
 

IMMUNOREGULATION OF THE CENTRAL RESPONSE TO 

PERIPHERAL NERVE INJURY: 

MOTONEURON SURVIVAL AND RELEVANCE TO ALS 

 

 

 

Deborah Olmstead Setter 

 

 

 

 

Submitted to the faculty of the University Graduate School 
in partial fulfillment of the requirements 

for the degree 
Doctor of Philosophy 

in the Department of Anatomy and Cell Biology, 
Indiana University 

 
April 2017 

  



 

ii 

Accepted by the Graduate Faculty, Indiana University, in partial 
fulfillment of the requirements for the degree of Doctor of Philosophy. 

 
 

 

 
                                                    

        Kathryn J Jones, Ph.D., Chair 

 

 

 

   Michelle L. Block, Ph.D.  

Doctoral Committee 

 

 

                                           Virginia M. Sanders, Ph.D. 

March 8, 2017  

 

 

                                           Dale R. Sengelaub, Ph.D. 

 

 

 

                                           Xiao-Ming Xu, M.D., Ph.D. 

 

 



 

iii 

© 2017 

Deborah Olmstead Setter 



 

iv 

DEDICATION 
 

I dedicate this work to my parents, Patrick and Julia Olmstead, my sister, Jessica 

Olmstead, and my husband, Andrew Setter. Your love and support made this work 

possible.  

  



 

v 

ACKNOWLEDGEMENTS 

I am grateful to all of the people who have helped me throughout my graduate 

education. First, I sincerely thank Dr. Kathryn Jones for being my mentor. I admire her 

zeal for science and devotion to education. I am most thankful for her helping me grow 

into a critical thinker and teaching the skills needed to become a successful scientist. I 

thank Dr. Virginia Sanders, our collaborator, for sharing her expertise in immunology 

and mentoring me throughout my training. I thank my advisory and research committee 

members Drs. Michelle Block, Dale Sengelaub, Fletcher White, and Xiao-Ming Xu, for 

their assistance with this project. I am grateful for their help with experimental design 

and their encouragement to think broadly about the significance of my work. I also thank 

the faculty and staff of the Anatomy and Cell Biology department, specifically, Drs. 

Joseph Bidwell and James Williams, and Kate McMillan, Marthe Augustin, and Tracy 

McWilliams.  

I extend a special thank you to the people who got me started in the laboratory, 

Drs. Melissa Haulcomb, Rena Meadows, and Todd Brown, and Kate McMillan and Dick 

Batka. Dick and Melissa helped me overcome a steep learning curve to master facial 

nerve injury and many other scientific techniques. I thank Dr. Chandler Walker for his 

advice, guidance, and the time he has spent helping me. I sincerely thank Elizabeth 

Runge for her contributions to this work, especially in tackling the final leg of this 

journey. I thank Whitney Miller and Felicia Kennedy for their instrumental work in 

generating transgenic mice. I also thank Dr. Abhi Iyer in helping advance the 

neuroimmunological techniques in this study. I thank our research technicians Nicole 

Schartz, Brandon Brown, Kishan Shah, MeKenzie Hilsmeyer, Jessica Muldoon, Haley 



 

vi 

Welch, and Malavika Rajasekharan for all of their contributions to this project. I also 

thank the LARC staff for doing an excellent job caring for the animals in this work.  

I sincerely appreciate the help and guidance from the Medical Scientist Training 

Program, including Drs. Maureen Harrington, Raghu Mirmira, Rebecca Chan, Wade 

Clapp, and Jan Receveur. They have always encouraged me to dream big and never limit 

myself. I am grateful for their support on this career path. I also am deeply appreciative 

of the friendships I have made in the program, especially with Drs. Daniel Sassoon and 

Sherri Huang, and Donna Cerabona, Abass Conteh, Nick Race, Stefan Tarnawsky, and 

James Wodicka. I thank all of the past and present MSTP students for their mentorship 

and constant reminder of the bright future ahead.  

I am endlessly grateful for my family, whose support and love for me made this 

work possible. I credit my parents, Patrick and Julia Olmstead, for making me who I am 

today. They taught me the value of hard work, but to also make time for fun along the 

way. I also thank my sister, Jessica Olmstead, who has always stood by my side. I am 

thankful for my wonderful grandparents, Pat and Patty Olmstead; spending time with 

them is a very special break from my studies. I also thank my husband, Andrew Setter, 

who has been my best friend throughout medical and graduate school. His cheerful 

attitude and support has helped me achieve my dreams.  

  



 

vii 

Deborah Olmstead Setter 

IMMUNOREGULATION OF THE CENTRAL RESPONSE TO 

PERIPHERAL NERVE INJURY: 

MOTONEURON SURVIVAL AND RELEVANCE TO ALS 

Facial nerve axotomy (FNA) in immunodeficient mice causes significantly more 

facial motoneuron (FMN) loss relative to wild type (WT), indicating that the immune 

system is neuroprotective. Further studies reveal that both CD4+ T cells and interleukin-

10 (IL-10) act centrally to promote neuronal survival after injury. This study first 

investigated the roles of IL-10 and CD4+ T cells in neuroprotection after axotomy.  

CD4+ T cell-mediated neuroprotection requires centrally-produced IL-10, but the 

source of IL-10 is unknown. Using FNA on IL-10 reporter mice, immunohistochemistry 

was employed to identify the IL-10 source. Unexpectedly, axotomy induced astrocyte 

production of IL-10. To test if microglia- or astrocyte-specific IL-10 is needed for 

neuroprotection, cell-specific conditional knockout mice were generated. Neither 

knockout scenario affected FMN survival after FNA, suggesting that coordinated IL-10 

production by both glia contributes to neuroprotection. 

The effect of immune status on the post-FNA molecular response was studied to 

characterize CD4+ T cell-mediated neuroprotection. In the recombinase-activating gene-

2 knockout (RAG-2-/-) mouse model of immunodeficiency, glial microenvironment 

responses were significantly impaired. Reconstitution with CD4+ T cells restored glial 

activation to normal levels. Motoneuron regeneration responses remained unaffected by 

immune status. These findings indicate that CD4+ T cell-mediated neuroprotection after 

injury occurs indirectly via microenvironment regulation. 
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Immunodysregulation is evident in amyotrophic lateral sclerosis (ALS), and FMN 

survival after FNA is worse in the mutant superoxide dismutase (mSOD1) mouse model 

of ALS. Further experiments reveal that mSOD1 CD4+ T cells are neuroprotective in 

RAG-2-/- mice, whereas mSOD1 whole splenocytes (WS) are not. The third aim 

examined if the mSOD1 WS environment inhibits mSOD1 CD4+ T cell glial regulation 

after axotomy. Unexpectedly, both treatments were equally effective in promoting glial 

activation. Instead, mSOD1 WS treatment induced a motoneuron-specific death 

mechanism prevalent in ALS.  

In conclusion, the peripheral immune system regulates the central glial 

microenvironment utilizing IL-10 to promote neuronal survival after axotomy. 

Astrocytes, specifically, may be responsible for transducing peripheral immune signals 

into microenvironment regulation. Additionally, the immune system in ALS may directly 

participate in disease pathology.  

Kathryn J. Jones, Ph.D., Chair 

  



 

ix 

TABLE OF CONTENTS  

LIST OF TABLES ............................................................................................................ xii 
LIST OF FIGURES ......................................................................................................... xiii 
LIST OF ABBREVIATIONS .......................................................................................... xiv 
CHAPTER 1: INTRODUCTION ........................................................................................1 
CHAPTER 2: LITERATURE REVIEW .............................................................................6 

2.1. Peripheral nerve injury ..............................................................................................6 
2.2. Facial nerve axotomy model .....................................................................................7 
2.3. Changes in the facial motor nucleus after facial nerve axotomy ..............................9 

2.3.1. Motoneuron response .........................................................................................9 
2.3.2. Microglia response ...........................................................................................11 
2.3.3. Astrocyte response ...........................................................................................11 
2.3.4. Synaptic stripping ............................................................................................11 

2.4. The immune system and facial nerve axotomy ......................................................12 
2.4.1. Consequences of immunodeficiency ...............................................................12 
2.4.2. T cells and neuroprotection ..............................................................................14 
2.4.3. IL-10 and other cytokines relevant to neuroprotection ....................................15 
2.4.4. Molecular response of cells within the facial motor nucleus to axotomy ........19 

2.5. Introduction to ALS ................................................................................................20 
2.6. mSOD1 mouse model of ALS ................................................................................21 

2.6.1. Motoneuron-specific mSOD1 and MND .........................................................22 
2.6.2. Microglia-specific mSOD1 and MND .............................................................23 
2.6.3. Astrocyte-specific mSOD1 and MND .............................................................24 

2.7. Immune dysregulation in human patients with ALS ..............................................25 
2.8. Immune dysregulation in the mSOD1 mouse model of ALS .................................27 
2.9. T cells in mSOD1 MND .........................................................................................28 
2.10. FNA and mSOD1 MND .......................................................................................29 
2.11. Aim 1: Determine the source of neuroprotective IL-10 in the axotomized 
facial motor nucleus .......................................................................................................32 
2.12. Aim 2: Characterize gene expression profile changes after facial nerve 
axotomy in immunodeficient and WT CD4+ T cell-reconstituted mice .......................33 
2.13. Aim 3: Analyze gene expression profile changes after facial nerve 
axotomy in mice immunoreconstituted with mSOD1 whole splenocytes or 
mSOD1 CD4+ T cells ....................................................................................................33 

CHAPTER 3: MATERIALS AND METHODS ...............................................................35 
3.1. Animals used in this study ......................................................................................35 
3.2. Genotyping ..............................................................................................................36 
3.3. Induction of cre recombinase ..................................................................................36 
3.4. Facial nerve axotomy ..............................................................................................37 
3.5. Isolation and adoptive transfer of whole splenocytes and CD4+ T cells................37 
3.6. Laser-capture microdissection ................................................................................39 
3.7. RNA extraction and reverse transcription ..............................................................39 
3.8. qPCR .......................................................................................................................40 
3.9. Statistical analysis of qPCR data ............................................................................41 
3.10. Fluorescent immunohistochemistry ......................................................................41 



 

x 

3.11. Perfusion-fixation of animals ................................................................................43 
3.12. Thionin stain and facial motoneuron counts .........................................................43 

CHAPTER 4: RESULTS ...................................................................................................48 
4.1. Aim 1: Determine the source of neuroprotective IL-10 in the axotomized 
facial motor nucleus .......................................................................................................48 

4.1.1. Validation of the IL-10/GFP reporter mouse ...................................................48 
4.1.2. Fluorescent immunohistochemistry of the IL-10/GFP reporter mouse ...........48 
4.1.3. Selective knockdown of IL-10 and effects on FMN survival ..........................52 

4.2. Aim 2: Characterize gene expression profile changes after facial nerve 
axotomy in immunodeficient and WT CD4+ T cell immunoreconstituted mice ..........53 

4.2.1. Motoneuron regeneration response ..................................................................53 
4.2.2. Glial activation response ..................................................................................55 
4.2.3. Inflammatory gene expression .........................................................................58 
4.2.4. Cell death receptor expression .........................................................................60 

4.3. Aim 3: Analyze gene expression profile changes after facial nerve axotomy 
in mice immunoreconstituted with mSOD1 whole splenocytes or mSOD1 
CD4+ T cells ..................................................................................................................64 

4.3.1. Motoneuron regeneration response ..................................................................64 
4.3.2. Glial activation response ..................................................................................68 
4.3.3. Inflammatory gene expression .........................................................................72 
4.3.4. Cell death receptor expression .........................................................................74 

CHAPTER 5: DISCUSSION .............................................................................................99 
5.1. Aim 1 Discussion ....................................................................................................99 

5.1.1. Microglia are an IL-10 source in the axotomized facial motor nucleus ........100 
5.1.2. Astrocyte expression of IL-10 is induced by axotomy ..................................102 
5.1.3. Constitutive neuronal expression of IL-10 is not impacted by axotomy .......104 
5.1.4. Neither microglial nor astrocytic IL-10 are required for neuronal 
survival after axotomy .............................................................................................105 
5.1.5. IL-10 in other neurological diseases ..............................................................107 
5.1.6. Aim 1 summary of findings ...........................................................................109 
5.1.7. Aim 1 revised hypothesis and future directions .............................................109 

5.2. Aim 2 Discussion ..................................................................................................117 
5.2.1. The motoneuron regeneration response to peripheral nerve injury is 
unaffected by the adaptive arm of the immune system ............................................119 
5.2.2. Central glial activation after peripheral nerve injury is regulated by 
CD4+ T cells ............................................................................................................121 
5.2.3. Central inflammatory cytokine expression after peripheral nerve injury 
is regulated by CD4+ T cells ...................................................................................123 
5.2.4. No relationship is evident between increased neuronal death and gene 
expression of cell death mechanisms in immunodeficient animals after 
peripheral nerve injury .............................................................................................125 
5.2.5. Aim 2 summary of findings ...........................................................................127 
5.2.6. Future directions ............................................................................................127 

5.3. Aim 3 Discussion ..................................................................................................130 
5.3.1. WT whole splenocyte reconstitution of immunodeficient mice results 
in a differential gene expression response relative to WT .......................................131 



 

xi 

5.3.2. MN death in mSOD1 whole splenocyte recipients is not due to 
immunodeficient-like microenvironment dysregulation ..........................................134 
5.3.3. Pro-survival molecular responses induced by mSOD1 CD4+ T cells 
significantly differ from WT CD4+ T cells .............................................................138 
5.3.4. Differential induction of motoneuron-specific death mechanisms in 
mSOD1 whole splenocyte versus mSOD1 CD4+ T cell reconstituted 
immunodeficient mice .............................................................................................140 
5.3.5. Aim 3 summary of findings and revised hypothesis ......................................141 
5.3.6. Future directions ............................................................................................142 

5.4. Significance of findings ........................................................................................144 
REFERENCES ................................................................................................................145 
CURRICULUM VITAE 

  



 

xii 

LIST OF TABLES 

Table 1: Forward and reverse primer sequences for PCR. ............................................... 45 
Table 2: Catalog information for qPCR TaqMan assays ordered from Thermo 
Fisher Scientific. ............................................................................................................... 46 
Table 3: Antibody Information ......................................................................................... 47 

 
  



 

xiii 

LIST OF FIGURES 

Figure 1: FMN survival in IL-10/GFP mice. .................................................................... 79 
Figure 2: GFAP colocalization with IL-10/GFP. .............................................................. 80 
Figure 3: NeuN colocalization with IL-10/GFP. .............................................................. 81 
Figure 4: FMN survival in CX3CR1-cre/IL-10fl/fl and GFAP-cre/IL-10fl/fl mice. ............ 82 
Figure 5: Gap-43 gene expression profile after FNA in WT, RAG-2-/-, and RAG-
2-/- + WT CD4+ T cell groups. .......................................................................................... 83 
Figure 6: βII-tubulin gene expression profile after FNA in WT, RAG-2-/-, and 
RAG-2-/- + WT CD4+ T cell groups. ................................................................................ 84 
Figure 7: Gfap gene expression profile after FNA in WT, RAG-2-/-, and RAG-2-/- 
+ WT CD4+ T cell groups. ............................................................................................... 85 
Figure 8: Cd68 gene expression profile after FNA in WT, RAG-2-/-, and RAG-2-/- 
+ WT CD4+ T cell groups. ............................................................................................... 86 
Figure 9: Tnfα gene expression profile after FNA in WT, RAG-2-/-, and RAG-2-/- 
+ WT CD4+ T cell groups. ............................................................................................... 87 
Figure 10: Tnfr1 gene expression profile after FNA in WT, RAG-2-/-, and RAG-2-

/- + WT CD4+ T cell groups. ............................................................................................ 88 
Figure 11: Fas gene expression profile after FNA in WT, RAG-2-/-, and RAG-2-/- 
+ WT CD4+ T cell groups. ............................................................................................... 89 
Figure 12: nNos gene expression profile after FNA in WT, RAG-2-/-, and RAG-2-

/- + WT CD4+ T cell groups. ............................................................................................ 90 
Figure 13: Gap-43 gene expression profile after FNA in RAG-2-/- + WT WS, 
RAG-2-/- + mSOD1 WS and RAG-2-/- + mSOD1 CD4+ T cell groups. .......................... 91 
Figure 14: βII-tubulin gene expression profile after FNA in RAG-2-/- + WT WS, 
RAG-2-/- + mSOD1 WS and RAG-2-/- + mSOD1 CD4+ T cell groups. .......................... 92 
Figure 15: Gfap gene expression profile after FNA in RAG-2-/- + WT WS, RAG-
2-/- + mSOD1 WS and RAG-2-/- + mSOD1 CD4+ T cell groups. .................................... 93 
Figure 16: Cd68 gene expression profile after FNA in RAG-2-/- + WT WS, RAG-
2-/- + mSOD1 WS and RAG-2-/- + mSOD1 CD4+ T cell groups. .................................... 94 
Figure 17: Tnfα gene expression profile after FNA in RAG-2-/- + WT WS, RAG-
2-/- + mSOD1 WS and RAG-2-/- + mSOD1 CD4+ T cell groups. .................................... 95 
Figure 18: Tnfr1 gene expression profile after FNA in RAG-2-/- + WT WS, RAG-
2-/- + mSOD1 WS and RAG-2-/- + mSOD1 CD4+ T cell groups. .................................... 96 
Figure 19: Fas gene expression profile after FNA in RAG-2-/- + WT WS, RAG-2-

/- + mSOD1 WS and RAG-2-/- + mSOD1 CD4+ T cell groups. ....................................... 97 
Figure 20: nNos gene expression profile after FNA in RAG-2-/- + WT WS, RAG-
2-/- + mSOD1 WS and RAG-2-/- + mSOD1 CD4+ T cell groups. .................................... 98 

 
  



 

xiv 

LIST OF ABBREVIATIONS 

ALDH1L1 Aldehyde dehydrogenase 1 family member L1 
ALS Amyotrophic lateral sclerosis 
AMPA α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid 
APCs Antigen-presenting cells  
APP Amyloid precursor protein 
Arg1 Arginase 1 
Ask1 Apoptosis signal-regulating kinase 1 
ATP Adenosine triphosphate 
Ax Axotomized facial motor nucleus 
BBB Blood brain barrier 
Bcl B-cell lymphoma 
BDNF Brain-derived neurotrophic factor 
C Control facial motor nucleus 
C3 Complement protein 3 
C3R Complement 3 receptor 
CCL C-C motif chemokine ligand  
CCR Chemokine receptor  
CD Cluster of differentiation 
CNS Central nervous system 
CRISPR/Cas9 Clustered regularly interspaced short palindromic repeats/CRISPR- 

associated protein-9 nuclease  
CSF Cerebrospinal fluid 
CX3CR1 CX3C chemokine receptor 1 
DAPI 4',6-diamidino-2-phenylindole 
Daxx Death-associated protein 6 
DISC Death-induced signaling complex  
DNA Deoxyribose nucleic acid 
doa Days of age 
dpo Days post-operation  
EAE Experimental autoimmune encephalitis 
EtOH  Ethanol 
F Forward 
Fadd Fas-associated protein with death domain  
fALS Familial amyotrophic lateral sclerosis 
FasL Fas ligand 
FDH 10-formyltetrahydrofolate dehydrogenase 
FITC Fluorescein isothiocyanate 
fl Flox 
FMN Facial motoneuron  
FMNuc Facial motor nucleus 
FNA Facial nerve axotomy 
Gap-43 Growth associated protein-43 
Gapdh Glyceraldehyde 3-phosphate dehydrogenase 



 

xv 

GDNF Glial cell-derived neurotrophic factor 
GFAP Glial fibrillary acidic protein 
GFP Green fluorescent protein 
HIV Human immunodeficiency virus  
hpo Hours post-operation 
IFNγ Interferon γ 
IgG Immunoglobulin G 
IHC Immunohistochemistry 
IL Interleukin 
IL-6R IL-6 receptor 
iNOS Inducible nitric oxide synthase  
iPSCs Induced pluripotent stem cells  
IRF-8 Interferon-recognition factor 8  
JAK Janus kinase 
LMN Lower motoneuron 
LPS Lipopolysaccharide 
MAC Membrane attack complex 
MCSF Macrophage colony stimulating factor  
MHCI Major histocompatibility complex class I 
MHCII Major histocompatibility complex class II  
miR MicroRNA 
MN Motoneuron 
MND Motoneuron disease 
mRNA Messenger RNA 
mSOD1 Mutant superoxide dismutase 1 
NeuN Neuronal nuclei 
NF-κB Nuclear factor kappa-light-chain-enhancer of activated B cells 
NMJ Neuromuscular junctions 
nNos Neuronal nitric oxide synthase  
NO Nitric oxide 
P2X7 P2X purinoreceptor 7 
P2Y1R P2Y1 receptor 
PACAP Pituitary adenylate cyclase-activating polypeptide  
PBS Phosphate buffered saline 
PBS-T  PBS with 0.1% Triton X-100 
PCR Polymerase chain reaction 
PFA  Paraformaldehyde  
PLP Paraformaldehyde-lysine-periodate 
PNS Peripheral nervous system 
PS1 Presenilin 1 
Ptpn1 Protein tyrosine phosphatase, non-receptor type 1 
qPCR Quantitative polymerase chain reaction 
R Reverse 
RAG Recombinase activating gene 
RER Rough endoplasmic reticulum 



 

xvi 

RNA Ribonucleic acid 
RNA-seq RNA-sequencing 
RT Room temperature 
sALS Spontaneous amyotrophic lateral sclerosis 
scid Severe combined immunodeficient 
SEM Standard error of the mean 
siRNA Silencing RNA 
SOCS3 Suppressor of cytokine signaling 3 
STAT Signal transducer and activator of transcription 
TAE Tris-acetic acid-ethylenediaminetetraacetic acid 
TCR T cell receptor 
Teffs Effector T cells 
TGFβ Transforming growth factor β 
Th T helper  
TLR Toll-like receptor 
TNFR Tumor necrosis factor α receptor 
TNFα Tumor necrosis factor α 
Tradd Tumor necrosis factor receptor type 1-associated death domain 
Traf2 TNF receptor-associated factor 2 
Tregs Regulatory T cells 
UMN Upper motoneuron 
VL Ventrolateral subnucleus of the facial motor nucleus 
VM Ventromedial subnucleus of the facial motor nucleus 
wpo Weeks post-operation 
WS Whole splenocytes 
WT Wild type 



 

1 

CHAPTER 1: INTRODUCTION 

Approximately 20 million people in the United States suffer an impaired quality 

of life due to peripheral nerve injury or disease-induced peripheral neuropathy (Noble et 

al., 1998; Campbell, 2008; Ciaramitaro et al, 2010; Brannagan, 2012). Veterans, 

especially those who have served in the Middle East, have a higher incidence of 

traumatic peripheral nerve injury because body armor technology improvements have 

increased survivability of formerly lethal traumatic events (Campbell, 2008). Although 

the peripheral nervous system has robust regenerative capabilities, functional recovery 

after peripheral nerve injury is frequently suboptimal and presents a significant clinical 

problem (Campbell, 2008; Houdek & Shin, 2015). Therefore, studying factors that 

enhance peripheral nerve regeneration may reveal new therapeutic strategies that will 

improve functional outcomes and quality of life for patients with peripheral nerve injury 

and neuropathy.  

Using the facial nerve axotomy (FNA) model, our laboratory discovered that the 

adaptive arm of the immune system is necessary for both preserving facial motoneuron 

(FMN) survival and promoting axon regeneration to target musculature (Serpe et al., 

1999; Beahrs et al., 2010). Restoration of the immune system by adoptively transferring 

whole splenocytes into immunodeficient mice prior to FNA rescues FMN survival. This 

neuroprotection is specifically mediated by CD4+ T cells belonging to the interleukin-4-

producing T helper 2 (Th2) subclass, which is associated with tissue repair and 

regeneration processes (Byram et al., 2003; Serpe et al., 2003; Wainwright et al., 2008; 

Kwon et al., 2014; Sadtler et al., 2016). The generation of neuroprotective CD4+ T cells 

requires two instances of antigen presentation, first by peripheral antigen presenting cells, 
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then by microglia in the central nervous system (Byram et al., 2004). In addition, reactive 

astrocytes produce chemokines that further attract T cells to the injured facial motor 

nucleus (Wainwright et al., 2009b; Wainwright et al., 2009c). Centrally-derived 

interleukin-10 (IL-10), an anti-inflammatory cytokine, is also necessary for CD4+ T cell-

mediate neuroprotection (Xin et al., 2011). On the molecular level, motoneurons 

upregulate regeneration-associated gene expression, and robust glial activation occurs 

(Mesnard et al., 2010). Altogether, an orchestrated series of events is involved in CD4+ T 

cell-mediated neuroprotection, and this study seeks to further elucidate the mechanisms 

behind this process.  

A form of peripheral neuropathy also occurs in amyotrophic lateral sclerosis 

(ALS), a fatal motoneuron (MN) disease. In ALS, disease pathology first results in loss 

of the neuromuscular junction, and subsequent axonal die-back leads to death of the MN 

cell body. Peripheral nerve transection mimics this target disconnection-induced MN 

death. When FNA is superimposed on the mutant superoxide dismutase 1 (mSOD1) 

mouse model of ALS, significantly greater FMN loss is observed relative to wild type 

(WT) (Mesnard et al., 2011). On the gene expression level, the MN regeneration response 

is intact, but glial activation is dysregulated, and promotion of a MN-specific cell death 

pathway is also evident (Mesnard et al., 2011; Haulcomb et al., 2014). Significant 

abnormalities in the immune system are observed in both ALS patients and the mSOD1 

mouse model, leading our research group to suspect that immunodysregulation in ALS 

may contribute to disease pathology. To test this hypothesis, immunodeficient animals 

received adoptive transfer of either mSOD1 whole splenocytes (WS) or isolated mSOD1 

CD4+ T cells and then were subjected to FNA. While neuroprotection was observed in 
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mSOD1 CD4+ T cell recipients, this rescue was not observed in mSOD1 WS recipients 

(Mesnard-Hoaglin et al., 2014). This finding suggests that a factor within the mSOD1 

whole splenocyte milieu inhibits the neuroprotective effects of mSOD1 CD4+ T cells. A 

closer study of immune-mediated neuroprotection is warranted to determine how the 

mSOD1 immune system blocks CD4+ T cell neuroprotection, with the ultimate goal of 

finding a factor that can therapeutically manipulated to treat motoneuron disease.  

To accomplish this goal, it is necessary to first gain a better understanding of both 

whole splenocyte and CD4+ T cell immune-mediated neuroprotection mechanisms 

within a normally functioning system, and then to use this information to characterize 

abnormalities within the ALS immune system. It is also necessary to identify the cellular 

source and kinetics of IL-10 production after FNA, as neuroprotection requires centrally-

produced IL-10. The central hypothesis of this work is that after nerve injury, activated 

CD4+ T cells induce microglia to produce IL-10, which orchestrates the generation of an 

anti-inflammatory, pro-repair microenvironment that ultimately promotes FMN survival, 

and these events are inhibited within the ALS peripheral immune system environment.  

This hypothesis was tested by the following aims:  

Aim 1: Determine the source of neuroprotective IL-10 in the axotomized 

facial motor nucleus. The hypothesis for this aim is that microglia are the source of 

neuroprotective IL-10 after FNA. To test this hypothesis, a reporter mouse stain was used 

to identify histologically which cell types within the FMN produce IL-10, and cre/lox 

mouse strains were used to knockdown IL-10 production in a cell-specific manner. The 

histological analysis concluded that axotomy induced IL-10 expression in astrocytes, and 

neurons constitutively produce IL-10. IL-10 knockdown in microglia or astrocytes had no 
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detrimental effects on FMN survival after FNA. These findings suggest that 

neuroprotective IL-10 production after FNA comes from either a combined glial effort or 

neurons.  

Aim 2: Characterize gene expression profile changes after facial nerve 

axotomy in immunodeficient and WT CD4+ T cell-reconstituted mice. The 

hypothesis for this aim is that immunodeficiency will result in a dysregulated glial 

microenvironment response to FNA, and adoptive transfer of WT CD4+ T cells will 

restore microenvironment responses to normal levels. qPCR analysis of the laser-

captured facial motor nucleus after FNA from both immunodeficient and CD4+ T cell-

reconstituted mice was performed. Overall, astrocyte, microglia, and inflammatory 

cytokine production after FNA was significantly impaired in immunodeficient mice, and 

adoptive transfer of CD4+ T cells rescued these responses to normal levels. These results 

lead us to conclude that CD4+ T cell-mediated neuroprotection occurs indirectly via 

regulation of the glial response to injury, not by direct actions on the motoneurons.  

Aim 3: Analyze gene expression profile changes after facial nerve axotomy in 

mice immunoreconstituted with mSOD1 whole splenocytes or mSOD1 CD4+ T cells. 

The hypothesis for this aim is that adoptive transfer of mSOD1 WS will result in a 

dysregulated glial microenvironment response to FNA, and adoptive transfer of mSOD1 

CD4+ T cells will result in regulation of glial microenvironment responses to normal 

levels. After adoptive transfer of lymphocytes and FNA, qPCR of the facial motor 

nucleus from the treatment groups was performed to compare gene expression profiles, 

similar to Aim 2. A WT WS recipient group was added as an additional control. Both 

mSOD1 WS and mSOD1 CD4+ T cell recipient groups exhibited comparable 
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microenvironment regulation responses, however, the mSOD1 WS treatment resulted in 

significantly greater expression of a MN-specific cell death pathway. These results 

suggest that the lack of neuroprotection by mSOD1 WS could be due to induction of MN 

death mechanisms or an alternative glial activation phenotype that is neurotoxic.  
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CHAPTER 2: LITERATURE REVIEW 

2.1. Peripheral nerve injury 

The nervous system is divided into central and peripheral components, with the 

central nervous system (CNS) including the brain, cerebellum, and spinal cord, and the 

peripheral nervous system (PNS) including the nerves and ganglia. Nerves can convey 

autonomic, sensory, and motor information to and from the CNS. MN within the CNS are 

specifically responsible for controlling skeletal muscle contractions.  

MN can be subdivided into upper and lower motoneurons (UMN and LMN, 

respectively). UMN reside in the motor cortex of the brain and their axonal projections 

synapse on the dendrites and soma of LMN in the brainstem and spinal cord. The axons 

of LMN exit the CNS and are bundled into the cranial or spinal nerves of the PNS as they 

follow course to their target musculature.  

Cutting of axons (“axotomy”) can occur in both the CNS and PNS, and different 

injury responses are observed after axotomy in these two environments. Following CNS 

axotomy, such as in spinal cord injury, a suppressive microenvironment prevents axon 

regeneration and reconnection to target. Oligodendrocytes contribute to this suppression 

by secreting myelin-associated inhibitors of axonal growth. Additionally, astrocytes 

generate a glial scar composed of chondroitin sulfate proteoglycans that is a barrier to 

axonal growth (Huebner & Strittmatter, 2009). For these reasons, there is little functional 

recovery after CNS trauma. Conversely, the PNS has a robust regeneration response to 

axotomy. Wallerian degeneration, a process by which Schwann cells and peripheral 

monocytes clear the distal axonal debris, creates a conduit for the growing daughter axon. 

Robust activation of regeneration-associated genes is also observed after peripheral nerve 
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injury, not CNS injury (Bomze et al., 2001; Huebner & Strittmatter, 2009). Therefore, 

studying PNS regeneration processes will facilitate discovery of novel therapeutic 

strategies for patients suffering from nerve injury.  

Full regeneration after a peripheral nerve injury depends on the survival of the 

cell body, regrowth of the axon, and reconnection to target. Axotomies can be classified 

by the severity of the damage administered, ranging from a crush injury (axonotmesis), 

after which full recovery is detected in a matter of days, to a complete transection injury 

(neurotmesis), in which no functional recovery is observed (Seddon, 1942; Sunderland, 

1951). For the purposes of this study, a neurotmesis-grade axotomy was used. This model 

was selected because it elicits the greatest amount of MN death, facilitating study of 

factors that promote or inhibit MN survival after injury.  

 

2.2. Facial nerve axotomy model 

The mouse facial motor nucleus (FMNuc) is located in the ventral pons and is 

comprised of six subnuclei that form a horseshoe-like shape (Ashwell, 1982). Axon 

projections from FMN wrap dorsomedially around the abducens nucleus (forming a 

structure called the “genu”) before ventrolaterally exiting the brainstem as the facial 

nerve rostral to the facial motor nucleus. The facial nerve courses through the internal 

acoustic meatus and tympanic bulla bone, within which, the nerve to the stapedius muscle 

branches off, and the remainder of the nerve exits the stylomastoid foramen. The facial 

nerve then divides into its major branches: temporal, zygomatic, buccal, marginal 

mandibular, cervical, and posterior auricular. These branches innervate the facial, 

auricular, and platysma muscles of the head and neck.  



 

8 

The superficial nature and ease of access to the facial nerve as it exits the 

stylomastoid foramen permits selective injury to the nerve with minimal damage to 

adjacent tissues. Additionally, examination of the FMN responses is simplified given that 

they are grouped in the FMNuc. Unlike the spinal cord, interneurons and γ-MN do not 

reside in the FMNuc, and this distinction allows for exclusive study of α-MN responses. 

Because of the highly symmetrical nature of the nervous system and lack of crosstalk 

between the right and left FMNuc, the uninjured FMNuc can be used as a paired internal 

control for experiments (Isokawa-Akesson & Komisaruk, 1987; Hurley, 2003). 

Monocytes do not infiltrate into the FMNuc following FNA, and the blood-brain barrier 

(BBB) remains intact, resulting in a sterile nerve injury (Raivich et al., 1998; Hurley, 

2003; Bottcher et al., 2013). Therefore, the resulting responses of the FMN and the 

surrounding microenvironment are purely consequential to the FNA.  

Following FNA, paralysis of vibrissae and loss of the eye blink reflex is 

immediately observed. With a facial nerve crush (axonotmesis) injury, complete recovery 

is observed in approximately 10 days post-operation (dpo) (Serpe et al., 2002). With a 

complete facial nerve transection, no functional recovery is observed, even at 6 months 

post injury (unpublished data from our laboratory).  

Additionally, the rodent model of peripheral nerve injury reproduces the human 

response to nerve injury. These similarities allow for translation of findings from mouse 

and rat models to human clinical trials (Campbell, 2008; Wang et al., 2013; Gordon & 

Borschel, 2016). Regarding facial nerve injury specifically, autopsy examination of the 

human FMNuc three months post injury reveals morphological changes also observed in 



 

9 

rodent models, validating the use of mouse FNA as a translational scientific technique 

(Graeber et al., 1993).  

 

2.3. Changes in the facial motor nucleus after facial nerve axotomy  

Comprehensive reviews exist detailing the changes in the FMNuc after FNA 

(Lieberman, 1971; Grafstein, 1975; Moran & Graeber, 2004). Findings most relevant to 

this dissertation are described in this introductory section.  

 

2.3.1. Motoneuron response 

After the axon is severed, the soma of the MN undergoes significant changes in 

morphology and function as it transitions from a homeostatic to a regenerative 

phenotype. One of the most distinct manifestations of this transition is chromatolysis, a 

phenomenon first described by Franz Nissl in 1894. Nissl discovered that basic dyes 

(e.g., thionin) stain neuronal cytoplasm, and he described the thionin-bound structures in 

neurons as “Nissl substance.” Nissl substance was later discovered to be rough 

endoplasmic reticulum (RER), and the thionin was binding to the acidic ribosomal RNA 

studding RER membranes. Neurons have abundant RER within their cytoplasm because 

they manufacture significantly more protein than other cell types in the brain. Following 

axotomy, labeling of basophilic structures diminishes, resulting in “chromatolysis” 

(Greek: chroma- color, lysis- loosen). Electron microscopy reveals that chromatolysis 

results from the neuronal RER converting from long, parallel cisternae to disordered, 

short segments within the cytoplasm, disrupting the color resolution of the thionin stain 

(Torvik & Skjorten, 1971).  
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In addition to chromatolysis, the nucleus and nucleolus both swell and migrate 

eccentrically after FNA (Cammermeyer, 1963; Lieberman, 1971; Guntinas-Lichius et al., 

1997). This increased nuclear and nucleolar size results from increased demand placed on 

the MN to generate necessary cytoskeletal proteins for constructing the regrowing axon. 

Specifically, actin, tubulin, and growth-associated protein (Gap-43) mRNA and protein 

synthesis are increased (Lieberman, 1971; Tetzlaff et al., 1988a; Bisby & Tetzlaff, 1992). 

Conversely, neurofilament production decreases after axotomy, likely due to its role in 

radial, not longitudinal axon growth (Lieberman, 1971; Tetzlaff et al., 1988a; Bisby & 

Tetzlaff, 1992). Acetylcholine esterase expression is decreased after axotomy as well, 

corresponding with the shift in neuronal phenotype away from signal transmission and 

towards regeneration (Lieberman, 1971).  

The exact trigger for the MN cell body response to axotomy is not known; 

however, evidence suggests that depolarization of the MN cell membrane immediately 

after axotomy leads to a change in membrane potential that lasts for hours after injury 

(Cragg, 1970; Berdan et al., 1993). Other theories propose that loss of action potentials, 

depletion of retrogradely transported materials, or loss of peripheral trophic factors may 

induce MN changes (Cragg, 1970; Grafstein, 1975; Olsson et al., 1978).  

To summarize, the motoneuron responds to the severing of its axon by 

undergoing a dramatic change in its phenotype from homeostatic signal transduction to a 

pro-regenerative program with the goal of restoring axonal reconnection to target 

musculature. Accompanying this phenotypic shift is morphological restructuring of its 

organelles to meet the increased demand for cytoskeletal protein synthesis.  
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2.3.2. Microglia response 

Following peripheral nerve injury, microglia proliferate and their morphology 

changes from a small cell body with long, branching processes to a swollen cell body 

with shortened processes (Graeber et al., 1988; Almolda et al., 2014). Expression of 

complement 3 receptor (C3R; also known as Mac-1, CD11b, and OX-42) and Iba1 both 

increase and are useful markers of microglia activation (Ito et al., 1998; Byram et al., 

2004). Time-lapse video of FMNuc-containing brainstem slices from neonatal rats at 6-9 

dpo reveal microglia migrating along neuronal processes and forming pseudopod and 

lamellopod processes after FNA (Schiefer et al., 1999) . These findings indicate that 

microglia respond to axotomy by changing their morphology, motility, and expression of 

activation markers.  

 

2.3.3. Astrocyte response 

In response to axotomy, astrocytes switch from a protoplasmic, GFAP-negative 

(glial fibrillary acidic protein) phenotype to a fibrous, GFAP-positive phenotype (Tetzlaff 

et al., 1988b). Astrocyte activation is proportional to the severity of the nerve injury 

administered, demonstrating their sensitivity to the damage inflicted to the MN (Laskawi 

& Wolff, 1996). The mouse background strain can alter the astrocyte response to injury, 

the exact mechanisms of which are unknown (Lidman et al., 2002). 

 

2.3.4. Synaptic stripping 

The synaptic inputs on LMN from UMN are ensheathed by astrocytes to maintain 

the synaptic connection (Castellano et al., 2016). After axotomy, these synaptic inputs are 
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displaced by microglia in a process called “synaptic stripping” (Blinzinger & Kreutzberg, 

1968). Removal of afferent inputs benefits the MN by allowing it to devote its energy 

towards regeneration and away from signal processing (Jinno & Yamada, 2011; 

Castellano et al., 2016). Additionally, removal of excitatory inputs prevent excitoxicity 

(Mentis et al., 1993). Later studies discovered that microglia displaced these synapses in 

the early phase after axotomy, and between 2-3 weeks post-operation (wpo), astrocytes 

processes replace the microglia in surrounding the MN soma (Moran & Graeber, 2004).  

To initiate synaptic stripping, purines released by the injured MN bind to purine 

receptors on microglia processes, inducing the microglia to wrap around the MN and aid 

in separation of synaptic contacts. Microglia sense the types and levels of purines 

released by the injured MN, and this information initiates pro- or anti-phagocytic 

responses (Castellano et al., 2016). Interferon-recognition factor 8 (IRF8) is also a key 

signaling protein for microglia wrapping around axotomized FMN (Masuda et al., 2012; 

Xie et al., 2014). In summary, synaptic stripping is an important process for promoting 

MN survival after axotomy and occurs as a result of glia reacting to injury signals from 

the axotomized MN.  

 

2.4. The immune system and facial nerve axotomy 

2.4.1. Consequences of immunodeficiency 

To determine if the immune system was beneficial or harmful after nerve injury, 

FNA was performed on severe combined immunodeficient (scid) mice and FMN survival 

was quantified at 28 dpo. Scid mice possess a mutation that blocks the maturation of B 

and T cells, resulting in loss of the adaptive arm of the immune system. More FMN die 
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after FNA in scid mice relative to WT mice, suggesting that the adaptive arm of the 

immune system serves a neuroprotective role after FNA. This hypothesis is confirmed 

when adoptive transfer of WT whole splenocytes into scid mice prior to FNA rescued 

FMN survival after axotomy to WT levels (Serpe et al., 1999; Serpe et al., 2000). These 

findings were reaffirmed in the recombinase activating gene-2 knockout (RAG-2-/-) 

mouse, in which B and T cells fail to mature, resulting in a lack of the adaptive arm of the 

immune system (Serpe et al., 2003). Immunodeficiency also slows functional recovery 

after facial nerve crush (Serpe et al., 2002; Beahrs et al., 2010). Administration of 

dexamethasone, a corticosteroid that decreases the number of lymphocytes in the blood, 

also results in delayed functional recovery and greater neuronal death after FNA 

(Lieberman et al., 2011). 

To identify which immune cell in the adaptive arm of the immune system was 

neuroprotective, FMN survival after FNA was examined in immune cell knockout mice. 

In mice deficient in CD4+ T cells, significant FMN loss after FNA occurred. In contrast, 

mice deficient in CD8+ T cells or B cells had FMN survival comparable to WT after 

FNA, signifying that only CD4+ T cells are relevant to immune-mediated 

neuroprotection. These results were verified by adoptive transfer of CD4+ T cells into 

either CD4-/- or RAG-2-/- mice, and FMN survival was rescued to WT levels, whereas 

adoptive transfer of CD8+ T or B cells had no effect on FMN survival (Serpe et al., 

2003). As new lymphocyte subtypes were discovered, their role in FMN survival after 

injury was also assessed. Thus far, natural killer cells and regulatory CD4+CD25+ T cells 

have been ruled out of having neuroprotective effects for injured motoneurons (Byram et 

al., 2003; DeBoy et al., 2006a).  
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2.4.2. T cells and neuroprotection 

For T cells to execute neuroprotective actions, they require both peripheral and 

central antigen presentation via major histocompatibility complex class II (MHCII) 

expressed on antigen-presenting cells (APCs) (Byram et al., 2004). Activated T cells 

capable of recognizing only ovalbumin by their T cell receptors are not neuroprotective, 

indicating that antigen-specific activation of T cells is necessary (Byram et al., 2006). 

After axotomy, antigens from the injured FMN drain into cervical lymph nodes, and 

APCs in the lymph node activate naïve T cells. These activated T cells circulate and re-

encounter target antigen expressed on MHCII in the CNS, inducing a secondary 

activation that results in effector T cell activity. Microglia are the predominant expressers 

of MHCII in the CNS and activate T cells with high efficiency relative to astrocytes and 

other CNS APCs (Male et al., 1987; Pryce et al., 1989; Aloisi et al., 1998; Aloisi et al., 

1999; Hurley, 2003).  

All CD4+ T cell subsets expand in the draining cervical lymph nodes after FNA, 

peaking in number at 7 dpo, then declining at 9 dpo as the cells migrate into the 

peripheral blood (Xin et al., 2008). This timecourse is supported by evidence of T cell 

infiltration into the injured FMNuc peaking at 14 dpo (Raivich et al., 1998; Ankeny & 

Popovich, 2007; Ha et al., 2007b). To identify which T cell subset was specifically 

responsible for neuroprotection, signal transducer and activator of transcription (STAT) 

and interleukin knockout experiments were performed. These experiments revealed that 

IL-4 and STAT-6, which promote T cell differentiation towards the Th2 subset, are 

necessary for neuroprotection.  
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Facial nerve re-injury experiments provide additional evidence for CD4+ T cell-

mediated neuroprotection. An augmented T cell-infiltration response and accelerated 

functional recovery are observed in animals receiving a second FNA ten weeks following 

their first FNA. This finding suggests that immune memory from the first FNA leads to a 

stronger immune response when the injury reoccurs (Ha et al., 2007b; Ha et al., 2008).  

 

2.4.3. IL-10 and other cytokines relevant to neuroprotection 

Astrocytes, microglia, and neurons express multiple cytokines and their receptors 

at homeostasis and after injury, and ongoing studies continue to assess the role these 

proteins play in neuroprotection.  

IL-10 is an anti-inflammatory cytokine that promotes neuroprotection after CNS 

injury (Kiyota et al., 2012; Joniec-Maciejak et al., 2014; Gravel et al., 2016; Zhou et al., 

2016). IL-10 deficiency results in greater FMN loss after FNA. WT CD4+ T cells do not 

rescue FMN survival after FNA in IL-10-/- mice, indicating that neuroprotective IL-10 

does not derive from CD4+ T cells. Furthermore, IL-10-/- CD4+ T cells are capable of 

neuroprotection in RAG-2-/- mice, ruling out the adaptive arm of the immune system as 

the IL-10 source (Xin et al., 2011). IL-10 is incapable of crossing the BBB, therefore, 

neuroprotective IL-10 must derive from the CNS parenchyma (Kastin et al., 2003). IL-10 

mRNA and protein levels remain unchanged after FNA in WT mice. In RAG-2-/- mice, 

however, there is a decrease in IL-10 protein levels at 7 dpo, suggesting that the immune 

system maintains IL-10 expression after FNA (Xin et al., 2011). IL-10 receptor (IL-10R) 

is constitutively expressed by neurons, and axotomy induces IL-10R expression 

exclusively on astrocytes. There was no detectable IL-10R expression on microglia 
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before or after axotomy. The expression of IL-10R on neurons after FNA is unknown 

because conventional MN markers, such as choline acetyltransferase, are not expressed 

by injured MN (Xin et al., 2011). In a transgenic mouse with astrocytic overexpression of 

IL-10, FMN survival after FNA is increased. Few changes are observed between WT and 

transgenic IL-10 overproducing mice, except for differential expression of phagocytosis-

related proteins in microglia after axotomy (Villacampa et al., 2015). To summarize, IL-

10 is an important factor in CD4+ T cell-mediated neuroprotection.  

Cytokine expression microarrays of the FMNuc at 7 days post-FNA reveals that 

Th2-related cytokines are strongly induced, whereas Th1-associated cytokines are 

undetectable. Of these cytokines, CCL11 expression is the most highly expressed, and its 

expression peaks at 14 dpo (Wainwright et al., 2009c). A colocalization study identified 

that FMN express CCL11 constitutively in the uninjured FMNuc. After axotomy, 

neuronal expression is no longer detectable, and astrocyte expression of CCL11 is 

induced. At 30 dpo, when the post-axotomy responses return to baseline levels, neuronal 

CCL11 expression is regained and astrocyte expression of CCL11 is not detectable 

(Wainwright et al., 2009a). CCL11 binds multiples chemokine receptors (CCR), one of 

which is CCR3 on T cells. CCR3-/- mice have increased FMN loss after FNA, and 

adoptive transfer of CCR3-/- CD4+ T cells into RAG-2-/- mice does not restore FMN 

survival (Wainwright et al., 2009b). Collectively, these studies indicate that axotomy 

induces astrocytic production of CCL11 which recruits T cells to the injured FMN.  

Tumor necrosis factor-alpha (TNFα) is a pro-inflammatory cytokine that has both 

neuroprotective and neurotoxic effects in the CNS after injury (Terrado et al., 2000; Liu 

et al., 2017). TNFα mRNA expression has been described in both early (1-2 dpo) and late 
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(14 dpo) timepoints post-FNA (Raivich et al., 1998; Streit et al., 1998; Streit et al., 2000). 

Neutralization of TNFα by overexpression of soluble TNFR1 modestly increases FMN 

survival after injury (Terrado et al., 2000). TNFα has two receptors, TNFR1 and TNFR2, 

and they have differential effects on the cellular response. FNA was performed on 

transgenic mice in which either TNFR1 or TNFR2 was knocked out to determine which 

receptor was relevant for FMN survival after FNA. No changes in FMN survival or 

microglia activation were observed in these two mouse models. When both TNFR1 and 

TNFR2 are simultaneously knocked out, FMN survival is significantly increased 

(Raivich, 2002). This combined deletion of TNFR1&2 also results in a significant 

decrease in MHCI expression by microglia (Bohatschek et al., 2004a). MHCI is an 

important antigen presenting protein for cells and also is necessary for the pruning of 

synapses during neurodevelopment (Corriveau et al., 1998; Huh et al., 2000). In addition, 

decreased expression of microglial B7.2, a costimulatory molecule for antigen 

presentation, is observed in TNFR1&2-/- mice (Bohatschek et al., 2004b). Microglia 

antigen presentation may play an important role in the synaptic stripping process after 

axotomy. These data collectively suggest that TNFα is a significant regulator of microglia 

activity after axotomy, and inhibition of these processes promotes FMN survival.  

IL-6 is a pleotropic cytokine with immunoregulatory effects that can promote 

inflammation or tissue repair (Almolda et al., 2014). mRNA expression is increased 

within 24 hours post-operation (hpo), and expression of IL-6 receptors (IL-6R) is induced 

on both astrocytes and neurons after FNA (Klein et al., 1997). Evidence suggests that IL-

6 is primarily produced by axotomized FMN (Streit et al., 2000). Knocking out IL-6 

prevents axotomy-induced expression of GFAP by astrocytes, a process mediated by IL-6 
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activation of STAT-3 (Klein et al., 1997; Tyzack et al., 2014). Loss of IL-6 also reduces 

microglia proliferation after FNA, most likely due to loss of astrocyte production of 

macrophage colony stimulating factor (MCSF) (Klein et al., 1997). MCSF acts on 

microglia to induce proliferation and facilitate microglia wrapping around injured FMN 

(Raivich et al., 1994; Kalla et al., 2001). When adult and neonatal rat responses to FNA 

are compared, there is significantly less FMN survival in neonatal rats. A lack of IL-6 

expression is also observed in neonatal rats after FNA, whereas adult rats have robust IL-

6 expression after axotomy (Streit et al., 2000). In an FNA study in which astrocytes 

constitutively overexpress IL-6, a small increase in FMN death is observed, and the 

microglia activation response to FNA is significantly altered. Specifically, expression of 

CD11b peaks at an earlier timepoint post-FNA, and decreased microglia apposition 

around axotomized FMN is observed (Almolda et al., 2014). These data collectively 

suggest that a “Goldilocks zone” exists for IL-6 after FNA, outside of which both 

insufficient and excessive IL-6 can result in neuronal death. To summarize the role of IL-

6 in the post-axotomy response, IL-6 expression by neurons after injury stimulates 

surrounding astrocytes to adopt a pro-regenerative phenotype that promotes proliferation 

and perineuronal apposition of microglia via MCSF.  

Pituitary adenylate cyclase-activating polypeptide (PACAP) can act as a 

neuroimmune modulator, and its expression by MN is strongly induced as early as 6 hpo 

(Zhou et al., 1999; Mesnard et al., 2010; Mesnard et al., 2011). Although knocking out 

PACAP does not impact FMN survival, it does result in significant increases in cytokine 

expression and microglia activation, suggesting that PACAP regulates the glial 

microenvironment response to FNA (Armstrong et al., 2008). PACAP promotes 
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microglia production of Th2-differentiation signaling chemokines, specifically C-C motif 

chemokine ligand 11 (CCL11) (Wainwright et al., 2008). PACAP gene expression 

increases after injury in the FMNuc. 

 

2.4.4. Molecular response of cells within the facial motor nucleus to axotomy 

When FMN loss after FNA is quantified for each subnucleus of the FMNuc, the 

ventromedial (VM) subnucleus has the most FMN death, and the ventrolateral (VL) 

subnucleus has virtually no FMN death. In RAG-2-/- mice, there is no disproportionate 

effect of immunodeficiency on the distribution of FMN death across the FMNuc, and 

adoptive transfer of CD4+ T cells does not affect this either (Canh et al., 2006). These 

findings suggest that a factor within the VM and VL subnuclei determines neuronal fate 

after injury.  

Using laser-capture microdissection, the VM and VL subnuclei were isolated for 

gene expression analysis to identify what factors promote neuronal survival or death. 

Unexpectedly, the VL subnucleus had a comparable motoneuron regeneration response. 

Conversely, significant differences in proinflammatory gene expression and glial 

activation were observed. When neurons and neuropil were laser-captured separately, the 

proinflammatory gene expression was only detectable in neuropil samples. Together, 

these findings indicate that the differences in inflammatory responses in the 

microenvironment, not neuroregenerative responses, are responsible for mediating 

neuronal survival after injury.  
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2.5. Introduction to ALS 

ALS is a lethal paralytic disease characterized by progressive loss of motor 

function with sensory and cognitive sparing (Wijesekera & Leigh, 2009). The prevalence 

of ALS in the United States is 3.9/100,000 people (Mehta et al., 2014). Males are slightly 

more affected, and smoking and military service are risk factors associated with ALS 

(Bryan et al., 2016). Approximately 5-10% of ALS cases are linked to familial heritable 

gene defects (fALS), and the remaining 90% of cases are classified as spontaneous ALS 

(sALS) (Calvo et al., 2014). ALS etiology remains unknown, and over 20 genes have 

been associated with fALS, with a wide range of physiological impacts. These 

discoveries have led to generation of the cell autonomous and non-cell autonomous 

theories of MN death in ALS. According to the cell autonomous theory, genetic mutation 

disrupt vital processes within MN that ultimately leads to MN death. These disruptions 

can cause MN death via multiple pathways, and theories include excitotoxicity, 

endoplasmic reticulum stress, protein degradation pathway stress, oxidative stress, 

mitochondrial dysfunction, altered axonal transport, and synaptic vesicle defects (Ilieva et 

al., 2009; Pandya et al., 2013). Almost all therapies targeting these abnormalities have 

failed to improve prognosis, with the exception of riluzole (Turner et al., 2001; Orrell, 

2010; Pandya et al., 2013). Riluzole alleviates glutamate-mediated excitotoxicity and 

extends patient survival by an average of 2-3 months (Meissner et al., 2010). 

The non-cell autonomous theory is that ALS genetic mutations negatively affect 

the microenvironment surrounding the MN, thereby inducing MN death. 

Neuroinflammatory damage, BBB leakiness, and extracellular accumulations of mSOD1 
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are all contributors to disease pathology, and many research groups are examining these 

factors as causative agents for disease (Ilieva et al., 2009; Pandya et al., 2013).  

In humans, it is nearly impossible to identify determinants of MN death in ALS 

because ALS is a clinical disease, meaning that the diagnosis is based on motor deficit 

progression with all other possible diseases ruled out. Given the hardiness of the CNS 

motor systems, significant motoneuron death must occur before clinical abnormalities are 

detected. An additional obstacle in studying ALS is that tissue acquired from a living 

patient is restricted to either peripheral blood or cerebrospinal fluid (CSF), given that 

nervous system tissue collection is only permitted at autopsy. Altogether, assessing the 

sequence of events that leads to MN death in ALS is largely limited to use of rodent 

models and iPSCs.  

 

2.6. mSOD1 mouse model of ALS 

Mutations in SOD1 are the most common genetic cause of ALS (Cirulli et al., 

2015). SOD1 is a protein that has been highly conserved throughout evolution and is 

ubiquitously expressed. SOD1 comprises 1-2% of total soluble protein in the CNS. The 

primary function of SOD1 is to convert superoxide to hydrogen peroxide (Bunton-

Stasyshyn et al., 2015). Knocking out SOD does not result in motoneuron disease (MND) 

symptoms in mice, suggesting that loss-of-function deficits are not causative for ALS. 

Instead, studies suggest that either a toxic gain-of-function or prion-like behavior of 

misfolded SOD protein contribute to MND.  

The first mouse model of ALS that recapitulated the human disease was published 

in 1994 (Gurney et al., 1994). When the human mutated SOD1G93A (mSOD1) gene is 



 

22 

inserted into a B6/SJL mouse, motor deficits can be observed at 120 days of age (doa). 

The motor deficits first manifest in hindlimb muscles, then progress to forelimbs, and 

animal death occurs between 150-160 doa. In this mouse model, the first detectable 

pathology of ALS is the loss of neuromuscular junctions (NMJs) in the hindlimb muscles 

at 47 doa. At roughly 80 doa, axon loss is evident in the ventral roots, and at 100 doa, 

MN death is first detected in the lumbar spinal cord, suggesting a progressive die-back of 

the MN (Gurney et al., 1994; Fischer et al., 2004). This axonal die-back suggests that 

some disease factor induces target disconnection, which, in turn, leads to MN death 

(Dadon-Nachum et al., 2011).  

 

2.6.1. Motoneuron-specific mSOD1 and MND 

With the discovery of SOD1 mutations causing MND, the next question was 

whether the mSOD1 mutation isolated to MN alone would induce MN death. 

Surprisingly, in two mouse models where mSOD1 was expressed solely in MN, no motor 

deficits or MN pathology were observed, even with doubling of the expression of 

mSOD1 in MN (Pramatarova et al., 2001; Lino et al., 2002). A later study was successful 

in recapitulating MND with a Thy1/mSOD1 mouse model, primarily because this genetic 

model produced about 5-fold more mSOD1 than previously reported models (Jaarsma et 

al., 2008). Interestingly, the average endstage of disease in this mouse model is between 

600-700 doa, suggesting that MN are highly resilient to toxicity from SOD1 mutations. 

This MN resilience supports the non-cell autonomous hypothesis for ALS.   
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2.6.2. Microglia-specific mSOD1 and MND 

To identify if microglia played a role in mSOD1 MND, a CD11b-

cre/mSOD1G37R-flox mouse model was employed. When mSOD1 expression is knocked 

down in microglia, survival is increased by approximately 100 days relative to control 

(Boillee et al., 2006). This dramatic effect suggests that mSOD1 expression in microglia 

significantly contributes to disease progression and MN death. Further characterization of 

microglia activation in mSOD1 rats determined that in the early presymptomatic phase, 

monocytes infiltrate the sciatic nerve, while in the late presymptomatic phase, myeloid 

activation is evident in the spinal cord. This suggests that myeloid cell activation acts in 

parallel with axonal die-back, but it is unknown if this is causative or reactionary (Graber 

et al., 2010).  

Microglia-mediated neurotoxicity could be consequential to an alteration in the 

cell’s phenotypic polarization after injury or disease. Activated microglia can be roughly 

divided into M1 and M2 phenotypes, characterized by expression of either pro-

inflammatory markers, such as TNFα and inducible nitric oxide synthase (iNOS), and 

pro-repair markers, such as arginase 1 (Arg1) and IL-10, respectively. Assessment of M1 

and M2 markers in mSOD1 mouse spinal cord at multiple timepoints reveals that both 

cell types increase throughout disease. A significantly higher proportion of activated 

microglia are Arg1+ than iNOS+, indicating that the majority of microglia are behaving 

in an M2 pro-repair, anti-inflammatory fashion (Lewis et al., 2014). Inhibition of 

microglia proliferation or downstream cytokine signaling via janus kinase 2 (JAK2) 

confers no therapeutic benefit to mSOD1 mice (Tada et al., 2014; Martinez-Muriana et 
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al., 2016). However, this inhibition strategy affects both M1 and M2 microglia, which 

could cancel out any neuroprotective effects. 

To better understand the inflammatory reaction in mSOD1 mice, a nuclear factor 

kappa-light-chain-enhancer of activated B cells (NF-κB)/GFP (green fluorescent protein) 

reporter mouse was crossed with the mSOD1 mouse. NF-κB/GFP was most highly 

expressed in microglia. Time-lapse videos of MN and microglia co-culture systems 

reveal that mSOD1 microglia phagocytize both synapses and MN, leading to increased 

MN death. Inhibiting NF-κB in microglia, not astrocytes, results in significant increases 

in MN survival in co-culture experiments. NF-κB inhibition in mSOD1 mice also extends 

survival. Conversely, reducing inhibition of NF-κB results in increased inflammatory 

cytokine expression and accelerated disease progression, further linking microglia-

mediated neuroinflammation and MN death (Frakes et al., 2014). In summary, a growing 

body of evidence suggests that SOD1 mutations in microglia result in a proinflammatory, 

hyperphagocytic microglia response that is toxic to MN (Brites & Vaz, 2014).  

 

2.6.3. Astrocyte-specific mSOD1 and MND 

In vitro experiments in which mouse mSOD1 astrocytes are co-cultured with 

normal MN reveal that these astrocytes are highly neurotoxic, suggesting that astrocytes 

also contribute to non-cell autonomous pathways of MN death (Di Giorgio et al., 2007). 

Silencing mSOD1 in astrocytes restores MN survival to WT levels (Haidet-Phillips et al., 

2011). The use of astrocytes derived from induced pluripotent stem cells (iPSCs) from 

human fALS and sALS patients yield similar results (Haidet-Phillips et al., 2011). When 

the cre/lox system is used to knockdown mSOD1 in astrocytes in mSOD1 mice, animal 
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survival is increased by about 60 days, further supporting this hypothesis. Human ALS 

iPSC astrocytes injected into the spinal cord of scid mice can engraft into the CNS, and 

over time motor deficits are observed comparable to mSOD1 mouse deficits (Chen et al., 

2015a). In summary, mSOD1 in astrocytes also have demonstrable neurotoxic effects on 

MN.  

 

2.7. Immune dysregulation in human patients with ALS 

The role of the immune system at endstage in ALS has been characterized from 

analysis of autopsy tissue. In diseased CNS tissue, potent glial activation is observed 

surrounding MN cell bodies in the CNS. Increased microglia activation correlates with 

rapidity of disease progression (Brettschneider et al., 2012). Assessment of innate 

immune activators also reveals significant increases in expression of toll-like receptors 

(TLR) and their accompanying downstream mediators (Casula et al., 2011). Additionally, 

complement (C) proteins, C1q and C3d, accumulate in deposits within the spinal cord 

(Sta et al., 2011). A study analyzing the immune response in ALS muscle tissue also 

found complement proteins on motor end plates, especially C1q and the membrane attack 

complex (MAC) (Bahia El Idrissi et al., 2016). This evidence of immune activation at 

both the peripheral terminal and central soma of the MN suggests that the immune system 

plays a role in ALS disease pathology.  

To characterize inflammatory and immune changes before death in ALS patients, 

measures of cytokines and white blood cell counts have been reported in multiple studies. 

The majority of these studies yield conflicting results, most likely a result of their small 

sample size (8-20 patients) and the heterogeneity of this disease (sALS v fALS, 
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variability of disease progression rate, gender, age, etc.) (Holmoy et al., 2006; Kuhle et 

al., 2009; Saleh et al., 2009; Hovden et al., 2013; Ehrhart et al., 2015). For these reasons, 

I choose to restrict my assessment of immune system alterations in ALS to the highest 

powered clinical publications. In the Chen et al. 2014 publication, peripheral blood 

samples were collected from 284 patients with ALS. This study identified that both men 

and women with ALS had significantly decreased proportions of CD4+ T cells relative to 

controls, as well as increased circulating immune complexes (Chen et al., 2014). In 

women, significantly higher C3 levels were also detected in peripheral blood. In Lu et al. 

2016, plasma cytokine levels were measured in 98 ALS patients at regular intervals for 

up to 4 years. This study identified significantly higher levels of 11 inflammatory 

markers in peripheral blood, including TNFα, pro-inflammatory interleukins (IL-1β and 

IL-2), and anti-inflammatory interleukins (IL-4 and IL-10). IL-6 was the only cytokine to 

increase with disease progression (Lu et al., 2016).  

T cells may play a special role in ALS disease. Published case studies describe 

MND-like symptoms in patients infected with human immunodeficiency virus (HIV), an 

infection that selectively kills CD4+ T cells. With anti-retroviral therapy, these symptoms 

are eliminated, suggesting a connection between T cells and MN function (Moulignier et 

al., 2001; Alfahad & Nath, 2013). There have also been reports of ALS development in 

patients with myasthenia gravis, an autoimmune disease in which antibodies target 

acetylcholine receptors, leading to elimination of NMJs. These cases further imply an 

involvement of aberrant immune system activity in ALS disease pathology (Staff & 

Appel, 2016).  
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Overall, these studies reveal a dysregulated immune profile in patients with ALS. 

The involvement of the immune system links the axonal die back and non-cell 

autonomous theories of ALS etiology because the immune system is an important 

presence in both the PNS and CNS. Multiple clinical trials using immunosuppression 

have failed to benefit ALS patients (Kelemen et al., 1983; Brown et al., 1986; Werdelin 

et al., 1990; Drachman et al., 1994). One explanation for these failures is that 

administering treatment at such an advanced disease stage could be too little, too late. An 

alternative explanation is that the immune system has both a neuroprotective and a 

neurodegenerative role. Eliminating the entire immune system could result in 

neurodegeneration because the neuroprotective aspects of the immune system are lost. 

This hypothesis is supported by the work done in our laboratory studying immune-

mediated neuroprotection after axotomy.  

 

2.8. Immune dysregulation in the mSOD1 mouse model of ALS 

Multiple studies have measured immune changes throughout the lifespan of the 

mSOD1G93A mouse model of ALS to identify early alterations that may be causative of 

the disease. The earliest inflammatory changes in mSOD1 spinal cord tissue have been 

described at 40-42 doa, at which increased microglia activation, immunoglobulin G (IgG) 

deposits, and integrin markers have been detected (Alexianu et al., 2001). Additionally, 

TNFα, IL-1R, and CD86 gene expression are increased at this early timepoint. At 63 doa, 

further microglial cytokine expression is observed, suggesting early microglia activation 

occurs in MND (Chen et al., 2004). At symptom onset and disease endstage 

(approximately 80 – 126 doa), potent increases in microglia and astrocyte activation are 
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observed, as well as significant increases in inflammatory cytokine protein and apoptotic 

gene expression (Alexianu et al., 2001; Hensley et al., 2002; Yoshihara et al., 2002; 

Hensley, 2003; Chen et al., 2004). Overall, these data suggest that immune dysregulation 

in ALS begins early in the disease and accumulates throughout the disease process.  

Depending on the mouse background strain, mSOD1G93A motoneuron disease can 

progress slowly (C57 background) or rapidly (SJL background). A comparison study was 

conducted to determine if differential immune responses existed between these two 

groups. The study focused on changes in the sciatic nerve at approximately similar 

disease stages of these two strains. In C57 (slow progression) sciatic nerves, higher levels 

of MHCI, CCL2, and C3 were detected, as well as higher CD8+ T cell infiltration. 

Conversely, in SJL (fast progression) sciatic nerves, much lower immunoactivation was 

detected (Nardo et al., 2016). These data suggest that immune activation and 

inflammatory cytokine production may be neuroprotective and prolong axonal survival, 

whereas deficient immunoactivation results in accelerated axonal loss. This study 

supports the hypothesis for this work that dysregulation in the ALS immune system may 

lead to a loss of neuroprotection, not an augmentation in neurotoxicity.  

 

2.9. T cells in mSOD1 MND 

In the early presymptomatic stage of MND in mSOD1 mice, no changes are 

evident in levels of CD4+ or CD8+ T cells in the peripheral blood (Gravel et al., 2016). 

However, at end-stage, significant lymphopenia and loss of splenic mass and architecture 

is evident (Kuzmenok et al., 2006; Banerjee et al., 2008). To test if lymphopenia 

contributed to mSOD1 disease, adoptive transfer of WT WS to mSOD1 mice was 
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performed, and no therapeutic benefits were observed (Banerjee et al., 2008). In contrast, 

regular treatment of mSOD1 mice with WT CD4+ T cells prior to and throughout 

disease, either enriched for regulatory T cells (CD4+CD25+; Tregs) or effector T cells 

(CD4+CD25-; Teffs) revealed that Tregs delayed symptom onset and Teffs increased 

disease latency (Banerjee et al., 2008).  

Despite the overall lymphopenia, CD4+ and CD8+ T cells accumulate in the 

mSOD1 spinal cord with disease progression. To further examine if T cells were 

neuroprotective or neurotoxic, a T cell receptor (TCR) knockout was crossed with the 

mSOD1 mouse model, and accelerated disease progression and death was observed in 

these mice (Chiu et al., 2008). This finding is further confirmed with a similar phenotype 

observed in both mSOD1/RAG-1-/- mice and mSOD1/CD4-/- transgenic mice (Beers et 

al., 2008). Altogether, these findings support the hypothesis that CD4+ T cells promote 

MN survival and delay disease progression in mSOD1 MND.  

To test if increasing CD4+ T cell numbers could confer neuroprotection, 

castration was performed on male mSOD1 mice. Castration results in an increased 

thymus size and increase in circulating CD4+ T cells; however, this increase in T cells 

only increased survival by an average of 9 days. Decreased microglia activation was 

observed in the spinal cord, suggesting that T cell modulation of microglia responses may 

be neuroprotective (Sheean et al., 2015).  

 

2.10. FNA and mSOD1 MND 

One drawback of studying disease progression in the mSOD1 mouse model is that 

there is no exact timing for disease onset. Even in animals with identical genotypes, 
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significant differences in disease progression can be observed (Gurney et al., 1994; 

Haulcomb et al., 2014) MN are also heterogeneously affected by this disease, with some 

MN dying very early, and some living for the remainder of the animal’s lifespan (Fischer 

et al., 2004). In addition, some MN maintain connection target musculature to endstage 

(Gurney et al., 1994). To circumvent this problem, FNA can be superimposed onto the 

mSOD1 mouse model to induce target disconnection of all FMN at the exact same time. 

Because axotomy simulates the target-disconnection pathology in ALS, essentially all 

FMN are experiencing the disease pathology simultaneously. To minimize confounding 

injury with mSOD1 disease processes, the axotomy is induced at 56 doa, a timepoint 

much earlier than when mSOD1 MND affects FMN survival (136 doa). This timepoint 

for axotomy was also selected to ensure that the immune system has completely matured 

in these animals.  

When FNA is performed on mSOD1 mice at 56 doa, significantly greater FMN 

loss is observed in mSOD1 mice at 28 dpo (84 doa). To confirm that the mSOD1 MND 

was not confounding the axotomy-induced death, FMN were quantified on the uninjured 

side and the numbers were equivalent to uninjured WT FMN counts (Mesnard et al., 

2011). In addition to greater MN death, functional recovery from facial nerve crush is 

also delayed in mSOD1 mice relative to WT. It should be emphasized here that recovery 

still occurs in mSOD1 mice, suggesting that the regenerative program within injured MN 

is still functional (Mesnard et al., 2013). Gene expression profile analysis after facial 

nerve transection further confirms that the MN regenerative phenotype after axotomy 

remains comparable to WT, using markers such as Gap-43 and βII-tubulin. In addition, 

there is deficient activation of the glial response after axotomy. In the uninjured FMN, 
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mRNA levels of astrocyte and microglia activation genes are increased relative to WT, 

indicating some baseline glial activation occurring due to the mSOD1 MND. In addition, 

baseline expression of inflammatory cytokines Tnfα and Ifnγ (interferon γ) is increased 

and continues to rise with axotomy (Mesnard et al., 2011; Haulcomb et al., 2014).  

A closer examination of cell death pathways in the axotomized mSOD1 FMNuc 

reveals a high prevalence of both Fas and neuronal nitric oxide synthase (nNos) 

expression after FNA (Haulcomb et al., 2014). Conversely, no differences were detected 

in TNFR1 mediated cell death, which is surprising given the significant increase in TNFα 

detected in mSOD1 CNS tissue. Other mSOD1 studies of Fas/nNos death have 

determined than MN with multiple different mSOD1 mutations are hypersensitive to 

Fas/nNos mediated cell death as compared with trophic deprivation or excitotoxic 

stimulation (Raoul et al., 2002). This difference is specific for mSOD1 MN and is not 

observed in WT MN. A closer examination reveals that nitric oxide (NO) triggers MN to 

express Fas ligand (FasL), which may be responsible for potentiating MN death via 

Fas/nNos pathways.  

Because both RAG-2-/- mice and mSOD1 mice suffer similar MN death after 

FNA, and because immune dysregulation is observed in mSOD1 mice, a study from our 

laboratory was conducted to assess if mSOD1 splenocytes could confer neuroprotection. 

Adoptive transfer of mSOD1 WS does not rescue FMN survival after FNA in RAG-2-/- 

mice. With this finding, the next hypothesis was that mSOD1 CD4+ T cells were 

ineffective in promoting FMN survival. This hypothesis was disproven when adoptive 

transfer of isolated mSOD1 CD4+ T cells into RAG-2-/- mice resulted in FMN survival 

after FNA comparable to WT. To identify if immunotherapy could improve FMN 
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survival after FNA, mSOD1 mice were injected with either WT WS, WT CD4+ T cells, 

WT CD4+ depleted splenocytes, or axotomy-activated WT CD4+ T cells. The mSOD1 

mice that received WT WS had a significant increase in FMN survival, but the other cell 

transfers were incapable of rescuing FMN survival, suggesting that the additive benefit of 

both WT splenocytes and CD4+ T cells could overcome the inhibition of the 

neuroprotection within the mSOD1 mouse milieu (Mesnard-Hoaglin et al., 2014). These 

findings suggest that a factor within the mSOD1 WS suppresses CD4+ T cell mediated 

neuroprotection and form the basis for the work described in this dissertation. 

 

2.11. Aim 1: Determine the source of neuroprotective IL-10 in the axotomized facial 

motor nucleus 

Based on the Xin et al. 2011 study, IL-10 is necessary for CD4+ T cell mediated 

neuroprotection, although it does not derive from CD4+ T cells. IL-10-/- CD4+ T cells 

still rescue FMN survival in RAG-2-/- mice, indicating that the neuroprotective IL-10 

does not derive from the adaptive arm of the immune system. Finally, IL-10 cannot cross 

the BBB, therefore leading us to conclude that neuroprotective IL-10 derives from the 

CNS parenchyma (Kastin et al., 2003). To fully understand the mechanisms of CD4+ T 

cell-mediated neuroprotection, it is necessary to learn the source and kinetics of IL-10 

production after FNA.  

The hypothesis for this aim is that CD4+ T cells, after initial activation in the 

peripheral immune system, migrate to the CNS and interact with MHCII+ microglia. This 

results in a secondary activation of T cells and expression of IL-4, which shifts the 

phenotype of microglia towards M2 microglia that produce neuroprotective IL-10.  
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2.12. Aim 2: Characterize gene expression profile changes after facial nerve 

axotomy in immunodeficient and WT CD4+ T cell-reconstituted mice 

There is a gap in the literature regarding how the adaptive arm of the immune 

system exerts neuroprotective effects in the facial motor nucleus after axotomy. To 

address this, the gene expression profile in immunodeficient RAG-2-/- mice will be 

compared to WT at multiple post-axotomy timepoints. In addition, the gene expression 

profile of RAG-2-/- mice with adoptive transfer of WT CD4+ T cells will be performed to 

characterize the neuroprotective effects of CD4+ T cells. Four aspects of the injury 

response will be assessed: MN regeneration, glial activation, inflammation, and cell death 

receptor pathways. The hypothesis for this aim is that immunodeficiency will impair the 

glial microenvironment response to FNA, leading to increased FMN death, and CD4+ T 

cells will regulate these cellular responses to normal levels.  

 

2.13. Aim 3: Analyze gene expression profile changes after facial nerve axotomy in 

mice immunoreconstituted with mSOD1 whole splenocytes or mSOD1 CD4+ T cells 

To our surprise, mSOD1 CD4+ T cells are capable of neuroprotection, whereas 

mSOD1 WS are not. This finding suggests that an inhibitory factor within the mSOD1 

WS environment impairs CD4+ T cell mediated neuroprotection. To better understand 

the mechanism behind this, gene expression analysis will be performed to examine the 

same genes as in Aim 2. As an additional control, a RAG-2-/- + WT WS group will be 

added for comparison with the mSOD1 WS recipient animals. The hypothesis for Aim 3 

is that the RAG-2-/- + mSOD1 WS group gene expression profile will be comparable to 
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the RAG-2-/- profile with impaired glial microenvironment responses, and the mSOD1 

CD4+ T cell treatment group will be comparable to the WT CD4+ T cell group. This 

hypothesis is based on the assumption that the mSOD1 WS will block the glial 

microenvironment regulation by CD4+ T cells within the whole splenocyte milieu. 

However, when the mSOD1 CD4+ T cells are removed from the suppressive 

environment, they will function comparably to WT CD4+ T cells.  
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CHAPTER 3: MATERIALS AND METHODS 

3.1. Animals used in this study 

For this study, the following mouse strains were purchased from The Jackson 

Laboratory (Bar Harbor, ME): C57BL/6J (WT, 000664), B6(Cg)-Rag2tm1.1Cgn/J 

(RAG-2-/-, 008449), B6.Cg-Tg(SOD1G93A)1Gur/J (mSOD1, 004435), and B6(Cg)-

Il10tm1.1Karp/J (IL-10/GFP, 014530). All purchased mice were obtained at 6 or 7 weeks of 

age and allowed acclimate for 1 week prior to any manipulation. Female mice were 

exclusively used for experiments because male mice cannot be co-housed after surgery 

due to their aggressive nature. The male fighting behavior causes damage to the surgical 

site, leading to infections that can confound experimental results. 

For the IL-10 conditional knockout mice, IL-10 floxed mice were generously 

provided from Dr. Gang Huang’s laboratory at Cincinnati Children’s Hospital (Roers et 

al., 2004). GFAP-cre mice and CX3CR1-cre (CX3C receptor 1) mice were purchased 

from the Jackson Laboratory (Strains: B6.Cg-Tg(GFAP-cre/ERT2)505Fmv/J, 012849; 

B.6.129P2(Cg)-Cx3cr1tm2.1(cre/ERT)Litt/WganJ, 021160). Both cre strains used were 

tamoxifen-inducible. The breeding scheme between the cre and floxed mouse strains 

generated GFAP-cre+/IL-10fl/fl and CX3CR1-cre+/IL-10fl/fl mouse strains. For negative 

controls, cre+/IL-10fl/- and cre-/IL-10fl/fl littermates were used.  

All animal procedures complied with National Institutes of Health guidelines on 

the care and use of laboratory animals and were approved by the Indiana University 

School of Medicine’s Institutional Animal Care and Use Committee. Mice were housed 

in sterilized microisolater cages with a 12 hr light/dark cycle and fed autoclaved food 
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pellets and drinking water ad libitum. The animal facility uses a laminar flow system to 

maintain a pathogen-free environment.  

 

3.2. Genotyping 

Tail snips were collected from mice in the cre/lox breeding scheme, and DNA 

was extracted from them using the Gentra Puregene Mouse Tail Kit (Qiagen, 

Germantown, MD; 158267). PCR was conducted using genomic DNA, forward and 

reverse primers (Table 1), and GE Healthcare illustra™ PuReTaq Ready-To-Go™ PCR 

Beads (Thermo Fisher Scientific, Waltham, MA; 46-001-012). The IL-10 PCR program 

consisted of the following steps: 95°C for 2 min, 40 cycles of 95°C for 30 sec, 60°C for 

45 sec, and 72° C for 45 sec, then 72°C for 5 min. The GFAP-cre and CX3CR1-cre PCR 

programs consisted of the following steps: 94°C for 2 min, then 10 cycles of 94°C for 20 

sec, 65°C for 15 sec (-0.5°C per cycle), and 68°C for 10 sec, then 28 cycles of 94°C for 

15 sec, 60°C for 15 sec, and 72°C for 10 sec, then finished at 72°C for 1 min. Both PCR 

protocols were run on an Eppendorf Model 5333 Mastercycler. The PCR product was run 

on a 2% agarose gel made in TAE buffer at 150 V for 30-40 min, and the gel was imaged 

on the Cell Bioscience FluorChem E imager. 

 

3.3. Induction of cre recombinase 

Tamoxifen (Sigma-Aldrich, St. Louis, MO; T5648) was dissolved in corn oil at a 

concentration of 20 mg/ml by shaking overnight at 37°C in a light-blocking vessel. 75 

mg/kg of tamoxifen was injected intraperitoneally for 5 consecutive days to induce cre. 

Cre induction was maintained by tamoxifen injections twice per week until euthanasia.  
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3.4. Facial nerve axotomy 

Aseptic procedures were followed during the surgery following National Institute 

of Health guidelines. FNA was performed on 8 week old female mice following 

previously established methods (Olmstead et al., 2015). Briefly, mice were anesthetized 

with 2.5% isoflurane in 0.9 L/min oxygen, and sedation was monitored by confirming 

absence of the toe pinch reflex. The area behind the ear was shaved, and the skin was 

sterilized with alternating wipes of betadine and 70% ethanol, repeated three times. Using 

spring scissors, an incision approximately 4 mm in length was made behind the ear 

protuberance. The underlying subcutaneous tissue was bluntly dissected until the facial 

nerve trunk could be observed exiting the stylomastoid foramen. The nerve was 

transected, and the remaining nerve stumps were separated to prevent reconnection. The 

incision was closed with a sterile wound clip, and confirmation of the FNA was 

performed by assessing whisker movement and eye blink reflexes after completion of the 

surgery. Animals were monitored post-operatively for complications for five dpo, and the 

wound clip was removed at 7-10 dpo.  

 

3.5. Isolation and adoptive transfer of whole splenocytes and CD4+ T cells 

Donor mice (1:1 donor:recipient ratio) were euthanized with CO2 inhalation 

followed by cervical dislocation. The spleen was dissected out and placed in a 

gentleMACS C Tube (Miltenyi Biotec, San Diego, CA; 130-093-237) with buffer (1× 

PBS, 0.5% bovine serum albumin, and 2 mM EDTA) and dissociated into a single-cell 

suspension using a gentleMACS Dissociator following the Miltenyi Biotec gentleMACS 
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protocol. The suspension was passed through a 70 µm cell filter into a sterile 50 ml 

conical tube, and centrifuged at 300 x g for 10 min at 4°C.  

For whole splenocyte collection, red blood cell lysis was performed using ACK 

Lysing Buffer (Thermo Fisher Scientific; A1049201) for 4 min at RT. The reaction was 

diluted with 45 ml buffer, then centrifuged at 300 x g for 10 min at 4°C. The pellet was 

resuspended in 1 ml buffer/spleen, filtered, and a cell count was performed. PBS was 

added to the cell suspension to increase the volume to 45 ml, then the mixture was 

centrifuged at 300 x g for 10 min at 4°C. The pellet was resuspended in PBS to make a 5 

x 108 cells/ml concentration of whole splenocytes. Immediately prior to injection, cells 

were passed through a 70 µm cell filter, and 50 x 106 WS in 100 µl of PBS were injected 

into the recipient mouse tail vein.  

CD4+ T cell isolation began with generation of a single-cell suspension of whole 

splenocytes. Red blood cell lysis was not performed to maximize CD4+ T cell yield. The 

whole splenocyte cell pellet was incubated with CD4 (L3T4) MicroBeads (Miltenyi 

Biotec, 130-049-201) per manufacturer protocol, and magnetic separation was performed 

with the Possel_d2 program on an autoMACSTM Pro Separator. A cell count was 

performed, then cells were washed with PBS and centrifuged at 300 x g for 10 min at 

4°C. The pellet was resuspended in PBS to make a 5 x 107 cells/ml concentration of 

CD4+ T cells. Immediately prior to injection, cells were passed through a 70 µm cell 

filter, and 5 x 106 CD4+ T cells in 100 μl of PBS were injected into the recipient mouse 

tail vein.  

CD4+ cell fraction purity was measured using flow cytometry with FITC rat anti-

mouse CD4 antibody (BD Pharmingen, San Jose, CA; 557307). In the WT CD4+ T cell 
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treatment group, 97% of the magnetic-sorted splenocytes were CD4+ (data not shown), in 

accordance with our previously published work (Serpe et al., 2003; Xin et al., 2011). In 

the mSOD1 CD4+ T cell group, cells were manually sorted due to a malfunction of the 

AutoMACS, and 75% of cells in the positive fraction were CD4+ (data not shown).  

 

3.6. Laser-capture microdissection  

Experimental animals were euthanized via CO2 inhalation followed by cervical 

dislocation at 7, 14, 28, and 56 dpo. An unoperated group was also included as a 0 dpo 

control. Brains were rapidly removed and immediately flash frozen in an n-butyl bromide 

(62.5%) and 2-methyl butane (26.5%) biphasic solution chilled on dry ice to -30ºC, then 

stored at -80ºC. The brains were embedded in Optimal Cutting Temperature compound, 

and 25 µm cryostat sections of the entire rostral-caudal extent of the facial nucleus within 

the brainstem were collected on Leica glass polyethylene foil membrane slides 

(Nuhsbaum, McHenry, IL, 11505158) and stored at -80ºC. Tissue staining and laser 

capture microdissection were performed using methods previously described (Mesnard et 

al., 2010). The right (axotomized, Ax) and left (control, C) facial motor nuclei were laser-

captured using a Leica ASLMD, and FMN and surrounding neuropil were collected 

together.  

 

3.7. RNA extraction and reverse transcription 

RNA extraction was performed per the Arcturus PicoPure® RNA Isolation Kit 

protocol (Thermo Fisher Scientific; KIT0204). RNA yield was quantified with a 

NanoDrop 2000 Spectrophotometer. 60 ng of RNA was reverse transcribed into cDNA 



 

40 

using the SuperScript® VILO cDNA Synthesis Kit and Master Mix following 

manufacturer instructions (Thermo Fisher Scientific; 11754050). 

 

3.8. qPCR  

qPCR was performed using an Eppendorf Realplex Mastercycler system. The 20 

µl reaction volume contained 1 µl of cDNA, 1 µl of 20× TaqMan® FAM gene expression 

assay (Table 2), 8 µl of 0.002% diethyl pyrocarbonate-treated water, and 10 µl of 

TaqMan Gene Expression Master Mix (Thermo Fisher Scientific; 4369016). The qPCR 

program was as follows: UDG optimization at 50°C for 2 min, AmpliTaq Gold 

Activation at 95°C for 10 min, and then 40 cycles of denaturation at 95°C for 15 sec 

followed by annealing/extension at 60°C for 1 min.  

We have previously established percent-changes in mRNA expression after 

axotomy using custom-made primers and SYBR® green reagents (Mesnard et al., 2010; 

Mesnard et al., 2011; Haulcomb et al., 2014). We opted to use the TaqMan assays in 

these experiments because of their enhanced sensitivity and specificity for gene targets 

(Alvarez & Done, 2014). To validate use of the TaqMan assays, side-by-side 

comparisons of results were obtained using the SYBR and TaqMan systems. This 

comparison revealed that both SYBR and TaqMan yielded similar results for all genes of 

interest except Cd68 and Tnfr1. To maintain consistency with previously established 

results, custom primers and TaqMan probes were used for Cd68 (F 5’-

CCCAAATTCAAATCCGAATCC-3’, R 5’-GGTACCGTCACAACCTCC-3’, probe 5’-

AAAGTGAGTGCGTCCCTTGCAGCC-3’) and Tnfr1 (F 5’-
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TGCCATGCAGGGTTCTTTCTG-3’, R 5’-TTTGCAAGCGGAGGAGGTAGG-3’, 

probe 5’-ACCCAATTCAGGGTGGAAGAAAGGT-3’).  

 

3.9. Statistical analysis of qPCR data 

The percent change in mRNA expression between axotomized and control facial 

motor nuclei was calculated using the Pfaffl method, with glyceraldehyde 3-phosphate 

dehydrogenase (Gapdh) as the reference gene (Pfaffl, 2001). Relative gene expression of 

Tnfα compared to Gapdh was used to quantify mRNA expression in the axotomized 

facial motor nucleus because there is no detectable expression of Tnfα in the control 

facial motor nucleus. The Grubbs’ test was performed on the calculated values to detect 

and remove outliers (GraphPad QuickCalcs). Statistical significance was calculated in 

SigmaPlot 13.0 using two-way ANOVA (factors: group × postoperative time, for each 

individual gene) followed by Student-Neuman-Keuls post hoc multiple comparisons 

analysis with a significance level of p < 0.05. 

To validate that axotomy does not induce mRNA expression changes in the 

control FMNuc, one-way ANOVA of the relative expression of each gene of interest 

compared to GAPDH within the control FMNuc was performed at each postoperative 

timepoint with p < 0.05. For all genes examined, no statistically significant changes were 

detected (data not shown).  

 

3.10. Fluorescent immunohistochemistry 

At the appropriate timepoint post-FNA, IL-10/GFP reporter animals were 

euthanized and brain tissue was extracted following the protocol in section 3.6. Brains 
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were frozen instead of perfusion-fixed to preserve the GFP signal. After embedding 

brains in Optimal Cutting Temperature compound, 8 µm cryostat sections of the FMNuc 

were collected on Fisherbrand Superfrost Plus Microscope Slides (Thermo Fisher 

Scientific; 12-550-15) and stored in light-tight boxes at -20ºC.  

Prior to staining, sections were circled with an Elite PAP Pen (Diagnostic 

BioSystems, Pleasanton, CA; K039). On-slide fixation was performed with PFA solution 

(filtered 4% paraformaldehyde in PBS, pH 7.4) for 15 min at RT, then washed with PBS 

3 × 5 min in a humidified chamber. Blocking buffer comprised of 10% normal donkey 

serum (EMD Millipore, Billerica, MA; S30), 1% bovine serum albumin (Jackson 

Immunoresearch, West Grove, PA; 001-000-162), and 0.01% Triton X-100 in PBS was 

applied for 1 hr at RT. After the blocking step, primary antibodies diluted in blocking 

buffer were applied to the slide overnight at 4°C (Table 3). On the following day, slides 

were washed with PBS 3 × 5 min in a Coplin jar, then returned to the humidified 

chamber for incubation with secondary antibody diluted in blocking buffer for 1 hr at RT. 

Afterwards, slides were washed with PBS 3 × 5 min in a Coplin jar. Excess fluid was 

wiped from the slide, and 100 µl of DAPI Fluoromount-G (SouthernBioTech, 

Birmingham, AL; 0100-20) was applied before coverslipping. Imaging was performed 

using an Olympus BX-43 equipped with cellSens Entry version 1.9 software. Image 

processing, including subtraction of background and adjustments to histograms, were 

performed in ImageJ version 1.8.0_111.  
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3.11. Perfusion-fixation of animals 

Mice received a lethal overdose of a mixture of 200 mg/kg ketamine and 5 mg/kg 

xylazine administered intraperitoneally. When the animal was deeply anesthetized, a 

catheter was inserted into the right ventricle of the heart, and the left ventricle was 

lanced. 50 ml of PBS then 50 ml of PFA was passed through the animal using a 

mechanical pump on its slowest setting. The brain was dissected out and placed in a 

Falcon tube with PFA for 4 hours on ice. The brain was then moved to a new tube with a 

solution of 30% sucrose in PBS to cryoprotect the tissue. After the tissue had sunk in the 

sucrose solution, it was stored at -80°C until cryosectioning.  

 

3.12. Thionin stain and facial motoneuron counts 

Flash frozen brains were sectioned at 25 µm on a cryostat, and sections containing 

the FMNuc were collected on Superfrost Plus slides. The sections were post-fixed in 4% 

PFA for 15 min, then washed in water for 2 × 5 min. Sections were stained with 1X 

thionin acetate for 10 min, rinsed with water for 30 sec, then dehydrated with a series of 

30 sec washes with 50%, 70%, 95%, and 100% EtOH. Slides were incubated in Hemo-

De clearing agent (Thermo Fisher Scientific; NC0174259) for a minimum of 3 days 

before coverslipping with Permount.  

An uninvolved investigator coded all slide sets to blind investigators to treatment 

groups. The FMNuc was located using a Leica DMRB microscope fitted with a digital 

camera (Microfire Optronics S97808) operated with Neurolucida version 10.31 software. 

The nucleus ambiguus and facial nerve were used to precisely locate the caudal and 

rostral edges of the FMNuc. FMN profiles displaying a clear nucleus and nucleolus were 
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quantified for the entire axotomized and control FMNuc. The Abercrombie correction 

factor [N = (n × T)/(T + D)] was applied, where N is the actual number of cells, n is the 

number of nuclear profiles, T is the thickness of the section (25 µm), and D is the average 

diameter of nuclei (18.8 µm for control, 18.5 µm for axotomized) (Mesnard et al., 2011). 

Mean percentage FMN survival was quantified by dividing the number of axotomized 

FMN by control FMN and multiplying by 100%. A student’s t-test was performed in 

Excel 2013 to compare control and experimental groups with p < 0.05.  
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Target Primer Sequence (5’ → 3’) 
IL-10fl/fl F CCA GCA TAG AGA GCT TGC ATT ACA 
IL-10fl/fl R GAG TCG GTT AGC AGT ATG TTG TCC AG 
GFAP-cre F GCC AGT CTA GCC CAC TCC TT 
GFAP-cre R TCC CTG AAC ATG TCC ATC AG 
GFAP-cre internal positive 
control F 

CTA GGC CAC AGA ATT GAA AGA TCT 

GFAP-cre internal positive 
control R 

GTA GGT GGA AAT TCT AGC ATC ATC C 

CX3CR1-cre common F  AAG ACT CAC GTG GAC CTG CT 
CX3CR1-cre mutant R CGG TTA TTC AAC TTG CAC CA 
CX3CR1-cre wild type R AGG ATG TTG ACT TCC GAG TTG 

Table 1: Forward and reverse primer sequences for PCR. 
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Gene  TaqMan ID RefSeq Accession 
Number  

Gfap Mm01253033_m1 NM_001131020.1, 
NM_010277.3 

Fas Mm01204974_m1 NM_007987.2 
Gap-43 Mm01144975_m1 NM_008083.2 
βII-tubulin (Tubb2a) Mm00809562_s1 NM_009450.2 
nNos (Nos1) Mm00435175_m1 D14552.1 (GenBank) 
Tnfα Mm00443260_g1 NM_013693.3 
Gapdh Mm99999915_g1 NM_001289726.1, 

NM_008084.3 
Arginase 1  Mm00475988_m1 NM_007482.3 
Interferon-γ Mm01168134_m1 NM_008337.3 
Interleukin-10 Mm00439614_m1 NM_010548.2 
Tradd Mm01251031_g1 NM_001033161.2 
Traf2 Mm00801978_m1 NM_001290413.1,  

NM_009422.3 
Fadd Mm00438861_m1 NM_010175.5 

Table 2: Catalog information for qPCR TaqMan assays ordered from Thermo Fisher 
Scientific.  
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CHAPTER 4: RESULTS 

4.1. Aim 1: Determine the source of neuroprotective IL-10 in the axotomized facial 

motor nucleus 

4.1.1. Validation of the IL-10/GFP reporter mouse  

An IL-10/GFP reporter mouse was employed to determine what cell type in the 

CNS parenchyma was responsible for producing neuroprotective IL-10 after FNA. The 

IL-10/GFP mouse was created by Dr. Christopher Karp’s laboratory at Cincinnati 

Children’s Hospital by knocking in an internal ribosome entry site conjugated to the GFP 

gene between the IL-10 stop and poly-A tail sequences. The final mRNA transcript of the 

IL-10 gene allows for translation of both the IL-10 and GFP proteins separately (Madan 

et al., 2009; Sun et al., 2009). 

To confirm the insertion of the GFP protein did not affect the axotomy model, 

FNA was performed on C57Bl/6 (WT) mice and IL-10/GFP reporter mice, and FMN 

survival was quantified at 28 dpo. IL-10/GFP FMN survival levels were not significantly 

different from WT (Figure 1, 84 ± 5% and 84 ± 3%, respectively, p = 0.57). WT FMN 

survival levels were comparable to previously published results (Serpe et al., 1999; 

Mesnard-Hoaglin et al., 2014).  

 

4.1.2. Fluorescent immunohistochemistry of the IL-10/GFP reporter mouse 

With confirmation that the IL-10/GFP FMN survival was comparable to WT, 

fluorescent immunohistochemistry (IHC) was performed to identify which cell types in 

the CNS produce IL-10. The hypothesis for this experiment was that microglia, not 

astrocytes or neurons, are the primary producers of IL-10 after FNA. This hypothesis was 
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based on previous studies in which microglia are described as sources of IL-10, 

especially in contexts where the microglia have adopted the neuroprotective M2 

phenotype (Zhang et al., 2014; Ma et al., 2015; Chu et al., 2016).  

 

4.1.2.1. GFP 

First, a characterization of GFP expression in the uninjured FMNuc was 

performed. Previous results indicate that there exists a baseline expression of IL-10 in the 

FMNuc, and the immunofluorescence in the reporter mouse line confirms this (Xin et al., 

2011). Because the endogenous GFP signal was weak, an anti-GFP antibody was 

employed to amplify the fluorescent signal. GFP was visibly detected in the uninjured 

FMNuc, as well as in the vasculature (data not shown). There were no visible differences 

in GFP expression between the control and axotomized FMNuc. Both punctate and 

neuronal-like forms of GFP were visible in both C and Ax FMNuc (Figures 2 and 3).  

 

4.1.2.2. Microglia 

The Iba1 antibody was used to assess microglia expression of IL-10. Iba1 is a 

microglia marker that was first described in 1996, and has been used in numerous 

neuroscience studies, including FNA studies (Imai et al., 1996; Graeber et al., 1998; Ito et 

al., 1998; Bohatschek et al., 2004a; Almolda et al., 2015). Unfortunately, the Iba1 

antibody was ineffective in labeling microglia on flash-frozen brain tissue. When this 

experiment was conducted on tissue from animals perfusion-fixed with 4% PFA, as 

described in other GFP reporter mouse experiments, the GFP signal in this specific 

animal model was ablated (Zamanian et al., 2012; Frakes et al., 2014; Greenhalgh et al., 
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2016). When tissue was flash-frozen then fixed on the slide for 15 min in cold 4% PFA, 

GFP signal was retained and both NeuN and GFAP antibodies worked effectively, 

however Iba1 failed to label microglia. Alternative antibodies were assessed for their 

ability to label microglia in flash-frozen tissue, however no success was achieved. Future 

directions for this experiment include examining alternative fixation strategies, such as 

2% PFA or paraformaldehyde/lysine/periodate fixation, for their effectiveness in 

preserving GFP signal and retaining microglia antigenicity.  

 

4.1.2.3. Astrocytes 

Next, GFP expression was assessed in astrocytes of the FMNuc. The astrocyte-

specific cell marker used was GFAP, a cytoskeletal protein within astrocytes. Astrocytes 

exist in a protoplasmic state in the uninjured FMNuc that is GFAP-, and after nerve 

injury, their phenotype shifts to a fibrillary phenotype that is strongly GFAP+ (Graeber et 

al., 1988; Hermanson et al., 1995; Laskawi & Wolff, 1996; Klein et al., 1997). In this 

study, the fibrillary phenotype was first detected at 3 dpo, and increased steadily 

throughout the timecourse, with the greatest number of GFAP+ astrocytes detected at 28 

dpo (Figure 2). At 3 and 7 dpo, GFAP+ astrocytes did not colocalize with GFP. At 10 

dpo, both GFAP+/GFP+ and GFAP+/GFP- astrocytes were detected. At 14 and 28 dpo, 

almost all GFAP+ astrocytes were GFP+. The inset from 28 dpo demonstrates that GFP 

labels the cytoplasm and processes of astrocytes. The MN-like morphology stain of GFP 

was still visible throughout the timecourse. Other small cells, likely microglia, were 

detectable as a DAPI nucleus surrounded by GFP that did not colocalize with NeuN or 

GFAP. To summarize, axotomy-activated astrocytes are negative for IL-10 in the early 
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post-axotomy phase, but at the late post-axotomy phase, astrocytes are induced to express 

IL-10.  

 

4.1.2.4. Neurons 

To verify the presence of GFP in the MN, neuronal nuclei (NeuN) 

immunostaining was used to label FMN. NeuN was first described as an exclusive 

neuronal marker in 1992 (Mullen et al., 1992). It was later discovered that NeuN is the 

protein product of the Fox-3 gene, and it is a splicing regulator protein that binds RNA 

that is also a component of the neuronal nuclear matrix (Kim et al., 2009; Dent et al., 

2010). After axotomy, NeuN phosphorylation diminishes antibody binding to the target, 

however this antibody affinity is not completely lost after axotomy (McPhail et al., 2004; 

Duffy et al., 2011; Tyzack et al., 2014; Yeh et al., 2017).  

NeuN staining of uninjured FMN colocalized strongly with the GFP signal, 

demonstrating that FMN are a source of IL-10 in the homeostatic FMNuc (Figure 3). 

After facial nerve injury, NeuN intensity decreased significantly relative to the uninjured 

side from 3-14 dpo, with some recovery of signal at 28 dpo. Although NeuN signal was 

diminished, there was sufficient signal to allow for GFP colocalization to be examined. 

From 3-28 dpo, GFP colocalized with NeuN labeling. The inset image from 7 dpo 

demonstrates this labeling pattern, with GFP visible in the cytoplasm of the FMN, and a 

central clearing for the center of the nucleus. Overall, based on the GFP morphology and 

its colocalization with NeuN and DAPI, MN expression of GFP appears to be constant 

over the postoperative timecourse, with no significant gain or loss of GFP expression 
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detected. These data suggest that FMN are a significant source of IL-10 both before and 

after axotomy, with no significant changes induced by axotomy.  

 

4.1.3. Selective knockdown of IL-10 and effects on FMN survival 

To identify if a cell-specific source of IL-10 is crucial for FMN survival after 

injury, cre/lox mice were generated in which the IL-10 gene was floxed in either GFAP-

cre or CX3CR1-cre mouse strains. Cre activity was induced with tamoxifen, FNA was 

performed, and FMN survival was quantified at 28 dpo. The control animals for this 

experiment were cre-negative or IL-10fl/- littermates that were also treated with tamoxifen 

and received FNA.  

The hypothesis for this experiment was that microglia-derived IL-10 is crucial for 

FMN survival, therefore, CXCR1-cre+/IL-10fl/fl mice were predicted to have significantly 

greater loss of FMN after axotomy compared to littermate controls. Based on this 

hypothesis, we predicted that GFAP-cre+/IL-10fl/fl mice would exhibit FMN survival 

comparable to WT because microglia-derived IL-10 would be unaffected. 

No significant loss of FMN was observed in CXCR1-cre+/IL-10fl/fl mice relative 

to littermate controls (Figure 4A, n = 8, 88 ± 3%, 83 ± 4%, p = 0.30, respectively). 

Similarly, GFAP-cre+/IL-10fl/fl mice FMN survival was not different from littermate 

controls (Figure 4B, n = 3, 81 ± 7%, 85 ± 7%, p = 0.71, respectively) 

Overall, these data suggest that neither microglia- nor astrocyte-specific IL-10 

production is critical for FMN survival after FNA. It is possible that mechanisms exist 

between microglia and astrocytes where one can compensate for the other’s lack of IL-10 
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production to promote FMN survival. Alternatively, the FMN itself may be the source of 

neuroprotective IL-10.  

 

4.2. Aim 2: Characterize gene expression profile changes after facial nerve axotomy 

in immunodeficient and WT CD4+ T cell immunoreconstituted mice 

4.2.1. Motoneuron regeneration response 

4.2.1.1. Gap-43 

Gap-43 is a growth cone protein that is necessary for regenerating the daughter 

axon and reconnecting to target musculature (Bomze et al., 2001; Benowitz & Popovich, 

2011). Measurement of Gap-43 expression after axotomy can be used to assess the MN 

regeneration response (Tetzlaff et al., 1991; Bisby & Tetzlaff, 1992; Mesnard et al., 2010; 

Mesnard et al., 2011; Haulcomb et al., 2014).  

Analysis of Gap-43 expression after FNA comparing WT and RAG-2-/- mice 

revealed a significant effect of group (Figure 5, F1,48 = 6.287, p = 0.016) and 

postoperative time (F4,48 = 101.069, p < 0.001). In the WT group, expression of Gap-43 

was significantly increased relative to control at 7, 14, and 28 dpo, and levels returned to 

baseline at 56 dpo (1083 ± 41%, 1239 ± 128%, 351 ± 38%, respectively; p < 0.05). In the 

RAG-2-/- group, Gap-43 expression was similarly increased relative to control at 7 and 14 

dpo, however, levels were not different from baseline at 28 and 56 dpo (873 ± 77%, 1057 

± 79%, respectively; p < 0.05). There were no statistically significant differences between 

the WT and RAG-2-/- groups at any timepoint. This finding suggests that 

immunodeficiency does not impair the MN regeneration response after axotomy.  
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With adoptive transfer of WT CD4+ T cells, Gap-43 expression differed 

significantly from uninjured control at 7, 14, and 28 dpo, and returned to baseline at 56 

dpo (1342 ± 81%, 1286 ± 92%, 485 ± 79%, respectively; p < 0.05). Gap-43 expression 

was significantly higher in the RAG-2-/- + WT CD4+ group relative to WT at 7 dpo (p = 

0.038). Comparing RAG-2-/- + WT CD4+ group to RAG-2-/- revealed significant 

differences in Gap-43 expression at 7, 14 and 28 dpo (p < 0.001, 0.020, and 0.004, 

respectively). These data indicate that CD4+ T cells modestly enhance the MN 

regeneration response after axotomy.  

 

4.2.1.2. βII-tubulin 

After axotomy, neurons upregulate expression of actin and tubulin cytoskeletal 

protein expression as part of the axonal regeneration program (Tetzlaff et al., 1988a; 

Tetzlaff et al., 1991; Bisby & Tetzlaff, 1992). βII-tubulin has been previously used a 

measurement of the MN regeneration response after axotomy (Mesnard et al., 2010; 

Mesnard et al., 2011).  

Analysis of βII-tubulin expression after FNA comparing WT and RAG-2-/- mice 

revealed a significant effect of postoperative time (Figure 6, F4,43 = 57.625, p < 0.001). In 

the WT group, expression of βII-tubulin was significantly increased relative to control at 

7, 14, and 28 dpo, and levels returned to baseline at 56 dpo (163 ± 12%, 168 ± 19%, 57 ± 

15%, respectively; p < 0.05). In the RAG-2-/- group, βII-tubulin expression was similarly 

increased relative to control at 7, 14 and 28 dpo, then returned to baseline at 56 dpo (160 

± 21%, 178 ± 19%, 43 ± 26%, respectively; p < 0.05). There were no statistically 

significant differences between the WT and RAG-2-/- groups at any timepoint. This 
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finding suggests that immunodeficiency does not alter the MN regeneration response 

after axotomy.  

With adoptive transfer of WT CD4+ T cells, βII-tubulin expression was 

significantly different from uninjured control at 7, 14, and 28 dpo, and returned to 

baseline at 56 dpo (169 ± 13%, 171 ± 14%, 96 ± 14%, respectively; p < 0.05). Comparing 

the RAG-2-/- + WT CD4+ group to WT revealed no significant differences in βII-tubulin 

expression throughout the timecourse. The comparison of the RAG-2-/- + WT CD4+ 

group to RAG-2-/- revealed significant differences in βII-tubulin expression at 28 dpo (p = 

0.026). These data indicate that CD4+ T cells do not significantly regulate the MN 

regeneration response after axotomy. The difference between the immunodeficiency and 

CD4+ T cell recipient groups may be a consequence of the increased FMN survival at 28 

dpo in the CD4+ T cell group, given that βII-tubulin is a MN-specific gene (Zhang et al., 

2014).  

 

4.2.2. Glial activation response 

4.2.2.1. Gfap 

Astrocytes play a key role after FNA, and their response to facial nerve injury has 

been well documented (Tetzlaff et al., 1988b; Hermanson et al., 1995; Laskawi & Wolff, 

1996; Klein et al., 1997). The role of GFAP in astrocyte function is previously described 

in section 4.1.2.3. 

Analysis of Gfap expression after FNA comparing WT and RAG-2-/- mice 

revealed a significant effect of group (Figure 7, F1,44 = 12.978, p < 0.001) and 

postoperative time (F4,44 = 24.101, p < 0.001). In the WT group, expression of Gfap was 
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significantly increased relative to control at 7, 14, 28, and 56 dpo (909 ± 97%, 805 ± 

71%, 644 ± 121%, 307 ± 45%, respectively; p < 0.05). In the RAG-2-/- group, Gfap 

expression was similarly increased relative to control at 7 and 14 dpo, then fell to 

baseline levels at 28 and 56 dpo (782 ± 249%, 480 ± 79%, respectively; p < 0.05). There 

were statistically significant differences between the WT and RAG-2-/- groups at 14 and 

28 dpo (p = 0.029 and 0.003, respectively). This finding suggests that immunodeficiency 

results in a failure to sustain astrocyte activation for the duration of the timecourse.  

With adoptive transfer of WT CD4+ T cells, Gfap expression differed 

significantly from uninjured control at 7, 14, 28, and 56 dpo (646 ± 32%, 911 ± 31% 763 

± 97% 236 ± 79%, respectively; p < 0.05). Comparing the RAG-2-/- + WT CD4+ group to 

WT revealed a significant difference in Gfap expression at 7 dpo (p = 0.011). Comparing 

RAG-2-/- + WT CD4+ group to RAG-2-/- revealed significant differences in Gfap 

expression at 14 and 28 dpo (p < 0.001 for both). These data indicate that CD4+ T cells 

are responsible for regulating astrocyte activation after axotomy. 

  

4.2.2.2. Cd68 

Cluster of differentiation 68 (CD68) is a transmembrane glycoprotein that belongs 

to the lysosomal-associated membrane protein (LAMP) family and is highly expressed in 

myeloid cells (Holness et al., 1993; Holness & Simmons, 1993; Gottfried et al., 2008). 

CD68 rapidly cycles between the cell surface and the endosomal/lysosomal 

compartments, with a majority of CD68 found in the late endosomal compartment 

(Kurushima et al., 2000). CD68 can bind to oxidized low density lipoprotein and 

liposomes, otherwise its function is largely unknown (Ramprasad et al., 1995). In the 
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CNS, CD68 expression is commonly used as a proxy measurement for microglia 

activation (Yoshihara et al., 2002; Chen et al., 2004; Beers et al., 2008).  

Analysis of Cd68 expression after FNA comparing WT and RAG-2-/- groups 

revealed a significant effect of group (Figure 8, F1,55 = 7.342, p = 0.009) and 

postoperative time (F4,55 = 17.366, p < 0.001). In the WT group, axotomy significantly 

increased Cd68 relative to the uninjured control at 7, 14, and 28 dpo, but not at 56 dpo 

(823 ± 109%, 772 ± 117%, 664 ± 78%, respectively; p < 0.05). In the RAG-2-/- group, 

Cd68 expression was also significantly elevated relative to baseline after axotomy at 7 

and 14 dpo, but not at 28 and 56 dpo (541 ± 73%, 654 ± 28%, respectively; p < 0.05). 

There was a statistically significant difference between the WT and RAG-2-/- groups at 28 

dpo (p = 0.036). This finding suggests that immunodeficiency results in dysregulation of 

the microglia activation response in the late phase post-axotomy.  

With adoptive transfer of WT CD4+ T cells, Cd68 expression was significantly 

different from baseline at 7, 14, 28, and 56 dpo (749 ± 93%, 810 ± 62%, 626 ± 104%, 

363 ± 103%, respectively; p < 0.05). There were no statistically significant differences 

between WT and RAG-2-/- + WT CD4+ groups at any timepoint. Comparing RAG-2-/- 

and RAG-2-/- + WT CD4+ groups revealed significant differences in Cd68 expression at 

28 and 56 dpo (p = 0.011, 0.037, respectively). These data suggest that CD4+ T cells 

regulate microglia activation after axotomy.  
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4.2.3. Inflammatory gene expression 

4.2.3.1. Tnfα 

Tnfα is a proinflammatory cytokine that is necessary for microglia expression of 

αXβ2 integrin, MHCI, and B7.2 costimulatory molecule expression after facial nerve 

injury (Raivich, 2002; Bohatschek et al., 2004a; Bohatschek et al., 2004b). Additionally, 

knocking out both TNFR1&2 simultaneously promotes motoneuron survival after facial 

nerve injury, suggesting that TNFα may have dual roles in immune-mediated 

neuroprotection (Raivich, 2002). 

For all groups and timepoints, there was no detectable Tnfα expression in the C 

FMNuc. Therefore, data shown is relative gene expression from the axotomized side 

only.  

Analysis of Tnfα expression after FNA comparing WT and RAG-2-/- groups 

revealed a significant effect of group (Figure 9, F1,26 = 10.004, p = 0.004) and a 

significant interaction between group × postoperative time (F3,26 = 5.166, p = 0.006). In 

the WT group, axotomy significantly increased Tnfα relative to the uninjured control at 7 

and 14 dpo, then returned to baseline levels at 28 and 56 dpo (4.43 x 10-4 ± 9.09 x 10-5, 

2.71 x 10-4 ± 1.04 x 10-4, respectively; p < 0.05). In the RAG-2-/- group, Tnfα expression 

was never significantly elevated relative to baseline at 7, 14, 28, or 56 dpo. There was a 

statistically significant difference between the WT and RAG-2-/- groups at 7 dpo (p < 

0.001). This finding suggests that immunodeficiency impairs early expression of Tnfα.  

With adoptive transfer of WT CD4+ T cells, Tnfα expression differed 

significantly from baseline at 7, 14, and 28 dpo, then levels returned to baseline at 56 dpo 

(3.30 x 10-4 ± 4.95 x 10-5, 5.64 x 10-4 ± 9.63 x 10-5, 3.18 x 10-4 ± 7.39 x 10-5, respectively; 



 

59 

p < 0.05). There were statistically significant differences between WT and RAG-2-/- + 

WT CD4+ groups at 14 dpo (p = 0.01). Comparing RAG-2-/- and RAG-2-/- + WT CD4+ 

groups revealed significant differences in Tnfα expression at 7, 14, and 28 dpo (p = 0.005, 

<0.001, 0.037, respectively). These data suggest that CD4+ T cells regulate inflammatory 

cytokine production after axotomy.  

 

4.2.3.2. Ifn-γ 

Ifn-γ expression has been described in previous studies done by our lab in the 

axotomized FMNuc (Mesnard et al., 2010; Mesnard et al., 2011) using SYBR green 

reagents and custom primers. With TaqMan assays, Ifn-γ expression could not be 

detected in the C or Ax FMNuc in either WT or RAG-2-/- animals at 0, 7, 14, 28, and 56 

dpo (n = 6 per group, per timepoint).  

 

4.2.3.3. Il-10 

Il-10 expression has been previously measured in our laboratory in 7 dpo WT and 

RAG-2-/- mice using SABiosciences primers (Xin et al., 2011). The TaqMan Il-10 assay 

was tested on WT animals at all the experimental timepoints (n = 1 per timepoint), and Il-

10 was not detectable in either the C or Ax FMNuc at any of the timepoints (data not 

shown).  
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4.2.4. Cell death receptor expression  

4.2.4.1. Tnfr1 

TNFR1 is a receptor that trimerizes after binding to TNFα, and via two cell 

signaling cascades, can either induce apoptosis via caspase 8 or trigger inflammatory 

gene expression via AP-1 and NF-κB (Baud & Karin, 2001; Wajant & Scheurich, 2011). 

Because of its association with cell death pathways, Tnfr1 expression was analyzed as a 

possible contributor to the increased MN death observed in RAG-2-/- mice.  

Analysis of Tnfr1 expression after FNA comparing WT and RAG-2-/- groups 

revealed a significant effect of postoperative time (Figure 10, F4,46 = 5.643, p < 0.001) 

and a significant interaction between group × postoperative time (F4,46 = 4.806, p = 

0.003). In the WT group, axotomy significantly increased Tnfr1 relative to the uninjured 

control only at 7 dpo (119 ± 31%; p < 0.05). In the RAG-2-/- group, Tnfr1 expression was 

significantly elevated relative to baseline after axotomy only at 14 dpo (139 ± 29%; p < 

0.05). There was a statistically significant difference between the WT and RAG-2-/- 

groups at both 7 and 14 dpo (p < 0.001, 0.029, respectively). These findings indicate a 

delayed Tnfr1 expression in immunodeficient animals relative to WT, correlating with the 

immunodeficient Tnfα expression response described previously.  

With adoptive transfer of WT CD4+ T cells, Tnfr1 expression is significantly 

different from baseline at 7, 14, 28, and 56 dpo (219 ± 13%, 220 ± 15%, 135 ± 12%, 73 ± 

6%, respectively; p < 0.05). There were statistically significant differences between WT 

and RAG-2-/- + WT CD4+ groups at 7, 14, and 28 dpo (p < 0.001, < 0.001, 0.005, 

respectively). Comparing RAG-2-/- and RAG-2-/- + WT CD4+ groups also revealed 

significant differences in Tnfr1 expression at 7, 14, and 28 dpo (p < 0.001, 0.002, 0.001, 
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respectively). These data indicate that when CD4+ T cells are isolated from the other 

cells of the adaptive arm of the immune system, they significantly increase Tnfr1 

expression. This result suggests that other lymphocytes, such as CD8+ T cells or B cells, 

modulate CD4+ T cell induction of Tnfr1. Regardless, this Tnfr1 expression is likely not 

associated with increased FMN death because FMN rescue is observed in RAG-2-/- + WT 

CD4+ T cell mice. Altogether, these data suggest that Tnfr1 expression after FNA is not 

correlated with apoptosis, instead, it is more likely associated with NF-κB activation.  

 

4.2.4.2. Tnfr1 transducers: Tradd, Fadd, Traf2 

TNFR1 activation can result in induction of cell death or NF-κB activation. 

TRADD (Tumor necrosis factor receptor type 1-associated death domain) is a protein 

associated with both signaling pathways. FADD (Fas-associated protein with death 

domain) is associated with transduction of apoptosis signaling, whereas TRAF2 (TNF 

receptor-associated factor 2) is associated with NF-κB activation (Baud & Karin, 2001). 

To determine if these two signaling pathways were differentially regulated by WT CD4+ 

T cells, mRNA levels of Tradd, Traf2, and Fadd were measured at 7, 14, and 28 dpo. For 

the genes examined, no significant induction of expression was observed in either WT or 

RAG-2-/- + WT CD4+ T cell groups after axotomy (data not shown). When tested by 

two-way ANOVA, there were no statistically significant differences between WT and 

RAG-2-/- + WT CD4+ T cell group expression profiles. To better understand the 

differential regulation of Tnfr1 expression after FNA, it is necessary to perform protein 

analysis of TNFR1 and its downstream mediators to quantify protein expression and 

assess protein activation status.  
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4.2.4.3. Fas 

Fas is a cell death receptor with special relevance to MN death observed in 

mSOD1 MND. Upon FasL binding, cell death can be induced by two downstream 

signaling cascades: the death-induced signaling complex (DISC) involving caspases 8 

and 3, or the Daxx/Ask1 (death-associated protein 6, apoptosis signal-regulating kinase 1, 

respectively) signaling cascade resulting in activation of neuronal nitric oxide synthase 

(nNos) (Raoul et al., 2002; Wajant, 2002). All CNS major cell types can produce FasL, 

with higher production in neurons and astrocytes (Flugel et al., 2000; Becher et al., 2006; 

Hovden et al., 2013; Zhang et al., 2014). Neuroimmunology studies reveal that this FasL 

expression by the brain protects the CNS from peripheral immune cells by utilizing Fas-

mediated apoptosis (Flugel et al., 2000; Becher et al., 2006). Examination of cell death 

pathways in mSOD1 mice reveals that MN, especially from mSOD1 mice, are highly 

sensitive to Fas and NO mediated death (Raoul et al., 2002). Further work describes that 

exogenous NO triggers FasL expression in MN (Raoul et al., 2006). Additionally, 

blocking the Fas signaling cascade by knocking out Daxx results in greater MN survival 

and decreased FasL expression in mSOD1 mice (Raoul et al., 2006). A study of cell death 

receptor expression after FNA on mSOD1 mice after FNA revealed that Fas/nNos 

signaling was highly expressed relative to WT, suggesting that the mSOD1 mutation 

leads to prominent expression of this cell death pathway (Haulcomb et al., 2014). 

Because Fas/nNos is related to MN death after target disconnection in mSOD1 MND, we 

wanted to explore if it played a role in the increased FMN death observed in 

immunodeficient animals.  



 

63 

Analysis of Fas expression after FNA comparing WT and RAG-2-/- groups 

revealed a significant effect of group (Figure 11, F1,52 = 10.566, p = 0.002) and 

postoperative time (F4,52 = 3.473, p = 0.014). In the WT group, axotomy significantly 

increased Fas expression relative to the uninjured control at 7, 14, 28, and 56 dpo (70 ± 

12%, 62 ± 16%, 62 ± 17%, 63 ± 21%, respectively; p < 0.05). In the RAG-2-/- group, Fas 

expression was not significantly elevated relative to baseline after axotomy at any of the 

examined timepoints. There was a statistically significant difference between the WT and 

RAG-2-/- groups at both 7 and 14 dpo (p = 0.002, 0.043, respectively). These findings 

suggest that Fas expression is not correlated with the increased neuronal loss observed in 

immunodeficient mice.  

With adoptive transfer of WT CD4+ T cells, Fas expression differed significantly 

from baseline at 28 and 56 dpo (76 ± 14%, 84 ± 29%, respectively; p < 0.05). There were 

statistically significant differences between WT and RAG-2-/- + WT CD4+ groups at 7 

dpo (p = 0.004). Comparing RAG-2-/- and RAG-2-/- + WT CD4+ groups also revealed 

significant differences in Fas expression at 56 dpo (p = 0.006). These data suggest that 

CD4+ T cells do not affect the early expression of Fas, however late expression of Fas 

does appear to be regulated by the adaptive arm of the immune system.  

 

4.2.4.4. nNos  

As described in the Fas section, nNos is a terminal step of the Fas signaling 

cascade that leads to apoptosis. Additionally, in the CNS, nNos expression is specifically 

located within MN, allowing it to be utilized as an indicator of MN-specific cell death 

(Raoul et al., 2002; Raoul et al., 2006; Haulcomb et al., 2014).  



 

64 

Analysis of nNos expression after FNA comparing WT and RAG-2-/- groups 

revealed a significant effect of postoperative time (Figure 12, F4,44 = 4.036, p = 0.007). In 

the WT group, axotomy significantly increased nNos relative to the uninjured control 

only at 56 dpo (26 ± 16%, respectively; p < 0.05). In the RAG-2-/- group, nNos expression 

was not significantly elevated relative to baseline after axotomy at any of the examined 

timepoints. There was a statistically significant difference between the WT and RAG-2-/- 

groups at 28 dpo (p = 0.042). These findings suggest that nNos expression, at most, is 

minorly associated with the increased neuronal loss observed at 28 dpo in 

immunodeficient mice.  

With adoptive transfer of WT CD4+ T cells, nNos expression differs significantly 

from baseline at 56 dpo (4 ± 10%, 13 ± 8%, 23 ± 4%, 92 ± 23%, respectively; p < 0.05). 

There were statistically significant differences between WT and RAG-2-/- + WT CD4+ 

groups at 56 dpo (p < 0.001). Comparing RAG-2-/- and RAG-2-/- + WT CD4+ groups also 

revealed significant differences in nNos expression at 56 dpo (p < 0.001). These data 

suggest that CD4+ T cells do not significantly modify nNos expression except at the 

latest stage of the timecourse.  

 

4.3. Aim 3: Analyze gene expression profile changes after facial nerve axotomy in 

mice immunoreconstituted with mSOD1 whole splenocytes or mSOD1 CD4+ T cells 

4.3.1. Motoneuron regeneration response 

4.3.1.1. Gap-43 

Comparing RAG-2-/- + WT WS mice to WT revealed a significant effect of both 

group (Figure 13A, F1,38 = 24.023, p < 0.001) and postoperative time (F3,38 = 39.362, p < 
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0.001). In the RAG-2-/- + WT WS group, Gap-43 expression was significantly increased 

relative to uninjured control at 7, 14, and 28 dpo, then levels returned to baseline at 56 

dpo (1552 ± 129%, 2064 ± 258%, 1075 ± 305%, respectively; p < 0.05). Gap-43 

expression was significantly increased in RAG-2-/- + WT WS mice relative to WT at 7, 

14, and 28 dpo (p = 0.044, <0.001, 0.002, respectively). These results indicate that 

provision of WS results in a significant increase in the MN regeneration response relative 

to WT, however this increased gene expression does not seem to translate to increased 

FMN survival after FNA.  

When RAG-2-/- + mSOD1 WS mice were compared to WT, a significant effect of 

group (Figure 13B, F1,41 = 31.420, p < 0.001) and postoperative time (F3,41 = 17.889, p < 

0.001) was observed. Additionally, there was a significant interaction between group × 

postoperative time (F3,41 = 3.839, p = 0.016). In the RAG-2-/- + mSOD1 WS group, Gap-

43 expression was significantly increased relative to uninjured control at 7, 14, and 28 

dpo, then levels returned to baseline at 56 dpo (3412 ± 662%, 2845 ± 470%, 1370 ± 

373%, respectively; p < 0.05). Gap-43 expression was significantly increased in RAG-2-/- 

+ mSOD1 WS mice relative to WT at 7, 14, and 28 dpo (p < 0.001, <0.001, 0.030, 

respectively). These results indicate that mSOD1 WS are also capable of augmenting the 

MN regeneration response.  

When the RAG-2-/- + mSOD1 WS and RAG-2-/- + WT WS groups were 

compared, the mSOD1 WS treatment resulted in a significantly increased Gap-43 

expression response at 7 dpo (Figure 13C, p = 0.002), and the groups had similar 

responses for the remainder of the time course. This elevated Gap-43 expression in the 
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RAG-2-/- + mSOD1 WS group is an intriguing finding given the increased FMN death 

observed in these animals after FNA.  

When RAG-2-/- + mSOD1 CD4+ T cell mice were compared to WT, a significant 

effect of group (Figure 13D, F1,42 = 36.893, p < 0.001) and postoperative time (F3,42 = 

45.542, p < 0.001) was observed. Additionally, there was a significant interaction 

between group × postoperative time (F3,42 = 8.172, p < 0.001). In the RAG-2-/- + mSOD1 

CD4+ group, Gap-43 expression was significantly increased relative to uninjured control 

at 7, 14, and 28 dpo, then levels returned to baseline at 56 dpo (2122 ± 293%, 3064 ± 

395%, 820 ± 218%, respectively; p < 0.05). Gap-43 expression was significantly 

increased in RAG-2-/- + mSOD1 CD4+ mice relative to WT at 7 and 14 dpo (p = 0.001, 

<0.001, respectively). These results indicate that mSOD1 CD4+ T cells increase the MN 

regeneration response relative to normal baseline.  

When the RAG-2-/- + mSOD1 CD4+ and RAG-2-/- + WT CD4+ groups were 

compared, the mSOD1 CD4+ treatment resulted in a significantly increased Gap-43 

expression response at 7 and 14 dpo (Figure 13E, p = 0.003, <0.001). This elevated Gap-

43 expression in the early phase suggests that the SOD1 mutation within the T cell results 

in a differential induction of the MN regenerative response relative to WT CD4+ T cells. 

Comparing the RAG-2-/- + mSOD1 CD4+ and RAG-2-/- + mSOD1 WS groups 

revealed a significant difference in Gap-43 expression at 7 dpo (Figure 13F, p = 0.019). 

Despite the greater FMN loss observed in the RAG-2-/- + mSOD1 WS group, there is a 

significantly greater MN regeneration response observed in this group in the early phase 

post-injury relative to the mSOD1 CD4+ T cell recipient group.  
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4.3.1.2. βII-tubulin 

Comparing RAG-2-/- + WT WS mice to WT revealed a significant effect of both 

group (Figure 14A, F1,33 = 15.900, p < 0.001) and postoperative time (F3,33 = 67.591, p < 

0.001). In the RAG-2-/- + WT WS group, βII-tubulin expression was significantly 

increased relative to uninjured control at 7, 14, and 28 dpo, then levels returned to 

baseline at 56 dpo (198 ± 6%, 216 ± 9%, 127 ± 20%, respectively; p < 0.05). βII-tubulin 

expression was significantly increased in RAG-2-/- + WT WS mice relative to WT at 14 

and 28 dpo (p = 0.015, <0.001, respectively). These data indicate that provision of WS 

results in a significant increase in the MN regeneration response relative to WT.  

When RAG-2-/- + mSOD1 WS mice were compared to WT, a significant effect of 

group (Figure 14B, F1,37 = 4.829, p = 0.034) and postoperative time (F3,37 = 53.941, p < 

0.001) were observed. In the RAG-2-/- + mSOD1 WS group, βII-tubulin expression was 

significantly increased relative to uninjured control at 7, 14, and 28 dpo, then levels 

returned to baseline at 56 dpo (160 ± 12%, 206 ± 21%, 113 ± 13%, respectively; p < 

0.05). βII-tubulin expression was significantly increased in RAG-2-/- + mSOD1 WS mice 

relative to WT at 28 dpo (p = 0.006). These results indicate that mSOD1 WS can 

modestly augment the MN regeneration response.  

When the RAG-2-/- + mSOD1 WS and RAG-2-/- + WT WS groups were 

compared, there were no significant differences in the βII-tubulin expression response 

(Figure 14C). 

When RAG-2-/- + mSOD1 CD4+ T cell mice were compared to WT, a significant 

effect of group (Figure 14D, F1,38 = 6.392, p = 0.016) and postoperative time (F3,38 = 

69.531, p < 0.001) were observed. Additionally, there was a significant interaction 
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between group × postoperative time (F3,38 = 5.568, p = 0.003). In the RAG-2-/- + mSOD1 

CD4+ group, βII-tubulin expression was significantly increased relative to uninjured 

control at 7, 14, and 28 dpo, then levels returned to baseline at 56 dpo (162 ± 7%, 200 ± 

19%, 134 ± 9%, respectively; p < 0.05). βII-tubulin expression was significantly increased 

in RAG-2-/- + mSOD1 CD4+ mice relative to WT at 28 dpo (p < 0.001). These results 

indicate that mSOD1 CD4+ T cells modestly increase the MN regeneration response 

relative to normal baseline.  

When the RAG-2-/- + mSOD1 CD4+ and RAG-2-/- + WT CD4+ groups were 

compared, the mSOD1 CD4+ treatment resulted in a significantly increased βII-tubulin 

expression response at 28 dpo (Figure 14E, p = 0.040). This elevated βII-tubulin 

expression suggests that the mSOD1 mutation within the T cell results in a differential 

induction of the MN regenerative response relative to WT CD4+ T cells. 

Comparing the RAG-2-/- + mSOD1 CD4+ and RAG-2-/- + mSOD1 WS groups 

revealed no significant differences in βII-tubulin throughout the timecourse (Figure 14F). 

Despite the greater FMN loss observed in the RAG-2-/- + mSOD1 WS group, there is a 

significantly greater MN regeneration response observed in this group in the early phase 

post-injury relative to the mSOD1 CD4+ T cell recipient group.  

 

4.3.2. Glial activation response 

4.3.2.1. Gfap 

Comparing RAG-2-/- + WT WS mice to WT revealed a significant effect of both 

group (Figure 15A, F1,34 = 98.170, p < 0.001) and postoperative time (F3,34 = 4.847, p = 

0.006) on Gfap expression. In the RAG-2-/- + WT WS group, Gfap expression was 
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significantly increased relative to uninjured control at 7, 14, 28, and 56 dpo (2234 ± 

213%, 2313 ± 255%, 2175 ± 435%, 1492 ± 4%, respectively; p < 0.05). Gfap expression 

was significantly increased in RAG-2-/- + WT WS mice relative to WT at 7, 14, 28, and 

56 dpo (p < 0.001 for each). These results indicate that adoptive transfer of WS results in 

a significant increase in the astrocyte activation response relative to WT.  

When RAG-2-/- + mSOD1 WS mice were compared to WT, a significant effect of 

group (Figure 15B, F1,38 = 45.296, p < 0.001) and postoperative time (F3,38 = 5.103, p = 

0.005) was observed. In the RAG-2-/- + mSOD1 WS group, Gfap expression was 

significantly increased relative to uninjured control at 7, 14, 28, and 56 dpo (2205 ± 

178%, 2681 ± 572%, 2080 ± 446%, 1116 ± 254%, respectively; p < 0.05). Gfap 

expression was significantly increased in RAG-2-/- + mSOD1 WS mice relative to WT at 

7, 14, 28, and 56 dpo (p < 0.001 for each). These results indicate that mSOD1 WS are 

also capable of inducing a strong astrocyte activation response.  

When the RAG-2-/- + mSOD1 WS and RAG-2-/- + WT WS groups were 

compared, there were no significant differences in the Gfap expression response (Figure 

15C). 

When RAG-2-/- + mSOD1 CD4+ T cell mice were compared to WT, a significant 

effect of group (Figure 15D, F1,39 = 87.272, p < 0.001) and postoperative time (F3,39 = 

3.704, p = 0.019) was observed. In the RAG-2-/- + mSOD1 CD4+ group, Gfap expression 

was significantly increased relative to uninjured control at 7, 14, 28, and 56 dpo (2203 ± 

385%, 3138 ± 270%, 2969 ± 313%, 1859 ± 515%, respectively; p < 0.05). Gfap 

expression was significantly increased in RAG-2-/- + mSOD1 CD4+ mice relative to WT 

at 7, 14, 28, and 56 dpo (p = 0.002, <0.001, <0.001, <0.001, respectively) These results 
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indicate that mSOD1 CD4+ T cells also significantly increase the astrocyte activation 

response relative to normal baseline.  

When the RAG-2-/- + mSOD1 CD4+ and RAG-2-/- + WT CD4+ groups were 

compared, the mSOD1 CD4+ treatment resulted in a significantly increased Gfap 

expression response at all post-axotomy timepoints (Figure 15E, p < 0.001 for each). This 

elevated Gfap expression suggests that mSOD1 CD4+ T cell differentially affect the 

astrocyte activation response relative to WT CD4+ T cells. 

Comparing the RAG-2-/- + mSOD1 CD4+ and RAG-2-/- + mSOD1 WS groups 

revealed no significant differences in Gfap levels throughout the timecourse (Figure 15F). 

Despite the greater FMN loss observed in the RAG-2-/- + mSOD1 WS group, there is 

comparable astrocyte activation observed between the two mSOD1 immunoreconstituted 

groups.  

 

4.3.2.2. Cd68 

Comparing RAG-2-/- + WT WS mice to WT revealed a significant effect of 

postoperative time (Figure 16A, F1, 46 = 5.795, p = 0.002) on Cd68 expression. In the 

RAG-2-/- + WT WS group, Cd68 expression was significantly increased relative to 

uninjured control at 7, 14, 28, and 56 dpo (811 ± 55%, 606 ± 49%, 636 ± 92%, 402 ± 

106%, respectively; p < 0.05). There were no significant differences in Cd68 expression 

between RAG-2-/- + WT WS and WT groups. These results indicate that adoptive transfer 

of WS results in an equivalent microglia activation response relative to WT.  

When RAG-2-/- + mSOD1 WS mice were compared to WT, a significant effect of 

postoperative time (Figure 16B, F3,38 = 6.972, p < 0.001) was observed. In the RAG-2-/- + 
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mSOD1 WS group, Cd68 expression was significantly increased relative to uninjured 

control at 7, 14, 28, and 56 dpo (857 ± 155%, 925 ± 125%, 920 ± 207%, 361 ± 76%, 

respectively; p < 0.05). Cd68 expression was not significantly different in RAG-2-/- + 

mSOD1 WS mice relative to WT. These results indicate that mSOD1 WS are also 

capable of inducing a microglia activation response comparable to WT.  

When the RAG-2-/- + mSOD1 WS and RAG-2-/- + WT WS groups were 

compared, there were no significant differences in the Cd68 expression response (Figure 

16C). 

When RAG-2-/- + mSOD1 CD4+ T cell mice were compared to WT, a significant 

effect of postoperative time (Figure 16D, F1,50 = 9.169, p < 0.001) was observed. In the 

RAG-2-/- + mSOD1 CD4+ group, Cd68 expression was significantly increased relative to 

uninjured control at 7, 14, 28, and 56 dpo (772 ± 127%, 725 ± 37%, 1063 ± 99%, 335 ± 

63%, respectively; p < 0.05). Cd68 expression was significantly increased in RAG-2-/- + 

mSOD1 CD4+ mice relative to WT at 28 dpo (p = 0.022) These results indicate that 

mSOD1 CD4+ T cells can modestly augment the microglia response at the late stage 

post-axotomy, otherwise the response is largely equivalent to WT.  

When the RAG-2-/- + mSOD1 CD4+ and RAG-2-/- + WT CD4+ groups were 

compared, the mSOD1 CD4+ treatment results in a significantly increased Cd68 

expression response at 28 dpo (Figure 16E, p = 0.001). This elevated Cd68 expression 

suggests that the there are some differences in the regulatory effects of mSOD1 and WT 

CD4+ T cells. 

Comparing the RAG-2-/- + mSOD1 CD4+ and RAG-2-/- + mSOD1 WS groups 

revealed no significant differences in Cd68 levels throughout the timecourse (Figure 
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16F). Despite the decreased FMN survival in the RAG-2-/- + mSOD1 WS group, there is 

comparable microglia activation observed between the two mSOD1 

immunoreconstitution groups.  

 

4.3.3. Inflammatory gene expression 

4.3.3.1. Tnfα 

Comparing RAG-2-/- + WT WS mice to WT revealed a significant effect of 

postoperative time (Figure 17A, F3, 28 = 9.060, p < 0.001) on Tnfα expression. There was 

also a significant interaction between group × postoperative time (F3, 28 = 3.507, p = 

0.028). In the RAG-2-/- + WT WS group, Tnfα expression was significantly increased 

relative to uninjured control at 7 and 28 dpo (2.71 x 10-4 ± 6.65 x 10-5, 3.45 x 10-4 ± 1.20 

x 10-4, respectively; p < 0.05). There were no significant differences in Tnfα expression 

between RAG-2-/- + WT WS and WT groups. These results indicate that adoptive transfer 

of WS results in an equivalent inflammatory cytokine expression response relative to 

WT.  

When RAG-2-/- + mSOD1 WS mice were compared to WT, a significant effect of 

postoperative time (Figure 17B, F3,29 = 7.698, p < 0.001) was observed. There was also a 

significant interaction between group × postoperative time (F3, 29 = 4.187, p = 0.014). In 

the RAG-2-/- + mSOD1 WS group, Tnfα expression was significantly increased relative to 

uninjured control at 7, 14, and 28 dpo (2.16 x 10-4 ± 5.83 x 10-5, 2.70 x 10-4 ± 1.33 x 10-5, 

3.67 x 10-4 ± 4.19 x 10-5, respectively; p < 0.05). Tnfα expression was significantly 

different in RAG-2-/- + mSOD1 WS mice relative to WT at 7 and 28 dpo (p = 0.011, 
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0.040, respectively). These results indicate that mSOD1 WS elicit a differential Tnfα 

expression response at both early and late post-axotomy phases.  

When the RAG-2-/- + mSOD1 WS and RAG-2-/- + WT WS groups were 

compared, there were no significant differences in the Tnfα expression response (Figure 

17C). 

When RAG-2-/- + mSOD1 CD4+ T cell mice were compared to WT, a significant 

effect of postoperative time (Figure 17D, F1,29 = 8.417, p < 0.001) was observed. There 

was also a significant interaction between group × postoperative time (F3, 29 = 3.387, p = 

0.031). In the RAG-2-/- + mSOD1 CD4+ group, Tnfα expression was significantly 

increased relative to uninjured control at 28 dpo (3.10 x 10-4 ± 8.41 x 10-5; p < 0.05). 

There was a significant difference between WT and RAG-2-/- + mSOD1 CD4+ expression 

of Tnfα at 7 dpo (p = 0.027).  

When the RAG-2-/- + mSOD1 CD4+ and RAG-2-/- + WT CD4+ groups were 

compared, the mSOD1 CD4+ treatment results in a significantly decreased Tnfα 

expression response at 14 dpo (Figure 17E, p = 0.003). This elevated Tnfα expression 

suggests that the mSOD1 CD4+ T cells differentially induce Tnfα expression relative to 

WT CD4+ T cells. 

Comparing the RAG-2-/- + mSOD1 CD4+ and RAG-2-/- + mSOD1 WS groups 

revealed no significant differences in Tnfα levels throughout the timecourse (Figure 17F). 

Although greater FMN loss occurs in the RAG-2-/- + mSOD1 WS group after FNA, the 

Tnfα expression profiles between the two mSOD1 immunoreconstituted groups are 

similar.  
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4.3.4. Cell death receptor expression 

4.3.4.1. Tnfr1 

Comparing RAG-2-/- + WT WS mice to WT revealed a significant effect of 

postoperative time (Figure 18A, F3, 34 = 5.112, p = 0.005) on Tnfr1 expression. In the 

RAG-2-/- + WT WS group, Tnfr1 expression was significantly increased relative to 

uninjured control at 7, 14, and 28 dpo (84 ± 2%, 96 ± 4%, 86 ± 17%, respectively; p < 

0.05). There were no significant differences in Tnfr1 expression between RAG-2-/- + WT 

WS and WT groups. These results indicate that adoptive transfer of WS results in an 

equivalent Tnfr1 expression response relative to WT.  

When RAG-2-/- + mSOD1 WS mice were compared to WT, a significant effect of 

postoperative time (Figure 18B, F3,38 = 6.638, p = 0.001) was observed. In the RAG-2-/- + 

mSOD1 WS group, Tnfr1 expression was significantly increased relative to uninjured 

control at 7, 14, 28, and 56 dpo (108 ± 5%, 102 ± 13%, 95 ± 13%, 44 ± 9%, respectively; 

p < 0.05). Tnfr1 expression was not significantly different in RAG-2-/- + mSOD1 WS 

mice relative to WT. These results indicate that mSOD1 WS are also capable of inducing 

a Tnfr1 expression response comparable to WT.  

When the RAG-2-/- + mSOD1 WS and RAG-2-/- + WT WS groups were 

compared, there were no significant differences in the Tnfr1 expression response (Figure 

18C). 

When RAG-2-/- + mSOD1 CD4+ T cell mice were compared to WT, a significant 

effect of postoperative time (Figure 18D, F3,39 = 4.718, p = 0.007) was observed. In the 

RAG-2-/- + mSOD1 CD4+ group, Tnfr1 expression was significantly increased relative to 

uninjured control at 7, 14, 28, and 56 dpo (88 ± 7%, 102 ± 11%, 91 ± 16%, 52 ± 9%, 
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respectively; p < 0.05). There were no significant differences in Tnfr1 expression 

between RAG-2-/- + mSOD1 CD4+ mice and WT mice. These results indicate that 

mSOD1 CD4+ T cells elicit a Tnfr1 expression response equivalent to WT.  

When the RAG-2-/- + mSOD1 CD4+ and RAG-2-/- + WT CD4+ groups were 

compared, the WT CD4+ treatment results in a significantly increased Tnfr1 expression 

response at 7, 14, and 28 dpo (Figure 18E, p < 0.001, <0.001, and 0.015, respectively). 

These differential Tnfr1 expression responses suggest that mSOD1 mutation affects the 

activity of isolated CD4+ T cells. 

Comparing the RAG-2-/- + mSOD1 CD4+ and RAG-2-/- + mSOD1 WS groups 

revealed no significant differences in Tnfr1 levels throughout the timecourse (Figure 

18F).  

 

4.3.4.2. Fas 

Comparing RAG-2-/- + WT WS mice to WT revealed a significant effect of 

postoperative time (Figure 19A, F4, 47 = 3.420, p = 0.016) on Fas expression. In the RAG-

2-/- + WT WS group, Fas expression was significantly increased relative to uninjured 

control at 28 and 56 dpo (65 ± 7%, 65 ± 31%, respectively; p < 0.05). There was a 

significant difference in Fas expression between RAG-2-/- + WT WS and WT groups at 7 

dpo (p = 0.024). These results indicate that adoptive transfer of WS does not increase Fas 

expression to WT levels in the early post-axotomy phase.  

When RAG-2-/- + mSOD1 WS mice were compared to WT, a significant effect of 

postoperative time (Figure 19B, F4,50 = 6.602, p < 0.001) was observed. In the RAG-2-/- + 

mSOD1 WS group, Fas expression was significantly increased relative to uninjured 



 

76 

control at 7, 14, 28, and 56 dpo (72 ± 23%, 55 ± 9%, 133 ± 23%, 82 ± 9%, respectively; p 

< 0.05). Fas expression was significantly different in RAG-2-/- + mSOD1 WS mice 

relative to WT at 28 dpo (p = 0.006). These results indicate that mSOD1 WS restore Fas 

expression at the early post-axotomy phase relative to WT levels, and also increase Fas 

expression in the late post-axotomy phase.  

When the RAG-2-/- + mSOD1 WS and RAG-2-/- + WT WS groups were 

compared, there were significant differences in the Fas expression response at 7 and 28 

dpo (Figure 19C, p = 0.025, 0.013, respectively). These findings demonstrate that WT 

WS do not affect early Fas expression, but mSOD1 WS do. At 28 dpo, mSOD1 WS 

significantly increase Fas expression. 

When RAG-2-/- + mSOD1 CD4+ T cell mice were compared to WT, a significant 

effect of postoperative time (Figure 19D, F3,44 = 7.115, p < 0.001) was observed. Also, 

there was a significant interaction between group × postoperative time (F3,44 = 7.919, p < 

0.001). In the RAG-2-/- + mSOD1 CD4+ group, Fas expression was significantly 

increased relative to uninjured control at 28 and 56 dpo (191 ± 32%, 81 ± 15%, 

respectively; p < 0.05). There was a significant difference in Fas expression between 

RAG-2-/- + mSOD1 CD4+ mice and WT mice at 28 dpo (p < 0.001). These results 

indicate that mSOD1 CD4+ T cells also increase Fas expression in the late post-axotomy 

phase. 

When the RAG-2-/- + mSOD1 CD4+ and RAG-2-/- + WT CD4+ groups were 

compared, the mSOD1 CD4+ treatment resulted in a significantly increased Fas 

expression response at 28 dpo (Figure 19E, p < 0.001). These findings suggest that 

mSOD1 mutation affects T cell induction of Fas expression.  
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Comparing the RAG-2-/- + mSOD1 CD4+ and RAG-2-/- + mSOD1 WS groups 

revealed that the mSOD1 CD4+ T cells elicit a significantly greater Fas expression at 28 

dpo (Figure 19F, p = 0.038). These data show that both mSOD1 lymphocyte groups 

results in augmented Fas expression at both early and late post-axotomy stages, with 

mSOD1 CD4+ T cells eliciting increased Fas expression at the late post-axotomy stage.  

 

4.3.4.3. nNos 

Comparing RAG-2-/- + WT WS mice to WT revealed a significant effect of 

postoperative time (Figure 20A, F3, 34 = 3.333, p = 0.031) on nNos expression. In the 

RAG-2-/- + WT WS group, nNos expression was not significantly different from 

uninjured control at any of the examined timepoints. There were no significant 

differences in nNos expression between RAG-2-/- + WT WS and WT groups. These 

results indicate that adoptive transfer of WS does not result in a differential nNos 

expression response relative to WT.  

When RAG-2-/- + mSOD1 WS mice were compared to WT, a significant effect of 

group (Figure 20B, F1,39 = 9.997, p = 0.003) was observed. In the RAG-2-/- + mSOD1 WS 

group, nNos expression was significantly increased relative to uninjured control at 28 and 

56 dpo (50 ± 25%, 62 ± 20%, respectively; p < 0.05). nNos expression was significantly 

different in RAG-2-/- + mSOD1 WS mice relative to WT at 28 dpo (p = 0.032). These 

results indicate that mSOD1 WS significantly increase nNos expression at the late post-

axotomy phase relative to WT.  

When the RAG-2-/- + mSOD1 WS and RAG-2-/- + WT WS groups were 

compared, there were no significant differences in the nNos expression response profiles 
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(Figure 20C). These findings demonstrate that WT WS and mSOD1 WS elicit 

comparable nNos expression responses. 

When RAG-2-/- + mSOD1 CD4+ T cell mice were compared to WT, a significant 

effect of postoperative time (Figure 20D, F3,38 = 5.804, p = 0.002) was observed. Also, 

there was a significant interaction between group × postoperative time (F3,38 = 4.647, p = 

0.007). In the RAG-2-/- + mSOD1 CD4+ group, nNos expression remained at baseline 

levels for the duration of the timecourse. There was a significant difference in nNos 

expression between RAG-2-/- + mSOD1 CD4+ mice and WT mice at 14 dpo (p = 0.009). 

These results indicate that mSOD1 CD4+ T cells increase nNos expression in the early 

post-axotomy phase. 

When the RAG-2-/- + mSOD1 CD4+ and RAG-2-/- + WT CD4+ groups were 

compared, the WT CD4+ treatment resulted in a significantly increased nNos expression 

response at 56 dpo (Figure 20E, p < 0.001). These findings suggest that there is a modest 

differential effect of the mSOD1 mutation on isolated T cell regulation of nNos 

expression at the late post-axotomy phase.  

Comparing the RAG-2-/- + mSOD1 CD4+ and RAG-2-/- + mSOD1 WS groups 

revealed that the mSOD1 WS treatments elicits a significantly greater nNos expression at 

7 and 56 dpo (Figure 20F, p = 0.030, 0.020, respectively). These data show that adoptive 

transfer of mSOD1 WS results in a significantly greater expression of a MN-specific 

death mechanism relative to mSOD1 CD4+ T cells alone.  
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Figure 1: FMN survival in IL-10/GFP mice. 

Average percent FMN survival ± SEM after FNA at 28 dpo.  
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Figure 2: GFAP colocalization with IL-10/GFP. 
 
GFAP fluorescent immunohistochemistry images at 40× magnification for the Ax 
FMNuc throughout the time course with IL-10/GFP reporter (green), GFAP (red), and 
nucleus (DAPI, blue) labeling. Numbers in the left correspond to days post-operation 
(dpo). 
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Figure 3: NeuN colocalization with IL-10/GFP. 
 
Fluorescent immunohistochemistry images at 40× magnification of the Ax FMNuc 
throughout the time course with IL-10/GFP reporter (green), NeuN (red), and nucleus 
(DAPI, blue) labeling. Left column numbers are days post-operation (dpo).   
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Figure 4: FMN survival in CX3CR1-cre/IL-10fl/fl and GFAP-cre/IL-10fl/fl mice. 

Average percent FMN survival ± SEM after FNA at 28 dpo. 
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Figure 5: Gap-43 gene expression profile after FNA in WT, RAG-2-/-, and RAG-2-/- + 
WT CD4+ T cell groups.  
 
mRNA expression of Gap-43 in the facial motor nucleus following facial nerve axotomy 
(Ax), relative to the control (C) facial motor nucleus. Mean percent change ± SEM was 
plotted across uninjured (0) and 7, 14, 28, and 56 days post-operation (dpo) timepoints. 
Symbols used: *: p < 0.05 comparing WT to RAG-2-/-; $: p < 0.05 comparing WT to 
RAG-2-/- + CD4+ T cells; and #: p < 0.05 comparing RAG-2-/- to RAG-2-/- + CD4+ T 
cells. 
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Figure 6: βII-tubulin gene expression profile after FNA in WT, RAG-2-/-, and RAG-2-/- + 
WT CD4+ T cell groups. 
 
mRNA expression of βII-tubulin in the facial motor nucleus following facial nerve 
axotomy (Ax), relative to the control (C) facial motor nucleus. Mean percent change ± 
SEM was plotted across uninjured (0) and 7, 14, 28, and 56 days post-operation (dpo) 
timepoints. Symbols used: *: p < 0.05 comparing WT to RAG-2-/-; $: p < 0.05 comparing 
WT to RAG-2-/- + CD4+ T cells; and #: p < 0.05 comparing RAG-2-/- to RAG-2-/- + 
CD4+ T cells. 
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Figure 7: Gfap gene expression profile after FNA in WT, RAG-2-/-, and RAG-2-/- + WT 
CD4+ T cell groups. 
 
mRNA expression of Gfap in the facial motor nucleus following facial nerve axotomy 
(Ax), relative to the control (C) facial motor nucleus. Mean percent change ± SEM was 
plotted across uninjured (0) and 7, 14, 28, and 56 days post-operation (dpo) timepoints. 
Symbols used: *: p < 0.05 comparing WT to RAG-2-/-; $: p < 0.05 comparing WT to 
RAG-2-/- + CD4+ T cells; and #: p < 0.05 comparing RAG-2-/- to RAG-2-/- + CD4+ T 
cells. 
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Figure 8: Cd68 gene expression profile after FNA in WT, RAG-2-/-, and RAG-2-/- + WT 
CD4+ T cell groups. 
 
mRNA expression of Cd68 in the facial motor nucleus following facial nerve axotomy 
(Ax), relative to the control (C) facial motor nucleus. Mean percent change ± SEM was 
plotted across uninjured (0) and 7, 14, 28, and 56 days post-operation (dpo) timepoints. 
Symbols used: *: p < 0.05 comparing WT to RAG-2-/-; $: p < 0.05 comparing WT to 
RAG-2-/- + CD4+ T cells; and #: p < 0.05 comparing RAG-2-/- to RAG-2-/- + CD4+ T 
cells. 
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Figure 9: Tnfα gene expression profile after FNA in WT, RAG-2-/-, and RAG-2-/- + WT 
CD4+ T cell groups. 
 
mRNA expression of Tnfα in the facial motor nucleus following facial nerve axotomy 
(Ax), relative to the control (C) facial motor nucleus. Mean percent change ± SEM was 
plotted across uninjured (0) and 7, 14, 28, and 56 days post-operation (dpo) timepoints. 
Symbols used: *: p < 0.05 comparing WT to RAG-2-/-; $: p < 0.05 comparing WT to 
RAG-2-/- + CD4+ T cells; and #: p < 0.05 comparing RAG-2-/- to RAG-2-/- + CD4+ T 
cells. 
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Figure 10: Tnfr1 gene expression profile after FNA in WT, RAG-2-/-, and RAG-2-/- + WT 
CD4+ T cell groups. 
 
mRNA expression of Tnfr1 in the facial motor nucleus following facial nerve axotomy 
(Ax), relative to the control (C) facial motor nucleus. Mean percent change ± SEM was 
plotted across uninjured (0) and 7, 14, 28, and 56 days post-operation (dpo) timepoints. 
Symbols used: *: p < 0.05 comparing WT to RAG-2-/-; $: p < 0.05 comparing WT to 
RAG-2-/- + CD4+ T cells; and #: p < 0.05 comparing RAG-2-/- to RAG-2-/- + CD4+ T 
cells. 
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Figure 11: Fas gene expression profile after FNA in WT, RAG-2-/-, and RAG-2-/- + WT 
CD4+ T cell groups. 
 
mRNA expression of Fas in the facial motor nucleus following facial nerve axotomy 
(Ax), relative to the control (C) facial motor nucleus. Mean percent change ± SEM was 
plotted across uninjured (0) and 7, 14, 28, and 56 days post-operation (dpo) timepoints. 
Symbols used: *: p < 0.05 comparing WT to RAG-2-/-; $: p < 0.05 comparing WT to 
RAG-2-/- + CD4+ T cells; and #: p < 0.05 comparing RAG-2-/- to RAG-2-/- + CD4+ T 
cells. 
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Figure 12: nNos gene expression profile after FNA in WT, RAG-2-/-, and RAG-2-/- + WT 
CD4+ T cell groups. 
 
mRNA expression of nNos in the facial motor nucleus following facial nerve axotomy 
(Ax), relative to the control (C) facial motor nucleus. Mean percent change ± SEM was 
plotted across uninjured (0) and 7, 14, 28, and 56 days post-operation (dpo) timepoints. 
Symbols used: *: p < 0.05 comparing WT to RAG-2-/-; $: p < 0.05 comparing WT to 
RAG-2-/- + CD4+ T cells; and #: p < 0.05 comparing RAG-2-/- to RAG-2-/- + CD4+ T 
cells. 
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Figure 13: Gap-43 gene expression profile after FNA in RAG-2-/- + WT WS, RAG-2-/- + 
mSOD1 WS and RAG-2-/- + mSOD1 CD4+ T cell groups. 
 
mRNA expression of Gap-43 in the facial motor nucleus following facial nerve axotomy 
(Ax), relative to the control (C) facial motor nucleus. Mean percent change ± SEM was 
plotted across uninjured (0) and 7, 14, 28, and 56 days post-operation (dpo) timepoints. 
Symbols used: *: p < 0.05. 
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Figure 14: βII-tubulin gene expression profile after FNA in RAG-2-/- + WT WS, RAG-2-/- 
+ mSOD1 WS and RAG-2-/- + mSOD1 CD4+ T cell groups. 
mRNA expression of βII-tubulin in the facial motor nucleus following facial nerve 
axotomy (Ax), relative to the control (C) facial motor nucleus. Mean percent change ± 
SEM was plotted across uninjured (0) and 7, 14, 28, and 56 days post-operation (dpo) 
timepoints. Symbols used: *: p < 0.05. 
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Figure 15: Gfap gene expression profile after FNA in RAG-2-/- + WT WS, RAG-2-/- + 
mSOD1 WS and RAG-2-/- + mSOD1 CD4+ T cell groups. 
 
mRNA expression of Gfap in the facial motor nucleus following facial nerve axotomy 
(Ax), relative to the control (C) facial motor nucleus. Mean percent change ± SEM was 
plotted across uninjured (0) and 7, 14, 28, and 56 days post-operation (dpo) timepoints. 
Symbols used: *: p < 0.05. 
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Figure 16: Cd68 gene expression profile after FNA in RAG-2-/- + WT WS, RAG-2-/- + 
mSOD1 WS and RAG-2-/- + mSOD1 CD4+ T cell groups. 
 
mRNA expression of Cd68 in the facial motor nucleus following facial nerve axotomy 
(Ax), relative to the control (C) facial motor nucleus. Mean percent change ± SEM was 
plotted across uninjured (0) and 7, 14, 28, and 56 days post-operation (dpo) timepoints. 
Symbols used: *: p < 0.05. 
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Figure 17: Tnfα gene expression profile after FNA in RAG-2-/- + WT WS, RAG-2-/- + 
mSOD1 WS and RAG-2-/- + mSOD1 CD4+ T cell groups. 
 
mRNA expression of Tnfα in the facial motor nucleus following facial nerve axotomy 
(Ax), relative to the control (C) facial motor nucleus. Mean percent change ± SEM was 
plotted across uninjured (0) and 7, 14, 28, and 56 days post-operation (dpo) timepoints. 
Symbols used: *: p < 0.05. 
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Figure 18: Tnfr1 gene expression profile after FNA in RAG-2-/- + WT WS, RAG-2-/- + 
mSOD1 WS and RAG-2-/- + mSOD1 CD4+ T cell groups. 
 
mRNA expression of Tnfr1 in the facial motor nucleus following facial nerve axotomy 
(Ax), relative to the control (C) facial motor nucleus. Mean percent change ± SEM was 
plotted across uninjured (0) and 7, 14, 28, and 56 days post-operation (dpo) timepoints. 
Symbols used: *: p < 0.05. 
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Figure 19: Fas gene expression profile after FNA in RAG-2-/- + WT WS, RAG-2-/- + 
mSOD1 WS and RAG-2-/- + mSOD1 CD4+ T cell groups. 
 
mRNA expression of Fas in the facial motor nucleus following facial nerve axotomy 
(Ax), relative to the control (C) facial motor nucleus. Mean percent change ± SEM was 
plotted across uninjured (0) and 7, 14, 28, and 56 days post-operation (dpo) timepoints. 
Symbols used: *: p < 0.05. 
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Figure 20: nNos gene expression profile after FNA in RAG-2-/- + WT WS, RAG-2-/- + 
mSOD1 WS and RAG-2-/- + mSOD1 CD4+ T cell groups. 
 
mRNA expression of nNos in the facial motor nucleus following facial nerve axotomy 
(Ax), relative to the control (C) facial motor nucleus. Mean percent change ± SEM was 
plotted across uninjured (0) and 7, 14, 28, and 56 days post-operation (dpo) timepoints. 
Symbols used: *: p < 0.05. 
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CHAPTER 5: DISCUSSION 

5.1. Aim 1 Discussion 

Facial nerve axotomy in immunodeficient mice causes significantly more 

motoneuron loss relative to WT mice, indicating that the immune system is 

neuroprotective. This immune-mediated neuroprotection has been subsequently shown to 

involve both CD4+ T cells and IL-10. IL-10 is an important immunoregulatory factor that 

reduces inflammatory cytokine production, promotes tissue repair, and exerts therapeutic 

benefits in many neurodegenerative diseases, including ALS (Kiyota et al., 2012; Joniec-

Maciejak et al., 2014; Gravel et al., 2016; Zhou et al., 2016). While IL-10 is necessary for 

CD4+ T cell-mediated neuroprotection after target disconnection, it appears that CD4+ T 

cells are not the source of IL-10 (Xin et al., 2011). Rather, evidence in the literature 

suggests that neuroprotective IL-10 must derive from a CNS source, in part, because it 

cannot cross the BBB (Kastin et al., 2003; Xin et al., 2011). To fully understand the 

mechanism of CD4+ T cell-mediated neuroprotection, it is necessary to identify the cell 

source of IL-10 and its functional significance relative to motoneuron survival after 

injury.  

There is evidence that microglia are the IL-10 source based on the M1/M2 

microglia paradigm characterizing neuroprotective M2 microglia as robust manufacturers 

of IL-10 (Tam & Ma, 2014). Axotomy-activated T cells require antigen presentation in 

the CNS for neuroprotective secondary re-activation to occur, and microglia are the 

primary APC in the CNS (Aloisi, 1999; Byram et al., 2004; Byram et al., 2006). 

Furthermore, T cell-derived IL-4 is required for immune-mediated neuroprotection, and 

IL-4 promotes the M2 microglia phenotype (Deboy et al., 2006b; Chhor et al., 2013; Tam 
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& Ma, 2014). Also, IL-10 receptors are expressed by astrocytes and neurons in the facial 

motor nucleus (Xin et al., 2011). Altogether, this evidence leads to the hypothesis that 

antigen presentation by microglia activates IL-4 production by CD4+ T cells, which, in 

turn, induces the M2 microglia phenotype. These M2 microglia produce IL-10 that binds 

to IL-10 receptors on astrocytes and neurons to regulate their post-axotomy response to 

promote neuronal survival.  

 

5.1.1. Microglia are an IL-10 source in the axotomized facial motor nucleus 

Microglia production of IL-10 before and after facial nerve axotomy was assessed 

using multiple approaches. IL-10 protein quantification from isolated microglia in the 

cre/lox mouse validation process proves that microglia are a source of IL-10. However, 

the kinetics of IL-10 production by microglia within the facial motor nucleus after facial 

nerve axotomy remain unknown. Technical difficulties arose when immunofluorescent 

colocalization analysis was performed on IL-10/GFP reporter mice with microglia-

specific markers. Specifically, the tissue fixation required to preserve microglia-specific 

antigens ablates the GFP signal. At this time, the conclusion can be made that microglia 

produce IL-10, but their production of IL-10 after facial nerve axotomy has yet to be 

determined.  

To address the issue of microglial IL-10 production after FNA, three approaches 

can be explored. First, alternative tissue fixation strategies could be tested to see if they 

can preserve both GFP signal and microglia antigenicity. 1% PFA or paraformaldehyde-

lysine-periodate (PLP) fixatives are used in other studies to preserve GFP fluorescence 

(Komis, 2012; Bond, 2013). If this protocol modification succeeds, the amount of 
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colocalization between the different cell markers and GFP can be quantified using 

ImageJ, adding a more objective measure of cell-specific IL-10 production. Second, use 

of a direct IL-10 antibody could be assessed (Park et al., 2007; Wada et al., 2013). This 

approach was initially avoided because an IL-10 antibody could label both IL-10 within 

producing cells and effector IL-10 bound to cell receptors, which would confuse which 

cell is the source of IL-10. A colocalization assessment of the IL-10 antibody against the 

GFP fluorescence from the IL-10/GFP reporter mouse would support or refute this 

concern. If the IL-10 antibody staining recapitulated the GFP distribution in the IL-

10/GFP reporter, it could be used in immunohistochemistry colocalization with microglia 

markers on perfused WT brain tissue. Third, flow cytometry could be performed on the 

FMNuc to characterize IL-10 expression in a cell-specific manner (Cardona et al., 2006; 

Sun et al., 2009). A potential pitfall of this approach is that the small cell population of 

the FMNuc (about 2,000 FMN and 4,000-20,000 glia) may lead to detection issues. To 

resolve this problem, FMNuc from multiple animals could be pooled to reach sufficient 

cell numbers for flow cytometry. An advantage of this method is that intracellular IL-10 

could be directly immunolabeled in WT animals, avoiding the expense associated with 

IL-10/GFP reporter mice (Xin et al., 2008). Also, mean fluorescence intensity could be 

measured, allowing for quantification of IL-10 expression by each cell type (Xin et al., 

2008). Measuring microglia production of IL-10 after FNA will help in determining the 

sequence of events involved in immune-mediated neuroprotection. 

Numerous studies describe IL-10 production by microglia. Transcriptomic 

analysis of IL-10 expression in the brain indicates that microglia express more IL-10 

transcript than any other CNS cell type (Zhang et al., 2014). Multiple in vitro 
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experiments describe microglial IL-10 mRNA and protein production in both homeostatic 

conditions and after LPS challenge (Ledeboer et al., 2002; Tam & Ma, 2014; Ooi et al., 

2015; Chu et al., 2016; Gravel et al., 2016). In vivo LPS challenge also induces IL-10 

production by microglia (Gravel et al., 2016). An analysis of cell-specific IL-10 

production after LPS injection into rat cerebral cortex using immunofluorescent 

colocalization determined that microglia are the predominant producers of IL-10 (Park et 

al., 2007). In normal human brain tissue, microglia are not shown to express IL-10, 

however in multiple sclerosis lesions and areas of cerebral infarction, microglial 

expression of IL-10 is observed (Hulshof et al., 2002). Altogether, our work supports the 

evidence in the literature that microglia produce IL-10, and future experiments will 

determine the kinetics of IL-10 expression by microglia after facial nerve injury.  

 

5.1.2. Astrocyte expression of IL-10 is induced by axotomy 

Astrocyte expression of IL-10 was examined using colocalization 

immunohistochemistry on IL-10/GFP reporter mice. Unexpectedly, an induction of IL-10 

expression in astrocytes following axotomy was observed. The increase in IL-10 

expression coincides with the developing astrocyte activation response after axotomy, 

with maximal astrocytic expression of IL-10 at the late post-axotomy phase. This finding 

was surprising given that most literature focuses on microglia as the primary IL-10 

source. Part of this microglia-centric focus derives from the Ledeboer et al. 2002 study 

which compared astrocyte and microglia IL-10 mRNA and protein production in vitro. 

This study concluded that microglia express significantly greater quantities of IL-10 at 

homeostasis and after LPS stimulation than astrocytes. A study of LPS injection into rat 
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cerebral cortex identified a few astrocytes as immunopositive for IL-10 at 1 dpo using 

IHC, however microglia colocalized much more strongly with IL-10 at this timepoint 

(Park et al., 2007). In human brain tissue, astrocytes are the predominant producer of IL-

10. Astrocytes constitutively express IL-10 in normal human brain tissue, and in multiple 

sclerosis lesions and infarcted areas, greater IL-10 expression was observed in astrocytes 

relative to microglia. Primary human astrocyte in vitro examination confirms these 

findings (Hulshof et al., 2002). Further evidence for IL-10 expression by astrocytes 

comes from identification of microRNA 181 (miR-181) as a key regulator of astrocyte 

cytokine expression. Knockdown of miR-181 leads to proinflammatory cytokine 

production, whereas overexpression of miR-181 significantly increases IL-10 production 

by astrocytes in vitro (Hutchison et al., 2013). Altogether, these findings support the 

literature describing astrocyte production of IL-10.  

One shortcoming of this experiment is that GFAP does not label astrocytes in the 

uninjured facial motor nucleus (Graeber et al., 1988; Hermanson et al., 1995; Laskawi & 

Wolff, 1996; Klein et al., 1997; Horvat et al., 2001). Because our results suggest that 

astrocytes may be a significant source of IL-10 after FNA, it is imperative to assess 

astrocyte production both pre- and post-injury. To resolve this problem, an ALDH1L1 

antibody could be employed, which labels a broader population of astrocytes (Zamanian 

et al., 2012; Tyzack et al., 2014). ALDH1L1, also known as FDH (10-

formyltetrahydrofolate dehydrogenase), is a protein that participates in the production of 

tetrahydrofolate for nucleotide synthesis and methionine recycling (Krupenko, 2009; 

Yang et al., 2011). Recent studies advocate the use of ALDH1L1 antibody as a superior 

pan-astrocyte marker in comparison to GFAP (Cahoy et al., 2008; Yang et al., 2011; 
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Tong et al., 2014). In addition, combining astrocyte labeling with quantitative 

measurement of colocalization with GFP will provide an objective characterization of the 

effect of axotomy on astrocytic IL-10 production. In summary, our findings define a role 

for astrocytes in anti-inflammatory cytokine production after FNA. 

 

5.1.3. Constitutive neuronal expression of IL-10 is not impacted by axotomy 

Neuronal expression of IL-10 was also assessed in this study. The colocalization 

analysis utilizing IL-10/GFP mice reveals that facial motoneurons constitutively express 

IL-10, and axotomy does not alter this expression. This finding was unexpected given 

that most other studies do not report neuronal expression of IL-10. Both transcriptomic 

and proteomic analysis of neurons do not indicate that neurons are significant producers 

of IL-10, however homeostatic IL-16 and IL-18 production is described (Yu et al., 2004; 

Yang et al., 2005; Liao et al., 2008; Dammer et al., 2013; Zhang et al., 2014; Sharma et 

al., 2015). An extensive human proteome characterization project used 

immunohistochemistry to determine that neurons highly express IL-10, and glial cells 

express comparatively low levels of IL-10 (Uhlen 2015). Neuronal expression of other 

cytokines, such as TNFα, CCL2, IL-6, and TGF-β have been reported both constitutively 

and after injury (Liu et al., 1994; Acarin et al., 2000; Banisadr et al., 2005; White et al., 

2005). A previous study from our laboratory determined that CCL11 expression shifts 

from neurons to astrocytes in the axotomized facial motor nucleus. As the post-axotomy 

response resolves, neurons regain CCL11 expression (Wainwright et al., 2009c). Given 

that IL-10 protein levels do not change in the facial motor nucleus after axotomy, a 

similar neuron-to-glia shift in IL-10 production could be predicted, however is not 
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evident in the histology in this study (Xin et al., 2011). A quantitative analysis of cell-

specific IL-10 production in the facial motor nucleus is necessary to objectively describe 

the immunofluorescent findings. 

Overall, further characterization of cytokine expression by neurons will help 

understand their importance in CNS health and disease. Our novel finding of IL-10 

production by neurons represents an understudied area of neuroscience and could be a 

significant contributor to neuroprotective mechanisms.  

 

5.1.4. Neither microglial nor astrocytic IL-10 are required for neuronal survival after 

axotomy  

The functional significance of cell-specific IL-10 production after nerve injury 

was assessed using conditional knockdown mice. Our hypothesis was that microglia-

specific IL-10 was imperative for immune-mediated neuroprotection. When IL-10 was 

knocked down in microglia, no negative effects on facial motoneuron survival after 

axotomy were observed, refuting this hypothesis. This finding makes sense in the context 

of the histology data indicating that microglia, astrocytes, and neurons all produce IL-10. 

With the discovery that IL-10 expression is induced in astrocytes after axotomy, the 

effect of IL-10 knockdown in astrocytes was examined, and no effect on motoneuron 

survival after axotomy was observed.  

Together, these data present two possibilities: either a compensatory mechanism 

exists between astrocytes and microglia for IL-10 production, or neuronal IL-10 is 

necessary for neuroprotection. Of these two scenarios, neuronal IL-10 is less likely to be 

the key for neuroprotection because its expression remains unchanged after axotomy. 
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Instead, compensatory mechanisms between astrocytes and microglia to supplement IL-

10 production should be explored. Co-culture studies demonstrate multiple bidirectional 

communication pathways between astrocytes and microglia. For example, when 

astrocytes are mechanically stimulated in co-culture, they release ATP that binds to the 

P2X7 purinergic receptors on microglia, inducing a calcium wave in microglia (Verderio 

& Matteoli, 2001). Conversely, LPS induces microglia to release ATP, which binds to the 

purinergic receptor P2Y1R on astrocytes to increase excitatory postsynaptic currents 

(Pascual et al., 2012). In vitro, astrocyte conditioned media regulates microglia 

production of reactive oxygen species (Min et al., 2006). Microglia conditioned media 

also regulates astrocyte production of tenascin, an extracellular matrix protein (Smith & 

Hale, 1997). Microglia express significantly greater quantities of cytokines after LPS 

challenge when co-cultured with astrocytes than in isolation (Barbierato et al., 2013). 

Transgenic astrocytes that overexpress either IL-6 or IL-10 in vivo induce significant 

morphological and phenotypic changes in microglia (Almolda et al., 2014; Almolda et 

al., 2015; Villacampa et al., 2015). This astrocyte-microglia cooperative effort has 

important implications for neuronal survival after insult. For example, LPS-mediated 

neurotoxicity is alleviated when both astrocytes and microglia are present because 

microglial TNFα induces astrocyte production of BDNF and GDNF, promoting neuronal 

survival (Chen et al., 2015b). Altogether, abundant evidence describes an interdependent 

relationship between astrocytes and microglia, suggesting that a glial compensatory 

mechanism likely supplements IL-10 production in the cre/lox knockdown mouse model. 

To test this hypothesis, a double knockout mouse model could be developed using gene 

editing technology, such as CRISPR/Cas9, to knock out IL-10 in both cell populations 
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simultaneously. This experiment would allow us to determine if neuroprotective IL-10 

derives specifically from glia. 

If glial IL-10 is not responsible for neuroprotection, then neuronal IL-10 

production should be examined. To test if neurons are the IL-10 source, the IL-10 flox 

gene could be crossed with a Thy1-cre or a neurofilament light chain-cre mouse 

(Pramatarova et al., 2001; Lino et al., 2002; Jaarsma et al., 2008). Given that the 

immunofluorescence experiment identified neurons as a constitutive source of IL-10, 

neuronal IL-10 may be neuroprotective after axotomy, or it could serve an important 

homeostatic function in the facial motor nucleus. Development of this mouse model may 

reveal a novel interaction between neurons and the microenvironment mediated by IL-10 

signaling. Identifying which cells are responsible for IL-10 production after axotomy is 

important to provide a detailed mechanistic understanding of the function of IL-10 within 

the CD4+ T cell-mediated neuroprotection paradigm.  

 

5.1.5. IL-10 in other neurological diseases 

The study of the cell source of IL-10 and its expression after injury has broad 

implications for a range of neurological diseases. In many CNS injury and disease 

models, IL-10 has a neuroprotective function (Kwilasz et al., 2015). IL-10 promotes 

dopaminergic neuron survival in rodent models of Parkinson’s disease (Schwenkgrub et 

al., 2013; Joniec-Maciejak et al., 2014). In experimental autoimmune encephalitis (EAE), 

a model of multiple sclerosis, IL-10 deficiency worsens disease progression. In contrast, 

IL-10 overexpression in T cells confers resistance to EAE, likely due to inhibition of 

autoimmune Th1 cell development by IL-10 (Bettelli et al., 1998). IL-10 is important for 
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neuroprotection after spinal cord injury, and administration of IL-10 after spinal cord 

injury improves motor function and decreases pain-related grooming behaviors (Plunkett 

et al., 2001; Zhou et al., 2009). IL-10 deficiency also leads to resistance to thermal 

allodynia in a hot plate test, suggesting IL-10 may play dual roles in pain modulation (Tu 

et al., 2003). In sciatic nerve crush, IL-10 reduces inflammation at the injury site and 

promotes functional recovery (Siqueira Mietto et al., 2015). Retinal damage via injection 

of a neurotoxin is ameliorated via PACAP/IL-10 mediated neuroprotection (Wada et al., 

2013). In excitotoxic models of neuronal injury, IL-10 is necessary for preventing 

neuronal death, likely through reduction of reactive oxygen species production (Grilli et 

al., 2000; Mesples et al., 2003; Koriauli et al., 2015). IL-10 is also an important 

modulator of the inflammatory status of the hypothalamus, and alterations in IL-10 level 

affects feeding behavior and weight gain in animals (Gotoh et al., 2012). In addition, IL-

10 is critical for preserving the health of neurons in the penumbra after middle cerebral 

artery occlusion (Grilli et al., 2000). Overall, there is abundant evidence that IL-10 has a 

neuroprotective function in the CNS.  

In contrast to other neurodegenerative diseases, IL-10 is not explicitly 

neuroprotective in Alzheimer’s disease. IL-10 deficiency in the APP/PS1 (amyloid 

precursor protein/presenilin 1) model of AD improves plaque clearance and synaptic 

retention, and modest cognitive benefits are also observed (Guillot-Sestier et al., 2015). 

This phenomenon is also evident in infectious disease studies, where knockout of IL-10 

results in superior resolution of infection because myeloid cell activation and 

phagocytosis is not suppressed (Jost et al., 2014; Buxbaum, 2015).  
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5.1.6. Aim 1 summary of findings 

The results from Aim 1 indicate that microglia, astrocytes, and neurons are all 

sources of IL-10; however, neuroprotective IL-10 does not derive exclusively from 

microglia or astrocytes. Future studies will continue to evaluate cell-specific IL-10 

production and its functional significance for neuronal survival after target disconnection. 

This work has broad implications because of the relevance of IL-10 mediated 

neuroprotection to multiple neurodegenerative diseases. 

 

5.1.7. Aim 1 revised hypothesis and future directions 

The goal of this aim was to understand how IL-10 fit into the sequence of events 

in CD4+ T cell-mediated neuroprotection. The original hypothesis for this aim was that 

after axotomy, microglial antigen presentation reactivates CD4+ T cells, resulting in IL-4 

production by T cells that, in turn, induces an IL-10-producing M2 microglia phenotype. 

This hypothesis was based on well-established immunology studies that describe this 

sequence of events in macrophage activation (Kigerl et al., 2009; Laskin, 2009). The 

rejection of this hypothesis based on our results implies that this linear sequence of events 

may not translate to immune-mediated neuroprotection. A closer examination of this 

hypothesis is warranted so it can be revised appropriately for future studies. 

The first potential flaw in this hypothesis is that it assumes that CD4+ T cells 

interact with microglia in the injured facial motor nucleus. Previous work from our 

laboratory identified that MHCII within the CNS is required for immune-mediated 

neuroprotection, which led us to focus on microglia because of their well-defined role in 

antigen presentation (Aloisi et al., 1998; Byram et al., 2004). However, multiple CNS 



 

110 

cells can express MHCII, including astrocytes, perivascular macrophages, dendritic cells, 

oligodendrocytes, and endothelial cells in the BBB (Male et al., 1987; Etienne et al., 

1999; Hurley, 2003; Liu et al., 2005; Becher et al., 2006; Ernst & Christie, 2006; 

Gottfried-Blackmore et al., 2009; Zhang et al., 2014). Additionally, quantitative analysis 

of T cell infiltration and MHCII+ cells reveals that they are a relatively rare presence in 

the injured facial motor nucleus. Data suggest that approximately 30 – 50 MHCII+ cells 

and 120 - 150 CD4+ T cells are present in the injured facial motor nucleus, which has a 

resident population of 4,000 – 20,000 cells (Raivich et al., 1998; Ha et al., 2006; Ha et 

al., 2007a; Ha et al., 2007b; Dauer et al., 2011; Kandel, 2013; Haulcomb et al., 2014).  

An alternative hypothesis is that T cells interact with antigen-MHCII complexes 

within the BBB. T cells can infiltrate and reside within the Virchow-Robin space between 

the endothelial cells and astrocytic endfeet (Ransohoff et al., 2003; Becher et al., 2006; 

Filipello et al., 2016). In this space, pericytes, perivascular macrophages, and 

perivascular dendritic cells can engage in antigen presentation with the T cell (Hickey & 

Kimura, 1988; Becher et al., 2006; McMahon et al., 2006). Evidence indicates that 

MHCII expression is upregulated in perivascular macrophages after FNA (Liu et al., 

2005). Also, astrocyte and T cell interactions at the BBB have been demonstrated 

histologically in experimental autoimmune encephalopathy (Filipello et al., 2016). This 

antigen presentation can result in bidirectional communication between the T cells and 

astrocytes (Bertin et al., 2014; Endo et al., 2015; Filipello et al., 2016). Astrocyte cell 

membranes are connected by gap junctions through which signals can propagate rapidly 

to the astrocytes in the facial motor nucleus (Almad et al., 2016). Through this 

interconnected astrocytic web, a small number of interactions between T cells and 
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astrocytes can translate to extensive regulation of the glial response to injury. This 

literature supports revising the hypothesis to include astrocytes and other CNS cells as 

responsible for antigen presentation to T cells.  

Advanced imaging modalities can be used to examine the physical location of 

antigen presentation in the CNS after FNA. Tools such as confocal and two-photon 

microscopy used on living or explanted tissue have been highly revelatory in EAE. For 

example, confocal time-lapse imaging of leptomeningeal (pial and subarachnoid 

meningeal layers) explants demonstrates that T cells migrate through these tissues, 

interacting and forming immunological synapses with antigen presenting cells along the 

way (Kivisakk et al., 2009). There is a precedence for rapid explantation of the facial 

motor nucleus for microglia electrophysiology measurements, providing groundwork for 

combining live tissue imaging with FNA (Boucsein et al., 2000). In EAE, intravital two-

photon imaging shows that T cells crawl along the vascular surface before exiting the 

vasculature and identifies scanning behavior of T cells in the leptomeninges 

(Bartholomaus et al., 2009). This imaging method also allowed for quantification of 

contact frequency and length of interaction time between T cells and APCs within the 

leptomeninges in vivo (Bartholomaus et al., 2009). One advantage of using the EAE 

model to study T cells in the CNS is that this disease induces a robust T cell response. 

Translating these methods to our FNA model may be more challenging because 

comparatively smaller numbers of T cells are activated by this injury. Also, the EAE 

intravital imaging was performed on the spinal cord, which is considerably easier to 

access relative to the pons. To circumvent this, alternative peripheral nerve injury 

models, such as sciatic nerve injury, could be used to gain a better understanding of T cell 
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interactions within the BBB and meningeal layers in response to axotomy. If these 

imaging studies demonstrate that CD4+ T cells infiltrate the post-axotomy CNS tissue, an 

in vitro model of the BBB can be employed to determine which factors specifically 

promote migration (Bertin et al., 2014). This information is important for determining if 

CD4+ T cell mediated neuroprotection occurs via direct interaction with glia in the CNS, 

such as in ischemic brain injury, or if CD4+ T cells regulate glial responses indirectly via 

communication across the BBB (Gill & Veltkamp, 2016).  

A second flaw in the original hypothesis is its reliance on the M1/M2 

classification of microglia responses. The M1/M2 paradigm evolved from in vitro 

immunological studies of macrophages that described these two major subtypes (Kigerl 

et al., 2009; Laskin, 2009). Secretion of IFNγ by Th1 cells promotes the M1 phenotype, 

and M1 cells secrete inflammatory cytokines and reactive oxygen species. Conversely, 

the M2 phenotype is induced by Th2 production of IL-4, and M2 cells secrete anti-

inflammatory and pro-tissue repair cytokines (Kigerl et al., 2009; Laskin, 2009). This 

paradigm has been adapted to describe microglial responses in the brain, given that 

microglia and macrophages share a common origin. However, recent in-depth 

examination of macrophages and microglia has largely disproven this reductionist view 

of their responses. First, transcriptomic analysis of resident macrophages in multiple 

tissue types revealed that there is significant diversity in cell phenotype depending on 

where they reside, thus microglia and macrophages should not be assumed to be similar 

(Gautier et al., 2012). Second, immunologists have been lobbying for an end to the 

M1/M2 macrophage labels because there are different interpretations of these phenotypes 

and this paradigm fails to accurately describe in vivo macrophage activation responses 
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(Martinez & Gordon, 2014; Murray et al., 2014). The publication most responsible for 

this attitude shift compared 299 human-derived macrophage transcriptomes after in vitro 

activation by 28 different stimuli. When IFNγ and IL-4 stimulation groups were 

analyzed, a two-dimensional M1/M2 spectrum could be visualized. However, stimulation 

by other cytokines, pattern recognition receptor ligands, and metabolites resulted in a 

multi-dimensional range of responses (Xue et al., 2014). In an analysis of microglia 

responses to traumatic brain injury, expression of prototypical M1 and M2 cytokines are 

observed simultaneously, further refuting the M1/M2 dichotomy (Morganti et al., 2016). 

Altogether, this evidence suggests that M1/M2 polarity is an inappropriate paradigm for 

microglia activation in the CNS. To accurately define the post-axotomy microglia 

response, transcriptomic analysis of microglia at multiple timepoints after FNA is 

necessary, with a special focus on cytokine expression. Furthermore, a comparable 

analysis of astrocytic and neuronal phenotypes after FNA would allow for the most 

complete understanding of the facial motor nucleus response to peripheral target 

disconnection. Findings from this transcriptomic analysis should then be validated 

histologically using in situ hybridization and immunohistochemistry. This information 

will be immensely valuable in gaining a broad, unbiased understanding of 

neuroinflammatory responses to nerve injury. 

The downstream effects of IL-10 were not addressed in this study, however, these 

effects are the most important information needed to understand immune-mediated 

neuroprotection. In addressing this question, the lens of immunology may again lead to 

bias. In the context of traditional immunology, IL-10 is secreted by immune cells to 

induce the anti-inflammatory response. This response is primarily mediated by IL-10 



 

114 

binding to IL-10R, leading to JAK1 phosphorylation, which then phosphorylates STAT3. 

Phospho-STAT3 migrates to the nucleus and targets expression of multiple genes, 

including Socs3 (blocks IL-6), Bcl3 (suppresses TNFα), and Ptpn1 (dephosphorylates 

phospho-STAT3). IL-10 also suppresses immune cell activation and division, further 

dampening the immune response (Hutchins et al., 2013). When thinking about the role of 

IL-10 in the injured facial motor nucleus, it could act on glia to generate an anti-

inflammatory microenvironment. However, there is insufficient evidence describing the 

downstream mechanisms of IL-10-mediated neuroprotection in the CNS (Lobo-Silva et 

al., 2016). This work is complicated by the fact that STAT3 has 1700 possible genomic 

targets (Hutchins et al., 2013). In fact, IL-10 neuroprotection in the CNS could occur by a 

mechanism entirely disparate from its anti-inflammation role. One example of this is Dr. 

Carla Shatz’s work that identified MHCI as a critical molecule for synaptic pruning in 

neurodevelopment (Boulanger et al., 2001). In the immune system, MHCI is an antigen 

presenting molecule that interacts with CD8 on T cells. In the CNS, a blind screen of 

molecules identified MHCI as a necessary component for synaptic formation in visual 

system development (Corriveau et al., 1998). Further studies demonstrated that MHCI in 

the CNS does not rely on CD8 for its effects in synaptic elimination. Instead, MHCI is a 

significant regulator of long-term depression and calcium-permeable AMPA receptors 

(Lee et al., 2014). These MHCI studies reveal that the nervous system can reappropriate 

immune system proteins for their own devices. This conclusion is especially thought-

provoking given that our data demonstrate that neurons produce IL-10 constitutively. A 

thorough examination of IL-10’s downstream effects on astrocytes, microglia, and 

neurons is warranted to understand its role in regulating CNS responses to injury. To 
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accomplish this, cell cultures could be exposed to IL-10 and subsequent effects on cell 

transcriptomes could be analyzed. These findings would then be verified in mouse 

models that receive intrathecal IL-10 infusion via an osmotic pump. Dose-dependent 

curve analysis would further confirm these findings and provide important mechanistic 

information of IL-10-mediated neuroprotection.  

Another potential problem in this experiment design is its foundation on the 

IL-10-/- mouse data. In the Xin et al. 2011 study, IL-10-/- mice experience significantly 

more FMN loss after FNA, suggesting that IL-10 is important for neuroprotection. The 

IL-10-/- mouse is commonly used as a model of inflammatory bowel disease because IL-

10 deficiency results in profound gut inflammation and intestinal disease (Kuhn et al., 

1993; Kiesler et al., 2015). This significant alteration in gut homeostasis has a significant 

impact on the animal’s microbiome, which, in turn, can lead to a dramatically different 

immune system profile (Round & Mazmanian, 2009). By this logic, the neuronal death 

after injury in these IL-10-/- animals could be due to immune system abnormalities 

resultant from a defective microbiome. Alternatively, IL-10 deficiency could indirectly 

lead to neuronal death because expression of other cytokines after axotomy could be 

dysregulated. Roles for IL-4, IL-6, PACAP, TNFα, and other cytokines have all been 

explored using the FNA model (Zhou et al., 1999; Streit et al., 2000; Terrado et al., 2000; 

Bohatschek et al., 2004a; Moran & Graeber, 2004; Deboy et al., 2006b; Armstrong et al., 

2008). As so many cytokines are important for neuron survival after injury, using global 

cytokine knockout mice could cause a “butterfly effect,” hindering interpretation of these 

studies. On a broader level, these cytokine knock-out/knock-in experiments are small 

steps to incrementally understand the mechanisms of immune-mediated neuroprotection. 
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These major disadvantage of this experimental approach is that it resembles the Indian 

parable of blind men examining an elephant. Each blind person touches a specific part of 

the elephant, either its belly, tusk, ear, or trunk, and each person comes to a different 

incorrect conclusion about what the creature is. This parable exemplifies the risk of bias 

in narrowly focused scientific approaches. To avoid bias and to make significant progress 

in this field, it is necessary to use big-data approaches to see the full picture of the 

neuroimmune response to peripheral nerve injury.  

The ultimate goal of this work is to understand the mechanism of immune-

mediated neuroprotection in the normal animal. To address this question, I propose this 

revised hypothesis: CD4+ T cells interact with antigen presenting cells in the CNS, which 

leads to cytokine expression changes in the facial motor nucleus that promotes 

motoneuron survival after axotomy. First, confocal microscopy and intravital two-photon 

microscopy should be used to determine where and when CD4+ T cells interact with 

CNS antigen presenting cells. After identifying the location of antigen presentation, 

whether it is the Virchow-Robin space, leptomeninges. or CNS parenchyma, flow 

cytometry can then be used to identify the antigen presenting cells in this area. Potential 

APCs could include perivascular macrophages, perivascular dendritic cells, or astrocytes. 

With that information, the phenotypic changes of resident cells in the facial motor 

nucleus after T cell reactivation occurs should next be examined. Single-cell RNA 

sequencing on a collection of facial motoneurons, astrocytes, and microglia would 

provide a complete profile of what cytokines are being expressed by each cell type after 

axotomy pre- and post-T cell interaction with CNS APCs. These findings should then be 

confirmed by in situ hybridization, immunofluorescence, flow cytometry, and/or 
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quantitative protein analysis. Extensive studies of how these CNS cell types respond to 

cytokines is also warranted to avoid making erroneous assumptions of these cytokine 

effects based on immunological studies. Altogether, by using a “big data” approach and 

avoiding biased thinking, the role of T cells and cytokines in immune-mediated 

neuroprotection can be more effectively determined.  

 

5.2. Aim 2 Discussion 

As previously discussed in Aim 1, immunodeficient mice lacking the adaptive 

arm of the immune system have increased motoneuron death relative to WT mice after 

facial nerve axotomy, indicating that the immune system is neuroprotective (Serpe et al., 

1999). Immunoreconstitution of these mice with whole splenocytes, which contain B and 

T cells, restores motoneuron survival after injury to normal levels (Serpe et al., 1999; 

Serpe et al., 2003). Subsequent experiments identified CD4+ T cells as the key cell 

required for immune-mediated neuroprotection (Serpe et al., 2003).  

This discovery of the role of the immune system in central neuroprotection has 

important implications for neurodegenerative diseases. For example, 

immunodysregulation is evident in patients with ALS, including decreased circulating 

CD4+ T cells and increased cytokine levels in the peripheral blood (Hovden et al., 2013; 

Chen et al., 2014; Lu et al., 2016). The mSOD1 mouse model of ALS also exhibits 

significant immune changes, including profound lymphopenia, loss of splenic mass, and 

failure of T cells to respond to immunization (Kuzmenok et al., 2006; Banerjee et al., 

2008). Immunologic manifestations associated with mSOD1 motoneuron disease are 
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evident in CNS tissue as early as 40 days of age, suggesting that the immune system may 

participate in the development of ALS disease pathology (Alexianu et al., 2001).  

When FNA is superimposed on mSOD1 mice at the presymptomatic stage, 

increased motoneuron death is observed, with survival levels comparable to 

immunodeficient mice (Mesnard et al., 2011). Examination of the central molecular 

response to injury reveals that the motoneuron regeneration response remains intact. 

Instead, there is significant dysregulation of the glial microenvironment response to 

injury, as well as increased expression of the Fas/nNos cell death mechanism (Mesnard et 

al., 2011; Haulcomb et al., 2014). This finding was initially surprising because it was 

predicted that mSOD1 motoneuron disease would have an intrinsic negative effect on 

motoneuron health and function. These results shifted the focus of our work towards the 

microenvironment surrounding the motoneuron as the possible causative agent for 

increased motoneuron death in injury and disease. Altogether, this evidence leads to the 

theory that the immune system may be responsible for regulating the post-injury glial 

microenvironment response to promote motoneuron survival.  

To test this theory, the effect of immunodeficiency on the central molecular 

response to facial nerve axotomy was characterized. Also, the neuroprotective effects of 

CD4+ T cells were examined to describe the mechanism of immune-mediated 

neuroprotection. This is the first study of its kind to examine the effects of the peripheral 

immune system on the central molecular response to nerve injury. The prediction for this 

aim was that the molecular expression pattern after axotomy in RAG-2-/- mice would 

parallel the mSOD1 pattern of intact motoneuron regeneration, dysregulated glial 

microenvironment activation, and increased death receptor expression. It was also 
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expected that CD4+ T cell recipients would exhibit a normal microenvironment and cell 

death response to injury. In summary, the hypothesis for this aim is that 

immunodeficiency will impair the glial microenvironment response to FNA, leading to 

greater motoneuron death, and administration of CD4+ T cells will regulate glial 

responses to normal levels to promote motoneuron survival.  

 

5.2.1. The motoneuron regeneration response to peripheral nerve injury is unaffected by 

the adaptive arm of the immune system 

The first question addressed was whether peripheral immune status affected the 

motoneuron regeneration response to axotomy. In agreement with the original hypothesis, 

there is no observed effect of immunodeficiency on motoneuron regeneration-associated 

gene expression after injury. In CD4+ T cell reconstituted mice, a small increase in 

cytoskeletal gene expression was noted and is likely the result of the increased number of 

surviving motoneurons or permissive effects of the presence of CD4+ T cells on 

neuroregeneration. 

An interesting finding is that there is equivalent motoneuron regeneration gene 

expression in the RAG-2-/- group relative to WT at 28 dpo, despite a 25% reduction in 

facial motoneurons in the RAG-2-/- group. These data suggest that motoneurons that 

survive axotomy may express a higher concentration of regeneration-associated genes. 

For the first two weeks after axotomy, motoneurons significantly upregulate expression 

of cytoskeletal genes to regrow the daughter axon (Bisby & Tetzlaff, 1992). If the axon 

fails to reconnect to target musculature within a period of time, cytoskeletal gene 

expression is deactivated, and the loss of trophic support from the peripheral muscle can 
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lead to motoneuron death (Lieberman, 1971; Grafstein, 1975). For unknown reasons, 

there are differential motoneuron survival responses to axotomy in the facial motor 

nucleus. Kinetic analysis of FMN loss after FNA reveals that approximately 15% of 

neurons die, 35% of neurons depend on the immune system for survival, and 50% of 

neurons survive the injury, even as far as 6 months post-axotomy (Serpe et al., 2000, 

unpublished data). A subnuclear distribution pattern of FMN death after FNA is evident, 

with the ventrolateral (VL) subnucleus exhibiting the most FMN death (70% survival) 

and the ventromedial (VM) subnucleus having the least FMN death (97% survival) (Canh 

et al., 2006). Molecular expression profiles comparing the axotomized VL and VM 

subnuclei determined that higher regenerative gene expression was measured in the VL 

subnucleus (Mesnard et al., 2010). One would predict that with the increased motoneuron 

death in the VL is due to a reduced regenerative capacity, however this is not the case. 

Collectively, these data suggest that neuroregenerative gene expression does not equate 

with increased neuronal survival after axotomy. However, this molecular approach only 

assesses surviving motoneurons, which may have a robust regenerative program that 

skews the gene expression analysis. To explain why some motoneurons are predisposed 

to die, it is important to identify the intrinsic determinants of both motoneuron death and 

survival after axotomy. To accomplish this, I propose performing single-cell RNA 

sequencing of 100 axotomized facial motoneurons at 1 dpo, before any motoneuron death 

occurs. Considering that there are three fates (forever die, forever survive, or survival 

depends on immune system), I predict that the phenotypes of these 100 FMN will cluster 

into 3 groups with a similar distribution as the FMN survival pattern (15/35/50%). 

Analyzing the differences between these phenotypic clusters would allow for 
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identification of genes associated with survival or death after axotomy. These 

associations could be verified using an in vitro axotomy model, where siRNAs could be 

used to test if the neuronal genes identified are pro- or anti-survival (Gomis-Ruth et al., 

2014). Drugs that regulate these genes could be screened for using this in vitro approach, 

then translated to peripheral nerve injury in rodent models, with the goal of achieving 

total and permanent motoneuron survival after injury. Ultimately, the goal of these 

experiments would be to find clinically relevant drugs that regulate pro-survival gene 

targets as a new therapy for promoting neuronal survival after nerve injury. 

Overall, the findings from Aim 2 demonstrate that the motoneuron regeneration 

response is resilient within the context of immunodeficiency. The same conclusion is 

drawn from the study of the motoneuron regeneration response to axotomy in the 

mSOD1 mouse (Mesnard et al., 2011; Haulcomb et al., 2014). Findings that complete 

functional recovery occurs in RAG-2-/- and mSOD1 mice after facial nerve crush further 

support this claim that motoneuron regeneration remains intact in models of 

immunodeficiency or motoneuron disease (Beahrs et al., 2010; Mesnard et al., 2013). 

Overall, these results signify that immunodeficiency only impacts neuronal survival, not 

the regeneration response.  

 

5.2.2. Central glial activation after peripheral nerve injury is regulated by CD4+ T cells 

The effect of immune status on activation of astrocytes and microglia after facial 

nerve injury was also assessed. In the immunodeficient group, initial astrocyte and 

microglia activation is intact, however there is a failure to sustain glial activation in the 

middle and late post-axotomy phases. This dysregulation is most prominent in astrocytes. 
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The CD4+ T cell recipient group did not exhibit this decreased glial activation, indicating 

that CD4+ T cells are responsible for maintaining glial responses. This claim is further 

supported by evidence that T cells infiltrate the axotomized facial motor nucleus at 14 

dpo, the timepoint at which astrocyte activation depends on the presence of CD4+ T cells 

(Raivich et al., 1998; Hurley, 2003; Ha et al., 2007b; Almolda et al., 2014). Collectively, 

the data from Aim 2 suggest that early, innate glial responses are retained in 

immunodeficient mice, and continued glial activation relies on CD4+ T cells.  

Additional studies have identified decreased astrocyte and microglia activation in 

immunodeficient mice. For example, decreased microglia activation is observed in a T 

cell receptor (TCR) knockout/mSOD1 transgenic mouse (Chiu et al., 2008). 

CD4-deficient mice have decreased astrocyte activation relative to WT in a spinal nerve 

injury model of neuropathic pain (Cao & DeLeo, 2008). Decreased astrogliosis is evident 

in a combined RAG-2-/-/APP/PS1 mouse model of Alzheimer’s disease (Spani et al., 

2015). A possible mechanism for T cell induction of astrocyte activation is during the T 

cell secondary reactivation process in the CNS. As described in the section 5.1.7, T cells 

may interact with astrocytes during antigen presentation or by transmitting signals 

through the BBB (Aloisi, 1999; Almad et al., 2016). This astrocyte activation can have 

downstream effects on microglia activation responses through IL-6 and MCSF 

production, possibly explaining the concurrent decrease in microglia activation in 

immunodeficient mice (Klein et al., 1997; Almolda et al., 2014).  

In the mSOD1 molecular response to FNA, decreased astrocyte and microglia 

activation is also evident. Contrary to the immunodeficient model, astrocyte and 

microglia activation is decreased at both early and late post-axotomy stages in the 
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mSOD1 model of motoneuron disease (Haulcomb et al., 2014). This lack of astrocyte 

activation could be due to an intrinsic dysregulation of the astrocytic phenotype in the 

mSOD1 group. Evidence suggests that isolated mSOD1 astrocytes are intrinsically 

neurotoxic, supporting this claim that the mSOD1 transgene significantly alters astrocyte 

behavior (Di Giorgio et al., 2007; Haidet-Phillips et al., 2011; Chen et al., 2015a). 

Alternatively, the effect of the mSOD1 mutation on the peripheral immune system’s 

ability to regulate astrocyte activation could contribute to astrocyte dysregulation after 

peripheral nerve injury. Section 5.3.2. in the Aim 3 discussion addresses this question.  

To summarize, these findings demonstrate that the peripheral immune system, 

specifically CD4+ T cells, is responsible for sustaining central glial activation after 

peripheral nerve injury. There is differential dysregulation of the glial activation response 

in RAG-2-/- animals relative to mSOD1 animals. In immunodeficiency, initial glial 

activation occurs normally, however glial activation is not sustained throughout the time 

course. In mSOD1 animals, deficient glial activation is evident in both early and late 

post-axotomy phases, suggesting a factor outside the peripheral immune system could be 

contributing to microenvironment dysregulation in axotomy-induced target 

disconnection.  

 

5.2.3. Central inflammatory cytokine expression after peripheral nerve injury is 

regulated by CD4+ T cells 

To measure the effect of immune status on inflammatory cytokine expression, 

Tnfα gene expression was analyzed. Immunodeficiency resulted in a loss of early Tnfα 

expression, followed by a return to normal levels for the remainder of the time course. 
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The CD4+ T cell recipient group had normal levels of early Tnfα, followed by an 

augmented response relative to WT. These data suggest that Tnfα expression, especially 

in the early phase, is regulated by CD4+ T cells. This early timepoint is concurrent with 

the timing of T cell reactivation in the injured facial motor nucleus (Byram et al., 2004). 

Additionally, TNFα is an important regulator of glial activation. For example, TNFα 

increases astrocyte connectivity and induces nitric oxide production by microglia 

(Hensley, 2003; Almad et al., 2016). The recovery of late Tnfα expression in 

immunodeficient mice may coincide with microglia phagocytosis of dead facial 

motoneurons (Raivich et al., 1998).  

In mSOD1 mice, both Tnfα and Ifnγ are expressed constitutively in the uninjured 

facial motor nucleus, indicating a proinflammatory CNS environment. Axotomy induces 

greater expression of these inflammatory cytokines (Mesnard et al., 2011; Haulcomb et 

al., 2014). This basal inflammatory phenotype may be the result of mSOD1 affecting NF-

κB regulation in microglia, leading to dysregulated overexpression of inflammatory 

cytokines (Frakes et al., 2014). On the other hand, the mSOD1 mutation could impact the 

peripheral immune system’s ability to regulate the glial microenvironment, thus resulting 

in uncontrolled neuroinflammation. Collectively, these findings suggest that there is a 

“Goldilocks zone” for the central TNFα response after peripheral nerve injury. Sufficient 

TNFα is needed for activation of immune-mediated neuroprotective mechanisms, but 

excessive TNFα may result in neurotoxicity. 

It is necessary to perform protein analysis to verify these gene expression 

findings. mRNA analysis of neurons compared to neuropil within the axotomized facial 

motor nucleus demonstrate that Tnfα transcript is only detectable in the neuropil 
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(Mesnard et al., 2010). Microglia are the most likely source of TNFα in the facial motor 

nucleus based on transcriptomic data, however there is also evidence for neuronal 

production of TNFα in other areas of the brain (Liu et al., 1994; Acarin et al., 2000; 

Zhang et al., 2014). Identifying the cell source of TNFα will provide further mechanistic 

information of how CD4+ T cells influence the central response to peripheral nerve 

injury. Discovering that immune status impacts central TNFα production also encourages 

studying expression of other relevant cytokines to obtain a more complete 

characterization of the post-axotomy microenvironment response in immunocompetent 

and immunodeficient groups (Alexianu et al., 2001; Chen et al., 2004).  

Altogether, this work suggests that CD4+ T cells are required for early TNFα 

expression, which may be a key regulatory molecule in initiating signaling cascades that 

promote glial activation and neuroprotection.  

 

5.2.4. No relationship is evident between increased neuronal death and gene expression 

of cell death mechanisms in immunodeficient animals after peripheral nerve injury 

Examination of the prevalence of either the TNFR1 or Fas/nNos death 

mechanisms was performed because there is increased neuronal death in the 

immunodeficient group. Unexpectedly, neither death mechanism was prominently 

expressed in RAG-2-/- mice. A delayed Tnfr1 response was evident in RAG-2-/- mice 

relative to WT, coinciding with the lack of early Tnfα expression. There was no 

significant increase in Fas or nNos expression in immunodeficient mice relative to 

control. In contrast, mSOD1 mice exhibit a prominent peak in Fas expression in the late 

post-axotomy phase, coinciding with the timing of motoneuron death in this group 
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(Haulcomb et al., 2014). A motoneuron-specific downstream mediator of Fas death, 

nNos, is also upregulated in the mSOD1 group. Fas/nNos mediated motoneuron death has 

been well-described in ALS disease pathology, and its role in motoneuron death after 

target disconnection represents a unique finding warranting further study (Raoul et al., 

2002; Raoul et al., 2006).  

Surprisingly, in RAG-2-/- mice that received adoptive transfer of CD4+ T cells, a 

heightened Tnfr1 response was detected throughout the post-axotomy timecourse, 

mirroring the increased Tnfα expression in this group. Because this experimental group 

does not experience significant motoneuron death after FNA, it is unlikely that this 

increased Tnfr1 is inducing apoptosis. TNFR1 could be utilized by CD4+ T cells to 

upregulate adhesion molecule expression in astrocytes to assist T cell migration into the 

CNS parenchyma (Archambault et al., 2005). Also, CD4+ T cell induction of Tnfr1 could 

be regulating cytokine expression by acting through its secondary signaling pathway that 

induces NF-κB (Baud & Karin, 2001; McCoy & Tansey, 2008; Wajant & Scheurich, 

2011). To determine if the apoptotic or immunoregulatory signaling pathway was being 

induced, gene expression of Fadd (apoptosis), Traf2 (immunoregulation), and Tradd 

(both), was measured (Hsu et al., 1996; Sohda et al., 2015). No significant differences in 

gene expression were found in any of these genes when the CD4+ T cell recipient group 

was compared to WT. Downstream signaling through TNFR1 may not be detectable on 

the gene expression level, therefore, protein analysis of these mediators would need to be 

conducted to address this question.  

To summarize, neither death mechanism examined in this study is clearly 

connected to the increased motoneuron death in immunodeficient mice. In CD4+ T cell 
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recipients, an increased Tnfr1 expression response is observed, indicating that isolated 

CD4+ T cells may act in a differential manner than in their in situ environment. The 

implications for this finding is further explored in Aim 3, when gene expression analysis 

is performed on immunodeficient mice reconstituted with whole splenocytes.  

 

5.2.5. Aim 2 summary of findings 

The results from Aim 2 indicate that CD4+ T cell-mediated neuroprotection 

following facial nerve axotomy occurs via regulation of the glial microenvironment 

response to injury, rather than a direct action on motoneuron regeneration or suppression 

of a cell death mechanism. The mechanism of this immune-mediated neuroprotection 

may rely on TNFα/TNFR1 signaling to permit T cell migration into the CNS or regulate 

the neuroinflammatory response to peripheral nerve injury. These findings define an 

important role for the peripheral immune system in affecting central responses to 

peripheral nerve injury.  

 

5.2.6. Future directions 

The primary goal of this aim was to broadly identify the mechanism of immune-

mediated neuroprotection in the facial motor nucleus after axotomy. With the recognition 

that glial regulation significantly depends on CD4+ T cells, an in-depth examination of 

glial phenotype is warranted. GFAP and CD68 are commonly used markers for astrocyte 

and microglia reactivity, however they only represent a small aspect of the glial response 

(Laskawi & Wolff, 1996; Brettschneider et al., 2012; Marshall et al., 2013). Acquisition 

of single cell RNA-seq information from a collection of astrocytes and microglia at 
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various post-axotomy timepoints will provide a more complete picture of the injury 

response. Comparing WT and immunodeficient RNA-seq information will further 

identify which genes are specifically regulated by the adaptive arm of the immune 

system. These findings can be compared to other glial transcriptomic analyses to identify 

similarities to other disease contexts, for example, mSOD1 motoneuron disease, 

ischemia, or neuroinflammation (Zamanian et al., 2012; Chiu et al., 2013; Liddelow et 

al., 2017). These transcriptomic analysis results should also be confirmed using protein 

quantification methods because there are can be differences between gene and protein 

expression (Hensley et al., 2002; Hensley, 2003). The findings can also be verified 

histologically using both in situ hybridization and immunohistochemistry.  

Also, a histological comparison of WT and immunodeficient mouse glial 

responses would be useful in determining the morphological manifestations of decreased 

glial activation. In vitro comparison of RAG-2-/- and WT microglia responses to LPS 

reveals no significant differences in cytokine expression or morphological changes (Beers 

et al., 2008). Examination of microglia histology after facial nerve axotomy in 

immunodeficient mice would reveal if they are capable of proliferation and synaptic 

stripping (Graeber et al., 1993; Graeber et al., 1998; Boucsein et al., 2000). Studying 

astrocyte reactions is important for assessing if their morphological shift from 

protoplasmic to fibrillary phenotypes is affected by immunodeficiency, or if they fail to 

replace microglia in synaptic stripping at later post-axotomy timepoints (Tetzlaff et al., 

1988b; Moran & Graeber, 2004).  

In addition to glial activation, differences in TNFα expression in the early post-

axotomy phase were observed in immunodeficient mice. This finding suggests that early 
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TNFα may be an important signaling component for CD4+ T cell regulation of the glial 

microenvironment after axotomy. To explore this further, a TNFα blockade could be 

imposed after FNA in WT mice to observe if it inhibits CD4+ T cell-mediated 

neuroprotection. For this experiment, either a soluble TNFR or a TNFR-blocking 

antibody could be used to inhibit TNFα signaling between 3-14 dpo (Terrado et al., 

2000). Quantification of FMN survival after FNA at 28 dpo could then be used to 

measure if TNFα blockade during this time frame resulted in decreased FMN survival. In 

this experiment, I hypothesize that blocking TNFα at timepoints during which T cells are 

being reactivated in the CNS environment would impede glial activation and result in 

increased motoneuron death. Examination of cell-specific sources of TNFα could then be 

conducted to identify which CNS cells are the key participants in this process.  

One criticism for this work is its reliance on the RAG-2-/- mouse, which may be 

an inappropriate model because the lifelong immunodeficiency causes significant 

physiological changes. For example, immunodeficient mice are reported to have 

decreased cognitive function and impaired hippocampal neurogenesis (Kipnis et al., 

2004; Brynskikh et al., 2008; Wolf et al., 2009; Spani et al., 2015). Also, 

immunodeficiency has significant impacts on the host microbiome, which can translate 

into neurological effects (Round & Mazmanian, 2009; Mulle et al., 2013; Zhang et al., 

2015). For example, gut bacteria production of tryptophan metabolites confers 

neuroprotection in EAE (Rothhammer et al., 2016). A recent publication identified 

microbiome alterations in mSOD1 mice, and treatment with bacterial products extended 

mSOD1 mouse survival by an average of 38 days (Zhang et al., 2017). In this study, it is 
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possible that a secondary abnormality resultant from immunodeficiency may be 

increasing motoneuron death after axotomy.  

To test this theory, anti-CD4 antibodies could be administered to a WT mouse to 

selectively eliminate CD4+ T cells (Ghobrial et al., 1989; Archambault et al., 2005). This 

approach allows the animal to grow and develop with an intact immune system, thereby 

avoiding the secondary effects associated with lifelong immunodeficiency. This 

alternative mouse model of CD4+ T cell deficiency should exhibit immunodeficient-like 

FMN death after FNA, if the original hypothesis for this work is correct. One drawback 

for these antibody-depletion models is that the T cell elimination may result in peripheral 

immune activation, and multiple treatments are needed to maintain continuous 

deprivation of CD4+ T cells. Also, CD4+ T cells sequestered in the CNS may escape the 

antibody depletion. Despite these potential pitfalls, this approach may be necessary to 

validate the CD4+ T cell-mediated neuroprotection paradigm. 

 

5.3. Aim 3 Discussion 

Disconnection from target musculature is the hallmark of early presymptomatic 

disease pathology in ALS (Fischer et al., 2004; Dadon-Nachum et al., 2011). Axotomy-

induced target disconnection results in a similar injury response profile as seen in 

mSOD1 motoneuron disease pathology (Mesnard et al., 2011). When facial nerve 

axotomy is superimposed on presymptomatic mSOD1 mice, increased motoneuron death 

is observed, similar to the immunodeficient response to nerve injury (Serpe et al., 1999; 

Mariotti et al., 2002; Mesnard et al., 2011). This finding is surprising because, in theory, 

mSOD1 mice have an intact immune system. To test the neuroprotective capacity of 
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mSOD1 lymphocytes, facial nerve axotomy was administered to RAG-2-/- mice 

immunoreconstituted with mSOD1 whole splenocytes, and the mSOD1 immune cells 

failed to protect motoneurons from death. In contrast, isolated mSOD1 CD4+ T cells are 

capable of rescuing motoneuron survival to normal levels, suggesting that a factor within 

the mSOD1 whole splenocyte environment inhibits mSOD1 CD4+ T cell-mediated 

neuroprotection (Mesnard-Hoaglin et al., 2014). 

The conclusion from Aim 2 is that WT CD4+ T cells promote neuronal survival 

after injury by regulating the glial microenvironment response to injury. This result leads 

us to hypothesize that the mSOD1 whole splenocyte environment suppresses CD4+ T 

cell regulation of glial responses to target disconnection. By comparing post-axotomy 

molecular responses, we predicted a dysregulated glial response would be evident in the 

RAG-2-/- + mSOD1 WS group, similar to what was observed in the immunodeficient 

group in Aim 2. We also predicted that the glial response in the mSOD1 CD4+ T cell 

recipient group would be comparable to the WT counterpart. As an additional control, a 

WT whole splenocyte reconstitution group was added to confirm that whole splenocyte 

treatment results in a WT-like molecular response after axotomy. 

 

5.3.1. WT whole splenocyte reconstitution of immunodeficient mice results in a 

differential gene expression response relative to WT 

When the molecular response of WT whole splenocyte recipient mice was 

compared to WT, many unexpected differences were found. First, whole splenocyte 

recipients had an increased motoneuron regenerative response to injury relative to WT. 

This finding could be the result of CD8+ T or B cells generating a permissive 
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environment that promotes motoneuron regenerative gene expression. Other studies have 

identified CD8+ T cell infiltration of the injured facial motor nucleus, supporting this 

hypothesis (Ha et al., 2007a).  

Additionally, a significant increase in astrocyte activation is observed in whole 

splenocyte recipients relative to both WT and isolated WT CD4+ T cell recipients. An 

interaction between CD8+ T or B cells and astrocytic endfeet at the BBB could result in 

this hyperactivated astrocyte response. Depending on immune status, there appears to be 

three levels of astrocyte activation: the reduced response with immunodeficiency, the 

normal response in WT and CD4+ T cell recipients, and an increased response with 

whole splenocyte recipients. This pattern suggests that astrocytes are highly sensitive to 

peripheral immune status. Their presence at the BBB uniquely situates them to be both 

sensors and transducers of communication signals between the periphery and the CNS. 

Astrocytes are commonly described as innate immune cells because of their functional 

role in the BBB, expression of pattern recognition receptors, and participation in antigen 

presentation (Carpentier et al., 2005; Farina et al., 2007; Ransohoff & Brown, 2012). The 

results from this study also suggest that astrocytes may also act as an extension of the 

adaptive arm of the immune system transducing immune-mediated neuroprotective 

signals from the peripheral blood to the CNS. Further work is needed to support this 

claim.  

Microglia activation and inflammatory cytokine expression response to axotomy 

in whole splenocyte recipient mice are equivalent to WT. This finding suggests that 

CD8+ T and B cells do not significantly affect these responses, supporting the conclusion 
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from Aim 2 that CD4+ T cells are specifically responsible for regulation of these 

responses.  

The Tnfr1 response in whole splenocyte recipients is also equivalent to the WT 

response. In contrast, isolated WT CD4+ T cell recipients exhibit a heightened Tnfr1 

response relative to both of these groups. These data suggest that whole splenocyte 

components regulate CD4+ T cell effects on the facial motor nucleus. The impact of the 

increased Tnfr1 with isolated CD4+ T cells is unknown, though hypothesized to be 

related to regulation of cytokine expression and T cell infiltration into the CNS. Overall, 

data from this experiment indicate that CD4+ T cell induction of Tnfr1 can be 

differentially regulated depending on the presence of CD8+ T or B cells.  

As expected, whole splenocyte recipients did not have increased Fas or nNos 

expression relative to WT after axotomy. The only significant difference in expression 

responses was decreased early Fas expression in all three RAG-2-/- animal groups, with or 

without immunoreconstitution. The implications for this difference are unknown, 

however do not seem to correspond with motoneuron survival after injury.  

To summarize, whole splenocyte adoptive transfer into immunodeficient mice 

results in a differential molecular response to injury relative to both WT and isolated WT 

CD4+ T cell recipient animals. Also, it was discovered that astrocytes are highly sensitive 

to peripheral immune status.  

These significant differences between WT and WT whole splenocyte 

reconstituted mice are unexpected and deserve further investigation. WT whole 

splenocyte transfer into immunodeficient mice restores both circulating lymphocytes and 

nodular architecture in the spleen (Serpe et al., 1999). One possible explanation for the 
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differences between these two groups is that the grafted immune cells may have different 

phenotypic behaviors relative to their host. These effects may be perpetuated by 

microbiome differences in RAG-2-/- mice relative to WT (Zhang et al., 2015). 

Furthermore, the post-mortem whole splenocyte collection protocol may cause 

significant, permanent changes to lymphocyte behavior. An extensive evaluation of 

whole splenocyte engraftment into RAG-2-/- mice may also explain the different observed 

molecular responses. The effectiveness of tail vein injection of whole splenocytes used in 

this study could be compared to bone marrow transplant immunoreconstitution, which 

would include more progenitor cells and may more closely approximation the WT 

immune status (Beers et al., 2008; Bottcher et al., 2013). A parabiosis procedure 

connecting a WT and RAG-2-/- mouse could also be an alternative immunoreconstitution 

strategy to provide in vivo WT lymphocytes to an immunodeficient animal with minimal 

cellular processing (Bottcher et al., 2013). These experimental approaches would help in 

identifying why WT whole splenocyte transfer into RAG-2-/- mice does not result in a 

similar molecular response to injury compared to WT.  

 

5.3.2. MN death in mSOD1 whole splenocyte recipients is not due to immunodeficient-

like microenvironment dysregulation 

Next, the molecular response to peripheral target disconnection of 

immunodeficient mice reconstituted with mSOD1 whole splenocytes was evaluated. 

These responses were compared to WT whole splenocyte recipients instead of WT 

because of the significant differences found in comparing the molecular response of these 

two groups.  
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First, motoneuron regeneration is not impaired in mSOD1 whole splenocyte 

recipients, in agreement with prior studies and the Aim 2 findings (Mesnard et al., 2011; 

Haulcomb et al., 2014). Surprisingly, there is no impairment in astrocyte or microglia 

activation in mSOD1 versus WT whole splenocyte recipients. This finding refutes the 

original hypothesis that mSOD1 whole splenocytes block CD4+ T cell regulation of the 

microenvironment to injury. In addition, the astrocyte hyperactivation in WT whole 

splenocyte recipients is also observed in mSOD1 whole splenocyte recipients, further 

supporting the claim that astrocytes are acutely sensitive to peripheral immune status.  

An area for future study is an in-depth examination of the astrocytic response to 

injury. It is possible that mSOD1 whole splenocytes induce an alternative activation 

status of astrocytes that is neurotoxic, whereas WT whole splenocytes promote a 

neuroprotective astrocytic phenotype. A study from Dr. Ben Barres’ laboratory 

characterizes two polar astrocytic phenotypes induced by neuroinflammatory or ischemic 

CNS injuries (Zamanian et al., 2012; Liddelow et al., 2017). A major discovery from 

their work is that C3, a complement protein, is prominently and exclusively expressed in 

neurotoxic astrocyte phenotypes, and astrocytic C3 is identified in multiple 

neurodegenerative diseases (Liddelow et al., 2017). Gene expression analysis of C3 could 

be employed to identify, on a broad level, if different astrocyte phenotypes are evident 

when comparing mSOD1 and WT whole splenocyte recipient groups. In addition, use of 

single cell RNA-seq on a collection of post-axotomy astrocytes is warranted to compare 

the astrocytic response of WT or mSOD1 whole splenocyte recipient groups. Overall, the 

current data suggest that glial activation is unimpaired in mSOD1 whole splenocyte 
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recipients, however, further characterization of astrocyte phenotype is necessary to rule 

out neurotoxic astrocytic phenotype activation.  

Another interesting finding is that Tnfα expression in mSOD1 versus WT whole 

splenocyte recipient groups are comparable. In contrast, significant dysregulation of Tnfα 

expression is observed in mSOD1 mice both at homeostasis and after injury (Mesnard et 

al., 2011; Haulcomb et al., 2014). In mSOD1 whole splenocyte recipients, there is no 

induction of Tnfα in the homeostatic facial motor nucleus, and axotomy-induced Tnfα 

expression is regulated to normal levels. The findings suggest that the peripheral immune 

system is likely not the cause of increased Tnfα in mSOD1 mice, and instead, the mSOD1 

transgene is inducing effects in the facial motor nucleus. To confirm this, the immune 

system could be depleted in mSOD1 animals using irradiation or chemotherapeutic drugs 

and TNFα expression in the CNS could be measured. No change in TNFα expression in 

the CNS would confirm that neuroinflammation with mSOD1 motoneuron disease is the 

result of intrinsic processes independent from the peripheral immune system. 

Alternatively, an increase in TNFα expression would suggest that the immune system 

dampens neuroinflammation, whereas a decrease in expression would indicate that the 

immune system exacerbates neuroinflammation. Also, the timing of this aberrant 

cytokine production in the mSOD1 mouse model is unknown. Evidence suggests that 

neuroinflammation occurs presymptomatically, even as early as 50 days of age, however 

the exact age of onset is not known (Hensley et al., 2002; Chen et al., 2004). The most 

thorough examination of temporal gene expression in mSOD1 animals utilized only 

female littermate controls for the male experimental animals, which may confound the 

detection of early TNFα changes (Chen et al., 2004). Analyzing the expression of 
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neuroinflammatory-associated genes at regular intervals from 1 – 90 doa in the CNS, 

nerve, and muscle tissue will provide important information about the onset and 

progression of axonal die-back disease pathology in mSOD1 mice (Dadon-Nachum et al., 

2011).  

When cell death mechanism pathways were compared, no significant differences 

in Tnfr1 expression after injury were observed in mSOD1 whole splenocyte recipients 

relative to control. Overall, this evidence suggests that Tnfr1 is not prominently 

associated with the facial motoneuron death after axotomy observed in mSOD1, 

RAG-2-/-, or RAG-2-/- + mSOD1 whole splenocyte groups (Mesnard-Hoaglin et al., 

2014).  

In contrast, a prominent induction of Fas expression was observed in mSOD1 

versus WT whole splenocyte recipients. This induction profile matches the Fas gene 

expression profile in mSOD1 mice, suggesting that mSOD1 peripheral immune cells may 

induce central motoneuron death mechanisms (Haulcomb et al., 2014). This finding was 

surprising because the original study describing Fas expression in ALS characterizes it as 

a cell autonomous death mechanism. This study revealed that mSOD1 motoneurons are 

highly susceptible to Fas and nitric oxide triggered death, however, they have normal 

responses to trophic deprivation and excitoxicity (Raoul et al., 2002). Furthermore, this 

increased sensitivity to Fas-mediated death is only detectable in mSOD1 motoneurons, 

not sensory, cortical, or cerebellar neurons (Raoul et al., 2002). Follow-up work 

discovered a Fas/FasL feedback loop within mSOD1 neurons that fit with the cell 

autonomous ALS theory. In this loop, FasL expression by neurons results in Daxx 

induction of nNos, resulting in neuron-specific nitric oxide production that perpetuates 
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FasL expression in neurons. Knocking out the Daxx gene significantly increases 

motoneuron survival in mSOD1 animals and reduces neuronal FasL expression. 

Altogether, the Fas death pathway in motoneuron disease seemed to result from intrinsic 

dysregulation within the motoneuron, however this study suggests that the peripheral 

immune system may significantly contribute to the induction of Fas-mediated cell death.  

To summarize, mSOD1 whole splenocyte transfer into immunodeficient mice 

does not result in an immunodeficient-like central molecular response to peripheral nerve 

injury. Instead, these data suggest that motoneuron death could occur by two 

mechanisms. First, induction of a neurotoxic glial phenotype by mSOD1 whole 

splenocytes may promote neuronal death. Second, mSOD1 whole splenocytes could 

cause increased motoneuron death by aberrant induction of Fas/nNos expression in the 

post-axotomy facial motor nucleus.  

 

5.3.3. Pro-survival molecular responses induced by mSOD1 CD4+ T cells significantly 

differ from WT CD4+ T cells 

The central molecular response to axotomy was measured in mSOD1 CD4+ T cell 

recipients, and unexpected differences in comparison with WT CD4+ T cell recipients 

were discovered. Motoneuron regeneration responses are significantly elevated in 

mSOD1 versus WT CD4+ T cell recipients, especially axon growth-cone associated 

proteins. Additionally, a three-fold increase in astrocyte activation was detected in 

mSOD1 versus WT CD4+ T cell recipients. This increased astrocyte response may 

translate into enhanced motoneuron regeneration gene expression because astrocyte and 

neuronal interactions are tightly linked (Acarin et al., 2000; Tian et al., 2012). One 
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explanation for the increased astrocyte response is that an instigating factor within the 

mSOD1 mouse environment induces a CD4+ T cell phenotype that is a potent astrocyte 

activator. If this phenotype is maintained in the adoptive transfer process, it could be 

responsible for increased astrocyte induction. This astrocyte response is axotomy-

dependent, as no induction of astrocyte activity is observed in the uninjured facial motor 

nucleus of mSOD1 CD4+ T cell recipients (data not shown). 

Another distinction between WT and mSOD1 CD4+ T cells is the differential 

induction of Tnfr1 expression after axotomy. Increased Tnfr1 expression in WT CD4+ T 

cell recipients in Aim 2 led to the conclusion that isolated CD4+ T cells behave in a 

differential manner than in the immunocompetent environment. Unexpectedly, this 

behavior does not hold true in the mSOD1 CD4+ T cell group because the Tnfr1 response 

in mSOD1 CD4+ T cell recipients approximates normal levels. These findings provide 

support for the claim that there are significant phenotypic differences between WT and 

mSOD1 CD4+ T cells.  

Additionally, an increased Fas induction in the late post-axotomy phase is 

observed in mSOD1 CD4+ T cell, not WT CD4+ T cell, recipients. This Fas expression 

is likely linked to the mSOD1 transgene’s effects on peripheral immune cells, and these 

data suggest that CD4+ T cells alone are capable of inducing this Fas expression.  

Altogether, mSOD1 and WT CD4+ T cells differentially regulate the molecular 

response within the injured facial motor nucleus to promote neuronal survival. The 

distinct motoneuron, astrocyte, and cell death pathway expression patterns suggest that 

significant phenotypic differences exist between mSOD1 and WT CD4+ T cells, refuting 
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the original hypothesis that they act in an identical manners to protect injured 

motoneurons.  

 

5.3.4. Differential induction of motoneuron-specific death mechanisms in mSOD1 whole 

splenocyte versus mSOD1 CD4+ T cell reconstituted immunodeficient mice 

The ultimate goal for Aim 3 was to identify significant differences in regulation 

of the central molecular response to facial nerve injury in immunodeficient mice 

reconstituted with either mSOD1 whole splenocytes or isolated mSOD1 CD4+ T cells. 

Because mSOD1 whole splenocytes fail to rescue neuronal survival after axotomy, it was 

hypothesized that CD4+ T cell-mediated regulation of the glial microenvironment was 

inhibited in the whole splenocyte environment. To our surprise, there was equivalent 

regulation of microenvironment responses by both mSOD1 whole splenocytes and CD4+ 

T cells. This study only used two markers to assess the glial response to injury, and 

studying additional markers of glial activation status will allow for characterization of 

neuroprotective or neurotoxic glial phenotypes. Additionally, mSOD1 whole splenocytes 

did not negatively impact the motoneuron regeneration response or the TNFα/TNFR1 

axis.  

In this study, the only observed gene expression change between mSOD1 whole 

splenocytes and CD4+ T cells that could potentially explain the increased neuronal death 

is increased nNos expression at both early and late timepoints in mSOD1 whole 

splenocyte recipients. Fas, an upstream inducer of nNos expression, is increased in the 

late post-axotomy phase in both mSOD1 whole splenocyte and CD4+ T cell recipients, 

mimicking the expression response seen in the mSOD1 mouse (Haulcomb et al., 2014). 
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This finding indicates that the mSOD1 immune system, specifically CD4+ T cells, could 

be responsible for mediating Fas expression induction. However, only the mSOD1 whole 

splenocyte recipients exhibit a significant increase in nNos, suggesting that motoneuron 

death due to Fas/nNos signaling is restricted to mSOD1 whole splenocyte recipients, not 

isolated mSOD1 CD4+ T cell recipients. These results suggest that either CD8+ T or B 

cells are responsible for promoting motoneuron death by induction of nNos.  

To summarize, these gene expression data suggest that the increased motoneuron 

death observed in mSOD1 whole splenocytes could be due to peripheral immune 

induction of a motoneuron-specific death pathway prevalent in ALS. Isolated mSOD1 

CD4+ T cells are able to protect motoneuron survival because the cell inducing nNos 

neurotoxicity is not present. An alternative hypothesis is that mSOD1 whole splenocytes 

may promote a neurotoxic glial phenotype relative to mSOD1 CD4+ T cells.  

 

5.3.5. Aim 3 summary of findings and revised hypothesis 

The results from Aim 3 lead to the conclusion that WT whole splenocytes and 

CD4+ T cells can both be neuroprotective via differential regulation of the central 

response to axotomy, with astrocytic activation playing a prominent role. Importantly, 

target genes thought to be necessary for neuronal survival are upregulated in mSOD1 

whole splenocyte recipients. Furthermore, motoneuron regeneration gene expression after 

axotomy does not correlate with motoneuron survival after injury, as a regenerative 

phenotype occurred in the facial motor nucleus regardless of immunodeficiency or 

disease status. However, astrocyte activation was found to be highly dependent on 



 

142 

peripheral immune status, suggesting that astrocytes play a major role in transducing 

peripheral immune signals into the CNS.  

The hypothesis that the mSOD1 whole splenocyte environment inhibits CD4+ T 

cell-mediated microenvironment regulation, as well as facial motoneuron rescue, after 

axotomy is not supported by these data. Instead, there are several other possible 

explanations. For example, generation of a neurotoxic astrocyte phenotype could be 

induced by mSOD1 whole splenocytes. Additionally, mSOD1 whole splenocytes may 

promote the Fas/nNos motoneuron-specific death mechanism after axotomy.  

 

5.3.6. Future directions 

Glial phenotype characterization, especially the astrocyte response to facial nerve 

injury, should be performed in mSOD1 whole splenocyte and mSOD1 CD4+ T cell 

reconstituted animals. As described in section 5.3.2., C3 can be used as a broad marker 

for neurotoxic astrocytes, and this may be a good starting point for identifying differential 

astrocyte activation by mSOD1 whole splenocytes or mSOD1 CD4+ T cells. The 

different astrocyte activation responses can be further examined by performing 

transcriptomic analysis of their post-axotomy response (Zamanian et al., 2012; Liddelow 

et al., 2017).  

Additionally, the results in Aims 1, 2, and 3 suggest the astrocyte may be an 

especially important component of immune-mediated neuroprotection. These findings 

have been largely unexpected because the original hypothesis suggested that microglia 

were the cells responsible for transducing neuroprotective CD4+ T cell signaling into the 

CNS. Instead, this work indicates that astrocytes are the CNS mediators of T cell 
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neuroprotection. Alternatively, neuroprotection could require a cooperative effort of both 

microglia and astrocytes to promote neuronal survival. A novel way to test these theories 

is to employ PLX3997, a drug that eliminates >99% of microglia in the brain (Elmore et 

al., 2014; Elmore et al., 2015). Administration of this drug for two months to 

continuously eliminate microglia has no significant effects on motor function, cognition, 

or learning in mice (Elmore et al., 2014). Superimposing FNA on microglia-depleted 

mice would reveal if astrocytes alone are capable of mediating neuroprotective 

mechanisms to promote motoneuron survival the facial motor nucleus.  

The Fas/nNos induction by mSOD1 whole splenocytes and mSOD1 CD4+ T cells 

requires further analysis. To test if Fas-mediated motoneuron death is induced by 

mSOD1 whole splenocytes, the downstream signaling cascade of Fas could be disrupted 

to see if facial motoneuron survival is rescued after FNA. A RAG-2-/-/Daxx-/- mouse 

could be generated and receive an adoptive transfer of mSOD1 whole splenocytes, and 

facial motoneuron survival at 28 dpo FNA could be quantified. This experiment would 

support or refute the claim that increased neuronal death in mSOD1 whole splenocyte 

recipient mice is due to peripheral immune system induction of Fas-mediated cell death. 

Confocal microscopy of CD8+ T or B cells could be used to identify if these cells directly 

infiltrate the CNS parenchyma or communicate across the BBB to induce Fas/nNos 

expression. Also, mSOD1 whole splenocytes could be depleted of CD8+ T cells or B 

cells using negative selection magnetic cell sorting before adoptive transfer into RAG-2-/- 

animals. FMN survival at 28 dpo FNA could then be quantified in these two groups to 

identify which cell type is responsible for promoting motoneuron death after peripheral 

nerve injury.  
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5.4. Significance of findings 

The work presented in this dissertation advances our understanding of the 

mechanisms underlying immune-mediated neuroprotection after neuronal injury or 

disease. Regarding the role of IL-10 in facial motoneuron survival after axotomy, we 

have determined that multiple sources of IL-10, both neuronal and glial, could contribute 

to peripheral immune cell-mediated neuroprotection. These experiments used an in vivo 

approach for assessing cell-specific cytokine production, an important innovation 

considering the failure of in vitro findings to translate meaningfully to whole-organism 

studies. Future studies characterizing central cytokine expression after peripheral nerve 

injury will be crucial for developing a broader picture of the immune response within the 

injured facial motor nucleus. Characterization of the central molecular response to 

peripheral nerve injury in immunodeficient versus immunocompetent mice also provides 

novels insights. The discovery that CD4+ T cells are responsible for molecular regulation 

of the CNS microenvironment after peripheral target disconnection is important in view 

of the role of CD4+ T cells in many neurodegeneration diseases. Finally, this work 

provides support for the non-cell autonomous theory of motoneuron death in ALS 

through use of the axotomy model of target disconnection. Restriction of the mSOD1 

mutation to the peripheral immune system compartment results in significant alterations 

in the central response to peripheral nerve injury, suggesting that the ALS immune 

system may contribute to disease pathology. These contributions may involve promotion 

of neurotoxic glial phenotypes or induction of motoneuron-specific death mechanisms, 

and studying these effects further will elucidate new therapeutic strategies utilizing 

immunotherapy as a treatment for ALS.   
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