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ABSTRACT

Kriske Jr., Jeffery E. MS, Purdue University, December 2014. A Scalable Approach
to Processing Adaptive Optics Optical Coherence Tomography Data From Multiple
Sensors Using Multiple Graphics Processing Units. Major Professors: John Jaehwan
Lee and Fengguang Song.

Adaptive optics-optical coherence tomography (AO-OCT) is a non-invasive method

of imaging the human retina in vivo. It can be used to visualize microscopic structures,

making it incredibly useful for the early detection and diagnosis of retinal disease.

The research group at Indiana University has a novel multi-camera AO-OCT system

capable of 1 MHz acquisition rates. Until this point, a method has not existed to

process data from such a novel system quickly and accurately enough on a CPU, a

GPU, or one that can scale to multiple GPUs automatically in an efficient manner.

This is a barrier to using a MHz AO-OCT system in a clinical environment. A novel

approach to processing AO-OCT data from the unique multi-camera optics system

is tested on multiple graphics processing units (GPUs) in parallel with one, two, and

four camera combinations. The design and results demonstrate a scalable, reusable,

extensible method of computing AO-OCT output. This approach can either achieve

real time results with an AO-OCT system capable of 1 MHz acquisition rates or be

scaled to a higher accuracy mode with a fast Fourier transform of 16,384 complex

values.
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1 INTRODUCTION

Our eyes are our windows to the world, without which, we cannot see. It is there-

fore important to protect our eyes and detect diseases as soon as possible. Optical

coherence tomography (OCT) makes this possible in vivo because it can be used to

visualize the microscopic structures of the retina. It is possible to detect potential

problems even before the patient becomes symptomatic. OCT is an invaluable tool

in a clinical setting to screen for retinal issues.

One of the difficulties with OCT is that the output must be computed to form

a viewable image. The steps involved are computationally intensive, and producing

a high accuracy version is even more so. While this computation can be done on

any standard central processing unit (CPU), the computation time is prohibitive for

a clinical environment even using mutlithreaded CPU-based software [1–3]. Fortu-

nately, however, many of the computations can be done in parallel, which means

that the more cores that work on the problem, the higher the throughput, depending

on the acquisition speed. Although utilizing a cluster of computers or a supercom-

puter is an option, the latency incurred upon sending the data to a high performance

computing cluster outside of a clinician’s office would prevent real-time results.

The team at Indiana University (IU) Bloomington has a novel adaptive optics

OCT (AO-OCT) system that requires a custom approach to processing the acquired

data because the data is captured by multiple sources and interlaced to form the

desired output at an increased acquisition speed. In addition, the custom solution

should be scalable, extensible, and reusable.

A modern graphics processing unit (GPU) can provide thousands of processing

cores, each of which can do work. If a task can be properly split up, it can benefit

immensely from the additional computing power the GPU provides. However, the

number of cores is not infinite and the workload can quickly saturate a GPU. In an
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effort to circumvent this limitation, in this study an investigation into whether it is

possible to scale a solution to multiple GPUs will also be conducted.

Many groups have processed standard OCT data on a single GPU [1, 2, 4, 5].

While processing AO-OCT data on multiple GPUs has been described [2, 6], it was

known to cause instability unless different tasks are assigned on each GPU [6]. Yet,

processing data captured by multiple sources in an interlaced fashion has never been

studied before or in combination with scaling to process on multiple GPUs. One of

the challenges involves keeping track of which camera each piece of data comes from

in order to properly process that data. This thesis aims to describe such an approach

while utilizing general processing on a graphics processing unit (dubbed GPGPU).
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2 ADAPTIVE-OPTICS OPTICAL COHERENCE TOMOGRAPHY

Adaptive-optics optical coherence tomography (AO-OCT) is the combination of two

technologies to allow a non-invasive view of a retina at micron-resolution. Micron

resolutions allow for visualization at the cellular level. This can provide an invaluable

resource for the early diagnosis of retinal diseases and in the study of animal models.

The two technologies are optical coherence tomography (OCT) and adaptive optics

(AO).

2.1 Optical Coherence Tomography and AO-OCT

Optical coherence tomography has been around for over two decades. It uses

low-coherence interferometry to produce optical scattering data from microstructures

within tissue. The early prototype time domain OCT (TD-OCT) produced images

with an axial resolution of 15 µm [7]. Later the technology for TD-OCT was advanced

to allow axial resolutions of 8-10 µm. A more advanced type of OCT is called spectral

domain OCT (SD-OCT), which allows axial resolutions of 3 µm and faster capture

times. SD-OCT can also resolve structures not visible with TD-OCT, which is useful

when looking for disease states [8].

One of the problems with SD-OCT is that it is limited by aberrations on the ocular

lens and cornea. To correct for these aberrations, adaptive optics can be added to

an SD-OCT system. An AO-OCT system uses deformable mirrors to correct for

aberrations in the optical path. It can also increase the transverse resolution to 1

µm [8].
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An axial scan through tissue provides depth information at a specific point. This

type of scan is called an A-scan, which is short for amplitude scan. Multiple A-scans

are gathered linearly and produce a brightness scan, or B-scan. A B-scan can provide

a cross-sectional view. When a volume formed from parallel B-scans is projected, it

will form an en-face view of the retina. This orientation is shown in Figure 2.1

(en-face)

Figure 2.1. Relative scan orientation of A-scans, B-scans, and en-face
views [9].

2.2 MHz AO-OCT Hardware

While the hardware of the IU Bloomington AO-OCT system follows the same basic

concepts of any other AO-OCT system, what sets it apart is a unique multi-camera

system. Instead of using a single camera set-up, the system uses four complementary

metaloxide semiconductor (CMOS) line-scan cameras acting as four spectrometers.

Each of these sensors by themselves are capable of an imaging acquisition rate of

250 KHz. Combined with a 1×4 optical switch assembly, these sensors together can

achieve an imaging rate of 1 million A-scans per second (1 MHz). A sensor normally

has a dead-time during which it cannot capture but reads out the data. During
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this time other sensors can be synchronized to capture, and thus hiding this dead-

time [10]. The resulting data stream contains interlaced A-scans from each of the

sensors. Capturing A-scans at 1 million A-scans per second allows both a greater

field of view and the ability to help reduce motion artifacts caused by motion of the

eye during a retinal scan, thereby yielding a greater clinical value [10]. Until this

point there has not been a real-time GPU-based approach at handling 1 MHz A-scan

acquisition rates.

2.3 MHz AO-OCT Processing Steps

Data obtained by the AO-OCT system is not readily in a format that can be

interpreted by a human being. Similar to an ultrasound, the data obtained must be

processed in order to form a usable image. Processing this data is computationally

intensive and even more so with higher levels of interpolation. The method used to

prepare A-scans for processing is dependent on the implementation.

The steps to processing AO-OCT are as follows:

• Apply a Hann filter to taper the ends of short-length A-scans under 832 pixels

• Subtract the DC component

• Apply a Fourier transform

• Zero-pad the data

• Apply an inverse Fourier transform

• Map to k-space

• Compensate for dispersion

• Reconstruct the image using a Fourier transform

• Crop the data
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• Convert the data to intensity values

• Normalize the data for both linear and log outputs

• Perform retinal tracking (optional)

Note that two main challenges exist here. First, DC subtraction, mapping to k-

space, and dispersion compensation algorithms had to be designed so that it can work

with one, two, or four cameras. They were created to solve the problem of having

interleaved A-scans from multiple cameras, but still function correctly when A-scans

come from a single camera.

Second, the challenge of processing B-scans is that it must be done as close to

real-time as possible. If a clinician is attempting to focus on part of a retina, results

need to be displayed on screen as adjustments are made to ensure focus.

2.3.1 Hann Filter

Due to physical limitations of the AO-OCT system, when spectrum lengths are

shorter than 832 pixels, the edges of the spectrum will not reach zero. It is therefore

necessary to apply a window function to the spectrum. A window function is also

known as a tapering function because it will smooth the edges of the sample down to

zero. The Hann function was chosen for this task [11]. The Hann function is applied

to the first segment and the last segment of the spectrum sample at a user-defined

range. The equation for each value is as follows:

w[n] =
1

2
(1− cos

2πn

N − 1
) (2.1)

where n is the current value, N is the width of the A-scan, and w[n] is the resulting

tapered value. The tapered values are then divided by the maximum value from the

same segment. The resulting A-scan has ends that taper to zero. The process is

shown in Figure 2.2.
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After application
of the Hann filter

Resulting A-scan 
with tapered ends

Raw A-scan Hann filter

Figure 2.2. The Hann filter. The filter is applied to sections of the raw
A-scan labeled s1 and s2. This forms h1 and h2. These sections are
then normalized to the local maximum value resulting in the lines labeled
new s1 and new s2.

2.3.2 Subtract Direct Current Component

One of the first steps in processing AO-OCT data is to subtract the direct current

(DC) bias. This bias is present in the A-scan waveform and can be different between

cameras and can even be different in the same camera between B-scans. In order to

compensate for this, the DC bias is first calculated and then subtracted from each

A-scan [12]. This process is shown in Figure 2.3

Averaged A-scan (DC bias) Spectrum after subtraction

Subtract DC biasCalculate DC bias

Raw A-scan spectrum

Figure 2.3. A general overview of the DC subtraction process.

To calculate and remove the DC bias for a B-scan, an average of all the A-scans

from an individual camera must be subtracted from those same A-scans. This must
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be repeated for the A-scans obtained from each of the cameras and the entire process

is repeated on the next B-scan. This can be represented by:

An = an −
1

M

M−1∑
k=0

ank n = 0, 1, 2, ..., N − 1 (2.2)

where M is the number of A-scans per camera per B-scan, and ank is the value of the

n-th position on the k-th A-scan.

2.3.3 Zero Padding and Fourier Transforms

The spectra obtained from the OCT system need to be linearly interpolated into

k-space, but linear interpolation is not inherently accurate. In order to improve

accuracy of the interpolation, it is necessary to up-sample the data two to four times

before interpolation [12].

In order to up-sample the spectra, first, a one-dimensional fast Fourier transform

(FFT) is performed on each A-scan. A-scans are then zero-padded to a length of

4096. An inverse FFT (iFFT) is then performed on the resulting data, giving up-

sampled data ready to be mapped to k-space or spacial frequency space. Up-sampling

is a standard practice in digital signal processing, and the procedure is illustrated in

Figure 2.4.

2.3.4 k-space Mapping

The term k-space refers to an array of numbers that represent spacial frequencies.

In order to compensate later for dispersion of the spectral components and perform a

reconstructive fast Fourier transform step, the spectra needs to be transformed from

wavelength (λ) space into spacial frequency (k) space with evenly spaced k values.



9

0, 0, 0, ..., 0, 0, 0

Length = 4096

Length = 4096

Length =  n/2 + 1

Inverse FFT

Zero Padding

FFT

Figure 2.4. Up-sampling A-scans to a length of 4096.

In order to obtain linearly spaced k values, the maximum and minimum wave-

lengths of the spectrometer output must be used to create an array with the length

of the original A-scan and divided evenly as follows:

λi = λmin + i

(
λmax − λmin

N − 1

)
i = 0, 1, 2, ..., N − 1 (2.3)
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An interval is determined when
(
λmax−λmin

N−1

)
is multiplied by i from zero to A-scan

length minus one (N − 1). This is added to the minimum wavelength (λmin).

Once an evenly spaced wavelength array is created, it is used to determine k values

using the following equation:

ki =
2π

λi
(2.4)

With the k value array created, it is possible to use linear interpolation to map the

previously up-sampled spectra to linearly sampled points in k-space [12].

2.3.5 Dispersion Compensation

The speed of light differs in materials that are optically dense or sparse. The

more optically dense the material is, the slower the speed of light. In addition, the

speeds of spectral wavelengths are affected differently while traveling through the

medium, which can result in chromatic dispersion of the light. This effect increases

linearly with the length of the material. When an eye with an unknown axial length

is introduced to the OCT system, the tissue will cause chromatic dispersion, which

should be compensated for in software [13].

In order to compensate for chromatic dispersion, a reference is taken during the

calibration of the machine, and complex phase correction terms are calculated. These

complex values are then multiplied to the k-space values determined from the previous

step, resulting in a correction of chromatic dispersion. This step can be summarized

as:

θi = ki × θ
′

col (2.5)

where θ
′

col represents the complex phase correction values previously computed by

the AO-OCT system at the column belonging to i, ki represents the result from the

previous step, and θi represents the resulting phase corrected value. The column is

calculated using the formula col = i mod width.



11

2.3.6 Reconstruction by Fourier Transform

Before the reconstruction happens, A-scans are again zero padded. Each scan

is zero padded to four times the current size of 4096, resulting in A-scans with a

length of 16, 384 complex values as shown in Figure 2.5 in order to increase the pixel

resolution in the image domain.

0, 0, 0, ..., 0, 0, 0 0, 0, 0, ..., 0, 0, 0

Figure 2.5. Zero padding before the final Fourier transform. The final
length of the A-scan should be 16,384 complex values or 4096 × a scale
factor.

The primary operation for reconstructing an A-scan into data that can be modified

to form a viewable A-scan image is the fast Fourier transform [12]. An FFT computes

the discrete Fourier transform and uses the following equation:

Xk =
N−1∑
n=0

xne
−2πik n

N k = 0, 1, 2, ..., N − 1 (2.6)

where xn is a value in the time domain and Xk is the transformed value in the

frequency domain [14].
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2.3.7 Cropping

After the final Fourier transform step, the retinal information will only occupy a

small portion of the final A-scan length, approximately two times the width of the

original A-scan spectrum. Therefore, cropping is desired in order to save computa-

tional and memory resources.

Cropping is done for each A-scan. The top of the A-scan is cropped mainly due

to the fact that the pixels in the area will typically have large optical artifacts. These

artifacts result in high pixel values because it is close to the “coherence gate” of the

OCT system, which is used to separate depth layers [15]. High pixel values will skew

normalization step and create a dark image. The bottom of the A-scan is cropped as

well in order to remove large areas with very little useful information due to sensitivity

roll-off of the system and artifacts from residual dispersion. Cropping can be defined

as:

A \ C := {x ∈ A : x /∈ C} (2.7)

where A is the set of pixels in the reconstructed A-scan and C is the set of pixels

within the top and bottom sections to be cropped out. The resulting set includes all

pixels that are elements of the reconstructed A-scan except those cropped out.

2.3.8 Converting the Complex Image to Intensity

Since an intensity image is desired, it is necessary to convert between the output of

the Fourier transform into intensity values. The Fourier transform outputs complex

values made up of a real component and an imaginary component in addition to the

complex conjugate [16]. Intensity is calculated by multiplying a complex number

by the complex conjugate. If a is the real part of a complex number and b is the

imaginary part, then intensity, I, for each pixel can be calculated using the following

equation:

I = (a+ bi)× (a− bi) = a2 + b2 (2.8)
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This is essentially squaring and adding the real and imaginary components, and

therefore, having the complex conjugate stored in memory is unnecessary.

Another desired image uses decibel (dB) values. Once the intensity image is com-

puted, decibel values can be computed with ten times the logarithm of the intensity

value [17], as seen with the following equation:

IdB = 10 log10(I) (2.9)

2.3.9 Normalization

The values obtained from the intensity calculation can vary wildly in the positive

real number domain. In order to display this information on the screen as an 8-bit

grayscale image, it is necessary to normalize the data such that it fits in a range of

integers between 0 and 255 inclusive. The formula for normalization is as follows:

IN = 255

(
I −min

max−min

)
(2.10)

This is done once for every B-scan where min represents the minimum intensity value

of an entire B-scan and max represents the maximum intensity value of that same

B-scan. Normalization must also be done for the dB image with the dB minimum

and maximum.

2.3.10 Retinal Tracking

An optional step when processing AO-OCT data is to do z-axis registration be-

cause of depth motion during the scan. There are a number of methods of z-axis

registration, but only two methods were considered. The first method creates and

aligns a weighted mean contour of the fast B-scan and the other method uses peak

detection to find and align the retinal pigment epithelium (RPE) layer. A common
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technique for the alignment is to shift each B-scan to a mean of the path lengths

between several B-scans as shown in the following formula:

µ =

n−1∑
i=0

wiLi

n−1∑
i=0

wi

(2.11)

where µ represents the mean shift needed, w represents the weighted mean, and L is

the tracked point. The sums are from i = 0 to n− 1 scans [18].
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3 PARALLEL COMPUTING

3.1 A Brief History of Supercomputing

Supercomputing began its start in the 1960s with Control Data Corporation and

Seymour Cray. In 1964 the CDC 6600 could perform about 1 million floating point

operations per second (MFLOPS), and by 1969 the CDC 7600 was ten times faster

by increasing parallelism through the use of pipelining. The trend of making bigger

and faster machines took off. In 1985, the Cray-2 could perform 1.9 billion floating

point operations per second (GFLOPS) and later in the 1990s, the United States

government developed ASCI Red. In 1996 ASCI Red was the first supercomputer to

be able to performs over 1.6 teraFLOPS (TFLOPS) [19, 20]. The supercomputers of

today can perform at the petaFLOPS level and above.

These machines, in their respective times, cost millions of dollars, took up a large

space, and had enormous power requirements. One of the solutions to the cost and

power requirements is the use of commodity hardware wired together into clusters.

Machines in a cluster can compute tasks in parallel at relatively low cost. One of

the issues with clusters is that communication between nodes becomes a bottleneck.

If a task requires internode communication then the throughput on a cluster will be

much less than a task that requires no communication [21]. A supercomputer or even

a cluster will not fit into a small clinical environment and using such resources over

a typical network will eliminate hopes of real-time computation due to latency [22].
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3.2 General-Purpose Computing on Graphics Processing Units

Computing on a graphics processing unit (GPU) began in the early 2000s with

programmable shaders. Developers began attempting to abstract these out to com-

puting tasks other than calculating graphical effects.

At the heart of modern GPUs lies massively parallel interconnected hardware,

which as a whole can compute trillions of operations per second without the power

and size requirements of the supercomputers of the past.

3.2.1 NVIDIA and CUDA

In 2007, one major GPU manufacturer, NVIDIA (Santa Clara, CA), released a

programming interface for GPUs called CUDA, which stands for Compute Unified

Device Architecture. CUDA is an extension to the C, C++, and Fortran program-

ming languages and is therefore easier for programmers than having to learn shader

languages which can be complex [21,23].

A program in CUDA works by calling functions on the GPU known as kernels,

which execute across a number of parallel threads. These threads are grouped into

blocks, and a group of blocks is known as a grid. Within each thread block and

grid, each thread has access to built-in variables that contain the thread and block

identification numbers. Threads have their own private registers and can access shared

memory among threads in the same block. Accessing shared memory is slower than

accessing registers. Threads can also access GPU global memory but there is a greater

latency penalty for doing so.

3.2.2 Kepler Architecture

NVIDIA introduced the Kepler microarchitecture in 2012. Each card contains

several streaming multiproccessors or SMs. NVIDIA calls these SMXs with Kepler

as opposed to SMs to illustrate an improvement of functionality over the previous
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microarchitecture, Fermi. This document focuses on Kepler and specifically the

NVIDIA Tesla K20c and NVIDIA Titan Z graphics cards tested that contain variants

of the GK110 GPU. On the GK110 chip, each SMX contains 192 CUDA cores, which

can be used for single precision floating point and integer arithmetic operations [23].

When a CUDA kernel is launched, it is given parameters for the number of threads

per block and number of blocks to launch. An SMX will then execute threads in

groups of 32, called warps. In Kepler, threads within a warp can communicate with

the shuffle command without suffering a latency penalty for using shared memory or

the need to explicitly synchronize threads. The shuffle command tells a thread to

read the values in the registers belonging to another thread [23].

The Tesla K20c contains 13 SMXs and the Titan Z contains two groups of 15

SMXs yielding a core count of 2496, 2880, and 2880, respectively. Combined in one

full tower case, this achieves a theoretical maximum of 11.52 TFLOPS, which makes

it faster and over ten thousand times cheaper than the top supercomputers at the

turn of the century.

3.2.3 CUDA Intrinsic Functions

Mathematical functions can be performed using standard or intrinsic functions.

Standard functions can be used on both the CPU and the GPU, while intrinsic func-

tions can only be used on the GPU. Intrinsic mathematical functions map to fewer

native instructions and thus will consume fewer clock cycles. The CUDA compiler

may not always honor the -use fast math option to compile standard functions into

their intrinsic counterparts. Explicitly using intrinsic functions in the source code

guarantees that the compiler will generate the desired output. Note that certain in-

trinsic functions can be less accurate than their standard counterparts. A full list of

both intrinsic and standard functions and their accuracy is available in the CUDA

programming guide provided on the NVIDIA website [24].
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4 PRIOR WORK

There are various approaches to performing the computations necessary to visualize

OCT data. Methods vary in accuracy of the resulting images and also in execution

time. These approaches will differ depending on the type of OCT. The presented

sections will focus primarily on currently used methods that are built and used for

AO-OCT.

4.1 CPU Based Processing

Data generated by AO-OCT can be processed using just a CPU, but computation

speeds are limited when the machine has only a single, multi-core CPU. There are

multiple ways to compute AO-OCT data on a CPU. One can use off-the-shelf math-

ematics software (e.g. MATLAB) or create a single or multithreaded application.

4.1.1 MATLAB R©

One of the simplest approaches to performing the necessary computations on

OCT data is to save the data to a binary file and process it later using MATLAB R©

by MathWorks (Natick, MA). MATLAB is an easy-to-code high-level language that

allows one to quickly implement algorithms. Although MATLAB offers ease of use

and fast implementation, it suffers from slow execution time [25].
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4.1.2 C++

An alternative to MATLAB is to use C++. C++ is a compiled language and

through using the standard math libraries and the popular FFT library, FFTW, it

is possible to implement a solution using the processing method studied previously

[3, 26].

4.2 GPGPU Based Processing

Many researchers are turning to GPGPU solutions for processing OCT data due to

obvious speed and other advantages. Typically, they use either a single CPU thread

to control a GPU or multiple CPU threads each with their own work flow [1,2, 4, 5].

4.2.1 Single CPU Thread Approach

Our own prior attempt at a GPGPU-based solution using a single CPU thread to

control the GPU lacked the use of a Hann function to taper the ends of an A-scan

down to zero. Unwanted oscillations will appear in the resulting OCT image if the

ends of each A-scan do not reach zero. The prior attempt lacked the zero padding

before the final FFT step and required the use of two GPUs for the processing of a

single B-scan. Zero-padding results in increased pixel resolution in the image domain.

The process was designed for a single camera input and lacked the ability to scale to

multiple cameras [2].

Other single CPU threaded methods have been used to control a single GPU and

many times these methods will skip or otherwise change processing steps, resulting

in lower accuracy in order to gain speed [1, 4].
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4.2.2 Multithreaded CPU Approach

In the past, one multithreaded implementation for computing OCT data achieved

very fast computation times of over 1.1 million A-scans per second [5]. It was de-

signed for a single camera and single GPU. However, their implementation used an

FFT size of 2048, and therefore, it may not be as accurate as larger FFT sizes such as

the aforementioned 16,384 pixel size. It works by grouping B-scans into large batches

and then launches a new CPU thread to control the GPU workload for each batch.

Without batching together multiple B-scans, the throughput is roughly 0.9 million

A-scans per second. It should be noted that with this approach DC bias is not recal-

culated per B-scan and the final results are not transferred back to system memory

as it would reduce throughput. This prevents later analysis of the data [5].

A multithreaded solution that utilized two GPUs used one GPU for B-scan pro-

cessing and a second for display. This method was able to achieve 186,000 A-scans

per second with an FFT size of 2048 [6].

There exists no multithreaded or single-threaded multiple GPU approach that we

know of that automatically scales B-scan processing to each GPU and handles up to

four cameras.



21

5 IMPLEMENTATION AND APPROACH

5.1 Problem

The AO-OCT system in Bloomington has four CMOS sensors, each of which

captures an A-scan sequentially. This leads to an interlaced fast B-scan. The data in

each A-scan must be adjusted based upon which sensor it came from. In addition, the

accuracy desired causes an increase in complexity and thereby increasing computation

time.

5.2 Design

The need to process AO-OCT data will remain long after the creation of this

document. In addition, technology is ever-evolving and with that comes new methods

or algorithms to compute and generate data. With this in mind, the very design of

the application becomes important. In order to allow the software to easily adapt as

it evolves to meet future needs, design patterns were used to allow a level of software

extensibility [27].

5.2.1 Strategy Pattern

In order to best interface with control and display software being independently

developed by the team in IU Bloomington, the strategy pattern was chosen to make

different algorithms interchangeable [27].

The structure of the strategy pattern is shown in Figure 5.1. It consists of a

context that will keep a reference to the strategy object, a strategy that declares the

interface to the defined algorithms, and the concrete strategies that implement the

algorithms [27].
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Figure 5.1. The strategy pattern that allows multiple algorithms to be
used interchangeably through the same interface [27].

For AO-OCT data processing on the GPU, the context of the strategy is the

software written at IU Bloomington. The strategy itself is an abstract class called

CuAOOCT, which is short for “CUDA AO-OCT.” The strategy contains an interface

called run(), which exists in all of the possible concrete strategies. With this design,

new algorithms for processing can be added at any time. Switching between the

algorithms involves a change of only a single line of code in the IU Bloomington

acquisition software. A diagram for this structure appears in Figure 5.2, and the

structure allows for algorithm customization by virtue of the design pattern itself.

5.2.2 Proxy Pattern

One of the vital third party libraries is NVIDIA’s CUDA FFT (CuFFT) library,

which plans and executes FFTs on the GPU. The major problem with this library

is that it does not allow the use of FFTs on multiple GPUs by an application unless

the GPUs exist on the same graphics card [14]. This causes a major issue when
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Figure 5.2. The strategy pattern implemented for processing on the GPU.
A concrete strategy for computing on the CPU can utilize the same in-
terface created by the CuAOOCT strategy [27].

attempting to scale the processing to execute on multiple GPUs. In order to alleviate

this issue, each GPU must be controlled by a separate CPU process.

Instead of rewriting either the acquisition code from IU Bloomington or modifying

the AO-OCT processing code created to run on a single GPU, a single class can act

as a proxy between the two pieces of code and manage GPU resources available on

the machine. This is where the proxy pattern proves beneficial.

The proxy pattern, shown in Figure 5.3, allows for a way to control access to an

object by acting as a placeholder [27]. Using the proxy pattern, a proxy was created

called multiGPU, which is a subclass of CuAOOCT. This allows the use of the same

common interface created when implementing the strategy pattern.

The multiGPU concrete strategy, acting as a proxy, shown in Figure 5.4, will con-

trol one separate CPU process with an instance of the HighQuality concrete strategy

subclass for each GPU and will distribute work accordingly to each of the objects.

The concrete strategy chosen for the proxy is a matter of user preference. This thesis



24

Figure 5.3. The proxy pattern: This pattern uses a placeholder called a
proxy to control access to another object [27].

will focus on a concrete strategy subclass called HighQuality that provides all of the

processing steps through normalization.

Figure 5.4. The structure of an implementation of the proxy pattern using
the multiGPU class as a proxy for the HighQuality class creating a private
object named “highQuality” [27].
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5.3 Algorithms

A-scans from the AO-OCT system are aggregated to form an entire fast B-scan

before being sent to the GPU for processing. A-scans are placed sequentially into an

array residing in page-locked memory (also called pinned memory). When a B-scan is

complete, pointers to the page-locked input array and an unsigned character output

array are packaged in a B-scan object. Then, a pointer to the B-scan object is sent

over to the CuAOOCT object for processing. Processing on the GPU is accomplished

through a series of kernels that transform the raw data into a viewable image. These

kernels are meant to be reused and customized for various methods of computing

AO-OCT data. Once processed, a set of B-scans can be used to create an en-face

view of the retina.

One of the limitations in the current implementation of the DC subtraction, k-

space mapping, and phase correction algorithms is that they were created to work

with one, two, or four cameras. To work with any other number of cameras, those

specific algorithms must be rewritten in a new concrete strategy.

5.3.1 Cast to Float

Spectra data from the CMOS sensors come in as 16-bit (short) unsigned integers.

Many of the computations, built-in libraries, and architecture of the GPU are built

to work with floating point values, and therefore, the data must be cast to floating

point. This is not as straightforward as it seems because in order to increase efficiency

of the movement of data from/to global GPU memory to be cast into a float, one

must cast an unsigned short integer pointer to a ushort4 data type pointer that will

be used to grab four unsigned short values at a time and then copy the values to

the GPU registers. From there, the values can be cast into floating point values and

stored into a float4 data type. This can then be transferred back to GPU global

memory, but will require twice the space the original short integers have taken up in

system memory. If the dataset is not a multiple of four then the remaining values can
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be picked up by an if statement. The general algorithm for the kernel using ushort4

vector loads and float4 vector stores is shown in Algorithm 5.1:

Algorithm 5.1 Cast To Float (inputArray, outputArray, size)

1: idx ← blockIdx.x × blockDim.x + threadIdx.x
2: iterations ← size ÷ 4
3: for i; while i < iterations in steps of (blockDim.x × gridDim.x) do
4: ushort4 input ← (ushort4*) inputArray[i] . Move data to registers
5: float4 ouptut ← input cast to floating point
6: (float4*) outputArray[i] ← output . From registers to global memory
7: end for
8: i ← (idx ÷ 4) × 4 . Utilize truncation from integer division
9: if i < size then
10: outputArray[i] ← (float)inputArray[i]
11: end if

5.3.2 Hann Filter

The Hann filter is only executed for A-scans of a length less than 832 by design.

Furthermore, if it executes, it will only modify values within user-defined areas at

the front and back of the spectrum called “cuts”. The kernel for the Hann filter is

straightforward and displayed in Algorithm 5.2. If the data is within the domain of

the cuts then apply the filter, otherwise skip.
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Algorithm 5.2 Hann Filter (input, width, size, cut)

1: endCut ← width − cut
2: i ← blockIdx.x × blockDim.x + threadIdx.x
3: for i; while i < size in steps of (blockDim.x × gridDim.x) do
4: row ← i ÷ width . Determine row
5: col ← i % width . Determine column
6: index ← row × width + col . Calculate index
7: if col < cut then
8: temp ← input[index] . Move to register
9: high ← input[row × width + cut] . Move to register
10: input[index] ← 1

2
× ( 1 − cos(( 2π × temp ) ÷ width )) ÷ high

11: else if col > endCut then
12: temp ← input[index] . Move to register
13: high ← input[((row + 1) × width) − cut] . Move to register
14: input[index] ← 1

2
× ( 1 − cos(( 2π × temp ) ÷ width )) ÷ high

15: end if
16: end for

In the algorithm, duplicate instructions exist within the if statement and else if.

This is intentional in order to only execute those items within warps which have

threads that meet the conditional argument; otherwise the entire warp will return

from the function without performing unnecessary work.

5.3.3 Transpose and Reduce

In order to calculate the average across all A-scans per CMOS sensor, the data

must first be transposed so that GPU global memory accesses are coalesced. An

efficient matrix transpose algorithm was developed by NVIDIA and is available at

their website [28]. One major difference in our implementation is that the data set is

zero-padded on the tail end such that when transposed will produce rows which have

a length that is a power of two. Once transposed, the data is still interlaced, but in

columns instead of rows. Each column of the B-scan now represents output from a

specific sensor. An array of averages must then be calculated. The array must be the

size of the number of CMOS sensors multiplied by the original A-scan length. The
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value of each entry in the array is equal to the sums of all values in that row, for that

sensor, divided by the number of A-scans per B-scan belonging to that sensor.

To compute this on the GPU efficiently, threads need to communicate within each

warp. Since up to four sensors are supported, it must also be able to return values

in groups of four. At the warp level this is implemented by a reduction that shuffles

down the values similar to folding a piece of paper in half. This process stops when

only one value remains. This process is illustrated in Figure 5.5. Since GPU global

memory transfers are expensive in terms of the run time, it is more efficient to transfer

four values at a time. Therefore this was done using a float4 data type containing

four floating point values.

Once the reduction completes, the resulting float4 is further reduced to match

the number of sensors. The unused values are set to zero. Each warp will handle

128 floating point values. Algorithm 5.3 depicts this warp reduction. The number of

A-scans per B-scan will vary, and thus, to guarantee this algorithm runs as expected

with four values at a time, the data was zero-padded before being transposed. This

creates a row length that is always going to be evenly divisible by four.

At the block level when each warp returns a float4, the first thread of each warp will

write the float4 to shared memory. The threads in the block are then synchronized,

and thread zero will reduce the values from shared memory instead of calling the warp

reduce function as the number of operations is very small. After being reduced, the

number of rows from each sensor is calculated and the components of the float4 are

divided by the appropriate numbers. The row (A-scan) calculations rely on truncation

as a result of integer division. The original height is not guaranteed to divide equally

among the sensors so the number of A-scans for each sensor must be calculated

individually. The height is added to the number of sensors and the sensor number

plus one is subtracted from this value. The integer result of a division of this number

and the number of sensors will equal the number of A-scans from that sensor per

B-scan. The average is calculated by dividing the reduced sums by the number of
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Figure 5.5. The basic warp reduce. Starting with 32 threads (not shown)
a reduction is performed by folding the values over until a single value is
left. The value in this case is a float4 containing four floating point values.

A-scans for that sensor. This is better illustrated in Algorithm 5.4. The averages are

stored in an array that has float4 values and is equal to the A-scan original length.

As an example, if an A-scan length is 832 pixels (columns) and there are 240

A-scans per B-scan (rows) then the B-scan will be zero-padded to contain 256 rows.

This data is then transposed, yielding 256 columns and 832 rows. Each row will

be computed by a single block in CUDA. Since each thread will handle four values,

only two warps are needed for each block to reduce the 256 values in each row.

Once reduced, the values of the float4 are each divided by 60, or 240 A-scans ÷ 4

cameras, because each of the four cameras acquired the same number of A-scans in

this example. This calculated average is then placed into an array of float4 values

with a length of 832 for use with DC subtraction.



30

Algorithm 5.3 Warp reduce by four where stride is the number of sensors

1: function warpReduceBy4(value, stride)
2: laneID ← threadIdx.x % 32 . Determine the current lane
3: for i ← 16; while i >0 i ← i ÷ 2 do
4: float4 n← the shuffled down float4 value from i threads higher than laneID
5: if laneID ≤ i then
6: value ← value + n . for each of the four float components
7: end if
8: end for
9: if stride < 4 then
10: value.x ← value.x + value.z
11: value.y ← value.y + value.w
12: value.z ← value.w ← 0
13: if stride < 2 then
14: value.x ← value.x + value.y
15: value.y ← 0
16: end if
17: end if
18: return value
19: end function
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Algorithm 5.4 Block Reduce

1: function blockReduce(input, output, stride, width, height)
2: warpid ← threadIdx.x ÷ 32 . Determine which warp
3: warpsPerBlock ← blockDim.x ÷ 32 . Determine warps per block
4: N ← width × blockDim.x . Determine size
5: Declare float4 final[16]
6: idx ← threadIdx.x + blockDim.x × blockIdx.x
7: for idx; while idx < N; idx ← idx + blockDim.x × gridDim.x do
8: declare float4 sums and set all components to zero
9: value ← input[idx]
10: first ← warpReduceBy4(value, stride)
11: if threadIdx.x % 32 == 0 then
12: final[warpid] ← first
13: end if
14: Synchronize Threads
15: if threadIdx.x == 0 then
16: for i ← 0; while i < warpsPerBlock; + + i do
17: sums ← sums + final[i] . For each component
18: end for
19: numrows ← height + stride
20: sums.x ← sums.x ÷ ((numrows − 1) ÷ stride)
21: sums.y ← sums.y ÷ ((numrows − 2) ÷ stride)
22: sums.z ← sums.z ÷ ((numrows − 3) ÷ stride)
23: sums.w ← sums.w ÷ ((numrows − 4) ÷ stride)
24: output[idx ÷ blockDim.x] ← sums
25: end if
26: end for
27: end function

5.3.4 Subtract DC

Using the array of averages obtained from the previous step, the DC bias can be

subtracted out from the rest of the signal. Each thread must determine which row,

column, and sensor it is working with in order to subtract the appropriate values from

the array of averages as shown in Algorithm 5.5.
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Algorithm 5.5 Subtract DC Bias

1: function subtractDC(input, output, averages, stride, size, offset)
2: i ← blockIdx.x × blockDim.x + threadIdx.x
3: for i; while i < size in steps of (blockDim.x × gridDim.x) do
4: row ← i ÷ width . Determine row
5: col ← i % width . Determine column
6: camera ← row % stride . Determine which sensor
7: out index ← row × width + col . Calculate index
8: output[out index] ← input[i] − averages[(col × 4) + camera]
9: end for
10: end function

5.3.5 k-Space Interpolation and Dispersion Compensation

Similar to the DC subtraction step, it is important for each thread to know to

which row, column, and sensor any given pixel belongs because the interpolation and

dispersion compensation values are calculated separately for each sensor.

The first step shown in Algorithm 5.6 was to create a k-space index table for each

of the sensors. Since this only needs to be done one time per sensor, the function

call was placed in the CuAOOCT class constructor. In order to speed up linear

interpolation to k-space, this function finds the index just to the left of the desired

interval and stores it in an array for later use during the B-scan processing.
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Algorithm 5.6 Build k-space index table

1: function build kspace index(index, new wavelengths, interp buffer, length)
2: minK ← 2π ÷ new wavelengths[0]
3: maxK ← 2π ÷ new wavelengths[length − 1]
4: interval ← (maxK − minK) ÷ (length − 1)
5: . Create an evenly space interpolated buffer
6: for i ← 0; while i < length in steps of 1 do
7: interp buffer[i] ← 2π ÷ (minK + i × interval)
8: end for
9: . Create index table for faster linear interpolation
10: idx ← 0
11: for i ← 0; while i < length in steps of 1 do
12: . Find an appropriate index to the left of the desired interval
13: while new wavelengths[idx+1] > interp buffer[i] do
14: idx ← idx + 1
15: end while
16: index[i] ← idx
17: end for
18: end function

The next step, which happens during the B-scan processing, is the actual k-space

mapping and dispersion compensation. These were combined into one step in order

to save an intermediate step of reading and writing to global GPU memory.

The implementation pseudocode presented in Algorithm 5.7 is simply a means of

computing a linear interpolation similar to the built-in MATLAB function interp1().

The computations on this kernel are not complex so this is a bandwidth bound kernel.

Dispersion compensation is done by simply multiplying the real result of the k-space

mapping with the appropriate real and imaginary entries in the phase correction data

set.
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Algorithm 5.7 k-space and Dispersion Compensation

1: function kspace and dispersion(x, y, interp buffer, index, output, num lines,
num cameras, phase, maxline scale)

2: size ← num lines × 4096
3: i ← blockIdx.x × blockDim.x + threadIdx.x
4: for i; while i < size in steps of (blockDim.x × gridDim.x) do
5: row ← i ÷ width . Determine row
6: col ← i % width . Determine column
7: camera ← row % num cameras . Determine which sensor
8: if i is within the first two or last two columns then
9: y[i] ← 0
10: end if
11: idx ← index[col] . Move data to registers
12: offset ← row × 4096 . Determine input offset
13: cam offset ← camera × 4096 . Determine offset for correction data
14: sum ← offset + idx . Place sum in register to speed later operations
15: y2 ← y[sum+1] . Move data to registers
16: y1 ← y[sum] . Move data to registers
17: x2 ← x[cam offset + (idx + 1)] . Move data to registers
18: x1 ← x[cam offset + idx] . Move data to registers
19: m ← y2−y1

x2−x1 . Determine slope
20: kspace ← m × interp buffer[cam offset+col] + y1 − m × x1 . Solve
21: out.x ← phase[cam offset+col].x × kspace . real
22: out.y ← phase[cam offset+col].y × kspace . imag
23: . Prepare offset for 4096 × maxline scale factor for FFT size
24: offset ← (row × 4096 × maxline scale) + (2048 × (maxline scale − 1))
25: output[offset+col] ← out . output to zeroed, scaled, array
26: end for
27: end function

5.3.6 Intensity

Converting between complex values and intensity is straightforward. From the

complex values, the real and imaginary values are brought into the registers; they are

squared, added, and then transferred back to global memory. For every floating point

operation, a CUDA floating point intrinsic function is used in order to minimize the

clock cycles consumed. Cropping is also handled by the intensity kernel in the actual

implementation, but has been omitted for clarity in Algorithm 5.8.
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Algorithm 5.8 Intensity Kernel

1: function intensity(input, output, log output, width)
2: i ← blockIdx.x × blockDim.x + threadIdx.x
3: for i; while i < size in steps of (blockDim.x × gridDim.x) do
4: row ← i ÷ width
5: real ← input[ 2 × i ] . Move to registers
6: imag ← input[ 2 × i + 1] . Move to registers
7: out index ← row × width
8: real ← real2

9: imag ← imag2

10: temp ← real + imag
11: output[out index] ← temp . Write outputs to global memory
12: log output[out index] ← 10 × log(temp)
13: end for
14: end function

5.3.7 Find Minimum and Maximum

In order to properly normalize an image, a minimum and maximum float2 value

needs to be either obtained from the user, or determined based upon the current data

set. When values are not given by the user, a kernel executes to find the minimum

and maximum values.

The kernel created for this purpose utilizes inter-thread communication within

each warp. The warps will determine the minimum and maximum from that warp

and write it out to shared memory. That shared memory array is reduced again in a

single warp and this warp will provide the final output per block. The block outputs

are atomically compared to the final output for the function. When complete, the

final output for the function will contain the minimum and maximum values for the

entire data set.

It is more efficient to read and write from/to global memory only once to find

both the minimum and maximum than to do the identical work for both tasks. To

accomplish this, a number of built-in CUDA functions had to be rewritten to suit the

needs of the operation. For inter-thread communication, a shuffle down function was

written to carry a float2 data type between threads in order to compare minimum and
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maximum values. This utilizes the built-in floating point minimum and maximum

intrinsic operations as well as the built-in shuffle down ( shfl down()) function for

32-bit values as shown in Algorithm 5.9.

Algorithm 5.9 float2 shuffle down to move a minimum and maximum value

1: function shfl down(var, srclane, width)
2: var.x ← minimum of var.x or shuffled value
3: var.y ← maximum of var.y or shuffled value
4: return var
5: end function

At the warp level, the reduction is a simple for-loop as in Algorithm 5.10, which

makes a call to the custom shfl down() that was defined in the previously shown

Algorithm 5.9. Since each warp is 32 lanes wide, a shuffle down from the last 16

lanes to the first 16 lanes yields 16 minimum and maximum values. This is shuffled

down further from the last 8 to the first 8 and so on until there is a single minimum

and maximum float2 value for the entire warp. This is the same concept depicted

in Figure 5.5. The custom shfl down() algorithm makes two calls to the built-in

shfl down() and therefore requires fewer clock cycles for each of the five iterations

of the loop and no reading and writing to shared memory. The loop itself is unrolled

in the actual implementation so that clock cycles are not needlessly wasted.

Algorithm 5.10 Warp reduction to find minimum and maximum

1: function warpReduceMinMax(value)
2: for offset ← 16; while offset > 0; offset← offset ÷ 2 do
3: value ← shfl down(value, offset)
4: end for
5: return value
6: end function

At a high level, the block algorithm calls the warp reduce function for all threads,

synchronizes between the threads, and writes the results from each warp to an array

in shared memory. This array is then used with another warp reduce call to find the

minimum and maximum between all the warps within the block. When this float2
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value is returned, it is atomically compared with values returned from other blocks

so that a minimum and a maximum from the entire data set can be determined. The

high level overview is displayed in Algorithm 5.11.

Algorithm 5.11 Block reduction to find minimum and maximum

1: function blockReduceMinMax(value)
2: lane ← threadIdx.x % warpSize . Determine which lane
3: warpid ← threadIdx.x ÷ warpSize . Determine which warp
4: value ← warpReduceMinMax(value)
5: if lane is zero then . Lane zero holds the resulting value
6: SharedArray[warpid] ← value
7: end if
8: Synchronize Threads
9: if threadIdx.x < blockDim.x ÷ warpSize then . Warp existed
10: value ← SharedArray[lane]
11: else . Warp did not exist
12: value ← min/max default values
13: end if
14: if warpid is zero then
15: value ← warpReduceMinMax(value)
16: end if
17: return value
18: end function

The actual implementation differs from what is shown in Algorithm 5.11 in that

some mathematical operations are done in a more efficient manner for the GPU in

order to speed up computation. For example, because the warp size is known to be

a power of two, it is faster to determine the lane using a binary AND operation such

as threadIdx.x & (warpSize− 1). Likewise, division is also accomplished in a more

efficient way by using a right shift.

5.3.8 Normalize

The normalization kernel normalizes values between 0 to 255 so they can appear

as 8-bit grayscale image. By using the floating point intrinsic saturatef() command

in CUDA, values can be normalized between 0 to 1 and then scaled to 255. The
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minimum is negated as it is brought in from global memory in order to use a floating

point intrinsic multiplication to compute the result in one cycle and to keep that step

outside of the for loop.

Algorithm 5.12 Normalization

1: function norm(input, size, min, max)
2: minimum ← -1 × min . Move value to register
3: maximum ← max . Move value to register
4: i ← blockIdx.x × blockDim.x + threadIdx.x
5: for i; while i < size in steps of blockDim.x × gridDim.x do
6: inpt ← input[i] . Move value to register
7: numerator ← inpt + minimum
8: denominator ← maximum + minimum
9: normalized ← saturate(numerator ÷ denominator) . Clamp
10: output[i] ← normalized × 255 . Scale
11: end for
12: end function

5.4 Job Scheduling on Multiple GPUs

In an effort to increase throughput, multiple GPUs can be used to process AO-

OCT data. As noted previously, a proxy pattern is used to control and schedule

multiple objects instantiated from the HighQuality class. Each object controls a

separate GPU. One of the issues that arises from this set-up is that not all GPUs

have the same number of cores. It is important to know the number of cores on each

GPU since the number of cores often determines throughput. A common set-up is to

have one graphics card for display purposes and a GPU accelerator for computations,

such as an NVIDIA Tesla GPU.

If a machine has multiple GPUs, say a high-throughput and a low-throughput

GPU, then it stands to reason that if work is split evenly between the two GPUs, in

a round robin fashion, and executed in parallel, the time for execution will only be as

good as the work done on the low-throughput GPU. Therefore, in order to mitigate

this fact, we must split the work unevenly between the two GPUs, giving more work

to the high-throughput GPU. This splitting of work must be done dynamically to
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maintain flexibility, improve throughput, and allow future GPUs to be used. One

way to do this is a weighted round robin approach.

The first step in a weighted round robin approach to this problem is to determine

how many cores each GPU has and assign a weight to each GPU based on this number

as a ratio of the total number of cores in the system. A queue is then built based

on this weight system in a round robin fashion. Psuedocode depicting this is shown

in Algorithm 5.13. The queue stores GPU ordinal numbers in an amount equal to

the ratio of cores as a percentage. The MultiGPU object assigns each B-scan to the

child thread controlling the GPU with the ordinal number at the front of the queue.

As ordinal numbers are popped from the queue, they are pushed to the back of the

queue to recycle them in the same sequence generated by Algorithm 5.13.

Algorithm 5.13 Weighted Round Robin

1: declare vector cores
2: declare queue
3: total ← 0
4: queue size ← 0
5: gpu num ← 0
6: for each gpu i do . Get core count
7: cores.push ( number of cores for gpu i )
8: total ← total + number of cores for gpu i
9: end for
10: for each gpu i do . Determine weights
11: cores[i] ← ( cores[i] ÷ total ) × 100
12: queue size = queue size + cores[i] . Keep track of future queue size
13: end for
14: for i ← 0; while i < queue size in steps of 1 do . Create initial queue
15: while (cores[gpu num] ≤ 0) do . Move to valid index if empty
16: gpu num ← ( gpu num + 1 ) % cores.size()
17: end while
18: if cores[gpu num] > 0 then . Fill queue
19: queue.push(gpu num)
20: cores[gpu num] ← cores[gpu num] − 1
21: end if
22: gpu num ← (gpu num + 1) % cores.size() . Increment gpu
23: end for
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It should be noted that the load on a GPU cannot be measured on consumer

graphics cards with the current NVIDIA drivers. The weighted round robin load

balancing method is dynamically created at run-time based on hardware specifications

returned from a call to the NVIDIA driver.

5.5 Workflow

The typical workflow for processing on the GPU involves the IU Bloomington

code for acquisition, which is treated as a black box by design, packaging data into

individual B-scans. A pointer to each B-scan is sent to the cuAOOCT object, and the

data is processed. Since the design uses the strategy pattern, the method in which

the B-scans are processed can easily change.

When using the cuAOOCT subclass MultiGPU as both a concrete strategy and

a proxy for the cuAOOCT subclass HighQuality as shown in Figure 5.4, the user can

scale the HighQuality workflow to multiple GPUs. The process will launch one child

CPU process per GPU and assign work based on the number of cores present on the

respective GPU. Each of the child processes has its own instance of a HighQuality

object. The HighQuality object will pipeline and process multiple B-scans at a time

within CUDA streams. The number of streams is configurable by the user up to

32. The parent and child CPU processes are synchronized through the use of events.

Since there are no dependencies between GPUs, synchronization between the child

CPU processes is not necessary. A diagram of such a workflow is shown in Figure

5.6. Data flow within the diagram begins with four cameras controlled by software

at IU Bloomington, which places interleaved A-scans into pinned memory. Once an

entire B-scan is captured, a pointer to that B-scan will be sent to the MultiGPU

object. This object will assign the work to one of its child processes, each containing

an instance of the HighQuality class. High level psuedocode of the run() function of

the HighQuality class is shown in Algorithm 5.14
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Figure 5.6. A flow chart diagramming AO-OCT processing using multi-
ple CPU threads each of which controls a separate GPU. The processing
pipelines on each GPU are launched in separate streams allowing con-
current B-scan processing on each GPU. The number of GPUs present is
determined at run time.
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Algorithm 5.14 Run function of the HighQuality class.

1: function run(Bscan * bscan)
2: Get device pointer for the B-scan’s short int original data
3: cast to float(bscan->getOrigData(), orig data float, size)
4:

5: if aLineLength < 832 pixels then
6: Hann filter(orig data float)
7: end if
8:

9: aLinesPerFrame pow2 ← nextPow2(aLinesPerFrame)
10: transpose data(orig data float, transposed data,aLineLength,

aLinesPerFrame pow2)
11:

12: reduce(transposed data, averages for DC sub, numCameras, aLineLength,
aLinesPerFrame)

13:

14: subtract DC(orig data float, subDC out, averages for DC sub,
numCameras, aLineLength, size)

15: . Execute FFT and iFFT to resample to 4096
16: cufftExecR2C(cuForward, DCsub out, FFT out)
17: cufftExecC2R(cuInverse, FFT out, iFFT out)
18:

19: kspace and dispersion comp(newWavelengths, iFFT out,
d interp buffer, d kspace index, kspace out, aLinesPerFrame, num cameras,
d phase correction)

20: . Reconstructive FFT
21: cufftExecC2C(cuForwardComplex, kspace out, final FFT out,

CUFFT FORWARD)
22: intensity(final FFT out, intensity out, log intensity out, 4096*scale,

4096*scale*aLinesPerFrame)
23:

24: new width ← (2 * aLineLength - crop top) - crop bottom
25: min max(intensity out, minmax, new width * aLinesPerFrame)
26: min max(log intensity out, log minmax, new width * aLinesPerFrame)
27:

28: normalize(intensity out, bscan->getDevNormIntensityImage(), new width
* aLinesPerFrame, minmax)

29: normalize(log intensity out, bscan->getDevLogNormIntensityImage(),
new width * aLinesPerFrame, log minmax)

30: end function
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6 RESULTS

Comparisons of raw output generated by MATLAB, C++ running on the CPU, and

GPU show identical results for one, two, and four sensors. A comparison was also done

for each of the implemented GPU kernels for verification of the respective outputs.

It is important to note that MATLAB normalizes FFT results, whereas FFTW and

the cuFFT library outputs are scaled by N. This must be adjusted for before a direct

comparison can be made. An example output of a processed B-scan appears in Figure

6.1.

Figure 6.1. Example of a processed B-scan.

Scaling computation of multi-camera AO-OCT to multiple GPUs was successful

and shows a near linear reduction in computation time as the number of GPU cores

increases, as shown in Table 6.1. Run time for processing done on a CPU through

MATLAB is given for a comparison. Utilizing three GPUs shows a speed up of over

653×.
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Table 6.1
Run times on multiple GPUs on a sample data set 832×240×240×11.
This table reveals scaling with an increased number of cores. The CPU
processing run time in MATLAB is also given for comparison.

GPUs # of Cores Time (sec)
1 GK110B(Titan Z) 2880 2.869

2× GK110B(Titan Z) 5760 1.493
2× GK110B(Titan Z) + 1 GK110 (Tesla K20c) 8256 1.073

CPU
MATLAB - 721.000

The 4096 pixel scale factor for the final FFT step can dramatically affect run

times as shown in Table 6.2. This shows that there is a computational penalty for

increased accuracy.

Table 6.2
Run times with different FFT scale factors for a sample data set
832×240×240×11 and FFT sizes of 4096×Scale factor on an Nvidia Tesla
K20c and both GPUs on an Nvidia Titan Z.

Scale Factor Time (sec) A-scans per sec
1 0.541 1.16 million
2 0.737 0.86 million
4 1.073 0.59 million

Individual kernel run times were obtained on a single Tesla K20c to eliminate

potential sources of error, as shown in Table 6.3. It is clear that the reconstructive

Fourier transform step, labeled finalFFT, consumed the largest percentage of time

during the processing of the sample.

A common method of measuring software quality is through the use of software

metrics. Coupling is one measure of software quality. Parameter coupling can be

defined as a measure of the number of method calls between classes [29]. There
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Table 6.3
Kernel run times for the sample data set 832×240×240×11 and an FFT
size of 16,384 on a single Tesla K20c utilizing HyperQ with 16 streams.
System memory transfer times are not shown for cast to float and nor-
malize kernels as they are normally hidden as a result of pipelining.

Kernel Time (ms) Bandwidth (GB/s)
cast to float 24.241 121.519
Hann filter 21.292 184.468
transpose 31.460 133.168

reduce 54.395 39.111
subtractDC 29.910 141.160

FFT 159.231 133.766
iFFT 381.751 75.976
k-space 354.982 81.705

finalFFT 1975.260 78.312
intensity 88.196 60.377
minmax 15.093 88.203

normalize 22.292 74.650

are three points of coupling between the GPU processing code and the Bloomington

control code: a call to the constructor for the cuAOOCT object, an explicit call to the

cuAOOCT run() method, and an implicit call to the cuAOOCT destructor. Data

coupling exists because B-scans are packaged onto objects that are passed to the

cuAOOCT run() method. With loose coupling often comes high cohesion. Cohesion

is the measure of relatedness between module components. High cohesion exists if

module components are not divisible. In fact, by design and the data dependency that

must exist within the cuAOOCT subclasses to process AO-OCT data, the methods

of the classes are functionally cohesive and sequential cohesion exists between each

of the processing steps. This level of cohesion allows increased kernel reusability for

future processing strategies [30,31].
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7 SUMMARY

The near linear reduction in computation time with an increase in core count is

promising for future hardware improvements. By virtue of the way the code is de-

signed, the AO-OCT computation will scale automatically with the GPU resources

it detects, and balance the workload between GPUs. Although having a final FFT

of 4096 allows better than real-time results at over one million A-scans per second,

there may exist a set of GPUs in a year or two that might be able to compute with

a scale factor of four in real-time. This would allow a final FFT of 16,384 complex

numbers.

One point of future work that should be investigated is batch processing of multiple

B-scans at a time. Others have shown improved throughput with such a set-up [5].

The main bottleneck in the current approach is the large FFT size and the small

number of A-scans per batch. Current batches are only the size of the number of A-

scans per B-scan. Larger FFT batches should increase throughput from the CUDA

FFT library. Due to loose coupling and the use of the strategy design pattern, such

a class could extend the CuAOOCT class and be added with minimal difficulty.

As speed and accuracy increase, so does the clinical value of AO-OCT. The ap-

proach proposed and implemented will allow for future growth and can be easily

modified or extended using the principles of object oriented programming.
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