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ABSTRACT

Pati, Tanumoy. M.S., Purdue University, August 2012. Auto-Generating Models
From Their Semantics and Constraints. Major Professor: James H. Hill.

Domain-specific models powered using domain-specific modeling languages are

traditionally created manually by modelers. There exist model intelligence tech-

niques, such as constraint solvers and model guidance, which alleviate challenges

associated with manually creating models, however parts of the modeling process

are still manual. Moreover, state-of-the-art model intelligence techniques are—in

essence—reactive (i.e., invoked by the modeler).

This thesis therefore provides two contributions to model-driven engineering re-

search using domain-specific modeling language (DSML). First, it discusses how

DSML semantic and constraint can enable proactive modeling, which is a form of

model intelligence that foresees model transformations, automatically executes these

model transformations, and prompts the modeler for assistance when necessary. Sec-

ondly, this thesis shows how we integrated proactive modeling into the Generic Model-

ing Environment (GME). Our experience using proactive modeling shows that it can

reduce modeling effort by both automatically generating required model elements,

and by guiding modelers to select what actions should be executed on the model.
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1 INTRODUCTION

Model-Driven Engineering (MDE) [1], powered by domain-specific modeling lan-

guages (DSMLs), allows developers to define the semantics of a given domain using

intuitive graphical representations, and define constraints to govern the interactions

of domain constructs. DSMLs are then used by modelers to model concepts for the

target domain. For example, a librarian can use a library DSML to model books

owned by their library, along with monitoring patron borrowing activity. Likewise, a

system developer can use a component-based system DSML to model the interfaces

and attributes of components in their system, the composition of the modeled com-

ponents, and the deployment and configuration (D&C) of the modeled compositions.

Lastly, model interpreters transform constructed models into concrete artifacts (e.g.,

a book audit or complex D&C descriptor files). Examples of MDE tools that use

DSMLs include: the Generic Modeling Environment (GME) [2], the Generic Eclipse

Modeling System (GEMS) [3], the Eclipse Modeling Framework (EMF) [4], and Do-

main Specific Language (DSL) Tools [5].

Traditionally, the process of using DSMLs to create models is primarily a manual

process. This means that it is the responsibility of the modeler to manually craft and

manage their models, by actions such as adding and deleting model elements, setting

attributes, and ensuring constraints are not violated. Since creating a model can be a

tedious and time-consuming process—especially when dealing with complex DSMLs

and large models—model intelligence techniques (e.g., constraint solvers [6–8] and

model guidance [9, 10]) have emerged as approaches to alleviate this concern. For

example, modelers can manually create a partial model and use constraint solvers to

automatically generate a complete solution. Likewise, modelers can select a model

element, and model guidance engines can either highlight valid associations (e.g.,
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connections and references) with respect to the selected model element, or provide

valid editing operations that a modeler can perform.

Although model intelligence is improving the usability of DSMLs, it is still plagued

by manual processes. As highlighted above, it is the responsibility of the modeler to

manually create a partial model before constraint solvers can be invoked. Likewise,

model guidance techniques engage the modeler only after they have made a selection.

It can, however, be difficult for the modeler to know what actions can occur next—

especially if the modeler is not familiar with the DSML. Further, “fixing” a model

implies the modeler has to first create a model; this is typically a manual process

completed through trial-and-error, even with current state-of-the-art model guidance

techniques. Finally, it is the responsibility of the modeler to manage model consis-

tency and correctness above and beyond manually, or even automatically, evaluating

constraints after completing actions (i.e., reactive constraint checking).

Due to these challenges, there is need for improved model intelligence techniques

that better assist modelers in the modeling process. Based on this understanding,

the main contributions of this thesis are as follows:

• It introduces proactive modeling, which is a form of model intelligence that

foresees plausible model transformations, executes these model transformations

automatically, and prompts the modeler for assistance when needed; and

• It shows how proactive modeling is implemented in GME as a GME add-on (i.e.,

a domain-independent event handler) named the Proactive Modeling Engine

(PME).

Our experience in applying the PME to a simple DSML and other DSMLs shows that

it can reduce modeling effort by automatically generating required model elements,

and also guide modelers to select what actions to execute on a model. It is, how-

ever, necessary to provide mechanisms that allow modelers to control how engaged

proactive modeling is with the model and modeler.
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2 RELATED WORKS

This section compares our work on proactive modeling to other works; more specif-

ically, we compare our work with others from the areas of partial model creation,

decision making, and semantic- and constraint-driven automation.

Partial model creation. Sen et al. [8] presented a framework for generating

model completion recommendations in model editors. In their approach, the meta-

model is transformed into a constraint logic program (CLP) [8], and is processed by a

Prolog engine. The processed CLP is then able to complete a partial model (i.e., one

that has been manually created by the modeler). Our approach extends their effort in

that proactive modeling can assist in either automatically creating the partial model,

or recommending what actions to take on the model. Once the modeler has a valid

partial model created using PME, the modeler can use their approach to complete it.

Hessellund et al. [7] created an extension of the Eclipse Modeling Framework called

SmartEMF. SmartEMF provides support for representing, checking, and maintaining

four kinds of consistency constraints: well-formedness of individual artifacts, refer-

ential integrity across artifacts, references with additional constraints, and style con-

straints. Similar to Sen et al., SmartEMF provides editing guidance to the modeler

by evaluating precondition constraints that exist on editing operations. Our work

therefore extends the work done by Hessellund et al. in that it can not only provide

modeling guidance to modelers but it can also automatically perform model transfor-

mations, such as automatically adding/deleting of valid model elements in accordance

with the constraints.

White et al. [6] created a Domain-Specific Intelligence Framework (DSIF) that

provides model guidance for large and complex models. In their approach, a DSIF is

first created for a DSML, which is then used to parametrize a Prolog knowledge base

for each model, utilizing the entities and roles specified in the metamodel. DSIF also
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allows modelers to specify domain-specific constraints in Prolog that can complete a

partially specified model through modeling suggestions. Our approach extends their

effort in that it can assist with creating the partial model–which is currently done

manually–that is needed to auto-generate the complete model.

Decision making. Janota et al. [10] improved modeling experience with their

work on Interactive model derivation, which is a process of constructing models and

metamodels with the help of automatic adaptive guidance. This guidance system

assists a modeler by providing a list of valid edit operations to choose from. The

guidance algorithms, developed for concrete modeling languages, identify transfor-

mations that refine the model and provide suggestions to the modeler. Our approach

extends their work in that proactive modeling can not only provide decision-making

capabilities but also auto-generate model elements when a model element is first cre-

ated (i.e., automatically perform multiple editing operations). Moreover, proactive

modeling also provides modelers with a sequence of valid operations to choose from

after it has finished auto-generating model elements.

Constraint-driven model intelligence. White et al. [9] developed a model

intelligence mechanism that guides modelers towards correct models. In their ap-

proach, the modeler first selects a relationship type and an element for the new

relationship. The model intelligence then evaluates constraints associated with the

selected element and presents a list of valid elements that can be associated with the

selected element. Our work extends the work done by White et al. in that proactive

modeling automates the modeling process based on the metamodel’s semantics and

constraints, rather than simply its constraints. Once the proactive modeling reaches a

point where it needs human intervention, it prompts the modeler for the next action.

At that point, our approach is similar to the approach of White et al.
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3 A RUNNING EXAMPLE: THE LIBRARY MANAGEMENT SYSTEM

This chapter introduces the Library Management System (LMS) example, which is

a system that assists librarians in tracking the book inventory in their library and

monitoring the book borrowing process of the patrons.

3.1 Overview of the LMS

This section provides a detailed discussion of the core components of the library

management system: the metamodel or the modeling elements, constraints and the

model itself.

3.1.1 Modeling elements

There are multiple ways to compose a metamodel for the LMS; Figure 3.1 shows

one simple example metamodel for the LMS. As shown in this figure, the root element

is a Library model element. This Library model element contains four basic model

elements: Book, which represents books present in a library; Patron, which represents

people who borrow books from the library; Librarian, which represents librarians

working in the library; and HRStaff, which represents the human resource staff that

hires a librarian. The Library model element also contains another model element

named Shelf, which represents the shelf location of a book in the library.

The Book model element has the following attributes:

• Title – a single-line text field that allows the modeler to specify the book’s

title;

• Author – a multi-line text field that allows the modeler to list the authors of

the book;
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Figure 3.1. An example GME metamodel for the Library Management
System.

• Quantity – a numerical field that allows the modeler to set the number of book

copies owned; and

• Department – a single-line text field that allows a modeler to categorize books

by a specific department, such as Computer Science and Electrical Engineering.

Likewise, the Patron model element has the following attributes:

• Age – a numerical field that captures the patron’s age;

• Major – a single-line field that captures the patron’s major, such as Computer

Science or Biology; and

• City – a single-line field that contains the patron’s city.
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Similarly, the Librarian model element has the following attributes:

• JobTitle – a single-line text field that captures the librarian’s job title, such

as Junior Librarian, Senior Librarian, or Book Inventory Manager; and

• Salary – a numerical field for specifying the librarian’s salary.

The HRStaff model element has the following attributes:

• Room – a numerical field that shows the room number of the human resources

staff member.

Lastly, the Shelf model element contains a single attribute named Location, which

represents the location of the book shelf in the library.

The Library model element also contains Borrows connection elements such that

a connection between a Patron and a Book means the patron borrowed the connected

book from the library. It also contains Hires connection elements such that a con-

nection between a Librarian and HRStaff means that the librarian was hired by the

connected HR staff. The Library model element can also contain Patronref model

elements that refer to patrons belonging to other libraries. This allows the modeler to

model patrons borrowing books from another library. Therefore, the Library model

also consists of an InterLibraryBorrows connection between Patronref and Book

elements.

3.1.2 Constraints

The LMS has several constraints that govern its model. Since the LMS is created

in GME, the Object Constraint Language (OCL) [11] is used to express the LMS’s

constraints. The constraints of the LMS are as follows:

• Minimum number of books required. This constraint is used to enforce the

minimum number of books that a library must contain. As shown in Figure 3.2,

this constraint checks that a Library model element has at least 3 Book model
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elements. The constraint shown in this figure is automatically generated by

GME from the cardinality expressed on the containment connection between

the Library and Book model elements in Figure 3.1.

Figure 3.2. OCL constraint showing minimum number of books required.

• Minimum number of patrons required. This constraint is used to enforce

the minimum number of patrons that a library must contain. As shown in Fig-

ure 3.3, the constraint checks that a Library model element has at least 3 Patron

model elements. The constraint shown in this figure is automatically generated

by GME from the cardinality expressed on the containment connection between

the Library and Patron model elements in Figure 3.1.

Figure 3.3. OCL constraint showing minimum number of patrons required.

• Minimum number of shelves required. This constraint is used to enforce

the minimum number of shelves that a library must contain. As shown in Fig-

ure 3.4, the constraint checks that a Library model element has at least 2 Shelf

model elements. The constraint shown in this figure is automatically generated

by GME from the cardinality expressed on the containment connection between

the Library and Shelf model elements in Figure 3.1.

• Number of HR staff required. This constraint checks that a Library model

contains at least 2 and at most 5 HRStaff elements as shown in Figure 3.5. The
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Figure 3.4. OCL constraint showing minimum number of shelves required.

constraint shown in this listing is automatically generated by GME from the

cardinality expressed on the containment connection between the Library and

HRStaff model elements in Figure 3.1.

Figure 3.5. OCL constraint showing the number of required HR staff.

• Number of librarians required. This constraint checks the minimum and

maximum number of librarians that work at the library. As shown in Figure 3.6,

the constraint checks that a Library model element has at least 2 and at most

10 Librarian model elements. The constraint shown in this figure is automat-

ically generated by GME from the cardinality expressed on the containment

connection between the Library and Librarian model elements in Figure 3.1.

Figure 3.6. OCL constraint showing the number of required librarians.

• Required city. This constraint checks that all patrons who are members of

the library are from a pre-determined city. As shown in Figure 3.7, all patrons

must be from Indianapolis in order to join the library. This is a domain-specific

constraint that is added manually by the person who created the metamodel.
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Figure 3.7. OCL constraint showing the required city.

• Required age. This constraint checks the age of each patron that is a member

of the library. As shown in Figure 3.8, a patron must be at least 18 years of

age. This is a domain-specific constraint that is added manually by the person

who created the metamodel.

Figure 3.8. OCL constraint showing the required age.

• Salary range. This constraint checks that a librarian’s salary is within the

accepted salary range. As shown in Figure 3.9, the salary should be in the

range $30,000 to $40,000. This is a domain-specific constraint that is added

manually by the person who created the metamodel.

Figure 3.9. OCL constraint showing the salary range of a librarian.

• Book borrowing condition. This constraint validates that a patron can

only borrow books that are relevant to his/her field. For example, a Computer

Science student can only borrow books that are relevant to the field of Computer

Science. As shown in Figure 3.10, this constraint checks the patron’s major

against the book’s department. This is a domain-specific constraint that is

added manually by the person who created the metamodel.
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Figure 3.10. OCL constraint showing the book borrowing condition.

• Book borrowing limit. This constraint validates that a patron can only

borrow a certain number of books. As shown in Figure 3.11, a patron can

borrow only 5 books from the library.

Figure 3.11. OCL constraint showing the book borrowing limit.

• Patron referencing condition. This constraint checks that it refers to a

patron that belongs to another library, as shown in Figure 3.12. This is a

domain-specific constraint that is added manually by the person who created

the metamodel.

Figure 3.12. OCL constraint showing patron referencing condition.

• Inter-library book borrowing condition. This constraint validates that a

patron from another library (i.e., Patronref) can only borrow books that are

relevant to their field. For example, a Patronref element referring a Computer

Science patron can only borrow books that are relevant to the field of Computer

Science. As shown in Figure 3.13, this constraint checks the referring patron’s

major against the book’s department. This is a domain-specific constraint that

is added manually by the person who created the metamodel.
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Figure 3.13. OCL constraint showing the inter-library book borrowing con-
dition.

• Inter-library book borrowing limit. This constraint validates that a patron

belonging to other libraries can only borrow a certain number of books. As

shown in Figure 3.14, a patron can borrow only 2 books from the library.

Figure 3.14. OCL constraint showing the inter-library book borrowing
limit.

3.1.3 An example model

Using the metamodel for the LMS discussed in the previous sections, modelers

(e.g., librarians) can model all the books in the library. Likewise, modelers can model

patrons and the books they borrow from the library. Figure 3.15 shows an example

model for the LMS illustrating this usage.

As shown in this figure, the Library model element contains both Book and Patron

model elements. Likewise, the box in the lower right-hand corner of Figure 3.15 shows

the attributes for the selected Patron element named Tanumoy. The connections

between the Patron elements and the Book elements represent the patron borrowing

the associated book, and the connections between a Librarian model element and a

HRStaff model element represent the HR staff member hiring the connected librarian.



13

Figure 3.15. An example model for the Library Management System.

3.2 Current Limitations in Context of the LMS

It is possible to use current state-of-the-art approaches in model intelligence to

assist with creating this model. For example, model guidance can be used to high-

light which books a patron can borrow when the modeler selects a particular patron.

Likewise, it is possible to use model guidance to assist with correcting a model that

has a constraint violation, such as creating too many connections from a patron to a

book.

There is, however, another aspect of this example that is not addressed by current

model intelligence techniques: the process of proactively managing the model, and

actions that occur on it. For example, a Library must contain certain elements,

such as 3 Books and 2 Patrons. When a Library model element is created, it should

automatically contain these elements (i.e., the modeler should not have to prompt the

model intelligence to engage with the model). Likewise, the modeler has many valid

actions to select from, which can be inferred from the metamodel; this is because the

metamodel is static and well-defined.
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4 METHODOLOGY

This chapter puts forth the theoretical and implementation aspects of achieving proac-

tive modeling. Section 4.1 provides a detailed overview of proactive modeling and

Section 4.2 discusses the design and implementation of proactive modeling in GME.

4.1 An Overview of Proactive Modeling

This section provides a detailed overview of proactive modeling in DSMLs. It

discusses the aspects that are to be automated in the modeling process, the process

for achieving proactive modeling, and the role of mutable and immutable constraints

in proactive modeling.

4.1.1 The Goal of Proactive Modeling

The term proactive modeling translates directly to foreseeing modeling. The main

goal of proactive modeling therefore is to automate—as much as possible—the mod-

eling process by foreseeing valid model transformations (i.e., those that must be

executed manually by a modeler), and automatically executing them. If there are op-

tional model transformations, proactive modeling then queries the modeler for what

model transformation to execute, and executes the selected one (similar to model

guidance).

Proactive modeling therefore helps reduce modeling effort since it removes many

tedious and error-prone modeling actions from the modeling process, such as manually

creating required model elements. Likewise, proactive modeling can assist modelers

who are not familiar with a DSML. With this in mind, proactive modeling focuses on

automating the following aspects of the modeling process:
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1. Automated model creation. This aspect of proactive modeling involves

automatically creating different model elements when a related model element

is first created. For example, when a Library model element is added to the

model, all its child model elements (e.g., Book, Patron, and Librarian) should be

automatically added to the Library model element, up to the required quantity.

This is different from current model intelligence techniques in that they do

not support auto-generating elements in the required quantity, or they do not

support auto-generation at all, unless the modeler manually creates a partial

model.

2. Decision-making. This form of proactive modeling involves presenting the

modeler with a list of valid model transformations or actions (e.g., create a

connection, add a reference, or add a new model element) that can occur based

on the current state of the model. After selecting an action, proactive modeling

executes the action. For example, when a modeler wants to add a Patronref

model element, proactive modeling presents the modeler with a list of all the

possible Patrons that the Patronref model element can reference. Upon se-

lecting a Patron model element, the reference is auto-generated. This form of

automation–which requires human-intervention–is different from current model

intelligence techniques in that it is triggered automatically when automated

modeling reaches a stopping point.

Figure 4.1 provides a high-level overview of the proactive modeling process where

proactive modeling resides between the modeler and the model. A proactive modeling

engine automatically adds modeling elements to the model (1 in the figure); when the

proactive modeling engine reaches a stopping point, it then interacts with the modeler

to select which transformations to apply to the model (2 in the figure). Ultimately,

the modeler does not interact directly with the model; instead, the modeler interacts

with the model through the proactive modeling engine.
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Figure 4.1. Conceptual overview of the proactive modeling process.

4.1.2 Insights for Realizing Proactive Modeling

As explained in the previous section, proactive modeling handles two types of

automation. In order for proactive modeling to perform automation, however, it must

obtain information about the model . Since a DSML is well-defined, it is possible for

proactive modeling to gain its insights from a DSML’s metamodel. More specifically,

it can gain its insight from the following types of analysis of a DSML’s metamodel:

• Semantic analysis. Semantic analysis is the process of analyzing a DSML’s

metamodel at run-time to discover information about its model elements. For

example, when adding a Patronref element to the model, semantic analysis of

the LMS metamodel (see Figure 3.1) will identify that a Patronref model ele-

ment can reference a Patron model element. By performing semantic analysis,

proactive modeling can collect any type of information that is relevant to a

model element without being bound to the target DSML.

• Constraint analysis. Constraint analysis is the process of parsing and an-

alyzing a DSML’s constraints collected during the semantic analysis process.

For example, semantic analysis of Patronref returns the constraint shown in

Figure 3.12, which is then parsed and evaluated to generate the list of possible

Patrons that can be referenced. By performing constraint analysis, proactive

modeling can not only evaluate constraints, but also use them to provide mod-

eling guidance and auto-generate model elements.
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Other types of analysis can be integrated into proactive modeling, such as layout

analysis where actions are performed based on the current layout of modeling element,

and user-intent analysis where actions are performed based on past knowledge of how

a modeler creates a model, but we have limited our work to these two forms of

analysis. This is because both semantic and constraint analysis are based on well-

defined information that is static; they can also provide a foundation for building

other types of analysis previously mentioned.

4.1.3 Mutable vs. Immutable Constraints

As explained above, it is possible to analyze a DSML’s constraints and determine

what elements should be added to the model, or generate a list of valid modeling

actions. For example, specifying that the number of Patrons must equal 3 means

that proactive modeling can automatically ensure the number of patrons is always 3

since 3 does not change. On the other hand, saying that the number of patrons must

equal the number of books means that proactive modeling needs modeler intervention

because both the number of patrons and books can be modified.

Based on the two examples above, constraints can be classified as either muta-

ble or immutable. A mutable constraint is a constraint that evaluates two variable

expressions. An immutable constraint is a constraint that evaluates a variable expres-

sion and a constant expression. Since an immutable constraint has constant values,

it is possible to automatically execute actions that transform the model towards the

constant value. Mutable constraints, on the other hand, require modeler intervention

because the modeler must select the model element that acts as the constant value

in the constraint evaluation.
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4.2 The Design and Implementation of Proactive Modeling in GME

This section discusses how proactive modeling is realized in GME via the Proactive

Modeling Engine.

4.2.1 Mapping Proactive Modeling into GME

As explained in Section 4.1.2, semantic analysis allows proactive modeling to learn

the elements of a DSML and their interactions; constraint analysis allows proactive

modeling to learn how to govern the interactions between elements. Both types of

analysis can be integrated into GME at run-time without being bound to a specific

DSML. Before describing the implementation details of proactive modeling in GME,

it is first necessary to understand how the analysis maps into GME—especially the

constraint analysis. Based on the functionality of GME, we have classified constraints

into the following four categories:

• Containment constraints. GME allows modelers to define multiplicity spec-

ification (also known as cardinality) on containment relationships. The multi-

plicity specification determines the acceptable number of containment relation-

ships allowed between a parent model element and a child element. For example

in Figure 3.1, the containment relationship between Book model element and

Library model element has a multiplicity of 3..*. This means that a Library

model element should have at least 3 Book model elements at all times.

• Attribute constraints. GME allows modelers to define constraints that val-

idate attribute values with respect to expected values or other elements. For

example, Figure 3.7 illustrates that the expected city for a patron is “Indianapo-

lis”. Likewise, Figure 3.8 shows that the expected age of a patron is at least

18.

• Association constraints. GME allows modelers to define association rela-

tionships between two model elements using a Connection model element. For
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example, Figure 3.1 shows three Connection elements: Borrows, which asso-

ciates Book model elements with Patron model elements; Hires, which associates

HRStaff model elements with Librarian model elements; and InterLibraryBor-

rows, which associates Patronref model elements with Book model elements.

Modelers can refine association relationships using constraints and these con-

straints determine the possible destination model elements of a connection. For

example, Figure 3.10 shows an association constraint imposed on Patron that

governs the connection between a Book and Patron model element.

• Reference constraints. GME allows modelers to define aliases (or pointers)

to other model elements by using the Reference model element. For example,

Figure 3.1 shows how the LMS metamodel defines a Patronref model element

that refers to Patron model elements. Modelers can also impose constraints on

references, which validate that the referenced model element meets a condition.

For example, Figure 3.12 shows a reference constraint imposed on Patronref,

which specifies that a Patronref can only reference Patrons from another library.

4.2.2 The Proactive Modeling Engine

Based on the understanding of how to map proactive modeling into GME, Fig-

ure 4.2 provides an overview of the Proactive Modeling Engine (PME), which imple-

ments proactive modeling. As shown in this figure, the PME is a GME add-on; a

GME add-on is a domain-independent event handler that receives events dictating

what model actions have occurred. For example, when a new model element is added

to the model, all loaded add-ons then receive the OBJEVENT CREATED event and the

event provides a reference to the newly created object. Likewise, when a model el-

ement is selected, all loaded add-ons receive the OBJEVENT SELECTED event and the

event provides a reference to the selected object. It is worth noting that if an add-on
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modifies the model, then the event that corresponds to the modification is sent to

all loaded add-ons—including the add-on that modified the model. Lastly, all GME

add-ons are stateful.

Figure 4.2. Architectural overview of the Proactive Modeling Engine.

As shown in Figure 4.2, the PME is composed of the following key components:

• OCL parser and evaluator. The OCL parser is responsible for parsing OCL

constraints and dynamically creating an abstract syntax tree from the parsed

OCL constraints. Since a GME add-on is stateful, the parsed OCL expressions

are cached for later retrieval. The OCL parser in the PME is designed and imple-

mented using the Boost Spirit Parser Framework (boost-spirit.com), which

is an object-oriented recursive descent parser generator framework implemented

using expression templates and template meta-programming techniques [12].



21

This parser works only with constraints defined in the DSML and is indepen-

dent of the DSML’s metamodel. This allows the OCL parser to be used as a

standalone OCL parser for other application domains.

The OCL evaluator for the PME works as follows: First, the OCL evaluator is

invoked by handlers on the root node of the abstract syntax tree (AST). The

individual objects that form the AST are responsible for evaluating a certain

aspect of the constraint (e.g., a method or expression). The evaluation con-

trol then traverses the AST in a top-down fashion and each object returns the

evaluated result back to its parent, stopping at the root. Based on the eval-

uated value and the information collected during semantic analysis, the PME

transforms the model accordingly.

A detailed discussion of the structure of the OCL parser and evaluator has been

presented in Appendix C.

OCL vs. Prolog. Prolog is a declarative programming language that is based

on the logic programming paradigm. In Prolog, program logic is expressed in

terms of relations, and a computation is initiated by running a query over these

relations. Prolog has been widely used in modeling intelligence [6–8]. Model

elements can be transformed into facts in Prolog, which can be checked using

Prolog rules and queried with Prolog queries [13].

The OCL, on the other hand, is a declarative language for describing rules

that apply to Unified Modeling Language (UML) models. OCL is an Object

Management Group (OMG) (www.omg.org) standard for constraint specifica-

tion and is the most widely used constraint specification language [14]. It also

acts as the basis for a number of different languages [15] such as Query/Views/-

Transformations (QVT) standard. Moreover, OCL is widely supported by both

commercial and non-commercial modeling tools [13].

Opoka et al. [13] compared the performance of query engines that used Prolog

and OCL. Their experiments show that queries collecting, or selecting, elements
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based on direct properties (e.g., determining model size) have an evaluation time

that is linear for both Prolog and OCL, but Prolog is faster. For complex queries

based on properties of relationships between elements, however, OCL performs

significantly better than Prolog. More specifically, the evaluation time in OCL

is linear, while in Prolog it is quadratic. This is because OCL allows hierarchical

representation (reflecting original structure) of models together with navigation

abilities, and Prolog uses a non-hierarchal list representation of models.Taking

into account the results presented by Opoka et al. involving performance, we

parse and evaluate OCL expressions directly instead of translating them into

Prolog rules since the PME operates in real-time.

• Containment handler. The containment handler is responsible for automat-

ing the model element creation process by resolving the containment relation-

ships between model elements. For example, when a Library model element is

added to the example model shown in Figure 3.15, the containment handler first

analyzes the LMS’s metamodel to identify what model elements a Library model

can contain. In this case, the containment handler will identify the Book, Pa-

tron, Borrows, Shelf, HRStaff, Librarian, Hires, and Patronref model elements.

This is the semantic analysis portion of proactive modeling.

After the containment handler completes its semantic analysis, the containment

handler collects each constraint associated with the newly created model ele-

ment, and forwards it to the OCL parser and evaluator. If a constraint is a

containment constraint, and is violated, then the containment handler auto-

generates the model element associated with each constraint until all contain-

ment constraints are valid. This is the constraint analysis portion of proactive

modeling. Using the LMS example, when a modeler add a Library model ele-

ment to the model, then the PME will auto-generate 3 Book, 3 Patron, 2 Shelf,

2 HRStaff, and 2 Librarian model elements, as shown in Figure 4.3.
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Figure 4.3. Example of containment handler auto-generating other model
elements when a new Library model element is added to the model.

• Attributes handler. The attributes handler is responsible for handling a

model element’s attribute values during the creation process, i.e., ensuring the

created object does not violate any attribute constraints. This, however, does

not mean that a modeler cannot change an attribute’s value after the model

has been created.

In the context of the LMS, when a Patron model element is added to the

model shown in Figure 3.15, the attributes handler first analyzes the LMS’s

metamodel to identify its attributes (i.e., semantic analysis). The attribute

handler then collects the constraints associated with the Patron model element

and forwards them to the OCL parser and evaluator. The attributes handler,

however, evaluates only the attribute constraints associated with Patron model

element (shown in Figure 3.7, Figure 3.8, and Figure 3.9). In this example,

the value of the City attribute is automatically set to “Indianapolis” and the

value of the Age attribute is set to 18. The lower right window in Figure 4.3

shows that the value of these two attributes for Patron3 Patron model element
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is automatically set when it is added to the model. Likewise, when a Librarian

model element is added to the model, the value of the Salary attribute is set to

$30,000 (i.e., the minimum allowed salary per the constraint in Figure 3.9).

• Association handler. The association handler is responsible for identifying

valid destination model elements for a given source model element when making

a connection between two model elements. For example in Figure 3.15, to create

a connection between a Patron model element and a Book model element, the

modeler first selects a Patron model element (e.g., Tanumoy). The selection of

Tanumoy then triggers the association handler, which first analyzes the meta-

model to identify all valid connection types associated with the selected model

element. This list, if any exists, is presented to the modeler. Once the modeler

selects a connection type, the association handler identifies all valid endpoint

model elements for the selected connection type. In this example, when Tanu-

moy is selected, the association handler auto-selects the Borrows type, and then

returns a list of Book model elements (i.e., CS1, CS2, CS3, CS4, CS10, MS1,

MS2, CK15, EN20, and MBA1).

The handler then collects, one at a time, the constraints associated with Pa-

tron model element (i.e., the source model element) and forwards them to the

OCL parser. The association handler subsequently evaluates the association

constraints, which allows it to filter any model elements that will violate its

constraints. In this example, the connection handler will filter out books that

are not relevant to the Tanumoy patron (a Computer Science student), which

are MS1, MS2, CK5, EN20, and MBA1. Lastly, Figure 4.4 shows how the PME

displays a list of valid destination model elements. This is similar to current

state-of-the-art techniques in model guidance.

• Reference handler. The reference handler is responsible for identifying valid

model elements that can be referred to by a reference model element. For

example in Figure 3.15, when a modeler adds a Patronref model element to
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Figure 4.4. Example of association handler presenting the modeler with a
list of valid Book model elements when the modeler selects a Patron model
element.

the model, the reference handler first analyzes the LMS’s metamodel, and then

gathers a list of valid model element types that can be referenced by a Patronref

model element. In this example, the reference handler will have a list that

contains Patron model element type. The reference handler then uses the type

information to gather a list of all elements that are of the identified model

element type. The reference handler will, therefore, list the following Patron

model elements: Tanumoy, Monica, Lisa, Michael, Joe, Raphael and Sam.

The handler then collects, one at a time, the constraints associated with selected

reference model element and forwards them to the OCL parser and evaluator.

The reference handler evaluates each OCL constraint with the goal of filtering

the initial list of plausible model elements such that no element in the final list

violates any constraints. Figure 4.5 shows an example of how the PME displays

the Patron set when the modeler adds a Patronref model element to the model.
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Figure 4.5. Example of reference handler showing the valid list of Patrons
when a Patronref model element is added to the model.

As shown in Figure 3.12, this PME presents to the modeler a list of Patron

model elements that are from a different library (i.e., Joe, Raphael, and Sam).

• Modeler guidance handler. The modeler guidance handler is responsible for

providing a modeler with a list of possible operations to choose from when the

proactive modeling engine has finished auto-generating model elements. The

operations that are presented to the modeler are in compliance with both the

semantics and the constraints of the DSML. For example, when a modeler starts

a new project, the modeler guidance handler presents the modeler with the list

of all the model elements that can be added to the RootFolder. Likewise, the

modeler guidance handler prompts the modeler to select a model to operate.

Upon selection, the modeler is presented with a list of operations that are

specific to the selected model.
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Figure 4.6. Example of modeler guidance handler showing the list of valid
operations for Library model element.

Figure 4.6 shows the list of operations that a modeler can select from for the

IUPUI model. The complete list of modeler guidance operations currently sup-

ported by the PME is as follows:

– Add a model element. This operation is used to add a model element

to a parent model. When this operation is selected, the PME presents the

modeler with a list of all the model element types that can be added to

the parent model (e.g., Book, Patron, HRStaff, Shelf, and Librarian model

element). After the modeler selects the model type, the PME passes con-

trol to the containment and attributes handler to complete the automation

process.

– Add a reference model element. This operation is used to add a

reference model element to the selected parent, if allowed. When this

action is selected, the PME provides the modeler with a list of all reference

model element types that can be added to the parent element. When the
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modeler selects the model element type, the PME passes control to the

reference handler to complete the automation process.

– Delete a model element. This operation is used to delete a model ele-

ment from the selected parent model element, if deleting a model element

is allowed.

– Create a connection. This operation is used to create a connection

between two model elements within the selected parent model element.

When this operation is selected, the PME presents the modeler with a list

of valid connection types that can be added to the parent model. When

the modeler selects the connection type, the modeler is then presented

with a list of valid source model elements that can be associated with the

selected connection type. Finally, after the model selects the source model

element, the PME passes control to the association handler to complete

the automation process.

The modeler guidance handler therefore provides relevant and valid operations to

modelers, which reduces the modeler’s decision set and can improve their modeling

experience. Likewise, we can easily extend the modeler guidance handler to support

other operations as we learn about them.

4.2.3 Chain Reactions in PME

As stated above, the PME is a GME add-on, and a GME add-on in turn is a

re-entrant component. This means that when the PME modifies the model, the PME

will receive an event associated with the latest modification. Upon receiving the new

event, the PME handles the new event similar to how it handled the previous event. If

there is no decision-making need on the modeler’s part, then the PME automatically

handles the event (per the discussion above). If the PME requires user input, then it

queries for it and proceeds accordingly.
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In the best case scenario, the first model modification (e.g., starting a new project,

or opening an existing project) triggers the PME and the PME auto-generates all the

elements required in the model. In this scenario, modeling effort is very low since

the modeler’s responsibility is reduced. In the worst case scenario, the modeler is

prompted by the PME after each modification to the model since the PME is not

able to automatically generate anything. In this scenario, the PME is similar to

manually creating a model except for the fact that the PME ensures the modeler

only executes valid actions.
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5 RESULTS

This chapter contrasts the modeling effort of a modeler with/without PME for LMS

and PICML DSMLs.

5.1 Modeling effort in DSMLs

Hill [16] defined modeling effort as the number of actions taken by a modeler

to complete a high-level modeling goal or task. For example, in LMS a high-level

modeling goal is for a patron to borrow books from a different library. This high-level

goal consists of several actions:

• Representing the patron in the different library.

• Deduce the books that can be borrowed by this patron.

• Associate a specific book with this patron.

• Validate the borrowing conditions associated with the patron.

In modeling terms, the actions mentioned above relate to activities such as adding

a model element, updating an existing element, setting attribute values for model ele-

ments, and associating model elements. In the software engineering domain [17] [18],

tasks that require a human operator (e.g., modeling) are measured with respect to

two segments: measurable computer portion and variant human portion. The human

portion of the task is referred to as think time [17] [18] and it is represented by

a non-negligible variable Z. The amount of think time associated with each action

depends heavily on the experience of the modeler.
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Using the principles mentioned above, Hill [16] presented an equation to measure

modeling effort M(T ) as:

M(T ) =
∑
t∈T

Zt + time(t) (5.1)

As shown in Equation 5.1 the modeling effort for each action t in task T is mea-

sured as the summation of the think time for a given action Zt and the time taken

by the computer to complete its given portion of the task, i.e., time(t). Therefore,

M(n) is interpreted as “the modeling effort of the task is n actions” [16]. Table 5.1

shows the modeling effort calculated for some tasks that can be performed during the

modeling process.

Table 5.1
Modeling effort for typical tasks which can be performed in GME.

Task

Modeling effort

without

PME

with

PME

Adding a model element

such as Model, and Atom

M(1) M(1)

Setting a reference M(mn+2) M(n + 1)

Creating a connection be-

tween two elements

M(n + 3) M(2)

As shown in Table 5.1, the modeling effort for adding a model element such as

Model, Atom, and Reference is M(1) with/without using PME. However, when a

modeler wants to set a reference without using PME they need to perform three

actions. First, they have to find the model element that they want to refer; the

modeling effort for this is M(n), since the modeler must go through m models and

n model elements per model to find the valid element. Second, they must select

the model element; the modeling effort for this is M(1). Finally, drag the selected

element back onto the reference element; the modeling effort for this is M(1). The
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total modeling effort for setting a reference is, therefore, M(mn + 2). On the other

hand, when the modeler is guided by PME, the modeling effort is simply M(n + 1)

because now the modeler is presented with a list of all the valid elements that can

be referenced. The modeler has only to select a particular element and the reference

is created, the modeling effort for which is M(n). However, if there exists only one

element that can be referred then the modeling effort without using PME is M(m+2)

and with using PME is M(1); this is because if there is only one element then the

modeler is not presented with a list of model elements, instead the reference gets

created automatically. Similarly, when creating a connection between two elements,

without using PME, the modelers must perform four actions. First, they need to

check the source node for its properties; the modeling effort for this is M(1). Next

they must find the model element that is to be connected (i.e., destination node);

the modeling effort for this is M(n). Thirdly, they have to select the source node for

the connection; the modeling effort for this is M(1). Finally, the destination node

must be selected in order to establish the connection; the modeling effort for this is

M(1). The total modeling effort for creating a connection is, therefore, M(n + 3).

On the other hand, when the modeler is guided by PME they have to perform only

two actions. First, select the source node, the modeling effort for which is M(1).

Second, select a destination node from the list of all valid elements which can be

connected, the modeling effort for which is M(1). The total modeling effort for

creating a connection is now reduced to M(2). Moreover, PME also relieves the

modeler from the responsibility of invoking the constraint checker in GME whenever

a model transformation is undertaken.
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5.2 Measuring modeling effort in LMS

Table 5.2 compares the modeling efforts of a modeler in creating a Library model

(refer Figure 3.15) with/without the use of PME. As shown in the table, proactive

modeling significantly reduces the modeling effort. Moreover, PME ensures that the

allowed transformations on the model adhere to the constraints of the DSML. This

aspect of PME relieves the modeler from the duty of manually invoking the constraint

checker in GME after completing any model transformation, such as adding elements,

setting references, and creating connections to ensure a correct model. Therefore, the

PME governs the entire book borrowing process of a patron.

5.3 Measuring modeling effort in PICML

The Platform Independent Component Modeling Language (PICML) is a DSML

that enables developers to define component interfaces, QoS parameters and soft-

ware building rules, and also generates descriptor files that facilitate system deploy-

ment [19]. It is a large scale DSML defined in GME and consists of approximately 930

modeling elements and 130 constraints [16]. The model abstractions and constraints

in PICML are based on OMGs CORBA Component Model [20].

PICML has been used for many case studies in both academic and industry set-

tings [16]. In academic settings, PICML has been used to support the research and

development of deployment and configuration tools [21], system execution modeling

tools [22], and optimization techniques [23] for component-based distribution system.

Similarly, in industry settings, PICML has been used to support development of

large-scale component based distributed systems such as shipboard computing envi-

ronments, avionics systems, and global communications systems [16]. Since PICML is

based on the OMGs CORBA Component Model and Deployment and Configuration

specification, it has many high-level goals such as modeling of component interfaces,

inter-component communication, network structures (e.g., hosts) and mapping com-

ponents to hosts [16].
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This section, therefore, presents the modeling effort calculated during creation of

a button component model using PICML. The initial modeling work, without using

proactive modeling, was done by Dennis Feiock. The primary motive for this work was

to extend UPPAAL TRON to support distributed system domains via the CORBA

component model. The enormous number of functionalities possessed by PICML

makes it very difficult for a novice modeler to complete a component. Primarily, the

button component model can be segregated into 6 components as described below:

• Interface Definitions. It describes the interface for the button component. It

defines ports and attributes associated with the component using the CORBA

3.x IDL feature provided by CCM. Ports define the incoming and outgoing

events that the component consumes and produces. The button component in-

terface has 2 OutEventPorts, SingleClick and DoubleClick, and 1 InEvent-

Port, Click. Additionally, it also defines two Attributes, ReporterTimeout

and ReporterTimeunit. The modeling effort for creating this component been

discussed in Table 5.3.

• Targets. This section of the model provides the domains or nodes on which the

button component will be deployed. In the button component example, there

exists only 1 target node called MainNode. The modeling effort for creating this

component has been discussed in Table 5.4.

• Deployment Plans. This part of the model is responsible for modeling com-

ponent groups that will be deployed to a particular node. The modeling effort

for creating this component has been discussed in Table 5.7.

• Implementation Artifacts. It defines the artifacts that are to be generated.

In the button component example, there are 2 button artifacts to be gener-

ated called ButtonImpl and ButtonSvnt. The modeling effort for creating this

component has been discussed in Table 5.5.
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• Component Implementations. This part of the model consists of two seg-

ments: ButtonImpl and ButtonAsm. The ButtonImpl model element describes

the implementation details of the button component and also links the required

artifacts to the implementation. The ButtonAsm allows the modeler to pro-

vide actual values to the component attributes such as ReporterTimeout and

ReporterTimeunit. The modeling effort for creating this component has been

discussed in Table 5.6.

• Predefined Datatypes. This section of the model provides all the built in

data types of PICML such as Boolean, Byte, and Char.
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6 CONCLUDING REMARKS

Model-Driven Engineering (MDE) facilitates building solutions in many application

domains through the systematic use of graphical languages called domain-specific

modeling languages (DSMLs). Traditionally, it is the responsibility of the modelers

to create domain-specific models using DSMLs. As domain-specific models increase

in both size and complexity, it will be hard for modelers to cope. It is, however,

necessary to go beyond existing model intelligence solution approaches to continue to

improve the experience of modelers.

This thesis,therefore, presents a model intelligence approach called proactive mod-

eling. We believe that it holds the potential to open new areas of research. Based on

our experience implementing proactive modeling in GME, and applying it to several

DSMLs, the following is a list of lessons learned and future research directions:

• Assists novice modelers with learning a new DSML. Proactive mod-

eling guides a modeler throughout the modeling process by providing list of

valid operations to choose from. Moreover, proactive modeling also enhances

modeling experience through actions like auto-generation of elements, auto-

reference resolving, auto-connection resolving, and automatic value entry for

constrained attributes. These features of proactive modeling make it suitable

for novice modelers because they are prevented from violating constraints, and

helps them get through the tedious, labor-intensive, time-consuming process of

manually creating a model.

• Intelligent presentation of modeling actions needed. Part of the proac-

tive modeling process is presenting the modeler with a list of operations that are

specific to the selected parent model. For simple DSMLs, this list is manageable.

For large and complex DSMLs, the size of the list can easily be unmanageable if
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presented in a haphazard way. It is therefore necessary to investigate techniques

for presenting the list of valid operations so that the modeler does not become

too overwhelmed, and can comfortably manage it.

• Proactive modeling can fall victim to the “Clippy” syndrome. Mi-

crosoft Office included an Office Assistant named “Clippy” that would try to

assist the end-user based on their current actions. Unfortunately, “Clippy” was

considered intrusive and annoying [24]. It is possible that proactive modeling

can fall victim to this condition, which we call the “Clippy” syndrome. It is

therefore critical that proactive modeling finds a way to be useful without be-

ing too intrusive. Otherwise, modelers will not want to use proactive modeling

engines regardless of their benefits.

• Discovering user-preferred modeling sequences. There can easily be dif-

ferent sequences of modeling actions that achieve the same final model. Like-

wise, modelers may have their own order preference for executing modeling

actions [10]. We believe that proactive modeling can provide the foundation

for realizing this idea. Future research therefore will investigate how to support

user-preferred modeling sequences in proactive modeling.

The PME discussed in this paper is freely available in open-source format, and is

currently integrated in the CoSMIC tool suite. CoSMIC can be download from the

following location: www.dre.vanderbilt.edu/cosmic.
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Appendix A: Generic Modeling Environment (GME)

The Generic Modeling Environment (GME) is a Windows-based, domain specific,

model-integrated program synthesis tool for creating and evolving domain specific,

multi-aspect models of large-scale engineering systems [25]. It was developed by the

Institute of Software Integrated Systems (ISIS) at Vanderbilt University. The GME

toolkit is configurable because it allows the representation of vastly different domains

through metamodels which specify the modeling paradigm of the application domain.

The modeling paradigm consists of all the syntactic, semantic, and presentation infor-

mation about the domain including the concepts to be used for model construction,

relationships between those concepts, guidelines to the modeler for viewing and or-

ganizing the concepts and the rules that govern the model construction [2]. The

modeling paradigm behaves like a blueprint for generating a family of models.

A.1 GME Modeling concepts

GME encompasses a set of generic concepts that enable it to build large-scale,

complex models. Figure A.1 presents an UML class diagram depicting the GME

modeling concepts and the complex relationships between them.

The primary GME concepts, as shown in Figure A.1, are discussed as follows [2]:

• Project: A Project consists of a set of Folders.

• Folder: Folders act as containers for different sections of a modeling project.

They are used for organizing the Models similar to how folders organize files on

disk. It is compulsory that each modeling project should contain at least one

root folder, located at the top of the hierarchy.

• Atom: Atoms are simple modeling objects that do not have an internal struc-

ture, i.e., they cannot contain other entities. Atom is a type of First Class

Object, or FCO, as it plays a vital role in any modeling project.

• Model: Models are compound, FCO entities that can contain other entities

such as Atoms, other Models, References, Sets and Connections. These other



48

Figure A.1. GME Modeling Concepts.

entities residing in a Model are called Parts, each having its own role. Every

entity or object in a paradigm must have a parent model, except for at least one

Model object called root model.

• Reference: A Reference is a FCO entity with a built-in association for a single

object, thereby acting as a pointer or an alias for that object.

• Set: A Set is a FCO entity that represents a collection of similar objects.

• Connection: A Connection is a FCO entity that represents a relationship be-

tween two objects contained by the same Model. Every Connection has at least

two attributes: appearance and directionality.

• Attribute: An Attribute is an entity that represents an attribute or property

of a particular FCO textually.
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• Aspect: Aspects represent different ”views” of the structure of a model. Aspect

is a mechanism to maintain readability by segmenting or filtering the models.

• Constraint: Constraints are validity rules, expressed in a predicate language

called Object Constraint Language (OCL), which can be applied to a model.

A.2 GME Interfaces

The modeling process in GME requires a modeler to primarily interact with five

major interfaces as shown below:

Figure A.2. GME Interfaces.

• Part Browser: The Part Browser window, as shown in Figure A.2, displays

the parts that can be inserted into the current model in the current aspect. It

includes all the modeling concepts that are used to create a metamodel or a

model.

• Model Browser: The Model Browser is primarily used to organize the individ-

ual models that make up an overall project. As shown in Figure A.2, this browser
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consists of three tabs: Aggregate tab (which contains a tree based containment

hierarchy of all Folders, Models and other parts), Inheritance tab (which is used

for visualizing the type inheritance hierarchy), and Meta tab (which shows the

modeling paradigm specifications).

• Attribute Browser: The Attribute Browser allows a user to view/modify the

attributes, preferences and properties of an object in the metamodel or model.

As shown in Figure A.2, this browser consists of three tabs: Attributes tab,

Preferences tab, and Properties tab.

• Model Editor: The Model Editor consists of two segments: Editor Window

(which shows the contents of the selected model in one aspect at a time), and

GME Menus (which displays a menu-bar for various commands such as New

Project, Open Project).

• Editor Operations: As shown in Figure A.2, the graphical editor provides six

editing modes to the user: Normal mode (which is used to add/delete /move/-

copy parts within the editing windows), Add Connection mode (which allows

connections to be made between the modeling objects), Delete Connection mode

(which allows connections to be removed between the objects), Set mode (which

allows the user to add objects into the set of a model), Zoom mode (which allows

the user to view the models at different levels of magnification), and Visualiza-

tion mode (which allows single objects and collections of objects to be visually

highlighted with respect to other modeling objects).

A.3 The Modeling Process

The modeling process in GME is a three-tier process as shown in Figure A.3. The

first step of the modeling process requires configuring GME to create a metamodel

that captures all the features of an application domain. In other words, the metamod-

eling process can be described as modeling the modeling process [26]. Metamodeling

is a repetitive process that results in a compiled set of rules, and the paradigm or the
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modeling language that configures GME for a specific application domain. The do-

main specific metamodels are created in GME using the MetaGME paradigm, which

acts like a metamodeling language or a meta-metamodel (represented using UML

class diagram notations). MetaGME is a reusable framework for creating domain-

specific design environments. It supports an enriched set of abstract, generic mod-

eling concepts such as containment, module interconnection, multi-aspect modeling,

inheritance, and attributes which make it suitable for a wide range of domains. The

metamodels, however, only specify the syntax of the domain modeling language; the

static semantics (i.e., set of rules that specify the well-formedness of domain models)

of the language is specified using a textual predicate logic language called Object Con-

straint Language (OCL). After the metamodel has been created, the user is required

to register the created metamodel using the MetaGME interpreter. The registering

process converts the metamodel into a GME modeling paradigm, which can be then

used for creating models. The second step of the modeling process requires the mod-

Figure A.3. The modeling process in GME.

eler to design models using the domain-specific modeling paradigm. As shown in the

figure, the modeler can create several separate models capturing different aspects of

the domain from a single registered paradigm or DSML.

The third and the final step of the modeling process involves the use of model-

interpreters for a variety of purposes discussed in the next section.
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A.4 Model Interpreters

Model transformation is an important criterion for model-driven development

paradigms. It allows a single model to be used for a variety of purposes such as:

• Creating analysis tools and simulation engines.

• Running queries, generating lists, and writing reports based on the contents of

the model.

• Generating program code or system configuration.

• Using the models as a data exchange format to integrate tools that are incom-

patible with each other.

Model transformation is achieved using Model Interpreters; these model-interpreters

perform a semantic transformation which requires understanding the detailed seman-

tics of the model. This, therefore, makes it necessary for the modeler to keep the

metamodel and model-interpreter in sync, especially when the model-interpreter has

hard-coded knowledge about the entities and their relationships in the DSML. The

interpreter is invoked by the modeler tool either upon user request or by internally

generated events such as adding a new object. Upon invocation, the interpreter tra-

verses the entire model hierarchy or processes a part of it in the event context only to

perform a wide variety of actions such as generating output, performing model trans-

formation, and vetoing the model modification (only for event triggered interpreters).

GME supports three types of model-interpreters:

• Interpreter: Interpreters are DSML specific components that are invoked ex-

plicitly by the user. These are the most commonly used form of model-interpreters.

For example, GME has an in-built interpreter called MetaGME Interpreter,

which converts a metamodel to a paradigm and registers that paradigm with

GME.

• Plug-in: Plug-ins are domain independent components that are invoked explic-

itly by the user. Examples of plug-ins in GME are Search plug-in, and XML

export/import.
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• Add-on: Add-ons are DSML specific or domain independent, event-driven

model interpreters. They are invoked by events such as Object Added, Object

Deleted, and Attribute Changed. For example, GME consists of the Constraint

Manager, which can be considered an interpreter as well as an add-on at the

same time. This is because it can be explicitly invoked by the user and also

by event-driven constraints present in the given paradigm. Any operation that

causes a violation to the constraint is aborted [2].

The model-interpreters interact with the models using high-level interfaces dis-

cussed as follows:

• Component Object Model (COM): The architecture of GME is based on

Component Object Model; therefore, COM is the primary interface used to

access GME data. However, programming with COM is difficult because of its

error-prone low-level details and also because the user must handle the full GME

interface protocol including transactions, territories, and event handling.

• Builder Object Network 2 (BON2): This is a framework that provides

a network of C++ objects (or builder objects), each representing a GME ob-

ject. The builder objects shield the developer from the low-level COM interface,

thereby making it easier to interpret and traverse models.

• Universal Data Model (UDM): UDM uses UML diagrams to describe data

structures and to automatically generate C++ and Java classes that represent

the data structures.

• GMEs Automation Modeling Engine (GAME): GAME is a modeling

framework being developed by Dr.James Hill. Its main goal is to address short-

comings of existing backend frameworks such as BON2 and UDM which cur-

rently exist for GME, such as incorrectly implemented Visitors and incomplete

extension classes. It also simplifies writing different components for GME, such

as decorators, add-ons, and interpreters.
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Appendix B: Add-on skeleton generator for GME

The first step of developing PME involved generating an empty add-on for GME.

For this purpose, we created an add-on skeleton generator script for GME in python.

This generator not only auto-generates all the necessary files for an add-on but it also

registers it with specific or all paradigms existing in GME. After the auto-generation,

the user can then simply create event handlers to handle certain events. The command

for executing the python script is: generate gme addon.py [OPTIONS]. The options

that a user can provide are shown as follows:

• -o: This option is used for providing the location for the newly generated add-

on. If the user does not provide the location, then the add-on is generated in

the same folder as the script.

• –name: This option is used for providing the name of the newly generated

add-on. If the user does not provide a name then the add-on gets the name

Default.

• –component-guid: This option is used for providing the component-unique

identifier. If the user does not provide this information then the component

GUID gets auto-generated.

• –library-guid: This option is used for providing the library-unique identifier.

If the user does not provide this information then the library GUID gets auto-

generated.

• –paradigm: This option is used for providing the paradigm with which this

add-on gets registered. If the user does not provide the paradigm then the

add-on gets registered with all paradigms.



55

Appendix C: OCL Parser and Evaluator

This chapter of the thesis presents a detailed discussion of all the key components

of the OCL parser and evaluator. Figure C.1 shows an overview of the architecture

of OCL parser and evaluator. As shown in the figure, the OCL parser and evaluator

consists of six key components: OCL Parser, Boolean Expressions Hierarchy, Value

Expressions Hierarchy, Method Hierarchy, Iterator Hierarchy, and Value Hierarchy.

Each of these components have been described in more detail later in the chapter.

C.1 OCL Parser

The OCL parser is responsible for parsing OCL constraints and dynamically cre-

ating an abstract syntax tree from the parsed OCL constraints. The nodes of the

abstract syntax tree (AST) are actually objects of various classes defined in the

boolean-expressions hierarchy. The OCL parser in the PME is designed and im-

plemented using the Boost Spirit Parser Framework, discussed later in Appendix D.

The evaluation of the generated AST is triggered by the handlers on its root node.

The class objects that form the AST evaluate a certain portion of the constraint.

We have segregated the evaluation process into two types based on the purpose of

evaluation, as described below:

• Evaluate. This evaluation process is invoked to check if an OCL constraint has

been satisfied or not. This type of evaluation is used by PME, when dealing

with containment or attribute constraints. PME evaluates these constraints to

check if they have been satisfied or not. If they have not been satisfied then it

auto-generates the required model elements or auto-fills the attribute values.

• Filter Evaluate. This evaluation process is invoked to evaluate the OCL con-

straint to provide modeler guidance. This type of evaluation is used by PME,

when dealing with association or reference constraints. In this case, PME com-

putes a set of target objects ahead of time, which are then used for validating

the constraints. The objects which validate the constraint are then presented
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to the modeler for selection. For example, for the reference constraint shown

in Figure 3.12, when a reference object Patronref is added to the model, PME

queries the metamodel for the object type being referred to by Patronref i.e.,

Patron. PME then collects all the objects of type Patron present in the model

and evaluates the constraint against each of the collected objects. The objects

which satisfy the constraint are then presented to the modeler for selection.

One point to note here is, the fact that every class in each hierarchy holds the

capability to both evaluate or filter evaluate the sub-expression that it represents.

Figure C.1. Architectural overview of OCL parser and evaluator.

C.2 Boolean Expressions Hierarchy

The boolean-expressions hierarchy is composed of classes that are responsible for

evaluating the basic expression types in OCL (e.g., Let expressions). The base class

for this hierarchy is BoolExpr. All the classes that exist in this hierarchy return a
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boolean value, which denotes the evaluation success of a particular expression. The

major classes that are defined in this hierarchy are shown below [25]:

• LocalAssignmentValueExpr. This class is responsible for evaluating the

OCL Let Expressions. The syntax of a let expression is:

let < variableName > { : < declarationType >} = < sub− expression > in.

This expression has two parts; the first part declares and initializes a variable,

while the second part declares the accessibility of the variable (although the sec-

ond part is optional). The type of value stored by the variable is determined by

the return type of the right hand side sub-expression, which belongs to the value-

expressions hierarchy. A sample constraint showing the use of let expressions

has been shown in Figure C.2.

Figure C.2. Sample constraint showing the use of let expressions.

As shown in the constraint, the right hand side expression evaluates the num-

ber of Patrons contained by the invoking object, which then gets stored in the

variable partCount.

Figure C.3. Sample constraint showing the use of if-then-else expressions.

• IfThenElseExpr. This class is responsible for evaluating the OCL If Then Else

Expressions. The syntax of an if-then-else expression is:

if < condition > then < sub− expression > else < sub− expression > endif .

This expression is comprised of three parts; the first part is a condition that

returns a Boolean value, while the second and third parts are sub-expressions
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which have the same return type. If the condition returns true, then the first sub-

expression is evaluated, otherwise the second sub-expression is evaluated. All

the three parts of an if-then-else expression belong to the boolean-expressions

hierarchy. A sample constraint showing the use of if-then-else expressions is

shown in Figure C.3. As shown in the constraint, if a mySet is empty then the

first sub-expression returns 0, otherwise the second sub-expression returns the

size of the set.

• IteratorExpr. This class is responsible for evaluating OCL expressions con-

taining Iterators. The syntax of such an expression is:

< expression > − > < iteratorName > ({< declarator > (, < declarator >

) ∗ { : < declarationType >}}| < sub− expression > ).

This expression has three mandatory parts and two optional parts. The manda-

tory parts include the object (collection or set of objects) invoking the itera-

tor, the name of the iterator (belongs to the iterator hierarchy) and the sub-

expression which has to be evaluated for each element of the collection. The

sub-expression belongs to the boolean-expressions hierarchy. The optional parts

include the declarators, which are variables that refer to the current element of

the iteration process, and declaration type which defines the type of the declara-

tors. A sample constraint showing the use of iterators is shown in Figure C.4.

As shown in the constraint, variable mySet stores a collection of objects whose

Figure C.4. Sample constraint showing the use of iterators.

meta-type is Person. An Iterator forAll is applied to the collection of objects to

check that no two persons have the same SSN.
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• EqualityExpr. This class deals with evaluating equality expressions such as

comparison and conjunction type of expressions. The syntax of an equality

expression is:

< sub− expression >< equalityoperator >< sub− expression >.

This expression has three parts: a left hand side sub-expression, an equality

operator and a right hand side sub-expression. Both the sub-expressions have the

same return types. The values returned by these sub-expressions are evaluated

based on the equality operators such as and, =.

• ComparisonExpr. This class is derived from the EqualityExpr class and it is

responsible for evaluating comparison expressions. The syntax of this type of

expression is similar to that of EqualityExpr. However, for comparison expres-

sions both the sub-expressions belong to the value-expression hierarchy. Also,

the equality operators that are used for comparison expressions are =, >=, <=,

>, <, and <>. An example of such an expression is shown in Figure C.5. As

Figure C.5. Sample constraint showing the use of comparison expressions.

shown in the constraint, the left hand side sub-expression calculates the number

of Book type objects that exist in the model, which is compared with the con-

stant expression on the right hand side. The constraint evaluates to be true if

the number of Book objects is at least 2.

• EqualExpr. This class is derived from ComparisonExpr class and it is responsi-

ble for evaluating comparison expressions that have = as their equality operator.

• GreaterEqualExpr. This class is also derived from ComparisonExpr class

and it is responsible for evaluating comparison expressions that have >= as their

equality operator.
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• LesserEqualExpr. This class is derived from ComparisonExpr class and it is

responsible for evaluating comparison expressions that have <= as their equality

operator.

• NotEqualExpr. This class is derived from ComparisonExpr class and it is

responsible for evaluating comparison expressions that have <> as their equality

operator.

• GreaterExpr. This class is derived from ComparisonExpr class and it is re-

sponsible for evaluating comparison expressions that have > as their equality

operator.

• LesserExpr. This class is derived from ComparisonExpr class and it is re-

sponsible for evaluating comparison expressions that have < as their equality

operator.

• ConjunctionExpr. This class is derived from EqualityExpr class and it is

responsible for evaluating conjunction expressions. The syntax of this type of

expression is also similar to that of EqualityExpr. However, for conjunction

expressions both the sub-expressions belong to the boolean-expression hierarchy.

Also, the equality operators that are used for comparison expressions are and,

or. An example of such an expression is shown in Figure C.6. As shown in

Figure C.6. Sample constraint showing the use of conjunction expressions.

the constraint, the left hand side sub-expression determines that there should

be at least 2 books present in the model; the right hand side sub-expression

determines that there can be at most 5 books in the model.

• AndExpr. This class is derived from ConjunctionExpr and it is responsible for

evaluating conjunction expressions that have and as their equality operator.
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• OrExpr. This class is also derived from ConjunctionExpr and it is responsible

for evaluating conjunction expressions that have or as their equality operator.

C.3 Value Expressions Hierarchy

The value-expressions hierarchy is responsible for evaluating the expressions that

return a Value. Value is any result that is generated from computing a value-

expression. There can be several types of Value such as BooleanValue, StringValue,

ObjectValue (discussed in Appendix C.6) that can be returned by an expression. The

base class for this hierarchy is ValueExpr. The major classes that are derived from

ValueExpr are shown as below [25]:

• MethodCall. This class is derived from ValueExpr and it is responsible for

evaluating method-calls that exist in an OCL constraint. It has the capability

to evaluate single or a chain of methods, where the output value of one method

acts as the input for the next method. The methods in a method-call belong

to the method hierarchy. This class forms the base class for two specific types

of method-calls: SelfMethodCall and LocalValueMethodCall. The syntax for a

method-call is:

< invoking object > ”.” < method > ∗{”.” < method >}.

As shown in the syntax, the first method is invoked by the invoking object. The

result from this method is then used for invoking the next method. The final

value returned by this class during evaluation depends on the return type of the

last invoked method.

• SelfMethodCall. This class is derived from MethodCall and it is responsible

for evaluating method-calls that have self as their invoking object. The self

keyword indicates that the invoking object is the model element to which the

constraint is associated. An example of SelfMethodCall is shown in the Fig-

ure C.7. As shown in the constraint, the self keyword is associated to the

parent model of Patron. The first method, i.e., parts returns back a collection
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Figure C.7. Sample constraint showing the use of SelfMethodCall.

of Patron type model elements that currently exists in the parent model. The

second method, i.e., size takes the collection and returns back its size, which

is then used by EqualExpr for comparison with the right hand side.

• LocalValueMethodCall. This class is also derived from MethodCall and it

is responsible for evaluating method-calls that have local variables as their in-

voking object. An example of LocalValueMethodCall is shown in Figure C.8.

As shown in the constraint, the attachingConnections method is invoked by

Figure C.8. Sample constraint showing the use of LocalValueMethodCall.

the local variable that contains a Patron type object. This method returns back

a collection of all the connections in which the object p has participated. The

method size is then called on the returned collection to calculate its size.

• ConstantValueExpr. This class is derived from ValueExpr and is responsible

for dealing with constant values in the expression. The types of constant values

supported by this class are integer and string. During evaluation the value of the

constant expression is returned. Figure 3.7 provides an example showing the use

of constant expressions. When the evaluation is invoked on ConstantValueExpr,

it returns the constant value, i.e., string.
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• LocalValueExpr. This class is derived from ValueExpr and is responsible for

dealing with the values of local variables in the expression. During evaluation

the value of the local variables is returned. Figure C.8 shows the use of a local

variable p.

• AttributeExpr. This class is also derived from ValueExpr and is responsible

for dealing with the Attributes of different model elements. On evaluation, this

class returns the value of the attribute related to the invoking object. Figure 3.7

provides an example of an expression using attributes. As shown in the figure,

the value of City attribute for a Patron is compared with a constant expression.

During evaluation, the AttributeExpr will return the value of City.

C.4 Method Hierarchy

The method hierarchy is composed of classes that are responsible for evaluating

the GME methods supported by OCL [25]. The base class for this hierarchy is Method.

All the classes that exist in this hierarchy return a value, which belongs to the value

hierarchy. The major classes that are defined in this hierarchy are shown below [25]:

• Name. This class represents the name method, which is a method specific to

gme::Object. The syntax of this method is:

name().

This method, when evaluated, returns the name of the object.

• KindName. This class represents a gme::Object method called kindName.

The syntax of this method is:

kindName().

This method, when evaluated, returns the name of the kind of the object.

• Parent. The Parent class represents the gme::Object specific parent method.

The syntax of this method is:

parent().
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This method, when evaluated, returns the parent of the object. The metakind

of this returned parent can be either gme::Folder or gme::Model. However, if

the invoking object is the rootfolder of the project, then this methods returns

null.

• IsFCO. This class represents the gme::Object specific method called isFCO.

The syntax of this method is:

isFCO().

On evaluation, this method returns a boolean value, which is true if the metakind

of the invoking object is gme::FCO or its descendants.

• ChildFolders. This class represents the childFolders method, which is a

method specific to gme::Folder. The syntax of this method is:

childFolders().

This method, when evaluated, returns a collection of all the folders contained

by the invoking folder object.

• Models. This class represents the gme::Folder specific method called models.

The syntax of this method is:

models({kind}).

On evaluation, this method returns a collection of all the models that are con-

tained by either the invoking folder or any child folder or model contained by

the invoking folder. If the user specifies a kind, then the returned collection

will contain objects that are of type kind. However, the metakind (i.e. kind of

kind) of kind should be gme::Model, otherwise an exception is thrown.

• Atoms. This class represents the gme::Folder specific method called atoms.

The syntax of this method is:

atoms({kind}).

On evaluation, this method behaves similar to the models method mentioned

above. However, the returned collection consists of atoms. If the user specifies

a kind, then the returned collection will contain objects that are of type kind.
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• ConnectedFCOs. This class represents the gme::FCO specific method called

connectedFCOs. The syntax of this method is:

connectedFCOs({role}{, kind}) or, connectedFCOs(kind).

This method, when evaluated, returns a collection that contains all the FCOs

(refer Figure A.1) that are associated with the invoking FCO. If the user specifies

a role (i.e. source or destination), then only those FCOs are returned that

have the same role in the connection. Also, if the kind is specified then the

kind of connections that are checked for connected FCOs is kind. However,

the metakind of kind should be gme::Connection, otherwise an exception is

thrown.

• AttachingConnPoints. This class represents the gme::FCO specific method

called attachingConnPoints. The syntax of this method is:

attachingConnPoints({role}{, kind}) or, attachingConnPoints(kind)

On evaluation, this method returns a collection of all the connection points i.e.,

association ends of the FCO. If the user specifies a role, then the role of the

connection point should match that. Also, if the kind is specified then the kind

of connections that are checked is kind. However, the metakind of kind should

be gme::Connection, otherwise an exception is thrown.

• AttachingConnections. This class represents the gme::FCO specific method

called attachingConnections. The syntax of this method is:

attachingConnections({role}{, kind}) or, connectedFCOs(kind).

This method, when evaluated, returns a collection of all the connections that

are linked to the invoking FCO. If the user specifies a role, then the connection

point role in the invoking FCO’s side should match that. Also, if the kind

is specified then the kind of connections that are considered should match the

kind. However, the metakind of kind should be gme::Connection, otherwise

an exception is thrown.
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• IsConnectedTo. This class also represents a gme::FCO specific method called

isConnectedTo. The syntax of this method is:

isConnectedTo(fco{, role{, kind}}) or isConnectedTo(fco, kind).

On evaluation, this method returns true if the invoking FCO is connected to

fco. If a role is specified, then the role of the fco has to match the role.

Also, if kind is specified then the kind of the regarded connections must be

kind. However, the metakind of kind should be gme::Connection, otherwise

an exception is thrown.

• Subtypes. This class represents the subTypes method, which is a method

specific to gme::FCO. The syntax of this method is:

subTypes().

This method, when evaluated, returns the collection of all the FCOs that are

subtypes of the invoking FCO. However, if the invoking FCO is not a type, then

an empty collection is returned.

• Instances. This class represents the gme::FCO specific method called instances.

The syntax of this method is:

instances().

On evaluation, this method returns a collection containing all the type-instances

of the invoking FCO. However, this method returns an empty collection if the

invoking FCO is itself an instance.

• Type. This class represents the gme::FCO specific method called type. The

syntax of this method is:

type().

This method, when evaluated, returns the type of the invoking FCO.

• Basetype. This class represents the gme::FCO specific method called baseType.

The syntax of this method is:

baseType().

This method, when evaluated, returns the base type of the invoking FCO.
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• IsType. This class represents the gme::FCO specific method called isType. The

syntax of this method is:

isType().

This method, when evaluated, returns true if the invoking FCO is a type.

• IsInstance. This class represents the isInstance, which is specific togme::FCO.

The syntax of this method is:

isInstance().

This Method, when evaluated, returns true if the invoking FCO is an instance.

• Folder. This class represents the gme::FCO specific method called folder. The

syntax of this method is:

folder().

On evaluation, this method returns the closest folder that contains the invoking

FCO recursively over models.

• ReferencedBy. This class represents the gme::FCO specific method called

referencedBy. The syntax of this method is:

referencedBy({kind}).

This method, when evaluated, returns a collection of references that refer to the

invoking FCO. If kind is specified, then only the references of type kind will be

collected. However, the metakind of kind should be gme::Reference, otherwise

an exception is thrown.

• ConnectionPoints. This class represents the gme::Connection specific method

called connectionPoints. The syntax of this method is:

connectionPoints({role}).

On evaluation, this method returns the collection of connection points (i.e. as-

sociation ends) of the connection. If role is specified then role of the points has

to match that.

• ConnectionPoint. This class represents the gme::Connection specific method

called connectionPoint. The syntax of this method is:
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connectionPoint(role).

On evaluation, this method returns the connection point whose role matches the

provided role.

• UsedByConnPoints. This class represents the usedByConnPoints method,

which is a method specific to gme::Reference. The syntax of this method is:

usedByConnPoints({kind}).

On evaluation, this method returns a set of all the connection points of the

reference in which the reference participates. If the kind is specified then only

those points are collected whose connection kind is kind. However, the metakind

of kind should be gme::Reference, otherwise an exception is thrown.

• Refersto. This class represents the gme::Reference specific method called

refersTo. The syntax of this method is:

refersTo().

This method, when evaluated, returns the FCO to which the invoking reference

refers.

• Parts. This class represents the parts method, which is a method specific to

gme::Model. The syntax of this method is:

parts({role}) or, parts(kind).

On evaluation, this method returns a collection that contains all the immediate

children of the invoking model. The user can specify a role name role, which

is the containment role of the object as it is contained by the model. The user

can also specify kind, which governs the metakind of model elements that can

be included in the collection.

• AtomParts. This class represents the atomParts method, which is a method

specific to gme::Model. The syntax of this method is:

atomParts({role}) or, atomParts(kind).

This method behaves similar to the parts method during evaluation. However,

this method collects only the atom type children of the invoking model.
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• ModelParts. This class represents the modelParts method, which is a method

specific to gme::Model. The syntax of this method is:

modelParts({role}) or, modelParts(kind).

This method behaves similar to the parts method during evaluation. However,

this method collects only the model type children of the invoking model.

• ReferenceParts. This class represents the referenceParts method, which is

a method specific to gme::Model. The syntax of this method is:

referenceParts({role}) or, referenceParts(kind).

This method behaves similar to the parts method during evaluation. However,

this method collects only the reference type children of the invoking model.

• ConnectionParts. This class represents the connectionParts method, which

is a method specific to gme::Model. The syntax of this method is:

connectionParts({role}) or, connectionParts(kind).

This method behaves similar to the parts method during evaluation. However,

this method collects only the connection type children of the invoking model.

• Size. This class represents the size method. The syntax of this method is:

size.

This method, on evaluation, returns the size of the collection that invoked it.

• Target. This class represents the target method, which is a method specific

to gme::ConnectionPoint. The syntax of this method is:

target().

On evaluation, this method returns the FCO to which the invoking connection

point is attached.

• Owner. This class represents the owner method, which is a method specific to

gme::ConnectionPoint. The syntax of this method is:

owner().

On evaluation, this method returns the connection which owns the invoking

connection point.
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C.5 Iterator Hierarchy

The iterator hierarchy is composed of classes that are responsible for evaluating the

iterators contained in the iterator expressions. These iterators work on the collection

that invokes them. The base class for this hierarchy is Iterator. All the classes

that exist in this hierarchy return a value, which belongs to the value hierarchy. The

major classes that are defined in this hierarchy are shown below [25]:

• ForAll. This class represents the forAll iterator. On evaluation, this iterator

returns a boolean value true, if the sub-expression (contained in the iterator

expression) evaluates to true for all the elements contained in the collection.

However, this iterator also returns true if the invoking collection is empty.

• IsUnique. This class represents the isUnique iterator. On evaluation, this

iterator returns a boolean value true, if the sub-expression (contained in the

iterator expression) evaluates to different values for all the elements contained

in the collection.

• Exists. This class represents the exists iterator. On evaluation, this iterator

returns a boolean value true, if the sub-expression (contained in the iterator

expression) evaluates to true for at least one element contained in the collection.

However, this iterator returns false if the invoking collection is empty.

• One. This class represents the one iterator. On evaluation, this iterator returns

a boolean value true, if the sub-expression (contained in the iterator expression)

evaluates to true for only one element contained in the collection.

C.6 Value Hierarchy

The value hierarchy is composed of classes that represent the different data-types

that can be evaluated or returned by the classes belonging to other hierarchies. The

base class for this hierarchy is Value. The classes contained in this hierarchy not

only represent a particular data-type but they also provide operations such as add,
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subtract, equal, that can be performed on these data-types. The major classes that

are defined in this hierarchy are shown as below:

• IntValue. This class represents the int data-type.

• StringValue. This class represents the string data-type.

• LongValue. This class represents the long data-type.

• BooleanValue. This class represents the bool data-type.

• DoubleValue. This class represents the double data-type.

• ObjectValue. This class represents the gme:Object data-type.

• CollectionValue T. This template class represents the different types of col-

lections that can be used during evaluation of expressions.
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Appendix D: Boost Spirit Parser Framework

The Boost Spirit Parser Framework is an object oriented, back-tracking, recursive

descent parser generator framework implemented using template meta-programming

techniques [12]. The expression templates of this framework allow users to write

grammars and format descriptions using a syntax similar to Extended Backus Naur

Form (EBNF) [27] directly in C++. This is an added advantage over other parser

generators that require an additional translation step from source EBNF code to

C or C++ code. Spirit also allows seamless integration of the parsing and output

generation process with other C++ code. The Boost Spirit library consists of 4 major

parts shown as below (boost-spirit.com):

• Spirit Classic. This segment consists of the former Boost Spirit distribution

and includes a special compatibility layer to ensure compatibility with the cur-

rent distribution.

• Spirit Qi. This is the parser library that allows users to build recursive descent

parsers. The domain-specific embedded language (DSEL) exposed by Spirit Qi

allows the user to describe the grammars, and the rules for storing the parsed

information.

• Spirit Lex. This is the library which is used for creating tokenizers or lex-

ers. The DSEL exposed by Spirit Lex allows users to define regular expressions

for token matching, associate code with the regular expressions that are to be

executed for a successful match, and add the token definitions to the lexical

analyzer.

• Spirit Karma. This is a generator library that allows users to create code for

recursive descent, data type-driven output formatting.

The OCL parser component in Proactive Modeling Engine is build using the Spirit

Qi parser library. For example, Figure D.1 shows a set of production rules that

represent a calculator.
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Figure D.1. Grammar specification for a calculator.

The production rule expression, shown in the listing can recognize inputs such

as: 12345, 1 + 2 * 4 / 6, 1 + ((6 * 200) - 20) / 6 etc.
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