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ABSTRACT

Redelman, Carly Virginia. M.S., Purdue University, August 2011, Antibiotic Treatment 
of Pseudomonas aeruginosa Biofilms Stimulates Expression of mgtE, a Virulence 
Modulator.  Major Professor: Gregory G. Anderson.

Pseudomonas aeruginosa is a gram negative opportunistic pathogen with the 

capacity to cause serious disease by forming biofilms, most notably in the lungs of cystic 

fibrosis (CF) patients.  Biofilms are communities of microorganisms that adhere to a solid 

surface, undergo global regulatory changes, secrete exopolysaccharides, and are innately 

antibiotic resistant.  Virulence modulation is an important tool utilized by P. aeruginosa

to propagate infection and biofilm formation in the CF airway.  Many different virulence 

modulatory pathways and proteins have been identified including the protein, MgtE.  

MgtE has recently been discovered and has been implicated in virulence modulation, as 

an isogeneic mutation of mgtE leads to increased cytotoxicity.  To further elucidate the 

role of MgtE in P. aerugionsa infections, transcriptional and translational regulation of 

this protein following antibiotic treatment has been explored.  I have demonstrated that 

mgtE is transcriptionally upregulated following antibiotic treatment of most of the twelve 

antibiotics tested utilizing RT-PCR and QRT-PCR.  A novel model system was 

employed, which utilizes cystic fibrosis bronchial epithelial (CFBE) cells homozygous 

������	��
��
����������������	�	������	������is model system allows P. aeruginosa
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biofilms to form on CFBE cells modeling the P. aeruginosa in the CF airway.  

Translational effects of antibiotic treatment on MgtE have been attempted via Western 

blotting and cytotoxicity assays.  Furthermore, to explore the possibility that mgtE is 

interacting with a known regulatory pathway, a transposon-mutant library was utilized 

and the regulatory proteins, AlgR and NarX, among others have been identified as 

possibly interacting with MgtE.  Lastly, an MgtE homologue from Staphylococcus 

aureus was utilized to further demonstrate the virulence modulatory effects of MgtE by 

demonstrating the expression of the homologue results in decreased cytotoxicity, exactly 

like expression of the native P. aeruginosa MgtE.  This research explores a newly 

discovered protein that impacts cytotoxicity and biofilm formation and provides valuable 

information about P. aeruginosa virulence.  
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CHAPTER ONE INTRODUCTION

1.1 What is a Biofilm?

It is becoming increasingly clear that bacteria persist in environmental and host 

niches as complex, heterogeneous communities called biofilms.  Following the early 

characterizations of biofilms in the 1970s by William Costerton and other researchers1,

these microcolony-derived structures have been identified as ubiquitous entities in nature 

as well as in industrial and clinical environments2. Furthermore, fossilized biofilm

microcolonies, identified via morphology, indicate biofilm formation occurring in certain 

environments, such as hydrothermal niches, dating back 3.2-3.4 billion years ago. These 

findings implicate biofilm formation as an innate and evolutionarily selected trait in

prokaryotes3,4.  It is likely that biofilm formation evolved to protect the prokaryote 

against the changing surroundings of primitive earth5. Convergent prokaryotic biofilm 

evolution is revealed as phenotypic similarities that are consistent in similar 

environments.  Changes in the environments in which biofilms grow, such as moving 

waters versus quiescent waters, results in phenotypic changes in the biofilm, such as

filamentous streamer formation versus mushroom-like appendages, respectively6.

Undoubtedly, as biofilm formation is still apparent in many different environments and 

causes exacerbated medical conditions, this evolutionary trait allowing adherence to solid 

surfaces still provides a selective advantage to prokaryotes.



2
 

Biofilms are traditionally described as sessile bacteria adhered, most likely permanently, 

to a solid surface followed by global regulatory changes leading to morphologic, 

phenotypic, and genetic changes in the microcommunity that is formed in comparison to 

planktonic, or free swimming bacteria.  Biofilms are architecturally complex and are 

analogous to microbial towns, in which bacteria work together to survive.  Biofilms can 

be composed of a single species of bacteria, such as P. aeruginosa biofilms infecting the 

cystic fibrosis (CF) airway, or as multi-species biofilms, such as dental plaque, which can 

contain up to 700 species7. P. aeruginosa biofilms have been shown to cause a chronic 

airway infection in patients with CF; therefore, this particular biofilm forming bacterium

is the focus of much research in an attempt to understand how this microorganism 

accomplishes this effect.  Proteomic studies have demonstrated P. aeruginosa biofilms 

form in four distinct stages (Figure 1).

Figure 1.  Biofilm formation and cycling.  P. aeruginosa forms biofilms in four stages
leading to the formation of a mature biofilm.  Stage one is the initial adhesion of the 
bacteria followed by microcolony formation in stage two.  Stage three results in the 
formation of a mature biofilm, and stage four occurs when planktonic bacteria
disseminate from the biofilm in a process called dispersion. Dispersion may lead to 
further biofilm formation which is known as biofilm cycling.
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Biofilm formation begins in stage one by loose, transient binding of planktonic

bacteria to a solid surface followed by significant adhesion.  Stage two involves

formation of microcolonies via aggregation of bacterial cells followed by growth and 

maturation leading to the formation of a mature biofilm in stage three8.  Significant 

changes in gene expression occur throughout the biofilm maturation process.

Phenotypically, a mature biofilm may be mushroom shaped or flat depending on nutrient 

availability and environmental conditions, such as water flow9.  Lastly, stage four is 

marked by shedding from the mature biofilm, where bacterial constituents are able to 

leave the biofilm as either planktonic bacteria or as microcolonies, causing acute 

exacerbations and/or further colonizing the host with biofilms.  This stage is commonly 

described as dispersal8. Dispersal is an advantageous strategy. As the biofilm ages, 

nutrient acquisition may become limited and waste may accumulate.  When this occurs, it 

is beneficial for biofilm constituents to be able to disseminate from the biofilm, and there 

are certain specific agents that allow them to do so10.  As discussed later, biofilm 

attachment and dispersal are both exciting and important endeavors being pursued by 

many researchers in studying disease causing biofilms and will be discussed in more 

detail later in this chapter.

Regardless of phenotypic or bacterial composition, biofilms exhibit similar 

characteristics that allow these communities to successfully survive in many different 

environments.  These characteristics include the formation of water channels and 

secretion of exopolysaccharides.  Both have been observed using confocal laser 

microscopy where it is possible to visualize sessile bacteria surrounded by a matrix of 

polysaccharides with water channels forming internally11.  Water channels are part of the 
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complex architecture of biofilms.  They allow nutrient movement around the biofilm to 

the sessile bacterial inhabitants and removal of waste away from the bacterial 

constituents12, linking form with function. Exopolysaccharide secretion not only adds

volume to the biofilm, but also protects the biofilm from a potentially harmful 

environment.  Exopolysaccharides are able to trap molecules such as antibiotics and 

biocidals preventing interaction of these harmful compounds with bacterial constituents13 

and contributing to biofilms exhibiting an innate antibiotic resistance. These 

observations indicate the complexity of biofilms, revealing an order and function to the 

biofilm community.  

Both genetic and environmental factors influence biofilm structure, attachment, 

and development. Random transposon mutations and deletion mutations have identified 

genes that play important roles in biofilm formation.  These studies compare mutants to 

the wild type background strain looking for impairment in the mutant's ability to form 

biofilms.  Genes that have been identified as crucial to biofilm formation include those 

that regulate or express surface adhesion proteins, genes encoding pili, flagella or 

extracellular matrix material, and many regulatory pathway proteins14-17.  Although

deletion mutations of many of these genes do not fully impair biofilm formation, they 

may either retard or limit biofilm growth.  This demonstrates the convergence of many 

genes and pathways in the prokaryote's ability to form biofilms and, once again, conveys 

the complexity of biofilm formation and maintenance.
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1.2 Biofilms and Human Disease: A Selective Advantage

Biofilm formation protects microbial inhabitants, and biofilms are innately 

resistant to biocidal agents.  This type of resistance is especially important in medically 

relevant biofilms.  As alluded to earlier, bacteria in biofilms secrete an exopolysaccharide 

matrix which protects bacterial constituents from reactive, charged, or large antimicrobial 

agents through neutralization or binding, therefore diluting these agents to nonlethal 

concentrations5. Many antimicrobial agents can penetrate this first protective mechanism 

only to find the bacteria within the biofilm to be in a stationary phase of growth rendering 

many antimicrobials ineffective, particularly certain antibiotics18. Bacterial constituents 

of a biofilm often experience limited nutrient availability, which promotes entrance into a 

stationary phase in which there is little to no growth of the bacteria19 (Figure 2).  

Figure 2.  Bacterial growth curve.  Bacteria undergo phases of growth from an 
exponential growth to stationary growth to death.

Growth rate is a primary modulator of antibiotic action; therefore, bacteria that 

have left the logarithmic stage of growth are less susceptible to antibiotic induced 

killing20. Furthermore, biofilm growth is a perfect environment for gene transfer leading 
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to antibiotic resistant communities.  Lastly, sessile bacteria know as “persisters” are 

another important contribution to the persistence of biofilms as their name indicates18.

They are a dormant phenotype evident in many different bacterial biofilms.  Persisters are 

a separate group of bacterial constituents distinct from both growing and stationary phase 

biofilm constituents.  They are tolerant to antibiotics, and, generally, will be the only 

bacterial cells in a biofilm to survive high antibiotic dosages. Their mechanism of 

tolerance is distinct from antibiotic resistance21.  Overexpression of persister genes leads 

to this phenotype, and these genes shut down important cellular functions rendering the 

antibiotic useless22. All of these components, including exopolysaccharide secretion, 

growth phase changes, gene transfer, and persister cells, join to result in biofilm 

persistence in many different environments, probably the most important environment 

being the infected host organism.

1.3 Modeling Biofilms

There are numerous examples of biofilm involvement in many different

infections.  In fact, more than 60% of bacterial infections treated in the developed world 

are believed to involve biofilm formation23, and there is a constant stream of new 

information elucidated through ongoing biofilm pathogenesis research.  Bacterial 

biofilms are implicated in a striking number of chronic disease states, including dental 

disease24, medical device-related infections25, infective endocarditis26, otitis media27,

rhinosinusitis28, chronic wounds29, urinary tract infections30, gastrointestinal tract 

infections31, and respiratory infections such as Pseudomonas aeruginosa infections in the 
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CF airway32. These chronic infectious states are caused by many different types of

bacteria and even yeast, demonstrating that many different microbes have the capability

to form biofilms as a pathogenic strategy. To maintain consistency when identifying and 

examining biofilm induced disease states, four criteria have been proposed to define 

biofilm etiology during an infection2. These criteria include: surface associated

pathogenic bacteria, clustered bacteria encased in a matrix substance as revealed by direct 

examination, localization of the infection, and antibiotic resistance. There are different 

co-culture assays designed to study biofilm formation in a pathogenic setting by 

modeling the infection using immortalized or primary animal and human cells.

Bacterial/human cell biofilm co-culture assays are generally divided into three 

different techniques: static systems, flow systems, and human model infections.  The 

static co-culture system is demonstrated by Anderson et al. where standard tissue culture 

plates are seeded with CF-derived human airway cells, Cystic Fibrosis Bronchial 

Epithelial (CFBE) cells33.  The epithelial cells are allowed to grow to confluency, and 

then inoculated with a broth culture of P. aeruginosa33. P. aeruginosa biofilms form 

within 6-8 hours after inoculation (Figure 3).  The static co-culture system has been used 

to ascertain antibiotic resistance as well as effects of antibiotics on gene regulation33 and 

cytotoxicity34.  As shown below, there are many other examples of static co-culture 

biofilm systems (Table 1).
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Figure 3.  Co-culture biofilm model systems.  Two co-culture model systems employed 
to pattern biofilm pathogenesis. The main difference between the two systems is how the 
conditions for growth are delivered, whether statically in an incubator or as part of a flow 
apparatus.  
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Table 1. Static and flow human cell co-culture model systems.
Co-
culture 
Models

Organism Cell Line Reference

Static Pseudomonas aeruginosa Cystic Fibrosis Bronchial Epithelial 
cell line, CFBE41o-

33

Fusobacterium nucleatum
Porphyromonas gingivalis  

Periodontal Ligament Fibroblasts  35

Streptococcus 
pneumoniae   

Conjunctival Epithelial cell line, 
HCjE and HME-HCjE

36

Fusobacterium nucleatum
Porphyromonas gingivalis  

Gingival Epithelial cell line, Ca9-
22
Aortic endothelial cell line, HAEC

37

Francisella tularensis Epithelial cell lines, HEp-2 and 
A549
Bronchial cell line, HBE

38

Streptococcus agalactiae  Brain Microvascular Endothelial 
cell line, HBMEC  

39

Campylobacter jejuni   Intestinal Epithelial cell line, Caco-
2 Embryonic Intestinal Epithelial 
cell line, INT407

40

Escherichia coli, 
uropathogenic (UPEC)  

Bladder Epithelial cell line, ATCC 
HTB-9 5637

41

Neisseria gonorrhoeae    Endocervical Epithelial cell lines, 
ME-180 and HeLa

42

Neisseria gonorrhoeae    Endocervical Epithelial cell line, 
End/E6E7

43

Streptococcus salivarius  Bronchial Epithelial cell line, 
16HBE14o-

44

Lactobacillus rhamnosus
Prevotella bivia 
Gardnerella vaginalis 
Candida albicans

Normal Endocervix cell line, 
End1/E6E7 ATCC-CRL-2615,
Ectocervix cell line, Ect1/E6E7 
ATCC-CRL-2614, Vaginal cell 
line, VK2/E6E7 ATCC-CRL-2616

45

Lactobacillus helveticus
Campylobacter jejuni

Colon T84 cell line and Intestinal 
407 cell line  

46

Fusobacterium nucleatum
Streptococcus gordonii

Immortalized Gingival 
Keratinocytes, HIGK 

47

Porphyromonas gingivalis  Oral Keratinocytes, TERT-2 48

Flow Pseudomonas aeruginosa Cystic Fibrosis Bronchial Epithelial 
cells, CFBE41o-

49

Salmonella Typhimurium   HEp-2 cell line 50,51

Salmonella Typhimurium   
Escherichia coli

HEp-2 cell line 52
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The flow co-culture systems are modifications of standard biofilm flow cell 

apparatuses, wherein the abiotic biofilm substratum (glass or plastic coverslip or 

capillary) is replaced by a coverslip supporting a monolayer of cultured human cells.  For 

instance, Moreau-Marquis et al. employed the FCS2 closed system to grow P. 

aeruginosa biofilms on human CFBE cells under flow53 (Figure 3).  They used this 

model to investigate the integrity of the CFBE monolayer and the growth of P. 

aeruginosa on the monolayer (Table 1).  These studies were aided by the ability to 

acquire high-quality images by confocal microscopy49.

The literature review and research presented in this thesis will focus on chronic 

Pseudomonas aeruginosa infection in the CF airway.  This chronic state is consistent

with the above biofilm criteria, and has been characterized by an abundance of literature 

as a biofilm infectious state. Furthermore, the static co-culture biofilm method is used to 

understand P. aeruginosa infection in the CF airway2,23,54.

1.4  Infection Strategies Utilized by P. aeruginosa

P. aeruginosa is a gram negative bacterium implicated in a multitude of diseases 

ranging from burn infections55 to airway infections56.  CF airway infections, by this 

bacterium, have elicited much interest by researchers, because P. aeruginosa dominates 

as the primary infectious agent in this genetic disease by late childhood leading to 

increased morbidity and mortality56. P. aeruginosa has a multitude of virulence factors 

including the type three secretion system (T3SS), biofilm formation, certain regulatory 

pathways (alginate pathway among others), and quorum sensing (Table 2).
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Table 2. Common virulence factors expressed by P. aeruginosa.

The T3SS is mainly found in gram-negative bacteria, and the expression of the 

T3SS is thought to contribute to the bacterium's ability to successfully evade 

phagocytosis, an immune response by host cells following bacterial infection. The T3SS 

is composed of a macromolecular complex that is able to translocate effector proteins 

(toxins), named ExoS, ExoT, ExoU, and ExoY57, across the eukaryotic host epithelial cell 

membrane barrier58. These toxins, once injected, have anti-host properties.  ExoS and 

ExoT disrupt actin and cytoskeleton rearrangement, focal adhesins, and signal 

transduction cascades in host phagocytes thereby inhibiting their function59.  ExoU and 

ExoY are cytotoxins that localize to host organelle membranes and exact their 

detrimental effects on the host in different ways.  ExoU has phospholipase A2 activity 

that can induce cell death.  ExoY induces inflammatory reactions by generating 

arachidonic acid which is the substrate for prostoglandin generating pathways57,59. T3SS 

expression in P. aeruginosa is influenced by certain environmental factors, mainly 

contact with host cells and extracellular calcium concentrations in the micromolar 

range59. These environmental factors influence strict transcriptional regulation through 

the global activator regulatory protein, ExsA, and three interacting proteins, ExsC, ExsD, 

Virulence Factor Effect on Host

Type III Secretion System
Syringe-like appendage from gram-negative bacteria and 
functions to translocate toxins from bacterial cells across 

host cell membrane

Biofilm Formation Community of bacteria undergoing global regulatory 
changes and implicated in chronic disease states

Quorum Sensing
Autoinducers released by bacteria as means of 

communication and implicated in biofilm formation and 
toxin production

Two-Component 
Regulatory Systems

Composed of an inner membrane histidine kinase and a
cytoplasmic response regulator and implicated in biofilm 

formation, toxin production, and antibiotic resistance
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ExsE, that form alternate binding interactions in the on and off states60. Interestingly, 

secretion of T3SS proteins is associated with increased morbidity in patients with P. 

aeruginosa airway infections demonstrating that the T3SS is both a pathogenic and 

prognostic indicator57.

Quorum sensing (QS) is a virulence factor that P. aeruginosa employs during 

biofilm formation and toxin production.  QS allows individual P. aeruginosa bacteria to 

communicate with one another.  Small compounds called autoinducers are released into 

the environment by a bacterium, and other bacteria in the same environment are able to 

sense these compounds at certain concentrations.  Autoinducers communicate both the 

presence of the bacterial population and gene expression between neighboring bacteria57.

Quorum sensing in P. aeruginosa is mediated through three interconnecting systems, the 

Las system, the Rhl system, and the Pqs system.  These systems sense three distinct 

autoinducers and play specific roles in biofilm regulation and development such as the 

characteristic cap of the mushroom shaped biofilm, regulation of certain known 

components of the biofilm channel maintenance and extracellular matrix (such as 

rhamnolipids and extracellular DNA, respectively61) and essential modulation of 

metabolic functions know to be required for biofilm formation, such as anaerobic nitrate 

respiration62.

Biofilm formation in P. aeruginosa follows the general steps described in section 

1.2. However, it is important to highlight the specific mechanism in which P. aeruginosa

is able to form a biofilm.  Initial attachment involves a variety of factors including 

flagella, type IV pili63, extracellular DNA64, and Psl polysaccharide65.  Initial reversible 

attachment by the flagella does not commit the bacterium to irreversibly attach.  When P. 
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aeruginosa attaches irreversibly to a surface, the bacterium will attach on its long axis to 

the solid surface (Figure 4)66.

Figure 4.  Reversible to irreversible attachment of P. aeruginosa to a solid surface during 
biofilm formation. Initially, reversible attachment occurs as the flagellum binds to a solid 
surface, such as epithelial cells.  The bacterium will still be able to move with the flagella 
bound, and reversible attachment does not commit the bacterium to forming a biofilm 
through irreversible attachment.  Irreversible attachment is marked by attachment of the 
bacterium to the solid surface via its long axis.  Following this act, microcolony 
formation ensues, marked by exopolysaccharide secretion.

Exopolysaccharide matrix production is an important and highly regulated aspect 

of P. aeruginosa biofilm formation and maintenance.  This matrix is composed of 

mainly polysaccharides, proteins, and nucleic acids64, although the exact composition of 

this matrix will vary between P. aeruginosa biofilms based on the age of the biofilm and

certain environmental factors.  These environmental factors can be sensed by known 

sensor kinase/response regulators LadS, RetS, and GacS67,68.

Following adherence and formation of the mature biofilm, dispersal from the P.

aeruginosa biofilm by subpopulations of motile bacterial cells occur either as a necessary 

action of the infection to elicit further population of the host or as a result of unfavorable 

conditions, such as nutrient loss69 or decreased carbon availability70.  In a mature biofilm, 

a wall-forming subpopulation of non-motile cells constitutes the outer parts of the 
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microcolonies of the biofilm.  For dispersion to occur, the core subpopulation of motile 

cells rapidly move toward this “wall ” and make their way out of the individual 

microcolony in which they were trapped.  This results in a microcolony with a central 

void71.  Dispersion is part of the natural process of biofilm formation and biofilm cycling,

where bacteria are able to leave the biofilm and cause expansion of biofilm growth or 

acute exacerbations in a clinical setting.

Regulatory protein systems can impact virulence modulation, such as biofilm 

formation and expression of the T3SS by P. aeruginosa, and these systems are often 

categorized as two component regulatory systems.  These systems generally comprise an 

inner membrane spanning sensor histidine kinase and a cytoplasmic response regulator72,

and are divided into three groups based on complexity (Figure 5). The basic mechanism 

of these regulatory systems is that the histidine kinase is auto-phosphorylated upon 

stimulation and activated at its N-terminal input domain.  Following phosphorylation, the 

histidine kinase's transfer domain can phosphorylate and activate the response regulator 

via its conserved aspartate domain, which activates the output domain of the response 

regulator and leads to specific functions, such as activation or repression of transcription.  

Some regulatory pathways require an external phosphotransfer protein, thereby adding 

complexity to the basic pathway schematic73.
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Figure 5.  Two component regulatory pathway schematic.  Two component regulatory 
systems can be divided into three categories based on the complexity of the system.  The 
most basic system is the top system drawn (A), with the complexity increasing with the 
second (B) and third systems drawn (C).
(blue transmitter protein: histidine kinase with N-terminal input domain, red receiver 
protein: response regulator with conserved aspartate domain and output domain, and 
yellow circle: phosphorylation).
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Table 3. Common two-component regulatory systems expressed by P. aeruginosa.

P. aeruginosa expresses a multitude of regulatory pathways which are involved in 

virulence modulation and antibiotic resistance.  In this review, I will discuss the better 

studied two-component systems and their relevance in virulence modulation of P. 

aeruginosa (Table 3).  The PhoP-PhoQ system mediates an adaptive response of P. 

aeruginosa to low extracellular magnesium concentrations and controls resistance to 

aminoglycoside antibiotics through the upregulation of the operon arnBCADTEF,

inducing a net negative charge of the lipopolysaccharide (LPS), and LPS associates with 

a variety of cations.  The association with other cations results in LPS-LPS crossbridging

and limiting interactions with polycationic antibiotics74. LPS is an endotoxin that is able 

to bind to the toll-like receptor, TLR4, and activates the secretion of pro-inflammatory 

cytokines, therefore acting as an exogenous pyrogen.  Also, PhoQ is involved in biofilm 

Regulatory System Function

PhoP-PhoQ Regulatory System
Mediates response to low extracellular magnesium 
levels and controls resistance to aminoglycosides; 

PhoQ is involved in biofilm formation
PmrA-PmrB Regulatory 

System
Mediates response to low extracellular magnesium 

levels and mediates antibiotic resistance

NarX-NarL Regulatory System
Mediates nitrate metabolism in anaerobic 

environments and likely mediates motility and 
biofilm formation

GacA-GacS Regulatory 
System

Unknown stimulus activates this pathway leading to 
increased biofilm formation and increased antibiotic 

resistance, especially of aminoglycosides and 
chlormaphenicol

LadS and RetS
LadS can phosphorylate and activate GacA leading to 
biofilm formation.  RetS deactivates GacA leading to 

induction of the T3SS.
SadARS Regulatory System Implicated in biofilm formation

PvrR Regulatory protein implicated in biofilm formation

Alginate Biosynthesis Pathway Proteins involved in complex feedback pathway 
resulting in biofilm formation
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formation; a PhoQ mutant leads to increased cytotoxicity because biofilm formation is 

impaired75.  Another regulatory system, PmrA-PmrB, is involved in virulence modulation 

in a similar model to PhoP-PhoQ.  PmrA-PmrB activates the same operon to induce 

resistance to antimicrobial peptides following the same stimulus, low extracellular 

magnesium74. The NarX-NarL two component regulatory system, where NarX is the

histidine kinase and NarL is the response regulator, functions in nitrogen metabolism and 

biofilm formation through motility modulation76.  Furthermore, this system is able to 

inhibit the energetically less favorable arginine fermentation pathway under anaerobic, 

denitrification conditions77. The GacA-GacS two component regulatory system involves 

GacS functioning as a sensor kinase phosphorylating and activating GacA, following an 

unknown stimulus, leading to increased antibiotic resistance, especially to 

aminoglycosides and chloramphenicol78, and biofilm formation79.  Individual sensor 

kinases also feed into the GacA-GacS pathway in contradictory roles.  LadS can 

phosphorylate and activate GacA leading to biofilm formation80.  The antagonist, RetS, 

also feeds into the GacA pathway, but instead of phosphorylating GacA, RetS deactivates

GacA resulting in induction of the T3SS leading to the upregulation of acute infection 

virulence factors thus further implying the importance of GacA in biofilm formation75.

Much like the GacA-GacS pathway, the SadARS regulatory pathway is associated with

biofilm formation as demonstrated by mutations in the three proteins, SadA, SadR, and 

SadS.  These mutations all lead to altered mature biofilm architecture81.  Other regulatory 

pathways implicated in biofilm formation include the regulator, PvrR82, and the alginate 

biosynthesis pathway.  The alginate pathway, in particular, is a very complex pathway 

composed of a plethora of proteins and feedback mechanisms resulting in biofilm 
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formation.  Key proteins in this pathway include AlgR, AlgZ, AlgU, AlgB, AlgD, and 

AlgA.  All of the proteins listed play different roles in the overall alginate biosynthesis 

pathway but are key proteins to biofilm formation as a whole83. When P. aeruginosa

starts overproducing alginate, the microorganism coverts to a mucoid phenotype.  This is 

believed to occur in the lungs of CF patients during chronic P. aeruginosa infection, 

because the mucus filled lung environment is anaerobic and elicits alginate production by 

P. aeruginosa.  When this conversion occurs, the CF lung infection is dramatically 

worsened for the patient, as antibiotic treatment becomes significantly less effective and a 

chronic, biofilm infection ensues62.

The virulence factors discussed above create a picture of the impact P. aeruginosa

infections can have on its human host, but also the impressive ability of this bacterium to 

acclimate to its surroundings efficiently. As demonstrated, P. aeruginosa has the ability 

to switch between acute and chronic lifestyles rather resourcefully as many pathways can 

induce one or both of the above lifestyle choices.  Of course, an acute lifestyle indicates 

an acute infection, where P. aeruginosa would most likely be actively expressing and 

utilizing the T3SS and other toxins.  In comparison to the chronic lifestyle choice,

through which P. aeruginosa would be living as a biofilm inside the host organism and 

upregulating certain regulatory pathways, quorum sensing molecules, and excreting 

certain proteins, such as extracellular matrix proteins.  Both acute and chronic lifestyles 

employed by P. aeruginosa are observed during P. aeruginosa infections in the CF 

airway and explain the multitude of literature on virulence modulation of P. aeruginosa

in the CF airway.
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1.5 Cystic Fibrosis: P. aeruginosa Infections Increase Complexity

Cystic fibrosis (CF) is the most common life threatening autosomal recessive 

disorder among Caucasian people, with a case rate of 1 in 2500 births and a total 

population of affected individuals at 90,000 people worldwide84. This disease is caused 

by a mutation of a single gene, encoding the cystic fibrosis transmembrane conductance 

regulatory protein (CFTR), on the long arm of chromosome 785. The CFTR protein

functions normally as an ion channel, specifically in chloride conductance, therefore 

implying a role in water movement across epithelial cell membranes86. The exact 

mutation in the single gene encoding the CFTR leading to CF can vary but all mutations

result in the disease�����	��
�08 mutation (which results in a protein with a deletion of 

the phenylalanine at the 508th position) is the most common mutation, although 21 other 

mutations in the CFTR can cause CF.  These other 21 mutations are found at highest 

frequency in certain ethnic groups, such as French Canadians and Askenazi Jewish 

populations87. In vitro physiologic studies have demonstrated that different mutations of

the CFTR resulting in CF have a range of disruptive effects in epithelial cells, from 

complete loss of the CFTR protein to surface expression with poor chloride 

conductance86. This range is classified as five different types of mutations, although all

are altering the function of CFTR and leading to CF (Table 4).  Class I mutations result in 

premature transcriptional termination leading to a truncated CFTR without function 

which is degraded before translation. Class II mutations are usually missense mutations, 

����������	��
��
����ation, and result in protein misfolding and degradation before 

surface expression88.  Class III mutations commonly implicate the two nuclear-binding

domains therefore decreasing chloride channel activity due to abnormal ATP gating, but 
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this class of mutations in the CFTR will be expressed at the epithelial cell surface89.

Class IV mutations of the CFTR are located in the membrane spanning domains that form 

the chloride channel and lead to reduced chloride secretion90.  Class V mutations result in 

reduced quantities of CFTR making it into the epithelial cell membrane, resulting in

decreased chloride secretion simply as a function of the quantity of normal CFTR protein 

inserted into the membrane91.  There is overlap among the above class mutation 

definitions as a particular CF causing mutation may lead to more than one of the class 

mutation effects.  Therefore a genotypic root mutation causing manifested CF may result 

in more than one molecular phenotypic result86.

Table 4 Mutation classes in the CFTR.
Mutation Class Mutation Result 

Class I G542X 
Truncated mRNA due to 

premature stop codon leading 
to immediate degradation 

Class II �F508 

Misfolding of the protein in 
the endoplasmic reticulum 

resulting in ubiquination and 
degredation in the 

proteosome 

Class III G551D 
Reaches the cell membrane 
but the channel is unable to 

be activated 

Class IV R347P 

Reaches the cell membrane 
and activation of channel is 

successful but the channel is 
defective therfore preventing 

chloride movement 

Class V 3849 + 10kb C    T 

Splicing defect where a 
reduced amount of normal 
CFTR proteins are produced 

leading to a milder CF 
phenotype 
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Although CF can manifest in many different organs in the body, leading to 

osmotic changes and altered organ function, the CF airway will be the focus of this 

review.  Soon after birth, CF inflicted newborns will become infected with a variety of 

bacterial pathogens causing the mounting of an intense neutrophilic and inflammatory 

response.  The bacterial inhabitants only contribute to an already induced inflammatory 

response, as several studies have demonstrated inflammatory responses in CF airways of 

culture negative patients92.  Regardless of the possible causes of the inflammatory 

response, inflammation leads to mucus secretion and plugging of the small and medium 

sized bronchioles, and this response is only perpetuated as the CF patient matures and 

persistent neutrophilic infiltration leads to persistent inflammatory effects93.  This 

persistent inflammation causes physiologic changes to the lungs such as hypertrophy of 

bronchial circulation and formation of bronchial cysts and pulmonary hypertension.

Furthermore, inflammation endures as a result of bacterial infection which becomes 

chronic and biofilm forming94 (Figure 6).
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Figure 6.  CF disease schematic.  Overall schematic of the effects of P. aeruginosa 
bacterial infection in the CF airway.  As the bacterial infection enters a mucoidy, chronic 
state, inflammation in the CF airway ensues.  Biofilm formation induces severe 
inflammation and irreversible lung damage leading to significantly decreased lung 
function. Image adapted from Erickson et al.95

On a molecular level, the CFTR is a chloride transport protein.  Functional 

impairment of the CFTR impacts osmotic pressures, and the volume of airway surface 

liquid (ASL) in the lungs changes.  ASL exists in two layers above the epithelial surface, 

a mucus layer and a periciliary liquid layer which is the height of the extended cilia96.

Therefore, the periciliary layer functions as a low viscosity liquid through which the cilia 

beat and to lubricate gel-forming mucins secreted from the cell surface96.  The mucus 

layer consists of the secreted mucins, whose properties are easily altered with changes in 

water content and ion concentration.  Under normal circumstances in a healthy airway, 

mucins are easily cleared from the airway97. Mucociliary clearance is impaired in the CF 

airway due to abnormal regulation of periciliary liquid volume96.  Also, the reduced 

periciliary liquid volume promotes interaction between gel mucins in the mucus layer and 

cell surface mucins which impairs particle movement out of the CF airway.  In 

concordance, hypersecretion of mucus and impaired mucociliary movement results in 
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large mucus plugs, and these mucus plugs contain steep hypoxic gradients due to 

viscosity changes97 (Figure 7).

Figure 7.  Physiologic changes in CF airway.  On a physiologic level, mutation of the 
CFTR protein in the CF airway results in decreased volume of the periciliary layer 
producing impaired mucociliary clearance.  Hypersecretion of mucus ensues and large 
mucus plugs form. Image adapted from Gibson et al.56.

P. aeruginosa may be among many initial colonizers of the CF airway, but 

quickly becomes the dominating infectious agent.  Upon deposition of P. aeruginosa on

thick mucus surfaces, the bacteria are able to actively penetrate the mucus plugs and 

begin forming microcolonies.  This occurs by initially adhering to the underlay of 

epithelial cells and aggregating to the final goal of forming mature biofilms.  The bacteria 

within the mature biofilm adapt to the hypoxic environment, and a chronic infection

ensues.  Neutrophils in the CF airway contribute to the hypoxic lung environment.  Upon 

death, neutrophils release their cellular constituent materials, which increase viscosity of 

the mucus plug furthering the survival of the P. aeruginosa biofilms via increased 

alginate production98 (Figure 8).
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Figure 8.  P. aeruginosa biofilm formation in the CF airway.  P. aeruginosa bacteria are 
able to actively penetrate the thick mucus plugs in the CF airway and form biofilms.
Image adapted from Gibson et al.56.

Experimental evidence has confirmed the presence of P. aeruginosa biofilms as

chronic infectious agents of the CF airway.  P. aeruginosa quorum sensing molecules 

have been detected in the CF airway54.  Both transmission and scanning electron 

microscopy have visualized P. aeruginosa microcolonies from CF patient sputum 

samples99. Therefore, P. aeruginosa colonization and biofilm formation poses a 

significant threat to patients with CF, as the persistent and acute aspects of P. aeruginosa

infection increases morbidity and mortality in CF patients.  

Many researchers are studying a wide variety of known virulence factors 

implicated in biofilm formation as well as trying to discover new virulence related 
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factors.  Anderson et al. (2008) performed a microarray analysis employing a novel assay 

to identify biofilm gene expression particularly following tobramycin treatment of 

biofilms grown in a model system that represents the CF airway in comparison to 

planktonic cultures. The novel assay utilized a unique cell line, CFBE.  This particular 

immortalized cell line originated from a CF patient homozygous ������	��
��
����ation.

In this experiment, the CFBE cells were allowed to form a confluent monolayer over a 

period of 7-10 days mimicking the CF airway.  Upon formation of a confluent 

monolayer, the cells were inoculated with P. aeruginosa (lab strain PA14).  Over a period 

of 6-8 hours following the addition of arginine at the 1 hour time point, the PA14 

inoculum formed biofilms on the CFBE cells in a welled plate (whether 6, 24, or 96).

The biofilms were treated with tobramycin (500 μg/mL) and a microarray analysis was 

performed.  Results showed some expected genes were upregulated or downregulated, 

and many unexpected genes were impacted.  One such gene encoded the putative 

magnesium transporter protein, MgtE.  Upon further analysis utilizing cytotoxicity 

assays, deletion mutations and overexpressing the protein, MgtE has been implicated in 

virulence modulation (Figure 9) and will be discussed in detail in the next section.
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Figure 9. Cytotoxic effects of MgtE on the CFBE cell line.  When mgtE is removed from 
the chromosome, the bacterial biofilms exhibit an increased cytotoxic phenotype toward 
the CFBE cell line resulting in increased epithelial cell death in comparison to the WT 
PA14 laboratory strain.  When MgtE is overexpressed by a multicopy plasmid (pMQ177) 
in the WT PA14 laboratory strain, cytotoxicity toward the CFBE cell line further 
decreases below WT levels.

1.6 Prokaryotic Magnesium Transporters

In order to better understand the role MgtE is playing in virulence modulation, 

one needs to understand magnesium transport in P. aeruginosa.  There are four 

magnesium transporters expressed and functioning in P. aeruginosa.  Magnesium is a

divalent cation that is essential for growth and maintenance of living cells, as well as,

being utilized as a signaling molecule for certain regulatory pathways.  Magnesium is not 

normally limiting in laboratory bacterial growth, as bacterial cells easily scavenge enough 

magnesium to survive.  CorA was the first magnesium transporter to be identified in 
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prokaryotes and mediates both influx and efflux of magnesium for the prokaryotic cell100.

CorA is conserved between eukaryotes, prokaryotes, and archea, therefore implying that 

this protein provides essential functionality for life101.  Two other magnesium transporters

in prokaryotes, MgtA and MgtB, are ATPases that actively transport magnesium.  Both 

MgtA and MgtB mediate influx of magnesium, but not efflux102. Lastly, MgtE is the

most recent magnesium transporter discovered in prokaryotes, and the crystallized 

structure has been elucidated, indicating that MgtE contains 5 transmembrane domains103.

Although MgtE has the ability to transport magnesium via influx only as confirmed 

structurally through crystallization, we know that functionally CorA still performs the 

majority of magnesium influx in many prokaryotic organisms (approximately 90%).

Therefore as magnesium transport does not seem to be the primary function of MgtE, it is 

not only plausible but likely that MgtE plays another important role in P. aeruginosa.

One such role could be modulation of virulence, as demonstrated in other bacteria.

MgtE was initially identified in the bacteria, Providencia stuartii and Bacillus 

firmus OF4 in an attempt to search for members of the CorA family of magnesium uptake 

transporters104. Members of the MgtE family have been identified in Gram-negative and 

Gram-positive bacteria, archea and eukaryotes105.  Humans have the protein, SLC41A1, 

which is homologous to certain bacterial MgtE magnesium transport proteins.  SLC41A1 

is responsive to magnesium levels and believed to be a magnesium transporter106.

MgtE was isolated from both P. stuartii (Gram-negative) and B. firmus (Gram-

positive).  Individually, MgtE homologues from each organism were introduced into the 

magnesium transport mutant MM281 of S. typhimurium, which led to rescued growth and 

elicited magnesium uptake into the cell104, proving that these homologues function in 
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magnesium transport. MgtE has also been implicated in the swarming ability of

Aeromonas hydrophila.  When MgtE is mutated in A. hydrophila, reduced ability to 

swarm in semisolid media is observed although no changes to the polar flagella or 

motility are observed.  Also observed were a reduced ability to adhere to HEp-2 cells and 

decreased biofilm formation, which may be directly related to the reduced swarming 

ability.  These observations could be connected to decreased magnesium, as divalent 

cations greatly contribute to the integrity and stability of the bacterial outer membrane,

and LPS, which is able to bind divalent cations, and could affect both swarming and 

adherence ability107. Campylobacter jejuni has an MgtE homologue that exhibits a 

similar effect when mutated.  This gene, Cj1496c, is required for attachment and invasion 

of INT-407 intestinal epithelial cells and the colonization of the chick gastrointestinal 

tract108. Vibrio cholerae is another bacterium in which MgtE is implicated in an aspect of 

virulence.  In this organism, MgtE is an important gene for biofilm formation109.

Therefore, these findings implicate a role for MgtE and magnesium in motility, adherence 

abilities, and biofilm formation in some bacteria.  

Anderson et al. has recently implicated MgtE as playing a role in changes in 

cytotoxicity by Pseudomonas aeruginosa against a human CF cell line, CFBE cells34.  An 

isogenic mutation of mgtE in P. aeruginosa biofilms results in increased cytotoxicity but 

does not affect biofilm formation.  This effect requires a functional T3SS system.  

Furthermore, the antibiotic tobramycin led to transcriptional upregulation of mgtE by

treated P. aeruginosa biofilms34.  Based on these findings, this thesis will further 

elucidate the role of MgtE in P. aeruginosa virulence by analyzing the effects of different 

antibiotics on mgtE transcription and MgtE translation to better understand the regulation 
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of MgtE and further implicate this protein in virulence modulation by connecting MgtE 

to a regulatory pathway. 

1.7 Conclusions and Study Design

This study employs both RT-PCR and QRT-PCR to observe transcriptional 

changes in mgtE expression following treatment of a mature P. aeruginosa biofilm grown 

on CFBE cells.  Twelve different antibiotics of different classes and with different 

mechanisms of actions were investigated.  In an attempt to understand translational 

effects of MgtE following antibiotic stimuli, Western blotting and cytotoxicity assays 

were utilized.  As demonstrated, many bacteria express MgtE homologues, including 

Staphylococcus aureus110.  This organism is an initial colonizer of the CF airway and is 

also able to form biofilms.  Therefore in an attempt to implicate S. aureus MgtE 

homologues as having a virulence modulatory function, the genes were isolated, placed 

on a multi-copy plasmid, and transformed into SMC3604, PA14 �mgtE, our isogeneic 

mutant lab strain.  Cytotoxicity assays were performed to identify changes in cytotoxicity 

against the CFBE cells.  Finally, P. aeruginosa MgtE may be interacting with a 

regulatory pathway to exact the effects demonstrated.  To identify possible pathways,

regulatory proteins were screened to look for possible interactions via cytotoxic changes.

Overall, this research will contribute to a better understanding of P. aeruginosa

virulence modulation under the context of CF airway infections, adding to a body of 

literature on the topic and, eventually, contributing to better therapeutic options for 

treatment of P. aeruginosa infections in the CF airway. 
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CHAPTER TWO MATERIALS AND METHODS

2.1 Bacteria Strains and Plasmids

The bacterial strains and plasmids used for the following studies are listed in 

Table 5, and a full list of primers used in this study are listed in Table 6.  For all the 

studies, bacteria were grown overnight in a nutrient rich broth, LB (lysogeny broth), with 

appropriate concentrations of antibiotics when necessary.  
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Table 5.  Strains and plasmids used.
Strain or plasmid Genotype or description Reference or 

source 
P. aeruginosa strains   
  PA14 Wild type 111 
  SMC3604 PA14 ������� (mgtE) 33 
  SMC3640 
  SMC3643 
  SMC3644 
   
  SMC3646 
   
  SMC3647 
   
  CVR3 

PA14 ���	
�� (mgtC) 
PA14 ���	�
� (����) 
PA14 ���	
�������	
�� (������
����) 
PA14 ���	
����������� (������
mgtE) 
PA14 ���	
������������� 
���	�
� (����������������) 
SMC3604:pCR3 

33 
33 
33 

 
33 

 
33 

 
This study 

 
E. coli strain 
  S17-1 
 
S. cerevisiae strain 

 
 

Laboratory strain for cloning 

 
 

112 

  InvSc1 
 
S. aureus strains 
  Newman 
  RN6390 
 
Plasmids 
  pMQ30 

���������������������-�
�����-�
 
 
 
Laboratory strain 
Laboratory strain 
 
 
Allelic replacement vector; yeast 
cloning                              

Invitrogen 
 
     
   113 
   113 

 
 

113 
 

  pMQ70 
  pMQ72 
  pSMC233 
 
  pMQ177 
  
 
  pSMC21 
  
 
  pCR1 
 
  pCR3 
   
  pCR9 
   
  pCR10  

P!�" expression vector:Cb 
P!�" expression vector:Gm 
Deletion of mgtE; pMQ30 backbone 

 
Complement vector of P. aeruginosa 
PA14 mgtE; pMQ72 backbone 

 
Complement vector of P. aeruginosa 
PA14 mgtE; pMQ70 backbone 

 
Deletion of �������; pMQ30 
backbone 
Histidine-tagged mgtE insert; pMQ30 
backbone 
Complement vector of Newman 
mgtE; pMQ72 backbone 
Complement vector of DS762 mgtE; 
pMQ72 backbone 

113 
113 

33 
 

113 
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This study 
 

This study 
 

This study 
 

This study 



32 
 

Table 6.  Primers used.
Primer Sequence (5’-3’) 
PA5110forA 
PA5110revA 
MgtEforRTnew 
MgtErevRTnew 

CCTACCTGTTGGTCTTCGACCCG 
GCTGATGTTGTCGTGGGTGAGG 
TGT#�$��$$�#���#�$�$���� 
TTG��$#���$�#�$��$$����� 

p30UP(1) AATCTTCTCTCATCCGCCAAAACAGCCAAGCTCGCCATTCTTGTCCGCCACGACGGT
CTC 

MgtEPromEnd 
(2) 
p30Down(3) 

TCTTGGCTTCTACTTCGGTATGATGATGATGATGATGCATAGCGCGCTCCACCCCCA
GTA 
GGAATTGTGAGCGGATAACAATTTCACACAGGAAACAGCTCTACATCAGGAAGAT
CGTCG 

MgtEBegin(4) CTGGGGGTGGAGCGCGCTATGCATCATCATCATCATCATACCGAAGTAGAAGCCAA
GAAG 

SAMgtECfor  
SAMgtErev 
p729 
p730 
913for 
913rev 

 
CAGACCGCTTCTGCGTTCTG 
GCAACTCTCTACTGTTTCTCC 
CCCATGGACTTACCCAGTAG 
CCGTCGACGAGTATTTCGTC 

2.2  Abiotic Static Biofilm Assay

Abiotic static biofilm assays compared biofilm growth under certain conditions.  

Overnight cultures of P. aeruginosa were diluted 1:100 into M63 minimal media with the 

addition of 0.4% arginine and 1 mM MgSO4 and 100 μL of inoculated media was added 

into each well of a plastic 96 well plate63.  For the biofilm assays that are conditionally 

testing the effects of varying levels of MgSO4, the following concentrations of MgSO4

were tested within two sets of ranges: 0.01 mM, 0.1 mM, 1 mM, 10 mM, and 1 μM, 10 

μM, 100 μM, and 500 μM.  The biofilm assays were incubated overnight (approximately 

16 hours) at 37°C.  Following incubation, the 96 well plates were stained with 0.1% 

crystal violet by filling each well with 125 μL of 0.1% crystal violet solution and 

incubating at room temperature for 12 minutes.  The plates were then rinsed with 
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deionized water and qualitatively and quantitatively analyzed.  Visualization of biofilms 

at the air liquid interface via staining allowed for qualitative analysis.  For quantitative 

analysis, stained biofilms were dissolved in 30% acetic acid and analyzed via 

spectrophotometry (optical density at OD550), which indicated biofilm presence by

amount of light absorbed.

2.3 Static Co-culture Biofilm Assay

This assay allows for biofilms to be analyzed following growth on a human cell 

line and represents a novel model system for P. aeruginosa infection of the CF airway33.

The immortalized human cells used are CFBE41o- cells (CFBE cells).  For this model

system, CFBE cells were seeded in 24 well or 6 well plates at a concentration of either 2 

X 105 cells/well or 1 X 106 cells/well in 500 μL or 1.5 mL, respectively, of minimal 

essential medium (MEM) with 10% fetal bovine serum, 50 U/mL penicillin and 50 

μg/mL streptomycin.  The cells were incubated at 37°C at 5% CO2 for 7-10 days 

allowing for a confluent monolayer of cells to form.  For the co-culture biofilm assay, P. 

aeruginosa was inoculated at an approximate concentration of 2 X 107 CFU/mL in 1.5 

mL or 1.2 X 107 in 500 μL of MEM/well with 2 mM L-glutamine (without fetal bovine 

serum, streptomycin, and penicillin) in 6-well or 24-well plates, respectively.  These 

concentrations represent an approximate multiplicity of infection of 30:1 for both plate 

sizes.  Following inoculation, the plates were incubated at 37°C and 5% CO2 for 1 hour.  

Then, the media is removed and fresh MEM with 2 mM L-glutamine and the addition of 

0.4% Arginine is added at the same concentration, 1.5 mL or 500 μL depending on plate 

size.  Arginine promotes the formation of biofilms.  These plates were incubated as 
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described for another 5-7 hours, a total incubation time of 6-8 hours.  This length of time 

allows mature P. aeruginosa biofilms to form on the CFBE cells in each well.  Following 

incubation, CFBE cell monolayer integrity was confirmed via microscopy. CFU/mL 

calculations of biofilms were performed.  The cells in each well were washed with 

phosphate-buffered saline (PBS) to remove planktonic bacteria.  Each well was treated 

with 0.1% Triton X-100 for 15 minutes which lyses the epithelial cells.  The lysate was 

then vortexed for three minutes and serially diluted onto LB agar plates.

2.4 RT-PCR and QRT-PCR Analysis

For transcriptional analysis of mgtE using the static co-culture biofilm model 

system described above, wild type P. aeruginosa was allowed to form biofilms on CFBE 

cells, and these biofilms were allowed to grow for seven hours prior to antibiotic 

treatment at various concentrations (Table 7).  Antibiotics were prepared according to 

manufacturer's specifications.

Table 7. Antibiotic treatment concentrations.
Class of Antibiotic Antibiotic Concentrations (ug/ml)
Aminoglycosides Tobramycin 250, 500, 750 

  Gentamicin 250, 500, 750 
  Kanamycin 250, 500, 750 

Carbapenem Imipenem 5, 25, 50 
Cephalosporin Ceftazidime 5, 50, 100 

Macrolide Azithromycin 5, 10, 30 
Monobactam Aztreonam 100, 250, 500 

Penicillin Carbenicillin 250, 500, 750 
Quinolone Ciprofloxacin 5, 20, 40 

  Nalidixic Acid 250, 500, 750 
Tetracycline Tetracycline 50,100,150 

Other Chloramphenicol 30, 90, 300 
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The cells were rinsed with PBS and fresh MEM with 2 mM L-glutamine (without fetal 

bovine serum, penicillin, and streptomycin) at the appropriate volume based on the plate 

with the appropriate concentrations of antibiotics.  Antibiotic treatments were incubated

for 30 minutes at 37°C and 5% CO2.  Following incubation with antibiotics, the cells 

were rinsed with PBS, and the RNeasy Plus Kit protocol (Qiagen) was followed for RNA 

isolation with modifications.  Specifically, the cells were incubated in 600 μL of 1μg/mL 

lysozyme in Tris-EDTA buffer for 10 minutes.  Then, the cells were lysed with 600 μL of 

RLT lysis buffer from the Qiagen RNeasy kit.  The homogenized cells were pulled 

through a 20-gauge needle 10 times to shear genomic DNA and further homogenize the 

sample.  600 μL of 100% EtOH was added to the homogenized cell solution, and this 

solution was added to the RNeasy columns provided with the kit. The kit protocol was 

followed from this point forward.  To prevent DNA contamination, an on-column DNA 

digestion and RNA clean up was performed following the Qiagen RNeasy optional 

protocol.  The RNA clean up protocol was modified.  Following the addition of the RLT 

lysis buffer and before the addition of 100% EtOH, I ran the RNA product through the 

provided genomic eliminator column, and then followed the provided protocol.  

Performing these optional procedures and adding the modification for the RNA clean-up

protocol resulted in significant decrease in DNA contamination of the RNA product. I

synthesized cDNA from the isolated bacterial RNA using a kit, the Superscript III First-

Strand Synthesis System for RT-PCR, following the protocol provided (Invitrogen

#18080-051). Semi-quantitative RT-PCR and quantitative RT-PCR (QRT-PCR) analysis 

was performed using the primers 5110forA, 5110revA, MgtEforRTnew, and 

MgtErevRTnew. Both RT-PCR and QRT-PCR were performed as previously described 
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with a modification in the RT-PCR protocol114.  The modification involves increasing the 

amplification rounds during the RT-PCR reaction from 25 to 35 rounds.  This was 

required for visualization of gene product.

2.5  Gene Constructs

2.5.1 Construction of Deletion Mutants

Isogenic deletion mutants were created as previously described33,113. Using the 

suicide vector, pMQ30, flanking regions of the gene to be deleted were amplified via 

PCR with specific primers and joined to pMQ30 via homologous recombination in 

Saccharomyces cerevisiae.  These deletion vectors were then transformed into competent 

Escherichia coli S17 cells and confirmed via restriction digestion.  Via conjugation, the 

deletion vector harbored by S17 transformants is inserted into either P. aeruginosa PA14

or other mutant laboratory strains depending on the study.  Exconjugants are ascertained

via selective agar plates (either gentamicin (50 μg/mL)/nalidixic acid (30 μg/mL) or 

carbenicillin (250 μg/mL)/nalidixic acid (30 μg/mL)).  Following the selection, the 

exconjugants were grown overnight in LB, and spontaneous excision of the vector was 

selected by plating on 10% sucrose plates.  Mutations were confirmed by PCR and 

sequencing.  Deletion of mgtE was performed with the plasmids, pSMC233 and 

pSMC233-Amp, which have selective cassettes of either gentamicin or carbenicillin, 

respectively. Deletions of mgtE were confirmed via PCR using the primers, 913for and 

913rev.
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2.5.2 Construction of Histidine-tagged MgtE strain

The Histidine-tagged construct was designed in a similar fashion as the

construction of the deletion mutants, therefore the suicide vector, pMQ30, was utilized.  

Specific primers, p30UP(1), p30Down(3), MgtEPromEnd(2), and MgtEBegin(4), for 

PCR amplification of the mgtE gene including the promoter region, were designed.

These primers also incorporated a histidine-tag composed of 6 histidine amino acids 

following the AUG start codon in the mgtE reading frame.  This construct was joined to 

pMQ30 via homologous recombination in S. cerevisiae.  This vector, pCR3, was then 

transformed into competent Escherichia coli S17 cells and confirmed via restriction 

digestion.  Via conjugation, the knockout vector harbored by S17 transformants was 

inserted into SMC3604.  The selection process was the same as described in the previous 

section.  This strain, CVR3, was confirmed via cytotoxicity analysis, Western blotting,

and sequencing.

2.5.3 Construction of complementation plasmids and strains

The plasmids, pCR9 and pCR10, were created via PCR amplification using 

primers, SAMgtECfor and SAMgtECrev, of two Staphylococcus aureus strains, Newman

and RN6390. The amplified regions were ligated onto EcoRI-digested pMQ70.  Both

plasmids, pCR9 and pCR10, were then transformed into the strain, SMC3604. The 

presence of the plasmid was confirmed via PCR amplification using the primers, p729

and p730.

The plasmid, pSMC21, was transformed into transposon-mutated strains where 

mgtE complementation was needed. This procedure involved transformation of various 
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Pseudomonas aeruginosa transposon mutated strains with the pSMC21.  This presence of 

the plasmid was selected via selective media plates (carbenicillin).  The presence of the 

plasmid was confirmed via PCR amplification using the primers, p729 and p730.

2.6 Cytotoxicity Assays

Cytotoxicity was assessed via the CytoTox 96 Non-Radioactive Cytotoxicity 

Assay (Promega #G1781) which measures LDH, lactate dehydrogenase, release from 

epithelial cells. LDH release indicates disturbance of the epithelial cell membrane.  In 24 

well  plates, CFBE cells were seeded at a concentration of 2 X 105 with 0.5 mL of MEM.  

They were grown until confluent for 7-10 days at 37°C and 5% CO2. Medium was 

replaced every second day.  Bacteria were inoculated at a concentration of 2 X 107

CFU/ml to only wells in which the epithelial cells were confluent as previously 

described33.  Following inoculation, medium was replaced after one hour with media 

supplemented with 0.4% arginine and the samples were incubated for 5 more hours at 

37°C and 5% CO2.  Following this incubation, 350 μl of the supernatant was harvested 

and cytotoxicity was assessed via manufacturer's specifications.  In experiments testing 

wild type (WT) and mutant strains, bacteria were inoculated into separate wells in the 

same plates and analyzed in exactly the same fashion.  Previous experiments have 

demonstrated this method results in similar bacterial growth33.  As a positive control for 

these experiments, 0.1% Triton X-100 was added to a separate set of wells containing 

CFBE monolayers that were not inoculated with bacteria.  These wells represented a 

maximal release of LDH or 100% cytotoxicity.  As a negative control for these 

experiments, wells containing CFBE monolayers that were not inoculated with bacteria 
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or lysed with 0.1% Triton X-100 were assessed for cytotoxicity to ascertain the 

spontaneous release of LDH and represent 0% cytotoxicity.  All experimental 

cytotoxicity levels were normalized to the spontaneous release values.  Percent 

cytotoxicity was determined via the following equation: 100 X (experimental value -

spontaneous value)/maximum release.  Each assay was performed in triplicate.    

2.7 Western Blotting

Via the static co-culture biofilm assay, biofilms of strain CVR3 were allowed to 

grow and were treated with various antibiotics at determined concentrations.  Following 7 

hours of growth and a 30 minute antibiotic treatment, the biofilms were extracted and 

dispersed utilizing a 0.1% Triton X-100 solution that lyses the CFBE cells. Following 

lysis of the CFBE cell monolayer, the samples were centrifuged for two minutes at full 

speed (15000 rpm). Bacterial pellets were broken apart via boiling.  Supernatant was 

removed and protein concentrations were determined using a protein analysis kit (Pierce 

BCA Protein Assay Kit #23227).  These results were used to control for protein loading.  

Western blotting was carried out utilizing a horseradish peroxidase (HRP)-nickel 

conjugate, the His Probe-HRP (Thermo Scientific #15165) and following the provided 

protocol.  Western Lightning Chemiluminescence Reagent Plus was used according to 

the manufacturer's protocol to visualize the blot (Perkin Elmer, Boston, MA), according 

to the manufacturer’s protocol.
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2.8 Statistical analysis

Statistical significance was determined via a p-value <0.05 using a Student's t test 

with Sidak adjustment for multiple comparisons which adjusts the p-value itself
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CHAPTER THREE RESULTS

3.1 Semiquantitative RT-PCR Analysis of Antibiotic Treated Biofilms

Using the model system previously described by Anderson et al., PA14 biofilms 

were formed over 7 hours on CFBE epithelial cells33 and treated with antibiotics to 

investigate the effects of different antibiotics on mgtE transcription.  Twelve antibiotics 

from nine antibiotic classes with different main modes of action were used in this study.  

All twelve antibiotics are used in the treatment of Gram-negative pathogens.  A previous 

study demonstrated that transcription of mgtE is unregulated following tobramycin 

treatment of preformed PA14 biofilms at a concentration of 500 μg/mL34.  Tobramycin 

was further analyzed at concentrations of 250 μg/mL and 750 μg/mL.  Eleven other 

antibiotics were also analyzed from nine classes of antibiotics with three main modes of 

actions: inhibiting protein synthesis, inhibiting cell wall synthesis, and inhibiting DNA 

gyrase/topoisomerase (Table 8).  
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Table 8. Effect of antibiotic treatment on mgtE expression in Pseudomonas biofilms.

Subinhibitory antibiotic treatment levels indicated by (SI).  All other unmarked antibiotic 
treatment levels are sublethal.

Varying concentrations of antibiotics were used depending on toxic effects toward 

the CFBE cells and changes in bacterial levels (measured as colony forming units 

(CFU)/mL) following treatment. A no-reverse transcriptase control was employed during 

the process of making cDNA from RNA samples, to ensure against DNA contamination.

All antibiotic treated PA14 biofilms were controlled against untreated PA14 biofilms for 

each experiment, and a constitutively expressed gene fructose bisphosphate was used as a

loading control to normalize samples. This gene, fpb, is expressed at a constant rate.  

Results, which represent a single experiment, showed transcriptional upregulation 

of mgtE following most antibiotic treatments in comparison to untreated PA14 biofilms.

These results are consistent with QRT-PCR results overall (Table 8, Figure 10).  

Inconsistencies between RT-PCR and QRT-PCR measured changes in mgtE transcription

occur with ceftazidime and aztreonam treatments.  The QRT-PCR results demonstrated

downregulation of mgtE transcription following ceftazidime treatment at a concentration 

of 50 μg/mL and no change in mgtE transcription at 5 and 100 μg/mL treatment levels.

The RT-PCR results showed the exact opposite, with obvious upregulation of mgtE

transcripts at all three treatment concentrations.  RT-PCR results for aztreonam treatment 

Class of Antibiotic Mode of Action Used Concentrations Used (μg/ml) RT-PCR Results QRT-PCR Results
Aminoglycoside Inhibit protein synthesis Tobramycin 250, 500, 750 Upregulation Upregulation

Gentamicin 250, 500, 750 Upregulation Upregulation
Kanamycin 250, 500, 750 (SI) Upregulation Upregulation

Carbapenem Inhibit cell wall synthesis Imipenem 5, 25, 50 (SI) Upregulation Upregulation
Cephalosporin Inhibit cell wall synthesis Ceftazidime 5, 50, 100 (SI) Upregulation Downregulation

Macrolide Inhibit protein synthesis Azithromycin 5, 10, 30 Upregulation Upregulation
Monobactam Inhibit cell wall synthesis Aztreonam 100, 250, 500 (SI) Upregulation No Change

Penicillin Inhibit cell wall synthesis Carbenicillin 250, 500, 750 (SI) No Change No Change
Quinolone Inhibit DNA gyrase Ciprofloxacin 5, 20, 40 (SI) Upregulation Upregulation

Nalidixic Acid 250, 500, 750 (SI) Upregulation Upregulation
Tetracycline Inhibit protein synthesis Tetracycline 50,100,150 Upregulation Upregulation

Other Inhibit protein synthesis Chloramphenicol 30, 90 (SI), 300 Upregulation Upregulation
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of preformed biofilms showed an upregulation of mgtE transcripts at 100 and 250 μg/mL

treatment levels, but not at 500 μg/mL.  The QRT-PCR results showed no changes in 

mgtE transcription following aztreonam treatment.  Even with these variable results, most 

of the data concerning mgtE transcription following antibiotic treatment was consistent 

between RT-PCR and QRT-PCR.  RT-PCR is semi-quantitative and is not as sensitive of 

an assay as QRT-PCR.  Also, the RT-PCR results are a single representation of

experiments performed in triplicate without statistical analysis, where QRT-PCR results 

are representative of all three experiments with statistical analysis.  Therefore error in the 

RT-PCR results is more likely, and the QRT-PCR results are expected to be more 

accurate.
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Figure 10. RT-PCR analysis of transcription of mgtE following antibiotic treatment. For 
every experiment with each individual antibiotic, the top row of bands represents 
transcription of mgtE following antibiotic treatment. The bottom row of bands represents
expression the control gene, fbp, following antibiotic treatment.  Levels for the control 
gene are consistent throughout each experiment. Results for this figure have been 
divided into three sections based on general mechanisms of action for the antibiotics 
tested.  Figure 10 A are antibiotics that inhibit protein synthesis.  Figure 10 B are the 
quinolones, which impair the DNA gyrase functionality.  Figure 10 C are antibiotics that 
impair cell wall synthesis. Data is a representative of three experiments (n=3).
(UT=Untreated control)
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To control for changes in bacterial levels following antibiotic treatments which 

could explain changes in transcriptional expression of mgtE, CFU/mL analyses were

acquired for all twelve antibiotics in triplicate.  Antibiotic treatment affected pre-formed 

PA14 biofilm levels in different ways depending on the antibiotics used.  If antibiotic 

treatment did not cause a significant reduction in bacterial levels compared to untreated 

controls, then the treatment levels of these antibiotics are considered subinhibitory. The 

antibiotics that were administered at subinhibitory levels were kanamycin, carbenicillin, 

ceftazidime, aztreonam, ciprofloxacin, nalidixic acid, and imipenem (p>0.05) 

(Figure 11).
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Figure 11. CFU/mL analysis of antibiotic treatment at subinhibitory levels.  Kanamycin, 
carbenicillin, ceftazidime, aztreonam, imipenem, nalidixic acid, and ciprofloxacin were 
all administered at treatment levels considered subinhibitory because the CFU/mL counts 
were not significantly reduced in comparison to untreated controls (p>0.05). Data 
presented on a logarithmic scale. Data represents experiments performed in triplicate
(n=3).

The remaining antibiotic treatments, including tobramycin, gentamicin, 

azithromycin, tetracycline, and chloramphenicol, were administered at sublethal levels 

for at least one concentration of the administered antibiotic to the pre-formed biofilm 

(p<0.05) (Figure 12). Sublethal levels of antibiotic treatment were assessed by 
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significant changes in bacteria levels (CFU/mL) between biofilms treated with antibiotics

and untreated controls.

Figure 12. CFU/mL analysis of antibiotic treatment at sublethal levels. At least one 
treatment concentration of the following antibiotics, tobramycin, gentamicin, 
azithromycin, and chloramphenicol, resulted in significantly reduced numbers of viable 
bacterial cells (p<0.05) in comparison to untreated controls.  These concentrations are 
considered sublethal. Data presented on a logarithmic scale. Data represents 
experiments performed in triplicate (n=3).

3.2  Quantitative RT-PCR Analysis of Antibiotic Treated Biofilms

cDNA samples previously analyzed via RT-PCR were used for quantitative RT-

PCR (QRT-PCR) analysis to measure transcriptional regulation of mgtE following 

antibiotic treatment.  QRT-PCR results, like RT-PCR results, were normalized to the 

constitutively expressed gene, fbp.  Statistical analysis confirmed that most antibiotic 

treatments resulted in the transcriptional upregulation of mgtE. Aminoglycosides, 

macrolides, tetracyclines and chloramphenicol inhibit protein synthesis.  Tobramycin,
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gentamicin, and kanamycin (the aminoglycosides tested) all resulted in significant 

transcriptional upregulation of mgtE (Figure 13). As previously reported, tobramycin 

treatment of preformed PA14 biofilms at a concentration of 500 μg/mL resulted in 

upregulation of mgtE transcripts in comparison to untreated PA14 controls; furthermore, 

treatment with 750 μg/mL of tobramycin also resulted in significant upregulation of mgtE

transcripts (p<0.001), but 250 μg/mL treatment of tobramycin did not (p>0.05). Both 

gentamicin and kanamycin treatment at all three concentration levels tested (250, 500, 

and 750 μg/mL) resulted in significant upregulation of mgtE transcripts (p<0.01).

Treatment of pre-formed PA14 biofilms with azithromycin, a macrolide, resulted in 

significant upregulation of mgtE transcripts at concentrations of 10 μg/mL and 30 μg/mL

(p<0.05, not two fold increase), but not at a concentration of 5 μg/mL (p>0.05).

Treatment of pre-formed PA14 biofilms with chloramphenicol resulted in significant 

upregulation of mgtE transcripts at all three antibiotic concentrations, 30, 90, and 300 

μg/mL (p<0.001). Tetracycline treatment also resulted in significant upregulation of 

mgtE transcripts at all three treatment concentrations, 50, 100, and 150 μg/mL (p<0.001)

(Figure 13).



49
 

Figure 13. QRT-PCR analysis of transcriptional changes in mgtE following treatment 
with antibiotics that inhibit protein synthesis.  All antibiotics tested resulted in significant 
upregulation of mgtE for most concentrations tested (p<0.05, two fold increases in 
transcription for significant results except azithromycin). Data represents experiments 
performed in triplicate (n=3).

Quinolones inhibit DNA gyrase (topoisomerase II) to block DNA replication.  

Both ciprofloxacin and nalidixic acid are quinolones.  Nalidixic acid is an artificially 

synthesized quinolone.  Treatment with both ciprofloxacin and nalidixic acid led to 
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significant upregulation of mgtE transcripts at all three antibiotic levels tested, 5, 20, and 

40 μg/mL (p<0.001) and 250, 500, 750 μg/mL (p<0.01), respectively (Figure 14).

Figure 14. QRT-PCR analysis of transcriptional upregulation of mgtE following
quinolone treatment.  Quinolone treatment resulted in significant upregulation of mgtE
transcripts at all antibiotic concentrations tested (ciprofloxacin, p<0.001 and nalidixic
acid, p<0.01, two fold increases in transcription for significant results). Data represents 
experiments performed in triplicate (n=3).

Inhibiting cell wall synthesis is another general mechanism of action of 

antibiotics.  The antibiotics tested that fall under this category are carbapenems,

cephalosporins, monobactams, and penicillins. This group is the only group of 

antibiotics that, following treatment, did not induce significant increases in mgtE

transcriptional levels.  Imipenem, a carbapenem, treatment of pre-formed PA14 biofilms

resulted in significant upregulation of mgtE transcription at two of the three administered 

antibiotic levels, 5 μg/mL and 25 μg/mL (p<0.01) but not at 50 μg/mL (p>0.05) (Figure 

15). Carbenicillin, a penicillin, and aztreonam, a monobactam, treatments resulted in 

unchanged mgtE transcriptional levels at all concentrations tested, 5, 50, and 100 μg/mL

(p>0.05), and 250, 500, and 750 μg/mL (p>0.05), respectively (Figure 16). Treatment 

with ceftazidime, a cephalosporin, also demonstrated varied effects on transcription of 

mgtE, but in a unique way that was not observed with any other antibiotics treatments 
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tested in this study.  At the concentrations 5 and 100 μg/mL, no change in mgtE

transcripts was observed.  Interestingly, when biofilms were treated with 50 μg/mL of 

ceftazidime, a significant downregulation of mgtE transcription was observed compared 

to untreated controls (p<0.005) (Figure 17).  This downregulation effect cannot be 

explained by a significant reduction in viable bacteria because all three ceftazidime 

treatment levels were subinhibitory (Figure 11).

Figure 15. QRT-PCR analysis of transcriptional changes in mgtE following imipenem 
treatment.  Treatment of pre-formed biofilms with imipenem resulted in significant 
upregulation of mgtE transcription for two of the three treatment levels (p<0.01, two fold 
increases in transcription for significant results). Data represents experiments performed 
in triplicate (n=3).
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Figure 16.  Antibiotic treatment resulting in unchanged mgtE transcription. Both 
carbenicillin and aztreonam treatments result in unchanged levels of mgtE transcripts 
(p>0.05).  Data represents experiments performed in triplicate (n=3).

Figure 17. Antibiotic treatment resulting in decrease of mgtE transcripts. Ceftazidime 
treatment resulted in a unique finding.  At 50 μg/mL, the antibiotic induced a significant 
downregulation of mgtE transcription compared to untreated PA14 biofilms (p<0.005).
The two other concentration levels, 5 μg/mL and 100 μg/mL, resulted in no significant 
change in mgtE transcription following treatment (p>0.05, not a two fold decrease). Data 
represents experiments performed in triplicate (n=3).

3.3 Analysis of Staphylococcus aureus MgtE

As demonstrated, an isogenic mutation of mgtE in WT PA14 results in increased 

cytotoxicity compared to WT PA14.  Placing mgtE on the multi-copy plasmid, pMQ72, 
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to create pMQ177 and transforming this vector into the isogenic �mgtE strain, 

SMC3604, results in rescuing of the WT PA14 phenotype by decreasing cytotoxicity 

often lower than WT levels34. Based on these findings, I set out to analyze if mgtE

homologues expressed S. aureus strains will also rescue the WT PA14 phenotype by 

decreasing cytotoxicity. S. aureus is a Gram-positive bacterium that forms biofilms and 

is a common human pathogen. mgtE homologues of two laboratory S. aureus strains, 

Newman and RN3990, were isolated and placed on the vector, pMQ72, individually to 

create pCR9 and pCR10.  Then, both plasmids, pCR9 and pCR10, were transformed 

individually into SMC3604.  Therefore, S. aureus mgtE homologues were expressed by 

multicopy plasmids in a PA14 isogenic �mgtE mutant background so the S. aureus MgtE 

homologue is the only MgtE protein being produced.  Cytotoxicity assays were 

performed to ascertain the cytotoxic effects of both MgtE homologues against our CFBE 

cell line.  We found a reduction in cytotoxicity by the presence of both plasmids, in 

comparison to PA14 pMQ72 and SMC3604 pMQ72, therefore demonstrating the S.

aureus mgtE homologues ability to rescue the highly cytotoxic phenotype of strain

SMC3604 with a non-PA14 MgtE protein (Figure 18).
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Figure 18. S. aureus mgtE homologue effects on cytotoxicity. The S. aureus mgtE
homologues are able to rescue the wild type phenotype as demonstrated with the 
plasmids, pCR9 and pCR10.  The empty vector, pMQ72, and pMQ177 (expressing PA14 
mgtE) were placed in both WT PA14 and SMC3604 and used as controls for this 
experiment.  Data is a representative of three experiments individually performed in 
triplicate (n=3).

3.4 Western Blotting to Elucidate the Translational Regulation of MgtE

To further elucidate the impact of antibiotic treatment on mgtE regulation, 

translational effects were assessed.  A histidine-tagged MgtE strain was designed, CVR3,

and this strain was utilized throughout all of the Western blot studies.  Both a histidine 

specific primary antibody and a nickel conjugate system were employed.  The nickel 

conjugate will bind a histidine-tagged protein and has an enzyme that will 

chemiluminesce following the addition of the Western Lightning reagent.

The co-culture biofilm model was utilized for all three assays, RT-PCR, QRT-

PCR, and Western blotting.  The BCA protein assay kit was used to control for protein 

loading in the SDS-page.  Both eukaryotic and prokaryotic protein was present, as the 



55
 

nature of the co-culture model system involves mixing of the cells.  This resulted in 

varied and unreliable results.  Although the primary His-tag antibody was able to detect 

the planktonically grown bacteria expressing the histidine-tagged MgtE (Figure 19), this 

antibody was not sensitive enough to detect the histidine-tagged bacteria once the 

bacteria were in a biofilm state, and non-specific binding was also a concern (Figure 20).  

Figure 19.  Primary Histidine-tag antibody recognizes Histidine-tagged MgtE in the 
CVR3 strain.  The histidine-tagged MgtE expresssed by strain, CVR3 represented in five 
clones above, is recognized by the primary antibody, as indicated by the green arrow
(MgtE approximate weight, 54 kDa).  Both strains not containing a histidine tag, 
SMC3604 (MgtE-) and WT PA14 are not recognized.  This blot represents planktonic 
growth of all bacterial strains.
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Figure 20.  Histidine-tagged MgtE is not detected during biofilm growth by primary 
Histidine-tag antibody. Histidine-tagged MgtE expressed in strain CVR3 is detected only 
during planktonic growth.  When this strain is allowed to form a biofilm, the his-tagged 
MgtE is no longer detected.  Controls are both the CFBE cells, which the biofilms are 
formed on and WT PA14 biofilms grown on CFBE cells.  Furthermore, non-specific 
binding is an issue with this antibody and the non-specific banding pattern is different 
between biofilm growth and planktonic growth, which demonstrates changes in protein 
expression or protein modification.

The nickel conjugate system was more sensitive and gave promising results 

initially (Figure 21), but those results did not replicate.  Quickly, it became evident that 

the nickel conjugate was binding non-specifically to a eukaryotic protein at the same 

approximate molecular weight as MgtE (54 kDa) (Figure 22).  

I have been unable to demonstrate, by utilizing the Western blot technique, the 

translation of mgtE following antibiotic treatment.  Future directions should include 

raising a specific antibody to MgtE, hopefully eliminating many of the problems 

encountered with the histidine-tag sensitivity and detection and eukaryotic protein 

expression. Furthermore for the purpose of this study, a functional assay could be 

utilized to indirectly test for increased MgtE levels, as described below (section 3.5).
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Figure 21.  Nickel conjugate detection of Histidine-tagged MgtE.  His-tagged MgtE is 
detected in biofilm growth (strain CVR3) on CFBE cells following tobramycin treatment 
(500 μg/mL) and in planktonically grown CVR3 in comparison to controls, WT PA14 
and CFBE cells only.

Figure 22.  Nickel conjugate detection of unknown eukaryotic protein.  CFBE cells are 
expressing a protein at approximately 54 kDa that is strongly recognized by the nickel 
conjugate.  This representative finding was replicated, and places into question the 
findings in Figure 21 and the viability of this system in detecting the histidine-tagged 
MgtE.

3.5  Functional Assay to Detect Changes in MgtE Translation

Since detection of a histidine-tagged MgtE protein expressed by the CVR3 

biofilm via Western blotting has proven impossible with the methods available at this 

time, a functional assay based on cytotoxicity changes should be performed.  This assay 

would indirectly indicate if MgtE is being translated following antibiotic treatment.  

Using the laboratory WT PA14 strain, biofilms are formed on the CFBE cell line as

already explained in the sections discussing the RT-PCR and QRT-PCR experiments 

(sections 3.1 and 3.2).  Biofilms were treated with antibiotics at the same concentrations 

as in prior experiments but for one hour, instead of thirty minutes.  Cytotoxicity assays 

were performed to determine if the regulation of mgtE transcripts, demonstrated by RT-

PCR and QRT-PCR, are being translated in the same fashion.  If they are, then 

cytotoxicity toward the CFBE cell line will change.  If the antibiotics resulted in 

increased transcription of mgtE then a decrease in cytotoxicity toward the CFBE cells 
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should be observed as overexpression of the MgtE protein compared to WT PA14

expression of the MgtE protein results in decreased cytotoxicity toward the CFBE cells.  

This assay should also indicate if the antibiotic treatment causing no change or a decrease 

in mgtE transcripts induces the same trend during translation of MgtE. Preliminary 

studies indicate that mgtE transcripts are being translated following antibiotic treatment.  

This has been demonstrated following kanamycin treatment of preformed PA14 biofilms 

(Figure 23).

Figure 23.  Translation of MgtE following kanamycin treatment.  Percent cytotoxicity 
significantly decreased (p<0.05, n=3) following kanamycin treatment at three 
concentrations compared to the untreated control (WT PA14).  These treatment 
concentrations were the same concentrations used to ascertain transcriptional regulation 
of mgtE, and these results support previous findings (n=2).

3.6 Connecting mgtE with a Known Regulatory Pathway

As changes in transcriptional upregulation of mgtE, for the most part, are

universal among the antibiotics tested for this study and it has been proven that mgtE 

plays a role in virulence modulation, I hypothesized the mgtE is interacting with a 
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regulatory pathway involved in virulence modulation.  To further elucidate a possible 

interaction, a transposon mutant library115 was employed.  This library is a sequenced 

library of PA14 genes that have been randomly transposon mutated.  Following a 

selection process, which involved performing defined search of the transposon mutants 

on an excel spreadsheet, to narrow down the screen to just regulatory proteins, I screened 

this library, for qualitative changes in cytotoxicity, either hypercytotoxic or 

hypocytotoxic, toward our CFBE cell line in comparison to WT PA14. For the 

transposon mutations that had a hypercytotoxic effect on the CFBE cell line, I 

transformed these mutants with the mgtE complement plasmid, pSMC21.  This plasmid is 

a multi-copy plasmid expressing mgtE. The plasmid, pMQ177, was used as an the 

overexpressed mgtE control in WT PA14.  Both plasmids, pMQ177 and pSMC21, are the 

same plasmid backbone with the selection cassette changed.  Gentamicin is the selective 

cassette on pMQ177, and carbenicillin is the selective cassette on pSMC21.  The 

transposon mutations are under a gentamicin selection, therefore rendering pMQ177 

unusable.  

If MgtE is not interacting with an individual transposon mutant expressing a 

hypercytotoxic phenotype, cytotoxicity should decrease as MgtE does not depend on the 

mutated gene to express its phenotype.  But, if MgtE does depend on the mutated gene to 

express its phenotype, there will no change in the hypercytotoxic effect of mutant on the 

cell line.  The same concept is used to examine a possible MgtE interaction with the 

hypocytotoxic transposon mutants.  A mgtE deletion was performed in these mutants.  If 

MgtE does not interact with the hypocytotoxic transposon mutant, then cytotoxicity 

should increase.  If cytotoxicity does not increase or decreases, then these results indicate 
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a possible interaction between MgtE and the transposon mutated gene.  Of the 17 

hypercytotoxic transposon mutated genes identified in the initial screen, I was able to 

transform pSMC21 into 11 transposon mutants and test them for cytotoxicity changes.  I 

found two genes, nasT and narX, that maintained increased cytotoxicity with the plasmid 

overexpressing mgtE masking the expected decreased cytotoxic effect (Figure 24).  I 

identified 25 hypocytotoxic transposon mutant strains in which to perform an isogenic

deletion of mgtE using pSMC233-Amp and accomplished this task with 14 of these 

strains.  Of the 14 strains tested, the two genes argR and pII after triplicate testing, 

demonstrated possible interactions with mgtE by inhibiting the expected increased 

cytotoxic effect of an mgtE deletion (Figure 25).
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Figure 24.  Cytotoxicity results of effect of mgtE complementation in conjunction with 
transposon mutated genes.  This bar graph represents the transposon mutant (left bar,
dark orange) and the transposon mutant/mgtE complement(right bar, light orange) for 
eleven different transposon mutated strains representing eleven different mutated genes.
Transposon mutations in both nasT and narX resulted in increased cytotoxicity during 
initial screens.  The multi-copy complement plasmid expressing mgtE should reduce the 
cytotoxicity of the mutants.  In both mutants, cytotoxicity increased instead of decreasing
representing a possible interaction. Data is a representative of three experiments 
individually performed in triplicate.  Results for algD/mgtE complementation shown 
above has not replicated (n=3).
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Figure 25.  Cytotoxicity results of effect of mgtE deletion in conjunction with transposon
mutated genes. This bar graph represents the transposon mutant (left bar, dark green) and 
��	��������������������mgtE deletion (right bar, light green) for fourteen different 
transposon mutated strains representing fourteen different mutated genes. Transposon 
mutations in both pII and algR resulted in decreased cytotoxicity during initial screens.  
A isogeneic deletion of mgtE was performed and cytotoxicity decreased instead of 
increasing representing a possible interaction. Deletion of mgtE in transposon mutant  
gacA background also led to a slight decrease in cytotoxicity in this particular experiment 
but was not replicated. Data is a representative of three experiments individually 
performed in triplicate (n=3).

3.7  MgSO4 Concentrations and Biofilm Formation of Magnesium Transporters and 
MgtE Mutants

Using the static biofilm assay, biofilms were formed in varying levels of MgSO4,

both millimolar and micromolar concentrations.  Different mutant strains with deletions 

of different magnesium transporters were tested.  The purpose of these studies was an 

attempt to link magnesium transport and biofilm formation.  The normal magnesium 

concentration used in this type of asssay is 1 mM.  The strains tested were SMC3604, 
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SMC3640, SMC3643, SMC3644, SMC3646, SMC3647, and WT PA14.  Variable results 

were observed, as no distinct theme in changes in biofilm formation could be ascertained 

following changes in MgSO4 availability between the mutant strains and WT PA14 

(Figures 26 and 27). Concentrations of magnesium in the CF airway (1.9 μM) do not 

vary significantly from the normal (non-CF) airway (2.3 μM).  Altering MgSO4 at the 

concentrations below did not significantly alter biofilm formation between mutants and 

WT PA14.

Figure 26. The effect of magnesium at millimolar concentrations on biofilm formation.  
Biofilm formation follows the same trend between all mutants indicating that changes in 
magnesium, although overall may induce slight increases in biofilm formation, no 
changes between mutants and WT PA14 biofilm formation is evident.  SMC3604, 
�mgtE, shows the lowest response via change in biofilm formation in comparison to the 
other mutants. Data is a representative of three experiments individually performed in 
triplicate (n=3).
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Figure 27.  The effect of magnesium at micromolar concentrations on biofilm formation.  
Overall biofilm formation is slightly increased for all mutants in comparison to WT 
PA14.  Specific trending does seem to change between mutant biofilm formation at 
different concentrations of magnesium.  At micromolar concentrations, SMC3647, 
�mgtE, �mgtC, �mgtA, presents with the most unchanging biofilm phenotype compared 
to other mutants, similarly to the SMC3640 biofilm phenotype in Figure 25.  The CF
airway magnesium levels fall to the left of this graph, approximately a 2 μM 
concentration.  At this level of magnesium, biofilm formation is increased in comparison 
to WT PA14 levels, but very little change in biofilm formation between the mutant 
strains is observed. Data is a representative of three experiments individually performed 
in triplicate (n=3).
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CHAPTER FOUR DISCUSSION

4.1 Regulation of mgtE via Antibiotics

Although the hypothesis that all antibiotics tested would induce upregulation of 

mgtE transcription was not proven completely true, most antibiotics tested did lead to 

increased transcription of mgtE.  Antibiotic interaction with P. aeruginosa biofilms is 

rather complex, as different antibiotics have different demonstrated effects on biofilm

induction, and architecture, by inducing biofilm formation, inhibiting quorum sensing, 

and upregulating virulence factors and modulators.  As previously demonstrated, mgtE

has been shown to have virulence modulatory effects via inhibition of the T3SS34.  When 

the T3SS is inhibited, biofilm architecture is altered.  Therefore, there seems to be an 

indirect relationship between increased expression of mgtE by antibiotic treatment and

changes in biofilm architecture.  Furthermore, the antibiotic treatments in this study 

varied, whether subinhibitory or sublethal, which is an important distinction as studies 

have shown that antibiotic levels can induce different genetic and phenotypic changes in 

the P. aeruginosa biofilm.

Many antibiotics used to treat bacterial diseases are derivatives of naturally 

occurring microbial products which are produced by microorganisms.  These 

microorganisms produce antibiotic compounds as a result of competitive environments 

where different microbes are competing for the same environmental niche116.
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Aminoglycosides are an example of a clinically relevant group of antibiotics, and three 

different aminoglycoside antibiotics were tested in this study: tobramycin, gentamicin, 

and kanamycin.  Specifically, tobramycin is produced by Streptomyces tenebrarius

specifically in response to the presence of P. aeruginosa in its environmental niche, soil.  

P. aeruginosa possesses an inducible resistance to tobramycin117 suggesting an adaptive 

response.  Another selected adaptive response may be biofilm formation by P. 

aeruginosa following interaction with tobramycin in these specific niches, and this 

response translates into the clinical setting118.  Subinhibitory concentrations of 

tobramycin have been shown to increase P. aeruginosa biofilm formation119.

Ciprofloxacin treatment, below the minimal inhibitory concentrations (MIC) or at 

subinhibitory levels, also induces an increase in biofilm formation. Carbenicillin and 

ceftazidime treatment did not78, so not all antibiotic treatments lead to increased biofilm 

formation.  

The macrolide azithromycin has been shown to inhibit guanosine 

diphosphomannose dehydrogenate in the alginate biosynthetic pathway, which is a 

pathway that contributes to mucoidy phenotypic changes during chronic P. aeruginosa

infection.  In the CF airway, the production of alginate induces local inflammatory 

responses and increased sputum viscosity; therefore, for treatment purposes in the clinical 

setting, reduction of alginate production is very beneficial120.  Furthermore, azithromycin 

is able to inhibit quorum sensing in P. aeruginosa121, and quorum sensing regulates

certain virulence genes, including repression of the T3SS122.  Ciprofloxacin and 

ceftazidime also exhibit strong quorum sensing inhibitory effects121, although the specific 

genes that the antibiotics interact with to cause this effect varies. Interestingly, treatment 
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with ceftazidime, as the predominant anti-pseudomonal antibiotic, in treatment of CF has 

promoted the epidemic spread of a multi-resistant nonmucoid strain of P. aeruginosa123,

which is not surprising considering this antibiotic is able to inhibit quorum sensing and 

has no role in stimulating biofilm formation.

Treatment with certain antibiotics, such as ciprofloxacin at sublethal levels (MIC),

may induce production of certain virulence factors by the P. aeruginosa biofilm.  

Specifically, subinhibitory ciprofloxacin treatment will induce protease secretion.  

Secretion of proteases damages mammalian matrix proteins.  Considering biofilms are 

nearly impossible to eradicate with antibiotic treatment, induction of virulence factors

following antibiotic treatment is a serious concern124.  Treatment of P .aeruginosa

biofilms with imipenem at the subinhibitory level, 1 μg/mL, causes increased alginate 

production by inducing increased expression of many important regulatory proteins in the 

alginate biosynthesis pathway, including AlgR125.

Both RT-PCR and QRT-PCR analysis of mgtE transcription by preformed 

biofilms following antibiotic treatment showed an upregulation of mgtE expression by 

most antibiotics tested.  Analysis via QRT-PCR demonstrated that treatment by three

antibiotics did not lead to mgtE upregulation.  Both carbenicillin and aztreonam resulted 

in unchanged mgtE transcription levels at all three antibiotic concentrations tested, and 

ceftazidime treatment resulted in a downregulation of mgtE transcription at one 

concentration, 50 μg/mL, following treatment.  These three antibiotics all function as 

inhibitors of cell wall synthesis, but are not the only antibiotics tested with this 

mechanism of action.  Other antibiotics that inhibit cell wall synthesis resulted in

increased transcription of mgtE consistent with the stated hypothesis, such as imipenem.
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Carbenicillin and aztreonam were tested at subinhibitory concentrations, although, once 

again, other antibiotics were also tested at subinhibitory concentrations and exhibited the 

expected effect, an upregulation of mgtE transcripts. Therefore, a simple explanation for 

the observed effects of these two antibiotics on mgtE transcriptional regulation is not 

possible.  Postulation of possible explanations can lead to future directions for this 

research.

Overall, the antibiotics that resulted in increased expression of mgtE likely lead to

reduced expression of the T3SS complex, which is correlated with changes in biofilm 

architecture. Elicitation of changes in biofilm architecture could be explained by 

demonstrating a role for mgtE in induction of pathways that lead to the mucoid and 

biofilm forming state of P. aeruginosa; one such pathway would be the alginate 

biosynthesis pathway.  Carbenicillin, an anti-pseudomonal penicillin, and aztreonam, also 

an anti-pseudomonal antibiotic, should have had the same effect on mgtE transcription as

the aminoglycosides, imipenem, and the quinolones.  But, as stated earlier, treatment with 

both carbenicillin and aztreonam at subinhibitory levels show no change in mgtE

transcription compared to an untreated control.  Treatment at subinhibitory levels could,

in conjunction with the fact that these antibiotics are a bactericidal antibiotic that kill only 

rapidly growing cells, could explain why mgtE transcripts were not increased or 

decreased.  Bactericidal antibiotics treated at subinhibitory levels might not stress the 

biofilm cells enough to induce regulatory changes, therefore, not increasing expression of 

mgtE126.  Although imipenem and kanamycin are also bactericidal antibiotics, and 

treatment with these antibiotics resulted in upregulation of mgtE transcription, this 

response is more complex than a basic stress response according to levels of antibiotic 
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treatment and mechanism of action of the antibiotic. As mentioned earlier in this 

discussion, previous studies demonstrate that treatment with carbenicillin at subinhibitory 

levels did not increase biofilm formation, therefore mgtE transcriptional upregulation 

with this particular antibiotic treatment regimen is not plausible considering the 

correlative evidence between mgtE expression and biofilm architecture changes.

Evidence for impact on virulence by aztreonam has not been studied, so this type of 

correlation cannot be made.

Treatment with ceftazidime, at the concentration of 50 μg/mL, resulted in 

decreased expression of mgtE without changes to CFU/ml counts, therefore, this decrease 

in transcription following treatment is not explained with a reduction of viable cells.  As 

mentioned earlier in this discussion, treatment with this antibiotic as the primary agent in 

response to chronic P. aeruginosa CF airway infections resulted in highly resistant non-

mucoid strains of P. aeruginosa.  This data implies that ceftazidime does not promote 

biofilm formation and, therefore, should not result in an upregulation of mgtE but, in fact, 

should actually downregulate expression of mgtE to promote a nonmucoidy phenotype.

Overall, these results further implicate mgtE in biofilm architectural changes and 

virulence modulation.

Lastly, it is important to note that all antibiotics that deviated from the 

transcriptional upregulation trend of mgtE inhibit cell wall synthesis and were tested at 

subinhibitory concentrations only.  This is most likely not a coincidence.  Further work 

should explore this aspect by testing these three antibiotics, carbenicillin, aztreonam, and 

ceftazidime, at sublethal doses, as well as testing other antibiotics in the same classes,

including anti-pseudomonal penicillins, cephalosporins, and monobactams, to confirm 
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the effect found with these three antibiotics.  The other nine antibiotics tested that 

resulted in upregulation of mgtE expression should be tested at either sublethal or 

subinhibitory levels, depending on prior testing, to further elucidate this upregulation 

effect.  I would suspect that changing between subinhibitory and sublethal concentrations 

of the antibiotic treatments that resulted in transcriptional upregulation of mgtE may not 

cause significant changes in the results to this study.

4.2 Translation of mgtE following antibiotic treatment

In order to examine whether the transcriptional effects on mgtE following antibiotic 

treatment could also be demonstrated on a translational level, Western blotting was 

employed.  A specific antibody was not available for P. aeruginosa MgtE, so a construct 

was designed and resulted in a strain of P. aeruginosa that expressed a histidine-tagged 

MgtE protein only.  This strain has a histidine-tagged mgtE inserted on the chromosome 

in the isogenic���mgtE mutant background.  This histidine-tag is expressed right after the 

start codon on the protein, therefore expressing on the N-terminus side of the protein.  

Both a primary antibody specific for histidine-tagged proteins and a nickel-conjugate 

system were used. Neither system was able to definitively show translation of mgtE

following antibiotic treatment, for different reasons.  The primary antibody was not 

sensitive enough to detect histidine-tagged MgtE produced by PA14 biofilms, and non-

specific binding was an issue.  Interestingly, non-specific binding patterns changed 

between planktonically grown bacteria and biofilm forming bacteria of the same strain,

implying changes in protein expression and/or changes in protein modification as the 

bacteria enter a biofilm forming state of growth. The nickel-conjugate system was 
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detecting a eukaryotic protein at the same molecular weight as MgtE, therefore making 

this system not useful in demonstrating MgtE translation.  Evidence has been presented in 

this thesis that implicate the protein, MgtE, in regulatory pathway involvement following 

biofilm formation on CFBE cells, and this is strong evidence that MgtE is getting 

translated during the changes from planktonic growth to biofilm growth, implying that 

since certain antibiotics have been shown to promote biofilm growth and transcription of 

mgtE is increased under these particular antibiotic treatments, then translation of MgtE is 

most likely occurring. To continue using Western blotting as a technique to identify 

translational effects of antibiotic treatment on MgtE, a specific antibody needs to be 

raised. Furthermore, a future study should be performed for the purpose of correlating 

antibiotic treatment at subinhibitory concentrations to changes in cytotoxicity.  If 

antibiotic treated biofilms result in cytotoxicity decreases in comparison to untreated 

biofilms, then translation of the increased transcripts of mgtE is most likely occurring.

This has been demonstrated through functional assays meant to use changes in 

cytotoxicity to ascertain translation of mgtE transcripts.  Preliminary tests have been 

performed using functional assays and kanamycin treatment.  Kanamycin was chosen 

because it is the only aminoglycoside treated at subinhibitory concentrations for all RT-

PCR and QRT-PCR analysis.  Kanamycin treatment resulted in a signficant decrease of 

cytotoxicity toward the CFBE cells compared to an untreated control (Figure 23).  These 

findings indirectly demonstrate that the increased mgtE transcripts that are produced 

following kanamycin treatment are being translated at a higher rate in comparison the the

untreated control.  Furture studies should involve more functional assays being performed 

with the other antibiotics tested in this study.
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4.3  Implicating MgtE in Regulatory Pathway Involvement

To explain the demonstrated MgtE effects in virulence modulation, the hypothesis 

that MgtE in acting in a regulatory pathway was examined.  A P. aeruginosa transposon 

mutated and sequenced library was employed115. Findings, based on cytotoxicity 

changes, associate mgtE interaction with several different genes including pII, narX,

nasT, and algR.

PII, NasT, and NarX are proteins that are involved in nitrogen sensing and 

nitrogen metabolic pathways.  Both PII and NasT activate pathways involved in nitrogen 

metabolism.  As discussed earlier, NarX is part of a two component regulatory system 

that has a demonstrated ability to inhibit arginine fermentation by binding to the 

arcDABC operon and preventing stimulus of the operon through ArgR77.  As the addition 

of arginine to bacterial assays has been shown to stimulate biofilm growth, exploring the 

interaction of MgtE with the NarX-NarL pathway would be interesting.  MgtE could be 

indirectly promoting arginine synthesis and, therefore, stimulating biofilm growth by 

interacting with NarX and preventing the activation of NarL.  If NarL activation is 

inhibited, then NarL could not bind to the arginine fermentation operon and the operon 

could be stimulated by ArgR, leading to an increase in biofilm formation.  This thought is 

reinforced with the data presented in this thesis.  Overexpression of mgtE in the 

transposon mutant background of narX resulted in increased cytotoxicity.  The effect of 

overexpression of mgtE is blocked by the narX mutant, and NarL could be activated by 

another source or still be activated by the narX mutant.  When NarL is activated, 

inhibition of arginine synthesis is expected and biofilm architecture may change, leading 

to increased cytotoxicity.  Furthermore, more than one gene implicated in nitrogen 
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metabolism was found which seems to further suggests possible interactions of mgtE with 

nitrogen regulatory proteins.

Evidence presented in this thesis implicates an interaction between mgtE and algR

genes.  AlgR is a regulatory protein that functions in many different pathways, most 

notably the alginate biosynthesis pathway.  Induction of this pathway results in P. 

aeruginosa expressing a mucoidy phenotype.  The mucoidy phenotype is employed 

during chronic infection of the CF airway and results in biofilm formation.  AlgR is part 

of the two component regulatory system, AlgR-AlgZ pathway, interacting with AlgU127.

AlgU is the key regulatory protein that encodes ���������������22, which activates many 

genes essential for induction of the alginate pathway128.  Furthermore, algR is an essential 

gene for P. aeruginosa pathogenesis, as an algR mutant is less virulent than a wild-type 

strain in an acute septicemia mouse modeled infection129.  AlgR is also required for 

twitching motility, which is associated with increased virulence130.  This evidence, as 

well as proteomic analysis of an algR mutant, suggests that AlgR is a global regulator 

impacting the expression of many different genes129, including mediating the repression 

of the T3SS genes.  When AlgR is mutated, an increased expression of certain T3SS 

genes is observed, including exsA and exoS.  ExsA is the master regulator for the T3SS in 

P. aeruginosa131.  These findings imply important but complex interactions of AlgR with 

other virulence pathways in P. aeruginosa.

The findings in this study show a strain with transposon mutated algR resulted in 

decreased cytotoxicity, which is an unexpected finding if the transposon mutation results 

in a loss of function.  Transposon mutations can also result in increased function of the 

protein.  If this is the case, then the findings presented here, of decreased cytotoxicity,
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would be expected.  Arbitrary-primed PCR followed by sequencing from the transposon 

in this particular mutant would undeniably provide a better explanation of where the 

transposon is inserted in the gene.  Also, a gene deletion of algR, a double mutation of 

algR and mgtE, and overexpression of algR should be performed.  In the transposon 

mutated algR background, a deletion mutation of mgtE was performed, and results show

a probable interaction between these two proteins.  The expected results of increased 

cytotoxicity of the mgtE deletion was masked by the algR mutation maintaining a 

decreased cytotoxic effect on the CFBE cell line, even below wild type levels.  This 

would imply that MgtE is upstream of AlgR in an unknown pathway, where the increased 

cytotoxic effect expected with the mgtE deletion is blocked by the mutation in algR.

AlgR and MgtE exhibit similar cytotoxic phenotypes.  Both, when overexpressed, result 

in decreased cytotoxicity, and, when deleted from the chromosome, result in increased 

cytotoxicity.  Therefore, it is plausible these two proteins could be connected in some 

way as they exert similar effects in virulence modulation in P. aeruginosa.

4.4 Transcription, Translation, and Regulatory Pathway Interactions of MgtE

These findings come together to tell an important story about the impact that 

mgtE has on virulence modulation in P. aeruginosa. When a pre-formed P. aeruginosa

biofilm is treated with a multitude of different antibiotics, they induce a similar response 

by the biofilm.  They induce a stress response.  The biofilm is able to sense danger, most 

likely through many different signaling pathways.  The biofilm's bacterial constituents 

can respond to this stressor in two main ways.  They can choose to leave the biofilm as 

individual planktonic cells.  Although, this is a good strategy with certain environmental 
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stressors, such as lack of nutrients, antibiotic treatment would surely kill any cells that 

decide to leave the biofilm.  The other choice is to stay in the biofilm and try to shield 

themselves from the “attack”. Therefore, following antibiotic treatment, I postulate that 

biofilm constituents sense the antibiotics and change regulation of key genes with the 

goal of surviving this “attack”, and, to that end, they universally upregulate certain genes.

One gene that is upregulated is mgtE.  The transcriptional upregulation of mgtE and 

ensuing translation of MgtE interacts with AlgR, sending a signal through AlgR inducing 

the activation of the algD operon resulting in transcription and translation of alginate.

Alginate is secreted and contributes to a further induced mucoidy phenotype, by 

contributing to the exopolysaccharide matrix of the biofilm.  This matrix functions as a 

protective shield from outside stressors, and increasing this matrix would result in 

survival of bacterial constituents inside of the biofilm (Figure 28).
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Figure 28.  Postulated schematic antibiotic treatment on virulence modulation through 
mgtE.  This diagram is a summary of my interpreted results based on data presented in 
the thesis. Antibiotic treatment induces a stress response from the biofilm resulting in 
increased transcription and translation of mgtE.  Increased expression of MgtE results in 
activation of the algD operon through AlgR leading to increased alginate production 
contributing to increased secretion of the exopolysaccharide matrix resulting in protection 
of the biofilm from the antibiotics.

4.5 Exploring S. aureus MgtE function

S. aureus is an initial colonizer of the CF airway, although, eventually 

P. aeruginosa becomes the primary colonizer as a person with CF ages and bacterial 

infections become more complex110. S. aureus is a gram positive bacterium that is able to 

form biofilms and expresses a homologue of the MgtE protein expressed by P. 

aeruginosa.  For these reasons, S. aureus mgtE homologues were analyzed for the ability 

to complement the decrease of cytotoxicity that P. aeruginosa naturally expressing MgtE 

initiates.  By placing the mgtE homologue from two strains of S. aureus, Newman and 

RN6390, on the multi-copy plasmid, pMQ72, and transforming the plasmid into the 

PA14 isogenic mutant strain SMC3604, direct effects of the MgtE homologues on
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cytotoxicity were observed.  The homologues were able to complement innate MgtE 

function in P. aeruginosa.  These findings further elucidate the functionality of MgtE.  

These proteins, S. aureus MgtE homologues and WT PA14 MgtE, share similar 

structures, but are not identical. Therefore, by comparing amino acid similarities, one 

could deduce important conserved structural components of both molecules that make the 

apparent effects on cytotoxicity possible, most likely by communicating with regulatory 

proteins.  Furthermore, these results could implicate the demonstrated function of MgtE 

in virulence modulation in other pathogenic microorganisms, as these results imply a 

mechanism for MgtE functionality in virulence modulation in S. aureus. As there are 

many different microorganisms that can cause significant infection in the CF airway, 

analysis of MgtE homologues in these organisms would prove highly informative.  As

MgtE functionality is further elucidated, MgtE may become recognized as a universal 

virulence modulator in biofilm forming bacteria, and because of this, may be utilized as a 

target for therapy for patients who are infected with biofilm diseases, and not just biofilm 

diseases of the CF airway.  

4.6 Does Changing Magnesium Levels Impact Biofilm Growth?

Biofilm assays were performed with six different magnesium transporter mutants 

under varying levels of magnesium (both millimolar and micromolar).  These 

experiments represent an attempt to link magnesium transporters and biofilm formation.  

MgtE has been linked to virulence modulation through interactions with the T3SS, which 

leads to changes in biofilm architecture. The findings of this study support the idea that 

magnesium transport and biofilm formation are not directly linked, but indirectly through 
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interactions with regulatory pathways that induce biofilm formation.  Mutations of 

biofilm transporters and changes in magnesium levels did not cause significant changes 

in biofilm formation, where the biofilm was prevented from forming or forming at 

extremely high rates.  These findings support the idea presented in this discussion that 

biofilm formation and architecture changes are linked with MgtE through interactions 

with the alginate biosynthesis pathway, and this interaction is not thought to be dependent 

on magnesium availability.
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CHAPTER FIVE GK-12 FELLOWSHIP

5.1 Introduction: Bringing Biofilms into the High School Classroom

Inquiry based science education has consistently been proposed as an essential 

mechanism to employ when educating K-12 students in the sciences.  In the classroom, 

inquiry based lessons may include identifying and posing questions, designing and 

conducting investigations, analyzing data, using models, and communicating findings132.

Science teachers have differing views of science which influence their incorporation of 

inquiry based instruction when they design their curriculum.  Educators that view science 

as an objective body of knowledge created by an “inflexible scientific method” often are 

impeded in accurately employing inquiry in their classroom.  In contrast, successful 

integration of inquiry based education is often utilized by teachers that have a more 

contemporary understanding of the nature of science133. When students are faced with 

inquiry based activities, studies have indicated that students are positively engaged with 

inquiry tasks and are able to understand and design meaningful experiments134. Other 

impacts on the success or lack of success in teaching science to K-12 students involve

parental influences and the mindset of each individual student135.

Studies show that students decline in attitude, interest, and motivation toward 

science throughout primary and secondary education levels136.  Such declines have been 

linked to a more “traditional” learning atmosphere as defined by less student-centered 
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instruction, fewer classroom discussions and debates, an increase in lecturing, and a close 

adherence to textbooks137.  Introducing students to hands-on science activities, rather than 

just mastering science content, nurtures an interest in science as scientific investigation 

through an active endeavor. All of these factors are important to understanding how to 

communicate science in the K-12 classroom. However, current research demonstrates

that inquiry based education is a productive way to overcome such obstacles138, which 

implicates inquiry based learning as a vital tool when teaching science.

To perpetuate this idea, the National Science Foundation (NSF) funds a national 

program designed to bring STEM (science, technology, engineering, and math) graduate 

student researchers into urban middle and high school classrooms to assist in education of

students while employing inquiry based education and, simultaneously, introducing 

students to cutting edge graduate research.  The program is called the GK-12 program.  

The competitive fellowship charges graduate student participants with developing an 

inquiry based project that can be performed by the students at their K-12 school on

current science topics, science methodology, and laboratory technique.

Our laboratory investigates virulence modulation of Pseudomonas aeruginosa in 

the CF airway and particularly the ability of P. aeruginosa to form biofilms, which are 

innately resistant to antibiotics. Biofilms are traditionally defined as bacteria adhering to 

a solid surface and undergoing global regulatory changes to form a protective structure 

that is innately antibiotic resistant6.  Biofilms are implicated in many chronic disease 

states and represent a cutting edge area of research.  Importantly, biofilms are found 

everywhere, as bacteria utilize biofilms as a protective mechanism. Therefore, bacteria 

that do not cause human disease form biofilms as a part of their normal lifestyle.
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Due to the fact that P. aeruginosa is an opportunistic pathogen and, therefore, 

may not be safe to bring into a high school classroom, I developed a way to introduce 

high school students to both biofilm forming bacteria and resistance of biofilms to 

antimicrobial agents by using environmental bacteria and household antimicrobials.  This 

lesson was developed for urban Indianapolis high schools, Pike High School and Arsenal 

Tech High School. The biology text used in the particular classrooms that this activity 

was developed for did not mention biofilms, although Indiana curriculum requirements 

do include microbiology. Specifically, standard B.1.12 requires students to compare and 

contrast form and function of eukaryotic and prokaryotic organisms. Therefore, the 

ability of microbes to form biofilms is an excellent way to introduce microbiology to the 

high school classroom and make the discussion relevant and appealing to the student 

body by discussing human health and biofilms. Indiana curriculum requirements also

include Ecological concepts, specifically standards B.1.40 and B.1.45 which require 

students to understand how communities form and are maintained through cooperation 

and competition.  These concepts are beautifully introduced using biofilms.  The students 

at these Indianapolis high schools, in both biology and environmental science classes,

were exposed to biofilms, a topic that they would not have been exposed to otherwise.

This paper will demonstrate that utilizing inquiry based educational techniques 

allowed for successful introduction of a complex topic, biofilms, to entry and advanced

level high school biology students.  In conjunction, these students also learned about 

experimental design and formulation of a hypothesis.  Furthermore and most importantly, 

researchers report that this study initiated an excitement for science expressed by the 

students who participated.
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5.2 Materials and Methods: Biofilms From Pond Water

5.2.1  Preparing Pond Water Samples

A pond, as part of an outdoor laboratory located at Pike High School in 

Indianapolis, IN, was the source of the water for this experiment.  The pond water was 

acquired by taking direct samples from the pond by the participating students.  The 

researchers found that the pond water samples should be well shaken before sub-

sampling, as the water contained a heterogeneous mixture of microorganisms and plant 

material.  The pond water samples were then sub-sampled at dilution factor of 1:100 into 

test tubes containing 5 mL of LB (non-selective nutrient broth, composed of 10% 

tryptone, 5% yeast extract, and 5% sodium chloride).  These test tubes were placed on a 

shaker at 37°C overnight (approximately 16 hours).  Studies at Arsenal Tech High School 

utilized nonselective agar (LB agar) to isolate individual bacteria from a pond water 

sample based on colony morphology.  The sub-isolates were further characterized via 

gram staining.

5.2.2 Static Biofilm Assay

A biofilm assay utilizing polyvinyl chloride 96 well plates was employed for this 

study (modified from Hinsa et al. 2006139).  Prepared pond water samples were diluted 

into LB at a dilution factor of 1:100 and then aliquotted into the 96 well plates at a 

volume of 100 μL per well or fill each well approximately half way, including a negative 

control of LB in a designated portion of the plate.  The 96 well plates were covered with 

the corresponding lid and placed at 37°C overnight (approximately 16 hours).  Biofilms 
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will form in the 96 well plates at the base of the well or at the air-liquid interface

depending on the bacteria present in the sample. For this laboratory exercise, preliminary 

testing was performed to ensure that the bacteria in this particular pond were able to form 

biofilms.  Most bacteria are, but the pond contained different organisms including strains 

of bacteria and eukaryotes that could hinder the formation of biofilms through 

competition or predatory interactions.  We found that if the pond water bacteria was 

overgrown (>16 hours), biofilm formation significantly declined.  Studies at Arsenal 

Tech High School utilized both the pond water bacteria and Staphylococcus aureus

laboratory strains for biofilm assays.

5.2.3 Preparing Antimicrobial Agents

The antimicrobial agents used in experiments at both high schools were Clorox 

bleach, Dawn liquid dish soap, Kroger brand liquid bathroom cleaner, Kroger brand 

mouthwash containing alcohol, and 70% isopropanol (representing the active ingredient 

in hand sanitizer).  All the antimicrobials were prepared to mimic their use in everyday 

life.  A 13:7 solution of bleach and water was made for this experiment and added 

directly the well containing the biofilm without further dilution or inclusion of a nutrient 

broth. This solution of bleach was indicated as the proper solution to use for sanitation 

on the back of the bleach container. The dish soap was mixed with sterile deionized water 

until a qualitative quantity of sudsing was acquired, approximately 2-3 mL of soap to 500 

mL of water. This was added in the same fashion as the bleach.  The liquid bathroom 

cleaner, mouthwash, and 70% isopropanol were not diluted and added in the same 

fashion as the bleach.  Studies at Arsenal Tech High School utilized five different 
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antimicrobials agents: isopropanol (100%), methanol (100%), ethanol (95%), n-butanol

(100%), and isoamyl alcohol (100%).  These agents were added directly to preformed 

biofilms without diluting, therefore requiring no preparation.

5.2.4  Antimicrobial Experiment

Growth medium was removed from all the wells of the inoculated biofilm assay

following overnight incubation via a sterile micropipette.  Once removed, the students 

added the prepared antimicrobial agents at a concentration of 125 μL per well or filling

approximately two-thirds of the well.  This ensured that the antimicrobials had come in 

contact with the pre-formed biofilms in each well. The students were responsible for 

designing their experiments to include positive and negative controls.  The negative 

control should be maintained on the plate as growth media only wells and the positive 

control was maintained as untreated wells containing biofilms in growth media. 

Following addition of antimicrobials in the designated experimental wells, the students 

placed the corresponding lid on the 96 well plates and incubated the plates at 37°C 

overnight (approximately 16 hours).

5.2.5  Crystal Violet Staining

To qualitatively measure the impact of the antimicrobials on the pre-formed 

biofilms in the 96 well plate, the plate was stained with crystal violet.  Crystal violet 

stains all bacteria present in each well of the plate, whether Gram positive or Gram 

negative.  A crystal violet solution should be made at a concentration of 0.1% crystal 

violet in deionized water (sterile water is not necessary). The researcher demonstrated 
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how to perform the following procedure, and then the students were tasked with staining 

their biofilm assays.  First, they emptied each well of the 96 well plate to be stained and 

immersed the plate in a container filled with water.  Then, they removed the water by 

hitting the inverted plate on a solid surface covered with a paper towel several times.  

Next, they filled each well with 150 μL or approximately three-fourths of the way full 

with 0.1% crystal violet and let the plates incubate at room temperature for 12 minutes. 

In an empty container, they turned the plate upside down over a container allowing the 

crystal violet stain to fall out of each well of the 96 well plate and into the container.  

With two consecutive water containers, they immersed the plate into the first container so 

that each well is filled with water and hit the inverted plate onto a solid surface covered 

with a paper towel as described earlier and repeated this step. Then, they did the same 

with the second container of water. The students left the plate upside down on a paper 

towel to dry overnight and, the following day, they qualitatively analyzed their plate for 

the presence of biofilms.

5.2.6 Spectrophotometry

For quantitative analysis of biofilm growth, students at Arsenal Tech High School 

added a solution of 30% acetic acid to their pre-stained and dried biofilm assay plate so 

that the acetic acid solution contacts that stain (150 μL in a 96 well plate).  The stain was

dissolved in the acetic acid following a ten minute incubation at room temperature.  Then, 

they transferred the acetic acid to a flat bottom plate that is compatible with the 

spectrophotometer.  Changes in stain intensity can be quantified by measuring OD550
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(optical density at 550 nm) in the spectrophotometer. The students then graphed their 

results and performed statistical analysis (Student's t test assuming equal variances).

5.2.7 Student Assessment

Students from two urban high schools, Pike High School and Arsenal Tech High 

School, in Indianapolis, Indiana participated in this study.  Ethnicity breakdowns 

demonstrate the large percentage of minority students at both schools (Figure 29).  

Figure 29.  Representation of ethnicity for Arsenal Tech High School and Pike High 
School.  Eighty percent of students at both schools are minorities.

Both introductory biology and advanced biology students were asked to participate in our 

study.  Students at Pike High School were asked to complete a pre-test survey and a post-

test survey comprising eight questions measuring two subscales, biofilm knowledge 

gained and experimental design knowledge gained.  Students (n=10) were informed that 

these surveys would not count toward their grade in the class, but rather will be utilized 

as a tool for the researchers to assess learning.  IRB approval (IRB approval #1102-50) 

was acquired, participating students signed an assent form, and parents of minors signed 

a consent form (Appendix A, Appendix B, and Appendix C).  Student information was 

de-identified before analysis.
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5.3 Results: Experimentation and Assessment

5.3.1 The Laboratory Activity at Pike High School: Day 1

The laboratory exercise developed for Pike High School biology students was 

comprised of four sections spanning four days (Appendix D). This lab was incorporated 

into the course curriculum and, therefore, a required activity for all students.  The study 

was performed with a researcher and a single licensed teaching professional spanning 6 

class periods of both advanced and introductory biology students.  Prior to starting this 

activity, the students were given a pre-test to ascertain their knowledge of biofilms and 

experimental design (Appendix E). The laboratory activity began with an introduction of 

biofilms, including the ecology, phenotype, and human health implications, followed by a 

discussion on experimental design, including hypothesis determination, controls and 

variables, and data collection. Following this introduction, the students were asked to 

break up into teams of 2-3 students.  These teams were then led outside to the outdoor lab 

at Pike High School and acquired a water sample from the pond on site (Figure 30).  The 

students aliquoted their pond water sample into 5 mL of nutrient broth at a dilution factor 

of 1:100 in a test tube and placed their tubes in an incubator overnight.
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Figure 30.  Pike High School outdoor lab.  This pond was located right outside the IPS 
school where this study took place.  Students had access to the pond to gather water 
samples and were able to grow bacteria by inoculating LB nutrient broth with pond 
water.

5.3.2 The Laboratory Activity at Pike High School: Day 2

Following the initial step of adding the pond water to nutrient agar to enhance the 

growth of the bacteria already present in the pond water, the students began to design 

their biofilm assay experiment, assigning positive and negative controls to various wells 

of their 96 well plate. The researcher explained the purpose of the biofilm assay to the 

students.  Essentially, a 96 well biofilm assay allows the scientist to grow biofilms in a 

variety of wells, while maintaining some wells as controls, and to test the biofilms with 

different variables.  The first step to the biofilm assay is allowing biofilms to form in the 

96 well plate.  After the students have designed their experiment using a worksheet 

provided to them and identifying controls and variable wells appropriately (Appendix F),

the students were given a 96 well plate and their pond water bacteria.  The students 

performed a 1:100 dilution of their dense pond water bacteria sample into nutrient broth 

and aliquoted 100 μL of this solution into the appropriate wells of the 96 well plate.  The 

students used sterile nutrient broth as a negative control.  Following inoculation of all the 
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wells, the students placed their biofilm assay plates in the incubator. Biofilms will form

at either the air-liquid interface of the well or at the bottom of the well.  This depends on 

the type of bacteria forming the biofilm (Figure 31).

Figure 31.  Biofilm growth varies between bacteria. Biofilms can form at the air-liquid 
interface forming a ring motif around the plastic well.  Or, biofilms will form at the 
bottom of the well, coating the entire bottom of the plastic well.  These differences in 
adherence and growth depend on the bacteria forming the biofilm.

5.3.3 The Laboratory Activity at Pike High School: Day 3

At this stage in the laboratory activity, the students were asked to build upon their 

initial experimental design and formulate a hypothesis on antimicrobial treatment effects 

on their biofilms.  Students were allowed to choose two of five different common

household antimicrobials provided to them.  They were to record which antimicrobials 

they used and in which well they would place the antimicrobials to test their effect on the 

pre-formed biofilms on their experiment worksheet (Appendix F).  The antimicrobials 

were added to the biofilms in the 96 well plate as described in the materials and methods.   

5.3.4  The Laboratory Activity at Pike High School: Day 4

The students analyzed their results following staining of their 96 well biofilm 

assay plate.  The staining of the biofilms allowed the students to make qualitative 

observations.  These observations were then recorded in detail by the students on specific
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provided worksheets (Appendix F).  The results demonstratd that both the mouthwash 

and the 70% isopropanol treatments were unsuccessful in eradicating the biofilm when 

compared to the positive untreated control.  Furthermore, the observed effect for the 70% 

isopropanol treatment was increased biofilm formation.  The students were asked to 

prepare a five minute presentation for their class to explain their experimental design and 

results followed by a two minute question and answer session. Also, a post-test (exactly 

the same as the pre-test) was given to all of the students participating in this laboratory 

activity (Appendix E).

5.3.5  The Laboratory Activity at Arsenal Tech High School

Two students at Arsenal Tech High School further characterized the effects of 

antimicrobial treatment on pond water biofilm formation as part of a senior capstone 

project for a biology class.  They identified two isolates of bacteria from the pondwater 

based on colony morphology and gram staining (Figure 32).
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Figure 32. Colony morphology of bacterial isolates from pond water.  A gram negative, 
smooth colony was isolated and a gram positive, rough colony was isolated.  Most likely
the smooth colony is a pseudomonad, and the rough colony is a bacillus species of 
bacteria.

First, the students confirmed that the isolates could form biofilms and looked for 

differences in biofilm levels between sub-isolates (Figure 33).  The isolates formed 

biofilms at similar rates but formed at a significantly lower rate than biofilms formed 

from the total pond water bacteria and an equal mixture of the two bacterial isolates 

(p<0.05).  

Further testing of the bacterial isolates individually and an equal mixture of the 

isolates using the same antimicrobial treatments as performed at Pike High School ensued 

were performed.  Similar results were demonstrated.  We found that biofilm formation 

was significantly increased following 70% isopropanol treatment of pre-formed biofilms

composed of a combination of rough and smooth isolates (p<0.001).  This effect was not

demonstrated across samples, as both pond water and single isolates biofilm levels were 

significantly decreased.  Although this observed decrease was significant, the decrease in 
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biofilm levels was not as drastic in comparison to other antimicrobial treatment (Figure 

34).  Next, we tested the same bacterial samples with five different alcohols, methanol

(100%), ethanol (95%), n-butanol (100%), isoamyl alcohol (100%), and isopropanol

(100%), chosen because of their different chemical structures and practical uses.  Biofilm 

assay results demonstrated a significant increase in biofilm formation of all bacterial 

samples following treatment of all five alcohols (p<0.05), except for biofilms formed

from a combination of smooth and rough isolates and treated with n-butanol. This 

particular treatment resulted in statistically unchanged biofilm levels (p>0.05).  These 

tests were performed in triplicate, and the 100% isopropanol treatment resulted in 

significant increases in biofilm levels in comparison to prior tests where the biofilms 

were treated with 70% isopropanol (Figure 35).  In order to relate this effect to medically 

relevant bacteria, we performed the same experiment using two laboratory strains of S.

aureus and had the same effect, with significant increases in biofilm formation following 

treatment with all five alcohols (p<0.05) (Figure 36).

Figure 33.  Biofilm formation of pond water isolates, mixture of the isolates, and the 
pond water.  The isolates (R, rough and S, smooth) formed biofilms at a significantly 
higher rate (p<0.05) than biofilm formation of the mixture of the isolates and the pond 
water sample. Data represents three experiments individually performed in triplicate 
(n=3).
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Figure 34.  Household antimicrobial treatment effect on pond water and isolates.  
Significant reduction in biofilm levels compared to positive controls for all bacterial 
isolates and combinations tested, although the 70% isopropanol treatment resulted in 
reduced killing of the biofilms in comparison to other treatments (*,p<0.05).  
Furthermore, biofilms formed from a combination of rough and smooth isolates resulted 
in a significant increase of biofilm levels following treatment with 70% isopropanol 
(§,p<0.001). Data represents three experiments individually performed in triplicate
(n=3).
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Figure 35.  Alcohol treatment effect on pond water and isolates.  Biofilm formation of 
bacterial isolates and combinations of isolates increased in comparison to positive, 
untreated controls for most alcohol treatments.  Alcohol treatment of rough isolates, 
smooth isolates, and pond water pre-formed biofilms resulted in a significant 
upregulation of biofilm levels (p<0.01, p<0.05, p<0.001, respectively).  Alcohol 
treatment of biofilms formed from the rough and smooth bacterial isolates combination 
resulted in significant upregulation of biofilm levels following all alcohol treatments 
(p<0.01) except for n-butanol (p>0.05). Data represents three experiments individually 
performed in triplicate (n=3).
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Figure 36.  Alcohol treatment effect on S. aureus strains.  Biofilm formation increased in 
comparison to positive, untreated controls following all alcohol treatments (p<0.05, * and 
§ indicates significance for S. aureus Newman and DS762 respectively, n=3). Data 
represents three experiments individually performed in triplicate.

5.3.6 Learning Assessment of Inquiry Based Laboratory Activity

Student pre-test and post-test scores were scored and analyzed via a t test 

controlling for unequal variances.  Students’ total pretest scores (M = 2.62, SD = 1.75) 

were compared to their total posttest scores (M = 5.36, SD = 1.75). Students’ total scores 

were significantly higher after completing the lab activity, t(10) = 6.37, p< .001, �2 = .81.

Similar results were found when examining the two subscales.  Knowledge of biofilms, 

t(10) = 2.80, p< .05, �2 = .47, and knowledge of experimental design, t(10) = 4.03, p< .01,

�2 = .64, were both significantly higher after completing of the activity (Figure 37).
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Figure 37.  Inquiry based learning activity statistics.  A significant increase in post-test
scores was achieved in comparison to pre-test scores for both subscales (biofilm 
knowledge (*p<0.05), experimental design knowledge (§p<0.01), and total scores 
(p<0.001), n=10).

5.4 Discussion: Real Science Taught Through Inquiry Based Instruction

This laboratory activity was designed for several important reasons.  First, this 

activity has further demonstrated the importance of inquiry based instruction for the 

sciences.  This activity also elicited an excitement for science in the students that 

participated in this study making science more accessible to urban student populations.  

Urban school systems struggle with many different challenges that impair the learning 

environment.  Students often grapple with home lives that are less than desirable, 

substance abuse issues, and gang mentality.  High school graduation rates for 

Indianapolis Public Schools (IPS) in 2008-2009 was 48.6%.  Ethnicity breakdowns for 

IPS results in 77% of students are minorities. The percentage of students granted free 

lunches is also 77%.  
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The NSF funded GK-12 Urban Educators program targets these schools, because 

these schools are in need of assistance in reaching their student body and promoting 

education, especially in the STEM areas.  This program tasks the graduate student 

fellows with bringing their research into the high school classroom to elicit a positive 

response to science.  The laboratory activity that was developed as part of this initiative 

not only met these standards but exceeded them.  The laboratory activity was accessible

to the students, and was a representation of “real” science being performed in collegiate

academic institutions.  It allowed the students to formulate a hypothesis and analyze 

scientific data.  Students responded positively to the activity, and they learned about 

experimental design, the ecology of communities, and health implications of chronic 

biofilm-forming bacterial infections.  Moreover, the students at Pike High School 

discovered a very interesting effect of alcohol treatment on environmental biofilms.  

Mouthwash, containing alcohol, and isopropanol was not just ineffective at killing the 

pre-formed biofilm, but biofilm levels increased following treatment.  The students at

Arsenal Tech High School analyzed these results, and asked more questions, performed 

more experiments, and demonstrated the effect of alcohol induced increases in biofilm 

formation not only in the environmental biofilms but in S. aureus biofilms following 

treatment of not only isopropanol, but four other alcohols, including methanol, ethanol, n-

butanol, and isoamyl alcohol.  These students participated in the process of scientific 

discovery, much like college trained scientists do every day.  

The student population that was examined via statistical analysis following 

completion of pre-test and post-test surveys, examining knowledge gained following 

participation in this laboratory activity, showed a significant increase in knowledge on 
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two subscales measured, biofilm knowledge and experimental design knowledge.  

Although biofilm knowledge gained may not be extremely important to their further 

success in the sciences, this study demonstrates that complex science concepts are 

successfully taught employing inquiry based learning activities.  The experimental design 

knowledge gained from this activity is supremely important, as these students will need 

to utilize this way of thinking not only in other science classes, but in life.  Understanding 

how to design an experiment based on a hypothesis makes use of one's reasoning 

abilities, which translates to all aspects of life.

Often urban students are “left behind” in the educational system due to many 

reasons.  The school systems struggle with capturing these students’ attention long 

enough to teach them basic science concepts.  The traditional method of teaching STEM 

subjects, through lecturing and homework assignments with periodic testing, is not 

working.  Properly designed inquiry based instruction provides a way to capture urban 

student's attention and maintain an interest in the subjects.  This is the direction in which 

primary and secondary education should be moving.
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APPENDICES 



Appendix A.  IRB Approval Paperwork and Study Protocol 

 Appendix A contains IRB approval paperwork documenting IRB approval for the 

study and study protocol outlined in Chapter Five of this thesis.
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Appendix B.  Informed Consent Forms for Inquiry Study 

 Appendix B contains the two forms used to obtain informed consent from parents 

of minor participants in study and from participants of the study that are over eighteen.
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INDIANA UNIVERSITY INFORMED CONSENT STATEMENT FOR

Bringing Health Psychology and Molecular Biology to the High School 
Curriculum Using Inquiry-Based Learning

Your child is invited to participate in a research study of how science can be taught using 
inquiry.  Your child was selected as a possible participant because he or she is a student in a 
science class at either Arsenal Technical High School or Pike High School. We ask that you read 
this form and ask any questions you may have before agreeing for your child to be in the study. 

The study is being conducted by Misty Hawkins (Department of Psychology), Carly 
Redelman (Department of Biology) and Kathleen Marrs (Department of Biology) at IUPUI on
behalf of the GK-12 National Science Foundation Fellowship.  

STUDY PURPOSE
The purpose of this study is to determine how students learn through inquiry.  Inquiry is a 

type of learning that encourages students to actively explore problems by asking questions and 
doing hands-on learning activities alone or with other students. Past research has shown that 
inquiry-based teaching is a successful technique for helping students learn.  Using inquiry to learn 
about health psychology and microbiology is a way to help high school students learn about these 
particular subjects and also learn more about how to do scientific research.

We want to know if using inquiry to teach this material will help high school students 
increase their content knowledge of health psychology and molecular biology concepts and 
encourage them to want to learn more about science. 

NUMBER OF PEOPLE TAKING PART IN THE STUDY:
If your child agrees to participate, your child will be one of 200 subjects who will be 

participating in this research.

PROCEDURES FOR THE STUDY:
Your child will be taught lessons about health psychology and microbiology regardless of 

your child’s participation in this study.  Lessons will be taught by the child’s regular classroom 
teacher and by research scientists who study health psychology or molecular biology.  The
lessons may ask students to complete the following tasks to learn about health psychology:  (1)
create and engage in mental stress tasks (such as doing hard arithmetic problems), (2) report his 
or her feelings, thoughts, or behaviors, (3) measure other people’s feelings, thoughts, or 
behaviors, (4) measure his or her own physical symptoms or others’ physical symptoms, such as 
heart rate, blood pressure, and body fat, and (5) complete homework or quizzes assessing his or 
her knowledge of the activities. To learn about microbiology, students will complete lessons that 
ask them to complete the following tasks:  (1) go to sites that contain water samples, (2) collect 
and prepare water samples, (3) analyze water samples for bacteria growth, (4) observe and report 
features of bacteria growth, and (5) complete homework and quizzes assessing his or her 
knowledge of the activities. Not all students will complete all activities listed above.  

RISKS OF TAKING PART IN THE STUDY:
While in the study, loss of confidentiality is a potential risk; however, your child’s name 

and any identifying information will be removed before publication. Therefore, your child’s 
information will be anonymous.  Given that we will be working with water in the natural 
environment, the risks associated with sampling and analysis are very minimal since appropriate 
laboratory precautions will be taken.  
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BENEFITS OF TAKING PART IN THE STUDY:  
The benefits to participation that are reasonable to expect are that your child will help 

researchers to understand how inquiry can be used to help students explore science and give them 
a way to understand scientific inquiry.  Since your child will take part in the unit as part of your
child’s normal classroom requirements, taking part in the study will require no more or less work 
from your child.

ALTERNATIVES TO TAKING PART IN THE STUDY:
Instead of being in the study, your child has the option to only participate in the 

classroom activities without being part of the research study. Your child will have all the same 
learning experiences and requirements but his or her data will not be evaluated and used in the 
research report. 

CONFIDENTIALITY
Efforts will be made to keep your child’s personal information confidential.  We cannot 

guarantee absolute confidentiality.  Your child’s personal information may be disclosed if 
required by law.  Your child’s identity will be held in confidence in those reports that may be 
published and/or databases in which results may be stored. The following organizations may 
review your child’s records:  Office of Human Research Protections, Indiana University 
Institutional Review Board, or the Indiana University Human Subjects Office.   

COSTS
There are no costs involved for the students involved in this research project.  

PAYMENT
Your child will not receive payment for taking part in this study.

COMPENSATION FOR INJURY
In the event of physical injury resulting from your child’s participation in this research, 

necessary medical treatment will be provided to your child and billed as part of your child’s 
medical expenses.  Costs not covered by your child’s health care insurer will be your 
responsibility.  Also, it is your responsibility to determine the extent of your child’s health care 
coverage.  There is no program in place for other monetary compensation for such injuries.  
However, your child is not giving up any legal rights or benefits to which your child is otherwise 
entitled.

FINANCIAL INTEREST DISCLOSURE
The researchers have no financial interest in this research.  

CONTACTS FOR QUESTIONS OR PROBLEMS
For questions about the study contact the lead researcher Kathleen Marrs at (317) 278-

4551. If you cannot reach the researcher during regular business hours (i.e. 8:00AM-5:00PM), 
please contact the Indiana University Human Subjects Office at (317) 278-3458 or (800) 696-
2949.

For questions about your child’s rights as a research participant or to discuss problems, 
complaints or concerns about a research study, or to obtain information, or offer input, contact the 
Indiana University Human Subjects Office at (317) 278-3458 or (800) 696-2949.

VOLUNTARY NATURE OF STUDY
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Taking part in this study is voluntary.  You may choose not to allow your child to take 
part or your child may leave the study at any time.  Leaving the study means that your child’s 
information will not be used in our research.  Leaving the study will not result in any penalty or 
loss of benefits to which your child is entitled.  Your decision whether or not to allow your child 
to participate in this study will not affect your child’s current or future relations with his or her 
teachers and it will not affect your child’s course grade.  

USE OF SPECIMENS
No specimens will be taken as part of this research.  

SUBJECT’S CONSENT

In consideration of all of the above, I give my consent for my child to participate in this research 
study.  

I will be given a copy of this informed consent document to keep for my records. I agree to allow 
my child, _________________________ ,to take part in this study.
(name of child)

Parent’s Printed Name:_____________________________

Parent’s Signature:_____________________Date:___________________
            

(must be dated by the parent) 

Printed Name of Child: 

Printed Name of Person Obtaining Consent:

Signature of Person Obtaining Consent:__________________Date: 

**NOTE: Printed name lines are optional.
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INDIANA UNIVERSITY INFORMED CONSENT STATEMENT FOR

Bringing Health Psychology and Molecular Biology to the High School 
Curriculum Using Inquiry-Based Learning

You are invited to participate in a research study of how science can be taught using 
inquiry. You have been selected as a possible participant because you are enrolled in honors 
microbiology laboratory courses at IUPUI. We ask that you read this form and ask any questions 
you may have before agreeing to be in this study. 

The study is being conducted by Misty Hawkins (Department of Psychology), Carly 
Redelman (Department of Biology) and Kathleen Marrs (Department of Biology) at IUPUI on
behalf of the GK-12 National Science Foundation Fellowship.  

STUDY PURPOSE
The purpose of this study is to determine how students learn through inquiry.  Inquiry is a 

type of learning that encourages students to actively explore problems by asking questions and 
doing hands-on learning activities alone or with other students. Past research has shown that 
inquiry-based teaching is a successful technique for helping students learn.  Using inquiry to learn 
about health psychology and microbiology is a way to help high school students learn about these 
particular subjects and also learn more about how to do scientific research.

We want to know if using inquiry to teach this material will help students increase their 
content knowledge of microbiology and chemical biology concepts and encourage future interest 
in biology. 

NUMBER OF PEOPLE TAKING PART IN THE STUDY:
You will be one of 200 subjects who will be participating in this research.

PROCEDURES FOR THE STUDY:
You will be taught about microbiology regardless of your participation in this study.  

Lessons will be taught by your professor and by research scientists who study microbiology and 
chemical biology.  The lessons will ask you to complete the following tasks to learn about 
microbiology and chemical biology: (1) perform biofilm assays using common bacterial strains, 
including Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus (2) 
create/utilize altered amino acids in biofilm assay (3) analyze biofilm assay for bacteria growth, 
(4) observe and report features of bacteria growth, and (5) demonstrate knowledge gained from 
activity via surveys administered by researcher.

RISKS OF TAKING PART IN THE STUDY:
While in the study, loss of confidentiality is a potential risk; however, your name and any 

identifying information will be removed before publication. Therefore, your information will be 
anonymous.  Given that we will be working with pathogenic bacteria, proper protocol and aseptic 
techniques will be taught and monitored to minimize risks associated with sampling and analysis.  

BENEFITS OF TAKING PART IN THE STUDY:  
The benefits to participation that are reasonable to expect are that you will help 

researchers to understand how inquiry can be used to help students explore science and give them 
a way to understand scientific inquiry.  Since you will take part in the unit as part of your normal 
classroom requirements, taking part in the study will require no more or less work from you.  
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ALTERNATIVES TO TAKING PART IN THE STUDY:
Instead of being in the study, you have the option to only participate in the classroom 

activities without being part of the research study. Your will have all the same learning 
experiences and requirements but your data will not be evaluated and used in the research report. 

CONFIDENTIALITY
Efforts will be made to keep your personal information confidential.  We cannot 

guarantee absolute confidentiality.  Your personal information may be disclosed if required by 
law.  Your identity will be held in confidence in those reports that may be published and/or
databases in which results may be stored. The following organizations may review your child’s 
records:  Office of Human Research Protections, Indiana University Institutional Review Board, 
or the Indiana University Human Subjects Office.  

COSTS
There are no costs involved for the students involved in this research project.  

PAYMENT
You will not receive payment for taking part in this study.

COMPENSATION FOR INJURY
In the event of physical injury resulting from your participation in this research, 

necessary medical treatment will be provided to youand billed as part of your medical expenses.  
Costs not covered by your health care insurer will be your responsibility. Also, it is your 
responsibility to determine the extent of your health care coverage.  There is no program in place 
for other monetary compensation for such injuries.  However, you are not giving up any legal 
rights or benefits to which you are otherwise entitled.

FINANCIAL INTEREST DISCLOSURE
The researchers have no financial interest in this research.  

CONTACTS FOR QUESTIONS OR PROBLEMS
For questions about the study contact the lead researcher Kathleen Marrs at (317) 278-

4551. If you cannot reach the researcher during regular business hours (i.e. 8:00AM-5:00PM), 
please contact the Indiana University Human Subjects Office at (317) 278-3458 or (800) 696-
2949.

For questions about your rights as a research participant or to discuss problems, 
complaints or concerns about a research study, or to obtain information, or offer input, contact the 
Indiana University Human Subjects Office at (317) 278-3458 or (800) 696-2949.

VOLUNTARY NATURE OF STUDY
Taking part in this study is voluntary.  You may choose not to take part or may leave the 

study at any time.  Leaving the study means that your information will not be used in our 
research.  Leaving the study will not result in any penalty or loss of benefits to which you are
entitled.  Your decision whether or not to participate in this study will not affect your current or 
future relations with your professors and it will not affect your course grade.  

USE OF SPECIMENS
No specimens will be taken as part of this research.  
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SUBJECT’S CONSENT

In consideration of all of the above, I consent to participate in this research study.  

I will be given a copy of this informed consent document to keep for my records.  

Printed Name:

Signature:                                                                                    Date: 
            

(must be dated by the parent)

Printed Name of Person Obtaining Consent:

Signature of Person Obtaining Consent:                                                 Date: 

**NOTE: Printed name lines are optional.
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Appendix C.  Informed Assent Forms for Inquiry Study 

 Appendix C contains the informed assent forms specifically for participants that 

are under eighteen.  In order to participate in the study, students under eighteen must 

complete an informed assent and their parents must complete an informed consent.
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Indiana University Assent to Participate in Research 

Bringing Health Psychology and Microbiology into the High School Curriculum to Study 
Human Diseases:  An Investigation of Inquiry-Based Learning 

 
We would like to ask you to be in our research study.  A research study is a way of finding out 
information.  We are trying to find out more about using inquiry , a teaching method in which 
students learn through exploration, active thinking, and interpretation of data (e.g., 
“hands-on” laboratory assignments) to teach high school students about science and 
scientific methodology by bringing modified collegiate level research into a high school 
classroom.   
 
Why am I being asked to be in this research study? 
 
You are asked to participate in our study because you are a student in a science class at Pike 
High School or Arsenal Tech High School.  Your participation will help teachers incorporate new, 
current, and important research projects into high school curriculum. 
 
What will happen during this research study? 
 
As part of your coursework, you were asked to participate in certain labs.  You may have been 
asked to take surveys to assess your learning as part of the lab.  You received a grade for 
participating in this lab, and this is the only expectation from you to be part of this study.  
Nothing more will be required.   
 
We would like to take the data that you analyzed, the data from the surveys, and the lab 
procedure that you followed and make the information available to other teachers.  These 
teachers could teach the lab to their students.  
 
Are there any bad things that might happen during a research study? 
 
Sometimes bad things happen to people in research studies.  These bad things are called “risks”.  
The risks of participating in this study are minimal.  Because this study was a required part of 
your coursework, the risks were discussed at the time of the lab, and the lab was found to be 
nearly risk free.   
 
One of the risks in this study is that your information may be seen by other people.  To protect 
you from this risk, all materials with your name and information  will be “de-identified”.  This 
means that the data, whether from the survey or the lab work itself, will be anonymous and no 
names or identification of any kind will be used. This way, if someone sees your work, they will 
not know that it belongs to you.   
 
Are there any good things that might happen during the research study? 
 
Sometimes good things happen to people who are in research studies.  These good things are 
called “benefits”.  The benefits of participating in our study may include a better understanding 
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of how research is done and a better understanding of important health related topics, such as 
heart disease and cystic fibrosis.  Another important benefit is that you will help researchers and 
teachers understand how to teach such topics to other high school students.  This will also help 
teachers better understand how students learn and how to make science interesting and fun. 
 
Will I get money or payment for being in this research study? 
 
You will not get any type of payment, whether money or goods, for participating in our study. 
 
Who can I ask if I have any questions? 
 
If you have any questions about this study, you can ask your parents or guardians or the 
researcher (your GK-12 fellow).  Also, if you have any questions that you didn’t think of now, you 
can ask later.  Feel free to contact Carly Redelman at cvasher@iupui.edu or Misty Hawkins at 
miahawki@iupui.edu. 
 
What if I don’t want to be in this study? 
 
If you don’t want to be in this study, you don’t have to.  It is up to you.  If you say you want to be 
in it and then change your mind that is okay too.   All you have to do is tell us.  No one will be 
mad at you or upset with you. 
 
My choice: 
 
 
_____________________________________________  _______________________ 
Subject’s Signature       Date 
 
_____________________________________________    
Subject’s Name 
 
 
_____________________________________________  ________________________ 
Signature of person obtaining assent     Date 
 
_____________________________________________ 
Name of person obtaining assent 
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Appendix D.  The Laboratory Exercise 

 Appendix D contains the actual laboratory exercise followed by the students at 

Pike High School and Arsenal Tech High School. 
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Biofilm Lab 

Goal:  To grow bacterial biofilms using a biofilm assay model system and 
treat the biofilms with anti-microbial agents (compounds that can kill 
bacteria). 

Method:  This lab will take four days to complete. 

1. Day 1:  Acquire your pond water sample. 
a. All students should divide into groups of 3-4 people. 
b. Each group will acquire a test tube and go outside to the outdoor lab. 

i. The test tube should be filled half way with a sample of water 
from the pond. 

c. Samples will be grown up overnight: 
i. This is performed by diluting 50 uL of each sample into a sterile 

culture tube that contains 5 mL of LB nutrient broth (1/100 
dilution). 

 
2. Day 2:  Grow biofilms from pond water samples (your sample and another 

sample) and S17 (a strain of E. coli) 
a. Using the example below, fill out your attached 96 well plate diagram to 

match the example.  This will assist you when you are gathering your 
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data at the end of the lab

i. UNDER CONDITIONS, PLEASE FILL IN YOUR SPECIFIC 
CONDITIONS.

b. Using the supplies at each lab table, follow these instructions to set up 
your biofilm assay: 

i. You will have four petri dishes at your lab table labeled: Negative 
control, E. coli, My pond water, Secondary pond water.  The 
negative control is just LB (liquid broth) 

 

ii. Sitting on top of each of these dishes is a disposable pipet.  DO 
NOT MIX THESE UP.  EACH PIPET WILL BE USED FOR THE 
ASSIGNED DISH ONLY! 

iii. Start with the negative control pipet and petri dish and fill the 
assigned wells approximately half way. 
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iv. Next fill the assigned wells with E.coli using the assigned E. coli 
pipet and E. coli petri dish. 

 

v. Next fill the assigned wells with My PW using the assigned pipet 
and petri dish 
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vi. Lastly, fill the assigned wells with 2nd PW using the assigned pipet 
and petri dish 

 

c. Place your 96 well lid on your 96 well plate.  It is directional.  Then, place 
your plate in the supplied Tupperware containers.  Finally, clean up your 
station by placing your petri dishes and pipets in the biohazard bag 
supplied. 

d. As a class, we will place your assays in the incubator.  They will incubate 
overnight at 37°C. 

3. Day 3: Remove old media and add fresh media with antimicrobials to 
preformed biofilms. 

a. Remove the old media from all of the wells using the assigned pipets 
and placing the liquid into the waste tube on your bench top.  

i. Just stick the pipet straight down to the bottom of the plate and 
suck up the liquid in each well squeezing the liquid out of the 
pipet in between each well into the waste tube.  Do not move 
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the pipet around in the well or along the sides of the wells.  It 
doesn’t have to be perfect, just get most of the liquid out of the 
wells.   

1. Do not cross contaminate.  Use the assigned pipets for 
the labeled wells. 

 
b. Apply labeled media (just like last time) according to the following 

diagrams. 
i. First, put fresh LB from the labeled petri dish and labeled pipet 

into the negative and positive control wells. 

 

ii. Next, come and choose your antimicrobial agents for your 
experimental wells.  You will choose only two out of the four 
antimicrobial agents to use for all three different microbial 
biofilms: Bleach, Dish Soap, Bathroom Cleaner, Hand Soap.   
Make note on your original diagram which antimicrobial agents 
you used.  
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UNDER CONDITIONS, PLEASE FILL IN YOUR SPECIFIC CONDITIONS. 

iii. Next, apply antimicrobial condition 1 liquid broth into the 
appropriate wells with the assigned pipet.   

 

iv. Then, apply antimicrobial condition 2 liquid broth into the 
appropriate wells with the assigned pipet. 
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v. Place 96 well lid back on 96 well plate and place plate in the 
Tupperware container supplied.  These plates will be incubated 
again at 37°C overnight. 
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Appendix E.  Pre-test and Post-test Assessment for Study

 Appendix E contains the pre-test and post-test assessments (assessments were the 

same) utilized at Pike High School to analyze the effectiveness of the inquiry based 

activity. 
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Biofilm Lab Pre-Test 
Name:____________________   Pd:____________  

Date:________________ 

Please answer the following questions to the best of your ability.  It is 
normal for you not to know the answer to some of these questions, yet, 
but please try to take an educated guess. 

1.  What is a biofilm? 

 

2. How would a biofilm form? 

 

3. What organisms would you find in a biofilm? 

 

4. How are bacteria grown in a lab? 

 

5. What is the purpose of antimicrobial agents? 

 

6. What is a positive control in an experiment?  What is a negative 
control in an experiment? 
  

7. What are the necessary components to a good experiment? 
 

8. What is a biofilm assay?  What could be the benefits of using a 
biofilm assay? 
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Appendix F.  Experimental Design Worksheet 

 Appendix F contains the worksheet utilized for experimental design and recording 

qualitative data.  It is a drawing of a 96 well plate.
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VITA
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VITA

As a child, I enjoyed creating slides and looking at them under the microscope.  

By the age of twelve, I knew that I wanted to be a Biologist.  Following my high school 

graduation, I had to work for three years in order to save up enough money to go to 

college.  I attended Ball State University at 21 years old, and completed my degree four 

years later in Biology with a minor in Psychology.  I worked extremely hard to pay my 

way through college.  Following graduation, I worked for a year in industry as an 

Organic Chemist for an environmental company.  Then, I started pursuing my MS in 

Biology at IUPUI.  I have enjoyed my time at IUPUI and participated in many different 

clubs and organizations.  I started a club for Biology graduate students at IUPUI called 

Bio PUGS.  I also served as the School of Science Graduate Student Council Secretary 

for one year.  Furthermore, I was a part of the Technology Committee as the graduate 

student representative.  I also competed successfully for many different travel grants and 

a fellowship.  I have been awarded four travel grants, both internal and external, in my 

time at IUPUI.  I also was awarded the NSF funded GK-12 Fellowship.  Furthermore, I 

have presented 10 posters at conferences and meetings.  I have already earned authorship 

on one publication, and I have submitted a first author publication to the journal, 

American Biology Teacher.  I intend on submitting three more articles for publication in 

various journals.  
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Following graduation, I will work in industry for one year in Indianapolis.  Then, my 

husband and I are moving to Durham, North Carolina.  I will work for another year in 

industry while my husband completes his fellowship in MSK Radiology.  Following the 

initial year of working in industry, I intend on applying to graduate programs at Duke 

University, University of North Carolina, and North Carolina State.  I would like to get 

my PhD, complete a post-doc, and pursue a career as a PI at a major university.  

 


