
Graduate School ETD Form 9
(Revised 12/07)

PURDUE UNIVERSITY
GRADUATE SCHOOL

Thesis/Dissertation Acceptance

This is to certify that the thesis/dissertation prepared

By

Entitled

For the degree of

Is approved by the final examining committee:

 Chair

To the best of my knowledge and as understood by the student in the Research Integrity and
Copyright Disclaimer (Graduate School Form 20), this thesis/dissertation adheres to the provisions of
Purdue University’s “Policy on Integrity in Research” and the use of copyrighted material.

Approved by Major Professor(s): ____________________________________

Approved by:
 Head of the Graduate Program Date

Ketaki Abhay Pradhan

MDE-URDS-A Mobile Device Enabled Service Discovery System.

Master of Science

Dr. Rajeev R. Raje

Dr. Mihran Tuceryan

Dr. James Hill

Dr. Rajeev R. Raje

Dr. Shiaofen Fang 12/10/2010

Graduate School Form 20
(Revised 9/10)

PURDUE UNIVERSITY
GRADUATE SCHOOL

Research Integrity and Copyright Disclaimer

Title of Thesis/Dissertation:

For the degree of Choose your degree

I certify that in the preparation of this thesis, I have observed the provisions of Purdue University
Executive Memorandum No. C-22, September 6, 1991, Policy on Integrity in Research.*

Further, I certify that this work is free of plagiarism and all materials appearing in this
thesis/dissertation have been properly quoted and attributed.

I certify that all copyrighted material incorporated into this thesis/dissertation is in compliance with the
United States’ copyright law and that I have received written permission from the copyright owners for
my use of their work, which is beyond the scope of the law. I agree to indemnify and save harmless
Purdue University from any and all claims that may be asserted or that may arise from any copyright
violation.

Printed Name and Signature of Candidate

Date (month/day/year)

*Located at http://www.purdue.edu/policies/pages/teach_res_outreach/c_22.html

MDE-URDS-A MOBILE DEVICE ENABLED SERVICE DISCOVERY SYSTEM.

Master of Science

Ketaki Abhay Pradhan

12/10/2010

MDE-URDS-A MOBILE DEVICE ENABLED SERVICE DISCOVERY SYSTEM

 A Thesis

Submitted to the Faculty

of

Purdue University

by

Ketaki A. Pradhan

In Partial Fulfillment of the

Requirements for the Degree

of

Master of Science

May 2011

Purdue University

Indianapolis, Indiana

ii

To,

Aai and Baba

iii

ACKNOWLEDGMENTS

Being a Graduate student of the Department of Computer and Information

Science at IUPUI is one of the most memorable experiences of my life. It has taught me

many things in life and I will always cherish my memories of being a part of this

Institution. I always thank God for giving me this wonderful opportunity. In addition,

there are a couple of people I would like to thank who have been very supportive

throughout my Graduate studies.

First and foremost of I would like to thank my advisor, Dr. Rajeev Raje for his

guidance and encouragement throughout my Thesis and Graduate studies. I cannot thank

him enough for being so patient and supportive. I would also like to thank Dr. Mihran

Tuceryan and Dr. James Hill for agreeing to be as a part of my Thesis Committee and

providing their valuable feedback on the Thesis revisions.

I would especially like to thank my colleague and good friend Lahiru for his

support and being there for me whenever I needed help. My special thanks to Alfredo

who helped me a great deal in my initial days of research.

Thank you to all my friends and well wishers for their good wishes and support.

And finally, I would like to thank my grandmother, my parents and my brother Kunal for

their unconditional love and support.

iv

TABLE OF CONTENTS

 Page

LIST OF TABLES ... vi

LIST OF FIGURES .. vii

ABSTRACT ... ix

CHAPTER 1. INTRODUCTION ... 1

1.1. Problem Statement and Motivation .. 1

1.2. Objectives of the Thesis ... 4

1.3. Contributions of the Thesis .. 4

1.4. Organization of the Thesis .. 4

CHAPTER 2. RELATED WORK .. 5

CHAPTER 3. MDE-URDS DESIGN ... 12

3.1. MDE-URDS Architecture .. 12

3.2. Enhancing the MDE-URDS Architecture .. 22

3.2.1. MDE-URDS with Multi-level Matching (MLM) ...22

3.2.2. MDE-URDS Incorporating Caching and Buffering mechanisms.28

3.2.3. MDE-URDS with different querying methods. ..30

3.2.4. MDE-URDS with Mobile IP (Incorporation of Mobility)33

 3.2.5. MDE-URDS with Collaborative Approaches

 (Incorporation of Collaborative Approaches) ... 43

v

 Page

CHAPTER 4. EXPERIMENTATION AND VALIDATION .. 51

4.1. Study of performance of the basic architecture of the MDE-URDS 53

4.1.1. To study the performance of the mobile headhunters in comparison to

stationary headhunters with respect to average response time. 54

4.1.2. Calculation of individual times ...56

4.1.3. Studying the wait time for the headhunters ..57

4.1.4. To study the scalability of the system ...59

4.2. Enhancements to the MDE-URDS architecture ... 62

4.2.1. MDE-URDS with multi-level matching (MLM) ..63

4.2.2. MDE-URDS with caching and Buffering mechanisms (To improve the

response time (especially with multi-level matching)) .. 67

4.2.3. MDE-URDS with different querying methods. ..69

4.2.4. MDE-URDS with Mobile IP (Incorporation of Mobility)74

4.2.5. MDE-URDS with Collaborative Approaches: I do it,

We do it, You do it…………………………………………………………………..82

4.3. Case Study .. 87

CHAPTER 5. CONCLUSIONS AND FUTURE WORK .. 89

LIST OF REFERENCES .. 93

vi

LIST OF TABLES

Table Page

Table 3.1 Mapping of URDS Entities on the different categories of devices 15

Table 3.2 Exact and relaxed match Operators .. 23

Table 4.1 Recall for the 10 M-HHs .. 69

Table 4.2 Precision and Recall for We do it approach ... 83

Table 4.3 Precision and Recall comparison for We do it approach using

OLSR protocol .. 85

Table 4.4 Precision and Recall comparison for You do it approach 86

vii

LIST OF FIGURES

Figure Page

Figure 3.1 URDS Architecture ... 13

Figure 3.2 Basic MDE-URDS Architecture ... 16

Figure 3.3 Use of proxy and Query Propagation of

multi-level queries in MDE-URDS .. 25

Figure 3.4 Query Propagation of multi-level queries in MDE-URDS using caching 28

Figure 3.5 Random, Selective (Domain Specific search) of Query Manager 31

Figure 3.6 Exhaustive search of Query Manager.. 31

Figure 3.7 MDE-URDS architecture with Mobile IP implementation 35

Figure 3.8 Query propagation in Mobile IP scenario, headhunters in transit 41

Figure 3.9 Collaborative approach: We do it using AODV and OLSR protocol 46

Figure 3.10 Collaborative approach: You do it .. 48

Figure 3.11 Enhanced MDE-URDS Architecture .. 49

Figure 4.1 Multi-level XML Specification of a Service ... 52

Figure 4.2 Average time taken by Mobile Headhunters vs Stationary Headhunters 55

Figure 4.3 Changes in Ping Response time for a wireless HH ... 56

Figure 4.4 Division of response time for mobile and stationary HHs 57

Figure 4.5 Calculation of wait time at a headhunter ... 58

Figure 4.6 Scalability w.r.t several queries in the system ... 60

Figure 4.7 Scalability w.r.t several queries at one HH ... 61

Figure 4.8 Increasing number of M-HHs in the system.. 62

Figure 4.9 Precision and Recall calculation for a set of queries 64

Figure 4.10 Precision of results with different levels of matching 65

Figure 4.11 Comparison of Response time for Type only and MLM query 66

viii

Figure Page

Figure 4.12 Comparison of Response time for Type only

and all Four levels of Matching .. 66

Figure 4.13 Comparison of response times with and without

buffering of components ... 67

Figure 4.14 Hit and Miss ratio for different HHs ... 68

Figure 4.15 Comparison of Response Time for the three different search approaches 70

Figure 4.16 Comparison of quality (Recall) for the three different search approaches 71

Figure 4.17 Comparison of quality (Precision) for the three

different search approaches ... 71

Figure 4.18 Difference in quality (Precision) of results with a timed response 73

Figure 4.19 Difference in quality (Recall) of results with a timed response 73

Figure 4.20 Response time of HHs when they are in their home domain 75

Figure 4.21 Exhaustive search Response time of HHs

when they are in their home domain ... 76

Figure 4.22 Response time from headhunters in a foreign domain 77

Figure 4.23 Response time calculation when headhunters

are in transit and waiting for them .. 78

Figure 4.24 Response time calculation when headhunters

are in transit and getting response from other headhunters .. 79

Figure 4.25 Evaluation of response time from headhunter ... 80

Figure 4.26 Response time variation for M-HHs w.r.t Buffering of Results.................... 81

Figure 4.27 We do it approach using AODV protocol ... 83

Figure 4.28 Collaborative results for We do it approach using OLSR protocol............... 84

Figure 4.29 Collaborative results for You do it approach .. 86

ix

ABSTRACT

Pradhan, Ketaki A. M.S., Purdue University, May 2011. MDE-URDS-A Mobile Device

Enabled Service Discovery System. Major Professor: Rajeev Raje.

Component-Based Software Development (CSBD) has gained widespread

importance in recent times, due to its wide-scale applicability in software development.

System developers can now pick and choose from the pre-existing components to suit

their requirements in order to build their system. For the purpose of developing a quality-

aware system, finding the suitable components offering services is an essential and

critical step. Hence, Service Discovery is an important step in the development of

systems composed from already existing quality-aware software services. Currently,

there is a plethora of new-age devices, such as PDAs, and cell phones that automate daily

activities and provide a pervasive connectivity to users. The special characteristics of

these devices (e.g., mobility, heterogeneity) make them as attractive choices to host

services. Hence, they need to be considered and integrated in the service discovery

process. However, due to their limitations of battery life, intermittent connectivity and

processing capabilities this task is not a simple one.

This research addresses this challenge of including resource constrained devices

by enhancing the UniFrame Resource Discovery System (URDS) architecture. This

enhanced architecture is called Mobile Device Enabled Service Discovery System (MDE-

URDS). The experimental validation of the MDE-URDS suggests that it is a scalable and

quality-aware system, handling the limitations of mobile devices using existing and well

established algorithms and protocols such as Mobile IP.

1

CHAPTER 1. INTRODUCTION

This thesis describes the architecture of Mobile Device Enabled – UniFrame

Resource Discovery System (MDE-URDS), a service discovery architecture using mobile

devices. This chapter explains the motivation behind the thesis and an introduction to the

overall approach taken.

1.1. Problem Statement and Motivation

Component-Based Software Development (CSBD) has gained widespread

importance in recent times, due to its wide-scale applicability in software development.

Such techniques have made advancements in software development in modern times to a

large extent. From taking years to finalize software, now software can be developed and

deployed in a matter of a few days. Component Based Software Development [1] and

Generative Programming [2] provide the luxury of the use of already existing

components in the software development process. System developers can now pick and

choose from the pre-existing components to suit their requirements in order to build their

own system. It is then the task of developing a system using these found components with

the specific and user-desired quality of service (QoS) requirements. Components usually

belong to a specific domain and offer services, such as tracking components offer

tracking services or healthcare components offering health-related services. As a result,

the terms components and services are used interchangeably in this thesis. For the

purpose of developing a system, finding the suitable components offering services is an

essential and critical step. Hence, Service Discovery is an important step in the

development of systems composed from already existing quality-aware software services.

A lot of emphasis is laid on finding the right services to meet the requirements of

the system under development. This process is iterative and the developer may look for

newer components to meet those requirements. Service Discovery, if not appropriately

3

done, may delay the overall process of software development and may even as well lead

to incorrect development of the required system. Researchers in the past have proposed

several discovery architectures, such as Jini [3], UPnP [4], UDDI [5], and Service

Location Protocol [6]. These, and similar efforts, are referred to as first generation service

discovery architectures in a comprehensive report from the researchers at the National

Institute of Standards and Technology (NIST). A comprehensive list of related work in

this field can be seen in Chapter 2.

Currently, there is a plethora of new-age devices, such as PDAs, and cell phones

that automate daily activities and provide a pervasive connectivity to users. The special

characteristics of these devices (e.g., mobility, heterogeneity) make them as attractive

choices to host services and hence, they need to be considered and integrated in the

service discovery process. Many context-aware applications, such as distributed tracking,

require the inclusion of such mobile devices that host relevant services. Also, there are

many real-time applications such as disaster management, traffic monitoring, benefiting

by the use of mobile devices and services, giving rise to many service discovery

architectures. Hence, the inclusion of these mobile devices into the discovery framework

enhances the discovery process by making it suitable to the category of context-aware

applications. The first generation of discovery systems however, did not consider

including the mobile devices into their service discovery architecture. The problem with

these devices is the additional level of support for wireless technology, their intermittent

connectivity, battery life, limited memory capability and additional hardware support that

is needed for correct functionality.

NIST in their survey [7] of first generation of discovery systems have identified

this particular challenge of resource discovery with mobile devices. This research

therefore addresses the challenge of including resource constrained devices by handling a

subset of the challenges (such as Intermittent Connectivity, Mobility, memory and

processing capabilities) by enhancing the UniFrame Resource Discovery System (URDS)

architecture. This enhanced architecture is called Mobile Device Enabled Service

Discovery System (MDE-URDS).

4

 The MDE-URDS proposes solutions to handle the limitations of the resource-

constrained devices using algorithms such as Mobile IP [8], Ad-hoc On Demand Vector

routing [9], Optimized Link State Routing [10] and the use of near-by proxies in the

discovery process. The quality of the results obtained from the discovery process is

improved using the multi-level matching semantics proposed by [11][12].

1.2. Objectives of the Thesis

 To design an architecture, called MDE-URDS, for service discovery that

incorporates mobile devices.

 To empirically validate the proposed approach by performing extensive

experimentation with the prototype of MDE-URDS.

 To compare the performance of MDE-URDS with an existing prototype of URDS

that does not include mobile devices.

1.3. Contributions of the Thesis

 This Thesis has tried to address the problem of incorporating mobile devices into

service discovery architecture.

 The limitations of limited connectivity, limited battery life, memory capacity and

other constraints have been addressed using different algorithms such as Mobile

IP and changes to the existing URDS architecture.

 A comparative study of the discovery process with and without the inclusion of

mobile devices with respect to the discovery performance has been studied and

suggestions for the enhancement have been proposed.

1.4. Organization of the Thesis

The Thesis is organized as follows: Chapter 2 presents the related efforts; Chapter

3 explains the architecture of the proposed MDE-URDS and associated algorithms.

Chapter 4 describes the experimentation carried out using the prototype of MDE- URDS.

Chapter 5 presents the conclusions of this study and future work for the enhancement of

MDE-URDS.

5

CHAPTER 2. RELATED WORK

In Chapter 1, the motivation behind service discovery architectures in recent times

and the need of including mobile devices in these discovery architectures was explained

in detail. Service oriented architectures [13][14] have led to the flourishing of Discovery

Services (DS). Starting with the earliest architectures, there has been a significant

improvement not only in the technology but also in different aspects of discovery, from

simple text-based search to multi-level matching to semantic and ontology based

approaches. This chapter provides a survey of the existing service discovery approaches

for mobile and resource constrained devices and identifies their strengths and

weaknesses.

A few prominent first generation DS are: Jini [3], UPnP [4], SLP [6], CORBA

Trader Service [15] and UDDI [5]. The NIST report [7] classifies DS into two main

groups:

a. Lookup Services: These lookup services are registry-based discovery services,

where a service provider typically registers his services with a central registry.

The client consults the registry to search for services that he is interested in. This

group includes Jini, UPnP, CORBA Trader Service, and UDDI.

b. Discovery Services: This category includes specially designed architectures for

resource discovery, such as the Service Location Protocol (SLP) which provides

the service discovery with the help of the User Agents, Service Agents, and

Directory Agents forming three-party architecture.

However, none of these first generation discovery systems consider the need of

including resource constrained devices into their discovery setup. This limitation of first

generation of discovery systems is also highlighted by NIST report [7]. Thereafter,

several architectures have been proposed by researchers in the past to tackle this problem

6

of incorporating resource constrained devices into the service discovery setup. A few

prominent of these architectures are described below.

 The Framework for Robust and Resource-aware Discovery (FRODO) [16] is a

service discovery architecture mainly designed for mobile and resource constrained

devices. In FRODO, the resource constrained devices are grouped into different classes

depending on their memory and processing capabilities. The devices are allotted different

tasks based on the classes they belong to. Although FRODO is one of the first solutions

proposed, it does not account for limitations such as the intermittent connectivity or

frequent migration of the mobile devices from their home domain. This has been suitably

handled by incorporating the principles of Mobile IP protocol in the proposed MDE-

URDS architecture. Similar to the FRODO approach, the devices in MDE-URDS are also

classified based on their processing speed and memory and accordingly tasks are

delegated to them explained in Section 3.1 of Chapter 3.

M-URDS [17], an earlier work from the UniFrame group, is also an extension of

URDS that deals with the mobility of the components by incorporating mobile agents

into URDS. The main task of these mobile agents is to discover new components.

However, M-URDS did not employ the use of mobile devices as a part of the service

discovery framework. Another similar agent-based architecture is presented in [18] which

introduces the collaborative searches wherein the agents gather information from

different sources and present a more efficient searching method. They make use of the

collaborative search wherein the agents share resources and also perform periodic update

of their resources. The query propagation and delegation techniques in the MDE-URDS

use similar principles as these agent-based approaches, explained in Section 3.2 of

Chapter 3.

 [19] and [20] make use of offloading and surrogates for the purpose of including

mobile devices by offloading complex tasks to the surrogate. This helps in achieving both

tasks of using mobile devices as well as providing support for complex tasks that need

more processing power and speed, that cannot be handled by them. [19] also provides

elaborate experimentation results for offloading under specific conditions of memory and

processing limitations. This similar idea has been used in the MDE-URDS in using the

7

proxy for providing different matching capabilities and offloading to a nearby proxy in

case of heavy load or multi-level matching approaches, explained in Section 3.2.1 of

Chapter 3.

[21] defines a middleware framework called MARKS that is designed for mobile

devices and it provides resource discovery, knowledge usability and self-healing.

Resource discovery in MARKS is done using the cluster based hash algorithm wherein

the devices perform a peer-to-peer discovery of services. However, the approach chosen

is not scalable and efficient for resource discovery as the main focus of the MARKS

project is dealing with Knowledge usability and self-healing aspects of mobile devices.

[22] defines a secure service discovery architecture wherein the security and privacy of

the clients is considered as an integral part of the discovery process. The user can browse

the service portal from the Web and get access to the services. These services are

prevented from attacks by malicious users by the use of the Direct Anonymous

Attestation (DAA) scheme along with the Diffie-Hellman key exchange algorithm.

Currently, MDE-URDS does not consider security and self-healing in its architecture.

The Daidalos project [23] designs, develops and validates a blueprint beyond the

3G framework and supports secure and pervasive services built on heterogeneous

network and service infrastructures for the mobile user. They have used context-aware

services in their implementation. Their main focus is on providing services rather than the

mobile devices and therefore they have not considered tackling mobility limitations of the

devices into their framework.

[24] is another work introducing a new discovery protocol that works on the push-

based and pull-based resource information dissemination that can handle the dynamicity

and the quality-of-service requirements of the software services. This framework is

designed to support survivability and information assurance by migration of components

to safe locations in case of any emergencies. Some of their principles can be incorporated

into the MDE-URDS as a future work.

Researchers have done a lot of work in Context-Aware Service Discovery with

mobile devices in the past. These context-aware architectures incorporate contextual

information include service location, QoS parameters as a part of the service description.

http://en.wikipedia.org/wiki/Beyond_3G
http://en.wikipedia.org/wiki/Beyond_3G

8

They have been separated into a special group of context-aware discovery services.

Context-aware discovery approaches are similar to ontology-based architectures wherein

the former case the context is represented in an ontology. Examples of these include

architectures such as [25][26][27]. In [25], contextual information plays a major role in

selecting entities for discovery participation. In [25], the researchers have included

contextual information at different levels of Infrastructure, Application and Component

Discovery and provide its evaluation. For these service discovery layers, the contextual

information is created which is used according to the matching requirements. Typically, a

contextual schema has a user profile, personal user profile and the service profile.

Depending on the service level, this contextual information is used, e.g., a device profile

is used in infrastructure service discovery.

Another work [28] uses the contextual information mainly with respect to the QoS

parameters of the services and only those services that match the required QoS are then

selected as the most relevant results. They create application profiles that are used in

matching of the user requirements. Matching is thus with respect to only the QoS aspects

and they claim that it does not add any overhead on the device. In [27], a middleware

named AIDAS (Adaptable Intelligent Discovery of context-Aware Services) tackles the

contextual information and provides the semantic-based matchmaking between the

available and requested services. This also matches with MDE-URDS‟s idea of providing

multi-level matching, however it only deals with two-levels of match of syntax and

semantics, whereas MDE-URDS is also similar to them as it provides the type and QoS

match, but is capable of providing all five levels of matching of type, syntax, semantics,

synchronization and QoS. AIDAS also provides support for the management of ontology

repositories for the mobile devices.

Context-aware architectures that include location as the main contextual

information include [26] and [29]. The location-based architecture [26] tackles the

mobility of the devices with the help of location-based activity using scope and provides

a secure access to the devices. They use location based information using IDs as used by

people in real world and authorization information such as administrative policies defined

for certain scopes based on standards such as Geopriv [30], in addition to accepted public

9

and private-key encryption. [29] provides a secure service architecture, Splendor, that

allows an access to public services by location while maintaining privacy and security of

the system. Splendor makes the use of tags that emit location information for keeping

track of the entities in the system. Security being the main concern of this architecture,

they use different authentication and communication mechanisms such as public and

symmetric key encryption and also public key certificates for two-party authentication

among services, clients and the servers. As mobile devices cannot handle the load of the

public encryption techniques effectively, they include proxies for handling of other tasks

of the mobile services, while the devices handle the authentication and authorization.

MDE-URDS does not make use of the location aware service discovery approach, but

with the help of Mobile IP principles, it can keep a track of the mobile devices on which

the components are deployed. However, the current security mechanisms in the MDE-

URDS are not very complex and using some of these techniques from above mentioned

location-aware systems, the MDE-URDS can be further improved as a part of the future

work.

Another example from the location-aware discovery is [31]. This architecture

describes ways of handling the discovery of resources that are constantly moving. They

use different location-aware metrics and vectors to track the moving resources and

provide with the current resources in a particular location. However, their system is less

scalable and the performance degrades due to frequent migration of resources. MDE-

URDS makes use of the Mobile IP principles (explained in Section 3.2.4 of Chapter 3)

and as a result, the maintenance of location-aware metrics and vectors is eliminated and

as a result the scalability of the system is better. However, frequent migration of the

resources is also a concern in the architecture as it causes an increase in the response

time.

Ontology-based matching and semantic-based discovery are also popular fields in

service discovery where the user requirements are matched with the services using a

described ontology tree. [32] defines ontology as a body of formally represented

knowledge is based on a conceptualization: the objects, concepts, and other entities that

are assumed to exist in some area of interest and the relationships that hold among them.

10

A conceptualization is an abstract, simplified view of the world that we wish to represent

for some purpose. Ontology-based approaches make use of ontology for description of

services and the search takes place by traveling through this ontology tree. This ontology

is helpful for performing searches that give rise to better quality of results. [33] enhances

the Bluetooth Service discovery protocol by the inclusion of a semantic layer and

discovering services in a m-commerce scenario. The matching is performed considering

ontology-based descriptions.

Similar work is presented in [34] and [35] using ontology for the service

discovery purposes. [36][37] also describe semantic service discovery on mobile devices

using an ontology-based approach. [38] describes a global architecture for service

discovery, called GloServ, for local and wide area networks. GloServ uses the Web

Ontology Language (OWL) for automated registration and querying of services. They

create a hierarchy for the services based on ontology and the query propagation takes

place through this hierarchy. Ontology-based search can be used in the MDE-URDS by

including the ontology information into its knowledgebase, that contains matching and

system generation rules mentioned in addition. However, the maintenance of ontology-

based information is difficult as it needs more memory requirement for saving this

information. Also for processing as there is a need of traversing through the ontology tree

for service matching and may lead to an unacceptable overhead in the MDE-URDS.

VOLARE [39] is a middleware that provides adaptive interfaces that match the

user requirements with the web services available and adapts the requests depending on

the surroundings (example traffic scenario). In the MDE-URDS, such a middleware

framework can be useful for making the services adaptive and saving resources when the

demand goes down or in low power mode.

Mobile Ad-Hoc Networks (MANETS) have been popular in the network domain

and there are a lot of similarities between them and the mobile devices due to the similar

characteristics they share such as limited power, mobility, and wireless connectivity.

They communicate and operate in a close setup of devices and through the different

routing protocols such as Ad-hoc On Demand Vector routing [9], Optimized Link State

Routing [10] and Dynamic Source Routing [40]. [41] proposes a scalable service

11

MANET discovery by reducing traffic, distributed directory mechanisms and providing

caching mechanisms. Local discovery is followed by the collaboration of the results

leading to global service discovery. [42] also proposes a scalable service discovery

protocol for MANET called CARD (Contact- based Architecture for Resource

Discovery) which improves the scalability of the network by maintaining contacts or

group information instead of just neighbor information, improving query routing

mechanisms. [43] proposes a bandwidth preserving discovery approach for MANETS by

the use of one-dimensional structures called tracks instead of zones. [44] discusses a new

programming language called SpatialViews for resource constrained devices and ad-hoc

networks that is used for specification of virtual networks with nodes providing services.

This model uses best-effort semantics and guarantee discovery of the nodes with user-

defined time constraints and quality. The MDE-URDS uses some of the principles of

MANET routing protocols of maintaining a neighbor list, and on-demand routing of

queries to neighbors, for its collaborative query processing.

From above mentioned related works, it is seen that all these architectures

typically focus on one specific aspect of the mobile devices. The MDE-URDS, on the

other hand, tackles more than one limitation (mobility, intermittent connectivity,

heterogeneity, and processing capabilities) by using widely accepted principles and

protocols, and highlighting the openness and heterogeneity that are inherent in a

distributed system. Chapter 3 describes the architecture of MDE-URDS in detail.

12

CHAPTER 3. MDE-URDS DESIGN

Chapter 2 described different service discovery architectures that included the

mobile devices into their frameworks. In this chapter, the architecture of the MDE-URDS

is explained along with the associated algorithms. The MDE-URDS is designed to make

the process of discovery a seamless approach so that any device (stationary, mobile, or

resource-constrained) can be a part of the discovery framework.

Mobile devices are prevalent everywhere now and to include them in the

discovery architecture requires handling the main limitations. Mobile devices have

certain limitations compared to a resourceful device. They mainly include: Mobility,

Intermittent Connectivity, Device Limitations (Memory and Processor capabilities),

Battery Life and Heterogeneity. In this thesis, the first three limitations of mobile

devices have been addressed while proposing the architecture of the MDE-URDS.

3.1. MDE-URDS Architecture

The architecture of the MDE-URDS is an enhancement of the URDS [45]

architecture. The URDS, as indicated in the previous chapter, was designed mainly to

incorporate heterogeneity of entities and to have a proactive and hierarchical service

discovery system. The architecture along with the algorithms is explained in detail in

[45]. It is described briefly below. Figure 3.1 shows the architecture of the URDS from

[45].

13

Figure 3.1 URDS Architecture

The main entities of URDS include:

1. The Internet Component Broker (ICB): It is the main building block of URDS. It is

similar to the Object Request Broker in CORBA and contains:

a. Domain Security Manager (DSM): It is responsible for maintaining a list of all

registered entities of the URDS along with their authentication credentials. All the

entities in the URDS need to authenticate themselves with the DSM before they

can perform any task (such as joining the system, and getting information about

new entities).

b. Query Manager (QM): This is responsible for querying the headhunters

(described below) for the incoming queries. It authenticates with the DSM and gets

Internet Component Broker

 Domain Security

Manager

a

Query Manager

Link Manager Adapter

Manager

Headhunter Headhunter

Headhunter

Headhunter

Active

Registry 1

Active

Registry n
Active

Registry 2

Registry

WWW

Meta-repository
Meta-repository

Meta-repository

S1 S3 S2 S4
S5.. ..Sn

Software Services

14

reference to all registered headhunters to whom it queries for the client requested

services and returns results, if any, to the clients.

c. Link Manager (LM): The LM is responsible for linking many ICBs together to

form a federation of discovery services.

d. Adapter Manager (AM): The AM deals with the heterogeneity of the entities by

providing necessary adaptive bridges.

2. Active Registries (AR): These are proactive registries are constantly seeking new

services and register these services with themselves. There can be many such registries

present in the URDS and they can also be heterogeneous.

3. Headhunter (HH): The HH is one of the most important entities of the URDS. It

performs the matching process of the query. The HHs are constantly looking for new

services across the ARs and register these services with their own local meta-

repository.

4. Clients: The clients of the URDS pass the user queries to the QM which then sends

back the results from the headhunters suitable for this query.

5. Services: These user-defined services, heterogeneous in nature, register themselves

with the ARs and are invoked by the clients to perform certain functions.

However, the URDS only considered the deployment of the entities on resourceful

devices. Some preliminary experiments on mobile devices were performed [44] with the

URDS, however, these devices were not considered as first-class entities in the URDS.

With an increase in the number of mobile devices used today, it is difficult to find an

application which does not use such devices. In an attempt to address this issue, the

architecture of the MDE-URDS is proposed.

For the URDS to include mobile devices some architectural changes are needed.

First, similar to the FRODO [16] approach, the resources are divided into two categories:

resourceful and resource-constrained. A mapping scheme is identified that is based on the

functionality of each URDS entity and associated empirical evaluations necessary for

placing the URDS entities into these two types of resources. Table 3.1 indicates the result

of the mapping process.

15

In this thesis, among the URDS entities, mainly the mobility of the headhunters

and clients is addressed. The mapping provided the basis for porting the selected entities

of the URDS onto the mobile devices. As decided from the mapping, the headhunters and

clients were deployed on the mobile devices.

Based on the above mapping schemes, the URDS architecture was modified to

include the mobile headhunters and clients. Even, services on mobile devices could be a

part of the architecture; however, as the services need to be active all the time, it was

decided for them to be deployed on resourceful devices. The modified architecture is

shown in Figure 3.2 and serves as the starting point for developing the comprehensive

architecture of the MDE-URDS.

URDS Entity Resourceful

device

Resource-

constrained

device

Domain Security

Manager

Yes No

Query Manager Yes Yes

Link Manager Yes No

Adapter Manager Yes No

Headhunter Yes Yes

Active Registries Yes Yes

Clients Yes Yes

 Table 3.1 Mapping of URDS Entities on the different

categories of devices

16

The process of discovery in the MDE-URDS is similar to the URDS, however, as

mobile devices are considered; the underlying algorithms vary to some extent. The

algorithms for various entities in the basic MDE-URDS architecture (Figure 3.2) are

discussed below.

Mobile

headhunter

s

Query

Meta-

reposito

ry

Headhunter Headhunter

Internet Component Broker

Domain Security

Manager

Query Manager Link Manager Adapter Manager

Active

Registry 1

(RMI)

)

Active

Registry 2

(RMI)
Client 1… …Client n

Proactive

Discovery

Meta-

repositor

y

Query

Query

www

cn c1

n

S1
S2 Sn

S3

Software Services

Figure 3.2 Basic MDE-URDS Architecture

17

3.1.1. Headhunter

 The following are the algorithms for the headhunter start, migration and query

execution functions.

a. HH Start

START.

//HH REGISTERS AS A RMI ENTITY WITH A SPECIFIC NAME WITH

THE RMI ENTITY IN THE DEVICE (DESKTOP OR PDA).

Naming.bind (name, IP);

//JINI LOOKUP AND GET ACTIVE REGISTRIES CONTACT //FROM

JINI.

lookup = new LookupLocator("jini://jinihost");

Jiniregistrar = lookup.getRegistrar();

componentListObject = Jiniregistrar.lookup(template).

//UPDATE ITS META-REPOSITORY BY CONTACTING THE //ACTIVE

REGISTRIES.

contractList = componentListObject.getContractList();

END.

b. HH Query Execution

START.

//HH RECEIVES QUERY

hh.receive (query, timestamp).

 //EXECUTE THE QUERY

results = hh.executeQuery() ;

 //PERFORM TYPE MATCHING AS

 if(query.componentname =contract.name)

results.add(contract);

if (results not NULL)

return results.

18

else

return "No Components Found"

END.

3.1.2. Query Manager

The following Section explains algorithms for various QM functions.

a. Query Manager Start

 START.

//REGISTER WITH RMI REGISTRY

Naming.bind(“QueryManager”,this);

 //SET THE QUERY QUEUES AND HHLISTS.

setqueryList();

setHHlist();

//CONTACT DSM TO OBTAIN ALL REGISTERED HH REF LIST FROM

//DSM.

dsm. getDSMHHRef();

END.

b. Query Processing

START.

//PLACE NEW QUERY IN THE QUERY QUEUE.

recieveQuery(query,timestamp);

qList[curr]=query;

//SELECT THE NEW QUERY FROM THE QUEUE, SPAWN A NEW

//THREAD.

HH SELECT: SEE HH-SELECT ALGORITHM

RunQuery run=new RunQuery();

run.setParameters(hhRef,timestamp);

run.start();

19

//Thread processing:

results= hh.executeQuery ();

//send results to QueryManager

receiveResults(results,ID);

//Calculate time taken

time taken = System.currentTimeInMillis()- qtimestamp;

return results.

 END.

c. Query Manager Refresh

 START.

//CONTACT DSM TO UPDATE HHREFLIST FROM DSM.

dsmControl.getDSMHHRef();

//RESET THE QUEUE.

setqList();

END.

3.1.3. DSM

The following algorithms explain various functions of the DSM.

a. DSM Start

START.

Naming.bind("DSM", testdsm);

//INITIALIZE THE DSM LISTS FOR HHS

testdsm.sethhList();

//WAIT FOR NEW ENTITIES TO REGISTER.(EVENT DRIVEN

//APPROACH)

END.

b. DSM HH Register

START

//REGISTER THE NEW HH

20

//If any entry matches with the new registrant i.e.

if (DSMList[i].name = = new registrant.name AND DSMList[i].IP = =

registrant.IP) //Already Registered

status = true. //make status true as HH is now active

else

//add new HH to the list

DSMList[i].HHName= HHName.

DSMList[i].HHIP= HHIP.

status = true.

END.

c. DSM givRef() to QueryManager

START.

//SEND THE DSM HHREFLIST TO THE QUERYMANAGER

return DSMHHList[];

END.

d. DSM Deregister

START.

//CHECK IF ENTITY(HH) IS ALREADY REGSITERED OR NOT

if(DSMList[i].HHIP = = HHIP AND DSMList[i].HHName = = HHName)

DSMList[i].status = false.

else

return "Not Registered"

END.

21

e. DSM Authenticate()

START.

//CHECK IF ENTITY(HH) IS ALREADY REGSITERED OR NOT

if (regName[i] = NAME AND regIP[I] == IP AND

regPass=password)

//AUTHENTICATE

END.

3.1.4. Active Registries (AR)

Algorithms to achieve various tasks of the ARs are described below.

a. AR Start

START.

//AR REGISTERCOMPONENTS

//find jini instances running

ServiceRegistrar[] registrars = evt.getRegistrars();

registrar = registrar[n];

//register the components with Jini.

reg = registrar.register(item, Lease.FOREVER);

END.

3.1.5. Link Manager

The algorithms for the Link Manager are taken from the URDS [45] and are

unchanged in the MDE-URDS.

3.1.6. Adapter Manager

The algorithms for the Adapter Manager are taken from the URDS [45] and are

unchanged in the MDE-URDS.

22

 The further Sections explain the different enhanced architectures of MDE-URDS.

Chapter 4 describes the different experiments performed along with their results on the

MDE-URDS architecture described above and its further enhanced architectures.

3.2. Enhancing the MDE-URDS Architecture

 The basic MDE-URDS architecture (Figure 3.2) contains mobile devices that host

headhunters and clients. This basic architecture is further refined to incorporate various

features (e.g., multi-level matching) in it. These enhancements are described in the

following sections.

3.2.1. MDE-URDS with Multi-level Matching (MLM)

Typically in service discovery approaches, only type level matching is performed.

The URDS [45] has also suggested multi-level matching (MLM) [11] for obtaining better

quality of the results. In the MDE-URDS, the MLM consists of five levels of Type,

Syntax, Semantics, Synchronization and QoS. Also, at every level, the matching operators

can be exact or relaxed. With respect to the MDE-URDS, the exact and relaxed match

semantics for different types of match are defined as.

23

Table 3.2 Exact and relaxed match Operators

The quality metrics used are the precision and recall [48] of the results. Precision is

the total number of relevant services retrieved by a search to the total number of services

retrieved by the search. Recall is the number of relevant services retrieved to the total

number of relevant services present in the system.

It is seen from the results (explained in Section 4.2.1 of Chapter 4) that the

precision of the results becomes better when MLM is used. In order to incorporate MLM

in the HHs of MDE-URDS, following modifications are needed.

Level Exact Relaxed

Type Synonym (Exact) Inheritance (Relaxed)

Coercion (Relaxed)

Syntax Synonym (Exact)

Inheritance (Relaxed)

Coercion (Relaxed)

Default Parameters

(Relaxed)

Parameter Order

(Relaxed)

Semantics Equivalence (Exact)

Implication (Relaxed)

Reverse Implication

(Relaxed)

Synchronization Exact values Compatibility

QoS Exact values for

attributes.

Comparability

24

3.2.1.1. Headhunter MLM executeQuery()

START

 //HH RECEIVES QUERY

receive (query, timestamp).

// IFMLM QUERY

 //PERFORM MLM MATCHING

//PERFORM TYPE MATCHING

if(query.componentname =contract.name)

resultsList.add(contract);

if (syntax matching enabled)

//PERFORM SYNTAX MATCHING AS

if(query.functionname=contract.functionname AND

query.parameters=contract.parameters AND

query.returntype=contract.parameters)

if (semantics matching enabled)

//PERFORM SEMANTICS MATCHING BY

//CALLING THEOREMPROVER.

if (QoS matching enabled)

//PERFORM QOS MATCHING

do for all attributes

if(contract.QoSval=query.QoSval)

QoSresultsList.append(contract)

 //RETURN RESULTS DEPENDING ON QUERY MATCH LEVEL.

 return resultList.

END.

However for the MDE-URDS to include multi-level matching, the HHs require the

incorporation of a new entity called the HeadhunterProxy (HHProxy) for each HH. This is

because the mobile HHs cannot handle the MLM processing due to the limited processing

and memory capability of the mobile devices. Also, these multi-level specifications of

services are written in XML and the mobile devices cannot process them due to their

25

JVM-related limitations. The MDE-URDS architecture therefore needs to be altered so as

to include the proxies for the HHs supporting multi-level matching. However, not all HHs

may support MLM in the architecture; as a result there are heterogeneous HHs in the

system. Hence, the MDE-URDS architecture is now modified as follows:

A typical multi-level query processing scenario is depicted in Figure 3.3. The HH

on checking if the query requires MLM, passes the query to its proxy who then handles it,

evaluates it and sends back the results. This change requires the following modified

algorithms for mobile HHs – these modifications are indicated in boldface. A new entity

called as HHProxy is introduced and its algorithms are also described below.

Stationary HH

Query

Manager

Stationary HH

HHProxy

Mobile headhunters

supporting MLM.

Client 2

Client 1

 HH meta-repository

 HH meta-repository

 Proxy meta-

repository

 Proxy meta-

repository

HHProxy

 MLM Query 1

 MLM Query 2

1

 2

 3,4

 5

 1

Results
Results

Results

 2

 3,4

 6

 6

 1,

6

 1,

6

Figure 3.3 Use of proxy and Query Propagation of multi-level queries in

MDE-URDS

26

3.2.1.2. HH Start

START.

//HH REGISTER AS A RMI ENTITY WITH A SPECIFIC NAME //WITH THE RMI

ENTITY IN THE DEVICE (DESKTOP OR PDA).

Naming.bind (name, IP);

//JINI LOOKUP AND GET ACTIVE REGISTRIES CONTACT //FROM JINI.

lookup = new LookupLocator("jini://jinihost");

Jiniregistrar = lookup.getRegistrar();

componentListObject =Jiniregistrar.lookup(template).

//UPDATE ITS META-REPOSITORY BY CONTACTING THE //ACTIVE

REGISTRIES.

//HH invokes its Proxy to initialize itself.

 contractList = componentListObject.getContractList2();

hhProxy.initializeProxy();

 END.

3.2.1.3. HH Query Execution

 START.

//HH RECEIVES QUERY

receive (query, timestamp).

//IF QUERY IS NOT A MLM QUERY

if(query.matchlevel = = 0)

results=hh.executeQuery() ;

else

//pass the query to its Proxy

results= hhProxy.executeQuery(query, timestamp)

if (results not NULL)

return results.

else

return "No Components Found".

END.

27

3.2.1.4. HeadhunterProxy

Headhunter proxy is an entity for every headhunter required for it to give the

multi-level matching capability. It is with the proxy that the headhunter can perform

multi-level matching. It functions similar to a stationary headhunter for the matching

process. The following algorithms are for proxy start, initialize and execute query.

a. HHProxy start

START

// REGISTER.

Naming.bind(“HHProxy”,this);

 END.

b. Initialize Proxy

START

//FIND THE ACTIVE REGISTRIES USING JINI.

registrar =lookup.getRegistar();

componentListObject = registrar.lookup(template);

//UPDATE THE REPOSITORY BY PARSING THE MLM //SPECIFICATIONS OF

THE CONTRACTS.

contractList = componentListObject.getContractList();

END.

c. HHProxy executeQuery()

START.

//PROXY RECEIVES QUERY

hhProxy.receive (query, timestamp).

 //EXECUTE QUERY (SAME AS HH MLM EXECUTEQUERY).

 //RETURN RESULTS TO HH.

return resultList.

END.

28

3.2.2. MDE-URDS Incorporating Caching and Buffering mechanisms

The previous architecture of the MDE-URDS (Figure 3.3) does handle the inability

of processing XML of the JVM of mobile devices well; and provides support of MLM in

the MDE-URDS. However, the response time increases (as indicated in the next chapter)

due to the additional level of indirection of queries to the proxy. In order to reduce this

overhead, other architectural changes such as caching or buffering of results are used. As a

result, every headhunter now needs the presence of a buffer to cache the results of

previous queries. Least Recently Used (LRU) policy is used for maintaining the buffer

queues. The hit/ miss ratio is also a point of consideration to check the quality of results

obtained.

The architecture is thus modified and the query processing is as in Figure 3.4.

Accordingly, the modified algorithm for query processing of a mobile headhunter

is as follows.

Query

Manager

Client 1

Client 2

 HH Meta-

repository

 HH Meta-

repository

Query
Query

Results Faster Results

(caching)

 HH Cache

HHProxy
HHProxy

 HH with

no caching

Cached

Results

Figure 3.4 Query Propagation of multi-level queries in MDE-

URDS using caching

29

3.2.2.1. HH Query Execution

 START

//HH RECEIVES QUERY

receive (query, timestamp).

//IF QUERY RESULTS PRESENT IN BUFFER LIST

if(bufferList[].contains(query.componentName))

results = bufferlist[curr].

else

//IF QUERY IS NOT A MLM QUERY

if(query.matchlevel = = 0)

results=hh.executeQuery() ;

 else

//pass the query to its Proxy

results= hhProxy.executeQuery(query, timestamp)

if (results not NULL) //add to Buffer List for further queries.

if(bufferList NOT Full and bufferList ! contains results)

bufferList.add(results);

return results.

else

return "No Components Found"

END.

30

3.2.3. MDE-URDS with different querying methods

The QM can follow different methods for selecting HHs for propagating incoming

queries. The MDE-URDS supports three such methods of query propagation which are as

follows:

a. Selective(domain specific) Search

b. Exhaustive Search

c. Random selection of HHs (random 3)

The main aim in all these approaches is to maximize one goal while compromising

on the others (i.e. time vs quality of results).

 Selective (Domain Specific HHs): In this case, a domain-specific HH is contacted

depending on the nature of the query. This is neither too time intensive nor does it

suffer from poor quality. As the HH specializes in the domain whose service is

needed by the query, the quality of the results is better. This is a good approach

when the results are required within a given time bound.

 Exhaustive: This approach is an effort of delivering the best service to the user.

So, the system queries all the HHs available and fetches the results. This improves

the quality of results (i.e., recall) and gives the user a lot of choices for his query

which was not the case in the selective search approach. However, this approach is

time intensive and so; it is used when the results are not needed in a given time

frame.

 Random HHs: This approach does not use any heuristics while contacting HHs. It

queries random 3 HHs for processing the query.

These three schemes are shown in Figures 3.5 and 3.6.

31

Query

Manager

Mobile

headhunters

Client 1
Client 2

 HH Meta-

repositorie

s

 HH Meta-

repositorie

s

Query
Query

Results

Results

Query

Manager

Mobile

headhunters

Client 1
Client 2

 HH Meta-

repositorie

s

 HH Meta-

repositorie

s

Selective(

Domain

specific)

 Random

3

Query
Query

Results Results

Figure 3.5 Random, Selective (Domain Specific search) of Query Manager

Figure 3.6 Exhaustive search of Query Manager

32

Hence, the algorithms for query processing are suitably changed for incorporating

these schemes and are described below.

3.2.3.1. Query Manager:Query Processing

START

//PLACE NEW QUERY IN THE QUEUE.

recieveQuery(query,timestamp);

qList[curr]=query;

//SELECT THE NEW QUERY FROM THE QUEUE, SPAWN A NEW THREAD

RunQuery run=new RunQuery();

//SELECT A HH (BASED ON THE SCHEME USED) SEE //HEADHUNTER-

SELECT ALGORITHM.

run.setParameters(hhRef,timestamp);

run.start();

Thread processing:

results= hh.executeQuery ();

//send results to QueryManager

QM.receiveResults(results,ID);

//Calculate time taken

time taken = System.currentTimeInMillis()- qtimestamp;

return results.

 END.

3.2.3.2. Headhunter-Select Algorithm

START

//QM DECIDES A SCHEME PROVIDED BY THE SYSTEM USER.

//CHECK THE SCHEME CHOSEN

if (Selective scheme)

//Pick a random HH from the available list of HHs //obtained from the

DSM.

33

r = random.nextInt(hhCount).

HHIP= DSMList[r].HHIP

if(Exhaustive Search)

while(hhcount ! = 0)

HHIPList[hhcount] = DSMList[hhcount];

if(Domain Specific)

 //QM passes the query to the headhunter such that

if(query.componentName IS A PART of hh.domain)

HHIP = hhIP;

if (Random Search)

 //QM passes query to random 3 HHs.

while(i <3)

r = random.nextInt(hhCount).

HHIP= DSMList[r].HHIP.

return HHIP[];

END.

3.2.4. MDE-URDS with Mobile IP (Incorporation of Mobility)

In the MDE-URDS, as mobile devices traverse from one location to another, their

intermittent connectivity poses a challenge that needs to be addressed. To handle the

mobility and network connectivity of these devices and to provide a transparent access to

them whenever needed, the principles of Mobile IP [8] are used in the MDE-URDS.

Using Mobile IP, every HH in MDE-URDS has a home world, where it starts and

registers with an agent called as “Home Agent” which is responsible for forwarding the

queries to it appropriately. There is also a “Foreign World” that is an external

world(domain) where the HHs can migrate to and register with an entity called as

“Foreign Agent” which is responsible for appropriately routing of queries to the HHs from

their respective Home Agents.

34

The query propagation with Mobile IP in MDE-URDS takes place as follows:

 If the mobile HH is in its home world, then the query is sent directly to it,

 When the mobile HH is in any foreign world, then the query is routed from its

Home Agent to its Foreign Agent and then to the mobile headhunter.

Also, the problem of intermittent connectivity is solved by the node‟s Home

Agent, which can buffer the queries or pass it on to its neighbors, depending upon the

client‟s requirements, when the mobile device is not accessible. Experiments dealing with

the performance of Mobile IP implementation can have different scenarios for propagating

queries to the mobile headhunters such as: when headhunters are in their home world,

when the headhunters are connected to an external foreign world, when the headhunters

are not connected to any world or are in transit. The results related to these experiments

are explained in Chapter 4.

With the inclusion of Home and Foreign Agents, the MDE-URDS architecture is

modified as shown in Figure 3.7.

35

The modified algorithms for the HH, QM, and DSM are shown below along with

algorithms for the Foreign Agent and Home Agent.

3.2.4.1. HH Start with Headhunter Migration: Mobility of headhunters

 START.

 //HOMEAGENT LOOKUP AND REGISTER

 Naming.lookup("//"+homeAgentIP+"/HomeAgent");

 haControl.registerMobileNodes(myName, IP);

 //JINI LOOKUP AND GET ACTIVE REGISTRIES CONTACT FROM JINI.

 //UPDATE ITS META-REPOSITORY BY CONTACTING THE ACTIVE

Internet Component Broker

 DSM QM LM AM

Foreign Agent

Home

Agent1

Home

Agentn

Headhuntern

n

Headhunter1

Active

Registry1

Active

Registryn

C1

C2 Cn

Software Services

Client 1
Client n

Meta-repository

Meta-

repository

Headhunter

Migration

Figure 3.7 MDE-URDS architecture with Mobile IP implementation

36

REGISTRIES AND INITIALIZE PROXY

 //DO THE FOLLOWING

 if (HH wants to move to other Domain and already registered)

 //deregister with Foreign Agent.

 faControl.deregisterMobileNodes(myName,IP);

else

 //inform Home Agent

 haControl.setMobileNodeStatus(1,myName,IP);

 //register with new Foreign Agent.

 faControl.registerMobileNodes(myName,IP,homeAgentIP;

 //call to Foreign Agent to inform Home Agent.

 faControl.informHA();

WHILE (REPLY=="YES");

 END.

3.2.4.2. Query Manager: Query Processing

START

//PLACE NEW QUERY IN THE QUEUE.

//SELECT THE NEW QUERY FROM THE QUEUE, SPAWN A NEW THREAD

SELECT A HH (BASED ON THE SCHEME USED) SEE HEADHUNTER-

SELECT ALGORITHM.

Thread processing:

//Pass the query to the HH's Home Agent by

results = haControl.returnResults ();

return results.

END.

3.2.4.3. DSM HH Register

START.

//If any entry matches with the new registrant entity i.e.

37

if (DSMList[i].name = new registrant.name AND DSMList[i].IP = =

registrant.IP)

else

//ADD NEW HH TO THE LIST WITH HOMEAGENT DETAILS

 DSMList[new]=hhDetails.

END.

3.2.4.4. DSM getHAIP, HHIP, HHName, HAName

START.

//CHECK IF HH REGISTEREDOR NOT

if(DSMList[i].HHIP = = HHIP AND DSMList[i].HHName = = HHName)

return the suitable name or IP.

else

return false;

END.

3.2.4.5. Home Agent

Home Agent is the entity that is present one for every headhunter. It keeps a track

of the headhunter location in any domain it registers to. Thus, algorithms such as register

headhunters, update headhunter location and query passing is a part of the HomeAgent

functioning.

a. HomeAgent start

START.

Naming.bind(“HomeAgent”, this);

//WAIT FOR ENTITIES TO REGISTER(EVENT DRIVEN).

 END.

38

b. HomeAgent Register

START.

//ADD THE MOBILE ENTITY AS ITS REGISTERED MOBILE DEVICE

HHname= mobilenodename;

HHIP=mobilenodeIP;

 //TAKE ITS REFERENCE FOR QUERYING

HHRef = mobilenodeRef

 END.

c. HomeAgent UpdateMobilenodestatus

START.

//UPDATE THE NEW IP AND FOREIGN ADDRESS

if (HHname= mobilenodename AND HHIP=mobilenodeIP)

HHIP= newIP ;

FAIP = foreignIP;

END.

d. Home Agent passQuerytoHH

START.

//RECEIVE QUERY FROM QM

receiveQuery(query, timestamp);

 //CHECK MOBILE NODE STATUS

if(status= =0)

//pass query directly to the HH

results = hh.executeQuery();

else if (status= =1) //registered with a foreign agent.

//pass query to the FA

results = faControl.receiveResults(query, timestamp);

else

//default store the pending queries in the pending query list.

39

pqList[i]=query;

 //RETURN RESULTS TO THE QM.

 return results;

 END.

3.2.4.6. Foreign Agent

 Foreign Agent provides a way for headhunters to register with a foreign world and

route their queries appropriately. The algorithms described are for FA start, register and

pass query to headhunter.

a. Foreign Agent Start

START.

//FOREIGN AGENT REGISTERS WITH THE DSM.

Naming.bind(“ForeignAgent”, this);

//INITIALIZE ITS MOBILENODE LIST AND WAIT FOR NODES TO

//REGISTER(EVENT DRIVEN).

setMNVariables();

END.

b. Foreign Agent register

START.

//CHECK AND REGISTER THE HH.

if (hhList[].IP ! = hhIP AND hhList[].name ! = hhName)

//then add the HH to the list

hhList[i].IP = HHIP,

hhList[i].name = HHName

END.

40

c. Foreign Agent passQuery

START.

//CHECK IF REGISTERED AND PASS QUERY

if (HH registered)

//pass query to the HH

results= HH.executeQuery()

//RETURN RESULTS TO THE HOMEAGENT.

return results.

END.

For the mobile HHs, there are scenarios of pending queries when the headhunters

are not registered (in transit). As a result, waiting for the headhunter (solution 1) or

querying other headhunters (solution 2) also impacts the architecture. For the first case

there is wait time (in case of quality aware query, where it wants to wait for that particular

headhunter for some specific services, domain specific headhunters are a good example of

this), whereas in the second case there is no wait time associated, but may not guarantee

quality.

41

In Figure 3.8, two different approaches to query propagation are seen – when

headhunter is in transit, the query manager decides to send the query to another

headhunter or decides to wait for the respective headhunter to connect back and query it

later. In both the approaches, the response time and the quality of the results vary and so

the selection of the approach must be according to the application. This is more detailed in

Chapter 4.

The query processing algorithms accordingly vary as shown below.

Headhuntern

n

3b. Results

from other

HH

Meta-

repository

1. Query

2.Headhunt

er in Transit

C1

Headhunter 1

n

Home

Agent1

Internet Component Broker

Active

Registry1

Foreign Agent

Home

Agentn

DSM QM LM AM

3a. Wait

for HH

4. Results

sent after

connecting

back

C2

Client 1

Figure 3.8 Query propagation in Mobile IP scenario, headhunters in transit

42

3.2.4.7. Query Manager: Query Processing for headhunters in transit (Solution 1)

START.

//PLACE NEW QUERY IN THE QUEUE.

//SELECT THE NEW QUERY FROM THE QUEUE, SPAWN A NEW THREAD

//SELECT A HH BASED ON THE RANDOM SCHEME

Thread processing:

//Pass the query to the HH's Home Agent by

results= haControl.returnResults ();

return results.

 //IF HH IS UNAVAILABLE

if (hhstatus= = false)//HH status is false, buffer the queries in a pending

query list.

pqList [count++] = query.

return false.

END.

3.2.4.8. Query Manager: Query Processing for headhunters in transit (Solution 2)

START.

//PLACE NEW QUERY IN THE QUEUE.

//SELECT THE NEW QUERY FROM THE QUEUE, SPAWN A NEW THREAD

//SELECT A HH BASED ON THE RANDOM SCHEME

Thread processing:

//Pass the query to the HH's Home Agent by

results= haControl.returnResults ();

 //IF HH IS UNAVAILABLE

if (hhstatus= = false) //HH status is false, query another

headhunter.

//SELECT ANOTHER HH BASED ON THE RANDOM SCHEME

Thread processing:

//Pass the query to the HH's Home Agent by

43

results= haControl.returnResults ();

return results.

END.

3.2.5. MDE-URDS with Collaborative Approaches

(Incorporation of Collaborative Approaches)

In the above architectures (Figures 3.2 to 3.8), the query manager is responsible for

propagating the queries to the respective headhunters. In order to avoid the query manager

from being the bottleneck for query processing, the task of selecting headhunters for

handling the queries can be assigned to the headhunters by propagating them among its

neighbors. Also, every headhunter has a set of services registered with it. Getting response

from a single headhunter for a query makes the resultant set often limited and may not

provide the most relevant services for a query. In order to tackle this drawback, concepts

from the domain of Mobile Ad-Hoc Networks are employed in the MDE-URDS. Mobile

Ad-Hoc Networks (MANET) is a self-configuring mesh network where the individual

mobile nodes (sensors) are connected by wireless links and coordinate with its neighbors

for a particular task. There are different routing protocols used by the nodes that take the

reactive as well as proactive approach of maintaining routing information. Amongst them,

Ad-hoc On Demand Vector (AODV) Routing [9] and Dynamic Source Routing (DSR)

[40] are reactive MANET protocols where the nodes maintain each other‟s information;

however the path of communication is decided when needed. When information has to be

passed to a node, the sender node decides a path looking at its routing table and sends the

information. This path can be decided by the sender node itself (as in DSR) or it can

change at the intermediate nodes depending on the availability of the nodes (as in AODV).

For the proactive approach, the On-Demand Link State Routing (OLSR) protocol is used

wherein any change in the routing table is propagated to every node and they change their

routing entries to suit the changes.

In order to incorporate the principles of these protocols, a topology of headhunters

was created, which was that of an irregular graph of the headhunters. For every headhunter

in the graph, the headhunters that are connected to it by a direct link are called its

44

neighbors. As a result, in the MDE-URDS, every headhunter maintains its neighboring

HH information and propagates the query to its neighbors when needed. They propagate

the messages to its neighbors depending on whether suitable results were achieved or not.

It, however, maintains neighbor‟s information and uses that to send it across and does not

depend upon the other intermediate nodes for determining the next path, similar to the

DSR protocol. It is still reactive as the information may not be up-to-date.

However, unlike multi-hop paths used in MANETs, only one-hop paths, i.e., the

HHs pass the queries only to its immediate neighbors are used in this approach due to time

limitations. This also helps to reduce consumption of power and communication in case of

mobile devices. The three MANET protocols mentioned above are selected and their

principles are adapted and incorporated in the MDE-URDS for the collaboration among

HHs. These three collaborative approaches are: “I do it”, “We do it”, and “You do it”.

“I do it” approach is similar to querying a single headhunter and the headhunter

does not involve results from other headhunters. This cannot be actually termed as a

collaborative approach but since the headhunter decides on the query processing approach,

instead of the query manager, this experiment is included in this category. For this

approach, the HHs are queried individually and they do not propagate the queries to any

other headhunters, unless they have no results to a query or is busy with other queries. The

algorithm for “I do it” approach is as follows:

45

3.2.5.1. HH Query Execution: No Collaboration (I do it)

START.

//HH RECEIVES QUERY

hh.receive (ContractQueryImpl query, long timestamp).

//EXECUTE THE QUERY

results = hh.executeQuery() ;

if (results not NULL)

return results.

else

//else pass it to its neighbor.

return hhNeighbor[i].executeQuery();

END.

“We do it” approach includes results from the queried headhunter and its

neighbors. In this, the headhunters collaborate their results to obtain better recall for a

query. These techniques are useful when the HH graph is not fully connected and there is

a need to improve the quality of results of the system. The two approaches used here from

the MANET domain- the reactive and the proactive approach using the AODV and OLSR

protocols respectively. Similar to the protocols, HHs maintain neighbor information and

propagate the queries to them for collaborative responses.

In MDE-URDS, the headhunters when moving to a foreign domain update their

current location information to its neighbors and as a result the headhunters always have

the updated information about neighboring headhunters. As only one-hop paths are

considered, the updated information is propagated only to immediate neighbors.

46

In Figure 3.9, the “We do it” approach is depicted. Here, the query 1 is routed to

the HH1, which then passes it to its neighbors, HH2 and HH3. However, by using the

OLSR protocol, the HH3 sends message to its neighbors indicating it is moving to another

domain and as a result, the results sent back that is a combination of results from HH1 and

HH2, not HH3. Similarly for query 2, HH2 is selected by the query manager; HH2 passes

the query to its neighbors, HH5 and HH1 and sends back the combined results back to the

query manager.

The algorithms for query processing at HH are as follows.

Figure 3.9 Collaborative approach: We do it using AODV and OLSR protocol

Query 2

Query 2

Combined Results from

HH2, HH3 and HH5

Results Results

Query

Manager Client 1

Query 1

Query 1

Query 2

Query 2

Query 1 Combined Results from

HH1, HH2, not HH3 as

moved

-- HH Meta-

repository

Client 2

Mobile Headhunters

HH1

HH2

HH5

HH3

HH4

Home

Agent
Status=false

Foreign Agent

Status=false

47

3.2.5.2. HH Query Execution: Collaboration (We do it)

START.

HH RECEIVES QUERY

hh.receive (ContractQueryImpl query, long timestamp).

//DEPEND ING ON LEVEL OF QUERY, EXECUTE OR PASS TO PROXY.

//PASS QUERY TO OTHER HHS IN ITS NEIGHBORS LIST CALL

while(i!=hhNeighborCount)

results=HHneighbour[i++].executeQuery(query).

// Combine all the results its result list.

resultList.append(results);

return resultList.

END.

The “You do it” approach includes delegation of the query processing from the

queried headhunter to its neighbors as shown in Figure 3.10. When a headhunter is busy, it

passes the query to its neighbors and sends back the response. The response does not

include the queried headhunter‟s results.

48

3.2.5.3. HH Query Execution: Collaboration (You do it approach)

START.

HH RECEIVES QUERY

hh.receive (ContractQueryImpl query, long timestamp).

IF HH IS BUSY WITH QUERIES OR QUERY IS DS AND HH HAS NO ANSWER

if(hhstatus=busy)

//pass query to other HHs in its neighbors list call

while(hhNeighborCount ! = 0)

results=HHneighbour[hhNeighborCount - -

].executeQuery(query).

// Combine all the results its result list.

resultList.append(results);

return resultList.

END.

Results

Query

Manager

Client

Query

Query

Query
Combined Results from HH2,

HH3 and HH4 not HH1.

-- HH Meta-

repository

HH 1

HH 3

HH 4

HH 5

HH 2

Query

Query

Figure 3.10 Collaborative approach: You do it

49

The results from these searches are included in Chapter 4 in detail. Thus, the

collaborative approaches are a way to improve the quality of the results and are reliable as

they are based on the widely accepted MANET protocols.

 Thus, the final MDE-URDS architecture which contains all these enhancements is

shown in Figure 3.11.

This final architecture includes Mobile IP for handling the intermittent

connectivity and mobility, HHProxies for helping in offloading of MLM queries, HH

caches for buffering of results and different query processing mechanisms of selective,

Internet Component Broker

DSM QM LM AM

Client 1

Client 2
Headhunter with

cache and MLM.

Headhunter with one

level of matching

Headhunter with

proxy with MLM

Headhunter with

collaboration.

Home

Agent

Home Agent

Home

Agent

Home Agent

HHProxy

HHProxy

Foreign Agent

HHCache

Active

Registry

1

Active

Registry

n

www

Query

1

Query

2

Query

1

Query

1

C1

Cn

AC

1

AC

N

Query

1 Query

2

Collaborative

Results Results

Results

S1

S2

S3 Sn

Software Services

Figure 3.11 Enhanced MDE-URDS Architecture

50

random and domain specific querying. The HHs shown are heterogeneous where some are

mobile, some stationary, some handling MLM using a proxy, some using collaborative

approaches for query processing.

Chapter 4 describes the empirical validation carried out with each version of the

MDE-URDS architecture (Figures 3.2 to 3.11) along with the suggestions for future

enhancements.

51

CHAPTER 4. EXPERIMENTATION AND VALIDATION

This chapter describes an empirical validation of various MDE-URDS

architectures that were presented in Chapter 3.

The experimentation setup was as follows- the mobile devices used were Pharos

Traveler GPS 525 PDAs running Windows Mobile 5 operating system and twelve

desktop machines that use Windows XP operating system. The wireless connectivity was

provided by the different wireless networks on campus and also by a private access point

for a controlled experimental setup, whereas the desktop machines are connected by a

local area network (LAN). The entire MDE-URDS implementation is created using Java

RMI, and J9 JVM [49] is used for running the Java classes on the Pharos PDAs. Services

from the publically available QWS dataset [50] were used in the experiments. The current

version of the QWS dataset consists of around 5,000 Web services, out of which 365 are

made available for public usages. Each service contains nine QoS attributes (throughput,

reliability, response time) measured using commercial benchmark tools. A few services

from these were selected and their multi-level specifications, consisting of type, syntax,

semantics, and QoS levels, were manually created. The synchronization level was not

used in the matching process of the MDE-URDS as the synchronization contracts for

these services could not be created due to the unavailability of their source code. An

example of multi-level specification for a service is shown in the Figure 4.1.

52

<?xml version="1.0" encoding="UTF-8"?>

<proURDSContract name=FastWeather" type="Weather">

<ComponentAttributes>

 <property name="DomainName" value="weather"/>

 <property name="SystemName" value="DOTSFastWeather"/>

<property name="Discription" value="For more information on our

web services, visit us"/>

 <property name="auther" value="www.serviceobjects.com"/>

 </ComponentAttributes>

 <ComputationalAttributes>

 <InherentAttributes>

 </InherentAttributes>

 <FunctionalAttributes>

 <SyntaxAttributes>

 <ContractAttributes>

 <Contract>

<property name="methodName"

value="GetWeatherByZip"/>

<property name="ret_Weather"

value="string"/>

<property name="param_postalcode"

value="string"/>

 </Contract>

 <Contract>

<property name="methodName"

value="GetWeatherByCityState"/>

 <property name="ret_Weather" value="string"/>

 <property name="param_state" value="string"/>

 </Contract>

 </ContractAttributes>

 </SyntaxAttributes>

 <SemanticAttributes>

 <PreConditon>

 </PreConditon>

 <PostCondition>

 </PostCondition>

 </SemanticAttributes>

 </FunctionalAttributes>

 </ComputationalAttributes>

 <QOSAttributes>

 <property name="Availability" scale="percentage" value="94"/>

 <property name="Reliability" scale="percentage" value="96"/>

 ………

 <property name="Security" scale="percentage" value="99"/>

 </QOSAttributes>

 <SynchronizationAttributes>

 <property name="N/A" value="N/A"/>

 </SynchronizationAttributes>

 <CooperationAttributes>

 <property name="N/A" value="N/A"/>

 </CooperationAttributes>

 <DeploymentAttributes>

 <property name="N/A" value="N/A"/>

 </DeploymentAttributes>

 <AuxillaryAttributes>

 <property name="N/A" value="N/A"/>

 </AuxillaryAttributes>

</proURDSContract>

Figure 4.1 Multi-level XML Specification of a Service

53

Figure 4.1 shows the multi-level specification of a Weather Service. As described

in Chapter 3, the MLM description consists of four levels- Syntax, Semantics,

Synchronization and Quality of Service (QoS). The above description includes the

general service attributes (short description, version, etc.) and also the four levels of

Syntax (that include its methods, method parameter types, method return types),

Semantics (the preconditions, post conditions of the methods), Synchronization (use of

synchronization methods, etc.), and the Quality of Service (QoS) attributes (Reliability,

Availability, etc.) for the Weather Service.

In Chapter 3, various versions of the MDE-URDS architecture, from basic to the

final, were described. Each of these versions was experimented with as described in

following sections.

4.1. Study of performance of the basic architecture of the MDE-URDS

This category of experiments is carried out on the basic architecture of MDE-

URDS which includes the HHs deployed on mobile devices supporting basic type

matching. It is described in Section 3.2.1, Figure 4.2. The purpose of this set of

experiments was to check how the mobile headhunters of MDE-URDS fare with respect

to the stationary headhunters in terms of response time and the quality of results obtained.

The stationary headhunters that are used for comparison are similar to the ones of the

URDS architecture (MDE-URDS being an extension of URDS) and have already been

tested for performance in terms of response time and the quality of results against the

publicly available jUDDI [51] in [52]. It shows that these stationary HHs fare well when

compared with the matching semantics of the jUDDI, in terms of both response time and

the quality of results.

54

The following configuration is used for the set of experiments (4.1.1- 4.1.4).

 Number of components: 100, 10/HH.

 Matching used: Type matching.

 Distribution of Components: Random.

 Number of HHs: 20, 10 S-HHs and 10 M-HHs.

 In this category of experiments, the response time for every query is an average

over 10 readings.

4.1.1. To study the performance of the mobile headhunters in comparison to

stationary headhunters with respect to average response time

This experiment was carried out to compare the response time taken by the

stationary headhunters and the mobile headhunters of the MDE-URDS architecture. This

response time and also the quality of the results is necessary for the system developer

who composes the system from the discovered services and needs to adhere to the timing

restrictions. Also, for applications that are time critical, such as real-time tracking, these

response time will determine if mobile headhunters would be suitable for such

applications.

This experiment is carried out by querying the mobile and stationary headhunters

for a random set of queries for observing the difference in their response times.

55

Figure 4.2 Average time taken by Mobile Headhunters vs Stationary Headhunters

The above graph (Figure 4.2) shows the average response time of the MDE-

URDS for a given set of queries from mobile headhunters (M-HH), stationary

headhunters (S-HH) and a randomly (Random) chosen headhunter. The average time

taken by a mobile headhunter is around 700 ms whereas that taken by a stationary

headhunter is 32 ms. The random selection of headhunters, gives an average response

time of 350 ms.

The average time taken by mobile headhunters is more due to factors such as the

involved wireless communication and the processing capacity of the mobile device

(PDA). However, the graph for M-HHs does not show any predictable trends due to the

fluctuating nature of wireless connectivity. This observation is reinforced by the ping

experiment with these PDAs as shown in Figure 4.3.

0

100

200

300

400

500

600

700

800

900

R
e

sp
o

n
se

 t
im

e
 in

 m
s

S-HH

M-HH

Random

56

Figure 4.3 Changes in Ping Response time for a wireless HH

4.1.2. Calculation of individual times

The previous experiment showed that the response time of mobile headhunters is

significantly higher than that of stationary headhunters. The purpose of this experiment

was to identify the precise reason for this high response time of the mobile headhunters

by breaking down their total time into individual parts required for processing a query.

This would be helpful in improving the response time by exploring the opportunity of

minimizing any of the individual times.

On analysis of the response time for the mobile headhunter, it was seen that the

total time was divided into two main parts of: End-to-End Response Time and Processing

Time.

 End-to-End Communication Time: This is the time taken for making a remote

call to the headhunter and getting back the results from it.

0

50

100

150

200

250

300

R
e

sp
o

n
se

 t
im

e
 in

 m
s

PDA1

PDA2

57

 Processing time: This is the actual time taken by a headhunter for processing a

query, from the time it arrives to the time it obtains the results for the query.

These time calculations were under consideration of a single query response.

Figure 4.4 Division of response time for mobile and stationary HHs

Figure 4.4 show that the RMI calls dominate the time taken by the mobile HHs.

This is again because of the wireless calls and the limited processing power of the PDA

that makes the processing in the device to take more time than a stationary headhunter

deployed on a resourceful device.

4.1.3. Studying the wait time for the headhunters

In the Section 4.1.2, the individual time taken by a headhunter was evaluated.

However, when several queries are sent to the headhunter at a time, the wait time also

plays a significant role in the overall response time. Wait Time calculation was also done

Total Time
End-to-End

Communication
Time

Processing Time

S-HH 32 16 16

M-HH 656 519 137

0

100

200

300

400

500

600

700

R
e

sp
o

n
se

 t
im

e
 in

 m
s

S-HH

M-HH

58

for a selected number of queries (here 10) sent at a time to a headhunter. Wait time

calculation is important for improvement in response time. If the wait time for a query

exceeds more than a threshold value (decided by the application), then other techniques

such as passing of queries to other headhunters, caching or dropping of queries can be

followed. This would help in maintaining a consistent response time for the queries. The

typical wait time at the headhunter for 10 queries was found and the results are noted in

Figure 4.5.

Figure 4.5 Calculation of wait time at a headhunter

It is seen from Figure 4.5 that Avg. Wait time: S-HH: 7.5 ms, M-HH: 240 ms. A

typical response time is considered for the S-HH and M-HH and is noted in Figure 4.5.

The graphs show that the Wait Time for S-HH is negligible and so is the processing time.

M-HH has significant processing and RMI time due to which every query has an

additional wait time, waiting for the previous queries to be processed.

Total Processing Wait Time
End-to-End

Communication
Time

S-HH 157 16 0 141

M-HH 5516 4002 81.4 1432.6

0

1000

2000

3000

4000

5000

6000

R
e

sp
o

n
se

 t
im

e
 in

 m
s

S-HH

M-HH

59

Another noteworthy time calculation was that of the Matching Time. The

Matching Time is the time taken by a headhunter to match a specific query to the

components registered with it, meeting the different attributes of the query. This is more

significant when considering multi-level queries. For the initial setup, where matching is

only based on the type, the matching time was found to be negligible in comparison with

the overall processing time.

4.1.4. To study the scalability of the system

For the basic MDE-URDS architecture described in Section 3.2.1 of Chapter 3, a

scalability study was carried out to check the limitations of the basic MDE-URDS

architecture. This study was performed with respect to: several queries in the system,

several queries at a single headhunter and the number of HHs in the system.

In these experiments, the HHs maintain a buffer for the incoming queries, S-HHs

maintain a queue size of 100 while the M-HHs maintain a size of 10 due to their limited

memory capacities.

4.1.4.1. With respect to several queries in the system

In this experiment, the scalability of the basic MDE-UDRS architecture

(described in Section 3.2.1) is tested by passing random simultaneous queries at a

uniform rate to only ten stationary headhunters, then to ten mobile headhunters and also

to a hybrid configuration consisting of stationary and mobile HHs. The HHs are selected

on a round robin basis for load balancing. The results of this experiment are shown in

Figure 4.6. As seen from Figure 4.6, with increasing the number of queries, the response

time increases non-linearly in the case of mobile HHs; while in the case of stationary

HHs, the time increase is uniform. This is due to the higher wait time (which is dependent

on the processing of earlier queries, the arrival rate of the incoming queries and the

processing rate) in the case of mobile HHs. For the given setup of passing random queries

at a uniform rate, it is seen that the threshold for the number of queries in the system is

around 200-250, after which the queries are dropped.

60

Figure 4.6 Scalability w.r.t several queries in the system

4.1.4.2. With respect to several queries at a single headhunter

This experiment helps understand the limitation of every headhunter in terms of

the number of queries it can process within a certain upper bound of the response time.

This is useful for load balancing of the headhunters.

Figure 4.7 shows the number of queries at a given headhunter along with the

associated response times.

0

1000

2000

3000

4000

5000

6000

7000

8000

1 5 10 50 100 250

R
e

sp
o

n
se

 T
im

e
 in

 m
s

Number of Queries

Stationary HHs

Mobile HHs

Random Selection of HHs

61

Figure 4.7 Scalability w.r.t several queries at one HH

It is seen, from Figure 4.7, that for a S-HH for a queue size of 100, the queries

start dropping at 500 i.e. the processing rate of queries is comparable to the arrival rate of

incoming queries. However, for a M-HH, however, it is close to 20 i.e. for a queue size of

10. This is due to the limited processing capability of the PDA due to which it cannot

process the queries at a rate faster than the arrival rate. As a result, it cannot handle the

number of queries over a certain value and the buffer size becomes full.

4.1.4.3. With respect to the number of HHs

This study was carried out to check if the response time varies if the number of

HHs is increased in the system. If that would be the case, then increasing the number of

headhunters would guarantee a better response time and the overall system performance

would also be better.

0

500

1000

1500

2000

2500

3000

3500

1 5 10 15

R
e

sp
o

n
se

 t
im

e
 in

 m
s

Number of Queries

S-HH

M-HH

62

Figure 4.8 Increasing number of M-HHs in the system

The Figure 4.8 shows the response time when the mobile HHs are queried in a

round-robin fashion for a selected number of queries. For M-HHs, when the number is 5

in the system, the response time is higher than when the number is 10. It is seen that for

most of the queries, the response time is better when there are more resources (in terms of

HHs) in the system.

4.2. Enhancements to the MDE-URDS architecture

This set of experiments is performed on the architectures of MDE-URDS with

multi-level matching, MDE-URDS with buffering and caching mechanisms and MDE-

URDS with different querying mechanisms such as selective, exhaustive searches that are

focused towards improving response times, explained in Sections 3.2.1, 3.2.2 and 3.2.3 of

Chapter 3.

As seen from previous Sections 4.1.2 and 4.1.3, mobile headhunters take more

time for returning a response compared to a stationary headhunter. The enhanced MDE-

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

1 2 3 4 5 6 7 8 9
1

0
1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
2

0
2

1
2

2
2

3
2

4
2

5
2

6
2

7
2

8
2

9
3

0
3

1
3

2
3

3
3

4
3

5
3

6
3

7
3

8
3

9
4

0
4

1
4

2
4

3
4

4
4

5
4

6
4

7
4

8
4

9
5

0
5

1
5

2
5

3
5

4
5

5
5

6
5

7
5

8
5

9
6

0
6

1
6

2
6

3
6

4
6

5
6

6
6

7
6

8
6

9
7

0
7

1
7

2
7

3
7

4
7

5
7

6
7

7
7

8
7

9
8

0
8

1
8

2
8

3
8

4
8

5
8

6
8

7
8

8
8

9
9

0
9

1
9

2
9

3
9

4
9

5
9

6
9

7
9

8
9

9
1

0
0

R
e

sp
o

n
se

 T
im

e
 in

 m
s

100 Queries

5-M-HH

10 -M-HH

63

URDS architectures explained in Sections 3.2.2 and 3.2.3 are an attempt to improve the

response time and the quality of results of the mobile headhunters using different

techniques of buffering, caching of results, domain specific and exhaustive search

mechanisms. The following set of experiments describes the performance of these

architectures.

4.2.1. MDE-URDS with multi-level matching (MLM)

This set of experiments focuses on the quality of the results obtained from the

headhunters of the basic architecture of the MDE-URDS with multi-level matching

scheme with the use of a proxy. It is explained in Section 3.2.1. The results obtained from

the HHs are not only tested for their response times but also for their quality. The quality

metrics used are the precision and recall [48] of the results as explained in Chapter 3.

For multi-level matching, the mobile headhunters were queried using different

semantics (exact and relaxed) for the multi-level matching, as explained in Chapter 3 and

the precision and recall were calculated for the results obtained. This first experiment

included only type matching of the results. This was to study the difference in quality

(precision and recall) of the results obtained when exact and relaxed match semantics are

used.

64

Figure 4.9 Precision and Recall calculation for a set of queries

Figure 4.9 indicates that with relaxed match semantics, the recall improves

whereas the precision may or may not improve (depending on the user‟s requirements),

as every application may have different requirements with the services obtained as results

Experiments were also conducted to observe the improvement of quality in terms

of better precision while considering matching with multiple levels of type, syntax,

semantics and QoS. With every level, the matching becomes more accurate as it matches

more of the user‟s requirements. However, the response time for evaluation of these

multiple levels is high. There is thus a tradeoff between obtaining the best quality

services and obtaining a quick response. It is seen that increasing levels of matching

improves precision and relaxing the matching criteria improves the recall at the cost of

matching time.

For such MLM queries, the precision and recall values were evaluated when type

and QoS matching were used; the results of which are shown in Figure 4.10.

Scien
ce

Stock
Che

mistr
y

Print
er

Scan
ner

Weat
her

Precision(Exact) 100 83.33 100 80 81 100

Precision(Relaxed) 100 83.33 100 80 83 100

Recall(Exact) 80 71 0 83.33 90 23

Recall(Relaxed) 100 100 100 100 100 100

0

20

40

60

80

100

120

P
e

rc
e

n
ta

ge

Precision(Exact)

Precision(Relaxed)

Recall(Exact)

Recall(Relaxed)

65

Figure 4.10 Precision of results with different levels of matching

From Figure 4.10, it can be concluded that with an exact type and QoS match, the

precision is better as compared to other approaches. This is because exact type match

have stricter semantics than relaxed matching and gives more relevant results. Type only

matching has low precision and relaxed match also does not improve the precision for

this approach. However, the recall of type matching becomes better with type only and

relaxed matching, as relaxed matching also includes results that are obtained from

synonym, coercion and inheritance based type matching.

However, with increasing the levels of matching and relaxing the matching

criteria, the query processing time increases. Figure 4.11 shows the increase in matching

time (processing time) for a query that uses only one level of match (type) when

compared with using type and QoS match.

0

20

40

60

80

100

120

Query 1 Query 2 Query 3 Query 4 Query 5 Query 6

P
e

rc
e

n
ta

ge

Type exact

Type Relaxed

Type and QoS exact

Type and QoS
relaxed

66

Figure 4.11 Comparison of Response time for Type only and MLM query

It is seen that the response time is more as the levels of matching increase. For a

S-HH this increase in time is around 38% and for a M-HH, it is close to 47%.

Figure 4.12 Comparison of Response time for Type only and all Four levels of Matching

0

100

200

300

400

500

600

700

800

900

1000

S-HH M-HH

R
e

sp
o

n
se

 T
im

e
 in

 m
s

Type only

Type and QoS

Percentage increase in
Response Time

0

200

400

600

800

1000

1200

1400

S-HH M-HH

R
e

sp
o

n
se

 T
im

e
 in

 m
s

Type only

All 4 levels of matching

Percentage increase in
Response Time

67

For all levels of matching, the response time is very high, but the precision is also

the highest. It is 1 for the set of queries used in the above experiments (Figure 4.12).

4.2.2. MDE-URDS with caching and Buffering mechanisms (To improve the

response time (especially with multi-level matching))

This experiment is performed on the architecture suggested in Section 3.2.2. The

results from Sections 4.1.3 and 4.1.4 show that since RMI communication is used, the

response time increases of the system by mobile headhunters. To improve this response

time, the use of buffering mechanisms is suggested at the HH. The buffering/caching is of

the recent query results of the HH. The least recently used (LRU) policy is used for

maintaining the HH buffer.

It is seen, from Figure 4.13, that the buffering improves the response time

considerably, as expected.

Figure 4.13 Comparison of response times with and without buffering of components

0

100

200

300

400

500

600

700

800

900

Query1 Query2 Query3 Query4 Query5 Query6

R
e

sp
o

n
se

 T
im

e
 in

 m
s

Without Buffering

With Buffering

% improvement

68

Figure 4.13 shows the improvement in the response time when buffering/caching

is used. However, the hit/miss ratio is a major concern for caching mechanisms. It is seen

that for the LRU policy used, the hit ratio (Figure 4.14) is more than the case where no

replacement policy, as the HH maintains the results of the most recently queried services

Figure 4.14 shows the hit ratio for a number of HHs individually.

Figure 4.14 Hit and Miss ratio for different HHs

The Figure 4.14 shows the hit/miss ratio calculated for a random set of queries

with an uniform distribution of services amongst the HHs. The hit/miss ratio is different

for different headhunters depending on the distribution of components and other factors

such as the frequency of querying that headhunter.

The recall is calculated for a specific query (Weather domain) to check the

effectiveness of buffering. Again, depending on the distribution of components among

the headhunters, the recall varies, here uniform distribution is assumed.

HH1 HH2 HH3 HH4 HH5 HH6 HH7 HH8 HH9 HH10

hit ratio 0.6 0.6 0.1 0.6 0.4 0.6 0.1 0.67 0.4 0.4

miss ratio 0.4 0.4 0.9 0.4 0.6 0.4 0.9 0.33 0.6 0.6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Headhunters

hit ratio

miss ratio

69

Table 4.1 Recall for the 10 M-HHs

Query=Weather Recall

HH1 0.2

HH2 1

HH3 1

HH4 0.66

HH5 0

HH6 0.4

HH7 0

HH8 0.25

HH9 0

HH10 0

4.2.3. MDE-URDS with different querying methods

The next two sets of experiments are performed on the MDE-URDS architecture

with different querying methods, described in Section 3.2.3 of Chapter 3. The purpose of

performing these experiments is to observe if the performance (response time and

quality) of the system improves using different querying mechanisms. This task is

achieved by comparing the different search approaches.

The three main approaches selected were as follows:

a. Selective Search (domain specific)

b. Exhaustive Search

c. Random selection of HHs (random 3).

The results of all the three approaches are presented in the following Figures (4.15

to 4.18), that show that when time is a limitation, the selective or random approach is

better, with some compromise on quality; whereas when time is not an issue and the

major focus is on obtaining the most relevant services, then the Exhaustive Search

approach is better. The random approach performs comparably well at some times, while

at other times, it reaches the time taken by the exhaustive approach.

70

Figure 4.15 Comparison of Response Time for the three different search approaches

The above approaches are also evaluated for the quality of the results obtained

using them. Figure 4.16 shows the recall values for the results for different queries.

0

2000

4000

6000

8000

10000

12000

R
e

sp
o

n
se

 T
im

e
 in

 m
s

Exhaustive Search

Selective(Domain Specific)
approach

Random HHs

71

Figure 4.16 Comparison of quality (Recall) for the three different search approaches

Figure 4.17 Comparison of quality (Precision) for the three different search approaches

0

20

40

60

80

100

120

Query
1

Query
2

Query
3

Query
4

Query
5

Query
6

Query
7

Query
8

P
e

rc
e

n
ta

ge

Exhaustive

Selective(Domain Specific HHs)

Random

0

10

20

30

40

50

60

70

80

90

Query
1

Query
2

Query
3

Query
4

Query
5

Query
6

Query
7

Query
8

P
e

rc
e

n
ta

ge

Exhaustive

Selective(Domain Specific HHs)

Random

72

From Figures 4.16 and 4.17, it is seen that the recall value for various queries in

the domain specific approach is 1 most of the time. The random approach has a lesser

value of recall amongst the three cases because of the random nature of selecting HHs as

a result of which only a few relevant services can be obtained. Exhaustive approach has a

recall of more than 0.5 in most cases. In terms of precision, the domain specific approach

and exhaustive approach has high precision being more than 0.5 in most cases. Random

approach sometimes gives high precision (Query 1) whereas sometimes gives zero

precision (Query 7). This is due to the HHs queried and the matching components

retrieved from them.

4.2.3.1. To check for the quality of results for a Timed Response

For some applications such as real-time tracking, the discovery time needs to be

as small as possible, as these applications demand an end-to-end response time of 30 ms

or less. For similar applications having time bounds, the performance of the MDE-URDS

architecture with different querying methods (described in Section 3.2.3) such as

selective, exhaustive search is evaluated to check if it can be suitable for these

applications and how the MDE-URDS can be modified, if need be. For this purpose, a

time limit was set up and the quality of the results in terms of precision and recall was

calculated for a set of queries. The time limit can differ according to the client‟s or

application‟s requirements. For the purpose of experimentation, it was set it to 5 seconds

(5000 ms).

The Figures 4.18 and 4.19 show the quality of results obtained from a timed

response scenario versus a scenario without any time bound.

73

Figure 4.18 Difference in quality (Precision) of results with a timed response

Figure 4.19 Difference in quality (Recall) of results with a timed response

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Query
1

Query
2

Query
3

Query
4

Query
5

Query
6

Query
7

Query
8

P
re

ci
si

o
n

 o
f

R
e

su
lt

s

Timed Response

No Timed Response

0

0.2

0.4

0.6

0.8

1

1.2

Query
1

Query
2

Query
3

Query
4

Query
5

Query
6

Query
7

Query
8

R
e

e
ca

ll

o
f

R
e

su
lt

s

Timed Response

No Timed Response

74

It is evident from Figures 4.18 and 4.19 that with the timed response scenario the

number of matching services obtained are less than the one when there are no time

bounds. The recall of the latter approach is thus high. The precision is relative to the HHs

selected and thus is not constant for either of the approaches. This shows that given no

time bounds, the system can obtain better results whereas in case of time critical or real-

time applications, obtaining more and best services may not be possible. Also, the time

limit is decided by the client who can vary it according to his needs and this will affect

the overall recall of the system.

4.2.4. MDE-URDS with Mobile IP (Incorporation of Mobility)

This set of experiments is the study of the performance of the implementation of

Mobile IP on the MDE-URDS architecture explained in Section 3.2.4.

The configuration for this set of experiments is as follows: 10 M-HHs, 10 ARs,

100 services, 3 Foreign Worlds, MLM matching and Proxies for the HHs. The readings

are an average over 10 readings and noted for 10 different queries.

4.2.4.1. Headhunters in their home domain

As seen from the algorithms described in Section 3.2.4 of Chapter 3, a headhunter

registers with its Home Agent when it starts. It remains in its home domain unless it

wants to move to another domain. The time taken to query these headhunters when they

are still in their home domain is calculated to get an idea of the response time of the

mobile headhunters in this implementation.

75

Figure 4.20 Response time of HHs when they are in their home domain

The Figure 4.20 shows the response times from the HHs while they are present in

their home world. The response time varies between 1000-1600 ms. Also, if these

headhunters are searched exhaustively for a particular query, then the average response

time is around 4000 ms. This is shown in Figure 4.21.

0

500

1000

1500

2000

2500

Query
1

Query
2

Query
3

Query
4

Query
5

Query
6

Query
7

Query
8

Query
9

Query
10

R
e

sp
o

n
se

 T
im

e
 in

 m
s

HHs

76

Figure 4.21 Exhaustive search Response time of HHs when they are in their home

domain

4.2.4.2. Headhunters in the Foreign Domain

 The response times from all headhunters who are currently in a foreign world are

observed and the additional time taken due to redirection of the queries is also studied.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Query1 Query2 Query3 Query4 Query5 Query6

R
e

sp
o

n
se

 T
im

e
 in

 m
s

Exhaustive Search for HHs
in home domain.

77

Figure 4.22 Response time from headhunters in a foreign domain

From Figure 4.22, it is seen that the response times for mobile headhunters

registered with a Foreign Agent are higher due to the level of indirection associated to

passing a query first to the headhunter‟s Home Agent. The query is then routed by the

Home Agent to the Foreign Agent and then to the HH. As a result, the response time is

higher. The typical response time is between 1500-2200 ms, with some queries having

higher response times.

4.2.4.3. Headhunters in transit

The headhunters are said to be in transit when they are not connected to any

domain or are unreachable. In such a case, the queries are either:

a. Buffered at the Home Agent and are sent to the HH when it gets connected

eventually

b. Passed to another HH.

0

500

1000

1500

2000

2500

3000

Query
1

Query
2

Query
3

Query
4

Query
5

Query
6

Query
7

Query
8

Query
9

Query
10

R
e

sp
o

n
se

 T
im

e
 in

 m
s

Mobile HH

78

Figure 4.23 Response time calculation when headhunters are in transit and

waiting for them

From the Figure 4.23, it can be seen that the response time varies according to the

time taken by the headhunter to connect back to a new domain. It could be in a matter of

few seconds or may even take few minutes. In such cases, wherein the time is a

constraint, it is better to propagate the query to a nearby headhunter (option (b)) and

obtain the results, however if the headhunter is domain specific or critical to the query

and the application can afford to wait for a long response time, then the higher response

time is acceptable.

0

10000

20000

30000

40000

50000

60000

Query
1

Query
2

Query
3

Query
4

Query
5

Query
6

Query
7

Query
8

Query
9

Query
10

R
e

sp
o

n
se

 T
im

e
 in

 m
s

Mobile HH

79

Figure 4.24 Response time calculation when headhunters are in transit and getting

response from other headhunters

The Figure 4.24 shows that in case of applications where the time is a constraint,

the query is propagated to another headhunter, if the current one is unavailable. This time

varies according to finding the next available headhunter and also the domain where it

resides (foreign domain will take more time, etc.). The peaks shown in the Figure 4.24

depict such scenarios.

For the quality evaluation of the queries for scenario 4.3.3 (a) and 4.3.3 (b) of

Section 4.3, when both the headhunters are similar in their distribution of the services

(i.e., uniform distribution) then the quality of the results remain more or less similar

whereas when they differ in the distribution (e.g., domain specific HHs) then the quality

suffers as the precision of the results reduces.

0

1000

2000

3000

4000

5000

6000

7000

8000

Query
1

Query
2

Query
3

Query
4

Query
5

Query
6

Query
7

Query
8

Query
9

Query
10

R
e

sp
o

n
se

 T
im

e
 in

 m
s

Mobile HH

80

4.2.4.4. Response time increase due to Mobile IP

The increase in response time due to the implementation of Mobile IP is studied.

The response time is now more with respect to time to first contact the HH‟s Home

Agent, then Foreign Agent and then the HH itself. Every reading for a response time is

evaluated for individual times and is shown in Figure 4.25. The time needed for a

response from a Foreign Agent was also evaluated in terms of its constituents indicating

which part dominates in that case (Figure 4.25).

These experiments are not evaluated for quality as the precision and recall for this

category is similar to that of experiments of Section 4.1.

Figure 4.25 Evaluation of response time from headhunter

It can be seen, from Figure 4.25, that with the use of Foreign Agent, an additional

RMI request is added which adds to the overall response time. The End-to-End

communication time therefore dominates the total time.

0

500

1000

1500

2000

2500

Query 1 Query 2 Query 3 Query 4 Query 5 Query 6

R
e

sp
o

n
se

 T
im

e
 in

 m
s

End-to-End Communication
Time

Processing Time

81

4.2.4.5. Scalability of the system

The scalability of the system is performed to check the maximum limit on the

number of queries the MDE-URDS architecture including Mobile IP can handle and how

frequent the headhunters can move around.

a. Number of queries: This is similar to the study in Section 4.1. However, in

this case, this study is for identifying the number of queries the mobile

headhunters can handle. It is seen that for the 10 mobile headhunters present

in the system, the limit on the number of queries is 200, i.e., as the number of

queries in the system becomes more than 200, the queries start dropping.

b. Effect of Buffering on response time: As seen in Section 4.2, for mobile

headhunters, the buffering of results improves response time by almost 48%.

Thus, buffering can benefit the mobile headhunters that move around often;

however, their mobility still increases the response time to some extent due to

the redirection of queries and is therefore more than in Section 4.4.1.

Figure 4.26 Response time variation for M-HHs w.r.t Buffering of Results

0

500

1000

1500

2000

2500

3000

Query 1 Query 2 Query 3 Query 4 Query 5

R
e

sp
o

n
se

 t
im

e
 in

 m
s

M-HH w/o buffering

M-HH with Buffering

82

Figure 4.26 shows the improvement in response time for mobile headhunters using

buffering mechanisms which is almost 50%.

4.2.5. MDE-URDS with Collaborative Approaches: I do it, We do it, You do it

As described in the Chapter 3, in order to improve the quality of results the MDE-

URDS architecture was enhanced using MANET protocols. This set of experiments

studies the performance of this MDE-URDS architecture with collaborative approaches,

described in Section 3.2.5.

4.2.5.1. I do it approach

As this is actually not a collaborative approach, as explained in Section 3.2.5, the

results are similar to the scenarios explained in category 4.3 when the headhunters are in

their home world and the results obtained were similar to them.

4.2.5.2. We do it approach

The results for the “We do it” approach using AODV technique is presented in the

Figure 4.27.

83

Figure 4.27 We do it approach using AODV protocol

Table 4.2 Precision and Recall for We do it approach

Query Number of Services

from single HH

Number of Services

with collaboration

 Precision Recall Precision Recall

Scanner 0 0 0.5 0.4

Health 0 0 0.6 0.833

Chemistry 0.5 0.2 0.3 0.4

Tracking 1 0.125 0.75 0.375

Science 1 0.166 0.727 0.66

The Figure 4.27 shows the response time for the collaborative HHs using the

AODV protocol. It is seen that the response time is high compared to querying a single

HH, because the results are obtained from 2 neighbors plus from the queried HH and also

time is spent in accumulating these individual results.

Query
1

Query
2

Query
3

Query
4

Query
5

Collaborative HH 1 6691 6080 4251 4595 6376

Collaborative HH 2 3406 4594 3594 4062 5485

0

1000

2000

3000

4000

5000

6000

7000

8000

Collaborative HH 1

Collaborative HH 2

84

The Table 4.2 illustrates the precision and recall when the query is processed by a

single HH and when collaboration occurs. As the number of services is more in the latter

case and thus the recall of the system is better. The precision varies according to the

headhunter selected, but is better in the second approach as seen.

 For the proactive approach, as described in Section 3.2.5 using the OLSR

protocol, the results are presented in Figure 4.28.

Figure 4.28 Collaborative results for We do it approach using OLSR protocol

Query1 Query2 Query3 Query4 Query5

C-HH1 7313 4484 7000 4359 6422

C-HH2 6454 4594 5719 3594 4203

0

1000

2000

3000

4000

5000

6000

7000

8000

C-HH1

C-HH2

85

Table 4.3 Precision and Recall comparison for We do it approach using OLSR protocol

Query Number of Services

from single HH

Number of Services

with collaboration

 Precision Recall Precision Recall

Scanner 0 0 0.5 0.4

Health 0 0 1 0.66

Chemistry 0.5 0.2 0.25 0.2

Tracking 1 0.125 1 0.375

Science 1 0.166 0.66 0.5

Here, similar response times and quality of results obtained as the AODV

approach in Figure 4.28 are seen, only this approach is more reactive and increases the

network traffic due to constant sending of messages. It however avoids any exceptions as

all nodes have up-to-date information about other nodes. Table 4.3 shows the precision

and recall of the approach. It is seen as the previous case of 4.6.1 that the precision varies

according to the HHs queried but the recall is better in case of collaboration.

4.2.5.3. You do it approach

This study is performed to check if a HH is busy with other tasks and needs help

with the query processing, how well the delegation of the query processing to another HH

can take place. The Figure 4.29 shows that with delegation of a query, the response time

increases however, the quality of results are better.

When comparing the previous approach of “We do it”, the recall of this method is

less as seen from the obtained results and it maybe because it does not include the

headhunter‟s own response. As a result, the response time is less.

86

Figure 4.29 Collaborative results for You do it approach

Table 4.4 Precision and Recall comparison for You do it approach

Query Number of Services

from single HH

Number of Services

with collaboration

 Precision Recall Precision Recall

Scanner 0 0 0.5 0.4

Health 0 0 0.75 0.5

Chemistry 0.5 0.2 0.5 0.4

Tracking 1 0.125 0.66 0.25

Science 1 0.16 0.66 0.5

The Table 4.4 shows that the precision and recall of the approach. As more

number of HHs now process the query, the recall improves. Precision may or may not

improve depending on the HHs queried and the distribution of components. In Table 4.4,

it can be seen that the precision is some cases is better in collaboration (Scanner, Health)

Query 1 Query 2 Query 3 Query 4 Query 5

C-HH 5001 3610 3594 3641 3594

0

1000

2000

3000

4000

5000

6000

R
e

sp
o

n
se

 T
im

e
 in

 m
s

C-HH

87

whereas it degrades in some cases (Science, Tracking). The recall however is always

better in case of collaboration.

4.3. Case Study

The case study selected is of a real-time tracking application. The application of

MDE-URDS into the domain of tracking is studied for its performance effectiveness.

Real time tracking requires tracking of objects from sensors such as Cameras.

These Cameras have different QoS attributes such as Camera Resolution, Frame Rate,

Orientation, Relative Location, and Clock Drift(to name a few) that are distinguishing.

As a result, these cameras can be treated as services that need to be discovered in order to

track an object and multi-level specifications are created for these Camera Services.

An experimental setup of an existing Tracking System of [53][54] was chosen for

this purpose. In this setup, around 20 cameras are deployed in a simulated lab

environment. Every Camera has a service called as CamService that serves to track the

visual data. These cameras track vital object information and then fusion of the visual

data from the cameras in the system is performed for object tracking. In order to apply

the architecture of MDE-URDS in this tracking system, first multi-level specifications for

these camera services are created. These specifications are created using similar

semantics of ML specifications of services (shown in Figure 4.1). However, depending

on the user‟s requirements of choosing these services (Frame Rate, Resolution,

Orientation, Clock Drift); they are discovered using the discovery architecture of MDE-

URDS with MLM.

For this setup, experiments for discovering these Camera Services were

performed using different ML queries (similar to Section 4.1.4) and the average response

time was found to be around 1000 ms. The discovery is followed by fusion of the results

that takes around 35-55 ms. The quality of results obtained by using MDE-URDS with

MLM is comparable to the existing discovery service of Jini and in some cases even

better according to the experiments performed for searching these Camera Services. This

time is however, too high for real-time tracking and as a result, it may not be suitable for

tracking in real-time. It can however be applied to mobile tracking with the use of mobile

88

devices and offline tracking when there are no strict time limitations. As only those

services that meet the criteria are selected, the filtering of unwanted results becomes

simpler and the fusion is also faster.

Thus, MDE-URDS can be applied successfully in applications such as real-time

tracking as a MLM discovery service. Thus, the performance evaluations for the different

enhancements to the architecture of MDE-URDS have been categorically studied. These

studies show the current performance of the system and highlight some of the limitations

of the architecture still present and that will be a part of the future work. Chapter 5

includes the conclusions and future work of MDE-URDS in detail.

89

CHAPTER 5. CONCLUSIONS AND FUTURE WORK

Chapters 3 and 4 gave an insight on the MDE-URDS architecture and its

performance related experiments. This chapter concludes the experiments with

conclusions and the future work of the MDE-URDS architecture.

The MDE-URDS architecture tries to tackle the problem of including mobile

devices into the service discovery framework that were not considered initially in the first

generation of discovery systems. The limitations of intermittent connectivity, memory

and processing limitations and mobility have been tried to address by the suggested

architecture. From the experimental validation, it is seen that the architecture performs

well for obtaining appropriate results for services in terms of response time and quality. It

also uses different searching techniques such as selective and exhaustive search and

certain collaborative searching techniques using the principles from different MANET

protocols such as AODV, OLSR and DSR, in order to improve the quality of the results.

The response time obtained is high due to the memory and processing limitations of the

device and the wireless connectivity, but the quality of the results in terms of precision

and recall is good due to the support of multi-level matching and alternative searching

techniques. For real-time applications like tracking, it is seen that the response time is too

high for discovery using mobile headhunters and therefore it cannot be applied to real-

time data. However, if timing restrictions are not strict, then, the MDE-URDS can serve

as a useful discovery tool for finding appropriate services and filtering unwanted ones by

using MLM of specifications.

One of the other limitations of mobile devices is the battery life that was not a part

of this MDE-URDS architecture. It can serve as a potential future work by employing

techniques from the MANET domain suggested to preserve the battery life.

The architecture does not involve context as a part of the discovery process, except from

the domain specificity of the headhunters. The discovery process can be enhanced further

92

by using contextual information. This is one of the future works that will be considered.

Uncertainty with respect to the context or surroundings is another area of future work that

can be studied for MDE-URDS. The performance of MDE-URDS can be evaluated in

such situations where the entities in the system and the surroundings are constantly

changing and at times are uncertain.

The security mechanism used in the MDE-URDS architecture is basic password-

based authentication. More complex security mechanisms using public key certificates,

symmetric key encryption can be used to provide additional level of security and prevent

unauthorized access to the system. The architecture can be made more heterogeneous

using different devices that are capable of running Java components. This may give a

real-time feel to the architecture where different devices are present.

Being successfully used in the real-time tracking application, the MDE-URDS

performance in other real-time applications such as disaster management can be tested. If

it is successful, then it may be useful for such applications.

Thus, the MDE-URDS architecture has successfully incorporated mobile devices

into a service discovery framework and has tried to tackle some of the limitations of

mobile devices. The future work suggested above will be helpful in making the

architecture more comprehensive.

LIST OF REFERENCES

93

LIST OF REFERENCES

[1] Kozaczynski W., Booch G., “Component-Based Software Engineering,” IEEE

Software Volume: 155, Sept.-Oct. 1998, pp. 34-36.

[2] Czarnecki K., “Generative Programming: Principles and Techniques of Software

Engineering Based on Automated Configuration and Fragment-Based Component

Models,” Ph.D. Dissertation, Department of Computer Science and Automation,

Technical University of Ilmenau, October 1998.

[3] Sun Microsystems, “Jini™ Architectural Overview,”

http://pages.cs.wisc.edu/~lhl/cs740/papers/jini-overview.ps (accessed on September 25th,

2009).

[4] “Universal plug and Play (UPnP),” http://www.upnp.org (accessed September 25,

2009).

[5] “UDDI Technical White Paper.” http://www.uddi.org/

pubs/Iru_UDDI_Technical_White_Paper.pdf (accessed September 25, 2008).

[6] Guttman E., Perkins C., Veizades J., Day M., “Service Location Protocol, Version 2,”

IETF RFC 2608, 1999.

[7] Dabrowski C., Mills K., Quirolgico S., “A Model-based Analysis of First-Generation

Service Discovery Systems,” Special Publication 500-260, NIST, National Institute of

Standards and Technology, 2005.

[8] Perkins C., “Mobile IP,” IEEE Communications Magazine, Volume 35, Number 5,

May 1997.

[9] Perkins C., Royer M., “An implementation study of the AODV routing protocol,” In

Proceedings of the IEEE Wireless Communications and Networking, Chicago, IL, 2000.

[10] Clausen T., Jaqcuet P., Laouiti A., Minet P., Muhlethaler P., Qayyum A., Viennot

L., “Optimized link state routing protocol,” IETF Draft, 2003.

http://pages.cs.wisc.edu/~lhl/cs740/papers/jini-overview.ps
http://www.upnp.org/

94

[11] Raje R., Katuri P., Kumari A., Tilak O., “Multi-level Matching of Distributed

Software Components,” Proceedings of the International Conference on Computer,

Communication and Instrumentation, Mumbai, India, 2009.

[12] Zaremski A., “Signature and Specification Matching,” Technical Report CMU-CS-

93-103, Ph.D. Dissertation, 1996.

[13] Erl, T., “Service-Oriented Architecture: Concepts, Technology, and Design,”

Prentice Hall PTR, 2005.

[14] Huhns M.N., Singh M.P., „Service-oriented computing: key concepts and

principles,” Internet Computing, IEEE, vol.9, no.1, pp. 75-81, Jan-Feb 2005.

[15] OMG, “Corba Trading Services,”

http://www.omg.org/technology/documents/formal/corbaservices.htm (accessed

September 25, 2009).

[16] Sundramoorthy V., “FRODO High-level and Detailed Specifications,” Ph.D.

Dissertation, University of Twente, Enschede, the Netherlands, 2006.

[17] Gandhamaneni J., “UniFrame Mobile Agent Based Resource Discovery Service

(MURDS),” M.S. Thesis, Department of Computer & Information Science, IUPUI, June,

28, 2004.

[18] Al-Jaroodi J., Kharhash A., AlDhahiri A., Shamisi A., DhaherFi A., AlQayedi F.,

Dhaheri S., “Collaborative Resource Discovery in Pervasive Computing Environments,”

International Symposium on Collaborative Technologies and Systems, 2008, CTS 2008,

IEEE, 2008.

[19] Messer A., Greenberg I., Bernadat P., Milojicic D., Chen D., Giuli T. J., Gu X.,

“Towards a Distributed Platform for Resource-Constrained Devices,” In Proceedings of

the 22
nd

 International Conference on Distributed Computing Systems, Washington, D.C.,

2002.

[20] Gu X., Messer A., Greenberg I., Milojicic D., Nahrstedt K., “Adaptive Offloading

for Pervasive Computing,” IEEE Pervasive Computing, 2004, pp. 66-73.

http://www.omg.org/technology/documents/formal/corbaservices.htm

95

[21] Sharmin M., Ahmed S., Ahamed S.I., “MARKS (Middleware Adaptability for

Resource Discovery, Knowledge Usability and Self-healing) for Mobile Devices of

Pervasive Computing Environments,” Third International Conference on Information

Technology, Las Vegas, Nevada, 2006.

[22] Zhang D., Mhamed A., Mokhtari M., “A trustworthy framework for impromptu

service discovery with mobile devices,” In Proceedings of the 4th international

Conference on Mobile Technology, Applications, and Systems and the 1st international

Symposium on Computer Human interaction in Mobile Technology, Singapore, 2007.

[23] “DAIDALOS- Designing Advanced network Interfaces for the Delivery and

Administration of Location independent, Optimised personal Services,” http://www.ist-

daidalos.org/default.htm (accessed September 25, 2009).

[24] Choi B., Rho S., Bettati R., “Dynamic Resource Discovery for Applications

Survivability in Distributed Real-Time Systems,” Parallel and Distributed Processing

Symposium, International, International Parallel and Distributed Processing Symposium

(IPDPS'03), 2003. 122b.

[25] Raverdy P.G., Issarny V., “Context-Aware Service Discovery in Heterogeneous

Networks,‟ Sixth IEEE International Symposium on a World of Wireless Mobile and

Multimedia Networks), 2005.

[26] Jiménez L., García-Macías A.J., “Privacy and Location-Aware Service Discovery

for Mobile and Ubiquitous Systems,” In Mobile and Wireless Communication Networks,

2006.

[27] Tonineeli A., Corradi A., Montanari R.,”Semantic-based discovery to support

mobile context-aware service access,” Computer Communications, Volume 31, Issue 5,

Mobility Management and Wireless Access, 25 March 2008, pp. 935-949.

[28] Capra L., Zachariadis S., Mascolo C., “Q-CAD: QoS and Context Aware Discovery

Framework for Mobile Systems,” In Proc. of International Conference on Pervasive

Services (ICPS'05), 2005.

http://www.ist-daidalos.org/default.htm
http://www.ist-daidalos.org/default.htm

96

[29] Zhu F., Mutka M., Ni L., “Splendor: A Secure, Private, and Location-Aware Service

Discovery Protocol Supporting Mobile Services,” Pervasive Computing and

Communications, 2003 (PerCom 2003), Proceedings of the First IEEE International

Conference, 23-26 March 2003, pp. 235-242.

[30] IETF, “Geographic Location/Privacy (geopriv)”,

http://datatracker.ietf.org/wg/geopriv/charter/ (accessed September 25, 2009),

[31] Denny M., Franklin M.J., Castro P., Purakayastha A., “Mobiscope: A Scalable

Spatial Discovery Service for Mobile Network Resources,” In Proc. of the 4th

International Conference on Mobile Data Management (MDM), London, 2003.

[32] Gruber T., “What is Ontology,” http://www-ksl.stanford.edu/kst/what-is-an-

ontology.html (accessed September 25, 2009), 1992.

[33] Ruta M., Noia T., Sciascio E., Piscitelli G., “Ontology Driven Resource Discovery

in Bluetooth Based M-Marketplace,” The 8th IEEEInternational Conference on E-

Commerce Technology and The 3rd IEEE International Conference on Enterprise

Computing, E-Commerce and E-Services, 2006.

[34] Pawar P., Tokmakoff A., “Ontology-Based Context-Aware Service Discovery for

Pervasive Environments,” IEEE International Work on Services Integration in Pervasive

Environments, 2006.

[35] Connelly K., Liu Y., “SmartContacts: A large scale social context service discovery

system,” In the 3rd Workshop on Middleware Support for Pervasive Computing

(PerWare 2006), Pisa, Italy, March 13, 2006.

[36] Wagner M., Noppens O., Liebig T., Luther M., Paolucci M., “Semantic-based

Service Discovery on mobile Devices,” In Proc. of ISWC‟05 Demo Track, Galway,

2005.

[37] Chakraborty D., Perich F., Avancha S., Joshi A., “DReggie: Semantic Service

Discovery for M-Commerce Applications,” Workshop on Reliable and Secure

Applications in Mobile Environment, 20th Symposium on Reliable Distributed Systems,

2001.

[38] Arabshian K., Schulzrinne H., “GloServ: Global Service Discovery Architecture,”

Mobile and Ubiquitous Systems: Networking and Services, 2004.

http://datatracker.ietf.org/wg/geopriv/charter/
http://www-ksl.stanford.edu/kst/what-is-an-ontology.html
http://www-ksl.stanford.edu/kst/what-is-an-ontology.html

97

[39] Papakos P., Rosenblum D., Mukhija A., Capra L., “VOLARE: Adaptive Web

Service Discovery Middleware for Mobile Systems,” Proceedings of the Second

International DisCoTec Workshop on Context-Aware Adaptation Mechanisms for

Pervasive and Ubiquitous Services, EASST, 2009.

[40] Johnson D., Maltz D.A., Broch J., “The dynamic source routing protocol for mobile

ad hoc networks,” Mobile Adhoc Network (MANET) Working Group, IETF, 1998.

[41] Sailhan F., Issarny V., “Scalable Service Discovery for MANET,” In Proceedings of

the Third IEEE international Conference on Pervasive Computing and Communications,

IEEE Computer Society, Washington, D.C., 2005.

[42] Helmy A., Garg S., Pamu P., Nahata N. “Contact-Based Architecture for Resource

Discovery (CARD) in Large Scale MANets,” IEEE/ACM Proc. International Parallel and

Distributed Processing Symposium (IPDPS), Apr. 2003, pp. 219-227.

[43] Li Z., Sun L., Ifeachor E.C., “Track-based Hybrid Service Discovery in Mobile

Adhoc Networks,” Proceedings of the 16th Annual IEEE International Symposium on

Personal Indoor and Mobile Radio Communications, Berlin, Germany, IEEE, 2005.

[44] Ni Y., Kremer U., Stere A., Iftode L., “Programming ad-hoc networks of mobile and

resource-constrained devices,” Proceedings of the 2005 ACM SIGPLAN conference on

Programming language design and implementation, ACM, 2005, pp. 249-260.

[45] Siram N., “An Architecture for Discovery of Heterogeneous Software Components,”

M. S. Thesis, Department of Computer and Information Science, Indiana University

Purdue University Indianapolis, 2002.

[46] Devaraju B., “Enhancement of the UniFrame Resource Discovery Service,” M. S.

Thesis, Department of Computer and Information Science, Indiana University Purdue

University Indianapolis, 2005.

[47] Siram N., Raje R., Olson A., Bryant B., Burt C., Auguston M., “An Architecture for

the UniFrame Resource Discovery Service,” Springer-Verlag Lecture Notes in Computer

Science, Vol. 2596, 2003, pp. 20-35.

[48] Buckland M., Gey F., “The relationship between recall and precision,” Journal of the

American Society for Information Science, 1994, pp. 12-19.

98

[49] IBM, “J9 VM Installation Guide,”

http://brainmurmurs.com/products/timeout/docs/wm2003/j9install.htm (accessed March

11, 2009).

[50] Al- Masri E., Mahmoud Q.,“The QWS Dataset,”

http://www.uoguelph.ca/~qmahmoud/qws/index.html (accessed May 2, 2009).

[51] Apache.org, “jUDDI - An Apache Project,” http://ws.apache.org/juddi/ (accessed

September 25, 2009).

[52] Gallege L., Pradhan K., Raje R., “Experiments with a Multi-level Discovery

System,” Technical Report, Number: TR-CIS-0825-10, (Accepted to ICC 2010, New

Delhi 27-28 December 2010), Department of Computer and Information Science, Indiana

University Purdue University Indianapolis, 2010.

[53] Talavdekar N., “e-DTS: Enhanced Distributed Tracking System,” M.S. Thesis,

Department of Computer and Information Science, Indiana University Purdue University

Indianapolis, 2009.

[54] Rybarczyk R., “e-DTS 2.0: A next-generation of a Distributed Tracking System,”

M.S. Thesis, Department of Computer and Information Science, Indiana University

Purdue University Indianapolis, 2010.

http://brainmurmurs.com/products/timeout/docs/wm2003/j9Install.htm
http://www.uoguelph.ca/~qmahmoud/qws/index.html
http://ws.apache.org/juddi/

	ETDForm9
	GSForm20
	Thesis Full Copy23_2.pdf

