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ABSTRACT

Peng, Wei M.S., Purdue University, August 2011. Seed and Grow: An Attack Against
Anonymized Social Networks. Major Professor: Feng Li and Xukai Zou.

Digital traces left by a user of an on-line social networking service can be abused

by a malicious party to compromise the person’s privacy. This is exacerbated by the

increasing overlap in user-bases among various services.

To demonstrate the feasibility of abuse and raise public awareness of this issue,

I propose an algorithm, Seed and Grow, to identify users from an anonymized social

graph based solely on graph structure. The algorithm first identifies a seed sub-graph

either planted by an attacker or divulged by collusion of a small group of users, and

then grows the seed larger based on the attacker’s existing knowledge of the users’

social relations.

This work identifies and relaxes implicit assumptions taken by previous works,

eliminates arbitrary parameters, and improves identification effectiveness and accu-

racy. Experiment results on real-world collected datasets further corroborate my

expectation and claim.
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1 INTRODUCTION

A lunch-time walk across a university campus in the United States might lead one to

marvel at the prevalence of Internet-based social networking services, among which

Facebook and Twitter are two big players in the business. Indeed, as Alexa’s “top

500 global sites” statistics retrieved on May 2011 indicates, Facebook and Twitter

rank at 2nd and 9th place, respectively.

One characteristics of on-line social networking services is their emphasis on

users and their connections, rather than on content as traditional Web services do.

These services, while providing conveniences to users, accumulate a treasure of user-

produced contents and users’ social connection patterns, which were only available to

large telecommunication service providers or intelligence agencies a decade ago.

Data from social networks, once published, are of great interest to a large audi-

ence. For example, with the massive data sets, sociologists can verify hypotheses on

social structures and human behavior patterns. Third-party application developers

can produce value-added services like games based on users’ contact lists. Advertisers

can more accurately infer users’ demographic and preference profile and issue targeted

advertisement. Indeed, the 22 December 2010 revision of Facebook’s Privacy Policy

has the following clause, “we allow advertisers to choose the characteristics of users

who will see their advertisements and we may use any of the non-personally identifi-

able attributes we have collected (including information you may have decided not to

show to other users, such as your birth year or other sensitive personal information

or preferences) to select the appropriate audience for those advertisements”.

Due to the strong correlation between users’ data and the users’ social identity,

privacy is a major concern in dealing with social network data in contexts such as
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Figure 1.1. An illustration of naive anonymization. Each node represents
a user, with the user’s ID attached. Naive anonymization simply removes
the ID, but retains the network structure.

storage, processing and publishing. Privacy control, through which a user can tune

the visibility of her profile, is an essential feature in any major social networking

service.

The common practice for privacy-sensitive social network data publishing is through

anonymization, i.e., remove plainly identifying labels such as name, social security

number, postal or e-mail address, and retain the structure of the network as pub-

lished data. Figure 1.1 is a simple illustration of this process. The motivation behind

such processing prior to data publishing is that, by removing the “who” informa-

tion, the utility of the social networks is maximally preserved without compromising

users’ privacy. Narayanan and Shmatikov[1] report several high-profile cases in which

“anonymity has been unquestioningly interpreted as equivalent to privacy”.

Can the aforementioned “naive” anonymization technique achieve privacy preser-

vation in the context of privacy-sensitive social network data publishing? This in-

teresting and important question was posed only recently by Backstrom et al.[2].

A few privacy attacks have been proposed to circumvent the naive anonymization

protection[1, 2]. Meanwhile, more sophisticated anonymization techniques[3, 4, 5, 6, 7]

have been proposed to provide better privacy protection. Nevertheless, research in
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this area is still in its infancy and a lot of work, both in attacks and defenses, remain

to be done.

In this dissertation, I propose a two-stage identification attack, Seed-and-Grow,

against anonymized social networks. The name suggests a metaphor for visualizing

its structure and procedure. The attacker first plants a seed into the target social

network before its release. After the anonymized data is published, the attacker

retrieves the seed and makes it grow larger, thereby further breach privacy.

More concretely, my contributions include

• I propose an efficient seed construction and recovery algorithm (Section 3.1).

More specifically, I identify and relax the assumption for unambiguous seed iden-

tification and drop the assumption that the attacker has complete control over

the connection between the seed and the rest of the graph (Section 3.1.1); the

seed is constructed in a way which is only visible to the attacker (Section 3.1.1);

the seed recovery algorithm examines at most two-hop local neighborhood of

each node and thus is efficient (Section 3.1.2).

• I propose an algorithm which grows the seed (i.e., further identifies users and

hence violates their privacy) by exploiting the overlapping user bases among

social network services. Unlike previous works which rely upon arbitrary pa-

rameters on probing aggressiveness, my algorithm automatically finds a good

balance between identification effectiveness and accuracy (Section 3.2).

• I demonstrate significant improvements in identification effectiveness and ac-

curacy of the Seed-and-Grow algorithm over previous works with real-world

social-network datasets.

In light of the increasing overlapping user bases among social network services,

businesses and government agencies should realize that privacy protection is not only

an individual responsibility but also a social one. This work calls for a re-evaluation

of the current privacy-protection practices in publishing social-network data.
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2 BACKGROUND AND RELATED WORK

The two most important entities in a social network are social actors (i.e., users in a

social networking service) and the relations between pairs of social actors. Each social

actor has a set of associated attributes, such as name, gender, or age. Moreover, each

relation between a pair of social actors may also have attributes. An example is a

telephone contact history network, in which one possible numerical attribute on links

is the total number of calls made between two phones in the past two months.

A natural mathematical model to represent a social network is a graph. A graph

G consists of a set V of vertices and a set E ⊆ V ×V of edges. Labels can be attached

to both vertices and edges to represent their attributes.

In this context, privacy can be modeled in terms of these different components

of a graph. Indeed, Zhou et al.[8] categorize privacy as the knowledge of existence

or absence of vertices, edges, or labels. One special category is the graph metrics, in

which privacy was modeled not in terms of individual component of a graph (e.g.,

vertices), but in terms of metrics originated from social network analysis studies[9, 10],

such as betweenness, closeness, and centrality.

The naive anonymization is to remove those labels which can be uniquely associ-

ated with one vertex (or a small group of vertices) from V . This is closely related to

traditional anonymization techniques employed on relational datasets[11, 12]. How-

ever, the additional information conveyed in edges and its associated labels opens up

a new dimension of potential privacy breaches, from which Backstrom et al.[2] pro-

pose an identification attack against anonymized graph and coined the term structural

steganography.
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Beside privacy, other dimensions in formulating privacy attack against anonymized

social networks, as identified in numerous previous works[4, 5, 7, 8], are the published

data’s utility, and the attacker’s background knowledge.

Utility of published data measures information loss and distortion in the anonymiza-

tion process. The more information is lost or distorted, the less useful published data

is. Existing anonymization schemes[3, 4, 5, 7, 8] are all based on the trade-off between

usefulness of the published data and strength of protection. For example, Hay et al.[7]

propose an anonymization algorithm in which the original social graph is partitioned

into groups before publication, and “the number of nodes in each partition, along

with the density of edges that exist within and across partitions”, are published.

Zhou et al.[8] categorize existing anonymization methods into two general types,

namely, clustering-based approaches and graph modification approaches. Clustering-

based approach[7] clusters vertices and edges into groups and anonymizes a subgraph

into a super vertex. In contrast, the anonymization techniques adopted in the graph

modification approach[4] is more local, by modifying graph elements like vertices and

edges in a way that make a node hard to be identified from a group, while still keep

some important graph metrics.

Although trade-off between utility and privacy is necessary[13], it is hard, if not

impossible, to find a proper balance in general. Besides, it is hard to prevent attackers

from proactively collecting intelligence on the social network. It is especially relevant

today as major online social networking services provide APIs to facilitate third-party

application development. These programming interfaces can be abused by a malicious

party to gather information about the network.

Background knowledge characterizes the information in the attacker’s possession

which can be used to compromise privacy protection. It is closely related to what is

perceived as privacy in a particular context. For example, Zhou et al.[8] categorize

(user’s) privacy types and defines a (attacker’s) background knowledge model for each

type.
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In the battle between protecting and compromising privacy, the attacker always

has an upper hand because he may obtain some information unknown to the defender.

Many existing privacy protection mechanisms assume an adversary with limited back-

ground knowledge. For example, in one particular model[3], the attacker is assumed

to only know the degree sequence around the target. Though it is necessary for

understanding privacy threat to make assumptions on the attacker’s capability, the

assumptions should nevertheless be realistic for the protection mechanism to be ef-

fective. The strength of protection depends on the effort required for the attacker

to gather enough information to breach privacy, not on arbitrary assumption on the

attacker’s capability.

The attacker’s background knowledge is not restricted to the target’s neighbor-

hood in a single network, but may span multiple networks and include the target’s

alter egos in all these networks[1]. This is a realistic assumption. Consider the status

quo in the social networking service business, in which service providers, like Face-

book and Flickr, offer complementary services. It is very likely a user of one service

would simultaneously use another service[14]. As a person registers to different social

networking services, her social connections in these services, which somehow relates

to her social relationships in the real world, might reveal valuable information which

the attacker can make use of to threaten her privacy.

The above observation inspires Seed-and-Grow, which exploits the increasingly

overlapping user-bases among social networking services. A concrete example is help-

ful in understanding this idea.

[Motivating Scenario] Bob, as an employee of a social networking service

provider F-net, acquires from his employer a graph, in which vertices rep-

resent users and edges represent private chat logs. The edges are labeled

with attributes such as timestamps. In accordance with its privacy policy,

F-net has removed users’ ID from the graph before giving it to Bob.



7

Bob, being an inquisitive person, wants to know who these users are.

Suppose, somehow, Bob identifies 4 of these users from the graph (this

will become clear in the “Seed Construction” and “Seed Recovery” inter-

ludes in Section 3.1). By using a graph (with user ID tagged) he crawled

a month ago from the website of another service provider T-net (the 4

identified persons are also users of T-net) and carefully measuring struc-

tural similarity of these graphs, he manages to identify 10 more persons

from the anonymized graph from F-net (the “Dissimilarity” interlude in

Section 3.2 will illustrate how to do this).

By doing so, Bob defeats his employer’s attempt to protect the customers’

privacy.

I conclude this chapter with a brief comment on the choice of model. Undirected

graph is used to represent social networks, which arises naturally in scenarios where

the relation under investigation is mutual, e.g., friend requests must be confirmed in

Facebook. In contrast, directed graph is a natural model in other cases, e.g., a fan

follows a movie star in Twitter. A directed graph reveals more information about the

social relationships than its undirected counterpart. Thus, results on de-anonymizing

undirected graphs can be extended without essential difficulty to directed graphs.
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3 SEED-AND-GROW: THE ATTACK

This chapter studies an attack, Seed-and-Grow, that identifies users from an anonymized

social graph. Let an undirected graph GT = {VT , ET} represent the public target so-

cial network after anonymization. The attacker is assumed to have another undirected

graph GB = {VB, EB}, which models his background knowledge about the social re-

lationships among a group of people (i.e., VB are labeled with the identities of these

people). The motivating scenario demonstrates one way to obtain GB. The attack

concerned here is to infer the identities of the vertices VT by considering structural

similarity between GT and GB.

I assume that, before the release of GT , the attacker obtain (either by creating

or stealing) a few accounts and connect them with a few other users in GT (e.g.,

chatting in the motivating scenario). The attacker does not need much effort to do

this because these are only basic operations in a social networking service. Besides

user ID, the attacker knows nothing about the relationship between other users in

GT . Furthermore, unlike previous works, we do not assume the attacker has complete

control over the connections ; he just knows them before GT ’s release. This is more

realistic. An example is a confirmation-based social network, in which a connection is

established only if the two parties confirm it: the attacker can decline but not impose

a connection.

In contrast to a pure structure-based vertex matching algorithm[15], Seed-and-

Grow is a two-stage algorithm.

The seed stage plants (by obtaining accounts and establishing relationships) a

small specially designed subgraph GF = {VF , EF} ⊆ GT (GF is referred to as the

“flag” graph hereafter) into GT before its release. After the anonymized graph is
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Figure 3.1. A randomly generated graph GF may be symmetric. Vertices
in GF = {v1, . . . , v5} are double-circled.

released, the attacker locates GF in GT . The neighboring vertices VS of GF in GT are

readily identified and serve as an initial seed to be grown.

The grow stage is essentially a structure-based vertex matching, which further

identifies vertices adjacent to the initial seed VS. This is a self-reinforcing process, in

which the seed grows larger as more vertices are identified.

3.1 Seed

Successful retrieval of GF in GT is guaranteed if GF exhibits the following struc-

tural properties.

• GF is uniquely identifiable, i.e., no subgraph H ⊆ GT except GF is isomorphic

to GF . For example, in Figure 3.1, subgraph {v1, v2, v3} is isomorphic to sub-

graph {v1, v4, v5} because there is a structure-preserving mapping v1 7→ v1, v2 7→

v4, v3 7→ v5 between them. Therefore, they are structurally indistinguishable.

• GF is asymmetric, i.e., GF does not have any non-trivial automorphism. For

example, in Figure 3.1, subgraph {v1, v2, . . . , v5} has an automorphism v1 7→

v1, v2 7→ v3, v3 7→ v4, v4 7→ v5, v5 7→ v2.

In practice, since the structure is unknown to the attacker before its release,

the uniquely identifiable property is not realizable. However, as was previously

proved[2], with a large enough size and randomly generated edges under the Erdös-

Rényi model[16], GF will be uniquely identifiable with high probability.
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Although a randomly generated graph GF is very likely to be uniquely identifiable

in GT , it may violate the asymmetric structural property. An example is shown in

Figure 3.1. If this graph is used as GF , even if the attacker can uniquely recover

it from GT , he will have a hard time identifying vertices v2, v3, v4, and v5. Al-

though it was shown that almost all “large enough” randomly generated graphs are

asymmetric[17], in practice, the attacker is more likely to generate a relatively small

GF , which demands less effort on his part.

However, because the goal of seed is to identify the initial seed VS rather than

the flag GF , the asymmetric requirement for GF can be relaxed. For u ∈ VS, let

VF (u) be the vertices in VF which connects with u (|VF (u)| ≥ 1 by the definition of

VS). For each pair of vertices, say u and v, in VS, as long as VF (u) and VF (v) are

distinguishable in GF (e.g., |VF (u)| 6= |VF (v)| or the degree sequences are different;

more precisely, no automorphism of GF exists which maps VF (u) to VF (v)), once GF

is recovered from GT , VS can be identified uniquely. In Figure 3.1, since VF (6) and

VF (7) are not distinguishable, vertices v6 and v7 can not be identified through GF .

Based on these observations, I propose the following method for constructing and

recovering GF .

3.1.1 Construction

The construction of GF starts with a star structure (like in Figure 3.1). The

motivation for adopting such a structure will be clear in Section 3.1.2. We call the

vertex at the center of the star the head of GF and denote it by vh. In other words,

vh connects to every other vertices in GF and no others.

The vertices in VF − {vh} are connected with some other vertices VS (the initial

seed) in GT , which the attacker has no complete control over (he can only ensure

that VF (u) 6= VF (v) for any pair of vertices u and v from VS by declining connections

which render indistinguishable vertices in VS).
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As discussed before, the attacker has to ensure that no automorphism of GF will

map VF (u) to VF (v). Therefore, he first connects pairs of vertices in VF −{vh} with a

probability of p (in the fashion of Erdös-Rényi model). Then, he collects the internal

degree DF (v) for every v ∈ VF −{vh} (i.e., v’s degree in GF rather than in GT ; hence

internal degree) into an ordered sequence SD.

Now, for every v ∈ VS, v has a corresponding subsequence SD(v) of SD according

to its connectivity with VF . For example, in Figure 3.1, v6 connects to v2 and v3 from

GF ; since DF (v2) = DF (v3) = 1, SD(v6) = 〈1, 1〉. As long as SD(u) 6= SD(v) for u and

v from VS, no automorphism of GF will map VF (u) to VF (v). Therefore, the attacker

guarantees unambiguous recovery of VS by ensuring that the randomly connected GF

satisfies this condition. If not, the attacker will simply redo the random connection

among VF − {vh} until it does (which eventually will since the attacker can ensure

VF (u) 6= VF (v) for any pair u and v from VS by declining connections that will violate

this condition). Algorithm 1 summarizes this procedure.

[Seed Construction] Bob had created 7 accounts vh and v1, . . . , v6, i.e., VF .

He first connected vh with v1, . . . , v6. After awhile, he noticed that users

v7 to v10 are connected with v1, . . . , v6, i.e., VS = {v7, . . . , v10}.

Then, he randomly connected v1, . . . , v6 and got the resulting graph GF

as shown in Figure 3.2. The ordered internal degree sequence SD =

〈2, 2, 2, 3, 3, 4〉.

Bob found SD(v7) = 〈2〉, SD(v8) = 〈2, 2〉, SD(v9) = 〈3, 3, 4〉, and SD(v10) =

〈2, 3〉. Since they are mutually distinct, Bob was sure that he could iden-

tify v7 to v10 once VF were found in the published anonymized graph.

The degree of head vertex vh, the ordered internal degree sequence SD and the

subsequences chosen for VS are the secrets held by the attacker. As shown in Sec-

tion 3.1.2, these secrets are used to recover GF from GT and thereafter to identify VS.

From the defender’s point of view, without knowing the secrets, there is no structure



12

Algorithm 1 Seed construction.

1: Create VF = {vh, v1, v2, . . .}.

2: Given connectivity between VF and VS.

3: Connect vh with v for all v ∈ VF − {vh}.

4: loop

5: for all pairs va 6= vb in VF − {vh} do

6: Connect va and vb with a probability of p.

7: end for

8: for all u ∈ VS do

9: Find SD(u).

10: end for

11: if SD(u) are mutually distinct for all u ∈ VS then

12: return

13: end if

14: end loop

which characterizes GF due to the random nature in seed construction. Therefore,

GF is visible only to the attacker.

3.1.2 Recovery

Once GF has been successfully planted and GT is released, the recovery of GF

from GT consists of a systematic check of attacker’s secrets. The first step is to find

a candidate u for the head vertex vh in GT by degree comparison. Then, the ordered

internal degree sequence of the candidate flag graph (i.e., 1-hop neighborhood of u)

and the subsequence secret of candidate initial seed (i.e., exact 2-hop neighborhood of

u) are checked. If the candidate flag graph passes these secret checks, it is identified

with GF and its neighbor are identified with VS by subsequence secret comparison.

Algorithm 2 has the detail.
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Figure 3.2. An illustration of the seed stage. Vertices in the flag GF =
{vh, v1, . . . , v6} are double-circled. The ordered internal degree sequence
SD = 〈2, 2, 2, 3, 3, 4〉. The internal degree subsequence for the neighboring
vertices VS = {v7, . . . , v10} of GF are SD(v7) = 〈2〉, SD(v8) = 〈2, 2〉,
SD(v9) = 〈3, 3, 4〉, and SD(v10) = 〈2, 3〉. Since they are mutually distinct,
VS can be uniquely identified once GF is recovered.

[Seed Recovery] After the anonymized graph GT was released, Bob started

to check the graph to find the flag. He did this by examining all the vertices

in GT for one with degree 6 (because he knew vh had degree of 6).

Suppose now, he reached vh (but he did not know at that moment). He

found the vertex had degree of 6. So he isolated it (which he called can-

didate head vc) along with its 1-hop neighbors (which he called candidate

flag Gc), and recorded for each of the neighbors the number of connections

in Gc (internal degrees). He found that the 1-hop neighbors of vc had an

ordered internal degree sequence 〈2, 2, 2, 3, 3, 4〉, which matched with that

of VF . He then proceeded to isolate vc’s exact 2-hop neighbors (which he

called candidate initial seed Vc) and checked their ordered internal degree

subsequences with the candidate flag Gc. He found they again matched

with those of VS.
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Bob was convinced that he had found GF . By matching the ordered

internal degree subsequences of Vc, he identified v7, v8, v9 and v10. For

example, for a 2-hop neighbor u ∈ Vc which connected with three 1-hop

neighbors with internal degrees 3, 3 and 4, he identified u with v9.

The motivation for incorporating the head vertex technique in the seed construc-

tion stage is clear now. The only connections vh has are internal ones. Therefore,

once a candidate head vertex u is found, the candidate flag can be readily determined

by reading off the 1-hop neighborhood of u. Thereafter, no probing or backtracking

is needed for finding GF like in previous works[1, 2].

The efficiency of the algorithm is evident by observing that, in Algorithm 2, the

maximal level of nested loops is 3 (2 of them are on a vertex’s neighborhood) and

no recursion is involved. Because the 2-hop neighborhood of uv (e.g., VF ∪ VS) are

controlled by the attacker (as secrets), if the size (i.e., the number of vertices) of the

2-hop neighborhood is N , the complexity of the recovery algorithm is O(N |VT |).

3.2 Grow

The initial seed provides a firm ground for further identification in the anonymized

graph GT . Background knowledge GB comes into play at this stage.

At this stage, there is a partial mapping between GT and GB, i.e., the initial

seed VS in GT maps to its corresponding identities in GB. Two examples of partial

graph mappings are the Twitter and Flickr datasets[1] and the Netflix and IMDB

datasets[18]. The straightforward idea of testing all possible mappings for the rest of

the vertices has an exponential complexity, which is unacceptable even for a medium-

sized network. Beside, the overlapping between GT and GB may well be partial (e.g.,

|VT | 6= |VB|), so a full mapping is either impossible or undesirable. Therefore, the

grow algorithm adopts a progressive and self-reinforcing strategy, mapping multiple

vertices at a time.
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Algorithm 2 Seed recovery.

1: for all u ∈ GT do

2: if deg(u) = |VF | − 1 then

3: U ← exact 1-hop neighborhood of u

4: for all v ∈ U do

5: d(v)← number of v’s neighbors in U ∪ {u}

6: end for

7: s(u)← sort(d(v)|v ∈ U)

8: if s(u) = SD then

9: V ← exact 2-hop neighborhood of u

10: for all w ∈ V do

11: U(w)← w’s neighbors in U

12: s(w)← sort(d(v)|v ∈ U(w))

13: end for

14: if 〈s(w)|w ∈ V 〉 = 〈SD(v)|v ∈ VS〉 then

15: {w ∈ V is identified with v ∈ VS if s(w) = SD(v)}

16: end if

17: end if

18: end if

19: end for

Figure 3.3 shows a small example. v7 to v10 have already been identified in the

seed stage (recall Figure 3.2). The task is to identify other vertices in the target graph

GT .

The grow algorithm centers around a pair of dissimilarity metrics between a pair

of vertices from the target and the background graph respectively. In order to enhance

the identification accuracy and to reduce the computation complexity and the false-

positive rate, I introduce a greedy heuristic with revisiting into the algorithm. These

details are examined below.
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Figure 3.3. An illustration of the grow stage. Vertices in the initial seed
VS = {v7, . . . , v10} are double-circled. Those vertices in the target graph
GT with labels starting with an asterisk are yet to be identified. The task
of the grow stage is to identify these vertices.

3.2.1 Dissimilarity

It is natural to start with those vertices in GT which connect to the initial seed

VS because they are more close to the certain information, i.e., the already identified

vertices VS. For these vertices, their neighboring vertices can be divided into two

groups. Namely, for such a vertex u, its neighborhood in GT is composed of N T
m(u)

(mapped neighbors) and N T
u (u) (unmapped neighbors). For instance, in Figure 3.3,

N T
m(u∗1) = {u7, u8, u9} and N

T
u (u∗1) = {u∗4}.

Similar definitions can be made for the background graph GB. Suppose the seed

VS ⊆ VT maps to V ∗

S ⊆ VB. For a V ∗

S ’s neighboring vertex v, let NB
m (v) be v’s

neighbors in V ∗

S and NB
u (v) be the other (i.e., unmapped) neighbors. Hence, in

Figure 3.3, NB
m (v12) = {v9, v10} and N

B
u (v12) = {v11, v16}.

The mapped vertices in VS and V ∗

S are identified so that N T
m(u∗1) − N

B
m (v12) =

{u7, u8} = {v7, v8} in Figure 3.3.

For a pair of nodes, u ∈ VT and v ∈ VB, the following definitions are made.

∆T (u, v) =
|N T

m(u)−N
B
m (v)|

|N T
m(u)|

, (3.1)
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Table 3.1
Dissimilarity metrics for pairs of unmapped vertices in Figure 3.3. Each
tuple consists of a (∆T ,∆B) pair.

∆ u∗1 u∗2 u∗3

v11 (0.00, 0.00) (0.00, 0.33) (0.50, 0.67)

v12 (0.67, 0.50) (0.50, 0.50) (0.00, 0.00)

and

∆B(u, v) =
|NB

m (v)−N T
m(u)|

|NB
m (v)|

, (3.2)

in which | · | is the number of set elements, i.e., set cardinality. I call these metrics

dissimilarity. In Figure 3.3, ∆T (u∗1, v12) = |{u7, u8}|/|{u7, u8, u9}| = 2/3 ≈ 0.667

and ∆B(u∗1, v12) = |{v10}|/|{v9, v10}| = 1/2 = 0.5.

∆T (u, v) and ∆B(u, v) together measure how different u and v’s mapped neigh-

borhoods are. By its definition in Equations 3.1 and 3.2, both ∆T (u, v) and ∆B(u, v)

are in the range of [0, 1]. More precisely, when their mapped neighborhoods are

the same (N T
m(u) = NB

m (v)), we have ∆T (u, v) = ∆B(u, v) = 0, which means u

and v match perfectly in regard to their mapped neighborhoods. Otherwise, when

N T
m(u) ∩ N

B
m (v) = ∅, ∆T (u, v) = ∆B(u, v) = 1. The reason to have two asymmetric

metrics (in regard to the target and background graphs) instead of a symmetric one

is that I want to choose those mappings which are the mutually best choices for the

graphs.

Again, a concrete example helps.

[Dissimilarity] Bob applied the dissimilarity metrics defined in Equations 3.1

and 3.2 to Figure 3.3 and got the results shown in Table 3.1.

Bob first identified the tuples in Table 3.1 which has the smallest ∆T and

∆B in both its row and column. In this case, these tuples are (u∗1, v11)

and (u∗3, v12). Since they are from different rows and columns, they do
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not conflict with each other. So Bob decided to map u∗1 to v11 and u∗3 to

v12.

He then added v∗1 ↔ v11 and v∗3 ↔ v12 to the seed and moved on to the

next iteration of identification.

3.2.2 Greedy Heuristic

Bob’s story suggests a way of using the dissimilarity metrics defined in Equa-

tions 3.1 and 3.2 to iteratively grow the seed. In each iteration, the neighboring

vertices of the seed in VT and VB are mixed and matched and for each pair, say

u ∈ VT and v ∈ VB, ∆T (u, v) and ∆B(u, v) are computed; the results are collected

into a table like Table 3.1.

Since smaller dissimilarity implies better match, I identify those tuples in the

table which has smallest ∆T and ∆B in both its row and column; these tuples are

the mutually best matches from/to the target graph to/from the background graph.

The mappings corresponding to these tuples are added to the seed and move on to

the next iteration.

I gloss over a subtlety in the above description: if there are conflicts in choice, i.e.,

there are more than one tuples satisfying the above criterion in a row or a column,

which one shall I choose? Rather than randomly selecting a tuple, I select the tuple

that stands out and add the corresponding match to the seed. If there is still a tie,

these tuples are reckoned as indistinguishable under the dissimilarity metrics. To

reduce incorrect identifications, I refrain from randomly picking one and adding the

mapping to the seed in these scenarios.

This boils down to the question of how to quantify the concept of “a tuple standing

out among its peers”. Since each tuple consists of two numbers in the range of [0, 1],

the question translates to that of quantifying the concept of “a number standing out

among a group of numbers”. I define an eccentricity metric for this purpose. Let X be
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a multi-set of numbers (the same number can occur multiple times). The eccentricity

of a number x ∈ X is defined as

EX(x) =











∆X(x)
σ(X)#X(x)

if σ(X) 6= 0

0 if σ(X) = 0
. (3.3)

in which ∆X(x) is the absolute difference between x and its closest different value

in X; #X(x) is the multitude of x in X, i.e., the number of elements equal to x in

X; σ(X) is the standard deviation of X. The larger EX(x) is, the more x stands out

among X. The role of #X(x) becomes evident by considering the eccentricity of 1 in

(0, 0, 1) and (0, 1, 1), in which ∆X(x) and σ(X) are the same but 1 arguably stands

out more prominently in (0, 0, 1) than in (0, 1, 1).

Therefore, if there are conflicts in a row, these tuples have the same ∆T and

∆B. For each such tuple, ∆T and ∆B in the same column are collected into XT

and XB respectively and compute EXT
(∆T ) and EXB

(∆B). If there is a unique tuple

with largest EXT
(∆T ) and EXB

(∆B), the corresponding mapping is added to the seed;

otherwise, no mapping is added to the seed.

3.2.3 Revisiting

The dissimilarity metric and the greedy search algorithm for optimal combination

are heuristic in nature. At an early stage with only a few seeds, there might be quite

a few mapping candidates for a particular vertex in the background graph; it is likely

to pick a wrong mapping no matter which strategy is used in resolving the ambiguity.

If left uncorrected, the incorrect mappings will propagate through the grow process

and lead to large-scale mismatch.

I address this problem by reexamining previous mapping decisions given new evi-

dences in the grow algorithm; I call this revisiting. More concretely, for each iteration,

all vertices which have at least one seed neighbor are considered; these are the vertices

on which the dissimilarity metrics in Equations 3.1 and 3.2 are well-defined.
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I observed in experiments that, for a few initial seeds, the revisiting technique as

presented above led to the following situation: on iteration i, the algorithm chose the

vertices Ti ⊂ VT and Bi ⊂ BT , from target and background graphs respectively, as

mapping candidates; on iteration i+1, the algorithm chose Ti+1 ⊂ VT and Bi+1 ⊂ VB;

on iteration i+ 2, the algorithm chose Vi+2 = Vi and Bi+2 = Bi again; the algorithm

stuck in these two cases and never finished. I address this problem by recording all

mapping candidate pairs and stop as soon as a mapping candidate pair occurs twice.

In the scenarios mentioned earlier, the algorithm will stop at iteration i+2 and output

as result the seed produced by iteration i+ 1.

As shown in Section 4.3.3, the revisiting technique increases the accuracy of the

algorithm. The greedy heuristic with revisiting is summarized in Algorithm 3.
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Algorithm 3 Grow.

1: Given the initial seed VS.

2: C = ∅

3: loop

4: CT ← {u ∈ VT |u connects to VS}

5: CB ← {v ∈ VB|v connects to VS}

6: if (CT , CB) ∈ C then

7: return VS

8: end if

9: C ← C ∪ {(CT , CB)}

10: for all (u, v) ∈ (CT , CB) do

11: Compute ∆T (u, v) and ∆B(u, v).

12: end for

13: S ← {(u, v)|∆T (u, v) and ∆B(u, v) are smallest among conflicts}

14: for all (u, v) ∈ S do

15: if (u, v) has no conflict in S or (u, v) has the uniquely largest eccentricity

among conflicts in S then

16: VS ← VS ∪ {(u, v)}

17: end if

18: end for

19: end loop



22

4 EXPERIMENTS

I conducted a comparative study on the performance of the Seed-and-Grow algorithm

by simulation on real-world social network datasets.

4.1 Setup

I used two datasets collected from different real-world social networks in this study.

The Livejournal dataset, which was collected from the friend relationship of

the on-line journal service LiveJournal on 9–11 December 2006 and kindly provided

to the research community by Mislove et al.[19], consists of 5.2 million vertices and

72 million links. The links are directed. I conducted the experiments on the more

difficult setting of undirected graph: an undirected link between two vertices was

retained if and only if there was a directed link in either direction.

The other dataset, emailWeek1, consists of 200 vertices and 1, 676 links. This

dataset, by its nature, is undirected.

Using datasets collected from different underlying social networks helped to re-

duce bias induced by the idiosyncrasy of a particular network in performance mea-

surements.

The performance of the grow algorithm was measured by its ability to identify the

anonymous vertices in the target graph. I derived the target and background graphs

from each dataset and used their shared vertices as the ground truth to measure

against.

1The dataset and its visualization are publicly available at http://www.infovis-wiki.net/index.
php/Social_Network_Generation.
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More precisely, I derived the graphs with the following procedure. First, I chose

a connected subgraph with N∩ vertices from the dataset, which served as shared

portion of the background and target graphs. I then picked other two sets of vertices

(totally different from the previous N∩ vertices) with NB−N∩ and NT −N∩ vertices,

respectively, and combined with shared portion graph to obtain the background graph

(with NB vertices) and the target graph (with NT vertices). After this, NS (NS < N∩

and not necessarily connected) vertices were chosen from the shared portion to serve

as the initial seed. Finally, random edges were added to the target graph to simulate

the difference between the target and background graphs.

The motivation for adopting such a procedure was to simulate a more realistic

scenario. The attacker had a (connected) background graph with NB vertices and

an anonymous target graph with NT vertices. Apart from the NS initial seed, the

overlap of these two graphs (with N∩ vertices) might well be partial. The desirable

behavior of an identification algorithm was to stop as soon as the vertices in the shared

portion had been identified. Since the background graph was an unperturbed graph

the attacker obtained from elsewhere, I opted to perturb the target graph to simulate

the difference between these two graphs. I perturbed by addition rather than deletion

of edges to avoid fragmenting the target graph into disconnected pieces, which would

create a false impression of early stopping in simulation.

4.2 Seed

The Seed construction (Algorithm 1) and recovery (Algorithm 2) algorithms en-

sure that, once the flag graph GF is successfully recovered, the initial seed VS can

be unambiguously identified. Therefore, the seed construction depends on GF being

uniquely recovered from the released target graph.

In the experiment, a number of modest-sized flag graphs with 10 to 20 vertices

are generated and planted into the Livejournal dataset with Algorithm 1. I was
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able to uniquely recover them from the resulted graph with Algorithm 2 without an

exception.

To explain this result, I made the following estimation on the number of essen-

tially different (i.e., with different ordered internal degree sequence SD) constructions

produced by Algorithm 1.

For a flag graph GF with n vertices, there are n− 1 vertices beside the head node

vh. By Algorithm 1, vh is connected with each of the n − 1 vertices. So we only

need to consider the connections between the n− 1 non-head vertices to estimate the

number of constructions.

There are (n− 1)(n− 2)/2 pairs among the n− 1 vertices; the edge between each

pair of vertices can be either present or absent. Therefore, there are 2(n−1)(n−2)/2

different flag graphs.

However, some of them are considered the same by Algorithm 1. For example,

the ordered internal degree sequence SD = 〈2, 2, 2, 3, 3, 4〉 in Figure 3.2. There are 3,

2, and 1 vertices with an internal degree of 2, 3, and 4, respectively; hence, there are
(

6
3

)(

3
2

)(

1
1

)

different flag graphs with the same ordered internal degrees sequence.

For any ordered internal degree sequence SD, there are at most

(

n− 1

1

)(

n− 2

1

)

· · ·

(

2

1

)(

1

1

)

= (n− 1)!

flag graphs with n vertices. The ordered internal degree sequence divides all flag

graphs into equivalent classes. Therefore, there are at least

2(n−1)(n−2)/2

(n− 1)!
.

essentially different constructions produced by Algorithm 1.

Figure 4.1 shows this estimate for a few different flag graph sizes. From this, we

can understand the reason for the high probability for successful flag graph recovery,

even in a large graph like Livejournal with 5.2 × 106 vertices: there are so many

ways to construct essentially different flag graphs.
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Table 4.1
The estimate of essentially different constructions for a flag graph GF with
n vertices produced by Algorithm 1.

n 10 11 12 13

estimate 1.89× 106 9.70× 107 9.03× 108 1.54× 1011

4.3 Grow

The grow algorithm is compared with the one proposed by Narayanan and Shma-

tikov[1]. There is a mandatory threshold parameter, which controls the probing

aggressiveness, in their algorithm. Lacking a quantitative guideline to choose this

parameter[1], I experimented with different values and found that, with increasing

threshold, more nodes were identified but the accuracy decreased accordingly. There-

fore, I used two different thresholds, which established a performance envelop for the

Narayanan algorithm. The result was two variants of the algorithm: an aggressive

one (with a threshold of 0.0001) and a conservative one (with a threshold of 1). The

difference of the two variants lies in the tolerance to the ambiguities in matching:

the aggressive variant might produce a mapping in a case whereas the conservative

variant would deem too ambiguous.

I perceive such an arbitrary parameter, lacking a quantitative guideline, as a major

drawback of the Narayanan algorithm: a user of the algorithm must decide on the

parameter without knowing how much accuracy is sacrificed for better effectiveness

(the number of identified nodes). In contrast, the Seed-and-Grow algorithm has

no such parameter and, as demonstrated by the experiments, finds a good balance

between effectiveness and accuracy.

To account for the bias on the performance measurement of a particular graph

setting, for each target/background graph pair, multiple runs of simulations were

conducted with different initial seeds; the average was taken as the performance result.

I focused the simulations on graphs with hundreds of vertices, which were big enough
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Figure 4.1. Grow performance with different initial seed sizes. The Seed-
and-Grow (sng) algorithm is compared with two variants of the identifi-
cation algorithm proposed by Narayanan and Shmatikov[1]: “aggressive”
(nar a; with a threshold of 0.0001) and “conservative” (nar c; with a
threshold of 1). An edge perturbation of 0.5% is introduced to simulate a
more realistic scenario. (a), (b), and (c) are from Livejournal; (d), (e),
and (f) are from emailWeek.

to make the identification non-trivial. More precisely, I chose (NC = 400+NS, NT =

600+NS, NB = 600+NS) for Livejournal and (NC = 100+NS, NT = 125+NS, NB =

125 + NS) for emailWeek. In other words, the ideal result is to correctly identify

400 + NS nodes for Livejournal and 100 + NS nodes for emailWeek, where NS is

the size of initial seed.
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(c) emailWeek, correct identifications.
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(d) emailWeek, incorrect identifications.

Figure 4.2. Grow performance with different initial seed sizes on a larger
scale than Figure 4.1. The Seed-and-Grow (sng) algorithm is compared
with two variants of the identification algorithm proposed by Narayanan
and Shmatikov[1]: “aggressive” (nar a; with a threshold of 0.0001) and
“conservative” (nar c; with a threshold of 1). An edge perturbation of
0.5% is introduced to simulate a more realistic scenario. (a) and (b) are
from Livejournal; (c) and (d) are from emailWeek.

4.3.1 Initial Seed Size

Recent literature[20] on interaction-based social graph (e.g., the social graph in the

motivating scenario) singles out attacker’s interaction budget as the major limitation

to attack effectiveness. The limitation translates to 1) the initial seed size and 2)

number of links between the flag graph and initial seed. The seed algorithm resolves

the latter issue by guaranteeing unambiguous identification of initial seed regardless
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Figure 4.3. Grow performance with different edge perturbation percent-
age. The Seed-and-Grow (sng) algorithm is compared with two variants
of the identification algorithm proposed by Narayanan and Shmatikov[1]:
“aggressive” (nar a; with a threshold of 0.0001) and “conservative” (nar
c; with a threshold of 1). The initial seed size is 15 for both datasets. (a),
(b), and (c) are from Livejournal; (d), (e), and (f) are from emailWeek.

of link numbers. As shown below, the grow algorithm resolves the former issue by

working well with a small initial seed.

Figure 4.1 shows the grow performance with different initial seed sizes. To simu-

late the more realistic case that the target and background graphs are from different

sources and therefore might be differ even among the same group of vertices, I in-
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(b) Livejournal, incorrect identifications.
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(c) emailWeek, correct identifications.
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(d) emailWeek, incorrect identifications.

Figure 4.4. Grow performance with different edge perturbation percentage
on a larger scale than Figure 4.3. The Seed-and-Grow (sng) algorithm is
compared with two variants of the identification algorithm proposed by
Narayanan and Shmatikov[1]: “aggressive” (nar a; with a threshold of
0.0001) and “conservative” (nar c; with a threshold of 1). The initial seed
size is 15 for both datasets. (a) and (b) are from Livejournal; (c) and
(d) are from emailWeek.

troduced an edge perturbation of 0.5%, i.e., I added 0.5% of the all the edges in the

target graph’s complement to the target graph.

A few points are noted in Figure 4.1.

• More nodes are correctly identified with increasing initial seed size for both

Seed-and-Grow and Narayanan.
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• Seed-and-Grow is better (or at least comparable) to the aggressive Narayanan

in terms of number of correct identifications, and is superior when comparing

with conservative Narayanan. For Livejournal, conservative Narayanan stops

almost immediately (the correct identification statistics shown in Figure 4.1

includes the initial seed). In contrast, even for very small initial seed of 5

nodes, Seed-and-Grow correctly identifies averagely 32 nodes for Livejournal

and 62 nodes for emailWeek while only incorrectly identifies 1 nodes on average.

• Though aggressive Narayanan correctly identifies more nodes as seed size grow,

the number of incorrect identification grows accordingly. This is especially ev-

ident in Livejournal. In contrast, the incorrect identification number for Seed-

and-Grow remains constant in emailWeek and grows very slowly in Livejournal;

in either case, the percentage of correct identification, as defined by the num-

ber of correct identifications over the total number of identified nodes, is much

higher for Seed-and-Grow than for aggressive Narayanan.

An ideal grow algorithm should be both effective and accurate. Effectiveness

is measured by the number of correct identification; accuracy is measured by the

percentage of correct identification. Figure 4.1 shows Seed-and-Grow is 1) comparable

to aggressive Narayanan in terms of effectiveness while better in terms of accuracy;

2) comparable to conservative Narayanan in terms of accuracy while better in terms

of effectiveness.

Figure 4.2 shows, on a larger scale, the comparison in Figure 4.1 in a slightly

different form. The previous observations on algorithm performance hold for larger

seeds.

It is arguable that, with a “proper” threshold, Narayanan will show the same or

even superior performance than Seed-and-Grow. However, lacking any quantitative

guideline, such a proper threshold is hard, if not impossible, to find for the vast array

of graphs the identification algorithm applies to. Even one can find such a threshold, it

is unclear that its performance will be superior to that of Seed-and-Grow. In contrast,
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(a) Livejournal, correct identifications.
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(b) Livejournal, incorrect identifications.
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(c) emailWeek, correct identifications.
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(d) emailWeek, incorrect identifications.

Figure 4.5. Grow performance with different initial seed sizes. Seed-and-
Grow algorithm is compared with (sng w r) and without (sng w/o r)
revisiting. An edge perturbation of 0.5% is introduced to simulate a more
realistic scenario. (a) and (b) are from Livejournal; (c) and (d) are from
emailWeek.

Seed-and-Grow has no such arbitrary parameter. The point is that Seed-and-Grow

automatically finds a sensible balance between effectiveness and accuracy.

4.3.2 Edge Perturbation

The impact of edge perturbations on the grow performance is shown in Figure 4.3.

The initial seed size was 15.
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(b) Livejournal, incorrect identifications.

 40

 50

 60

 70

 80

 90

 100

 0  0.5  1  1.5  2  2.5  3

C
o

rr
e

c
t 

Id
e

n
ti
fi
c
a

ti
o

n

Edge Perturbation (%)

sng w r
sng w/o r

(c) emailWeek, correct identifications.
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(d) emailWeek, incorrect identifications.

Figure 4.6. Grow performance with different edge perturbation percent-
age. Seed-and-Grow algorithm is compared with (sng w r) and without
(sng w/o r) revisiting. The initial seed size is 15 for both datasets. (a)
and (b) are from Livejournal; (c) and (d) are from emailWeek.

Correct identifications decreased with a larger edge perturbation percentage for all

algorithms. Incorrect identifications increased with edge perturbation for aggressive

Narayanan while remaining at a constant level for Seed-and-Grow and conservative

Narayanan.

Seed-and-Grow is more effective than conservative Narayanan in all settings. Al-

though aggressive Narayanan is more effective than Seed-and-Grow for larger pertur-

bation percentage, it comes with a price of much lower accuracy: for Livejournal,

aggressive Narayanan made more incorrect identifications than correct ones. In con-
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trast, the number of incorrect identification for Seed-and-Grow remained almost con-

stant for different perturbation percentage.

A high accuracy (i.e., high percentage of correct identification) is desirable, even

at a reasonable cost of effectiveness (fewer nodes identified). This is because, lacking

the knowledge whether an identification is correct, accuracy corresponds to the user’s

confidence in the identification result. For example, in Figure 4.3c, even though ag-

gressive Narayanan correctly identifies 109 nodes on average while Seed-and-Grow

only correctly identifies 70 nodes on average, the former incorrectly identifies 128

nodes on average while the latter only incorrectly identifies 20 nodes on average.

Without knowing which nodes are correctly identified, a user has less than 50% confi-

dence in the results of aggressive Narayanan while having more than 75% confidence

in the results of Seed-and-Grow.

Figure 4.4 shows, on a larger scale, the comparison in Figure 4.3 in a slightly differ-

ent form. The discussions on algorithm performance hold for larger edge perturbation

percentages.

On reflection, I attribute the relatively high accuracy of Seed-and-Grow to its con-

servative design in the grow algorithm (Algorithm 3). More specifically, a mapping is

added to the seed (i.e., grow the seed) if and only if 1) it is the mutually best choice

for the pair of nodes under the dissimilarity metric and 2) it stands out among alter-

native choices in the sense that it has no tie under the eccentricity metric. Besides,

the algorithm further improves accuracy by revisiting earlier mappings in light of new

mappings.

4.3.3 Revisiting

To verify the expectation that the revisiting technique improves performance, I

ran simulations of the Seed-and-Grow algorithm without revisiting , and compared it

with the full version with revisiting. The results are shown in Figures 4.5 and 4.6.
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The results indicate that revisiting reduces incorrect identifications for both datasets

while, in the case of emailWeek, also reduces correct identifications by around the

same number. Because Seed-and-Grow has the desirable property that correct iden-

tifications far outnumber incorrect ones, proportionally speaking, the increase in ac-

curacy far outweighs the sacrifice in effectiveness. This confirms the conjecture that

it is worthwhile to revisit previous mappings.
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5 CONCLUSION

With the increasing popularity of on-line social network services, digital traces left

by a user of such services might be collected and abused by a malicious party to

compromise that user’s privacy.

To demonstrate the feasibility of abuse and raise public awareness on this issue,

I propose an algorithm, Seed-and-Grow, to identify users from an anonymized social

graph. Seed-and-Grow exploits the increasing overlapping user-bases among services

and is based solely on social graph structure. The algorithm first identifies a seed

sub-graph either planted by an attacker or divulged by collusion of a small group of

users, and then grows the seed larger based on the attackers existing knowledge of

the users social relations. I identify and relax implicit assumptions for unambiguous

seed identification taken by previous works, eliminate arbitrary parameters in grow

algorithm, and demonstrate the superior performance over previous works in terms of

identification effectiveness and accuracy by simulation on real-world-collected social-

network datasets.

As an extension to the current work, I plan to incorporate tagging (known map-

pings from external source) into Seed-and-Grow. Although Seed-and-Grow is based

solely on graph structure, with auxiliary information often abounded in real-world

dataset, I expect tagging will further increase identification effectiveness and accu-

racy.

Another potential extension is to adapt the grow algorithm to work with multiple

seeds. A challenge is to resolve conflicting grow result from different seeds. Another

challenge is to design a multiple-seed grow algorithm with a super-linear (with regard
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to seed number) effectiveness (i.e., high number of correct identification) without

sacrificing accuracy (i.e., low number of incorrect identifications).
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