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ABSTRACT

McNeany, Scott Edward M.S., Purdue University, May 2013. Characterizing Soft-
ware Components Using Evolutionary Testing and Path-Guided Analysis. Major
Professor: James H. Hill.

Evolutionary testing (ET) techniques (e.g., mutation, crossover, and natural selec-

tion) have been applied successfully to many areas of software engineering, such as

error/fault identification, data mining, and software cost estimation. Previous re-

search has also applied ET techniques to performance testing. Its application to

performance testing, however, only goes as far as finding the best and worst case

execution times. Although such performance testing is beneficial, it provides little

insight into performance characteristics of complex functions with multiple branches.

This thesis therefore provides two contributions towards performance testing of soft-

ware systems. First, this thesis demonstrates how ET and genetic algorithms (GAs),

which are search heuristic mechanisms for solving optimization problems using mu-

tation, crossover, and natural selection, can be combined with a constraint solver to

target specific paths in the software. Secondly, this thesis demonstrates how such an

approach can identify local minima and maxima execution times, which can provide

a more detailed characterization of software performance. The results from applying

our approach to example software applications show that it is able to characterize dif-

ferent execution paths in relatively short amounts of time. This thesis also examines

a modified exhaustive approach which can be plugged in when the constraint solver

cannot properly provide the information needed to target specific paths.
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1 INTRODUCTION

Performance testing [1] is an important aspect of testing any software system. Through

performance testing, software system stakeholders learn how the system performs un-

der different operating conditions, such as peak time vs. non-peak time. Likewise,

performance testing can be used to characterize the behavior of a software system. For

example, performance testing can be used to identify best and worst-case execution

times of a software system.

When executing a performance test, is it critical that software testers select good

input values for their tests. This is because different test input values will produce

different performance results. For example, evolutionary testing (ET) [2], which is

a concept of software testing that allows new test cases to be derived from existing

test cases without human intervention, and genetic algorithms (GAs) [3], which are

specific algorithms for carrying out evolutionary testing, have been used to generate

input values for performance testing of software systems. In such cases, ET has been

primarily used to characterize best-case and worst-case execution times of a software

system (i.e., high-level, global performance properties of a software system) [4].

Although it is important to characterize systemic performance properties of a soft-

ware system, is also important to characterize local performance properties of a soft-

ware system. For example, software systems usually contain many control branches

and loops. Each control branch and loop will exhibit different performance proper-

ties, which is typically reachable by only a specific set of input values [5]. In order to

truly characterize the performance of a software system, it is necessary to understand

both global and local performance properties.

Unfortunately, it can be both tedious and time-consuming to evaluate both global

and local performance properties—especially local performance properties of complex

software systems. This thesis therefore presents an approach for addressing this
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challenging problem. More specifically, this thesis presents an approach called Path-

guided, Parameterized Performance Testing (PPPT) that combines ET and GAs

with path constraint-logic to characterize local performance properties of a software

system.

PPPT operates by analyzing the branch and loop conditions of the software system

to determine the constraints necessary to target a specific path in a software function.

Once the constraints that target the specific control path are known, the ET portion

of PPPT generates a suite, or initial population, of test cases. These test cases are

then run against the target software component, and the set of input parameters

resulting in the worst (or best, if that’s what is being tested) performance is used

to generate the next population of test cases. This process continues—with each

round getting closer to the worst-case performance of a specific path —until PPPT

is confident it has found the parameters necessary to generate the worst case for that

branch. Once each branch is completed, the next branch is analyzed in the same

fashion until all branches are complete.

There are, however, cases where a modern constraint solver is not capable of

providing input values that target a specific path. In such cases, PPPT uses a modified

version of an exhaustive approach that instruments source code to help target specific

paths. The software is modified in two ways: first, the source code is instrumented

with counters to track the path taken during each iteration of the input variables;

and second, the source code is cleansed of any computationally-intensive or out of

process call that are not critical in determining the path. For example, this may

be an out of process call to the database or a web service, or a system call to the

operating system. By removing these expensive calls, we can exhaustively search the

input parameter space without executing the core logic of the application—thereby

reducing the overall execution time of each test.

The main contributions of this thesis therefore are as follows:

• It presents a novel approach called Path-guided Parameterized Performance

Testing (PPPT) that allows for performance analysis without specifying exact
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inputs, and targets specific branches of code to provide information about local

minima and maxima execution times;

• It illustrates how PPPT allows for rapid analysis, modeling, and comparison of

a software system’s performance characteristics; and

• It discusses how PPPT was applied to several challenge problems, which high-

lighted the limitations of existing tool sets (e.g., modern constraint solvers for

targeting specific paths) and offers an alternative method that uses a modified

exhaustive approach for building the necessary input parameter-path mapping.

Results from applying PPPT to sample problems show that PPPT can be highly

effective in analyzing branch performance. In one case demonstrated in the results

section, PPPT resulted in 78% fewer iterations over traditional exhaustive testing.

Likewise, PPPT can successfully separate the conditions necessary to target a specific

branch and—using existing ET methodologies—determine the best and worst case

execution times of each branch.

1.1 Thesis Organization

The remainder of this thesis is organized as follows: Chapter 2 discusses how

PPPT relates to other existing works; Chapter 3 provides background information

needed to understand PPPT’s solution approach; Chapter 4 discusses our approach;

Chapter 5 presents the results of applying our approach to several software systems;

and Chapter 6 provides concluding remarks and future research directions.
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2 RELATED WORKS

This chapter discusses existing work that relates to our work on PPPT. More specifi-

cally, this chapter covers related works from the area of genetic algorithms, input test

data generation, and path-guided exploration.

2.1 Genetic Algorithms

The first application of GA on performance analysis can be credited to Wegener

et al. [3]. Wegener’s research focused solely on locating the minimum and maximum

execution times. Their fitness function determined the “best fit” candidates by an-

alyzing the execution time of the previous test runs and taking the best or worst

execution time, depending on the goal of that particular test. Based on a simple C-

function sample application, Wegener was able to find the worst case execution time

in just 20 generations compared to 4603 generations using random testing. Even more

impressive, Wegener found a better best case execution time than was found using

random testing.

Wegener’s results demonstrate that GAs are a more suitable optimization strategy

than hill-climbing [6], which is a searching technique that takes incremental steps to

compare two input parameter sets. The approach alters a single parameter at a time

and if the result is closer to the optimum, the new test is used to generate additional

tests. The process is repeated until no further optimizations can be made. Genetic

algorithms are more suitable because a large population is used in GA to derive new

inputs when compared to using hill climbing.

Although Wegener did show branch coverage statistics, their work only offered

the recommendation for adding structural capability by stating that “Another idea

for further improvement is to combine our approach with structural testing. The
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fitness function could be expanded in such a way that individuals that execute a

new program branch get a high fitness value to ensure their survival in the next

generation. The diversity of the population therefore is not only maintained with

respect to the temporal behaviour of individuals, but also in consideration of the test

object’s internal structure.” [3]

More recent applications of genetic algorithms include Oyama’s Real-coded Adap-

tive Range Genetic Algorithm (ARGA) [7], which was a parallel genetic algorithm for

three-dimensional aerodynamic shape optimization, which ultimately lead to better

wing design. A GA was also used to study direct pattern synthesis and impedance

matching for the Juno radiometer antennas [8]. In 2010, Kim et al. [9] made use of a

previously developed adaptive hybrid genetic algorithm search simulator ( to solve the

resource-constrained project scheduling problem in the area of civil and construction

management.

2.2 Test Data Generation

Korel et al. [10] provides both a comprehensive overview of software test data

generation techniques. Korel also introduces a new technique for dynamic test data

generation. This approach relies on data flow analysis, which allows the execution

path of the program under test to be monitored, to build the constraints necessary to

target a specific path. While executing the application, if an undesired path constraint

condition is reached, the path condition can be flipped on the next execution. The

dynamic approach has limitations in determining path infeasibility and will result in

a large number of attempts before determining that the path cannot be reached. The

author states, however, that this is not an issue with standard symbolic execution [11]

(i.e., the process of replacing actual variables with symbols thereby allowing their

path constraints to be recorded) This is why Korel proposes a combination of the two

methods.



6

2.3 Combining Instrumentation and Genetic Algorithms

Maragathavalli et al. [12] uses an approach similar to Korel’s approach for identify-

ing bugs in software systems called a Path-Reuse Method (PRM). The PRM approach

differs slightly from Korel’s approach in that it executes the target software prior to

determining path constraints. PRM then use the path result, which is determined

by instrumenting the source code, as the fitness function for determining the next

generation of inputs. This approach is viable for identifying bugs because it provides

high branch coverage. It, however, is infeasible in characterizing the performance

of software because it is not guaranteed to find every parameter combination that

targets a specific branch. It only guarantees that some set of inputs will be found

that target a specific branch.
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3 BACKGROUND

This section is meant to introduce concepts that are key in understanding and imple-

menting PPPT. We will walk through the process behind evolutionary testing which

is one of the core components in PPPT. We will also discuss how evolutionary testing

can be combined with other well-known software methods, such as constraint solvers

and software code instrumentation, to target specific paths.

3.1 Evolutionary Testing

Evolutionary Testing (ET) [2], also known as GAs as introduced in Section 1, is

a concept of software testing that allows new tests to be derived from existing tests

based on a fitness function. The fitness function used in an ET represents a goal of

the software, such as worst case execution time. In the first round of input parameter

selection, a random sample of test cases is chosen N times where N represents the

initial population size. The test cases are all run independently against the target

function and the result is then run through the fitness function. Lastly, the test case

with the best “fitness” for the given test is chosen to survive to the next round and

produce offspring.

Each subsequent round in ET begins with the generation of new tests that are

closely related to the “best” fit test case from the previous round with some degree

of separation. The degree of separation is random within a specified proximity range.

For example, assume there is one integer variable with the range (0, 100) and has

a proximity value of the offspring 0.10. If the initial best fit test case has a value

X = 45, then all derived offspring will have a random value of 45 ± 10.

Once enough offspring is generated to fill the population size for the next round

of testing, then the new round of tests are run against the target function and an-
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alyzed in the same manner as the previous test run. This process repeats until the

desired goal is reached, or the maximum number of rounds set by the user is reached.

Lastly, if ET gets “stuck” in a local minima or maxima while trying to reach a global

minimum/maximum, a new set of completely random variables can be chosen. There

is, however, no way to automatically detect that a local minima or maxima has been

reached, so this random regeneration may result in a false positive. For the purpose

of this research, we’ve chosen not to do a random regeneration at any point because

the function is already is already split into the various paths, which is most likely

what would cause a local minima/maxima performance.

3.2 Path-Guided Testing

Branch coverage [13], which is a test method that aims to ensure each possible

branch from each decision point is executed at least once, thus ensuring that all

reachable code is executed, is an important aspect a good testing library. This is

because it is “hard”, if not impossible, to determine if a bug exists in different parts

(i.e., branches) of the software when it is not covered by a test. Uncovering bugs is

just one instance of why branch coverage is important.

To further demonstrate the concept of branch coverage, we’ll use a common prob-

lem called the Triangle Problem. As shown in Figure 3.1, there are three branches

that determine the type of a triangle (i.e., equilateral, isosceles, or scalene) based on

a comparison of the sides a, b, and c. A triangle with three equal sides is considered

equilateral; a triangle with two equal sides is isosceles, and a triangle with no equal

sides is scalene.

We then write two unit test functions, both shown in Figure 3.2. The func-

tion TestEquilateral validates that a triangle with three equal sides is classified as

“Equilateral”. The function TestIsosceles validates that a triangle with two equal

sides is classified as “Isosceles”. There is currently no test that demonstrates the

proper classification of the scalene triangle.
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Figure 3.1.: Triangle Problem

Figure 3.2.: Triangle Problem Unit Tests

In this example, there are three branches that could occur based on the input to

the function, but only two of these branches are tested in our test suite. We therefore

state that the ”branch coverage” of this function as 66% (i.e., 2 out of 3). If we were

to write an additional test where a, b, and c were all different, the function would

return ”Scalene” and our branch coverage would become 100%.

In this thesis, the goal of covering all branches is to learn more about the per-

formance characteristics of all branches individually. Previous performance testing
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research [3] [14] puts most of its emphasis on finding the global minimum and max-

imum regardless of the path. It, however, is relevant to find the local minima and

maxima by branch if the goal is to compare the branches, or report the data to the

client based on the actual execution path. It is also very meaningful to characterize

the performance of the system in terms of the execution path.

For example, this research looks at an example of the RSA cryptosystem where the

keys are either reused, or new keys are generated prior to performing the encryption.

This decision determines the path that is taken and, as will be shown, has a significant

impact on the performance of the system. Without path-specific information, this

comparison would require two separate tests. If a specific path can be targeted, then a

single test can be written and the paths can be determined at runtime, which greatly

reduced testing time. The constraint solver framework discussed in the next section

is an integral part of being able to target specific paths for certain types of functions.

3.3 Constraint Solvers

A constraint solver [15] is a mathematical tool for determining the correct inputs

that solve a given problem. Many applications exist for which constraint solvers are

used, such as real-time supply-chain optimization [16–18], scheduling and resource

assignment [19–23], graphics and modeling [24–26], machine learning [27, 28], and

decision optimization [29–33]. Our research on PPPT takes advantage of using con-

straint solvers for decision optimization.

The Microsoft Constraint Solver Foundation (MCSF) [34] is the constraint solver

chosen we selected when implementing PPPT. We selected MCSF because it inte-

grates well with our existing C# code and because it has a rich high-level API. Our

work on PPPT, however, is not limited to MCSF and C# applications. The MCSF

provides a rich API that can be used by any of the .NET programming language (i.e.,

C#, C++, Visual Basic, F#, and IronPython).
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MCSF operates be taking an input string that contains the input parameters,

path constraints, and goals the user wishes to have solved. For example, Figure 3.3

illustrates some simple code that contains multiple branches and each branch sleeps

for a different period of time. This is called the Sleep Test, and we use it throughout

this thesis.

Figure 3.3.: Sleep Test

Figure 3.4 shows four strings for a single path in the Sleep Test written as a

string accepted by the MCSF. That path has a single path constraint of x == 1, and

individual goals of maximizing x, minimizing x, maximizing y, and minimizing y.

Figure 3.4.: Sleep Test Constraint Strings

The MCSF parses the string above and determines if the goal can be met with

the given constraints. If the goal can be met, it returns another string to the user
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specifying what constraints must be added to target the specific path. For example,

Figure 3.5 shows the results for the four goals in the previous Figure 3.4.

Figure 3.5.: Sleep Test Constraint Solver Results

As shown in the example above, the constraint solver returned four strings spec-

ifying that to reach this path, x must be exactly 1 and y must range from (0, 100).

The reason y ranges from (0, 100) is because the original input to the constraint solver

specified that it should be within those bounds. The range (0, 100) is arbitrary and

can easily be plugged in as -2147483648 (i.e., Int32.MinValue in C#) and 2147483647

(i.e., Int32.MinValue in C#) to get the full range of integers. It, however, should be

noted that passing in extremely large values for the decision fields causes poor per-

formance in the constraint solver. This is because the solver must iterate through all

possible values within the range. It is therefore important to determine whether the

a goal can be solved without passing a large range of values to the constraint solver.

3.4 Source Code Instrumentation

Source code instrumentation [35] is a common practice in software systems for

tracing and performance analysis. This practice usually involves instrumenting pro-

duction systems to find bugs in actively running software. This thesis, however, does

not require instrumentation of production systems, and instead uses instrumentation

solely for the purpose of creating an input parameter-path map that will be used by

the evolutionary component for targeting specific branches. An example of source

code instrumentation can be seen in Figure 3.6. This example shows a very basic

implementation in which a logging function is called in between each statement. Nor-

mally, the logging mechanism would take in additional information like the component
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name, class name, function name, line number, and any variety of other information

that could be useful to view.

Figure 3.6.: Instrumented Triangle Problem
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4 THE DESIGN AND FUNCTIONALITY OF PPPT

This chapter explains the design and functionality of PPPT, which characterizes

software components and provides a detailed overview of each software path’s perfor-

mance. There are several components that work together to accomplish these goals,

which are discussed in detail within this chapter. More specifically, Section 4.1 pro-

vides a high-level summary of the steps required to implement PPPT. The intent of

this section is to provide the reader with the design constructs independent of the

specific implementation. Section 4.2 then describes in detail the process flow and

decisions necessary for implementing PPPT. Lastly, Section 4.3 provides a simple

example to help illustrate the process of the various components of PPPT.

4.1 Approach

The design of PPPT works as follows: first, we must choose a mechanism for

constructing an input parameter-path map. The input parameter-path map is a

table of input parameter values that target a specific path. The input parameter-

path map is necessary for providing the genetic algorithm component a list of input

parameters that target a specific path. This way, the algorithm can simply pick a

set of inputs from the list and guarantee that the execution will follow the desired

program path. Figure 4.1 shows a sample input parameter-path map for a specific

path of an imaginary software component. It shows the values for input parameters

x and y that satisfy the path constraints of path 1 − 2 − 3 − 4.

Once PPPT knows which input parameter values are able to target specific paths,

it can then use this data to begin generating tests. This is where step 2 begins. The

goal in step 2 is to find the minima and maxima execution times of each specific path

in the software component. A series of tests need to be generated in succession until
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Figure 4.1.: Sample Input Parameter-Path Map

PPPT is confident that it has found the minima and maxima execution times or it

has reached the maximum number of testing rounds specific by the tester.

After PPPT has iterated over each path and found the minima and maxima

execution times for each path, it can then begin to analyze the data and display it to

the user in a useful format. This data will provide the user with a concise overview

of the various paths and provide insight into any problem areas that occur in the

software. We will delve further into the output of PPPT in the coming sections.

4.2 Implementation

Figure 4.2 shows a decision tree for determining what method is used to build

the input parameter-path map. If the function contains loops, it is not possible to

use the constraint solver to build the map. A major limitation of constraint solvers

is their ability to execute inside of a loop. In order to utilize the constraint solver,

the loop must be unfolded completely causing very large, complex decisions which

negatively affect the performance of the solvers. This leads us to the need for a

secondary approach when loops are present.

Therefore, PPPT will employ the modified exhaustive approach with code instru-

mentation to determine the execution path of all input parameter combinations. It
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is modified in such a way that any statement that does not directly affect the pro-

gram path of the software is removed during this step. Next, new statements that

record the path are inserted in each unique branch and the parameter combinations

are executed iteratively.

For the purpose of this research, this process is done manually. It is left to future

work to provide an automated solution using existing instrumentation technology.

Once the input parameter-path map is built, it can then be run through the evolu-

tionary component described below to record the actual execution time of the function

while targeting specific paths.

In step 1, if PPPT finds that there are no loops, then PPPT can build the input

parameter-path map using a constraint solver. For this, we use the Microsoft Con-

straint Solver Foundation. This generates a data structure that provides the necessary

information about the expression to allow for each specific path to be targeted. The

constraint solver expects a string, the first step in the process is to build that string.

To accomplish this, we sub-class the built-in .NET framework ExpressionVisitor

class that allows the LINQ expression tree to be visited and analyzed as nodes in a

binary tree. This sub-class is the ConstraintSolverExpressionVisitor shown in

Figure 4.3. During the visiting process, the constraint solving string can be built based

on the nodes that determine the path (less than, greater than, equal to, not equal

to, etc.). When one of these nodes is visited, a new path is added to the list. Then

when a ParameterExpression node is visited, that parameter is added to the path

to form a complete path constraint. Each path is represented by an ExpressionPath

object and that object contains a list of ExpressionParameter objects, which then

contains a list of PathConstraint objects.

Regardless of the method in step 1 for building the input parameter-path map,

in step 2 we run the function through the evolutionary testing component. The

component performs evolutionary testing in the classical sense, but constrains its

initial and offspring parameters to meet the criteria of the path constraints so as

not to target a different path. An initial population of tests is chosen for each path
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Figure 4.2.: Process Flow
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Figure 4.3.: Class Diagram - Constraint Solver Logic

with the population size determined by the tester. At the same time the tester must

specify the maximum number of rounds to test, as well as the type of test (minimum

or maximum). The path constraints, test function, population size, maximum number

of rounds, and type of test are then passed to the fitness service. The service then

handles generating inputs for the initial population, executing the function with those

inputs, and storing the execution time for each round. Once the entire population is

executed, the fitness service can compare the execution times among both the current

population and all previous populations to determine the ”best fit” test case, which

will either be the one with the minimum or the maximum execution time from the

previous round.

In each round, the fitness service class generates a new round of input parameters

represented by the base class ApplicationVariable, shown in Figure 4.4. As you

can see, each variable type has a specific sub-class which is responsible for generating

new offspring based on the proximity of the previous round.
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Figure 4.4.: Class Diagram - Application Variables

After each round of testing, meaning the current population has been fully exe-

cuted and a new best fit has been selected, a new population must be generated. This

new population is generated based on a close proximity to the current best fit test

case. To do this, all input parameters are inspected independently and a new one is

generated that has only a small degree of variance to the existing one, but still meets

the path constraints. Of course, if the path constraint requires a parameter to be

equal to a constant value, as is the case with x in the sleep expression, it will simply

be copied to all offspring x values. However, if a range of values still target a specific

path, then a ”proximity of offspring” value is used. This proximity of offspring is

simply a percentage of the total range of the offspring from 0 to 100. If the value is

10, for example, the new offspring will all be the current best fit value +/- 10, so long

as that still falls within the range necessary to target the given path.

It’s worth noting that the proximity concept works quite well with integer and

decimal values, but some creativity has to be used when dealing with other data

types. For enumerated types and boolean, the proximity percentage can still be used

but in a slightly different way. If a proximity percentage of 10 is specified, this can
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mean that 10% of the new offspring will have a new enumerated or boolean value,

while the other 90% will have the same value. In a multi-parameter function where

other inputs are integers, this could be very useful because it would allow the integer

parameters to slide across a range while periodically varying the enumerated types

and booleans to test whether a different value might cause a different performance.

Chances are a single boolean value would not cause a change in performance unless

some out of process I/O call is made based on that value or a new path is taken. If

dealing with lists, one could vary the list size based on the proximity value.

Figure 4.5.: Database Diagram

Once the maximum number of rounds is met, the data is then stored into a local

database so that it can be analyzed immediately or at some later date. The database

structure itself consists of only five tables, allowing the test number, execution date,

path, round, and parameter information to be stored. The full database diagram is

shown in Figure 4.5. The master table that stores a single test is TestRun. During

the input parameter-path map stage, potential paths and input parameters are stored



21

in the TestRunPotentialPath and TestRunPotentialPathVariable tables. After

this stage is complete, values can be pulled from this table to generate new offspring

for testing. The actual results of the evolutionary testing phase are stored in the

TestRunPath, TestRound, and TestRoundInputParameterValue tables, which store

the execution time of each test and the actual values of each parameter during the

test.

4.3 Application of PPPT to a Simple Problem

The first example shown in Figure 4.6 demonstrates a purely hypothetical and

simple function that is designed specifically to highlight the potential capability of

PPPT. It is a LINQ expression that consists of four unique paths, each with different

performance characteristics. x determines what path is taken and y is passed to the

sleep function, either as-is or after being multiplied. The sleep function simply causes

the current thread to wait for a certain number of milliseconds before proceeding. This

provides a mechanism for demonstrating the order of magnitude of certain paths in

a controlled and predictable environment.

Figure 4.6.: Sleep LINQ Expression

This function lends itself well to a discussion on why the analysis needs to be

done on a path-specific basis. Without path-specific information, the results would

show global minimum and maximum execution time for all combined paths. This

would essentially only provide real information for the quadratic path where x =

3 and provide little (or no) value about other paths. This example is obviously

simple enough that one could predict the performance of each path without actually

running the tests. If, however, we assume that one of these paths represents a failed
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or exception case while other paths represent a successful execution, It would be

beneficial to state that when an exception occurs, the maximum execution time will

never exceed n msec.
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5 RESULTS FOR APPLYING PPPT TO SOFTWARE COMPONENTS

This chapter demonstrates our findings from applying PPPT to four test components.

These test functions were chosen to effectively highlight the challenges we faced and

how PPPT was designed to overcome those challenges. This chapter is laid out

as follows: First, Section 5.1 defines the system requirements for reproducing the

environment used to generate our results. Section 5.2 shows the results when applied

to the Sleep LINQ Expression shown in Figure 4.6. Section 5.2 also does a comparison

of the genetic algorithm approach and a purely random test data generation. Section

5.3 discusses the results when PPPT is applied to a hypothetical function with an

exception pathway. This is meant to highlight the ability to target different branches

and identify the branches with potential issues. Section 5.4 shows the results of

PPPT when applied to the RSA cryptographic algorithm. This demonstrates the

limitations of the constraint solver and the need for a modified exhaustive approach.

Finally, Section 5.5 applies PPPT to a non-recursive version of the Euclidean GCD

algorithm, which further highlights the limitations of constraint solvers, as well as the

limitations of the modified exhaustive approach.

5.1 Experimental Setup

All tests in this thesis were generated using a 64-bit Windows 7 Enterprise edition c©

laptop. The machine has a 2.50 GHz Intel R© CoreTM i5-2520M processor and 8.00

GB of RAM.

Note, however, that results will vary slightly based on the current usage of the

processor and memory for other tasks. There is no guarantee that context switching

will not occur in the middle of a test while the timer is running. These outlying
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test cases are rare and are discussed in more detail in Section 6. A mechanism for

handling or removing outliers is left for future work.

5.2 Analysis of Sleep LINQ Expression

The first function that will be analyzed is the Sleep LINQ Expression shown in

Figure 4.6. There are two input parameters, x and y. The x value determines the

path and the y value is used in the equation and directly affects the performance.

Even though this is clear to any user looking at the function, the software doing

the analysis is given no hints about the available values or which parameters affect

performance.

The application first determines the values needed to target a specific path. This

process is described more in the previous section. Once that information is deter-

mined, the paths are targeted to determine either the minimum execution time or the

maximum execution time. Figure 5.1 below shows the maximum execution times for

the path x == 1, which is the ”Linear” branch. The population size of each round is

10 and 10 rounds were performed for a total of 100 overall tests.

Figure 5.1.: Maximum Execution Time of Linear Sleep Expression in Ticks (10 nS)

Figure 5.2 below shows the corresponding values that produced the graph in Figure

5.1. It is clear that the application determines that the x value must remain constant

at 1 while a larger y value produces larger execution times. It is difficult to see in the

image, but there is a single line showing the y parameter staying constant at x == 1.
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Figure 5.2.: Maximum Values of Linear Sleep Expression

From this graph, it is shown that the actual maximum execution time is 200 and

that is found in round 3, or test #38. The tests will continue until the maximum

number of rounds is reached to ensure that there are no other values that cause a

greater execution time. This is one area that is a potential for future work. It may

be possible to short circuit the testing if it can be determined that no other value

will cause a higher execution time using statistical analysis or some other mechanism.

For this work, the tests simply run out the pre-determined number of rounds.

A comparison of these results to a random selection of input parameters was also

performed. This test was not strictly random, as it still targeted a specific path so

that the results would be meaningful. Figure 5.3 and Figure 5.4 show the execution

time and values, respectively, of the linear branch. It is interesting that test #17 in

the 2nd round comes very close to finding the y that causes the maximum execution

time. However, since the application does not build on that knowledge, the actual

maximum value of y is not found until test #74.

For brevity, the remaining branches’ results will be left out of this paper. The

results are very similar to the linear branch results, except the produce much higher

execution times.

5.3 Analysis of Exception Pathways
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Figure 5.3.: Random Execution Time of Linear Sleep Expression in Ticks (10 nS)

Figure 5.4.: Random Values of Linear Sleep Expression

The next example, shown in Figure 5.5, demonstrates the cost of throwing excep-

tions. In this case, a C# developer might choose to throw an ArgumentException

or ArgumentNullException for each of the parameters in a function before execut-

ing the main path of the function. This is considered best practice regardless of the

programming language. However, one must consider the performance consequences

in doing so. The following LINQ expression shows a simple function with one integer

parameter, arg.

Figure 5.5.: Exception LINQ Expression
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If the parameter is equal to 0, the function immediately throws an ArgumentException.

If the value is anything other than 0, it simply prints its own value and returns. The

body of the function itself is not important, except to show that the simplest of

function still returns in less time than an exception.

The results are shown below. Figure 5.7 shows the function under normal circum-

stances, in which it performs two consecutive Console.WriteLine() function calls, one

to print the words ”Print Arg:” and the other to print the value of the arg variable.

Not surprisingly, there is no curve in the performance. It is simply constant at around

900 ticks, regardless of the value of arg.

Figure 5.6.: Execution Time of Console.WriteLine() in Ticks (10 nS)

5.7 shows the second path, the exception path. In this case, the application forces

the value of arg to 0 for every test case, as it did in the previous example. Again, the

execution time is linear since it generally takes the operating system constant time

to throw the same exception. However, what’s interesting here is that the execution

time is constant around 4,000 ticks, nearly 4.5 times the normal path.

These results would provide a developer the necessary data to determine whether

throwing an exception is the appropriate action. It is easily demonstrated that a

small change to this application to return error codes would greatly improve the
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Figure 5.7.: Execution Time of Exceptions in Ticks (10 nS)

performance of the application. However, it then goes against the standard best

practice and becomes more difficult to maintain large amounts of error codes. It

depends heavily on the nature of the application. Systems with real-time requirements

might consider using error codes, while standard business applications might continue

to use exceptions.

5.4 Analysis of RSA Cryptographic Algorithm

This leads us to our first real example. We will examine the RSA public-key cryp-

tosystem, most commonly used in SSL and digital signatures. The RSA cryptosystem

was designed by Ron Rivest, Adi Shamir, and Leonard Adleman in 1978 [36], thus

the acronym ”RSA”. It’s security relies heavily on the difficulty of factoring large

integers. The algorithm is described in more detail below.

To encrypt a message M with our method, using a public encryption key (e, n),

proceed as follows. (Here e and n are a pair of positive integers.) First, represent

the message as an integer between 0 and n - 1. (Break a long message into a series

of blocks, and represent each block as such an integer.) Use any standard represen-
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tation. The purpose here is not to encrypt the message but only to get it into the

numeric form necessary for encryption. Then, encrypt the message by raising it to

the eth power modulo n. That is, the result (the ciphertext C) is the remainder when

M e is divided by n. To decrypt the ciphertext, raise it to another power d, again

modulo n. The encryption and decryption algorithms E and D are thus:

C = E(M) = M e(modn), for a message M .

M = D(C) = Cd(modn), for a ciphertext C.

In our example, we will see a scenario where keys are precomputed, but the caller of

the application has the ability to regenerate the key sequence before computing the

ciphertext. This could be a requirement if the key sequence was compromised or if has

been a certain number of days since the last key regeneration. Alternatively, perhaps

a new client is introduced in which the key sequence has not yet been generated. In

this instance, a new key sequence would also need to be generated.

For illustration purposes, we will also create a new string based on the length

parameter passed in. A more sophisticated system will need to allow the string itself

to be passed in, but for the purpose of demonstration, we will simply pass in the

string length and create the string based on that length. This will suffice for the

purposes of testing the RSA algorithm.

The full example is shown in Figure 5.8. The function begins by extracting

the parameters from the object array. There are three parameters, stringLength,

blockLength, and shouldRecomputeKeys. The first parameter, as discussed previ-

ously, determines the length of the string to test. The second parameter determines

the block length. Various block lengths could potentially have an impact on the

mathematical modulo operations. The last parameter, shouldRecomputeKeys tells

the function whether to recompute the keys prior to executing the algorithm. The

contents of the RecomputeKeys function is left out for brevity.



30

Figure 5.8.: Customized RSA Implementation

As you can see, this program is written in standard C# rather than in LINQ.

This is a good time to segue into a discussion of the limitations of modern constraint

solvers. The constraint solver that was used in the previous two examples, Microsoft

Solver Foundation, requires that all constraints be known ahead of time and not

derived from previous conditions. This poses a very difficult problem when dealing

with loops in our case since we want to know all parameter combinations that satisfy

a given path, and we consider each loop iteration a different path. This is one area

where our research differs from the typical use of constraint solvers for path-guided

exploration. Previously, most research uses constraint solvers to ensure that a branch
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is tested, not necessary guaranteeing that it will be hit the maximum number of times.

It is imperative that our approach know exactly how many times a loop condition will

be met and that we can group input parameter combinations by their final program

execution path.

This means, for the introduction of looping conditions, we must use instrumenta-

tion instead of a constraint solver. The form of instrumentation used is a modified

form of standard code instrumentation. The first step is an analysis to determine

what operations can be removed without affecting the final program execution path.

This gives us an idea of which statements can be safely removed, while still allowing

us to build a library of input parameter-path mappings without the requirement of

doing a full execution of every input parameter combination. Figure 5.9 shows the

RSA algorithm instrumented in this fashion.

As you can see, we’ve managed to remove almost the entire core of the algorithm

without affecting the path conditions in any way. For example in branch #2, we

now only have a statement indicating that the branch condition was met, not the

actual call to the RecomputeKeys function. Similarly, the logic for performing the

encryption was left out of branch #3. This is a significant gain in performance over

executing the entire search space to determine the input parameter-path mappings.

The next step in this process is to use the library of input parameter-path map-

pings that we’ve built and run it through our evolutionary test generator to quickly

determine the best and worst case execution times of each path. This process is

no different from the previous two examples, where the system starts with an ini-

tial population targeting a specific path, executes the function in its original form,

records the execution time of each iteration, then uses that information to generate

a new round of tests that target the same path in hopes that the execution time will

start to converge on the desired result. The results from the execution of the RSA

cryptographic algorithm are shown in Figure 5.10.

In its raw form, several things are clear. First and foremost, there is a great

distinction in performance among certain paths. There is clearly a connection between
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Figure 5.9.: Instrumented RSA Implementation

all of the paths in the 800,000 to 1,000,000 ticks range. Second, no individual path

appears to be affected by the evolutionary portion of the testing. What this tells

us is that the internal performance of each does not vary much based on parameter

combinations.
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Figure 5.10.: RSA Results Showing All Paths in Ticks (10 nS)

What’s not so clear by the results shown in Figure 5.10 is what branch conditions

are causing that poor performance. This is the critical knowledge that a developer

will need to remedy the system, so our work is not done. We then must take the same

data set and group it by which branches were met, excluding how many times that

it was met. If we do this, we get much clearer results (shown in 5.11). The results

show definitively that input parameters resulting in the execution of branch #2 have

far greater execution times than those that skip that branch.

Branch #2, of course, is the one where the function determines whether it should

recompute the keys. This tells the developer which area to focus on when choosing

to spend time improving the performance of the system. In this case, the developer

will need to rethink the method used to recompute the keys. If the algorithm for

recomputing the keys is already optimized to full potential, perhaps they can compute

a block of them at the beginning of the day and choose one from that precomputed

list. If they were to do this, the RecomputeKeys method would then be replaced with

a call to the database to get a fresh set of keys, rather than doing the computation on

the fly. This would result in a serious performance gain depending on the key size. For
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Figure 5.11.: RSA Results Grouped by Branch in Ticks (10 nS)

any standard key size in real cryptosystems (1024-bit and above), the performance

savings will be dramatic.

Figure 5.12.: RSA Results Compared to Brute Force

The actual execution times are compared to a brute force/purely exhaustive ap-

proach in Figure 5.12. The time it takes to build the input parameter-path map is

minimal. We combine that with the actual execution time of the evolutionary testing

process and it is still significantly lower than running a brute force approach, and this

is not even for the entire search space; it is only for string lengths and block lengths of

up to 20. When applied to a larger search space of entire documents worth of text, it

would become impossible to use a brute force approach, but it would still be feasible

to use PPPT.



35

Incorporating this approach into PPPT shows real potential for reducing the num-

ber of overall tests for targeting specific paths. We no longer need to use brute force

to run all values. We can quickly build a library of input parameter-path combina-

tions, and use evolutionary testing beyond that to characterize the performance and,

if they exist, find minima and maxima execution times for every path.

However, no good example would be complete without a corresponding example

where this technique breaks down. We will see in the next section an example where

this technique falls short because there are simply no calls that can be removed

during the input parameter-path discovery stage. Each statement in the function is

dependent upon the previous one and the constraint library cannot be built without

each call being present. If we try to use the same approach, we actually experience

worse performance than if a brute force approach were to be used. This is obviously

not the desired behavior.

5.5 Analysis of Euclidean GCD Algorithm

The final example we will cover is the non-recursive Euclidean GCD algorithm [37],

as seen in Figure 5.13. This is a well-known algorithm for factoring two integers to

find there greatest common factor. It is named after the Greek mathematician Euclid,

who first described it in Books VII and X of his Elements. The algorithm has two

modes, recursive and non-recursive. The non-recursive version simply uses a while

loop and temporary variables to simulate the recursion.

You will quickly notice that the algorithm relies heavily on loop conditions, there-

fore we cannot use the constraint solver as we did in the first two examples. We

will then attempt to use the instrumentation. The instrumented code can be seen

in Figure 5.14. This, too, poses a problem. There simply are no places where code

was able to be removed during instrumentation. Each statement in the function is

dependent upon the previous one. This is an example where this technique falls short

and cannot be used.
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Figure 5.13.: Non-Recursive Euclidean GCD Algorithm

The performance of this is actually worse than a brute force approach; up to 2x

worse. This is because we essentially need to execute the target function as-is for all

possible input values just to build the input parameter-path map. At this point, we’ve

brute forced the system and still know nothing about its performance characteristics.

Then we still need to run the evolutionary phase, which executes the function again

many times and logs the execution time.
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Figure 5.14.: Instrumented Non-Recursive Euclidean GCD Algorithm
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6 CONCLUDING REMARKS

This thesis has offered a viable solution to automated performance testing and clas-

sification of software components. We have combined the use of evolutionary testing,

genetic algorithms, constraint solvers, and instrumentation to provide two mecha-

nisms for characterizing software performance with better-than-exhaustive execution

times. Likewise, looping conditions must be handled outside of a constraint solver

and a gain can only be realized if there are statements that can be removed without

affecting the path. If no statements can be removed, then a brute force approach is

the best option.

Based on our current work on PPTT, the following is a summary of lessons learned

from the research work presented in this thesis:

• To properly classify the performance of software components based in a software

system, it is necessary to employ techniques to target specific branches of the

software. Genetic algorithms alone are not sufficient for classifying local minima

and maxima execution times.

• Modern constraint solvers offer no mechanism for building full constraint maps

for all possible iterations of a loop. In such a scenario, the modified exhaustive

approach discussed in this thesis should be used instead.

• During the testing phase, several test cases produced erroneous results due to

peaks in CPU usage by system processes. This caused the scheduler to devote

less time to the testing process and resulted in higher execution times for tests

that would otherwise run more quickly. When this happens, the fitness service

becomes “confused” and continually generates new inputs based on that very

high outlying test case. One option to overcome this problem is be to run each
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test several times with the same inputs and use an average. At that point,

outliers would become far less common.

• Each individual data type of input parameter needs to have a specialized class

responsible for generating new offspring input parameters in the evolutionary

testing phase. A boolean (true/false) parameter cannot be treated the same as

an integer parameter that uses a range of values. Future work therefore will

include supporting additional data types beyond simple primitives. Supporting

more complex data types (e.g., interfaces, generics, lists, and abstract data

types) will provide a far more rich user experience that can be used in production

systems. The current state of PPPT allows for more data types to be supported

very easily by subclassing the ApplicationVariable class and adding a new

’Create’ method method in the ApplicationVariableFactory class to create

new instances of that variable.
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