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ABSTRACT 

 

Dharmarajan, Subramanian. M.S., Purdue University, August 2012. BMP 
Pathway and Reactive Retinal Gliosis. Major professor: Teri Belecky-Adams. 

 

Reactive gliosis is known to have a beneficial and a degenerative effect following 

injury to neurons. Although many factors have been implicated in reactive gliosis, 

their role in regulating this change is still unclear. We investigated the role of 

bone morphogenetic proteins in reactive gliosis in vivo and in vitro. In vivo, IHC 

analysis indicated reactive gliosis in the 6 week Ins2Akita mouse and WPK rat 

retinas. Expression of BMP7 was upregulated in these models, leading to an 

increase in the phosphorylation of downstream SMAD1. In vitro, treatment of 

murine retinal astrocyte cells with a strong oxidizing agent such as sodium 

peroxynitrite regulated RNA levels of various markers, including GFAP, CSPGs, 

MMPs and TIMPs. BMP7 treatment also regulated RNA levels to a similar extent, 

suggesting reactive gliosis. Treatment with high glucose DMEM and BMP4, 

however, did not elicit increase in levels to a similar degree. Increase in SMAD 

levels and downstream targets of SMAD signaling such as ID1, ID3 and MSX2 

was also observed following treatment with sodium peroxynitrite in vitro and in 

the 6 week Ins2Akita mouse retinas in vivo. These data concur with previously 

established data which show an increase in BMP7 levels following injury. It also 
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demonstrates a role for BMP7 in gliosis following disease. Further, it suggests 

SMAD signaling to play a role in initiating reactivity in astrocytes as well as in 

remodeling the extracellular matrix following injury and in a disease condition. 
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CHAPTER 1 INTRODUCTION 

 

Nervous system and its development 

The formation of the nervous system begins at the gastrula stages of embryonic 

development. At this stage, the 3 germinal layers of the embryo: ectoderm, 

endoderm and mesoderm, have been specified. A specialized group of cells 

termed the organizer signal the development of the nervous system in the 

ectoderm. The first step in the development of the nervous system is termed 

neural induction. Signals from the organizer are interpreted by competent cells, 

which then are committed to becoming neural stem or precursor cells, which will 

give rise to all the cells of the central and peripheral nervous system. Once the 

cells become committed, the precursor cells differentiate into the appropriate 

neural cell type based on intrinsic and extrinsic cues during development.  

 

Initial studies in amphibian embryos showed that the default pathway of 

ectoderm cells is to differentiate into neural cells. Studies using Xenopus laevis 

embryos showed that  expression of the bone morphogenetic protein (BMP) 

molecule prevented the neural fate, and induced an epidermal fate (Wilson and 

Edlund, 2001). During gastrulation, inhibitors of the BMP molecule are secreted 

by the organizer and mesoderm, which blocks the effects of BMP and allow the 
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cells to proceed towards a neural fate. Further, signaling molecules such as Wnts 

– which help establish the initial dorso-ventral polarity of the embryo and 

fibroblast growth factor (FGF), have also been implicated in neural induction (Fig. 

1) (Wilson and Edlund, 2001). This thickened region of ectoderm which consists 

of neuroepithelium is termed the neural plate (Weinstein and Hemmati-Brivanlou, 

1999, Wilson and Edlund, 2001).  

 

Following neural induction, the next step is neurulation which is the formation of 

the neural tube that ultimately gives rise to the different parts of the nervous 

system. Primary neurulation as stated in a review by Greene, N.D.E. and Copp, 

A.J., 2009, is “the shaping and folding of the neural plate which undergoes fusion 

in the midline to generate a neural tube. Secondary neurulation is the formation 

of the neural tube in the regions of the future caudal spine” (Greene and Copp, 

2009). Following the closure of the neural tube, organizing signals pattern the 

neural tube. This confers positional identity to the different progenitor domains, 

which give rise to the different neural and glial cell types under the influence of 

spatial and temporal mechanisms. Signals such as sonic hedgehog (SHH), 

fibroblast growth factor (FGF), Wnts, BMP and retinoic acid (RA) help pattern the 

neural tube (Fig. 2) (Harrington et al., 2009).  
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Glial cells, development and types 

Glial cells are the neuron supporting cells found throughout the central nervous 

system (CNS) which vastly outnumber the neurons. In the developing nervous 

system, gliogenesis follows neurogenesis. They arise from the neuroepithelial 

precursor cells which give rise to neurons first, followed by a fate switch step 

which then restricts them to generate the glial cells (Fig. 3). Signals such as 

SHH, BMP and FGF play a role in the differentiation of the glial cells from the 

neuroepithelial precursor cells. The JAK-STAT pathway and the Notch signaling 

pathway also play a role in gliogenesis (He and Sun, 2007). The two major types 

of the macroglial population include the astrocytes and the oligodendrocytes. The 

precursor cells give rise to the astrocytes first and then the oligodendrocytes 

(Rowitch and Kriegstein, 2010).  

 

Astrocytes: Functions and types 

The astrocytes are the star shaped population of the glial cell type. These cells 

are broadly classified into fibrous and protoplasmic astrocytes. Fibrous 

astrocytes are found in the white matter and exhibit a star like morphology, while 

the protoplasmic astrocytes are found in the grey matter and exhibit a complex 

morphology with frequently branching processes (Levison, 2005,(Sofroniew and 

Vinters, 2010). In another approach to classify astrocytes based on studies of the 

morphology, antigen presentation and response to growth factors, astrocytes are 

categorized into type I and type II (Levison, 2005). The type I astrocytes arise 

directly from the neuroepitheial precursor cells while the type II astrocytes arise 
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from a bipotent progenitor cell type: the oligodendrocyte-type II astrocyte (O-2A) 

precursor cell (Levison, 2005,(Rompani and Cepko, 2010). 

 

The astrocyte cells were initially thought to have supportive role in the nervous 

system, serving as “glue” holding the components together. However, studies 

over the past 20 years have shown these cells to be largely dynamic, interactive 

and perform a wide range of functions (Sofroniew and Vinters, 2010). During 

development, they serve as scaffolding molecules which aid in the migration of 

axons. Synapses in the nervous system usually have astrocytes associated with 

them. Studies have shown that astrocytes play a role in the maturation of 

functional synapses via secretion of various factors (Allen and Barres, 2005, He 

and Sun, 2007). At the synapse, the astrocytes help in uptake of ions and 

neurotransmitters as well as play an active role in increasing synaptic activity 

(Pfrieger and Barres, 1997, Barres, 2008). Regulation of calcium levels in 

astrocytes affects synaptic transmission by regulating release of molecules such 

as ATP, GABA and glutamine (Barres, 2008, Sofroniew and Vinters, 2010). 

Astrocytes also have been shown to have connections with blood vessels 

(Gordon et al., 2007, Sofroniew and Vinters, 2010). These studies have shown 

that astrocytes play a role in regulating blood flow by releasing mediators such as 

arachidonic acid and nitric oxide. The end feet of the astrocytes found in close 

association with the endothelial cells aiding the formation of tight junctions in 

these cells, forming the blood brain barrier (Abbott et al., 2006). They also play a 

role in energy and metabolism, by serving as a nutrient conduit between blood 
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vessels and neurons as well as storing energy in the form of glycogen (Sofroniew 

and Vinters, 2010).  

 

Development of the eye 

The vertebrate eye develops from the eye field in the anterior neural plate. The 

neural plate initially folds upwards and inwards forming the neural tube. The eye 

field then splits forming initially the optic grooves, which then evaginate and 

forms the optic vesicles. The optic vesicle divides or separates into the neural 

retina, retinal pigmented epithelium and the optic stalk. The optic vesicles 

evaginate, coming in close proximity of the head ectoderm. Signals arising from 

the evaginating head ectoderm induce the formation of the lens placode from a 

thickened region of the head ectoderm called the lens placode (Fuhrmann, 

2010). The lens placode eventually gives rise to the lens. The optic vesicle now 

folds on itself, with the layer close to the lens placode becoming the neural retina 

and the layer distal to the placode becoming the retinal pigmented epithelium. 

The optic stalk which is the most proximal part of the vesicle narrows to become 

the optic fissure, through which the optic nerve leaves the eye (Lamb et al., 2007, 

Fuhrmann, 2010) (Fig. 4).  

 

Retina and glial cells 

The mature retina can be divided into 6 layers namely the outer and inner 

nuclear layers, the outer and inner plexiform layers, the ganglion cell layer and 
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the nerve fiber layer (Cheng et al., 2006) (Fig. 5). These layers are primarily 

made of neuronal cell types and include: rod and cone photoreceptor, the bipolar 

interneurons, and horizontal and amacrine cells. The retina has 2 major types of 

glial cells – the Muller glial cells and the retinal astrocyte cells (Bringmann et al., 

2006).  

 

Muller glial cells arise from the multipotent retinal progenitor cells. Birthdating 

studies have shown that the progenitor cells give rise to ganglion cells first, 

followed by horizontal cells and cones and lastly amacrine cells, bipolar cells, 

rods and muller glial cells (development of retina and optic pathway paper). They 

arise following terminal differentiation of the progenitor cells under the influence 

of notch signaling. The cell bodies are present in the inner nuclear layer with the 

process extending through the retina to the outer limiting membrane that divides 

the photoreceptor inner and outer segment from the cell body and the outer 

limiting membrane that divide the retina from the vitreous. The Muller glial cells 

play an important role in maintaining structure and function in retina, apart from 

the functions previously mentioned (Dubois-Dauphin et al., 2000, Bringmann et 

al., 2009, Jadhav et al., 2009). 

 

Retinal astrocytes are present in the optic nerve, optic nerve head and the retinal 

nerve fiber layer with the processes extending into the ganglion cell layer (Huxlin 

et al., 1992). The developing eye expresses factors such as Pax2 and Pax6, all 

through the optic vesicle stage. As development proceeds, expression of Pax2 is 
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restricted to cells of astrocytic lineage (Chu et al., 2001). The retinal astrocytes 

are generated in the optic stalk from the neuroepithelial precursor cells and then 

migrate into the retina. Development of glial cells in the optic stalk is mediated by 

signals from the retinal ganglion cells, which includes sonic hedgehog (SHH) and 

BMP7 (Watanabe and Raff, 1988, Huxlin et al., 1992, Morcillo et al., 2006, 

Dakubo et al., 2008). These retinal astrocytes play an important role in 

establishing the retinal vasculature (Kuchler-Bopp et al., 1999). 

 

Reactive astrocytes 

An important property of astrocytes is their response to any damage/injury to 

nearby neurons; a response known as reactive gliosis. Although there is no clear 

definition for reactive astrogliosis, based on the large number of studies on 

reactive astrocytes, reactive astrogliosis can be defined as: “The changes in 

molecular and morphological characteristics of astrocytes due to an injury or 

disease of the nearby neurons, which alters the functions of astrocytes on a 

context dependent manner by inter and intra cellular signaling molecules, based 

on the severity of the disease or injury” (Ridet et al., 1997, Sofroniew, 2009, 

Sofroniew and Vinters, 2010) (Fig. 6). Several different transcriptional regulators 

such as NF – κB, STAT3 and mTOR are regulated during reactive gliosis 

(Brambilla et al., 2005, Herrmann et al., 2008, Codeluppi et al., 2009, Sofroniew, 

2009). Growth factors and cytokines such as fibroblast growth factor, epidermal 

growth factor and interleukins seem to be upregulated during the reactive state 
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(Eddleston and Mucke, 1993, Ridet et al., 1997, Gris et al., 2007, Sofroniew, 

2009).  

 

Many signaling molecules are able to induce reactive astrogliosis including: 

growth factors and cytokines such interleukins (IL), ciliary neurotrophic factor 

(CNTF), transforming growth factor β (TGF-β), interferon-gamma (IF) , immunity 

mediators such as toll like receptors and lipopolysaccharides, neurotransmitters, 

reactive oxygen species like nitric oxide and molecules associated with metabolic 

toxicity and neurodegeneration such as ammonia and β-amyloid (Sofroniew, 

2009, Sofroniew and Vinters, 2010). These signals either on their own or in 

combination with different molecules, alter the characteristics of astrocytes in 

reactive astrogliosis. The signaling mechanisms regulated depend on the type of 

stimulus and this controls the severity of reactive astrogliosis. Broadly, the 

reactive astrogliosis can be grouped into: (1) Moderate to mild reactive 

astrogliosis – hypertrophy and variable upregulation of expression of GFAP 

without overlap of processes of neighboring astrocytes, (2) severe diffusive 

astrogliosis – marked upregulation of glial fibrillary acidic protein (GFAP) and 

other genes, along with hypertrophy and proliferation of astrocytes leading to 

overlapping of processes with neighboring cells, and (3) severe astrogliosis with 

glial scar – show characteristics of either sever diffusive or milder astrogliosis 

along with the formation of a physical neuroprotective barrier, termed as the glial 

scar (Sofroniew and Vinters, 2010). 
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The primary function of reactive astrogliosis is to aid in neural protection by 

preventing the spread of the injury in the CNS and minimizing tissue damage and 

lesion size.  Studies over the past two decades using various animal models 

have shown that reactive gliosis aids in protection from oxidative stress, blood 

brain barrier repair, stabilizing extracellular fluid and ion balance and reducing 

edema, and also in limiting the spread of inflammatory cells  (Bush et al., 1999, 

Myer et al., 2006, Voskuhl et al., 2009, Sofroniew and Vinters, 2010). During 

gliosis, the astrocyte function is altered. They hypertrophy due to an increased 

accumulation of intermediate filaments, remodel the extracellular matrix leading 

to scarring, and release neuroprotective and/or cytotoxic molecules, by regulating 

the expression of various molecules and enzymes (Sofroniew, 2009). A number 

of markers have been identified over the years which can specifically identify 

astrocytes. The expression of the intermediate filament – GFAP, is often used as 

a major identifying marker of astrocytes and its upregulation during gliosis has 

been often used a criteria to detect reactivity (Levison, 2005). Another 

intermediate filament which is upregulated during gliosis is vimentin (Yang and 

Hernandez 2003). Astrocytes also express S100 – β, which is a calcium binding 

protein involved in various intra and inter cellular processes. Glutamine 

synthetase, which is an enzyme involved in glutamate recycling is also specific to 

astrocytes (Hertz and Zielke, 2004). Nitric oxide synthase, an enzyme involved in 

the synthesis of nitric oxide, has also been previously observed to be regulated 

during gliosis (Cassina et al., 2002a). During reactive gliosis, expression of these 
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markers has been observed to be upregulated (Ridet et al., 1997, Sofroniew, 

2009).  

 

Reactive gliosis also leads to the formation of a glial scar, brought on by 

remodeling of the extracellular matrix. Various knowckout and knockdown 

studies have shown that the presence of reactive gliosis is in fact a positive effect 

in the early stages. Studies of glial scars using double GFAP -/- vimentin -/- mice 

and mice expressing a GFAP-herpes simplex virus (Pekny et al., 1999, Faulkner 

et al., 2004) showed in the two injury models that ablation of astrocytes led to a 

more severe and marked damage of the neurons and oligodendrocytes (Renault-

Mihara et al., 2008).The primary negative effect of reactive astrogliosis is the 

long term persistence of the glial scar, which contain the inhibitory chondroitin 

sulphate proteoglycans (CSPGs) that prevent axonal regeneration. 

 

Remodeling of the extracellular matrix, ultimately leading to the formation of a 

glial scar, is mediated primarily by the regulation of CSPGs and the enzymes 

matrix metalloproteinases (MMPs) (Silver and Miller, 2004, Crocker et al., 2006). 

The CSPGs belong to a larger class of molecules, termed the proteoglycans, 

which also includes heparin sulfate proteoglycans (HSPGs), keratin sulfate 

proteoglycans (KSPGs) and dermatan sulfate proteoglycans (DSPGs). The 

HSPGs primarily help in stabilizing extracellular interactions between receptor 

and its ligand. The CSPGs, however, act mainly as “barrier molecules” that 

restrict migration, growth and plasticity of neurons (Laabs et al., 2005). During 
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gliosis, these inhibitory CSPGs such as neurocan, phosphacan, aggrecan and 

versican are upregulated, which inhibit axonal regrowth (Silver and Miller, 2004, 

Laabs et al., 2005). Studies have shown regenerating neurons are repulsed by 

the presence of these inhibitory CSPGs, reducing the ability for axonal 

regeneration (Rhodes and Fawcett, 2004). Further, injecting chondroitinase (an 

enzyme which degrades the GAG chain of proteoglycans) at the site of injury, 

leads to a decrease in scar formation and an increase in axon regeneration (Zuo 

et al., 1998). The HSPGs, however, have been found to be both stimulating and 

inhibitory to axonal regrowth (reviewed in(Pizzi and Crowe, 2007).  

 

Another set of molecules involved in extracellular matrix remodeling are the 

MMPs and their tissue inhibitors (TIMPs). Over 20 different MMPs have been 

identified and the main function of these enzymes is to help remodel the 

extracellular matrix by degrading the extracellular matrix (Nagase et al., 2006). 

As summarized in a review by Pizzi MA and Crowe MJ (2007), the MMPs can be 

regulated (1) at the transcriptional level, (2) by the activation of the precursor 

zymogen or (3) by the TIMPs (Pizzi and Crowe, 2007). The MMPs target a wide 

range of ECM molecules, including the CSPGs. Particularly, MMP-2 and -9 have 

been shown to degrade the inhibitory CSPG neurocan as well as CD-44 (Tucker 

et al., 2008). In a study using the healer mouse model, increase in RNA levels of 

MMP -2 and -9 along with an increase in MMP-14 lead to an increase in the 

degradation of neurocan and CD-44, thereby, decreasing scarring (Tucker et al., 

2008). However, increase in the levels of MMPs and TIMPs have been linked to 
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various neurodegenerative such as parkinson’s disease, cerebral ischemia and 

spinal cord injuries, as well as in neuroinflammatory responses following hypoxia 

and cerebral ischemia (Rosenberg, 2002, Crocker et al., 2006), which can 

indirectly alter the extracellular matrix. During gliosis, the normal balance 

between the MMPs and TIMPs and also other components of the ECM is 

dysregulated and this may lead to scaring (Laabs et al., 2005, Tucker et al., 

2008).  

 

Reactive gliosis in the eye and optic nerve 

The astrocytes of the retina, optic nerve and optic nerve head become reactive in 

various disease states such as glaucoma and retinal ischemia (Hernandez et al., 

2008). When the astrocytes become reactive, as stated before, they increase 

GFAP expression and hypertrophy. However, the proliferative response of 

reactive astrocytes in the eye is still unclear. Contradictory results were observed 

when Inman et al. 2007, observed non proliferative reactive astrocytes in a 

mouse model of glaucoma, while Johnson et al. 2000, observed proliferative 

reactive astrocytes in a rat model of glaucoma. Nevertheless, reactive astrocytes 

begin to express various cytokines such as tumor necrosis factor- α (TNF-α) and 

interleukins (IL) among others, which promote the death of the retinal gangion 

cell (RGC) axons (Yuan and Neufeld, 2000, Nakazawa et al., 2006). Other 

mechanisms implicated in the death of retinal ganglion cells are reactive oxygen 

species and nitric oxide (Levin, 1999, Neufeld et al., 1999). Reactive astrocytes 

in the optic nerve form cribriform structures and migrate from these structures to 
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the nerve fibers where they synthesize the neurotoxic substances (Liu and 

Neufeld, 2004). Thus, retinal gliosis serves to protect and repair retinal neurons. 

 

The Bone Morphogenetic Proteins - BMP’s 

The bone morphogenic proteins (BMPs) consist of a large number of signaling 

molecules belonging to the transforming growth factor-β (TGF-β) superfamily 

(Hogan, 1996). With more than 20 members, the BMPs are involved in a wide 

range of functions including embryonic development, neural patterning, limb 

patterning, skeletal development and organogenesis of the kidney, lung and eye 

(Hogan, 1996). The BMP ligand molecules signal primarily by forming dimers, 

which then bind to the receptors associated proteins. The BMP receptors are 

serine threonine kinase receptors, classified into 2 groups: the type I and type II 

receptors. The BMP type I receptors act downstream of the type II receptors and 

determine the specificity of the signal (Conidi et al., 2011). Three type I (Alk -2, -3 

and -6) and type II (BMPRII, ActR II A and ActR II B) receptors have been 

identified which bind BMP ligands (Nohe et al., 2004, Miyazono et al., 2010). 

Binding of the ligand leads to phosphorylation and activation of the receptors, 

which then phosphorylate the receptor, bound signaling mediators.  

The primary receptor bound mediators of  BMP signaling include the receptor 

SMADs (SMAD -1, -5 and -8), x-linked inhibitor of apoptosis (XIAP) protein and 

the immunophilin FKBP12 (Rajan et al., 2003, Nohe et al., 2004, Miyazono et al., 

2010).  
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 Activation of the receptor leads to phosphorylation of the receptor SMADs. 

The phosphorylated SMADs dimerize with SMAD4 which is then 

translocated to the nucleus and binds to specific sequences in the DNA 

bringing about transcriptional regulation of target genes by either directly 

binding them and/or through association with other DNA binding factors 

(Nohe et al., 2004). This pathway is negatively regulated through the 

inhibitory SMAD molecules SMAD -6 and -7 (Nakayama et al., 1998, Zhu 

et al., 1999). 

 XIAP has been found to interact with Alk-3 and TAB1 (which activates a 

member of the MAP kinase kinase kinase family – TAK1) (Yamaguchi et 

al., 1999, Nohe et al., 2004, Bond et al., 2012). Signaling via XIAP leads 

to the formation of a XIAP-TAB1-TAK1 complex, activating the MAPK 

pathway (Sieber et al., 2009)  

 The molecule FKBP12 has been found to be associated with Alk3 (Nohe 

et al., 2004). Phosphorylation of the FKBP12 protein activates the FRAP 

(FKBP12 rapamycin associated protein) molecule which then activates the 

FRAP-STAT signaling mechanism (Rajan et al., 2003).  

 

The BMP signaling proceeds through the canonical SMAD dependent pathway; 

and/or the non-canonical SMAD independent pathway to bring about a change at 

the gene transcriptional level (Baker and Harland, 1997, Derynck and Zhang, 

2003, Herpin and Cunningham, 2007, Bragdon et al., 2011) (Fig. 7). Further, the 



15 
 

 

1
5
 

BMPs also signal via a non-transcriptional mechanism by regulating various 

molecules such as micro RNAs (miRNA) and phopho-inositol 3 kinase (PI3K) 

(Ghosh-Choudhury et al., 2002, Qin et al., 2009, Sieber et al., 2009). 

 

BMPs play a key role in the development of the nervous system. Early in 

development, BMP-4 and -7 are expressed in the ectoderm. Blocking of the BMP 

signaling in the ectoderm cells leads to the induction of the neural ectoderm. The 

region in which BMP signaling is not blocked is induced into the epidermis. 

Following neural induction, within the neural tube, the BMP molecules (BMP-2, -

4, -5, -6 and -7) serve as a gradient morphogen regulating the development of 

the dorsal cell types. Further down in development, BMPs regulate 

astrogliogenesis during brain maturation (Mehler et al., 1997). They can serve as 

morphogens mediating long range signaling or act as short range signaling 

molecules by mediating cell to cell signaling (Mehler et al., 1997).  

 

BMP molecules are essential for the morphogenesis of the eye (Luo et al., 1995, 

Jena et al., 1997, Wawersik et al., 1999, Furuta, 2000, Belecky-Adams and 

Adler, 2001). The BMPs and their receptors have been implicated to have a 

major function in the developing as well as adult ocular tissues. In particular the 

patterning of the eye field, the optic nerve head and differentiation of lens 

placode and retinal pigmented epithelium depends on BMP7 (Dudley et al., 1995, 

Luo et al., 1995, Wawersik et al., 1999, Adler and Belecky-Adams, 2002). The 

BMPs have been implicated in the regulation of the astrocytic lineage in the brain 
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(Mehler et al., 1997). In the eye, optic nerve head astrocytes have been shown to 

express BMP7 (Zode et al., 2007). 

 

BMP and CNS injury 

Studies using various CNS injury models have shown that the BMP pathway is 

upregulated at the site of injury in the CNS. Specifically, BMP-2, -4 and -7 have 

been found to be upregulated at the site of injury in spinal cord lesions 

(Setoguchi et al., 2001, Hampton et al., 2007, Matsuura et al., 2008a, Ueki and 

Reh, 2012). These molecules are also implicated in astrogliogenesis from 

precursor cells (Mabie et al., 1997, Mehler et al., 2000). Studies looking into BMP 

expression in reactive astrocytes have primarily used a spinal cord injury model 

(Setoguchi et al., 2001, Enzmann et al., 2005, Matsuura et al., 2008b, Sahni et 

al., 2010, Xiao et al., 2010). These studies have shown the regulation of BMP 4 

and 7 as well the BMP inhibitor noggin, at the site of injury. These have primarily 

looked into the role of the BMPs in specifying a NG2+ astrocyte/oligodendrocyte 

progenitor following injury. These studies have shown inhibiting BMP signaling 

can either increase lesions following spinal cord injuries (Enzmann et al., 2005) 

or increase axonal regrowth (Matsuura et al., 2008a). Further, Sahni et al., 2010 

showed that Alk-3 (BMPRIa) played a role in “reactive gliosis and wound closure” 

while Alk-6 (BMPRIb) increased glial scaring (Sahni et al., 2010). These studies 

indicate BMP signaling plays a role in both the advantageous and unfavorable 

effects of gliosis following spinal cord injury. 
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A recent study by Ueki and Reh looked at BMP signaling in the retina following 

N-methyl-D-aspartic acid (NMDA) induced retinal ganglion cell death and 

exposure to bright light. They observed an upregulation of BMP-2,-4 and -7 and 

phosphorylation of SMAD 1/5/8 following NMDA treatment or exposure to bright 

light, indicating that this response was a common reaction to retinal damage 

(Ueki and Reh, 2012). 

 

Here, we hypothesize that the BMP pathway not only plays a role in initiating 

reactive gliosis in astrocytes of the retina, but is key to the extracellular matrix 

remodeling that occurs following injury and as well as during disease. We 

propose here that the BMPs, which are upregulated at the site of injury, play an 

active role in gliosis as well and not just in the specification of glia. As a first step 

to identify reactive astrocytes, degenerative retinal animal models were 

compared to their wild types for the expression of previously established reactive 

astrocyte markers. Using an in vitro retinal astrocyte cell line, effects of treatment 

with different concentrations of BMP-7 on the expression of various markers was 

analyzed. The animal models used for the study are the Ins2Akita diabetic mouse 

model and the Wistar (WPK) rat model. In these studies, we have shown the 

BMP levels increase in both model systems and that the muller glial cells and 

astrocytes respond to the BMP signal by increasing phospho-SMAD signaling. 

Further, when tested in vitro, BMPs were found to increase levels of molecules 

associated with reactive gliosis. 
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CHAPTER 2 MATERIALS AND METHODS 

 

Tissue Processing and Fluorescence Immunohistochemistry 

WPK rats were perfused through the left ventricle with 4% paraformaldehyde in 

0.1M phosphate buffer. The eyes were dissected, fixed in 4% paraformaldehyde 

and incubated in an ascending series of sucrose (5%, 10%, 15% and 20%) made 

in 0.1M phosphate buffer, pH 7.4.The Ins2Akita eyes were dissected from the 

heads of euthanized animals, washed in PBS, and fixed in 4% 

paraformaldehyde. The eyes were then incubated in sucrose solution as 

previously mentioned. The tissues were frozen in a 3:1 20% sucrose-in 

phosphate buffer and OCT solution. 10 μm thick sections were cut using a Leica 

CM3050 S cryostat and placed on Superfrost Plus slide (Fisher Scientific, 

Pittsburgh, PA) treated with Vectabond (Vector Labs, Burlingame, CA), and were 

stored at -80°C until used for immunohistochemistry. For immunohistochemistry, 

sections were allowed to warm to room temperature for about 30-45 minutes, 

fixed with 4% paraformaldehyde for 30 minutes and incubated in methanol for 10 

minutes at room temperature. Sections were then washed in 1X PBS subjected 

to antigen retrieval by placing the sections in 1% SDS (Fisher Scientific, 

Pittsburgh, PA) in 0.01 M PBS for 5 minutes and washed 3 times in 1X PBS. To 

aid in autofluorescence reduction, sections were treated with 1% sodium 
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borohydrite in PBS (Acros) for 2 minutes at room temperature, then rinsed with 

PBS. Tissue was blocked by incubating with 10% serum in 1X PBS containing 

0.25% Triton X-100 (Biorad, Hercules, CA) at room temperature for 1 hour. The 

slides were incubated with the primary antibody, diluted in 0.025% TritonX-100 

PBS with 2% blocking serum, overnight at 4°C. The following day, after 2 washes 

with 1X PBS, the slides were incubated in Dylight conjugated secondary antibody 

(Jackson Immunoresearch, West Grove, PA) at 1:800 diluted with 1X PBS, for 1 

hour at room temperature, then washed twice with 1X PBS for 5 minutes each 

rinse, and mounted with ProLong Gold with DAPI (Invitrogen, Grand Island, NY). 

For labeling of mouse tissue slides with glutamine synthetase, blocking and 

overnight incubation with primary antibody was performed as specified by the 

Vector mouse on mouse immunodetection kit (Vector Labs, Burlingame, CA). For 

immunolabelling with neurocan and pSMAD1, following overnight incubation with 

the primary antibody, the sections were first incubated with biotinylated anti 

sheep/goat antibody (1:1000, Vector Labs, Burlingame, CA) for 1 hour and then 

streptavidin conjugated dylight (1:33, Vector Labs, Burlingame, CA) for 1 hour at 

room temperature. Slides were viewed under a Olympus Fluoview FV 1000 

confocal microscopy. Antibody dilutions used are shown in Table 1. 

 

Astrocyte cell culture 

Retinal astrocyte cells were isolated as previously stated (Scheef et al., 2005). 

Briefly, retinas from one litter of 4 week old Immortomice were dissected, rinsed 

in serum free DMEM, and digested with collagenase Type I in serum free DMEM. 
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After rinsing in 10% FBS in DMEM, they were centrifuged for 5 minutes at 400x 

g,  filtered through a sterile 40 µm nylon mesh, centrifuged for 5 minutes at 400x 

g and the medium aspirated. The cells were then resuspended in 10% FBS-

DMEM with Mec 13.3 coated sheep anti rat magnetic beads, and rocked for 1 

hour at 4°C. The cells were separated using a Dynal magnetic tube holder. The 

retinal astrocytes, not bound to the magnetic beads, were collected and washed 

in 10%FBS-DMEM. Cells were cultured in DMEM containing EC growth 

supplement (Sigma-Aldrich, St. Louis, MO), 1% Pencillin/Streptomycin (Sigma-

Aldrich, St. Louis, MO), 100 mM Sodium pyruvate (Gibco), 1M HEPES (Sigma-

Aldrich, St. Louis, MO), 200 mM Glutamine (Gibco, Langley, OK), 100X Non-

essential amino acids (Sigma-Aldrich, St. Louis, MO), 0.35% Heparin (Sigma-

Aldrich, St. Louis, MO), 10% fetal bovine serum and murine recombinant at 

44U/ml interferon γ (R & D systems, Minneapolis, MN). The cells were grown on 

Cellbind dishes (Fisher Scientific, Pittsburgh, PA) and passaged every 3-4 days 

using trypsin EDTA (Sigma-Aldrich, St. Louis, MO). The mouse retinal astrocyte 

cells, isolated from the retinas of the immortomouse, ubiquitously expressed a 

temperature sensitive large T antigen. Characterization by FACS and IHC 

revealed that these cells are positive for Pax2, GFAP as well NG2. This 

observation led to the conclusion that these cells are a type of oligodendrocyte 

astrocyte precursor cell. 
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Treatment of cultured cells 

Treatment of astrocyte cell cultures with sodium peroxynitrite (Cayman 

Chemicals, Ann Arbor, MI) was performed as previously stated in (Cassina et al., 

2002b). Confluent astrocyte cell cultures were washed 3 times with phosphate 

buffer saline (PBS) supplemented with 0.8 mM MgCl2, 1 mM CaCl2, and 5 mM 

glucose. They were then incubated in 1 ml of 50 mM Na2HPO4, 90 mM NaCl, 5 

mM KCl, 0.8 mM MgCl2, 1 mM CaCl2, and 5 mM glucose, pH 7.4, followed by 

three additions of sodium peroxynitrite.at a concentration of 0.15mM The first 

bolus of peroxynitrite was added to one edge of the dish and the buffer was 

swirled for 5 seconds to allow mixing of the peroxynitrite throughout the dish. 

This step was repeated twice while changing the edge at which the addition was 

made and then incubated for 5 minutes. The buffer was then removed, replaced 

with the astrocyte growth media and placed in a 5% CO2 incubator at 33°C. The 

cells were then processed after 24 hours or 32 hours. 

 

Confluent astrocyte cell cultures were treated with recombinant BMP7 or BMP4 

(R&D systems, Minneapolis, MN) reconstituted in 0.4% HCl-PBS. Some dishes 

were treated with varying concentrations of BMP7, between 20-100 ng/ml for 24 

hours, while long term experiments were treated with 100 ng/ml of BMP7 for 36 

hours. Further, dishes were treated with 100 ng/ml BMP4 for 24 or 36 hours. 

 

Cells were also treated with low and high concentration glucose solutions. 5mM 

and 40 mM D-glucose in DMEM were initially prepared. Astrocyte cells were 
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allowed to grow to about 40-50% confluency. The media was then replaced with 

(a) 5 mM D-glucose DMEM for a low glucose treatment, or (b) 40 mM D-glucose 

DMEM for a high glucose treatment. The cells were then allowed to grow for 5 

days following the switch in media following which they were analyzed via RT-

qPCR. 

 

Immunocytochemistry 

Autoclaved coverslips were placed in sterile 6 well plates. They were covered 

with 100ug/ml fibronectin in PBS for 30-45 minutes, to coat the cover slips with 

fibronectin. Following a rinse with DMEM, the slides were covered with 200 µl of 

retinal astrocyte cells suspended in DMEM. The cells were allowed to adhere to 

the coated cover slips by placing the plates in the 5%CO2 incubator for 2 hours. 

The astrocyte growth medium was added to the wells of the plate and the cells 

allowed to grow to 50-60% confluency before being subject to the different 

treatments. Following the exposure the time, the media was removed and the 

slides washed thrice in 1X PBS. They were fixed in 4% paraformaldehyde for 30 

minutes, incubated in methanol for 10 minutes at room temperature and washed 

twice in 1X PBS. Antigen retrieval was performed by incubating the slides in 

0.1% SDS in 0.01 M PBS for 5 minutes followed by 3 washes in 1X PBS. To 

reduce autofluorescence, slides were incubated with 1% sodium borohydrite in 

PBS for 2 minutes at room temperature, then rinsed with 1X PBS. Cells were 

blocked with 4% serum in 1X PBS containing 0.25% Triton X-100 at room 

temperature for 1 hour. The primary antibody was diluted in 0.025% TritonX-100 
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PBS with 2% blocking serum, and incubated with the cover slips overnight at 

4°C. Following two 1X PBS washes, the cover slips were incubated with Dylight 

conjugated secondary antibody diluted in 1X PBS for 1 hour at room 

temperature, in the dark. The cover slips were washed twice in 1X PBS and 

incubated with 2 µg/ml Hoechst stain diluted in 1X PBS for 2 minutes. They were 

then washed once with 1X PBS and mounted onto slides with Aqua Polymount. 

Slides were viewed under Olympus Fluoview FV 1000 confocal microscopy. 

Antibody dilutions used are shown in Table 1. 

 

Western blot analysis 

 

Following treatment, retinal astrocyte cells were lysed using 

Radioimmunoprecipitation assay (RIPA) lysis buffer (5M NaCl, 1M Tris, 0.5M 

EDTA, 5%TritonX 100 at pH 8.0 with 4% protease inhibitor cocktail and 1% 

PMSF) for 20 minutes on ice. Cell lysates were collected, centrifuged at 140000 

rpm for 15 minutes at 4°C and the total protein concentration analyzed from the 

supernatant using the Bicinchonic acid (BCA) protein estimation method 

(Thermoscientific, Rockford, IL). Fifty micrograms of the total protein mixed with 

the loading dye in a 1:3 ratio was then loaded and run on a 4-20% SDS 

polyacrylamide gel (Nalgene) at 125 volts for 1 hour. Proteins were transferred to 

a Polyvinylidene fluoride (PVDF) membrane (Biorad, Hercules, CA) and 

subjected to immunoblotting. Prior to incubation with the antibody, the membrane 

was blocked using a 5% milk solution in Tris Buffered Saline-Tween (TBST; 
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composition – 20mM Tris base, 137mM sodium chloride, 1M HCl, 0.1% Tween-

20, at pH 7.6) for 1 hour. The blots were then incubated with the primary antibody 

diluted in TBST at 4°C overnight. The blots were washed twice with TBST and 

then incubated with a peroxidase conjugated secondary antibody 

(Thermoscientific, Rockford, IL) diluted to 1:5000 in TBST for 1 hour in the dark 

at room temperature. The blots were incubated with either Pierce ECL Western 

Blotting Substrate (Thermoscientific, Rockford, IL) or SuperSignal West Femto 

Chemiluminescent Substrate (Thermoscientific, Rockford, IL) and the bands 

visualized on x-ray films (Thermoscientific, Rockford, IL). Densitometry of the 

blots was performed using the Image J software (http://rsbweb.nih.gov/ij/). β 

Tubulin was used as a loading control. Antibody dilutions used are shown in 

Table 2.  

 

Real Time-Quantitative PCR (RT-qPCR) 

Total RNA was extracted from mouse retinal astrocyte cells cultures using 

RNeasy Mini Kit (Qiagen, Valencia, CA). Prior to cDNA synthesis, RNA samples 

were run on a 1% agarose gel to confirm the overall quality of the total RNA. 

cDNA was synthesized from 1µg of total RNA with iScript cDNA synthesis kit 

(Biorad, Hercules, CA) according to the manufacturer’s protocol. RT-qPCR was 

performed using 7300 RT detection system (Applied Biosystems, Carlsbad, CA) 

using the Power SYBR green PCR master mix (Invitrogen, Grand Island, NY). 

The primer pairs used have been listed in Table 3. Total volume for each reaction 

was 20 µl using the diluted cDNA, corresponding to 5ng of initial total RNA and 

http://rsbweb.nih.gov/ij/
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0.4mM of each primer. The cycler conditions used were as follows: initial 

denaturation at 95°C for 10 minutes, 40 cycles of denaturation at 95°C for 15 

seconds, annealing at 60°C for 30 seconds and extension at 72°C for 30 

seconds, followed by a final extension at 72°C for 5 minutes. Efficiency of the 

primer sets was determined by the standard curve method, where efficiency, E= 

((10(-1/C
T2 

– C
T1

)) – 1) X 100. A no template control and an internal control - Beta 2 

microglobulin (B2M) were used for each run (Thal et al., 2008). The amplified 

samples were run on a 2% agarose gel to confirm amplification was of the right 

size. The change in the gene expression levels was done using the 2 –ΔΔC
T

 

method, where CT is the crossing threshold value.  

ΔCT = CT Target gene – CT B2M and ΔΔCT = ΔCT treated – ΔCT control  

 

Statistical Analysis 

Statistical analysis of RT-qPCR data was by unpaired t-test between the control 

and treated groups. Statistical analysis of densitometry results was by students t-

test. All analyses were performed using SPSS software (IBM) and Excel 2010 

(Microsoft).  
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CHAPTER 3 RESULTS 

 

Reactive retinal gliosis in vivo 

The 2 animal models, WPK rat and Ins2Akita mouse, were assessed for reactivity 

via immunohistochemistry for the expression of GFAP, glutamine synthetase, 

S100-β and neurocan (Fig. 8, 9 and 10). In the Ins2Akita mouse model, the 

increase in expression of GFAP, glutamine synthetase, S100-β and neurocan 

was more in the diseased eye when compared to the wild type, at 6 week stage 

(Fig. 9). In the WPK rat model, the 3 week old rat eye sections showed a marked 

increase in the expression of GFAP, glutamine synthetase and S100-β (Fig. 10 

E, F and H) when compared to wild type (Fig. 10 A, B and D). The neurocan 

levels were increased in the WPK rat but its expression was not upregulated to 

the same extent as the other markers (Fig. 10 C and G). The reactive gliosis 

apparent at the 6 week time point of the Ins2Akita was moderate in comparison to 

the more severe gliosis present in the WPK model The neurocan expression, on 

the other hand, was observed to be upregulated to a more intense level in the 

mouse model than in the rat model.  

 

Whole retinas isolated from the eyes of 3 and 6 week Ins2Akita mouse were also 

analyzed by RT-qPCR for a panel of markers to assess reactivity (Fig. 11 A and 
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B). In the 3 week Ins2Akita, we observe a less than 1.5 fold increase in the GFAP 

RNA levels. However, we do observe a fold increase in the levels of PAX2, S100 

and MMP11 (Fig. 11 A). By the 6 week stage, GFAP levels do increase to about 

2 fold times that of the wild type. We also observe a 2 fold increase in the levels 

of EGFR1. But, the levels of markers S100, MMP11 and MMP14 fall below the 

wild type levels with S100 and MMP14 levels falling to about half of the wild type 

controls (Fig. 11 B). 

 

RNA from the whole retinas was also analyzed via RT-qPCR for the expression 

of some of the BMP molecules as well as some of the downstream signaling 

components (Fig. 12 A and B). We observed that at the 3 week stage, the RNA 

levels of BMP -2, -4, -6 and -7 RNA to be greater than the wild type controls. 

Further, at this stage, the levels of BMP -2, -4 and -6 appeared to be greater in 

comparison to the levels of BMP7 (Fig. 12 A). However, by the 6 week stage, 

levels of BMP7 RNA had gone up, while that of BMP -2, -4 and -6 had subsided. 

We also observed at this stage the levels of ID3 and SMAD7 to be increased, 

which further indicated towards an active BMP signaling mechanism (Fig. 12 B). 

 

BMP7 expression in vivo 

To determine if BMP7 expression was upregulated in the diseased models when 

compared to their respective wild types, immunohistochemistry was performed 

using antibody against BMP7. In both the 6 week Ins2Akita mouse and the WPK 

rat model (Fig. 13 G and I), the expression of BMP7 was upregulated when 
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compared to their respective wild types (Fig. 13 A and C). In the WPK rat, the 

expression is restricted to the photoreceptors and in the Ins2Akita mouse, it is 

widespread. The WPK cystic rat showed a much more marked increase in the 

expression of BMP7 when compared to the 6 week Ins2Akita mouse model. 

 

pSMAD1 expression in vivo 

Ins2Akita mouse and 3 week WPK rat retinas were further assessed for pSMAD 

activity via immunohistochemistry to assess BMP signaling in the retina. IHC for 

pSMAD1 and glutamine synthetase showed an increase in labeling for pSMAD1 

in the 3 week Ins2Akita (Fig. 14 D) retina when compared to wild type (Fig. A). 

Colocalization of pSMAD1 and glutamine synthetase was observed in some 

processes in the outer nuclear and plexiform layers (Fig. 14 C and F). The 6 

week Ins2Akita mouse (Fig. 15 D) and 3 week WPK rat retinas (Fig. 16 D) also 

showed an increase in the expression of pSMAD1 when compared to the 

respective wild types (Fig. 15 A and 16 A, respectively). In the 6 week Ins2Akita 

and the WPK rat retinas, pSMAD1 expression was increased in the ganglion cell 

layer and the inner nuclear layers. pSMAD1 labeling was observed in some 

processes in the outer plexiform and outer nuclear layer (Fig. 14, 15 and 16).  

 

Reactivity in vitro – treatment with sodium peroxynitrite and high glucose solution 

In order to analyze whether BMP7 alone could initiate reactive gliosis, we turned 

to an in vitro model system using astrocytes isolated from mouse retina. To 

establish a reactive astrogliosis model in vitro, retinal astrocyte cells were treated 
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with sodium peroxynitrite, a strong oxidizing agent similar to superoxide ions 

released by neurons upon injury, to mimic injury conditions in vitro, as well as a 

high glucose solution in DMEM to mimic the hyperglycemic conditions of 

diabetes. Astrocytes exposed briefly to 0.15mM sodium peroxynitrite were 

analyzed 32 hours later for changes in expression of GFAP, GS and S100-β via 

immunocytochemistry (Fig. 17). In all cases the intensity of staining seemed to 

be higher in the sodium peroxynitrite treated cells. To quantify the change in 

expression of proteins, western blot analysis was performed. As was observed in 

the immunocytochemistry, densitometric analysis of the western blots also 

showed an upregulation of GFAP and GS in the sodium peroxynitrite treated 

cells when compared to the vehicle treated cells (Fig. 18). The treated cells were 

also analyzed for changes in expression of several astrocyte specific markers, 

extracellular matrix molecules, signaling molecules and receptors at the RNA 

level, via RT-qPCR (Fig. 19). An initial panel of markers used to analyze the 

reactivity in vitro consisted of about 30 markers, classified into: astrocyte specific 

markers, receptors and signaling molecules, chondroitin sulfate proteoglycans 

and matrix metalloproteinases and their tissue inhibitors. Many of the markers, 

including GFAP, S100, neurocan and MMPs, observed to increase following 

exposure to peroxynitrite, have been previously shown to be upregulated in 

reactive conditions (Sofroniew, 2009). Changes in the RNA levels of these 

markers were also analyzed following high glucose treatments. However, 

changes in RNA levels of the gliosis markers were not as high as in the 



30 
 

 

3
0
 

peroxynitrite treatment; although, an increase in the levels of astrocyte specific 

marker GFAP as well as some of the receptors was observed (Fig. 20). 

 

Treatment with BMP7 induces reactivity 

To determine the role of BMP7 in reactivity, the retinal astrocyte cells were 

treated with recombinant mouse BMP7 for 24 and 36 hours. Analysis of levels of 

RNA via RT-qPCR following the treatments with BMP7 revealed that at the 24 

hour mark, a marker pool largely similar, but not identical, to that seen in the 

sodium peroxynitrite treatments were affected (Fig. 21 A). By the 36 hour time 

point most of the markers had reduced back to control levels, although the TIMPs 

and the MMPs still showed high levels of RNA expression (Fig. 21 B). Protein 

expression levels in the 24 hour BMP7 treatments, as analyzed by western 

blotting, showed a 2 fold increase in the GFAP expression levels and a 1.5 fold 

increase in GS levels (Fig. 22). Based on the statistical analysis of the 

expression levels in the sodium peroxynitrite treatment studies and the 24 and 36 

hour treatment studies, a panel of 12 markers (Table 4) was built to assess 

reactivity in future experiments. 

  

BMP7 has a complex relationship with the reactivity markers 

To assess how expression of various markers depended on BMP signaling, the 

retinal astrocyte cells were treated with varying concentrations of BMP7 (20, 40, 

60 and 80 ng/ml) for 24 hours and analyzed for the regulation of expression of 

reactivity panel markers. We observed that most of the markers did have a linear 
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relationship with the BMP7 concentration. Some such as GFAP2 and PAX2 

showed a positive correlation with the BMP7 gradient, the matrix 

metalloproteinases (MMP-9 and -11) showed an inverse correlation. The 

chondroitin sulfate proteoglycans (phosphacan and neurocan) and receptor 

molecules (epidermal growth factor receptor-1 and toll like receptor-4) showed a 

more complex relation (Fig. 23).  

 

Effect of treatment with BMP4 

To determine if treatment with other BMPs also induced reactivity in vitro, mouse 

retinal astrocyte cells were treated with 100ng/ml of BMP4 for 24 or 36 hours. 

Following treatment, cells were analyzed via RT-qPCR for changes in the levels 

of RNA of the reactivity panel (Fig. 24 A and B). At the 24 hour time point we see 

about a 1.5 fold increase in the RNA levels of GFAP, EGFR1 and neurocan (Fig. 

24 A). By the 36 hour time point, the RNA levels of most of the markers had 

returned to control levels (Fig. 24 B). Levels of MMP9 remained at about half that 

of the control levels in both the 24 hour and 36 hour treatments. We observed 

that in the BMP4 treated cells, the RNA levels of the markers were not regulated 

to the same extent as seen in BMP7 treatments, both the 24 and 36 hour 

treatments. 

 

BMP signaling in gliosis in vitro 

To assess BMP signaling in gliosis in vitro, cells treated with sodium peroxynitrite 

and high glucose DMEM were analyzed for RNA levels of the BMP molecules 
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and downstream signaling components previously analyzed (Fig. 25 A and B). 

We observed there is an increase in the levels of BMP4, BMP6 and BMP7 as 

well as ID1 and MSX2 in the peroxynitrite treated cells when compared to the 

control treatments. Both peroxynitrite and high glucose treatment conditions did 

increase the RNA levels of BMP4 and BMP7. Further, peroxynitrite treatment 

also showed increased levels of BMP6 along with a very large increase in levels 

of ID1. While high glucose treatments showed an increase in levels of BMP2 and 

ID3. This suggests that BMP signaling is active in reactive gliosis in vitro and 

may play a role in regulation of the RNA levels of various markers. Further, 

analysis of protein from the peroxynitrite treated cells and for phospho SMAD1, 

5, 8 via western blotting and pSMAD1 via immunocytochemistry showed an 

increase in the levels of the protein (Fig. 26 and 27).   
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CHAPTER 4 DISCUSSION 

 

Summary of results 

To initially characterize reactivity in vivo, the retinal tissue sections of 2 models, 

the Ins2Akita mouse and the WPK rat were analyzed via IHC for gliosis markers 

and compared to their respective wild types. The 3 week Ins2Akita did not show an 

increase in labeling for the markers analyzed. The 6 week Ins2Akita mouse and 

the 3 week WPK rat did show an increase in expression of GFAP, S100-β and 

glutamine synthetase. Further, the 6 week Ins2Akita mouse also showed an 

increase in expression of the inhibitory CSPG – neurocan. RT-qPCR analysis of 

RNA from whole retinas of the 3 and 6 week Ins2Akita showed results consistent 

with the IHC observations. RT-qPCR for different BMP molecules and its 

downstream components showed that RNA levels of BMP-2, -4, -6 and -7 to be 

greater than the wild type controls. However, in the 6 week Ins2Akita, BMP7 

showed over a 3 fold increase when compared to about a 1.5 fold increase in the 

3 week Ins2Akita, over the respective wild type controls. When analyzed for BMP7 

expression via IHC, the 6 week Ins2Akita mouse and WPK rat retinal tissue 

sections showed more labeling in the diseased/mutant retinas which were 

previously shown to have reactive gliosis. To determine BMP signaling in the 

diseased/mutant retinas, the 6 week Ins2Akita mouse and the 3 week WPK rat 
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retinal tissues were analyzed for pSMAD1 expression. The Ins2Akita and 3 week 

WPK rat retina did show an increase in pSMAD1 labeling.  

 

To assess reactivity further in retinal astrocytes, astrocytes were first isolated 

from the retinas of 4-6 week old immortomouse. The cells which could be 

maintained in culture were subjected to different treatment conditions. As a first 

step, cells were treated with sodium peroxynitrite and analyzed via RT-qPCR, 

ICC and western blotting. Treatment with sodium peroxynitrite did induce a 

reactive astrocyte state in the astrocytes which was confirmed by the increase in 

RNA levels of various markers via RT-qPCR as well as an increase in GFAP via 

western blotting. The cells were exposed to a 5 day glucose DMEM media to 

mimic the hyperglycemic conditions of Ins2Akita. RT-qPCR analysis of the RNA 

from the treated cells did show an increase in the expression of GFAP along with 

some of the other gliosis markers. The cells were also treated with BMP7 and 

BMP4 to determine if they did play a role in making astrocytes reactive. The cells 

were treated with BMP7 and BMP4 for 24 and 36 hours. With BMP7 treatments, 

we did observe reactivity in the astrocyte cells at the 24 hour time point, 

confirmed by RT-qPCR as well as western blotting for GFAP. By 36 hours, most 

of the gliosis markers had normalized. The BMP4 treatments did not induce 

changes in the RNA levels of the gliosis markers to an extent similar to the BMP7 

treatments in both the 24 hour and 36 hour treatments. The cells were then 

subject to treatments with different concentrations of BMP7 to analyze the 

changes in levels of RNA of the gliosis markers. We observed that a group of the 
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markers did show a direct correlation with changes in BMP7 concentration while 

others showed a mixed correlation with the change in growth factor 

concentration. 

 

The peroxynitrite and glucose treated cells were also analyzed via RT-qPCR for 

the changes in the levels of various BMP molecules, the SMAD signaling 

components and a few downstream targets. We did observe an increase in the 

levels of RNA of BMP7 in the peroxynitrite treated cells and not in the glucose 

treated cells. Further, we did observe an increase in pSMAD levels in the 

peroxynitrite treated cells which were analyzed via western blotting and ICC. The 

increase in the levels of pSMAD was similar to that seen in the BMP7 treated 

cells, indicating an active BMP mechanism in these reactive cells. 

 

Ins2Akita mouse and WPK rats as models for reactive gliosis in the retina and 

BMP expression 

The Ins2Akita mice have a point mutation replacing a cysteine with a tyrosine 

residue at the seventh amino acid residue of the A chain of the insulin 2 gene 

product, leading to a conformation change in the protein by blocking the 

formation of an essential disulfide bond. The Ins2Akita mouse model has been 

previously used as a model to study abnormalities in the retina brought on by 

diabetes (Barber et al., 2005). In the retina, loss of amacrine cells have been 

reported in these animals (Gastinger et al., 2006). The increased glucose in 
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these animals, which has previously been shown to make astrocytes in vitro 

reactive (Wang et al., 2012), coupled with a loss of neurons in the retina makes 

this model a good option to study reactive gliosis.  

 

The WPK rat model is used to study the Meckel-Gruber syndrome (MKS). MKS 

is an “autosomal, recessive, lethal, malformation syndrome characterized by 

renal cystic dysplasia, CNS malformations and polydactyly”. Mutation in the gene 

MKS3 (which encodes for mecklin protein) has been implicated in the model 

system (Smith et al., 2006). Due to this mutation, functional defects have been 

reported in the connecting cilium in the eye lead to a lack of formation of outer 

segments and this leads to defective eyes in this model (Collin et al., 2012). The 

rationale behind choosing this model to study reactive gliosis is the loss of 

photoreceptor outer segments in the retinas of this model which may serve as a 

stimulus in making astrocytes reactive. 

 

To determine reactivity in the 2 animal models, retinal tissue sections from the 

eyes of the animals were analyzed via immunohistochemistry for some of the 

markers previously shown to be regulated in gliosis. Of the 2 models used in the 

study, the WPK appears to be a more severe model of gliosis than the Ins2Akita 

mouse model, as seen by IHC analysis for markers GFAP, GS, S100-β and 

neurocan. In both the WPK and the 6 week Ins2Akita model, there seemed to be 

an upregulation of GS and GFAP. Neurocan seemed to be upregulated more in 

the Ins2Akita mouse model than in the WPK rat model. The finding that there is 
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less reactive gliosis and yet more glial scar components such as neurocan is 

intriguing and is consistent with the idea that reactive gliosis can play beneficial 

roles in injury and disease (Myer et al., 2006, Sofroniew, 2009). The 3 week 

stage of the mouse did not show change in expression of the markers analyzed 

in comparison to the wild type. In the Ins2Akita mouse, at the 3 week there is little 

or no retinal complications seen due to diabetes in the mouse (Barber et al., 

2005). Thus, the retina, as analyzed by IHC, does not appear to have largely 

different expression patterns than the wild type at this stage. Consistent with this 

idea, RT-qPCR analysis of RNA from whole retinas of 3 and 6 week mouse 

model systems did show the regulation of more markers at the 6 week stage than 

the 3 week stage, correlating with the IHC results.  

 

IHC and RT-qPCR did show the 6 week Ins2Akita and the 3 week WPK rat retinas 

to have reactive astrocytes. Studies previously done using spinal cord injury 

models to understand reactive gliosis, did show an increase in BMPs in the site 

of injury and to play a role in the specification of astrocyte/oligodendrocyte 

precursors (Setoguchi et al., 2004, Xiao et al., 2010). RT-qPCR analysis of RNA 

from whole retinas of the 3 and 6 week Ins2Akita mouse model showed an 

increase in the levels of RNA of BMP7 when comparing the 3 and 6 week 

Ins2Akita mouse. As a first step to identify BMP signaling in reactive gliosis, retinal 

tissue sections of the Ins2Akita mouse and the 3 week WPK rat were analyzed via 

IHC for BMP7, which has been previously reported to be increased following 

injury (Setoguchi et al., 2001, Sahni et al., 2010). IHC for BMP7 revealed 
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increased expression in the WPK and the 6 week Ins2Akita mouse model. In the 

rat, the expression of BMP7 was seen primarily in the outer layers of the retina 

and this can be attributed to an increase in reactive oxygen species that result 

from a loss of functional photoreceptors. In comparison to the WPK model, the 

Ins2Akita mouse model, the BMP7 protein was localized to the inner layers of the 

retina. Western blotting analysis need to be performed, to quantitate the levels of 

BMP7. We further investigated the increase in BMP signaling by analyzing the 

expression of phospho-SMAD (pSMAD1). pSMAD is the activated form of the 

receptor linked SMAD1 molecule. The canonical BMP signaling pathway 

proceeds via activation of the SMAD 1, 5 and 8 molecules (Nohe et al., 2004). 

The retinas of the Ins2Akita and the 3 week WPK rat did show an increase in 

labeling for pSMAD1 when compared to their respective wild type. This increase 

in the RNA levels as well as in the protein levels, analyzed by RT-qPCR and IHC, 

respectively, of BMP7, coupled with the signs of reactivity confirmed by RT-

qPCR and IHC in the animal models are indicative for a role of BMP7 in 

regulation gliosis in these model systems. 

 

In vitro reactivity model using sodium peroxynitrite and high glucose DMEM 

The 2 animal models previously described, help setup an in vivo model system to 

understand gliosis. However, using an in vitro model system would be more 

advantageous as it is more amenable to different manipulations. The first step in 

in vitro analysis was to mimic reactivity. Peroxynitrite is a toxic metabolite of nitric 

oxide and a strong oxidizing agent which has previously been shown to play a 
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role in oxidative stress and mediating motor neuron apoptosis. Peroxynitrite 

induces the inducible nitric oxide synthase in the astrocytes and this leads to an 

increase in production of nitric oxide which leads to a neurotoxic effect (Cassina 

et al., 2002a). Peroxynitrite leads to long term inhibition of gap junction 

communications between astrocytes and neurons as well as inhibition of axonal 

conduction and the mitochondrial respiratory chain, thereby increasing the 

neurotoxic effects on neurons (Redford et al., 1997, Stewart et al., 2000). 

Previous studies have shown that spinal cord astrocytes exposed to peroxynitrite 

underwent morphological transformations which induced motor neuron 

apoptosis. In this study we have shown that treatment of retinal astrocyte cell 

cultures with sodium peroxynitrite induces changes in expression of several 

markers including GFAP. Western blot analysis did show the increase in GFAP 

protein levels to be about 1.5 fold that of the control cells. Immunocytochemistry 

has revealed that there is a change in expression of other astrocytic markers 

such as glutamine synthetase (GS) and S100-β, as well the BMP pathway 

signaling molecule – phospho-SMAD1 (pSMAD1). These findings are in 

agreement with previous reports showing that exposure of astrocytes to 

peroxynitrite induces reactive phenotypic changes. Cells treated with 

peroxynitrite were analyzed via RT-qPCR for the RNA levels of various markers 

including astrocyte specific markers, signaling molecules and receptors as well 

as extra cellular matrix molecules such as the inhibitory CSPGs, MMPs and 

TIMPs. We observed that peroxynitrite treated cells did have increased RNA 

levels of astrocytic markers such as GFAP, PAX2 and S100, along with an 
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increase in the levels of inhibitory CSPGs and other extracellular molecules such 

as the MMPs and TIMPs. These results coupled with the immunocytochemistry 

analysis and an increase in GFAP protein levels shown by the western blotting 

show that sodium peroxynitrite treatments are a viable method to make astrocyte 

cells reactive in vitro. 

 

The peroxynitrite treatment was analogous to an in vivo injury model system. To 

mimic the hyperglycemic conditions of the diabetes in the Ins2Akita, cells in culture 

were exposed to 40mM glucose in DMEM for 5 days, following which the cells 

were processed for RNA and analyzed via RT-qPCR for the levels of various 

gliosis markers previously used. The RT-qPCR data showed an increase in 

GFAP as well as EGFR1. The changes in the levels of RNA in the glucose 

treatment were not as severe as the peroxynitrite treatment conditions, and 

showed to be similar to the changes in levels of RNA in the 6 week Ins2Akita 

mouse, suggesting that this is an apt model to study gliosis occurring due to 

hyperglycemia in diabetes.  

 

BMP7 plays a role in making astrocytes reactive 

The BMPs belong to the TGF-β superfamily of proteins and are involved in a 

wide range of functions all throughout development. One of the functions of the 

BMPs is the determination of glial fate in neuroepithelial precursor cells (Mabie et 

al., 1997, Yanagisawa et al., 2001, He and Sun, 2007). One important function of 

the astrocytes is reactive gliosis, which is a response in the astrocytes in 
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response to injury of nearby neurons (Sofroniew and Vinters, 2010). Previous 

studies have shown that BMPs (BMP -4 and -7) are upregulated at the site of 

injury (Setoguchi et al., 2001, Fuller et al., 2007). The BMPs are initially released 

by the injured neurons which can then interact with astrocytes, and induce the 

astrocytes as well to release the BMPs. These studies have shown a role for the 

BMPs in gliosis using the spinal cord injury model. In this study we aim to 

evaluate the role of BMPs in gliosis in the eye. In vitro studies were performed 

using the mouse retinal astrocyte cells previously isolated. They were initially 

subject to a treatment with 100ng/ml of BMP7. Initial analysis by western blot for 

levels of GFAP did show a 2 fold increase in protein levels indicating that BMP7 

did have the potential to make cells reactive. RNA from cells treated with 

100ng/ml BMP7 for 24 and 36 hours was then analyzed for changes in RNA 

levels of different gliosis markers. The 2 time points chosen represent an early 

and a late response time in the astrocytes following BMP7 treatments. We 

observed that at the 24 hour stage, the RNA levels of a larger set of markers 

including GFAP, PAX2, SMADs, as well as extra cellular molecules including the 

inhibitory CSPGs, MMPs and TIMPs were regulated. By the 36 hour stage, most 

of the markers had normalized to control levels except for some of the CSPGs, 

TIMPS and MMPs. By the 36 hour point, the BMP signaling has most likely 

subsided and this may be the reason for the normalization of the RNA levels of 

the different markers. One treatment with BMP7 may be analogous to a mild 

injury of the CNS which is why we see the normalization of markers by the 36 

hour stage. 
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To further evaluate the role of BMP7 in gliosis, mouse retinal astrocyte cells were 

treated with varying concentrations of BMP7 and we observed the RNA levels a 

panel of markers which have been found to be regulated in gliosis. Most of the 

markers from the panel, showed a direct correlation between the levels of RNA 

and the concentration of BMP7. A few markers, including the inhibitory CSPGs, 

neurocan and phosphacan, as well as the receptors EGFR1 and TLR4 showed a 

more complex relation with BMP7 dosage. Increase in levels of EGFR1 following 

BMP7 treatment indicated towards activation of the EGFR pathway. This 

evidence, along with the non linear correlation between BMP treatments and 

RNA levels of markers suggest crosstalk between the BMP pathway and other 

pathways. 

 

The BMPs can mediate signaling through a canonical – SMAD dependent 

pathway or the non canonical SMAD independent pathway (Nohe et al., 2004). 

Thus, BMPs can regulate signaling through either the SMADs or other molecules 

such as TAK or TAB. Activation of the later molecules may lead to activation of 

other signaling pathways such as NF-κB, p38 and JNK (Nohe et al., 2004, Sieber 

et al., 2009). Therefore, the effects seen in the RNA levels of the different gliosis 

markers may suggest activation of other pathways along with the BMP pathway. 

These pathways may either be simultaneously activated along with the BMP 

pathway or be regulated by the SMAD independent (TAK – TAB pathway) part of 

the BMP pathway. This increase in EGF receptor might indicate towards 
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activation of the EGF pathway, which could also regulate changes observed in 

gliosis (Ridet et al., 1997, Sofroniew, 2009). 

 

Effect of other BMP molecules 

As mentioned previously, BMP molecules have been shown to be upregulated at 

the site of nerve injury. We have looked at the role of BMP7 in gliosis using the 

mouse retinal astrocyte cells. BMP4 is another molecule which has been found to 

be upregulated at the site of the injury (Fuller et al., 2007). We determined the 

effect of BMP4 on mouse retinal astrocyte cells, to analyze if a reactive state 

similar to that of BMP7 treatments was observed. RT-qPCR analysis was 

performed to analyze RNA levels for reactivity markers in 100ng/ml BMP4 

treated cells. Similar to the BMP7 treatments, 2 time points were chosen – 24 

and 36 hour, which represented a short and long term exposure period. Apart 

from MMP9, which showed a significant decrease in RNA levels, the reactivity 

markers in the BMP4 treated cells were not altered to a significant extent.  

 

The BMPs regulate activity by binding to 2 extracellular receptors: the type I (5 

known types) and type II receptors (3 known types). The BMPs bind to the type II 

receptor which then leads to dimerization of the receptor with a type I receptor 

(Miyazono et al., 2010). The dynamics of the receptor dimerization and the 

downstream components activated by each complex is still unclear. Thus, 

treatment of astrocytes by BMP4 may activate a different set of downstream 

signaling components when compared with the BMP7 molecule, which may 
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account for the differences in the RNA levels seen in the treated retinal astrocyte 

cells. 

 

BMP signaling in gliosis 

Sodium peroxyitrite has been showed to make astrocyte cells in culture reactive. 

To analyze the RNA levels of different BMP molecules following injury, cells 

treated with sodium peroxynitrite were analyzed via RT-qPCR. We observed an 

increase in the levels of BMP4, BMP6 and BMP7 as well as the downstream 

targets – ID1 and MSX2 in the peroxynitrite treated cells when compared to the 

control treatments. Analysis of RNA levels in the Ins2Akita mouse model showed 

an increase in the levels of BMP7 at the 6 week stage, along with an increase of 

downstream molecules SMAD8 and MSX2. Analysis of the 3 week stage shows 

that the levels of BMP – 4 and 6 to be higher than BMP7. This increase in BMP7 

RNA levels when comparing the 3 week to the 6 week stage coupled with the 

RT-qPCR and IHC data which shows gliosis at the 6 week stage, suggest there 

is increased BMP signaling in gliosis in the diseased state. The in vitro results 

further provide evidence that BMP signaling is active in reactive gliosis in injury 

conditions and may play a role in regulation of the RNA levels of various 

markers. Analysis of protein from the treated cells for phospho SMAD1, 5, 8 via 

western blotting and immunocytochemistry does show an increase in the levels 

of the protein. Phsospho SMAD is the activated form of the SMAD signaling 

molecule and its increased levels indicates towards an activation of the BMP 

pathway. Studies have recently implicated reactive astrocytes to play a role in 
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inflammation following injury (reviewed in(Sofroniew and Vinters, 2010). The 

BMP pathway has been shown to elicit an inflammatory response by activating 

the NF – κB pathway via the non-canonical BMP-MAPK pathway (reviewed in 

(Nohe et al., 2004, Bragdon et al., 2011, Hayden and Ghosh, 2012). We observe 

here an increase in BMP signaling as well as concomitant increase in the toll like 

receptor (TLR-4), suggesting that this may be a possible mechanism leading to 

the inflammatory response. We have thus, observed an increase in RNA and 

protein levels of BMP7 and pSMAD in reactive gliosis. Further, differential 

regulation of different markers of gliosis under different conditions and due to 

exposure to BMP7 suggests activation of both the SMAD dependent and 

independent pathways, and an active role for BMP signaling in reactive gliosis.  

 

Future Directions 

To further evaluate BMP signaling in gliosis, we propose the following 

experiments –  

 Effect of BMP inhibitor LDN-193189, which specifically blocks the Alk2 

receptor (which is the preferred receptor for BMP7 mediated signaling) on 

the RNA levels as well as protein expression levels of various markers for 

gliosis. 

 Proliferation assays following treatment with BMP7 and/or its inhibitor to 

determine the effects of BMP signaling in the proliferative changes during 

gliosis. 
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 Studying the effects of BMP signaling and its inhibition in vivo. 

Determining if reactive gliosis is induced in normal mice retina following 

intra vitreal injection of BMP7 or if the gliosis condition attenuates 

following intra vitreal injection of LDN-193189 in Ins2Akita mouse will 

further gliosis mediated via the BMP7-Alk2 receptor coupled pathway.  

 

Conclusion 

We have shown here that BMP7 plays a role in reactive gliosis in retinal 

astrocytes. Further, we have shown here that BMP signaling plays a role in 

gliosis following both injury and disease. By building a panel of markers to 

assess reactivity via RT-qPCR, we have devised a tool which could be used for 

easy and quick evaluation of reactivity in astrocytes, analyzing different aspects 

of gliosis. BMP signaling, through the SMAD dependent or the SMAD 

independent mechanisms or a combination of both seem to be involved in gliosis. 

The role of BMPs in gliosis seems to be far from straightforward. Gliosis in the 

retina following injury or in disease may involve additional pathways being 

simultaneously activated or downstream of the BMP signaling mechanism.  

 

In conclusion, this project has helped determine the role of BMP7 in gliosis and 

also revealed a more complex involvement of the BMP pathway in gliosis in the 

retina. 
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Table 1 List of primary antibodies used for western blot analysis 

ANTIBODY COMPANY 
CATALOGUE 

NUMBER 

HOST 

SPECIES 
DILUTION 

GFAP DAKO M0761 Mouse 1:500 

Glutamine Synthetase Millipore MAB302 Mouse 1:500 

phospho SMAD 1,5,8 
Cell 

signaling 
9511 Rabbit 1:1000 

β-Tubulin 
Sigma-

Aldrich 
T0198 Mouse 1:1000 

 
 
 
 
 
 
 
 
 

 
 
  

Table 2 List of primary antibodies used for fluorescence 
immunohistochemistry 

ANTIBODY COMPANY CATALOGUE 
NUMBER 

HOST 
SPECIES 

DILUTION 

GFAP DAKO Z0334 Rabbit 1:250 

Glutamine  
Synthetase 

Millipore MAB302 Mouse 1:250 

S100 β Abcam AB52642 Rabbit 1:250 

Neurocan 
R & D 

systems 
AF5800 Sheep 1:100 

BMP7 Santa Cruz sc-73748 Rabbit 1:250 

pSMAD1 Santa Cruz sc-12353 Rabbit 1:100 
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Table 3 List of primers used in qPCR 

Gene 
Accession 
Number 

Primer Sequence 
Product 
Length 

(bp) 

GFAP1 
 

NM_001131020.1 Forward 
CCCTGGACATCGAGATCG 

CCACC 
117 

 
Reverse 

CTTTGGTGCTTTTGCCCC 
CTCGG 

GFAP2 

NM_010277.3 Forward 
TAGCCCTGGACATCGAG 

ATCGCC 
141 

 
Reverse 

GGTGGCCTTCTGACACG 
GATTTGG 

Pax2 

NM_011037.4 Forward 
ACCCTGGCAGGAATGGT 

GCCT 
70 

 
Reverse 

AGGCGGTGTACTGGGG 
ATGGC 

S100-β 

NM_009115.3 Forward 
GACTGCGCCAAGCCCA 

CACC 
142 

 
Reverse 

TCCAGCTCGGACATCC 
CGGG 

NOS 

NM_008712.2 Forward 
TACGGGCATTGCTCCCT 

TCCGA 
93 

 
Reverse 

AACACCAAGCTCATGC 
GGCCT 

GS 

NM_008131.3 Forward 
GCGCTGCAAGACCCG 

TACCC 
145 

 
Reverse 

GGGGTCTCGAAACATGG 
CAACAGG 

VIM 

NM_011701.4 Forward 
AGGAAGCCGAAAGCA 

CCCTGC 
78 

 
Reverse 

TCCGTTCAAGGTCAAG 
ACGTGCC 

EGFR1 

NM_207655.2 Forward 
AAAGCGTACACTACG 

CCGCCTG 
150 

 
Reverse 

GTGCCAAATGCTCCCG 
AACCCA 

EGFR2 

NM_007912.4 Forward 
ACCTATGCCACGCCA 

ACTGTACCT 
82 

 
Reverse 

TGAACGTACCCAGAT 
GGCCACACTT 
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Table 3 List of primers used in qPCR (continued) 

Gene 
Accession 
Number 

Primer Sequence 
Product 
Length 

(bp) 

TLR2 

NM_011905.3 Forward 
TGGAGCATCCGAAT 

TGCATCACCG 
112 

 Reverse 
GCCACCAAGATCCAG 

AAGAGCCA 

TLR4 

NM_021297.2 Forward 
TGCCTGACACCAGGA 

AGCTTGA 
102 

 Reverse 
AGGAATGTCATCAGG 

GACTTTGCTG 

B2M 

NM_009735.3 Forward 
TCGCGGTCGCTTCA 

GTCGTC 
135 

 Reverse 
CATTCTCCGGTGG 

GTGGCGTG 

ACAN 

NM_007424.2 Forward 
GGCGTGCGCCCAT 

CATCAGAAA 
86 

 Reverse 
TCGAGGCGTGTGG 

CGAAGAA 

PCAN 

NM_001081306.1 Forward 
ATCCCTGAGTGGG 

GAAGGCACA 
96 

 Reverse 
AGCAGGGGATGCTG 

GGTGATGA 

NCAN 

NM_007789.3 Forward 
CCTGACAAGCGT 

CCATTCGCCA 
90 

 Reverse 
ACTGTCCGGTCAT 

TCAGGCCGAT 

VCAN 

NM_172955.1 Forward 
TGGATTCCGCTCT 

CCCCAGGAA 
119 

 Reverse 
ACTCTGCTTCGGC 

CTCCTCGAA 

TIMP1 

NM_001044384.1 Forward 
ACAGCCTTCTGCAA 

CTCGGACC 
141 

 Reverse 
TGCGGCATTTCCC 

ACAGCCT 

TIMP2 

NM_011594.3 Forward 
TGCACCCGCAACAG 

GCGTTT 
78 

 Reverse 
CGGAATCCAC 

CTCCTTCTCGCTCA 
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Table 3 List of primers used in qPCR (continued) 

Gene 
Accession 
Number 

Primer Sequence 
Product 
Length 

(bp) 

TIMP3 

NM_011595.2 Forward 
TGACTCCCTGGCT 

TGGGCTTGT 
147 

 Reverse 
TCTTTCCCACCACT 

TTGGCCCG 

TIMP4 

NM_080639.3 Forward 
AGCACTTCTGCCA 

CTCGGCTCTA 
77 

 Reverse 
AGGGTCTTTGCTG 

GCAGGGACTAC 

MMP2 

NM_008610.2 Forward 
TGGCAAGGTGTG 

GTGTGCGA 
133 

 Reverse 
AGAGTGTTCCAGC 

CCCATGGCA 

MMP3 

NM_010809.1 Forward 
TGGGTCTCCCTG 

CAACCGTGAA 
141 

 Reverse 
TCTTCCTGGGAAA 
TCCTGGCTCCAT 

MMP9 

NM_013599.2 Forward 
TGTGCCCTGGAA 

CTCACACGAC 
135 

 Reverse 
ACGTCGTCCACCT 

GGTTCACCT 

MMP11 

NM_008606.2 Forward 
ACTGACTGGCGA 

GGGGTACCTT 
128 

 Reverse 
GCAGATGGACCC 
CATGTTTGCTGT 

MMP12 

NM_008605.3 Forward 
GCTGTCTTTGACCC 

ACTTCGCCA 
88 

 Reverse 
GGTCCATGAGCTC 

CTGCCTCACAT 

MMP13 

NM_008607.2 Forward 
GCGTGGCTGGAA 

CCACATGGAA 
128 

 Reverse 
GCAGATGGACCCCA 

TGTTTGCTGT 

MMP14 

NM_008608.3 Forward 
TGGGCCCAAGGCAG 

CAACTT 
89 

 
Reverse 

CGTTGTGTGTGGG 
TACGCAGGT 
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Table 3 List of primers used in qPCR (continued) 

Gene 
Accession 
Number 

Primer Sequence 
Product 
Length 

(bp) 

BMP2 

NM_007553.2 Forward AATGGACGTGCCCC 
CTAGTGCT 

106 
 Reverse AGGACCTGGGGAAG 

CAGCAACA 

BMP4 

NM_007554.2 Forward AGCCGAGCCAACAC 
TGTGAGGA 

78 
 Reverse AGCAGAGCTCTCAC 

TGGTCCCT 

BMP6 

NM_007556.2 Forward TTCCTCAACGACGC 
GGACATGG 

85 
 Reverse TGTGGTGTCGTTGAT 

GTGGGGAGA 

BMP7 

NM_007557.2 Forward TCCTCACTGACGCC 
GACATGGT 

97 
 Reverse AACCGGAACTCCCG 

ATGGTGGT 

SMAD1 

NM_008539.3 Forward TACCCTCACTCCCC 
AACCAGCTCA 

143 
 Reverse GGAGGCGCCATCAT 

GTTCGTGT 

SMAD5 

NM_001164041.1 Forward TCCCTCGCTGCGCT 
AAACTTTGT 

137 
 Reverse AAGCGTGGCTCGCA 

GGTGAA 

SMAD6 

NM_008542.3 Forward AGGCCACCAACTCC 
CTCATCACT 

70 
 Reverse TTGGTGGCATCCGG 

AGACATGC 

SMAD7 

NM_001042660.1 Forward CTGCAGGCTGTCC 
AGATGCTGT 

132 
 Reverse ATGCCACCACGCAC 

CAGTGT 

SMAD8 

NM_019483.4 Forward ATGCCGCACAACGC 
CACCTA 

88 
 Reverse ACTGCGGAAACAC 

ATGGCCTGG 
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Table 3 List of primers used in qPCR (continued) 

Gene 
Accession 
Number 

Primer Sequence 
Product 
Length 

(bp) 

ID1 

NM_010495.2 Forward TCAGCACCCTGAA 
CGGCGAGAT 

70 
 Reverse ATGCGATCGTCGG 

CTGGAACA 

ID3 

NM_008321.2 Forward ACCTTCAGGTGGT 
CCTGGCAGA 

134 
 Reverse ACGACCGGGTCA 

GTGGCAAAA 

MSX2 

NM_013601.2 Forward ACCGCCTCGGTC 
AAGTCGGAAA 

116 
 Reverse TGTTTCCTCAGGG 

TGCAGGTGGT 
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Table 4 Panel of markers used for assessment of reactivity via qPCR 

 

REACTIVITY PANEL 

• Glial fibrillary acidic protein variant 2 – GFAP2 

• PAX2 

• S100-β 

• EGFR1 

• TLR4 

• Phosphacan – PCAN 

• Neurocan - NCAN 

• Tissue inhibitor of metalloproteinases 2 –
TIMP2 

• Matrix metalloproteinase 9 – MMP9 

• Matrix metalloproteinases 11 – MMP11 

• Matrix metalloproteinase 14 – MMP14 
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Fig. 1 Specification map of the blastula stage chick embryos: the neurogenic 

(red) region and the epidermal (green) region; and the effects of different growth 

factors on the lineage determination (Wilson and Edlund, 2001) 
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Fig. 2 Primary neurulation in amniotes: Development of the neural tube from 

the neural plate (Harrington et al., 2009) 

 

 

Fig. 3 Development of astrocytes from neuroepithelial precursor cells: 

Progression and changes in the differentiation of the neuroepithelial precursor 

cells during development (Modified from Holland E. 2001, review) 
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Fig. 4 Development of the vertebrate eye: (a) The neural plate, (b) The neural 

plate begins to fold upwards and inwards forming the neural tube,(c) The eye 

field in the neural plate spilts and forms the optic grooves, (d) As the ends of the 

folds move in closer, the optic groove evaginates, (e) After the closure of the 

neural tube, the ends of the optic vesicle come in close proximity of the outer 

head ectoderm and induces the lens placode, (f) The optic vesicle folds on itself, 

now called the optic cup, forming the retina proximal to the lens, retinal 

pigmented epithelium distal to the lens and the ventral optic stalk, (g) The optic 

cup enlarges and eventually seals off the choroid fissure and enclosing the optic 

nerve (Lamb et al., 2007)  
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Fig. 5 Layers of the mature vertebrate retina: Organization of the mature retina 

along with the different cell types present  

(http://webvision.med.utah.edu/book/part-i-foundations/gross-anatomy-of-the-ey/) 
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Fig. 6 Summary of reactive gliosis: Changes in molecular and morphological 

characteristics of astrocytes due to an injury or disease of the nearby neurons, 

altering the functions of astrocytes by inter and intra cellular signaling molecules. 

Based on the extent of the injury, the gliosis can be either mild or severe 
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Fig. 7 The BMP pathway: Signaling through the BMP pathway follows either the 

canonical (SMAD dependent) pathway or the non canonical (SMAD independent) 

pathway 
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Fig. 8 Characterization of reactivity in vivo in the 3 week Ins2Akita mouse: IHC of sections through WT and 3 week 

Ins2Akita labelled for GFAP (A, E), glutamine synthetase (B, F), neurocan (C, G) and S100 (D, H). At 3 weeks, there are 

no detectable differences in the expression pattern GFAP, S100 or neurocan in WT (A,C, D) and Ins2Akita (E, G , H). 

There was however, a detectable increase in glutamine synthetase in Ins2Akita (F) in comparison to the WT (B).ONL: 

outer nuclear layer; INL: inner nuclear layer; GCL; ganglion cell layer  
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Fig. 9 Characterization of reactivity in vivo in 6 week Ins2Akita mouse: IHC of sections through WT and 6 week 

Ins2Akita labelled for GFAP (A, E), glutamine synthetase (B, F), neurocan (C, G) and S100 (D, H). At the 6 week stage, 

we observe detectable differences in the expression pattern GFAP, GS, S100 and neurocan in WT (A,B, C, D) and 

Ins2Akita (E, F, G, H). ONL: outer nuclear layer; INL: inner nuclear layer; GCL; ganglion cell layer  
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Fig. 10 Characterization of reactivity in vivo in 3 week WPK rat: IHC of sections through WT and 3 week WPK 

labelled for GFAP (A, E), glutamine synthetase (B, F), neurocan (C, G) and S100 (D, H). In the rat, we observe 

detectable differences in the expression pattern GFAP, GS and S100 in WT (A,B, D) and WPK (E, F, H). There was no 

detectable difference in the expression pattern of neurocan between the WT (C) and WPK (G). ONL: outer nuclear 

layer; INL: inner nuclear layer; GCL; ganglion cell layer 
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A.                                                                                                    B.  

Fig. 11 Characterization of reactivity in vivo for reactivity markers: qPCR analysis for levels of RNA for markers of 

reactivity in 3 week Ins2Akita (A) and 6 week Ins2Akita (B) mouse when normalized to wild type mouse 
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A.                                                                       B.  

Fig. 12 BMP molecules and signaling components in whole mouse retinas: 

qPCR analysis for levels of RNA for BMP molecules and downstream components 

of reactivity in 3 week Ins2Akita mouse (A) and 6 week Ins2Akita mouse (B) when 

normalized to wild type mouse 
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Fig. 13 Characterization of BMP7 signaling in vivo: IHC staining of WT and WPK rat (A, G) and WT and Ins2Akita (B, 

C, H, I) mouse for BMP7.Detectable differences in the expression pattern of BMP7 is observed in the 3 week WPK rat 

(G) in the outher nuclear layer and in 6 week Ins2Akita (I) in the inner nuclear layers when compared to their WT (A, C). 

ONL: outer nuclear layer; INL: inner nuclear layer; GCL; ganglion cell layer 
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Fig. 14 pSMAD1 and glutamine synthetase double labeling in 3 week wild type and Ins2Akita mouse retinas: The 

3 week Ins2Akita does show a detectable increase in pSMAD1 labeling, specifically in the process of glial cells in outer 

plexiform layers as observed in the merged images of pSMAD and GS(F) when compared to the WT (C). ONL: outer 

nuclear layer; INL: inner nuclear layer; GCL; ganglion cell layer   
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Fig. 15 pSMAD1 and glutamine synthetase double labeling in 6 week wild type and Ins2Akita mouse retinas: The 

6 week Ins2Akita which was previously characterized to have reactive astrocytes does show a detectable increase in 

pSMAD1 labeling, specifically in the inner nuclear layer(D, F) when compared to the WT (A, C). ONL: outer nuclear 

layer; INL: inner nuclear layer; GCL; ganglion cell layer   
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Fig. 16 pSMAD1 and glutamine synthetase double labeling in 3 week wild type and WPK rat retinas: The 3 week 

WPK, previously characterized to have reactive astrocytes does show a detectable increase in pSMAD1 labeling, 

specifically in the inner nuclear layer(D, F) when compared to the WT (A, C). ONL: outer nuclear layer; INL: inner 

nuclear layer; GCL; ganglion cell layer  
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Fig. 17 ICC of reactivity in vitro: Immunocytochemistry of peroxynitrite treated 

cells with antibodies against GFAP, GS and S100 shows more intense staining in 

the peroxynitrite treated cells 

 

 
A.                                                          B.  

Fig.18 Characterization of reactivity in vitro via western blot: (A) Western 

blot analysis of 0.15mM peroxynitrite treated cells compared to the control 

treatments for GFAP and beta tubulin. (B) Densitometric analysis of the blots 

normalized to the control treatments. β-Tubulin used as the loading control

0

0.5

1

1.5

2

GFAP GS

0.15mM 
Peroxynitrite 



 
 

 

7
8
 

 

Fig. 19 Reactivity of mouse retinal astrocytes in vitro due to sodium peroxynitrite: qPCR data depicting 

markers showing change in levels of mRNA in astrocyte cells exposed to 0.15 mM sodium peroxynitrite for 32 

hours normalized to the control treatment (* = p value < 0.05)                   
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Fig. 20 Reactivity of mouse retinal astrocytes in vitro due to high glucose DMEM: qPCR data depicting 

markers showing change in levels of mRNA in astrocyte cells exposed to 40 mM glucose in DMEM for 5 days 

normalized to the control 5 mM low glucose treatment  
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Fig. 21 Effect of BMP7 on retinal astrocyte cells: (A) qPCR data depicting markers which showed 

statistically significant change in levels of mRNA in astrocyte cells exposed to 100ng/ml BMP7 for 24 hours 

normalized to the control treatments (* = p value < 0.05) 
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Fig. 21 Effect of BMP7 on retinal astrocyte cells: (B) qPCR data depicting markers which showed statistically 

significant change in levels of mRNA in astrocyte cells exposed to 100ng/ml BMP7 for 36 hours normalized to 

the control treatment (* = p value < 0.05) 
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A.                                                       B.  

Fig. 22 Characterization of reactivity in vitro in BMP7 treated cells via 

western blot: (A) Western blot analysis of 0.15mM peroxynitrite treated cells 

compared to the control treatments for GFAP, GS and beta tubulin (B). 

Densitometric analysis of the blots normalized to the control treatments. β-

Tubulin used as the loading control  
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Fig. 23 Effect of varying concentration of BMP7 on RNA levels of reactivity panel in retinal astrocyte 

cells: Markers GFAP2, Pax2, MMP11 and MMP14 show a direct correlation with BMP7 levels, while S100, 

TIMP2, MMP9, EGFR1, TLR4, PCAN and NCAN show no or a complex correlation 
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Fig. 24 Effect of BMP4 on retinal astrocyte cells: (A) qPCR data depicting 

changes in levels of mRNA of the reactivity panel of markers in astrocyte cells 

exposed to 100ng/ml BMP4 for 24 hours normalized to the control treatment 

 

Fig. 24 Effect of BMP4 on retinal astrocyte cells: (B) qPCR data depicting 

changes in levels of mRNA of the reactivity panel of markers in astrocyte cells 

exposed to 100ng/ml BMP4 for 36 hours normalized to the control treatment 
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Fig. 25 BMP molecules and signaling components in vitro: (A) qPCR 

analysis for levels of RNA for BMP molecules and downstream components of 

reactivity in 0.15mM sodium peroxynitrite treated cells, when compared to the 

control treatment condition 

 

Fig. 25 BMP molecules and signaling components in vitro: (B) qPCR 

analysis for levels of RNA for BMP molecules and downstream components of 

reactivity in 5 day high glucose treated cells, when compared to the control 

treatment condition  
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Fig. 25 BMP molecules and signaling components in vitro: (C) qPCR 

analysis for levels of RNA for BMP molecules and downstream components of 

reactivity in 24 hour BMP7 treated cells, when compared to the control treatment 

condition 

 

Fig. 25 BMP molecules and signaling components in vitro: (D) qPCR 

analysis for levels of RNA for BMP molecules and downstream components of 

reactivity in 24 hour BMP4 treated cells, when compared to the control treatment 

condition 
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A.  

 

A.  

Fig. 26 BMP signaling  in gliosis in vitro: (A). Western blot analysis of 

100ng/ml BMP7 treated cells compared to the control treatments for GFAP and 

beta tubulin, showing similar increase in pSMAD levels in both BMP7 and 

peroxynitrite treated cells (B). Densitometric analysis of the blots normalized to 

the control treatments. Β-Tubulin used as a loading control 
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Fig. 27 ICC for pSMAD activity in reactive gliosis in vitro: 

Immunocytochemistry of peroxynitrite treated cells with antibody against 

pSMAD1 which shows more intense nuclear staining in the peroxynitrite treated 

cells 
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