsim) + cSimpos (286 improved bioassays)

4. bSimalx (alinScsim) + cSimavg (285 improved bioassays)

5. bSimalx (alinSrposcidn) + cSimmax (284 improved bioassays)

Among the top-5 best performing selection combinations in terms of the number

of improved bioassays, three of them use bSimalx (alinScsim). Therefore, in general,

bSimalx (alinScsim) is one of the best performing bioassay selection methods when

the number of improved bioassays is concerned. Similarly, alinScsim is the best

performing compound scoring scheme for alignment, and cSimmax and cSimavg are the

best performing assistance compound selection methods.

In terms of the average improvement, the top-5 best performing combinations of

assistance bioassay selection and assistance compound selection methods are:

bSimcsp

bSimcix

bSimalp (alinS
rpos
cidn)

bSimalp (alinScidn)

bSimalp (alinS
rpos
csim)

bSimalp (alinScsim)

bSimalx (alinS
rpos
cidn)

bSimalx (alinScidn)

bSimalx (alinS
rpos
csim)

bSimalx (alinScsim)

cSim avg

cSim max

cSim min

cSim pos

4.5

5.5

6.5

Fig. 2.9.: Percentage (%) of Improvement by Different Methods

1. bSimalx (alinSrposcsim) + cSimavg (6.77% average improvement)

2. bSimalx (alinSrposcsim) + cSimpos (6.67% average improvement)

3. bSimalx (alinSrposcsim) + cSimmax (6.62% average improvement)

4. bSimalx (alinSrposcidn) + cSimmin (6.61% average improvement)

5. bSimalp (alinScsim) + cSimmax (6.55% average improvement)
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Among the top-5 best performing selection methods in terms of percentage im-

provement, three of them use bSimalx (alinSrposcsim). Thus, in general, bSimalx (alinSrposcsim)

is one of the best performing assistance bioassay selection methods when the percent-

age improvement is concerned. Similarly, alinSrposcsim is the best performing compound

scoring scheme, and cSimmax is the best performing assistance compound selection

method.

Overall, bSimalx (alinSrposcsim) is one of the best performing assistance bioassay se-

lection methods when both the number of improved bioassays and the percentage

improvement are concerned, and cSimmax is one of the best performing assistance

compound selection methods. This indicates that bioassay similarities calculated

from cross-ranking based list alignment with compound similarity-based scoring with

positional discount schemes are effective in capturing signals from bioassays that can

be leveraged for model improvement.

Another commonly used protocol for model selection is through a validation set.

However, given the fact that the bioassays used in our experiments are small in general

(the average number of compounds per bioassay is 30.6 as indicated in Table 2.2), if a

significant portion of the bioassays is held out for validation and testing, there will be

insufficient training compounds to train good models. However, to further validate

the performance of the new methods under this validation-set based model selection

protocol, we conducted corresponding experiments on a set of 41 bioassays out of

the 665 bioassays which have more than 60 compounds. Each of the 41 bioassays is

randomly split into 5 folds of compounds for 5 runs of experiments. In each run, 3

folds are used for training, 1 fold for validation and 1 fold for testing. The experiments

show 3.27% average improvement from the best improvement models over the baseline

models, compared to 2.19% average improvement from the cross validation setting.

This demonstrates that the new models do have the capability of improving baseline

model performance. This also consolidates our conclusion that the scarcity of data

would result in lower performance, and that with our protocol, the low performance

could be largely improved.
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Fig. 2.10.: Assistance Relations among Bioassays

Bioassay Assistance Relations Figure 2.10 presents the assistance relations among

a set of bioassays. The full relations are available in Figure S1 in the supporting infor-

mation. The details on the assistance relation generation are provided in Section S6 in

the supporting information. In Figure 2.10, each node represents a bioassay (the num-

bers on nodes are the bioassay AIDs from PubChem). A directed edge from a node vj

to another node vi represents that bioassay Bj is selected as an assistance bioassay for

bioassay Bi, and the width of the edge represents the number of assistance compounds

selected from Bj. The selection methods are color-coded along the edges. Figure 2.10
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shows there are some bioassays which are selected as assistance bioassays more fre-

quently than others. For example, bioassay 625217 serves as an assistance bioassay

for several other bioassays including bioassay 685045, 694143 and 750737. Bioassay

625217 has 120 active compounds and it is one of the largest bioassays in the dataset.

However, this bioassay is identified as an assistance bioassay via different methods for

the different bioassays. This indicates that different bioassay selection methods are

able to identify different signals from bioassays. There are some interesting relations

in Figure 2.10. For example, bioassays 625151, 625153 and 625154 are all assistance

bioassays for bioassay 270514 but they are not assistance bioassays for each other.

Bioassay 625151, 625153 and 625154 target muscarinic acetylcholine receptor M1, M2

and M3, respectively, and they share 53 common compounds. Bioassay 270514 tar-

gets tachykinin receptor 1. Both muscarinic acetylcholine receptors and tachykinin

receptors belong to the family of G protein-coupled receptors (GPCR) and are heavily

involved in the enteric nervous system. Relations of muscarinic acetylcholine receptors

providing useful information to help ranking compounds of tachykinin receptors may

indicate novel knowledge about the two sets of proteins. We will further investigate

such relations and similar relations presented in Figure 2.10 in our future work.

Guided Decision Rules on Choosing Bioassay Selection Methods As Fig-

ure 2.8 and Figure 2.9 indicate, different combinations of assistance bioassay selection

and assistance compound selection methods have different behavior. Therefore, we

explored principled ways to determine which methods to use based on bioassay char-

acteristics. In particular, we considered assistance bioassay selection methods as they

represent the first step in the model improvement process. Once bioassay selection

methods are determined, assistance compound selection methods can be determined

correspondingly based on the top results in Figure 2.8 and Figure 2.9.

We consider the 10 bioassay selection methods (i.e., bSimcsp , bSimcix , bSimalp (alinSrposcidn),

bSimalp (alinScidn), bSimalp (alinSrposcsim), bSimalp (alinScsim), bSimalx (alinSrposcidn), bSimalx (alinScidn),

bSimalx (alinSrposcsim), bSimalx (alinScsim)) as 10 classes, and the baseline model RM as an



47

additional bioassay selection method/class (i.e., selection of no additional bioassays;

here we use bSim0 to represent the baseline method). Thus, the problem is formu-

lated as to classify each bioassay to one of the classes (i.e., assign each bioassay to one

of the methods that is most likely to enable a better model on the bioassay). This

is a typical multi-class classification problem [60] and we solve the problem using a

decision tree [61]. In addition to performing multi-class classification, decision trees

will also generate interpretable rules that can explain and direct the decision making

during the classification process.

We constructed a set of 23 features for each bioassay and assigned a class label to

each bioassay in our dataset. The class label corresponds to the best performing as-

sistance bioassay selection method for the particular bioassay, or the baseline method

if none of the selection methods shows improvement. The 23 features for a bioassay

Bi include the following:

• 1-10). Mean of the bioassay similarities between Bi and the other bioassays using

the 10 different bioassay similarities, respectively;

• 11-20). Standard deviation of the bioassay similarities between Bi and the other

bioassays using the 10 different bioassay similarities, respectively;

• 21). Number of compounds in Bi (i.e., |Ci|);

• 22). Average pairwise compound similarity in Bi (i.e., 1

|Ci||Ci|

∑
c∈Ci

∑
c′∈Ci Tanimoto(c, c′),

denoted as cSim0); and

• 23). Baseline model (i.e., RMi or bSim0) performance (in CI).

These features are designed so as to capture the intrinsic properties of the bioassays

themselves and the relations across bioassays that may determine their corresponding

assistance bioassay selection methods. Details on the decision tree learning is available

in Section S3 in the supporting information.

Figure 2.11 presents the first few levels of a decision tree that is learned from

such features. The decision tree in Figure 2.11 demonstrates that the profiling-based

bioassay similarities using compound similarities (i.e., bSimcsp ) is the most important

factor to decide what bioassay selection methods to use. Interestingly, this is inde-
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bSimcsp
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α = 0.51, β = 32.5, γ = 0.07, η = 0.10, λ = 0.03, θ = 0.05, κ = 1.06, φ = 0.12,
ω = 0.08, σ = 0.14, ψ = 0.86
opts1: bSimalp (alinScsim)

opts2: bSimalp (alinSrposcidn), bSimalp (alinScsim), bSim0

opts3: bSimalp (alinSrposcidn), bSimalx (alinScidn), bSimalx (alinSrposcidn)

opts4: bSimalp (alinScsim), bSim0, bSimalx (alinSrposcidn)

opts5: bSim0, bSimalp (alinScidn), bSimcsp

opts6: bSimalx (alinScidn), bSimalx (alinScsim), bSimalp (alinScsim),
bSimalx (alinS

rpos
cidn), bSimalp (alinScidn)

opts7: bSimalx (alinS
rpos
cidn), bSimalp (alinS

rpos
cidn), bSimalx (alinScidn), bSimalp (alinScidn),

bSimalp (alinScsim)

opts8: bSimalx (alinSrposcsim), bSimalp (alinScidn), bSimalx (alinScidn), bSimalx (alinScsim),
bSimcix

opts9: bSimalp (alinScsim), bSimalp (alinSrposcidn), bSim0, bSimcsp , bSimalx (alinSrposcsim)

opts10: bSim0, bSimalp (alinSrposcidn), bSimalx (alinScidn), bSimalp (alinScsim),
bSimalx (alinSrposcsim)

opts11: bSimalp (alinScsim), bSimalp (alinS
rpos
cidn), bSimalx (alinS

rpos
cidn), bSimalx (alinScidn),

bSimalx (alinScsim)

opts12: bSim0, bSimalp (alinSrposcidn)

Note: each leaf node represents a ranking list of bioassay selection methods that are
recommended for bioassays in the leaf. The percentage number in parentheses in each
node is the percentage of bioassays which can be improved by the methods in the node.

Fig. 2.11.: Decision Tree on Method Selection
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pendent of the baseline model (RM or bSim0) performance of the target bioassays.

That is, even for bioassays whose baseline models are strong, there is still potential

to improve their models based on compound similarities with other bioassays. Please

note that in decision trees, the nodes that are closer to the root (i.e., on higher levels

in the tree) have more discriminative power.

For the bioassays which have mean of bSimcsp lower than a threshold α (i.e., the

left child of bSimcsp ), the bioassay size (i.e., |Ci|) is the next decision rule to determine

assistance bioassay selection methods. If the mean of bSimcsp is higher (i.e., the right

child of bSimcsp ), the next decision rule is the profiling-based bioassay similarity us-

ing compound ranking alignment, in which compound identity-based scoring scheme

with ranking position-based discount is used (i.e., bSimalp (alinSrposcidn)). The split from

bSimcsp to |Ci| indicates that if the target bioassay is sufficiently different from other

bioassays in its compounds, a good strategy is to look at the intrinsic properties and

see if there is enough information from the target itself to enable a good model. The

split form bSimcsp to bSimalp (alinSrposcidn) indicates that if the target bioassay is suffi-

ciently similar to other bioassays in its compounds, a good option is to leverage other

bioassays.

When |Ci| is concerned, if the target bioassay is too small (i.e., the left child of

|Ci| ≤ β; no sufficient information from the bioassay itself), a rational choice is still

to try to leverage other bioassays (i.e., the left child of |Ci| ≤ β) delicately. It turns

out in this case, profiling-based bioassay similarity using ranking list alignment and

position-based scoring (i.e., bSimalp (alinSrposcsim)) is the first decision rule. If the target

bioassay is large enough (i.e., the right child of |Ci| ≤ β), the first choice is to use the

baseline model bSim0 of the bioassay (i.e., the first choice of opts5)

When the target is sufficiently similar to other bioassays (i.e., right child of the

root), the standard deviation of bSimalp (alinSrposcidn) is the next rule to consider. The

use of alinSrposcidn (i.e., compound identity-based scoring with position-based discount)

indicates the importance of identical compounds and their ranking positions in de-

termining assistance relations across bioassays. When considering the standard de-
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viation of bSimalp (alinSrposcidn), the mean of bSimalp (alinSrposcidn) can be either large or

small. However, the possibility of large bSimalp (alinSrposcidn) mean is less likely due to

the high heterogeneity of all the bioassays. Thus, small bSimalp (alinSrposcidn) standard

deviation (i.e., the left child of bSimalp (alinSrposcidn)) could correspond to the possibility

that all the bSimalp (alinSrposcidn) values are small, and thus intuitively very few common

compounds and/or very different ranking positions for the common compounds. In

this case, it turns out the mean of bSimalx (alinScidn) is the next rule. That is, it

is to detect how the baseline model of the target bioassay can identify the possible

blocks of common compounds with similar ranking orders on the candidate assistance

bioassays.

When the standard deviation of bSimalp (alinSrposcidn) is large (i.e., the right child

of node bSimalp (alinSrposcidn)), it indicates that there are some large bSimalp (alinSrposcidn)

means and thus large number of common compounds and high similar of their ranking

orders. In this case, it turns out bSimcix is the next rule. This implies that the baseline

model of the target bioassay is a good indicator to select assistance bioassays when

there exist good assistance bioassay candidates.

An interesting aspect in the decision tree in Figure 2.11 is that, on the higher

levels of the decision tree, the decision rules are more from profiling-based meth-

ods, while on the lower levels of the decision tree, the decision rules are more from

cross-ranking based methods. This implies that profiling-based bioassay similarities

are more powerful in differentiating bioassays that can be improved from different

assistance bioassay selection methods, and such capability of differentiation could be

scaled to a large set of heterogeneous bioassays. Cross-ranking based methods might

be more powerful within a set of more homogeneous bioassays.

Assistance Bioassay Selection Method Comparison

Based on Figure 2.8 and Figure 2.9, we select the best assistance compound selec-

tion method cSimmax (i.e., the best performing assistance compound selection method



51

in general), and analyze the performance of various assistance bioassay selection meth-

ods with this assistance compound selection method. The full set of experimental

results is available in Table S4 in the supporting information. The detailed results

are available in Table S5- S44 in the supporting information.

Table 2.5 presents the comparison of various assistance bioassay selection methods

when the assistance compound selection method has been fixed to cSimmax. The assis-

tance bioassay selection methods show strong performance improvement once there

is improvement, but also strong performance decline when there is no improvement.

The performance improvement (i.e., imprv(+%) in Table 2.5) is typically greater

than the performance decline (i.e., imprv(−%)). The results show that overall the

improvement (imprv(%) from various assistance bioassay selection methods in Ta-

ble 2.5) is only slightly positive (0.68% at best), and the standard deviation of the

improvement (imprv-std in Table 2.5) is large (∼ 8.00%) . This phenomenon cor-

relates to the relatively high performance improvement (imprv(+%), ∼ 7.00%) once

there is improvement, and also relatively strong performance decline (imprv(−%),

∼ −5.00%) once no improvement is observed. It may also because that the bioassays

are heterogeneous in their ranking structures, and different bioassays have different

optimal assistance compound selection methods.

With cSimmax, in terms of overall improvement, the ten assistance bioassay se-

lection methods do not show significant difference, with bSimalx (alinScsim) slightly

better than the rest. In terms of the average positive improvement (i.e., imprv(+%)),

bSimalx (alinSrposcsim) has better performance (6.62%) than others. This indicates that

somehow the model performance is sensitive to the assistance bioassay selection meth-

ods. One possible reason for this would be the relatively small size of training data (on

average, 30.6 compounds in each bioassay) such that once good assistant bioassays

are incorporated (i.e., significantly amount of useful information is incorporated), the

improvement is significant, but once poor ones are incorporated (i.e., significantly

amount of noisy information is incorporated), the performance drops significantly.

The reason may also relate to the relatively high inherent pairwise compound sim-
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ilarities in each bioassay (0.7854 on average). Once new compounds are included

among the similar compounds, it is possible that the relation between the compound

ranking orders and their compound structures is dramatically changed by the new

compounds, which is also attributed by the small bioassay sizes.

Assistance Compound Selection Method Comparison

Based on Figure 2.8 and Figure 2.9, we select the best assistance bioassay selec-

tion method bSimalx (alinSrposcsim) (i.e., the best performing assistance bioassay selection

method in general), and analyze the performance of various assistance compound

selection methods with this assistance bioassay selection method. The full set of

experimental results is available in Table S4. The detailed results are available in

Table S5- S44.

Table 2.6 presents the comparison of assistance compound selection methods,

where the assistance bioassay selection method has been fixed to bSimalx (alinSrposcsim).

With bSimalx (alinSrposcsim), in terms of overall improvement, the four assistance com-

pound selection methods do not show significant difference, with cSimpos slightly bet-

ter than the rest. In terms of the average positive improvement, cSimavg has better

performance (6.77% on imprv(+%)) than others. The reasons could be also similar to

those for Table 2.5, that is, the relatively small bioassay sizes, high inherent pairwise

compound similarities and high heterogeneity of bioassays.
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2.9 Discussions and Conclusions

We have developed a unified machine learning framework together with various

assistance bioassay and assistance compound selection approaches to build improved

compound ranking models. We also have presented a full spectrum of parameter

studies and performance analysis over all the proposed approaches. In addition, we

have explored principled ways to prioritize bioassay selection and compound selection

methods based on bioassay properties. Our experiments demonstrated that on aver-

age, the best improvement (with the optimal assistance bioassay selection and optimal

assistance compound selection approaches for each bioassay) is 8.34% on average for

a large set of heterogeneous bioassays.

Appropriate Applications The most direct and appropriate applications of the

multi-assay-based compound prioritization models are lead optimization, which typ-

ically involve small homologous series of only active compounds. However, the com-

putational methods in principle are not really limited to lead optimization. They

can be used to do, for example, secondary screening, when the data quality is better

than in high-throughput screening and data size is small; drug selection for cancer

cell lines, when the goal is to rank the most sensitive cancer drugs with respect to

each cell line. In addition to bioactivity and efficacy, the methods can also be used

to train ranking models that rank compounds with respect to their other properties

(e.g., toxicity).

Computational Complexity Currently, it requires in our system that all the

baseline models and pairwise bioassay similarities are calculated, which also involves

a lot of pairwise compound similarity calculation. However, the calculation can be

easily paralleled. For example, the pairwise bioassay similarities between bioassay Bi

and other bioassays, and the similarities between bioassay Bj and other bioassays,

can be fully decoupled and thus paralleled. Therefore, although the bioassay space is

large, the similarity calculation will not be not a bottleneck.
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Model Sensitivity We have observed that the ranking model performance is sensi-

tive to the bioassay and compound selection approaches, and there are no significant

trends among all the selection options that can consistently lead to ranking perfor-

mance improvement. The possible reasons include the relatively small bioassay sizes,

high inherent pairwise compound similarities and high bioassay heterogeneity. This

sensitivity also indicates that compound ranking is a more difficult problem than

classification, and thus more advanced and robust modeling schemes are highly de-

manded. The current framework has issues on robustness and the model performance

is sensitive to the bioassay and compound selection methods. We will further inves-

tigate these issues and explore more principled ways to guide the use of different

selection methods. Our future work would include mixtures of selection methods

for each individual target bioassays that could be automatically determined by the

bioassay properties. Another interesting direction of future work is to couple the

bioassay selection and compound selection methods, and optimally determine their

combinations in a purely data-driven fashion.

Structures of the Bioassay Space A unique innovation of the proposed meth-

ods is that it sheds lights on the relations among bioassays/biological processes that

may go beyond our current understanding. For example, if two bioassays have high

similarities in terms of their active compounds as well as the orderings among the

compounds, it indicates possibilities of drug-induced side effects or drug reposition-

ing, if there are drugs involved in the bioassays. Note that the involved two bioassays

are not necessarily of a same type, a same experimental setting or protocol. Also,

the measurements over the involved compounds are not necessarily of a same scale

or under a same unit. This is because in the problems of prioritization, only the

ordering structures matter, not the exact numerical values. This opens the door to

compare larger collections of very heterogeneous bioassays and thus to explore much

larger regions of biological space, chemical space and bioassay space, while the correct
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methods on bioassay analysis (e.g., SAR) can only analyze smaller sets of homoge-

neous bioassays.

We believe the assistance/similarity structures among bioassays deserve more at-

tention. Our future work will include further analysis on such structures for any

potential new discoveries. In particular, we will examine the structures related to

drugs (e.g., their relative positions in a bioassay, their ranking positions across mul-

tiple bioassays).

Supporting Information Availability

Detailed method description and results can be found at:

http://cs.iupui.edu/~liujunf/projects/CompRank_2016.html.
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3. DIFFERENTIAL COMPOUND PRIORITIZATION VIA
BI-DIRECTIONAL SELECTIVITY PUSH WITH POWER

3.1 Introduction

Drug discovery is time-consuming and costly: it approximately takes at least 10 to

15 years and $500 million to $2 billion to fully develop a new drug [1]. To accelerate

this process, in silico methods [2] have been extensively developed as alternatives,

particularly for identifying promising drug candidates in the early stages of drug

discovery. In silico compound prioritization, which learns computational models to

rank compounds in terms of their drug-like/disease-specific properties (e.g., efficacy,

specificity), has been recently attracting increasing attention, due to the emerging

precision medicine [3]. In many applications of precision medicine (e.g., cancer drug

selection [4]), before precise measurements of disease-specific compound properties

need to be considered, a set of promising compounds (typically drugs) should be first

selected for future investigation. In this paper, we tackle the problem of differential

compound prioritization for better ranking selective compounds for drug candidate

selection.

Current compound prioritization typically focuses on one single compound prop-

erty [5], for example, biological activity. Biological activity of a compound can be

initially tested in a target-specific bioassay∗ by measuring whether the compound

binds with high affinity to the protein target that it is aimed to affect. Activity is

a critical property that a compound needs to exhibit in order to act efficaciously as

Reprinted (adapted) with permission from J. Liu and X. Ning, “Differential compound prioriti-
zation via bidirectional selectivity push with power,” Journal of chemical information and modeling,
vol. 57, no. 12, pp. 2958–2975, 2017. Copyright 2017 American Chemical Society.

∗https://en.wikipedia.org/wiki/Bioassay
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a successful drug. Compound prioritization in terms of activity needs to rank most

active compounds on top of less active compounds.

Compound selectivity is another key property that successful drugs need to ex-

hibit [6]. Selectivity measures how a compound can differentially bind to only the

target of interest with high affinity (i.e., high activity) while bind to other proteins

with low affinities. Therefore, the compound selectivity prioritization needs to con-

sider the prioritization difference of a compound in the activity prioritization struc-

tures of multiple targets. Specifically, the compound selectivity prioritization needs

to follow a combinatorial ranking criterion that 1). it ranks all the compounds well

based on their activities; and meanwhile, 2). it ranks strongly selective compounds

preferably higher, probably even higher than more active compounds that are not

selective. These criterion correspond to that in real applications, active and highly

selective compounds are preferred over highly active but also highly promiscuous

compounds [7] to minimize the likelihood of undesirable side effects.

In this paper, we present an innovative machine learning method to conduct in

silico compound prioritization that is able to achieve both the above goals, with a

particular focus on better prioritizing selective compounds. This method consists of

three components:

1. A compound scoring function, which produces a score for each compound in a

bioassay that will be used to rank the compound in the bioassay. The scoring

function uses bioassay-specific compound features to calculate the scores.

2. An activity ranking model, which learns the compound scoring function and

approximates the ranking structure among all compounds in a bioassay. The

learning is via minimizing the pairwise ordering errors introduced by the scoring

function.

3. A bi-directional selectivity push strategy, which preferably pushes up selective

compounds in the activity ranking model of a bioassay, and pushes down the com-

pounds in the model that are selective in a different bioassay. The bi-directional
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gk+i right next to a compound ci represents the push-up (indicated by ↑) power on ci as a selective
compound in Bk. The solid arrowed lines represent that the push-up power on a selective compound
(pointed by the arrows, e.g., c5 in B2) is determined by the ranking position of the compound in
a different bioassay (pointed by the line ends, e.g., c5 in B1). The lines are annotated with such
ranking positions (e.g., r̄1−5 on the solid arrowed line from c5 in B1 to c5 in B2).

hk−i right next to a compound ci represents the push-down (indicated by ↓) power on ci as an
x-selective compound in Bk. The dashed arrowed lines represent that the push-down power on an
x-selective compound (pointed by the arrows, e.g., c5 in B1) is determined by the ranking position
of the compound in a different bioassay (pointed by the line ends, e.g., c5 in B2). The lines are
annotated with such ranking positions (e.g., r̄2+5 on the dashed arrowed line from c5 in B2 to c5 in
B1).

Fig. 3.1.: Overall Scheme of dCPPP

push strategy leverages the ranking difference of selective compounds across mul-

tiple bioassays and alters the activity ranking by pushing selectivity-related com-

pounds in two directions with specific powers.

These three components will be learned simultaneously within one optimization for-

mulation. This d ifferential Compound Prioritization via bi-directional selectivity

Push with Power method is denoted as dCPPP. Figure 3.1 presents the overall scheme

of dCPPP. To the best of our knowledge, this is the first work in which the activity and

selectivity are both tackled within one differential prioritization model that integrates

multiple bioassays simultaneously.

The rest of the paper is organized as follows. Section 3.2 presents the related

work to the new method. Section 3.3 presents the definitions and notations used
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in the paper. Section 3.4 presents the new method of activity-selectivity differential

ranking with bi-directional powered push. Section 3.5 presents the materials used for

experimental evaluation. Section 3.7 presents the experimental results. Section 3.8

and 3.6 present the discussions and conclusions, respectively.

3.2 Related Work

3.2.1 In Silico Methods for Drug Discovery

A first step in drug discovery is to conduct bioassays that screen a large set of

promising compounds. The outcomes from these bioassays inform the following drug

discovery steps [1]. Significant amount of research efforts in knowledge discovery from

bioassay data is on establishing the relationship between the structures of chemical

compounds and their bio-chemical properties, for example, Structure-Activity Rela-

tionship (SAR) [2] and Structure-Selectivity Relationship (SSR) [8], expressed in the

bioassays.

Classification and regression dominate the in silico machine learning methods in

bioassay analysis, particularly in finding SAR and SSR. In these methods, com-

pounds are typically represented by certain chemical fingerprints, for example, Ex-

tended Connectivity Fingerprints (ECFP)† and Maccs keys ‡. Compound activity

and selectivity are used as a label/numerical target of the compounds. Popular clas-

sification and regression methods include Support Vector Machines (SVM) [9], Partial

Least-Squares [10], random forests [11], Bayesian matrix factorization [12], and Naïve

Bayesian classifiers [13], etc. Ranking methods, compared to classification and re-

gression, are less developed for bioassay analysis.
†Scitegic Inc, http://www.scitegic.com.
‡Accelrys, http://accelrys.com
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3.2.2 Structure-Activity-Relationship Modeling

A recent trend in SAR modeling is through leveraging the information from mul-

tiple bioassays. A class of methods along this line identifies multiple bioassays and

leverages information therefrom to improve SAR qualities. In Ning et al. [14], the

SAR classification methods first identify a set of targets related to the target of in-

terest, and then employ various machine learning techniques (e.g., semi-supervised

learning [15], multi-task learning [16], and classifier ensemble [17]) to utilize activ-

ity information from these targets for a better SAR model. In Liu and Ning [18],

compound activity ranking models are developed by leveraging multiple bioassays.

In these methods, assistance bioassays and assistance compounds are identified and

incorporated to build models that can accurately prioritize active compounds in a

bioassay.

A different class of methods is via the multi-assay based “affinity fingerprints”.

In the Target-Related Affinity Profiling (TRAP) method [19], the affinity profiles

of compounds against a set of diverse bioassays are used as the fingerprints of the

compounds. In Bender et al. [20], Bayes scores produced from empirical Bayesian

SAR models over a set of targets are used as the affinity fingerprints for compounds.

Similarly, Lessel et al. [21] use the docking scores of compounds against a set of

reference binding sides as compound fingerprints. All these existing methods that

utilize multiple bioassays in SAR use them homogeneously and cannot utilize the

differential signals therein effectively.

3.2.3 Structure-Selectivity-Relationship Modeling

Existing SSR methods include multi-step classification based approaches [22], in

which compounds that are classified as active are further classified by a selectivity

classifier; multi-class classification based approaches [23], in which compound activ-

ity and selectivity are considered as two classes in a common multi-class classifier;

compound similarity based approaches [24], in which compounds that are similar to
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known selective compounds are considered as selective; etc. A unique thread of re-

search on SSR is using multi-task learning to learn compound activity and selectivity

simultaneously [25]. The multi-task method incorporates both activity and selectiv-

ity models into one multi-task model to better differentiate compound activity and

selectivity. Unfortunately, these existing methods cannot produce activity prioritiza-

tion and selectivity prioritization simultaneously, or cannot leverage the prioritization

structures among multiple bioassays to improve SSR modeling.

3.2.4 Learning to Rank

Learning to rank (LETOR) [26] focuses on developing ranking models via learning.

It has achieved tremendous success in Information Retrieval (IR). Existing LETOR

methods fall into three categories: 1). pointwise methods [27], which learn individual

scores that are used later for sorting; 2). pairwise methods [28], which model pairwise

ranking relations; and 3). listwise methods [29], which model the full combinatorial

structures of ranking lists. A recent focus on LETOR is to improve the ranking

performance on top of the ranking lists [30; 31].

The idea of using LETOR approaches to prioritize compounds has also drawn

some attention recently. For example, Agarwal et al. [32] developed bipartite ranking

to rank chemical structures such that active compounds and inactive compounds are

well separated in the ranking lists. Jorissen et al. [33] used pointwise methods within

SVMs to rank compounds in a bioassay to detect active compounds and perform sim-

ilarity search, respectively. Liu and Ning [18] used SVMRank [34] to build compound

activity prioritization models. However, LETOR for compound selectivity prioritiza-

tion is less developed compared to its use for compound activity prioritization.

3.3 Definitions and Notations

A compound c is active in a bioassay B with protein target t if the IC50 value (i.e.,

the concentration of the compound that is required for 50% inhibition of the target
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Table 3.1.: Notations
notations meanings

c/B/t compound/bioassay/target
ck+
i /ck−i selective/non-selective compound ci in Bk
Ck the set of compounds in Bk
Sk the set of selective compounds in Bk (Sk = {ck+

i })
Ak the set of non-selective compounds in Bk (Ak = Ck \ Sk)
Sxk the set of x-selective compounds in Bk

(Sxk = {ck−i |∃Bl, c
k−
i ∈ Sl})

ski /s
k+
i /sk−i score of ci/ck+

i /ck−i in Bk
rki /r

k+
i /rk−i percentile ranking of ci/ck+

i /ck−i in Bk
pki ranking position of ci in Bk

Rk+
i /Hk−

j reverse height of ck+
i / height of ck−j

gk+
i /hk−j push-up power for ck+

i ∈ Sk/push-down power for ck−j ∈ Sxk

under consideration; lower IC50 value indicates higher activity§) of c for t is less than

1 µM. A compound c is selective in a bioassay B with protein target t if the following

two conditions are satisfied [25]:

1. c is active for t (i.e., IC50(c, t) < 1µM); and

2. min
∀tk 6=t

IC50(c, tk)

IC50(c, t)
≥ 50,

that is, c needs to be active for t, and its activity on t is at least 50-fold higher than

its activity on any other targets.

In this paper, each of the bioassays that are used for model training has only one

single protein target. Thus, activity/selectivity with respect to bioassays and with

respect to targets will be used interchangeably. When a compound is indicated as

selective, by default it is with respect to one certain bioassay/protein target, and the

bioassay/protein target is neglected when no ambiguity is raised. A compound can

be selective in at most one bioassay. A compound ci that is selective in a bioassay

Bk is denoted as ck+
i . A compound ci that is not selective in a bioassay Bk (either

active and not selective, or inactive in Bk) is referred to as non-selective in Bk and
§http://www.ncgc.nih.gov/guidance/section3.html
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denoted as ck−i . A compound that is non-selective in a bioassay Bk but selective in

another bioassay Bl is referred to as x-selective in Bk. The set of compounds in Bk

is denoted as Ck. The set of selective compounds in Bk is denoted as Sk. The set of

non-selective compounds in Bk is denoted as Ak. The set of x-selective compounds

in Bk is denoted as Sxk . Table 3.1 lists the notations that are used in this paper.

3.4 Methods

3.4.1 Compound Scoring

In dCPPP, the compound prioritization among a bioassay uses a linear scoring

function as in Equation 3.1,

s̃ki = wT
kxi, (3.1)

where wk is a weighting vector for bioassay Bk, xi is the feature vector of the com-

pound ci, and s̃ki is the score of compound ci in Bk. Each compound in a bioassay

is first scored using their features, and the compounds which have larger scores will

be ranked higher in the bioassay. The weighting vector wk will be learned for each

bioassay Bk.

3.4.2 Activity Prioritization

The dCPPP method will produce a ranking of compounds in a bioassay that ranks

compounds well based on their activities. That is, in general, compounds that are

more active will be ranked higher than those that are less active. To quantitatively

measure the activity ranking quality, we use a metric non-Concordance Index (denoted

as nCI) as follows,

nCI({s̃ki }, Ck) =
1

|Pk|
∑

(ci�cj)∈Pk

I(s̃ki ≤ s̃kj ), (3.2)
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where Pk = {ci � cj|ci, cj ∈ Bk} is the set of all possible ordered compound pairs in

Bk, I(·) is the indicator function:

I(x) =

1, if x is true,

0, otherwise.
(3.3)

In Equation 3.2, ci � cj indicates that ci is ranked higher than cj in ground truth

in Bk based on their IC50 values, s̃ki ≤ s̃kj indicates that compound ci is predicted

as being ranked lower than cj (i.e., ci’s predicted score s̃ki is smaller than that of cj;

dCPPP ranks compounds with larger scores higher).

Essentially, nCI represents the fraction of mis-ordered compound pairs by a certain

compound ranking method. A lower nCI value indicates better ranking performance.

Therefore, activity prioritization seeks a scoring function that can produce lower nCI,

and thus we use nCI over the predicted ranking in Bk as the loss (denoted as Lkc ) for

activity prioritization in the dCPPP objective, that is,

Lkc = nCI({s̃ki }, Ck). (3.4)

3.4.3 Bi-directional Selectivity Push with Power

To favor selective compounds in compound prioritization, two key questions need

to be addressed: 1). how to enforce the selective compounds to go beyond the ranking

structures of ordinary activity prioritization and get better ranked; and 2). how much

the enforcement should be and how to decide that. To address the first question, we

develop the bi-directional powered push scheme, which, for a target t, pushes t’s

selective compounds higher, and pushes t’s x-selective compounds lower in compound

ranking. To address the second question, we develop a scheme to determine push

powers by comparing ranking difference of a compound in multiple bioassays.
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Pushing up Selective Compounds

To push up selective compounds, dCPPPmeasures the ranking positions of selective

compounds and optimizes such positions. Specifically, the reverse height of a selective

compound [32] is used to quantitatively represent such ranking positions.

Reverse height of a selective compound is the number of non-selective compounds

that are ranked higher than the selective compound, that is,

Rk+
i = R(ck+

i ) =
∑
cj∈Ak

I(s̃k+
i ≤ s̃k−j ), (3.5)

where Rk+
i is the reverse height of selective compound ck+

i in Bk, Ak is the set of non-

selective compounds in Bk, and I(·) is the indicator function (Equation 3.3). Thus,

to enforce higher ranking of selective compounds, it is to minimize the reverse heights

of the selective compounds. In Equation 3.5, the predicted ranking scores are used to

indicate that the reverse height of a selective compound is produced from a ranking

model.

Push-up power for a selective compound decides how strongly a selective com-

pound ck+
i should be pushed up in Bk, which depends on 1). how ci is ranked in

Bk; and 2). how ci is ranked in other bioassays Bl’s which ci is also involved in.

Intuitively, if ci is ranked higher in Bl (i.e., ci is very active to tl but not selective to

tl), ci should be pushed much higher in Bk and much lower in Bl. This is because ci

is very specific to tk, and if ci is selected for Bl (tl), it will introduce low efficacy or

side effects.

Based on the above intuition, we define the push-up power for a selective com-

pound ck+
i :

gk+
i = g(ck+

i , Bk, {Bl}|θ↑, ξ↑)

= exp{θ↑[(1− r̄k+
i ) + max

ci∈Al

φ(r̄l−i , r̄
k+
i |ξ↑)]},

(3.6)
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where θ↑ is a parameter, and φ(x, y|ξ) is a thresholding function:

φ(x, y|ξ) = (x− y + ξ)+ =

x− y + ξ, if x− y + ξ ≥ 0,

0, otherwise.
(3.7)

In Equation 3.6, r̄k+
i is the predicted percentile ranking of ci from Bk’s baseline ac-

tivity prioritization model, r̄l−i is the predicted percentile ranking of ci from Bl’s

baseline activity prioritization model, and ξ↑ is a thresholding parameter. Essen-

tially, the push-up power in Equation 3.6 considers whether ck+
i has been ranked high

enough in Bk (i.e., 1 − r̄k+
i ) and how differentially it is ranked in other bioassays

(i.e., φ(r̄l−i , r̄
k+
i |ξ↑)). If the ranking positions of ck+

i in Bk and other bioassays are not

sufficiently different, the push-up power is exponentially large.

Selectivity Loss with Powered Push-up To differentially push selective com-

pounds up, we take the average reverse heights of selective compounds enhanced by

respective push-up powers in the dCPPP learning objective, that is, the push-up loss

Lk+
s is defined as

Lk+
s =

1

|Sk|
∑
ci∈Sk

Rk+
i · gk+

i , (3.8)

where Sk is the set of selective compounds in Bk, |Sk| is the size of Sk.

Pushing down x-Selective Compounds

To push down x-selective compounds, dCPPP measures the ranking positions of

such x-selective compounds and optimize such positions. Specifically, the height [32]

of an x-selective compound is used to quantitatively measure its ranking position.
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Height of an x-selective compound is the number of compounds that are ranked

below the x-selective compound ck−j (i.e., cj is non-selective in Bk but selective in a

different bioassay), that is,

Hk−
j = H(ck−j ) =

∑
ci∈Ck

I(s̃ki ≤ s̃k−j ) (3.9)

whereHk−
j is the height of x-selective compound ck−j in Bk, Ck is the set of compounds

in Bk, I(·) is the indicator function (Equation 3.3).

Push-down power for an x-selective compound determines how strongly the x-selective

compound should be pushed down in a bioassay. We define the push-down power for

an x-selective compound in bioassay Bk as follows,

hk−j = h(ck−j , Bk, Bl|θ↓, ξ↓)

= exp{θ↓[r̄k−j + φ(r̄k−j , r̄l+j |ξ↓)]}
(3.10)

where θ↓ is a parameter, r̄k−j is the predicted percentile ranking of cj in Bk’s base-

line activity prioritization model, r̄l+j is the predicted percentile ranking of cj in Bl

(cj ∈ Sl) from Bl’s baseline activity prioritization model, φ(r̄k−j , r̄l+j |ξ↓) is threshold-

ing function as defined in Equation 3.7, and ξ↓ is the thresholding parameter. Thus,

the push-down power hk−j considers the difference of percentile rankings of cj in Bk

(cj ∈ Sxk ) and Bl (cj ∈ Sl). If r̄l+j is not significantly higher than r̄k−j , the push-down

power is large. Please note that a compound can appear in multiple bioassays, but

can be selective in only one bioassay. Therefore, we only consider the bioassay Bl in

which cj is selective when we push down cj in Bk.

x-Selectivity Loss with Powered Push-down To differentially push x-selective

compounds down, we take the average heights of x-selective compounds enhanced by
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their push-down powers in the dCPPP learning objective, that is, the push-down loss

Lk−x is defined as

Lk−x =
1

|Sxk |
∑
cj∈Sx

k

Hk−
j · hk−j . (3.11)

3.4.4 Optimization Problem and Solutions

The overall optimization problem of dCPPP to learn a selectivity prioritization

model (i.e., the scoring function as in Equation 3.1, parameterized by wk), which

ranks selective compounds higher and x-selective compounds lower, is formulated as

follows,

min
wk

Lk = (1− α− β)Lkc + αLk+
s + βLk−x , (3.12)

where α and β are two weighting parameters (α ∈ [0, 1], β ∈ [0, 1], α + β ∈ [0, 1]).

Thus, the dCPPP objective is a weighted combination of the loss on activity prioritiza-

tion (Lkc ), the loss on pushing up selective compounds (Lk+
s ), and the loss on pushing

down x-selective compounds (Lk−x ).

Since the indicator function in Equation 3.3 is not continuous or smooth, we use

the logistic loss as the surrogate function [35]:

I(x ≤ y) ≈ log[1 + exp(−(x− y))] = − log σ(x− y), (3.13)

where σ(x) is a sigmoid function:

σ(x) =
1

1 + exp(−x)
. (3.14)

The surrogate function is continuous, smooth and differentiable. Thus, the loss Lk

in Equation 3.12 with the surrogate function is differentiable, and thus we can use

gradient descent [36] to solve the optimization problem.
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Gradient of Powered Push

The gradient of the loss function in Equation 3.12 is composed of the gradients on

the loss of compound ranking, the loss on push-up and the loss on push-down, that

is,

∇wk
Lk = (1− α− β)∇wk

Lkc + α∇wk
Lk+
s + β∇wk

Lk−x , (3.15)

where

∇wk
Lkc =

1

|{ski > skj}|
∑
{ski>skj }

∇wk
I(s̃ki ≤ s̃kj ), (3.16)

∇wk
Lk+
s =

1

|Sk|
∑

ck+i ∈Sk

{gk+
i · ∇wk

Rk+
i }

=
1

|Sk|
∑

ck+i ∈Sk

{gk+
i ·

∑
cj∈Ak

∇wk
I(s̃k+

i ≤ s̃k−j )},
(3.17)

and

∇wk
Lk−x =

1

|Sxk |
∑

ck−j ∈S
x
k

{hk−j · ∇wk
Hk−
j }

=
1

|Sxk |
∑

ck−j ∈S
x
k

{hk−j ·
∑
ci∈Ck

∇wk
I(s̃ki ≤ s̃k−j )}.

(3.18)

In Equation 3.16 to Equation 3.18, ∇wk
I(s̃ki ≤ s̃kj ) will be approximated by the

gradient over logistic loss function (Equation 3.13). The variable wk is updated via

the following rule:

wk ← wk − λ∇wk
Lk (3.19)

where λ is the learning rate.
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3.4.5 System Equilibrium from Powered Push

It is possible that after one iteration of the powered push among all related bioas-

says, the ranking models are still not optimal due to the change of ranking structures

of other updated models. Thus, multiple iterations of systematically powered push

should be conducted until an equilibrium is achieved among all the bioassays. When

multiple iterations of dCPPP pushes are conducted, the optimal model from the pre-

vious iteration serves as the baseline model for the next iteration.

The initial baseline model for the first iteration corresponds to dCPPP at (α =

0, β = 0), that is, the standard ranking model without any push. This baseline

model is denoted as dCPPP◦. If each bioassay uses its own optimal α and β values

(i.e., the α and β value that together give the optimal performance for each bioas-

say), the corresponding optimal model is denoted as dCPPP∗. Thus, dCPPP∗ from

the previous iteration is the baseline for the next iteration. The models trained in

the t-th iteration are denoted by having (t) (e.g., dCPPP∗(1), dCPPP◦(2)) and thus

dCPPP∗(t − 1) = dCPPP◦(t). Algorithm 1 presents the overall iterative algorithm for

dCPPP optimization.
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Algorithm 1: Iterative Optimization for dCPPP
Input: a set of training bioassays {Bk};

parameters α, ξ↑, θ↑, β, ξ↓, θ↓;
learning rate λ; max number of iterations niters

Output: ranking models {dCPPP∗k}.
for t = 1, · · · , niters do

for each bioassay Bk do
if t == 1 then

dCPPP◦k(t) = dCPPP◦k
else

dCPPP◦k(t) = dCPPP∗k(t− 1)
end
while not converged do

Update dCPPP∗k(t) upon dCPPP◦k(t) using gradient descent (Eq. 3.19)
end

end
end
return {dCPPP∗k}

3.5 Materials

In this section, we present the details on dataset generation, experimental protocol

and evaluation metrics. All the datasets and source code are available online and on

our website¶

3.5.1 Dataset Generation

The dataset for the experimental evaluation is very critical, and therefore we

present the dataset construction in detail here. We constructed a set of bioassays

from ChEMBL‖ in accordance with the protocols in Section 3.5.1 and Section 3.5.1

in order to 1). have a sufficiently large number of bioassays to study; and 2). have

a sufficiently large number of active and selective compounds in each bioassay to

reliably learn models.
¶http://cs.iupui.edu/~liujunf/projects/selRank_2017/
‖https://www.ebi.ac.uk/chembl/, v.22_1, accessed on 12/08/2016)



83

Initial Bioassay Selection

We first selected a set of bioassays which are enriched with selective compounds,

and meanwhile, the compound selectivity in these bioassays can be largely defined

by other selected bioassays. This set of bioassays provides a closed space from which

a subset of bioassays will be further constructed (Section 3.5.1) for the experiments.

We constructed this initial set of bioassays as follows:

1. Identify all “binding” bioassays with one “single protein” target;

2. From such single-target binding bioassays, find all the bioassays that use IC50 to

measure compound activities, and keep the compounds in such bioassays that

have exact IC50 values (i.e., discard from each bioassay the compounds with

IC50 ranges, for example, IC50 ≥ 0.0001µM ; also discard compounds whose

measurement cannot be converted to IC50 values);

3. Combine bioassays of a same target into one bioassay;

4. Clean the combined bioassays as follows:

(a) If a compound appears multiple times with a same IC50 value in one bioas-

say, keep the compound with the unique IC50 in the bioassay;

(b) If a compound appears multiple times with different IC50 values in one

bioassay, remove the compound and all its activities from the bioassay.

This is to avoid the complication to resolve conflicts of inconsistent activity

values;

(c) If a compound has an invalid IC50 value (e.g., negative or zero IC50), remove

the compound from the bioassay.

5. Select the cleaned bioassays that have at least 20 active compounds.

After the above process, we identified 1,033 bioassays in total. Among these 1,033

bioassays (denoted as B0
s), 594 bioassays have selective compounds that are defined
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within these 1,033 bioassays. Among these 594 bioassays, 553 bioassays have selective

compounds that are defined within these 594 bioassays. Among these 553 bioassays,

227 bioassays have more than 10 selective compounds, and these selective compounds

are involved in 529 out of the 553 bioassays. This set of 529 bioassays represents the

initial closed set of selectivity-enriched bioassays.

Initial Bioassay Pruning

Among the initial closed set of 529 selectivity-enriched bioassays, we defined se-

lectivity for the compounds in each bioassay with respect to the rest 528 bioassays.

These 529 bioassays are further pruned according to the following protocol in order

to have reasonable number of compounds for dCPPP learning:

1. If a bioassay has less than 100 compounds, keep the bioassay as it is;

2. If a bioassay has more than 100 compounds, identify all its selective compounds

and x-selective compounds:

(a) If such identified selective and x-selective compounds are more than 100,

keep all such compounds and discard all the other compounds;

(b) If such identified compounds are less than 100, randomly select active com-

pounds in this bioassay until the total number of selected compounds reaches

100.

The above pruning process retains all the selectivity related information in the

original closed space of selectivity-enriched bioassays. All the remaining bioassays

and their compounds are used as the final dataset in our experiments. This set of 529

pruned bioassays is denoted as Bcs. In Bcs, 408 bioassays have at least one selective

compound. This set of 408 bioassays with selective compounds is denoted as Bes. The

rest of 121 bioassays (i.e., Bcs \Bes) do not have selective compounds, but they contain

x-selective compounds (i.e., selective compounds in other bioassays).
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Dataset Description

We use Bcs in our experiments. Models with powered-push will be built for the

bioassays in Bcs. In Bcs, 155 bioassays have 10 ∼ 50 selective compounds and less than

500 compounds. In this manuscript, we only report experimental results on these 155

bioassays, denoted as Bms , because they have on average more selective compounds.

Additional experimental results on Bcs are available in the Supporting Information.

Note that if a bioassay in the final dataset has more than 100 compounds, these

compounds have to be either selective compounds or x-selective compounds, based

on the protocol in Section 3.5.1.

BB0
s

Bcs

Bes

Bms

B: the entire bioassay space
B0
s : 1,033 activity-enriched bioassays
Bcs: 529 selectivity-closed bioassays
Bes: 408 bioassays with selective compounds
Bms :155 bioassays with 10 ∼ 50

selective compounds
Bi-directional push strategy will be
applied to bioassays in Bms within
the context of Bcs .

Fig. 3.2.: Relations among Bioassay Sets

Table 3.2.: Dataset Description

dataset |{B}| |{ci}| |Ck| |Ak| |Sk| |Sxk |

before split Bcs 529 35,226 104.50 80.24 24.26 31.12
Bms 155 14,568 102.27 80.67 21.60 36.56

after split Bms 155 14,568 102.27 84.18 18.09 18.61

The column “ |{B}|” has the number of bioassays in the dataset. The column “|{ci}|” has
the total number of unique compounds in the dataset. The column “ |Ck|” has the average
number of compounds in each bioassay. The column “|Ak|” has the average number of non-
selective compounds in each bioassay. The column “|Sk|” has the average number of selective
compounds in each bioassay. The column “|Sx|” has the average number of x-selective
compounds in each bioassay.
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Figure 3.2 presents the relations among all bioassay sets generated during the

dataset construction process. Table 3.2 (the “before split” row) presents the data

description for Bcs and Bms . Figure 3.3 presents the size of bioassays in Bcs. Figure 3.4

presents the size of bioassays in Bms .
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Fig. 3.3.: Bioassay Size in Bcs (Before Split)
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Fig. 3.4.: Bioassay Size in Bms (Before Split)

3.5.2 Compound Feature Generation

We used AFGen∗∗ to generate binary compound fingerprints from the compound

structures provided by ChEMBL. Each dimension of the fingerprints represents a

compound substructure, and the binary value at each dimension represents whether
∗∗http://glaros.dtc.umn.edu/gkhome/afgen/overview
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the corresponding substructure is present in the corresponding compound or not.

Previous research [37] demonstrates that such compound fingerprints are superior to

others in compound classification.

For each bioassay, we calculated the pairwise Tanimoto similarity [38] of all the

compounds in the bioassay, and used each row of the Tanimoto matrix as the fea-

ture representation of the corresponding compound. Intuitively, the features of a

compound ci represent the similarities between ci and all training compounds in the

same bioassay. This feature representation scheme is inspired by the idea in Que

and Belkin [39]. Therefore, a same compound will have different features in different

bioassays, and the different compound information that may induce different ranking

structures is also encoded in the bioassay-specific compound features. This compound

feature representation is unique compared to the existing compound fingerprint rep-

resentations, and it is generated in a way that is dependent of computational tasks.

In our experiments, the bioassay-specific compound feature representation achieves

best CI (will be discussed later in Section 3.5.4) 0.717 in dCPPP◦ on Bms , compared

to the best CI 0.734 using AFGen features in dCPPP◦, and the best CI 0.748 using

Tanimoto on AFGen features as a kernel in SVMRank [34]. Although AFGen fea-

ture with SVMRank achieves better results, it is significantly slower (i.e., 640 seconds

on average to train a model) than bioassay-specific compound feature with dCPPP◦

(i.e., 79 seconds on average). Similarly, AFGen feature in dCPPP◦ is also significantly

slower (i.e., 310 seconds on average to train a model) than bioassay-specific com-

pound feature in dCPPP◦ (i.e., 79 seconds on average). Thus, the bioassay-specific

compound feature representation together with dCPPP◦ gives the best performance in

terms of the combination of run time and the ranking results, and will be used in the

experiments.
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3.5.3 Experimental Protocol

We randomly split each bioassay into five folds and make sure that selective com-

pounds are evenly split into the five folds. We conducted five-fold cross validation

over the splits to evaluate the dCPPP performance. Note that once the data are split,

the selectivity for any training compounds needs to be re-defined with respect to only

the training (i.e., known) compounds of the bioassays. This is because that testing

compounds are hold out as unknown compounds, and thus cannot be used to define

selectivity. Similarly, the selectivity of the testing compounds (i.e., the ground-truth

for performance evaluation) is also re-defined with respect to training data. In prin-

ciple, the selectivity re-defined after data split will be different from that before data

split. However, due to the fact that the data are split randomly and independently

for selective (defined before data split) and active compounds, it is expected the se-

lective (defined after data split) and active compounds are still evenly distributed

across folds. Table 3.2 (the “after split” row) presents the data description after the

split. After the data split, all the 155 bioassays in Bms have selective compounds in at

least one testing fold. The evaluation metrics are only calculated and averaged over

testing folds which have selective compounds.

3.5.4 Evaluation Metrics

We define and use the following metrics to evaluate the performance of dCPPP.
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Average Precision at k (ap@k)

The average precision at k (ap@k)†† is a popular metric used in LETOR. It

considers the ranking positions of selective compounds among the top k positions of

the ranking list. Average precision at k is defined as:

ap@k =
k∑
i=1

P (i)

min(|Sk|, k)
, (3.20)

where P (i) is the precision‡‡ among the top-i items in the ranking list. Higher ap@k

values indicate that selective compounds are ranked higher.

Reciprocal Selectivity Position Index (RSPI)

Absolute ranking position is an important metric in compound prioritization. This

is because in real applications, typically, the top few compounds in a ranking list will

be of primary interest. Thus, we define a reciprocal selectivity position index, denoted

as RSPI, to measure the average absolute reciprocal ranking positions of selective

compounds in a ranking list:

RSPI(Ck) =
1

|Sk|
∑
ci∈Sk

1

p̃ki
, (3.21)

where p̃ki is the ranking position of a selective compound ci in bioassay Bk predicted

by a ranking model. The reciprocals are used to favor highly ranked compounds

by up weighting the contribution of highly ranked selective compounds, and down

weighting the contribution of lowly ranked selective compounds. Higher RSPI values

indicate higher average absolute ranking positions for selective compounds and thus

better performance of the ranking model.
††https://www.kaggle.com/wiki/MeanAveragePrecision
‡‡https://en.wikipedia.org/wiki/Information_retrieval#Precision
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Normalized Reciprocal Selectivity Position Index (NRSPI)

A normalized version of RSPI, denoted as NRSPI, is defined via the inclusion of

reciprocal ranking positions of all the compounds in a bioassay, so as to also measure

the relative ranking positions of selective compounds in the ranking list:

NRSPI(Ck) =
∑
ci∈Sk

1

p̃ki

/ ∑
cj∈Ck

1

p̃kj
. (3.22)

Higher NRSPI values indicate higher average relative reciprocal ranking positions of

selective compounds. Both RSPI and NRSPI are similar to ap@k, a popular metric

for ranking performance, but RSPI and NRSPI consider the ranking structures among

selective/active compounds.

Normalized Selectivity Position Index (NSPI)

We also define a normalized selectivity position index, denoted as NSPI, which

measures the average percentile rankings of selective compounds:

NSPI(Ck) =
1

|Ck| × |Sk|
∑
ci∈Sk

p̃ki , (3.23)

where p̃ki is the ranking position of a selective compound ci in bioassay Bk predicted

by a ranking model. NSPI is normalized by the size of bioassays. Lower NSPI values

indicate higher ranking positions for selective compounds on average.

Concordance Index (CI)

Concordance Index (CI) is a popular metric that is used to evaluate the per-

formance of ranking algorithms [40]. CI measures the fraction of correctly ordered
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pairs among all possible pairs and thus it is complementary to the nCI defined in

Equation 3.2, that is,

CI(Ck) = 1− nCI(Ck). (3.24)

Higher CI values indicate better prediction overall (i.e., more concordant pairs are

predicted correctly).

In our experiments, we measure the CI values over all compounds Ck in a bioassay

Bk. We also measure the CI values among only selective compounds Sk, and among

only non-selective compounds Ak in Bk, respectively. In this case, the CI values are

specifically denoted as sCI and aCI, respectively.

3.6 Conclusions

We have developed the differential compound prioritization via bi-directional push

with power method dCPPP. In dCPPP, activity ranking and selectivity prioritization

are both tackled within one differential optimization model that leverages collabo-

rative information from multiple bioassays. A bi-directional powered push strategy

is implemented in dCPPP, which pushes selective compounds up and x-selective com-

pounds down in ranking. We have also conducted a comprehensive set of experiments

and analysis on the ranking performance of dCPPP. Our experiments demonstrate that

dCPPP is very effective in prioritizing selective compounds while maintaining a good

activity ranking.

Overall, dCPPP achieves significant improvement in compound selectivity prioriti-

zation. In specific, dCPPP∗ outperforms dCPPP◦ in selective compound prioritization

in terms of ap@5 at 47.0%, and in terms of RSPI at 26.1%, with statistical signif-

icance. Meanwhile, dCPPP still preserves a good overall activity ranking among all

compounds. Specifically, dCPPP∗ maintains a similar performance in CI (even slightly

better by 1.2%) as dCPPP◦. The overall experimental results on all evaluation metrics

are available in Section 3.7.1, and dCPPP needs only two iterations in order to achieve

its optimality.
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The experimental results show that, after the first iteration, the performance of

dCPPP increases significantly in terms of all evaluation metrics related to selective

compounds prioritization, and slightly decreases in compound activity ranking (e.g.,

in CI). Specifically, the performance of dCPPP∗ in terms of ap@5 and RSPI increases

from 0.558 and 0.411 to 0.687 and 0.490 over dCPPP◦, respectively. However, the

compound activity ranking performance, in terms of CI, decreases from 0.635 to

0.631 in the first iteration. In the second iteration, dCPPP is still able to improve

compound selectivity prioritization but the improvement is not as significant as that

from the first iteration. This indicates that the system quickly converges to a stable

state, and the selectivity prioritization has been updated toward optimal conditions.

Specifically, the performance in terms of ap@5 and RSPI is increased from 0.687 and

0.490 to 0.702 and 0.499, respectively, which is relatively marginal compared to that

in the first iteration. On the other hand, dCPPP tries to fix the compound activity

ranking in the second iteration that has been altered in the first iteration, and thus the

CI performance increases from 0.631 to 0.636 in the second iteration. Detailed results

on compound ranking and selective compound prioritization over the two iterations

and over the hyperparameters are available and discussed in Section 3.7.2 and 3.7.3.

In terms of top-N ranking performance, dCPPP has significantly better performance

in retaining top-N compounds of ground truth, in ranking selective compounds among

top, and in retaining selective compounds from top-N compounds of ground truth.

In specific, in terms of retaining top-N compounds, dCPPP∗ has better performance

(on average 2.40/6.59 top-5/10 compounds retained among top5/10 rankings, re-

spectively) compared to that of dCPPP◦ (on average 2.37/6.51 top-5/10 compounds

retained among top5/10 rankings, respectively). In terms of ranking selective com-

pounds among top, dCPPP∗ significantly outperforms dCPPP◦. On average, dCPPP∗

ranks 2.52/3.21 selective compounds among top-5/10 rankings, but dCPPP◦ ranks

only 2.25/3.04 selective compounds among top-5/10 rankings. Moreover, among the

average 1.98 selective compounds among top-5 compounds of each bioassay in the

ground truth, dCPPP∗ is able to retain 1.51 of them on average, while dCPPP◦ is able
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to only retain 1.38. Among the average 1.01 selective compounds in top-6 to top-10

compounds of ground truth, dCPPP∗ is able to push 0.66 of them into top 5, while

dCPPP◦ has 0.56 such compounds in top 5. Detailed results and analysis on top-N

performance are presented in Section 3.7.4.

Overall, our experiments demonstrate that dCPPP is very effective in compound

selectivity prioritization and competent in compound activity ranking. Detailed result

analysis will be thoroughly discussed in Section 3.7.

3.7 Experimental Results

In the results presented in this section, we used parameters θ↑ = 0.5 and θ↓ = 0.5.

We tested combinations of various θ↑ and θ↓ values, and found that θ↑ = 0.5 and

θ↓ = 0.5 give the best performance over all the evaluation metrics overall. Based on

our experiments, only two iterations will lead to systematic convergence. Therefore,

we only report the results from the two iterations.

3.7.1 Overall Performance

Table 3.3 presents overall performance comparison between the dCPPP◦ and the

optimal dCPPP∗ models. Note that for each bioassay, its optimal dCPPP∗ is the model

that introduces the best RSPI value, and thus the performance of dCPPP∗ in terms of

other metrics (e.g., ap@5; the dCPPP∗(t) rows in Table 3.3) does not necessarily cor-

respond to the optimal in those metrics. The optimal performance in each respective

metric is calculated as the “b-imprv (%)” values, and therefore, the performance in

“b-imprv (%)” does not necessarily correspond to a same set of parameters. The “diff

(%)” values in Table 3.3 are calculated as percentage difference of average dCPPP∗

performance over average dCPPP◦ performance, where the average performance is cal-

culated as the average over all the bioassays in respective metrics. The “imprv (%)”

values in Table 3.3 are calculated as the average of bioassay-wise performance im-

provement from dCPPP◦ over dCPPP∗.
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In dCPPP iteration 1 (i.e., the row block where “iter” has “1” in Table 3.3), the

average performance of dCPPP∗ is significantly better (i.e., “imprv (%)”) than that of

dCPPP◦ in terms of ap@5, ap@10, RSPI, NRSPI and NSPI (p-values 6.68e-24, 1.06e-25,

7.96e-23, 2.58e-28 and 9.46e-18, respectively). In terms of CI and aCI, dCPPP∗ is not

significantly different (p-values 4.36e-1 and 2.12e-1, respectively) from dCPPP◦ on the

average performance (i.e., “imprv (%)”). This demonstrates that dCPPP is able to

better prioritize selective compounds while retaining the overall ranking structures of

active compounds. In terms of sCI, it turns out that dCPPP∗ is still significantly better

(p-value 1.40e-3) than dCPPP◦ on the average performance (i.e., “imprv (%)”). This

indicates that for a significant amount of bioassays, differential push could also help

activity ranking. In terms of the best performance with respective to each metric (i.e.,

“b-imprv (%)”), dCPPP∗ significantly outperforms dCPPP◦ on all the metrics including

CI, aCI and sCI. This indicates that by pushing compounds differently, it may also

help better rank all the compounds overall.

In dCPPP iteration 2 (i.e., the row block where “iter” has “2” in Table 3.3), the

average ranking performance (i.e., “imprv”) of dCPPP∗ is still significantly better than

that of dCPPP◦ in all the metrics (except in aCI and sCI where the improvement is not

significant). However, the performance improvement is not as great as that in iteration

1, and the smaller improvement also applies in the best performance with respect to

each metric (i.e., “b-imprv (%)”). This indicates that the iterative learning process

starts to converge in iteration 2. In particular, the dCPPP∗ performance of ranking

both active and selective compounds (i.e., in terms of CI) is improved significantly

from dCPPP◦. The performance in terms of aCI and sCI is also improved in iteration

2 (i.e., positive “diff (%)” in iteration 2 compared to the negative value in iteration

1). This indicates that in iteration 2, the learning process tends to fix the broken

ranking structures among both selective and active compounds and thus converge

to a systematically stable state. The results from the two iterations show that the

dCPPP method is able to continuously push the selective/x-selective compounds over
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iterations, and meanwhile, it tends to maintain good ranking structures among both

selective and active compounds.

Over these two iterations (i.e., the row block where “iter” has “overall” in Ta-

ble 3.3), dCPPP∗ significantly outperforms dCPPP◦ in all the evaluation metrics (except

in CI and aCI, in which the improvement is not significant). In particular, dCPPP is

able to improve selectivity prioritization in terms of ap@5 at 47.003%, and in terms

of RSPI at 26.096%, both with statistical significance. These results demonstrate the

superiority of the dCPPP in prioritizing selective compounds.

3.7.2 Selective Compound Prioritization
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Fig. 3.5.: Evaluation of dCPPP(1) on Bms

Figure 3.5a, 3.5b, 3.5c, 3.5d and 3.5e present the results of dCPPP(1) in terms of

ap@5, ap@10, RSPI, NRSPI and NSPI, respectively, over various α and β values (i.e.,

the parameters to weight the push-up and push-down terms, respectively, in dCPPP
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Fig. 3.6.: Evaluation of dCPPP(2) on Bms

Equation 3.12). The values in these figures are the average performance in respective

evaluation metrics over all the bioassays in which both push-up for selective com-

pounds and push-down for x-selective compounds can be applied (i.e., bioassays in

dataset Bms ). Correspondingly, Figure 3.6a, 3.6b, 3.6c, 3.6d and 3.6e show perfor-

mance in terms of ap@5, ap@10, RSPI, NRSPI and NSPI of dCPPP(2) over different α

and β settings.

dCPPP(1) Performance

Figure 3.5a and 3.5b show that in the first iteration, dCPPP has the optimal

ap@5 performance (ap@5 = 0.634) at (α = 0.6, β = 0.2), and the optimal ap@10

performance (ap@10 = 0.688) when α = 0.6 and β ∈ [0.2, 0.4]. The optimal results

demonstrate that, when push-up weight is large (α ≥ 0.6) and push-down is also
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applied, the selective compounds are preferably pushed into top-5/10 of the ranking

lists.

In Figure 3.5a, there is a notable gap between the ap@5 values when α = 0

and α > 0. Specifically, when the push-up starts to take effect (i.e., α is increased

from 0), the ap@5 values are increased significantly. A similar gap also exists in

the ap@10 performance between α = 0 and α > 0 in Figure 3.5b. This indicates

that even a slight push-up could alter the ranking structure significantly and push

the selective compounds up into the top of the ranking lists. However, the full-

power push-up (i.e., α = 1.0) without considering the activity ranking performance

among compounds (i.e., considering only the Lk+
s term and neglecting the Lkc and Lk−x

terms in Equation 3.12) does not lead to the optimal solution in terms of both ap@5

and ap@10. This indicates that the prioritization of selective compounds over non-

selective compounds is structurally constrained by the ordering among both selective

and non-selective compounds together, and leveraging the information from non-

selective compounds and their ordering structures is beneficial in improving selective

compound prioritization in top-5/10 of the ranking.

On the other hand, push-down over the x-selective compounds also benefits the

selective compounds prioritization. For example, ap@10 is increased from 0.682 at

(α = 0.4, β = 0.0), to 0.687 at (α = 0.4, β = 0.2) in Figure 3.5b. This may be due to

the fact that the push-down exerts extra force on altering the overall ranking struc-

tures of each bioassay and thus better separates selective compounds from x-selective

compounds. However, an over push-down does not benefit selective prioritization any

more. For example, ap@10 is decreased from 0.688 at (α = 0.4, β = 0.4) to 0.683

at (α = 0.4, β = 0.6) in Figure 3.5b. The reason could be that an overemphasis on

x-selective becomes detrimental to the overall ranking structures among both selective

and non-selective compounds.

Figure 3.5c presents the performance in terms of RSPI of all the Bms bioassays in

the first iteration. In terms of RSPI (i.e., the average reciprocal positions of selective

compounds), the best performance of dCPPP (RSPI = 0.458) is achieved at the param-
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eter region α ∈ [0.4, 0.6], β ∈ [0.2, 0.4], that is, when both the push-up and push-down

are applied, the selective compounds are most effectively to be ranked higher in the

bioassays.

The trend of performance in RSPI is similar to that in ap@k, that is, 1) when α is

increased from 0 (i.e., the push-up starts to take place), the RSPI values are signifi-

cantly increased; 2) the full-power push-up does not lead to optimal performance; 3)

push-down over the x-selective compounds also has effects on better ranking selective

compounds; and 4) an over push-down (e.g., β ≥ 0.6 with α = 0.4) does not benefit

selectivity prioritization; etc.

Figure 3.5d and 3.5e demonstrate concordant trend of NRSPI and NSPI with that

of ap@5, ap@10 and RSPI, that is, the best performance in terms of NRSPI and NSPI,

respectively, happens with non-zero α and β values. NRSPI (Equation 3.22) is a very

similar metric to RSPI (Equation 3.21), which considers all the compounds, instead

of only selective compounds as in RSPI, in evaluating ranking positions of selective

compounds. High RSPI and NRSPI values associated with non-zero α and β values

indicate that selective compounds are ranked both higher in their average absolute

positions and higher in their average relative positions among all the compounds.

NSPI measures the average percentile ranking of selective compounds. On average,

the selective compounds are ranked at 77 percentile at best (α = 0.6, β = 0.2 in

Figure 3.5e), while in the baseline dCPPP◦ the average ranking percentile is 73.

dCPPP(2) Performance

Figure 3.6a and 3.6b present the performance in terms of ap@5 and ap@10 in the

second iteration, respectively. The dCPPP method has optimal average ap@5 value

(ap@5 = 0.691) at (α = 0.6, β = 0.2), and optimal average ap@10 value (ap@10 =

0.737) at (α = 0.2, β = 0.4), and (α ∈ [0.4, 0.8], β = 0.2). Both of ap@5 and ap@10 in

the second iteration are significantly improved from that in the first iteration (8.99%

and 7.12%, respectively). This demonstrates that as in dCPPP(2), more selective com-
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pounds are pushed into top-5/10 as the push-up and push-down powers are applied

(α > 0, β > 0). Please note that in Table 3.3, the best ap@5 and ap@10 values are

calculated according to dCPPP∗ that is defined with respect to optimal RSPI values,

but in Figure 3.6a and 3.6b, the ap@5 and ap@10 values are the average values over

all the bioassays under certain α and β values.

In the second iteration, the change of the ap@5 and ap@10 over α and β values is

generally smooth. However, there are still some minor irregular trends. For example,

ap@5 values first decrease from 0.687 at (α = 0.0, β = 0.2) to 0.686 at (α = 0.2, β =

0.2), then increase to 0.688 at (α = 0.4, β = 0.2), although the changes are very

small. This may indicate that in the second iteration, the ranking structures become

more sensitive to push powers, since they are close to optimal. Also, in the second

iteration, both ap@5 and ap@10 results fall into a much smaller range over various α

and β values (i.e., ap@5 ∈ [0.684, 0.691] and ap@10 ∈ [0.733, 0.737]) compared to that

of the first iteration (i.e., ap@5 ∈ [0.536, 0.634] and ap@10 ∈ [0.596, 0.688]). The best

results of ap@5 and ap@10 are only 1.02% and 0.55% better than their worst results

in the second iteration. Actually, this is a common trend among all the evaluation

metrics in the second iteration, which indicates that the system is becoming stabilized

in terms of ap@k performance.

In the second iteration, as shown in Figure 3.6c, the best RSPI (RSPI = 0.492) is

still at (α = 0.6, β = 0.2) as that in the first iteration. The best RSPI performance

from the second iteration is improved by 7.42% from that in the first iteration (RSPI

= 0.458). However, some other α and β settings (i.e., (α = 0.2, β = 0.0), (α =

0.2, β = 0.4), (α = 0.2, β = 0.4)) also result in similar optimal RSPI performance.

This indicates that the system is becoming stabilized and more sensitive to push

powers. The RSPI performance results from the second iteration also show that when

push-up power is applied (i.e., α > 0), the results are better than that without push-

up power (i.e., α = 0). However, too large push-up power (i.e., α > 0.6) does not

yield optimal results. This is a similar trend as in the first iteration. Similarly, a

full push-down also breaks the overall ranking structures among selective and non-
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selective compounds, and thus, a non-optimal result (RSPI = 0.490) is expected when

β = 1.0.

Figure 3.6d and Figure 3.6e present the performance in terms of NRSPI and NSPI

of Bms bioassays in the second iteration, respectively. In Figure 3.6d and Figure 3.6e,

NRSPI and NSPI also have similar trend with that of RSPI in Figure 3.6c. That

is, when moderate push-up and push-down powers are applied, the optimal results

are achieved. Specifically, in terms of NRSPI, the optimal result (NRSPI = 0.440) is

achieved at (α = 0.2, β = 0.4), (α = 0.2, β = 0.6), and (α = 0.6, β = 0.2). In terms

of NSPI, the optimal result (NSPI = 0.216) is achieved at (α ∈ [0.4, 0.2], β = 0.2).

Overall Performance for Selective Compound Prioritization

For all the bioassays, we compared their ap@5, ap@10, RSPI, NRSPI and NSPI

values of dCPPP at (α = 0.6, β = 0.2) with the respective values of dCPPP◦ in both

iteration 1 and 2 in Table 3.4. The paired t-tests demonstrate the significance of the

improvement from dCPPP on dCPPP◦ in iteration 1. However, in iteration 2, the im-

provement is relatively less significant (though mostly still significant at 5% confidence

level). This is expected as the ranking starting to converge to a systematically stable

state. Additionally, the small difference among performances with various push-up

and push-down powers also indicates that the system is approaching an equilibrium.
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3.7.3 Compound Ranking

Figure 3.5f, 3.5g and 3.5h present the CI values among all compounds, aCI among

non-selective compounds and sCI among selective compounds over all the bioassays in

the first iteration, respectively. Correspondingly, Figure 3.6f, 3.6g and 3.6h present

the respective values over all the bioassays in the second iteration. In Figure 3.5f,

as α and β increase, the CI values over all the bioassays decrease in general. This is

anticipated as increasing α and β values will induce less emphasis on overall ranking

structures as in Equation 3.12 and thus decreased CI values. However, dCPPP at

(α = 0.2, β = 0.0) slightly increases CI (CI = 0.636) from dCPPP◦ (CI = 0.635). This

may be due to the fact that pushing up selective compounds may affect the ranking

on other non-selective compounds and thus increase CI. Figure 3.5g shows the similar

trend over aCI as that of CI, because the majority of compounds are non-selective

compounds in the bioassays.

In iteration 2, Figure 3.6f and 3.6g show the similar trend that higher α and β

values will lead to lower CI and aCI values. Also, dCPPP achieves both optimal CI and

aCI at (α = 0.0, β = 0.0) (CI = 0.634 and aCI = 0.594, respectively). This is because

that, without any emphasis on selectivity, dCPPP is only interested in the ranking

structure among all compounds by their activities. However, dCPPP also achieves

optimal CI at (α = 0.0, β = 0.8) and (α = 0.6, β = 0.2). This indicates that in this

iteration, dCPPP tends to repair the skewed active compound ranking structures even

during selective compound prioritization.

In Figure 3.5h, the ranking performance in terms of sCI among only selective com-

pounds changes relatively irregularly. Specifically, with α ∈ [0.4, 0.6], β ∈ [0.2, 0.4]

(i.e., the optimal parameter region in which RSPI achieves the best), sCI is even below

0.5 (i.e., random ranking). This is because the selective compounds may be pushed

into discordant orders compared to the ground truth. Note that the push-up power

(Equation 3.6) is defined based on the difference of percentile rankings of a compound

in multiple bioassays. Therefore, different selective compounds may receive different
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push powers within a bioassay due to their ranking positions among others bioas-

says. Together with the combinatorial influence from multiple x-selective compounds

pushed-down at same time in the same bioassay, it is less likely that the selective

compounds are pushed up but still in their original orders as before the push.

In Figure 3.6h, dCPPP also achieves optimal sCI (sCI = 0.471) among selective

compounds iteration 2 at (α = 0.0, β = 0.0). The reason is similar to that of Fig-

ure 3.6f and 3.6g, that is, a full emphasis on the compound activity prioritization

without any selectivity push (i.e., α=0 and β=0) will introduce a better overall rank-

ing structure based on compound activities, and therefore, the selective compounds

are also prioritized based on their activities. As α and β increase, sCI starts to vary

irregularly. This is still because that different selective/x-selective compounds will

receive different push-up/-down powers, depending on the compounds’ ranking per-

centile differences among bioassays, and thus pushed into discordant pairs compared

to the ground truth. Similar to the ap@5, ap@10, RSPI, NRSPI and NSPI values,

which fluctuate in a very small range in iteration 2 (Section 3.7.2), CI, aCI and sCI

also become more stable in iteration 2 than in iteration 1. This also indicates that

the overall ranking is converging to a systematically equilibrium state in the second

iteration.

3.7.4 Top-N Performance

In this section, we evaluate the top-N performance of dCPPP.

Compound Ranking

Table 3.5 presents the top-N (N = 5 and 10) performance of dCPPP compared

to dCPPP◦ in ranking compounds (both selective and non-selective). Since α = 0.6

and β = 0.2 represent a reasonably good set of parameters for all the bioassays

overall as indicated in Section 3.7.2, we compare dCPPP at (α = 0.6, β = 0.2) in

top-N performance evaluation. Please note that dCPPP∗ corresponds to the model
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Table 3.5.: Top-N Performance on Compound Ranking (Compound Counts)
iter N dCPPP◦ dCPPP(0.6, 0.2) dCPPP∗

1 5 2.37 2.31 (7.59× 10−2) 2.36 (9.40× 10−1)
10 6.51 6.42 (2.47× 10−2) 6.50 (7.74× 10−1)

2 5 2.36 2.39 (9.18× 10−2) 2.40 (4.02× 10−2)
10 6.50 6.56 (1.45× 10−2) 6.59 (2.80× 10−3)

The column “N ” has the numbers of compounds on top of the ranking results that are
considered. The columns “dCPPP◦”, “dCPPP(0.6, 0.2)” and “dCPPP∗” have the number of
compounds from the top-N compounds in the ground truth that are still ranked among
top N by dCPPP◦, by dCPPP at (α = 0.6, β = 0.2) and by dCPPP∗, respectively. The numbers
in parentheses in “dCPPP(0.6, 0.2)” and “dCPPP∗” columns are the p-values comparing the
results of dCPPP and dCPPP∗ with those of dCPPP◦, respectively.

which achieves optimal performance in terms of RSPI for each individual bioassay

using their respective optimal α and β values, and the baseline model in iteration 2

dCPPP◦(2) that dCPPP at (α = 0.6, β = 0.2) and dCPPP∗ improve from is dCPPP∗(1).

In the first iteration, among the top 5/10 of the ranking results, dCPPP at (α =

0.6, β = 0.2) rank fewer compounds (i.e., 2.31/6.42 compounds, respectively) that

are among top 5/10 in the ground truth than dCPPP◦ (i.e., 2.37/6.51 compounds,

respectively) and the difference is close to statistical significance (p-value 7.59 ×

10−2/2.47 × 10−2). The optimal dCPPP∗ ranks about same ground-truth top-5/top-

10 compounds (i.e., 2.36/6.50) compared to dCPPP◦ (the difference is statistically

insignificant). This indicates that in terms of top-N ranking of ground-truth com-

pounds (both selective and non-selective), dCPPP is very similar to dCPPP◦. In the

second iteration, dCPPP at (α = 0.6, β = 0.2) is able to rank among top 5/10 more

compounds (i.e., 2.39/6.56 compounds, respectively) that are among top 5/10 in the

ground truth than dCPPP◦, and the difference is very close to statistical significance

(p-value 9.18 × 10−2/1.45 × 10−2). Moreover, dCPPP∗ in iteration 2 also has better

performance in terms of ranking the top5/10 compounds from ground truth (i.e.,

2.40/6.59 compounds, respectively) than dCPPP◦ with statistical significance. The

optimal dCPPP∗ outperforms dCPPP at (α = 0.6, β = 0.2) in iteration 2 as well. Over-

all, the performance in iteration 2 is better than that of iteration 1, in term of both

top-5 and top-10 ranking of both selective and active compounds. Particularly, in
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the first iteration, both dCPPP at (α = 0.6, β = 0.2) and dCPPP∗ do not outperform

dCPPP◦. However, in the second iteration, they outperform dCPPP◦ with reasonable

significance. This indicates that dCPPP is able to improve the ranking at the top of

the ranking lists over iterations.

Table 3.6.: Top-N Performance on Compound Ranking (Bioassay Counts)
iter N method 0 1 2 3 4 5 6 7 8 9 10

1

5
dCPPP◦ 14 27 38 42 28 4 - - - - -

dCPPP(0.6, 0.2) 13 29 42 44 24 4 - - - - -
dCPPP∗ 11 30 40 44 26 4 - - - - -

10
dCPPP◦ 0 0 1 3 11 26 34 33 29 15 2

dCPPP(0.6, 0.2) 0 0 1 4 9 32 35 31 28 13 2
dCPPP∗ 0 0 1 5 9 26 38 34 28 14 2

2

5
dCPPP◦ 11 30 40 44 26 4 - - - - -

dCPPP(0.6, 0.2) 11 27 42 44 27 4 - - - - -
dCPPP∗ 10 29 40 45 27 4 - - - - -

10
dCPPP◦ 0 0 1 5 9 26 38 34 28 14 2

dCPPP(0.6, 0.2) 0 0 1 3 11 22 36 36 29 14 2
dCPPP∗ 0 0 1 4 11 20 34 37 31 15 2

The column “N ” has the numbers of compounds on top of the ranking results that are considered.
The column “method” has all the methods in comparison. The columns corresponding to number
0, 1, · · · , k, · · · , 10 represent the number of bioassays that retrain k out of the top-N (N = 5, 10)
most active compounds in the ground truth in top-N compound rankings by the various methods,
respectively.

In Table 3.6, we compare the number of bioassays in which sufficient amount of

top-N compounds in the ground truth are retained still among top-N rankings by the

various methods. Note that here only the activity ranking is considered. Table 3.6

shows that in iteration 1, dCPPP◦ enables more bioassays to retain more true top-

N compounds. For example, 28/4 bioassays retain 4/5 of the top-5 most active

compounds in their top-5 rankings, respectively. Thus, cumulatively 32 bioassays

retain at least 4 of the 5 most active compounds in their top-5 rankings, compared

to 28 bioassays from dCPPP at (α = 0.6, β = 0.2) and 30 bioassays from dCPPP∗,

respectively. Similarly for top-10 rankings, dCPPP◦ enables 46 bioassays to retain at

least 8 compounds out of the 10 most active compounds, compared to 43 bioassays
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from dCPPP at (α = 0.6, β = 0.2) and 44 bioassays from dCPPP∗, respectively. The

performance is expected, because dCPPP at (α = 0.6, β = 0.2) and dCPPP∗ push

selective compounds higher than they should be as if solely activity is considered, and

as a result lower some activity compounds from the top of the ranking lists. Even

though, the performance of dCPPP◦ and dCPPP are very comparable, indicating that

dCPPP is able to achieve the overall compound ranking structures similarly as dCPPP◦.

Table 3.6 also shows that in the second iteration, dCPPP at (α = 0.6, β = 0.2) and

dCPPP∗ enable 31 bioassays to retain at least 4 out of 5 most active compounds among

top 5 rankings, and 45 and 48 bioassays top retain at least 8 out of 10 most active

compounds among top 10 rankings, respectively, which is better than dCPPP◦. Note

that dCPPP◦ in iteration 2 is dCPPP∗ from iteration 1, and thus Table 3.6 shows that

in iteration 2, the performance of dCPPP in terms of retaining top active compounds

start to get better. This indicates that in the second iteration, dCPPP tends to fix the

altered ranking lists from the first iteration, similarly as indicated in Table 3.5.

Compound Selectivity Ranking

Table 3.7.: Top-N Performance on Selectivity Ranking (Compound Counts)
iter N dCPPP◦ dCPPP(0.6, 0.2) dCPPP∗

1 5 2.25 2.40 (1.47× 10−8) 2.49 (3.76× 10−17)
10 3.04 3.18 (9.14× 10−9) 3.19 (1.07× 10−10)

2 5 2.49 2.50 (3.93× 10−2) 2.52 (3.80× 10−3 )
10 3.19 3.21 (2.90× 10−2) 3.21 (4.98× 10−2 )

The column “N ” has the numbers of compounds on top of the ranking results that are
considered. The columns “dCPPP◦”, “dCPPP(0.6, 0.2)” and “dCPPP∗” have the number of
selective compounds that are ranked among top N by dCPPP◦, by dCPPP at (α = 0.6, β = 0.2)
and by dCPPP∗, respectively. The numbers in parentheses in “dCPPP(0.6, 0.2)” and “dCPPP∗”
columns are the p-values comparing the results of dCPPP and dCPPP∗ with those of dCPPP◦,
respectively.

Table 3.7 presents the top-N (N = 5 and 10) performance of dCPPP compared

to dCPPP◦ in prioritizing selective compounds. The comparison is in terms of the

number of selective compounds that are ranked on top by dCPPP, regardless whether
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these selective compounds are ranked on top or not in the ground truth. Among

the top 5/10 of the ranking results from iteration 1, dCPPP at (α = 0.6, β = 0.2)

consistently ranking more selective compounds (i.e., 2.40/3.18 selective compounds,

respectively) compared to dCPPP◦ (i.e., 2.25/3.04 selective compounds, respectively),

with statistical significance. Please note that these top ranked selective compounds

could be either among top N in the ground truth or below top N in the ground

truth. If each bioassay uses its own optimal (in terms of RSPI) α and β parameters,

dCPPP∗ also ranks more selective compounds (i.e., 2.49/3.19) than both dCPPP◦ with

statistical significance and dCPPP at (α = 0.6, β = 0.2). In the second iteration, dCPPP

at (α = 0.6, β = 0.2) also outperforms dCPPP◦ in ranking selective compounds among

top 5/10. Specifically, dCPPP at (α = 0.6, β = 0.2) is able to rank 2.50/3.21 selective

compounds in top 5/10 of the ranking list, while dCPPP◦ could rank 2.49/3.19 selective

compounds, and the difference is statistically significant (p-value 3.93× 10−2/2.90×

10−2). In addition, dCPPP∗ outperforms dCPPP◦ in iteration 2 as well and is able

to rank 2.52/3.21 selective compounds in top5/10 with statistical significance. Also,

dCPPP∗ outperforms dCPPP at (α = 0.6, β = 0.2) in ranking more selective compounds

in top 5/10. The results in Table 3.7 demonstrates that over the two iterations, dCPPP

is able to consistently push more selective compounds onto top.

Table 3.8 presents the number of bioassays that rank selective compounds on top.

In this comparison, dCPPP is significantly better than dCPPP◦. For example, dCPPP

at (α = 0.6, β = 0.2) and dCPPP∗ enable 72 and 74 bioassays, respectively, to rank

at least 3 selective compounds among top-5 rankings in iteration 1, compared to 65

bioassays from dCPPP◦. In terms of top 10 rankings, dCPPP at (α = 0.6, β = 0.2)

and dCPPP∗ enable 32 and 32 bioassays, respectively, to rank at least 5 selective

compounds among top-10 rankings in iteration 1, compared to 28 bioassays from

dCPPP◦. In the second iteration, dCPPP at (α = 0.6, β = 0.2) and dCPPP∗ enables even

more bioassays to rank more selective compounds. For example, for top-5 rankings,

dCPPP at (α = 0.6, β = 0.2) and dCPPP∗ enable 75 and 77 bioassays to rank at least

3 selective compounds among top-5 rankings, respectively, compared to 74 bioassays
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Table 3.8.: Top-N Performance on Selectivity Ranking (Bioassay Counts)
iter N method 0 1 2 3 4 5 6 7 8 9 10

1

5
dCPPP◦ 11 35 45 37 22 6 - - - - -

dCPPP(0.6, 0.2) 6 31 45 46 19 7 - - - - -
dCPPP∗ 4 28 49 44 21 9 - - - - -

10
dCPPP◦ 5 21 42 34 25 14 9 4 1 0 0

dCPPP(0.6, 0.2) 3 18 40 38 24 15 10 5 2 0 0
dCPPP∗ 3 18 40 38 24 16 9 4 3 0 0

2

5
dCPPP◦ 4 28 49 44 21 9 - - - - -

dCPPP(0.6, 0.2) 4 28 48 44 22 9 - - - - -
dCPPP∗ 4 28 46 45 23 9 - - - - -

10
dCPPP◦ 3 18 40 38 24 16 9 4 3 0 0

dCPPP(0.6, 0.2) 3 18 40 39 23 16 9 5 3 0 0
dCPPP∗ 3 17 40 38 23 16 10 5 2 0 0

The column “N ” has the numbers of compounds on top of the ranking results that are consid-
ered. The column “method” has all the methods in comparison. The columns corresponding to
number 0, 1, · · · , k, · · · , 10 represent the number of bioassays that rank k selective compounds
in top-N (N = 5, 10) compound rankings by the various methods, respectively.

from dCPPP◦. Note that in iteration 2, dCPPP◦ is the dCPPP∗ from iteration 1. Thus,

compared to the best performance from iteration 1, dCPPP further improves selectivity

ranking among top 5 in iteration 2. Similar conclusions can be drawn for top-10

rankings.

Compound Selectivity Push

Table 3.9 presents the performance of dCPPP in pushing ground-truth top-N se-

lective compounds on top. The comparison is in terms of the number of selective

compounds that are ranked among top N in the ground truth and have also been

retained among top N by dCPPP. In the first iteration, among the average 1.98 se-

lective compounds among top 5 in the ground truth, dCPPP◦ is able to retain 1.38

of such selective compounds still among top 5, but dCPPP at (α = 0.6, β = 0.2) is

able to retain 1.44 and dCPPP∗ is able to retain 1.49, both with statistical significance

compared to dCPPP◦. In addition, among 1.01 selective compounds that are among
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Table 3.9.: Top-N Performance on Selectivity Push (Compound Counts)
iter N gt dCPPP◦ dCPPP(0.6, 0.2) dCPPP∗

1 1-5 1.98 1.38 1.44(7.10× 10−3) 1.49(1.63× 10−6)
6-10 1.01 ↑0.56 ↑0.61(1.60× 10−3) ↑0.65(6.21× 10−8)

2 1-5 1.98 1.49 1.50(1.95× 10−1) 1.51(7.36× 10−2)
6-10 1.01 ↑0.65 ↑0.65(4.92× 10−1) ↑0.66(2.28× 10−1)

The column “N ” has the numbers of compounds on top of the ranking results that are consid-
ered. The column “gt” has the average number of selective compounds in top-N compounds
in the ground truth. The columns “dCPPP◦”, “dCPPP(0.6, 0.2)” and “dCPPP∗” have results for
dCPPP◦, dCPPP at (α = 0.6, β = 0.2) and dCPPP∗, respectively. The numbers in parentheses in
“dCPPP(0.6, 0.2)” and “dCPPP∗” columns are the p-values comparing the results of dCPPP and
dCPPP∗ with those of dCPPP◦, respectively. The first row corresponds to the number of selective
compounds among top 5 in the ground truth that are still ranked in top 5 by the different
methods. The second row corresponds to the number of selective compounds that are among
top 10 to top 6 in the ground truth and ranked into top 5 (denoted by ↑) by the different
methods.

top 10 to top 6 in the ground truth, dCPPP◦ is able to push on average 0.56 selective

compounds into its top-5 ranking compounds, while dCPPP at (α = 0.6, β = 0.2) is

able to push 0.61 and dCPPP∗ is able to push 0.65, both with statistical significance.

In the second iteration, among the 1.98 selective compounds among top 5 in the

ground truth, dCPPP at (α = 0.6, β = 0.2) and dCPPP∗ are able to retain 1.50 and 1.51

such selective compounds still among top 5, respectively, while dCPPP◦ could retain

1.49 such selective compounds. Among the 1.01 selective compounds that are ranked

in top 10 upto top 6 in the ground truth, dCPPP at (α = 0.6, β = 0.2) and dCPPP∗

could push 0.65 and 0.66 such selective compounds into top 5 of their ranking lists,

while dCPPP◦ could push 0.65. The results in Table 3.9 demonstrate that dCPPP is able

to retain most of the selective compounds on top, and push lower ranked selective

compounds onto top. In addition, Table 3.9 shows that in the first iteration, in total

there are 2.14 (i.e., 1.49 + 0.65) selective compounds that are ranked on top 5 by

dCPPP∗, and those 2.14 selective compounds are ranked among top 10 in the ground

truth. On the other hand, Table 3.7 shows that in the first iteration, dCPPP∗ ranks

2.49 (more than 2.14) selective compounds among top 5. This indicates that dCPPP∗
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even pushes selective compounds that are ranked below top 10 in the ground truth

onto top 5.

Table 3.10.: Top-N Performance on Selectivity Push (Bioassay Counts)
iter N method (%) [0, 20) [20, 40) [40, 60) [60, 80) [80, 100) [100, 100] NA

1

5
dCPPP◦ 20 8 20 20 2 67 18

dCPPP(0.6, 0.2) 18 5 18 22 2 72 18
dCPPP∗ 13 5 19 20 3 77 18

↑10
dCPPP◦ 27 5 14 6 0 41 63

dCPPP(0.6, 0.2) 20 6 14 6 0 47 63
dCPPP∗ 16 5 15 7 0 49 63

2

5
dCPPP◦ 13 5 19 20 3 77 18

dCPPP(0.6, 0.2) 12 5 18 22 2 78 18
dCPPP∗ 12 4 19 21 2 79 18

↑10
dCPPP◦ 16 5 15 7 0 49 63

dCPPP(0.6, 0.2) 16 5 15 7 0 50 63
dCPPP∗ 16 5 14 7 0 51 63

The column “N ” has the numbers of compounds on top of the ranking results that are considered.
The column “method” has all the methods in comparison. The columns corresponding to number
(%) “ [a, b)” represent the portion (in percentage) of selective compounds are retained or pushed.
The row blocks corresponding to “N=5” represents the number of bioassays which retain the cor-
responding portions of selective compounds among the top-5 compounds in the ground truth. The
row blocks corresponding to “N=↑10” represent the number of bioassays which push corresponding
portions of selective compounds from top-6 to top-10 active compounds in the ground truth into
top-5 rankings.

Table 3.10 compares the number of bioassays that retain a certain portion of

selective compounds that are among top-N active compounds in the ground truth

and still keep such selective compounds in top-N rankings. Table 3.10 shows that

from dCPPP at (α = 0.6, β = 0.2) and dCPPP∗, more bioassays have a larger portion

of top-5 selective compounds (≥ 60%) still retained among top-5 rankings than from

dCPPP◦ after the first iteration, and more bioassays have their top-6 to top-10 selective

compounds pushed onto top-5 by dCPPP at (α = 0.6, β = 0.2) and dCPPP∗. In the

second iteration, even more bioassays have their top-5 selective compounds retained

still among top-5 by dCPPP at (α = 0.6, β = 0.2) and dCPPP∗, and more top-6 to

top-10 selective compounds pushed up. This demonstrates that dCPPP is effective in

prioritizing selective compounds.
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3.7.5 Percentile Ranking Change
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Fig. 3.7.: Ranking Difference among Selective Compounds in Iteration 1
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Fig. 3.8.: Ranking Difference among Selective Compounds in Iteration 2

Figure 3.7 presents the difference of percentile rankings introduced by dCPPP(1)

among the training selective compounds. The difference of percentile rankings of

a compound ci is defined as r̃k+
i −max

Bl

r̃l−i , where r̃k+
i and r̃l−i are the estimated

percentile ranking of ci in bioassay Bk as a selective compound, and in bioassay Bl

as a non-selective compound, respectively. A positive/negative difference indicates

that ci is ranked higher/lower in Bk as a selective compound than in any/some other

bioassays Bl as a non-selective compound. Figure 3.7 shows that for dCPPP∗(1), the
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majority of percentile ranking difference is positive (i.e., along y-axis, more data

points above the line x = 0). This indicates that dCPPP is able to push selective

compounds on top effectively. In addition, the average percentile ranking difference

from dCPPP∗(1) is larger than that from dCPPP◦(1) (i.e., more data points above the

line y = x in Figure 3.7). This indicates that dCPPP is able to further distinguish

selective compounds from non-selective compounds by pushing selective compounds

on top. Specifically, in dCPPP◦(1), selective compounds are ranked 20 percentage

higher on average in the bioassays in which they are selective than in the bioassays

in which they are non-selective. In dCPPP∗(1), selective compounds are ranked 30

percentage higher on average. The difference between the ranking percentile difference

in dCPPP∗(1) and in dCPPP◦(1) is statistically significant (p-value=2.18× 10−50).

Figure 3.8 presents the difference of percentile rankings among the training se-

lective compounds introduced by dCPPP(2). In dCPPP∗(2), selective compounds are

ranked on average 61 percentage higher in the bioassays in which they are selective

than in bioassays in which they are non-selective (i.e., along y-axis in Figure 3.8). The

difference between the ranking percentiles in dCPPP∗(2) and in dCPPP◦(2) is statisti-

cally significant (i.e., more data points above the line y = x; p-value=2.12× 10−306).

The increase in the percentile ranking difference of training selective compounds in-

dicates that dCPPP is powerful to further push up the selective compounds and push

down the x-selective compounds in iteration 2. Also, the significant difference between

the ranking difference introduced by dCPPP◦(2) and that introduced by dCPPP∗(2)

shows that, after iteration 2, the selective compounds have been ranked significantly

higher in the bioassays in which they are selective and in other bioassays in which

the compounds are non-selective.

3.7.6 Push Power Change

Figure 3.9 and Figure 3.10 present the change of push-up/push-down powers (i.e.,

g in Equation 3.6 and h in Equation 3.10) on the training selective compounds between
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the two iterations, respectively. The average push-up power in iteration 1 and 2 is

ḡ1 = 1.16 and ḡ2 = 1.09, respectively. The average push-down power in iteration 1 and

2 is h̄1 = 1.34 and h̄2 = 1.27, respectively. The difference between the average push-

up powers in iteration 1 and the average push-up power in iteration 2 is statistically

significant with p-value 2.47× 10−322. The difference between the average push-down

powers is also significant with p-value 2.20× 10−163. The decrease of the push powers

in iteration 2 indicates that when the selective compounds are pushed higher after

iteration 1, the ranking difference of selective compounds in the bioassay in which

they are selective and in other bioassays in which they are non-selective is increased

(Equation 3.6 and 3.10).

3.8 Discussions

3.8.1 Push Relation Among Bioassays

Figure 3.11 presents a subset of push relations among all the bioassays in the

first iteration of dCPPP as a weighted directed network. Each node in the network

represents one bioassay. Since each bioassay has one unique target, the gene name

of the target is used to represent each bioassay on the corresponding node. An edge

from bioassay Bl to bioassay Bk represents that there is a compound shared by Bl and

Bk, and the compound in Bk is pushed with a power determined by the its ranking

difference in Bk and Bl (i.e., Bl helps to push the compound in Bk). A red edge from

Bl to Bk represents that the corresponding pushed (up) compound is selective in Bk.

A blue edge fromBl toBk represents that the corresponding pushed (down) compound

is x-selective in Bk. The weight (width) of an edge represents the corresponding push-

up/down power. Figure 3.11 shows that there are many edges among genes of a same

family (e.g., PIK3CA, PIK3CB, PIK3CD, PIK3CG; SSTR1, SSTR2, SSTR3, SSTR4,

SSTR5). This well conforms to the Chemogenomics principle [41; 42] that targets of

a same family tend to bind to similar compounds. The full set of relations is available

in Figure S1 in the Supporting Information.
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Fig. 3.11.: Push Relation among Bioassays

The weighted directed networks are constructed based on push-up/down powers

that are collectively determined by multiple compound prioritization models. Com-

pared to conventional compound-sharing based networks [43; 44] that are typically

undirected and/or unweighted, such model-based weighted directed networks may ex-

hibit interesting signals that could inform novel drug development approaches. Fur-

ther research may be oriented along this direction via better exploring the structures

of the weighted directed networks.

3.8.2 Bioassay-Specific Compound Features

In dCPPP, the vector of Tanimoto similarities of ci compared to other training

compounds in a bioassay B is used as the compound features for ci in Bk. There-
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fore, the compound features are task specific. This compound feature representation

follows the idea of the very recent trend of learning task-specific compound features

using deep learning [45; 46; 47] for various compound prediction problems. Thus, we

will explore better compound feature learning for compound prioritization purposes.

3.8.3 Differential Promiscuous Compound Prioritization

The x-selective compounds that are pushed down in dCPPP represent a certain

type of promiscuous compounds, which are the promiscuous compounds that show

multi-fold difference in their activities against an off-target and the target of interest

(based on the definition of “selectivity” as in Section 3.3). This type of promiscuous

compounds is much less preferable for the target of interest, compared to the other

promiscuous compounds, which are active against multiple targets, but not very dif-

ferentiably. In this work, we focus on pushing x-selective compounds down but not

explicitly other promiscuous compounds. However, other promiscuous compounds

should also be properly considered for pushing down as well. We will tackle this

aspect in the future work.

Supporting Information Availability

Supporting Information Available: Assay information, push relation and addi-

tional experimental results are available in the Supporting Information. Detailed

method description and results can be found at https://cs.iupui.edu/~liujunf/

projects/selRank_2017/.
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4. DRUG SELECTION VIA JOINT PUSH AND
LEARNING TO RANK

4.1 Introduction

Selecting the right drugs for the right patients is a primary goal of precision

medicine [1]. An appealing option for precision cancer drug selection is via the pan-

cancer scheme [2] that examines various cancer types together. The landscape of can-

cer genomics reveals that various cancer types share driving mutagenesis mechanisms

and corresponding molecular signaling pathways in several core cellular processes [3].

This finding has motivated the most recent clinical trials (e.g., the Molecular Analysis

for Therapy Choice Trial at National Cancer Institute∗) to identify common targets

for patients of various cancer types and to prescribe same drug therapy to such pa-

tients. Such pan-cancer scheme is also well supported by the strong pan-cancer muta-

tions [4] and copy number variation [5] patterns observed from The Cancer Genomics

Atlas† project. The above pan-cancer evidence from theories and practices lays the

foundation for joint analysis of multiple cancer cell lines and their drug responses to

prioritize and select sensitive cancer drugs.

Another appealing option for precision cancer drug selection is via the popular off-

label drug use [6] (i.e., the use of drugs for unapproved therapeutic indications [7]).

This is due to the fact that some aggressive cancer types have very limited existing

therapeutic options, while conventional drug development for those cancers, and also

in general, has been extremely time-consuming, costly and risky [8]. However, a key

challenge for off-label drug use is the lack of knowledge base of preclinical and clinical

evidence, hence, the guidance for drug selection in practice [9].
∗https://www.cancer.gov/about-cancer/treatment/clinical-trials/nci-supported/nci-match
†https://cancergenome.nih.gov/
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In this manuscript, we present a new computational cancer drug selection method

– joint push and LEarning TO Rank with genomics regularization (pLETORg). In

pLETORg, we formulate the problem of drug selection based on cell line responses as a

learning-to-rank [10] problem, that is, we aim to produce accurate drug orderings (in

terms of drug sensitivity) in each cell line via learning, and thus prioritize sensitive

drugs in each cell line. This corresponds to the application scenario in which drugs

need to be prioritized and selected to treat a given cell line/patient. Drug sensitivity

here represents the capacity of drugs for reduction in cancer cell proliferation. Cell

line responses to drugs reflect drug sensitivities on the cell lines, and thus, we use the

concepts of drug sensitivity and cell line response in this manuscript exchangeably.

To induce correct ordering of drugs in each cell line in terms of drug sensitivity, for

each involved drug and cell line, in pLETORg, we learn a latent vector and score drugs

in each cell line using drug latent vectors and the corresponding cell line latent vector.

We learn such latent vectors through explicitly enforcing and optimizing that, in the

drug ranking list of each cell line, the sensitive drugs are pushed above insensitive

drugs, and meanwhile the ranking orders among sensitive drugs are correct, where the

ranking position of a drug in a cell line is determined by the drug latent vector and

cell line latent vector. We simultaneously learn from all the cell lines and their drug

ranking structures. In this way, the structural information of all the cell lines can be

transferred across and leveraged during the learning process. We also use genomics

information on cell lines to regularize the latent vectors in learning to rank. Fig. 4.1

demonstrates the overall scheme of the pLETORg method.

The new pLETORg is significantly different from the existing computational drug

selection methods. Current computational efforts for precision cancer drug selec-

tion [11] are primarily focused on using regression methods (e.g., random forests [12],

kernel based methods [13], ridge regression [14], deep neural networks [15]) to predict

drug sensitivities (e.g., in GI50
‡, IC50

§) numerically, and selecting drugs with optimal

sensitivities in each cell line [16]. For example, in Menden et al. [17], cell line features
‡https://dtp.cancer.gov/databases_tools/docs/compare/compare_methodology.htm
§https://www.ncbi.nlm.nih.gov/books/NBK91994/
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(e.g., sequence variation, copy number variation) and drug features (e.g., physico-

chemical properties) are jointly used to train a neural network that predicts drug

sensitivities in IC50 values. Another focus of the existing methods is on effectively

using genomics information on cell lines and features on drugs to improve regres-

sion [13; 18; 19]. For example, in Ammad-ud-din et al. [20], a kernel is constructed

on each type of drug and cell line features to measure their respective similarities,

and drug sensitivity is predicted from the combination of projected drug kernels and

cell line kernels.

The existing regression based methods for drug selection may suffer from the fact

that the regression accuracy is largely affected by insensitive drugs, and therefore,

accurate drug sensitivity regression does not necessarily lead to accurate drug selec-

tion (prioritization). This is because in regression models, in order to achieve small

regression errors, the majority of drug response values in a cell line needs to be fit

well. However, when insensitive drugs constitute the majority in each cell line, which

is becoming common as the advanced technologies are enabling screenings over large
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collections of small molecules (e.g., in the Library of Integrated Network-Based Cellu-

lar Signatures (LINCS) ¶), it is very likely that the regression sacrifices its accuracies

on a very few but sensitive drugs in order to achieve better accuracies on the majority

insensitive drugs, and thus smaller total errors on all drugs overall. This situation is

even more likely when the cell line response values on sensitive drugs follow a very

different distribution, and thus appear like outliers [21], than that from insensitive

drugs, which is also very often the case. Fig. 4.2 presents a typical distribution of cell

line (LS123 from Cancer Therapeutics Response Portal (CTRP v2) ‖) responses to

drugs. In Fig. 4.2, lower cell line response scores indicate higher drug sensitivities. It

is clear in Fig. 4.2 that top most sensitive drugs (in red in the figure) have sensitivity

values of a different distribution than the rest. When cell line responses on sensitive

drugs cannot be accurately predicted by regression models, it will further lead to

imprecise drug selection or prioritization (e.g., sensitive drugs may be predicted as

insensitive).
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Fig. 4.2.: Exemplar Cell Line Response Score Distribution

Instead, ranking methods represent a more natural and effective alternative so

as to directly prioritize and select drugs. In order to enable drug selection, in the

end, a sorted/ranking order of drugs needs to be in place. Accurate predicted cell

line response values on drugs can serve to sort/rank drugs in order. However, any
¶http://www.lincsproject.org/
‖https://portals.broadinstitute.org/ctrp/
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other scores can also serve the purpose as long as they produce desired drug orders.

This provides the opportunity for learning-to-rank methods for drug selection, which

focus on learning the drug ranking structures directly (via using certain scores to sort

drugs). Actually, regression based drug selection corresponds to point-wise learning to

rank [10; 22; 23], which has been demonstrated [24] to perform suboptimally compared

to pairwise [25] and listwise ranking methods [26].

Detailed literature review on learning to rank is available in Section 4.2. To the

best of our knowledge, this is the first work in which drug selection is tackled via

learning to rank.

The rest of the manuscript is organized as follows. Section 4.2 presents the lit-

erature review on learning-to-rank methods. Section 4.3 presents the new pLETORg

method. Section 4.4 presents the materials used in experiments. Section 4.5 presents

the experimental results. Section 4.6 presents the conclusions.

4.2 Literature Review on Learning to Rank

Learning to Rank (LETOR) [22] focuses on developing machine learning methods

and models that can produce accurate rankings of interested instances, rather than

using pre-defined scoring functions to sort the instances. LETOR is the key enabling

technique in information retrieval [23]. Existing LETOR methods fall into three cat-

egories: 1). pointwise methods [24], which learn a score on each individual instance

that will be used to sort/rank all the instances; 2). pairwise methods [25], which

optimize pairwise ranking orders among all instances to induce good ranking orders

among the instances; and 3) listwise methods [26], which model the full combinatorial

structures of ranking lists. It has been demonstrated [24] that pairwise and listwise

ranking methods outperform pointwise methods in general. This is because in pair-

wise and listwise methods, the ordering structures among instances are leveraged in

learning, whereas in pointwise methods, no ordering information is used. Moreover,

listwise methods are more computationally challenging than the others, due to the
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combinatorial nature of ranking lists as a whole. Thus, pairwise methods are the

choice in many ranking problems, given the trade-off between ranking performance

and computational demands.

The idea of using LETOR approaches to prioritize compounds has also drawn

some recent attention [27; 28; 29]. For example, Agarwal et al. [30] developed bipartite

ranking [31] to rank chemical structures for Structure-Activity-Relationship (SAR)

modeling such that active compounds and inactive compounds are well separated in

the ranking lists. Liu and Ning [29] developed a ranking method with bi-directional

powered push strategy to prioritize selective compounds from multiple bioassays.

However, LETOR has not been widely used in prioritizing drugs in computational

medicine domain.

In LETOR, a particular interest is to improve the performance on the top of the

ranking lists [32; 33], that is, instead of optimizing the entire ranking structures, only

the top of the ranking lists will be optimized (i.e., to rank the most relevant instances

on top), while the rest of the ranking lists, particularly the bottom of the ranking

lists, is of little interest. An effective technique to enable good ranking performance

on top in LETOR is via push [27; 34; 35]. The key idea is to explicitly push relevant

instances on top during optimization. Various optimization algorithms are developed

to deal with the non-trivial objective functions when push is involved [25; 36].

4.3 Methods

We propose the joint push and LEarning TO Rank with genomics regularization

(pLETORg) for drug prioritization and selection. The pLETORg method learns and uses

latent vectors of drugs and cell lines to score each drug in a cell line, and ranks the

drugs based on their scores (Section 4.3.1). During the learning process, pLETORg

explicitly pushes the sensitive drugs on top of the ranking lists that are produced

by the prospective latent vectors (Section 4.3.2), and optimizes the ranking orders

among sensitive drugs (Section 4.3.3) simultaneously. In addition, pLETORg uses ge-
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nomics information on cell lines to constrain cell line latent vectors (Section 4.3.4).

The following sections describe pLETORg in detail. The supplementary materials are

available online∗∗.

Table 4.1.: Notations

notation meaning

Cp cell line p
di drug i
d+/d− a sensitive/insensitive drug in a cell line
C+
p/C−p the set of sensitive/insensitive drugs in Cp
n+
p/n−p the size of C+

p/C−p
up/vi latent vector for cell line Cp/drug di
m/n the total number of cell lines/drugs

Table 4.1 presents the key notations used in the manuscript. In this manuscript,

drugs are indexed by i and j, and cell lines are indexed by p and q. We use d+/d−

to indicate sensitive/insensitive drugs (sensitivity labeling will be discussed later in

Section 4.4.1) in a certain cell line, for example, d+
i ∈ Cp or di ∈ C+

p indicates that

drug di is sensitive in cell line Cp. Cell line is neglected when no ambiguity arises.

4.3.1 Drug Scoring

We model that the ranking of drugs in terms of their sensitivities in a cell line

is determined by their latent scores in the cell line. The latent score of drug di in

cell line Cp, denoted as fp(di), is estimated as the dot product of di’s latent vector

vi ∈ Rl×1 and Cp’s latent vector up ∈ Rl×1, where l is the latent dimension, that is,

fp(di) = f(di, Cp) = uT
pvi, (4.1)

where f(d, C) is the dot-product scoring function, and the latent vectors up and vi

will be learned. Then all the drugs are sorted based on their scores in Cp. The most
∗∗http://cs.iupui.edu/%7Eliujunf/projects/CCLERank/
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sensitive drugs in a cell line will have the highest scores and will be ranked higher

than insensitive drugs. Thus, drug selection in pLETORg is to identify optimal drug

and cell line latent vectors that together produce preferable cell line-specific drug

scores and rankings. Note that in pLETORg, we look for scores fp(di) as long as they

can produce correct drug rankings, but these scores are not necessarily identical to

drug sensitivity values (e.g., shifted drug sensitivity values can also produce perfect

drug rankings).

4.3.2 Pushing up Sensitive Drugs

To enforce the high rank of sensitive drugs, we leverage the idea of ranking with

push [35]. The key idea is to quantitatively measure the ranking positions of drugs,

and look for ranking models that can optimize such quantitative measurement so as

to rank sensitive drugs high and insensitive drugs low. In pLETORg, we use the height

of an insensitive drug d−i in Cp, denoted as hf (d−i , Cp), to measure its ranking position

in Cp [35] as follows,

hf (d
−
i , Cp) =

∑
d

+
j∈C

+
p

I(fp(d+
j ) ≤ fp(d

−
i )), (4.2)

where C+
p is the set of sensitive drugs in cell line Cp, f is the drug scoring function

(Equation 4.1), fp(d+
j ) and fp(d

−
i ) are the scores of d+

j and d−i in Cp, respectively,

and I(x) is the indicator function (I(x) = 1 if x is true, otherwise 0). Essentially,

hf (d
−
i , Cp) is the number of sensitive drugs that are ranked below the insensitive drug

d−i in cell line Cp by the scoring function f .

To push sensitive drugs higher in a cell line, it is to minimize the total height of all

insensitive drugs in that cell line (i.e., minimize the total number of sensitive drugs
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that are ranked below insensitive drugs). Thus, for all the cell lines, it is to minimize

their total heights, denoted as P ↑f , that is,

P ↑f =
m∑
p=1

1

n+
pn
−
p

∑
d
−
i ∈Cp

hf (d
−
i , Cp), (4.3)

where m is the number of cell lines, and n+
p and n−p are the numbers of sensitive and

insensitive drugs in cell line Cp. The normalization by n+
p and n−p is to eliminate the

effects from different cell line sizes.

4.3.3 Ranking among Sensitive Drugs

In addition to pushing sensitive drugs on top of insensitive drugs, we also consider

the ranking orders among sensitive drugs in order to enable fine-grained prioritization

among sensitive drugs. Specifically, we use di �R dj to represent that di is ranked

higher than dj in the relation R. We use concordance index (CI) [37] to measure drug

ranking structures compared to the ground truth, which is defined as follows,

CI({di}, C, f) =
1

|{di �C dj}|
∑
di�Cdj

I(di �f dj), (4.4)

where {di} is the set of drugs in cell line C, {di �C dj} is the set of ordered pairs of

drugs in cell line C (di �C dj represents that di is more sensitive, and thus ranked

higher, than dj in C), f is the scoring function (Equation 4.1) that produces an

estimated drug ranking, di �f dj represents that di is ranked higher than dj by f ,

and I is the indicator function. Essentially, CI measures the ratio of correctly ordered

drug pairs by f among all possible pairs. Higher CI values indicate better ranking

structures.

To promote correct ranking orders among sensitive drugs in all the cell lines, we

minimize the objective O+
f , defined as the sum of 1 − CI values (i.e., the ratio of
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mis-ordered drug pairs among all pairs) over the sensitive drugs of all the cell lines,

as follows,

O+
f =

m∑
p=1

[1− CI({d+
i }, Cp, f)]

=
m∑
p=1

1

|{d+
i �Cp d+

j }|
∑

d
+
i�Cpd

+
j

I(d+
i ≺f d+

j ).

(4.5)

4.3.4 Overall Optimization Problem

Overall, we seek the cell line latent vectors and drug latent vectors that will be

used in drug scoring function f (Equation 4.1) such that for each cell line, the sensitive

drugs will be ranked on top and in right orders using the latent vectors. In pLETORg,

such latent vectors are learned by solving the following optimization problem:

min
U,V
Lf = (1− α)P ↑f + αO+

f +
β

2
Ruv +

γ

2
Rcsim, (4.6)

where Lf is the overall loss function; P ↑f and O+
f are defined in Equation 4.3 and

Equation 4.5, respectively; U = [u1,u2, · · · ,um] and V = [v1,v2, · · · ,vn] are the la-

tent vector matrices for cell lines and drugs, respectively (U ∈ Rl×m, V ∈ Rl×n,

where l is the latent dimension); α (α ∈ [0, 1]) is a weighting parameter to control the

contribution from push (i.e., P ↑f ) and ranking (i.e., O+
f ); β and γ are regularization

parameters (β ≥ 0, γ ≥ 0) on the two regularizers Ruv and Rcsim, respectively.

In Problem 4.6, Ruv is a regularizer on U and V to prevent overfitting, defined as

Ruv =
1

m
‖U‖2

F +
1

n
‖V ‖2

F , (4.7)

where ‖X‖F is the Frobenius norm of matrix X. Rcsim is a regularizer on cell lines to

constrain cell line latent vectors, defined as

Rcsim =
1

m2

m∑
p=1

m∑
q=1

wpq‖up − uq‖2
2, (4.8)



136

where wpq is the similarity between Cp and Cq that is calculated using genomics

information of the cell lines (e.g., gene expression information). The underlying as-

sumption is that if two cell lines have similar patterns in their genomics data (i.e.,

large wpq), they will be similar in their cell line response response patterns, and thus

similar latent vectors [16].

The Problem 4.6 involves an indicator function (in Equation 4.2, 4.4), which is

not continuous or smooth. Thus, we use the logistic function as its surrogate [34],

that is,

I(x ≤ y) ≈ log[1 + exp(−(x− y))] = − log σ(x− y), (4.9)

where σ(x) is a sigmoid function, that is,

σ(x) =
1

1 + exp(−x)
.

The optimization algorithm for pLETORg optimization is presented in Algorithm 2.

We use alternating minimization with gradient descent (details in Section S2 in sup-

plementary materials) to solve the optimization Problem 4.6.

Since the number of drugs pairs is quadratically larger than the number of drugs,

it could be computationally expensive to use all the drug pairs during training. To

solve this issue, we develop a sampling scheme. During each iteration of training, we

use all the sensitive drugs in each cell line but randomly sample a same number of

insensitive drugs from each respective cell line. This process is repeated for a number

of times and then the average gradient is used to update U and V . This sampling

scheme will significantly speed up the optimization process.
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Algorithm 2: Alternating Optimization for pLETORg
Input: cell lines {C} with drug sensitivities;

cell line similarity matrix W ∈ Rm×m;
latent dimension l;
weighting parameter α;
regularization parameters β and γ;

Output: U and V
Ensure: α ∈ [0, 1], β ≥ 0, γ ≥ 0
U ← a random l ×m matrix
V ← a random l × n matrix
while not converged do

fix V and solve for U using gradient descent (Equation S1, S2 in Section S2)
in supplementary materials

fix U and solve for V using gradient descent (Equation S3, S4 in Section S2)
in supplementary materials

end
return U and V

4.4 Materials

4.4.1 Dataset and Experimental Protocol

Table 4.2.: Dataset Description

m n #genes #AUCs #mAUCs #d/C #C/d
821 545 20,068 357,052 90,393 435 655

The columns of “m”, “n” and “#genes” have the number of cell lines, drugs and genes in the
dataset, respectively. The columns of “#AUCs” and “#mAUCs” have the total number of
available response values and missing response values, respectively. The column of “#d/C”
has the average number of available drug response values per cell line. The column of “#C/d”
has the average number of cell lines that have response values for each drug.

We use the cell line data and drug sensitivity data from Cancer Cell Line Ency-

clopedia (CCLE) †† and Cancer Therapeutics Response Portal (CTRP v2) ‡‡ (both

accessed on 10/14/2016), respectively. CTRP provides the cell line responses to differ-

ent drugs. The response is measured using area-under-concentration-response curve
††https://portals.broadinstitute.org/ccle/home
‡‡https://portals.broadinstitute.org/ctrp/
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(AUC) sensitivity scores [38]. Lower response (AUC) scores indicate higher drug sen-

sitivities. CCLE provides the expression information over a set of genes for each of

the cell lines. Larger expression values indicate higher gene expression levels. CCLE

also provides other omics data for the cell lines (e.g., copy number variations). In this

manuscript, we only use gene expression information, as it is demonstrated as the

most pertinent to cell line response [16]. The use of other omics data will be explored

in the future research. This dataset has large numbers of both cell lines and drugs.

Table 4.2 presents the description of the dataset used in the experiments. Note that

in the dataset, about 20% of the drug sensitivity values are missing. For the drugs

which do not have response values in a cell line, we do not use the drugs in learning

the corresponding cell line latent vector.

Experimental Setting

We had two experimental settings for two different types of experiments.
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Fig. 4.3.: Data Split for 5-Fold Cross Validation

N-Fold Cross Validation In the first setting, we split drug sensitivity data for

each cell line into a training and a testing set, and conduct 5-fold cross validation to

evaluate model performance. Fig. 4.3 demonstrates the training-testing splits. For

each cell line, its drug sensitivity data are randomly split into 5 folds. One of the 5

folds is used as testing set and the other four folds are used for training. The is done

5 times, with each of the 5 folds as the testing data in each time. The final results are
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the average over the 5 folds. This experimental setting corresponds to the application

scenario in which additional drugs (i.e., the testing data) need to be selected for each

cell line/patient.

During the data split, we ensure that for each of the drugs, there is at least one

cell line in the training set that has response information for that drug. This is to

avoid the situation in which drugs in the testing set do not have information during

training, or the use scenario in which brand-new compounds need to be selected for

further testing. The latter will be studied in future research. We also ensure that each

cell line has drug sensitivities in the training set to avoid the situation of brand-new

cell lines. This situation will be studied in the second experimental setting.
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Fig. 4.4.: Data Split for Testing New Cell Lines

Leave-Out Validation We also conduct experiments in a different setting as indi-

cated in Fig. 4.4, that is, we hold out entire cell lines into the testing data so that in

training data, the held-out cell lines have no drug response information at all. This

corresponds to the use scenario to select sensitive drugs for new cell line/new patients.

Details on how to hold out cell lines will be discussed later in Section 4.5.3.

Sensitivity Labeling Scheme

Labeling Scheme for N-Fold Cross Validation In the 5-fold setting (Fig. 4.3),

for each cell line, we use a certain percentile θ (e.g., θ=5) of all its response values in

the training set as a threshold to determine drug sensitivity in that cell line. Thus,
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the sensitivity threshold is cell line specific. It is only selected from the training data

of respective cell lines (i.e., testing data are not used to determine the threshold as

they are considered as unknown during training). Drugs in both the training set and

testing set are then labeled as sensitive in the respective cell line if the cell line has

lower response values on the drugs than the threshold (lower AUC scores indicate

higher sensitivity), otherwise, the drugs are labeled as insensitive. The reason why a

cell-line-specific percentile threshold is used for sensitivity labeling is that there lacks

a pre-defined threshold of sensitivity scores for each of the cell lines to determine

sensitivity labels. Meanwhile, given the heterogeneity of cell lines, we cannot apply

the same threshold for different cell lines. The idea of using sensitivity score percentile

as a threshold is very similar to that in Speyer et al. [21], in which the outliers with

low sensitivity scores are labeled as sensitive.

Labeling Scheme for Testing New Cell Lines In the second setting with new

cell lines (Fig. 4.4), since the new cell lines have no drug response information in

training, we use a percentile threshold from the testing data (i.e., the new cell lines;

the ground truth) to label sensitivities of the drugs in the new cell lines.

4.4.2 Baseline Method

We use a strong baseline method, the Bayesian Multi-Task Multi-Kernel Learning

(BMTMKL) method [16], which is the winning method for DREAM 7 challenge §§, for

comparison. BMTMKL was originally developed to rank cell lines with respect to a drug

based on their responses to the drug (i.e., the DREAM 7 problem). In BMTMKL, cell

line ranking for each drug is considered a task. All the cell line rankings are learned

simultaneously in a multi-task learning [39] framework. Multiple kernels [40] (positive

semi-definite similarity matrices) are constructed from multiple types of omics data

for cell lines to quantify their similarities. The multi-task and multi-kernel learning
§§http://dreamchallenges.org/project/dream-7-nci-dream-drug-sensitivity-prediction-challenge/
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is conducted within a kernelized regression with Bayesian inference for parameter

estimation.

Note that the drug ranking problem we are tackling in this manuscript is a different

problem compared to the cell line ranking problem that BMTMKL is designed to tackle.

The cell line ranking problem in DREAM 7 corresponds to the application scenario

in which cell lines/patients need to be selected to test a given drug, for example,

in a clinical trial, whereas the drug ranking problem corresponds to the application

scenario in which drugs need to be selected to treat a given cell line/patient. Even

though, BMTMKL can still be used on the drug ranking problem by switching the

roles of “drugs” and “cell lines”. Moreover, BMTMKL predicts drug response values via

regressions and uses the values for cell line ranking. Thus, BMTMKL is a regression

method, and the predicted values can also be used for drug ranking. To the best

of our knowledge, there is no existing work on drug selection using learning-to-rank

methods as a baseline to compare pLETORg with.

4.4.3 Evaluation Metrics

We first introduce the evaluation metrics that are used in most of the experiments.

Other metrics that are used in specific experiments will be introduced later when they

are applied. The first metric that we use to evaluate the performance of BMTMKL and

pLETORg is the average-precision at k (AP@k) [10]. It is defined as the average of

precisions that are calculated at each ranking position of sensitive drugs that are

ranked among top k in a ranking list, that is,

AP@k({di},C, f) =

k∑
j=1

Prec({d−→1 , · · · , d−→j }, C
+, f) · I(d−→j ∈ C

+)

k∑
j=1

I(d−→j ∈ C
+)

, (4.10)
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where d−→j is the drug that is ranked at position j by f , I(d−→j ∈ C
+) checks whether

d−→j is sensitive in C in the ground truth, and Prec is defined as

Prec({d⇀
1
, · · · , d−→j }, C

+, f) =

j∑
i=1

I(d⇀
i
∈ C+)

/
j, (4.11)

that is, it is calculated as the ratio of sensitive drugs among top-j ranked drugs. Thus,

AP@k considers the ranking positions of sensitive drugs that are ranked among top k

of a ranking list. It is a popular metric to evaluate LETOR methods. Higher AP@k

values indicate that the sensitive drugs are ranked higher on average.

We define a second metric average-hit at k (AH@k) as the average number of

sensitive drugs that are ranked among top k of a ranking list, that is,

AH@k({di}, C, f) =
k∑
j=1

I(d−→j ∈ C
+). (4.12)

Higher AH@k values indicate that more sensitive drugs are ranked among top k.

We also use CI as defined in Equation 4.4 to evaluate the ranking structures

among only sensitive drugs. In this case, we denote CI specifically as sCI (i.e., CI

for sensitive drugs), and thus by default, CI evaluates the entire ranking structures

of both sensitive and insensitive drugs, and sCI is only for sensitive drugs. Note

that sCI (CI) and AP@k measure different aspects of a ranking list. The sCI (CI)

metric measures whether the ordering structure of a ranking list is close to its ground

truth, while AP@k measures whether the relevant instances (i.e., sensitive drugs in

this manuscript) are ranked on top. A high AP@k does not necessarily indicate the

ordering among the top-ranked drugs is correct. Similarly, a high sCI (CI) does not

necessarily lead to that the most sensitive drugs being ranked on top, particularly

when there are many insensitive drugs in the list. In this manuscript, both the drug

sensitivity and the ordering of sensitive drugs are of our concern. That is, we would

like to select sensitive drugs, and meanwhile if there are multiple such drugs, we would

like to have a correct ordering over such drugs.
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4.4.4 Gene Selection and Cell Line Similarities

We use gene expression information to measure cell line similarities (i.e., wpq

as in Equation 4.8) and regularize our ranking models (i.e., wpq‖up − uq‖2
2 as in

Equation 4.8). It is well accepted that not all the genes are informative to cell line

response to drugs [16], and thus we use `1 regularized linear regression to conduct

feature selection over gene expression data to select informative genes with respect

to each drug. It is well known that the `1 regularization will promote sparsity in the

solution [41], in which the non-zero values will indicate useful independent variables

(in our case, genes). To select informative genes, the gene expression values over

all the cell lines are considered as independent variables and the response values on

each drug from all the cell lines are considered as dependent variables. If a cell

line has no response value on a drug, the gene expression information of that cell

line is not used. A linear least-squares regression with `1 and `2 regularization (i.e.,

elastic net) is applied over these variables so as to select informative genes for each

drug. The regularization parameters over the `1 regularizer and the `2 regularizer are

identified via regularization path [42]. Fig. 4.5 demonstrates the regression method

for gene selection. The union of all the selected genes for all the drugs will be used

to calculate cell line similarities. In the end, 1,203 genes are selected. The list of the

selected genes is available Section S3 in the supplementary materials. We use cosine

similarity function (cos) and radial basis function (rbf) over the selected genes (these

genes are considered as cell line features) to calculate the similarities between cell

lines.
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Fig. 4.5.: Regression for Gene Selection
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4.5 Experimental Results

4.5.1 Ranking New Drugs

We first compare the performance of BMTMKL and pLETORg on ranking new drugs

in each cell line (i.e., ranking testing drugs among themselves in each cell line). The

experiments follow the protocol as indicated in Fig. 4.3. Note that notion of “new

drugs” is with respect to each cell line, and a new drug in a cell line could be known

in a different cell line.

We use 2 percentile (i.e., θ=2) and 5 percentile (i.e., θ=5) as discussed in Sec-

tion 4.4.1 to label sensitivity. Although both BMTMKL and pLETORg do not rely on

specific labeling schemes, the small percentiles make the drug selection problem real-

istic. This is because in real practice, only the top few most sensitive drugs will be

of great interest. However, given that the sensitive drugs are few, the drug selection

problem is very non-trivial.

For both BMTMKL and pLETORg, we conduct a grid search for each of their param-

eters, and present the results that correspond to the best parameter combinations.

The full set of experimental results over all parameters is available in Table S2 and

S3 in the supplementary materials. Table 4.3 presents the overall performance.
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Overall Comparison

When 2 percentile of the response values (i.e., θ=2) in training data is used as the

sensitivity threshold, pLETORg achieves its best AP@5 value 0.783, and it is 5.81%

higher than the best AP@5 value 0.740 of BMTMKL (p-value=3.096e-26). In terms of

AP@10, pLETORg achieves its best value 0.758, and it is 6.61% higher than 0.711 of

BMTMKL (p-value=9.628e-37). Meanwhile, pLETORg achieves higher AH@5 and AH@10

compared to those of BMTMKL (1.856 vs 1.702, p-value=5.589e-51; 2.159 vs 2.072,

p-value=1.033e-28). In particular, pLETORg achieves its best AP@k and AH@k values

when α=0.0, that is, when the push term P ↑f in Problem 4.6 is the only objective to

optimize. The results demonstrate that pLETORg is strong in pushing more sensitive

drugs on top of ranking lists and thus better prioritizes sensitive drugs for drug

selection. On the contrary, BMTMKL focuses on accurately predicting the response

value of each drug in each cell line. However, accurate point-wise response prediction

does not guarantee that the most sensitive drugs are promoted onto the top of ranking

lists in BMTMKL.

On the other hand, pLETORg achieves an sCI value 0.639 when it achieves its best

AP@k values (i.e., when l=10, α=0.0, β=0.1 and γ=100.0 for pLETORg). Compared to

the sCI value 0.646 of BMTMKL when BMTMKL achieves its best AP@k values, pLETORg

does not outperform BMTMKL on sCI. However, the difference is not significant (-

1.08% increase; p-value=2.803e-1). Note that when α=0.0, the ranking orders among

sensitive drugs are not explicitly optimized in Problem 4.6. Even though, pLETORg

is still able to produce the ranking orders that are very competitive to those from

BMTMKL. This may be due to that during pushing and optimizing sensitive drug orders

on top, pLETORg is able to learn drug latent vectors that can capture the underlying

reasons for the orderings among sensitive and insensitive drugs, and reproduce the

orderings among sensitive drugs.

In addition, pLETORg achieves a CI value 0.774 together with its best AP@k values,

but BMTMKL achieves a CI value 0.812 with its best AP@k values, which is significantly
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better (4.91% better than pLETORg, p-value≈0). As a matter of fact, the best CI value

that pLETORg ever achieves (i.e., 0.805 when l=30, α=0.1, β=1.0, γ=100.0) is still

significantly worse than that of BMTMKL (i.e., 0.812, p-value=3.599e-33). The results

indicate that the baseline method BMTMKL optimizes the predicted response values

and thus is able to correspondingly reproduce the entire drug ranking structures well.

Different from BMTMKL, pLETORg aims to push only sensitive drugs on top of the

ranking structures and optimize only the ranking structures of those sensitive drugs

(when α > 0). Therefore, pLETORg is not able to well estimate the entire ranking

structures for both sensitive and insensitive drugs. However, in drug selection, the

top ranked drugs could be of great interest compared to those lower-ranked drugs,

and therefore, the low CI performance of pLETORg can be compensated by its high

sCI, AP@k and AH@k values.

When 5 percentile of the response values (i.e., θ=5) is used as the sensitivity

threshold, pLETORg shows similar behaviors as in 2 percentile case. That is, in

terms AP@5, pLETORg (0.855 when l=10, α=0.5, β=0.1 and γ=100.0; 0.857 when

when l=50, α=0.0, β=0.1 and γ=100.0) outperforms BMTMKL (0.828) at 3.26% (p-

value=1.864e-18), in terms of AP@10 at 4.40% (0.806 vs 0.772; p-value=7.8775e-33),

in terms of AH@5 at 8.37% (2.965 vs 2.736; p-value=6.856e-76) and AH@10 at 5.98%

(3.986 vs 3.761; p-value=7.875e-33) and in terms of sCI at 0.92% (0.658 vs 0.652;

p-value=1.250e-1), but is significantly worse than BMTMKL on CI. In particular, the

AP@5 and AP@10 improvement for θ=2 is larger than that for θ=5, respectively (i.e.,

5.81% vs 3.26% at AP@5, 6.61% vs 4.40% at AP@10). This indicates that pLETORg

is good at prioritizing drugs particularly when there are a small number of sensitive

drugs. Note that in Table 4.3, for θ=2 and θ=5, the CI values in BMTMKL are identical.

This is because BMTMKL does not use labels in training, and its performance in terms

of CI does not depend on labels. On the contrary, sCI depends on the labels as it

only measures CI within sensitive drugs. Therefore, sCI values of BMTMKL for θ=2

and θ=5 are different. However, pLETORg relies on labels during push and ranking in
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order to learn the models, and thus, labels will affect its performance in both CI and

sCI.

In Table 4.3, the optimal pLETORg results always correspond to non-zero γ values

(i.e., the parameter on cell line similarity regularizer in Problem 4.6). This indicates

that cell line similarities calculated from the gene expression information are able to

help improve the ranking of drug sensitivities in pLETORg. The results in Table 4.3

also show that the optimal performance of pLETORg is from a relatively small latent

space with l=10. This may be due to the fact that the sampling scheme significantly

reduces the size of training instances, and thus small latent vectors are sufficient to

represent the learned information for drug prioritization.

Performance of pLETORg over Push Powers
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Fig. 4.6.: Performance of pLETORg w.r.t. the Push Parameter α

Fig. 4.6 presents the best pLETORg performance on each of the four metrics with

respect to different push parameter α’s when l=10 (i.e., the latent dimension corre-

sponding to the best AP@k values in Table 4.3). Fig. 4.6a and 4.6b show that in

general as α increases (i.e., decreasing emphasis on pushing sensitive drugs on top),

AP@k values decrease. When α=1.0, that is, no push takes effect, the AP@k val-

ues become lower than those when α < 1. This demonstrates the effect of the push

mechanism in prioritizing sensitive drugs in pLETORg. The figures also show that the

optimal sCI values are achieved when α ∈ (0, 1), but not at α=1.0 when the ranking
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structure among sensitive drugs is the only focus. This is probably due to that the

ranking difference between sensitive and insensitive drugs involved in the push term

P ↑f can also help improve the ranking among sensitive drugs. In addition, the figures

show that the optimal CI values are achieved when α ∈ (0, 1). This is because with

very small α values, sensitive drugs are strongly pushed but it does not necessarily

result in good ranking structures among all sensitive and insensitive drugs. Similarly,

when α is very large, the ranking structures among only sensitive drugs are highly

optimized, which does not necessarily lead to good ranking structures among all drugs

either. Thus, the best overall ranking structures are achieved under a combinatorial

effect of both the push and the sensitive drug ranking.

Performance of pLETORg over Latent Dimensions
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Fig. 4.7.: Performance of pLETORg w.r.t. the Latent Dimension l

Fig. 4.7 presents the best pLETORg performance on each of the four metrics with

respect to different latent dimension l. Fig. 4.7a and 4.7b show that in general, small

latent dimensions (e.g., l in 10 to 15) are sufficient in order to achieve good results

on drug ranking. We interpret each dimension in the drug latent vectors and cell line

latent vectors as to represent a certain latent feature that together determine drug

rankings in each cell line. Thus, the small latent dimensions indicate that the learned

latent vectors are able to capture latent features that are specific to drugs and cell

lines.
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On the other hand, as AP@k tends to decrease as l increases, sCI tends to increase.

This indicates that larger l may enable better rankings among sensitive drugs, but

not necessarily pushing sensitive drugs on top. Fig. 4.7 also shows that CI first

increases and then decreases as l becomes larger, following an opposite trend of sCI.

This demonstrates that good ranking structures among all the drugs do not directly

indicate good ranking structures among sensitive drugs, and vice versa. We also

notice that with α=0.5, pLETORg has better AP@k as l increases from 30 to 50. This

is probably because sufficiently large latent dimensions could also capture the drug

sensitivity information when the sensitivity threshold is relaxed (i.e., more drugs are

considered as sensitive when θ=5 than those when θ=2). Even though, pLETORg still

performs better at l=10 than at l=50 with θ=5. Considering computational costs,

we do not explore other even larger latent dimensions.
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4.5.2 Ranking New and Known Drugs

We evaluate the performance of pLETORg on ranking both new drugs (i.e., testing

drugs) and known drugs (i.e., training drugs) together in the experimental setting

as in Fig. 4.3. This corresponds to the use scenario in which new drugs need to

be compared with known drugs so as to select the most promising drugs among all

available (i.e., both new and known) drugs. In this case, we focus on evaluating

whether most of the true sensitive drugs can be prioritized.

Evaluation Metrics

The evaluation is based on the following two specific metrics. The first metric,

denoted as AT@k, measures among the top-k most sensitive drugs of each cell line

in the ground truth (including both training and testing drugs), what percentage of

them are ranked still among top k in the prediction, that is,

AT@k({di}, C, f) =
∑

dj∈top-k(C)

I(d−→j ∈ top-k(C))
k

, (4.13)

where d−→j is the drug that is ranked at position j by f , and top-k(C) is the set of

top-k most sensitive drugs in cell line C.

The second metric, denoted as NT@k, measures among the new drugs that should

be among the top-k most sensitive drugs of each cell line in the ground truth, what

percentage of them are ranked actually among top k in the prediction, that is,

NT@k({di}, C, f) =

∑
dj is new

I(d−→j ∈ top-k(C))

∑
dj is new

I(dj ∈ top-k(C))
. (4.14)
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Overall Comparison

Table 4.4 presents top performance of BMTMKL and pLETORg in terms of AT@k

and NT@k. We did not present AP@k and AH@k values here as they show similar

trends as in Table 4.3. In addition, as the top ranking structures on known drugs

(i.e., the majority of all drugs) have been explicitly optimized during training, AP@k

and AH@k could be highly dominated by known drugs (i.e., training drugs).

The results in Table 4.4 show that in terms of NT@k, pLETORg is able to achieve

very similar results (when l=5) as BMTMKL, in which cases, pLETORg even achieves

slightly better results on AT@k than BMTMKL. This demonstrates that pLETORg has

similar power as BMTMKL in ranking new and known sensitive drugs together, and

even slightly better power in prioritizing new sensitive drugs. In terms of AT@k,

pLETORg is able to achieve much better results (when l=50) than BMTMKL. However,

when pLETORg achieves high AT@k, the corresponding NT@k is not optimal. Since

the top-k most sensitive drugs among both new and known drugs will be dominated

by known drugs, the good performance of pLETORg on AT@k validates that the push

mechanism in pLETORg takes place during training.

4.5.3 Ranking Drugs in New Cell Lines

In this section, we present the experimental results on ranking drugs in new cell

lines. The experiments follow the experimental setting as in Fig. 4.4.

Analysis on Cell Line Similarities

New cell lines don’t have any drug response information or latent vectors, and

the only information that can be leveraged in order to select drugs for them is their

own genomics information. Therefore, we first validate whether we can use the gene

expression information for drug selection in new cell lines in pLETORg.
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We first calculate the similarities of cell lines using their latent vectors learned

from pLETORg (in the setting of Fig. 4.3) in rbf function. The correlation between

such similarities and the cell line similarities calculated from gene expressions (i.e.,

wpq as in Equation 4.8) using rbf function is 0.426. The correlations show that cell

line gene expression similarities and their latent vector similarities are moderately

correlated.
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Fig. 4.8.: Cell Line Similarity Comparison

We further analyze the cell lines whose gene expression similarities (using rbf func-

tion) are among 90 percentile. For each of such cell lines, we identify 10 most similar

cell lines in their gene expressions. Fig. 4.8 shows the gene expression similarities of

all such cell lines and their latent vector similarities. Fig. 4.8 demonstrates that for

those cell lines whose gene expression similarities are high, their latent vector simi-

larities are also significantly higher than average (the average cell line latent vector

similarity is 0.682).

This indicates the feasibility of using high gene expression similarities to connect

new cell lines with cell lines used in pLETORg
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Experimental Setting

Based on the analysis on cell line similarities, we split testing cell lines (i.e., new

cell lines) from training cell lines (as in Fig. 4.4) such that each of the testing cell lines

has sufficient number of similar training cell lines in terms of their gene expressions.

Cell line latent vectors are learned in pLETORg only for those training cell lines, and

drug latent vectors are learned for all the drugs. Note that the label scheme in this

setting follows that in Section 4.4.1. The detailed protocol is available in Section S1

in supplementary materials.

In order to select sensitive drugs for each of the testing/new cell lines, we first

generate a latent vector for the testing cell line as the weighted sum of latent vectors

of its top-10 most similar (in gene expressions) training cell lines. The weights are

the respective gene expression similarities. The drugs are then scored using the latent

vector of the new cell line and latent vectors of all drugs.

Overall Comparison
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Fig. 4.9.: Performance on Selecting Drugs for New Cell Lines

Fig. 4.9a and Fig. 4.9b present the performance of BMTMKL and pLETORg with

respect to different numbers of new cell lines (Nnew in Fig. 4.9) in terms of AP@5,

AP@10, respectively. We don’t present the performance in sCI and CI here because in
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drug selection for new cell lines/patients, CI is not practically as indicative as AP@k,

particularly in drug selection from a large collection of drugs. For each of the two

evaluation metrics, we compare the performance of BMTMKL and pLETORg when θ=2

and θ=5. Note that as Nnew increases (i.e., more new cell lines), the average gene

expression similarities between new cell lines and training cell lines decrease according

to the data split protocol.

Fig. 4.9a shows that as Nnew increases, the AP@5 values of both BMTMKL and

pLETORg with both θ=2 and θ=5 decrease. This is because as more cell lines are

split into testing set, on average, training cell lines and testing cell lines are less

similar, and thus it is less accurate to construct cell line latent vectors for the new

cell lines from training cell lines. Even though, pLETORg consistently outperforms

BMTMKL over all Nnew values. Specifically, when 50 cell lines are held out for testing

(i.e., Nnew=50), pLETORg achieves AP@5 = 0.876/0.965 when θ = 2/5, compared

to AP@5 = 0.855/0.951 of BMTMKL. When 400 cell lines are held out for testing,

pLETORg achieves AP@5 = 0.853/0.947, compared to AP@5 = 0.829/0.938 of BMTMKL.

Particularly, with θ=2, pLETORg outperforms BMTMKL at 2.5% when Nnew=50, and

at 2.9% when Nnew=400. This indicates that when the drug selection for new cell

line is more difficult (e.g., fewer training cell lines, fewer sensitive drugs), pLETORg

outperforms BMTMKL more.

In terms of AP@10 as shown in Fig. 4.9b, both pLETORg and BMTMKL show similar

performance when θ=5. When θ=2, pLETORg shows similar performance on AP@10

as BMTMKL when a small number of cell lines are held out (Nnew < 250). When more

cell lines are held out (Nnew ≥ 250), pLETORg outperforms BMTMKL. For example,

when Nnew=250, pLETORg achieves AP@10 = 0.798, compared to AP@10 = 0.774

of BMTMKL. This also indicates that pLETORg outperforms pLETORg on more difficult

drug selection problems.
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4.5.4 Analysis on Latent Vectors

Analysis on Drug Latent Vectors

Evaluation Measurements We evaluate how much the learned drug latent vectors

could be interpreted in differentiating sensitive drugs and insensitive drugs. To have

quantitative measurements for such an evaluation, we calculate the following four

types of measurements:

1. the cosine similarities of drugs using their latent vectors learned from pLETORg,

denoted as cosL;

2. the Tanimoto coefficients [43] of drugs using their AF features ¶¶, denoted as

TanAF;

3. the average ranking percentile difference for all the drug pairs over all the cell lines

in the ground truth, denoted as ∆r%; and

4. the average difference of responsive cell line ratios for drug pairs over all the cell

lines in the ground truth, denoted as ∆e%.

AF features are binary fingerprints that represent whether a certain substructure is

present or not in a drug. Thus, the Tanimoto coefficients over AF features measure

how drugs are similar in terms of their intrinsic structures (Tanimoto coefficient has

been demonstrated to be effective in comparing drug structures [44]). The measure-

ment ∆r% is calculated on all pairs of drugs over the cell lines that both of the drugs

in a pair have sensitivity measurement (i.e., no missing values on either of the drugs)

in the cell lines. The absolute values of the percentile ranking differences over such

cell lines are then averaged into ∆r%. The measurement ∆e% is calculated as the

percentage of cell lines in which a drug is sensitive (with θ=5). The absolute values

of such ratio differences from all the drug pairs are then averaged into ∆e%.

Discriminant Power of Drug Latent Vectors We group all the drug pairs based

on their cosL and TanAF percentile values. Fig. 4.10 presents the ∆r% for different
¶¶http://glaros.dtc.umn.edu/gkhome/afgen/overview
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Fig. 4.10.: ∆r% in Different Drug Pairs

groups of drug pairs. In Fig. 4.10, the colors code the ∆r% values. The two values

in each drug group (e.g., x/y in each cell in the figure) are the average percentile

ranking of the higher-ranked drugs (i.e., x) and of the lower-ranked drugs (i.e., y)

in the drug pairs, respectively. The difference of the two values in each drug group

is the corresponding ∆r%. Fig. 4.10 shows that when the drugs are less similar in

their latent vectors (i.e., smaller cosL percentile; the left columns in Fig. 4.10), the

drugs are ranked more differently among cell lines on average (i.e., larger ∆r% values).

When the drugs are more similar in their latent vectors (i.e., larger cosL percentile;

the right columns in Fig. 4.10), the rank difference is less significant (i.e., smaller

∆r% values). This indicates that the drug latent vectors learned from pLETORg are

able to encode information that differentiates drug rankings in cell lines.
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Fig. 4.11.: ∆e% in Different Drug Pairs

Fig. 4.11 presents the ∆e% for different groups of drug pairs. In Fig. 4.11, the

colors code the ∆e% values. The two values in each drug group (e.g., x/y) are
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the average responsive cell line ratio of the higher-ranked drugs (i.e., x) and of the

lower-ranked drugs (i.e., y) in the drug pairs, respectively. The difference of the two

values in each drug group is the corresponding ∆e%. Fig. 4.11 shows that drugs that

are very different from others in cosL (i.e., smaller cosL percentile; the left columns

in Fig. 4.11) are sensitive in more cell lines (i.e., larger x in x/y values of the left

columns). Specifically, the higher-ranked drugs (i.e., corresponding to x in x/y values

in Fig. 4.11) in the 4 ranges of cosL values (in increasing order) are sensitive in 28.8%,

4.7%, 1.3% and 0.4% of the cell lines on average, respectively. This also corresponds

to what Fig. 4.10 shows, that is, drugs that are more different from others in cosL

tend to be ranked higher than the drugs that are more similar to others in cosL.

Specifically, in Fig. 4.10, the higher-ranked drugs (i.e., corresponding to x in x/y

values in Fig. 4.10) in the 4 ranges of cosL values (in increasing order) are ranked at

82.2, 61.9, 54.7 and 47.6 percentile on average, respectively. These indicate that the

sensitive drugs are better differentiated in drug latent vectors, and thus pLETORg is

effective in deriving drug latent vectors that are specific to drug sensitivities.

(a) BRD-K69932463†† (b) BRD-K67566344∗∗

††https://pubchem.ncbi.nlm.nih.gov/compound/25262965
∗∗https://pubchem.ncbi.nlm.nih.gov/compound/16736978

Fig. 4.12.: Drug structures: BRD-K69932463 vs BRD-K67566344
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Drug Latent Vectors as New Drug Features Both Fig. 4.10 and Fig. 4.11

show that higher/lower Tanimoto coefficients, and thus, higher/lower similarities in

drug structures, do not necessarily indicate similar/different drug rankings or sen-

sitivities (i.e., no row-block patterns in Fig. 4.10 or Fig. 4.11). For example, drug

BRD-K69932463 (Fig. 4.12a) and drug BRD-K67566344 (Fig. 4.12b) are very simi-

lar in their intrinsic structures (i.e., TanAF of these two drugs is above 99 percentile

among all drug pairs), and they do share similar sensitivities in several cell lines, for

example, in cell line HS888T (organ: bone, disease: osteosarcoma) and HS940T (or-

gan: skin, disease: malignant melanoma), both of the drugs are sensitive. However,

on many other cell lines, their sensitivity profiles are very different. For example,

BRD-K69932463 is sensitive in cell line NCIH226 (organ: lung, disease: squamous

cell carcinoma), HCC1500 (organ: breast, disease: ductal carcinoma) and OV56 (or-

gan: ovary, disease: carcinoma), in which BRD-K67566344 is insensitive. Among 791

cell lines that have response values on both BRD-K69932463 and BRD-K67566344,

the two drugs have different sensitivity labels on 456 cell lines. Please note that the

above observation does not contradict to the well accepted conclusion that similar

drugs (in terms of their intrinsic structures) have similar effectiveness (measured in-

dependently of any other drugs; e.g., in IC50), as drugs of similar effectiveness in

different cell lines may be ranked differently.

The difference among drugs of high intrinsic structure similarities is well captured

by the drug latent vectors: cosL between the latent vectors of drug BRD-K69932463

and drug BRD-K67566344 is below 17 percentile among all drug pairs. This indicates

that drug intrinsic structures are not discriminating enough in accurately predicting

drug rankings in cell lines, whereas drug latent vectors derived from drug prioritization

tasks are more informative in better differentiating drug sensitivities in cell lines. In

fact, BRD-K69932463 (with active compound AZD8055) is used to treat diseases

such as gliomas and liver cancer. BRD-K67566344 is only know to be an inhibitor

of MTOR kinase, and may have some potential to treat diseases such as cancers.

As a matter of fact, ∆r% is strongly negatively correlated to cosL with a correlation
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coefficient −0.558, that is, on average, if two drugs are ranked very differently, their

latent vectors are more different. However, the correlation between ∆r% and TanAF is

nearly 0 (correlation coefficient −0.056). This indicates the advance of using ranking-

specific drug latent vectors that are derived from drug ranking tasks as new drug

features, compared to the ranking-independent drug structures, in predicting drug

rankings and sensitivities.

Analysis on Drug Latent Vectors
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Fig. 4.13.: Correlation among Different Cell Line Similarities

Fig. 4.13 presents the correlations among three different types of cell line similari-

ties within each of the tumor types. The three cell line similarities are calculated from

gene expressions (GE) using rbf function, cell line latent vectors (LV) using rbf func-

tion and drug sensitivity profiles (DS) using Spearman rank correlation coefficient.

The three corresponding correlations are denoted as corr(GE, LV), corr(GE, DS) and

corr(LV, DS), respectively. The numbers associated with tumor types in Fig. 4.13

indicate the number of cell lines of corresponding tumor types. (e.g., melanoma (51)

indicates that there are 51 cell lines of melanoma). Among the 37 tumor types as
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originally categorized in CCLE, 28 tumor types (i.e., 75.7% of all tumor types) have

their corr(LV, DS) higher than or same as corr(GE, DS), and the average percentage

difference is 59.9%. For example, for 15 neuroblastoma cell lines, corr(LV, DS) is on

average 191.7% higher than corr(GE, DS). For all the cell lines of various lymphoma,

corr(LV, DS) is on average at least 20% higher than corr(GE, DS). This indicates that

even when the correlation between gene expression and drug sensitivity is not strong,

through learning cell line latent vectors, pLETORg can discover novel cell line features

(i.e., cell line latent vectors) that better characterize their drug response patterns.

As a matter of fact, the improvement of corr(LV, DS) over corr(GE, DS) is more

significant when corr(GE, DS) is lower (i.e., the left side of the panel in Fig. 4.13).

This indicates the effectiveness of pLETORg in learning for difficult cell lines. For the

cell lines whose corr(GE, DS) is large (i.e., the right side of the panel in Fig. 4.13),

corr(LV, DS) is still high in general and meanwhile corr(GE, LV) is also high. This

indicates that the cell line latent vectors could retain the signals from gene expressions

if gene expressions exhibit strong signals related to their drug response. For a few

tumor types with relatively low corr(GE, LV) (e.g., liver, aml and esophagus), their

corr(LV, DS) is actually relatively high. This may indicate the capability of pLETORg

in learning new signals for cell lines by leveraging information from multiple other

cell lines.

4.6 Discussions and Conclusions

We developed genomics-regularized joint push and learning-to-rank method pLETORg

to tackle cancer drug selection for three particular application scenarios: 1). select

sensitive drugs from new drugs for each known cell line; 2). select sensitive drugs

from all available drugs including new and known drugs for each known cell line; and

3). select sensitive drugs from all available drugs for new cell lines. Our new method

pLETORg outperforms or achieve similar performance compared to the state-of-the-art

method BMTMKL.
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In pLETORg, each drug has a global latent vector which is the same in all the

cell lines. This might be restrictive as the learned drug latent vectors may have to

compromise their performance in some cell lines in order to achieve better performance

in other cell lines, and thus better overall performance. We will explore personalized

drug latent vectors in the future research, that is, each drug will have different latent

vectors with respect to different cell lines. In this way, the ranking performance on

each cell line is expected to be further improved.

We will also evaluate our pLETORg method on other drug-cell line screening data,

for example, NCI60 ∗∗∗ and LINCS-L1000 ††† data. When the number of drugs (chem-

ical compounds in LINCS-L1000) is large, it becomes more challenging computation-

ally when pairs of drugs are used in learning. We will explore fast learning algorithms

to learn drug latent vectors in the future research.
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5. SUMMARY

In this thesis, I have addressed three important problems in drug prioritization. Three

novel machine learning solutions are also provided to tackle each of the problems.

These solutions have achieved significant improvements over the baseline methods in

the experiments.

The first emerging problem is that, in compound prioritization, existing compu-

tational tools are typically focusing on devising more advanced ranking algorithms,

but the compound ranking performance is largely limited by the scarcity of available

data. The solution MACPAU has been developed to improve the ranking performance

through incorporating external information. Following this idea, I have devised a

suite of assistance bioassay selection methods and assistance compounds selection

methods, along with an assistance compound interpolation method to incorporate

the selected assistance compounds. Our experimental results demonstrate an 8.34%

improvement on compound ranking performance over the state-of-the-art.

The second problem states that existing methods in compound prioritization typi-

cally focus on ranking compounds based on a single property, and multiple compound

properties are not considered simultaneously. The corresponding solution, dCPPP, has

been developed to address the compound prioritization problem based on multiple

compound properties. In this solution, both activity and selectivity prioritization

problems are tackled within one differential method that incorporates information

from multiple bioassays. The dCPPP method learns compound prioritization models

that rank active compounds well, and meanwhile, preferably rank selective compounds

higher via a bi-directional push strategy. Our experiments show that dCPPP is able to

improve the ranking performance of selective compounds by 47.00% over the baseline

and maintain a good ranking among active compounds.
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The third problem is that existing cancer drug selection methods are unable to

effectively prioritize sensitive drugs over insensitive drugs, and are unable to differenti-

ate the orderings among sensitive drugs. To tackle the cancer drug selection problem,

I have developed a new learning-to-rank method, pLETORg, that predicts the drug

ranking structures in each cell line via drug latent vectors and cell line latent vectors.

The pLETORg method explicitly enforces that, in each cell line, the sensitive drugs

are pushed higher than insensitive drugs, and meanwhile, the ranking orders among

sensitive drugs are correct. During the training, genomics information on cell lines is

leveraged to learn the cell line latent vectors. Our experiments demonstrate that the

pLETORg method is able to improve the rankings of sensitive drugs by at least 5.81%

over the state-of-the-art method in prioritizing new sensitive drugs.

In summary, three learning-to-rank solutions have been developed to tackle the

emerging problems in drug prioritization, from compound prioritization in early stages

of drug discovery, to cancer drug selection in precision medicine. In these solutions,

information from heterogeneous datasets are incorporated and leveraged to achieve

better ranking performance. These solutions have shown significant improvement over

baseline methods and have great potential of being applied in many real applications,

such as lead optimization, secondary screening, drug selection, toxicity prediction,

etc.


