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ABSTRACT 
 

Whybrew, Jennafer Marie. M.S., Purdue University, December 2010.  Aerobic Uptake of 
Cholesterol by Ergosterol Auxotrophic Strains in Candida glabrata & Random and Site-
Directed Mutagenesis of ERG25 in Saccharomyces cerevisiae.  Major Professor: Dr. 
Martin Bard. 
 
 Candida albicans and Candida glabrata are opportunistic human pathogens that 

are the leading cause of fungal infections, which are increasingly becoming the leading 

cause of sepsis in immunosuppressed individuals. C. glabrata in particular has become a 

significant concern due to the increase in clinical isolates that demonstrate resistance to 

triazole antifungal drugs, the most prevalent treatment for such infections. Triazole drugs 

target the ERG11 gene product and prevent C-14 demethylation of the first sterol 

intermediate, lanosterol, preventing the production of the pathways end product 

ergosterol. Ergosterol is required by yeast for cell membrane fluidity and cell signaling. 

Furthermore, C. glabrata, and not C. albicans, has been reported to utilize cholesterol as 

a supplement for growth.

Although drug resistance is known to be caused by an increase in expression of 

drug efflux pumps, we hypothesize a second mechanism: that the overuse of triazole 

drugs has lead to the increase of resistance by C. glabrata through a 2-step process: 1) the 

accumulation of ergosterol auxotrophic mutations and 2) mutants able to take up 

exogenous cholesterol anaerobically in the body acquire a second mutation allowing 

uptake of cholesterol aerobically. Two groups of sterol auxotrophic C. glabrata clinical 

isolates have been reported to take up sterol aerobically but do not produce a sterol 



 xiii

precursor. Sterol auxotrophs have been created in C. glabrata by disrupting different 

essential genes (ERG1, ERG7, ERG11, ERG25, and ERG27) in the ergosterol pathway to 

assess which ergosterol mutants will take up sterols aerobically. 

Random and site-directed mutagenesis was also completed in ERG25 of 

Saccharmoyces cerevisiae. The ERG25 gene encodes a sterol C-4 methyloxidase 

essential for sterol biosynthesis in plants, animals, and yeast. This gene functions in turn 

with ERG26, a sterol C-3 dehydrogenase, and ERG27, a sterol C-3 keto reductase, to 

remove two methyl groups at the C-4 position on the sterol A ring. In S. cerevisiae, 

ERG25 has four putative histidine clusters, which bind non-heme iron and a C-terminal 

KKXX motif, which is a Golgi to ER retrieval motif. We have conducted site-directed 

and random mutagenesis in the S. cerevisiae wild-type strain SCY876. Site-Directed 

mutagenesis focused on the four histidine clusters, the KKXX C-terminal motif and other 

conserved amino acids among various plant, animal, and fungal species. Random 

mutagenesis was completed with a procedure known as gap repair and was used in an 

effort to find novel changes in enzyme function outside of the parameters utilized for site-

directed mutagenesis. The four putative histidine clusters are expected to be essential for 

gene function by acting as non-heme iron binding ligands bringing in the oxygen required 

for the oxidation-reduction in the C-4 demethylation reaction. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Sterols-Structure and Function 

Sterols are naturally occurring organic molecules produced by enzymes in the 

endoplasmic reticulum (ER) and are essential for animal, plant, and fungal cell function. 

Sterols are distributed in the plasma and cell membranes. Each kingdom utilizes a 

different primary sterol, each having slight variations in structure. Specifically, the 

primary animal sterol is cholesterol, fungal sterol is ergosterol, and plant sterols are 

stigmasterol and β-sitosterol. Figure 1.1 illustrates the sterol derivatives from the 

different kingdoms as well as the IUPAC numbering system for sterol molecules (37). 

The comparison in this figure clearly illustrates the similarity among the structures of the 

different end product sterols. 
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Figure 1.1 Sterol structures and IUPAC numbering system. 
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 The general sterol structure is a substituted 4-ring steroid nucleus with a hydroxyl 

group at C3, methyl groups at C10 and C13, and a variable side chain at C17 about eight 

carbons long. The kingdom specific structural differences between sterols are generally in 

the number and position of double bonds and side chain substitutions. Of particular 

significance for this work is the slight variation between cholesterol and ergosterol, 

where cholesterol is a 27 carbon sterol structure with one double bond at C5-6 and a C3 

hydroxyl group (both standard for sterol structure) and ergosterol is a 28 carbon sterol 

structure with double bonds at C5-6, C7-8, and C22-23 and has an additional methyl 

group at C24 (5, 37). 

In all kingdoms, sterols are associated with cell membrane structure. Interestingly, 

because sterol structures only have small variations from one another, it is possible for 

many different kingdom sterols to be substituted in the membrane in place of a sterol end 

product. For example, if a deleterious event occurs in the ergosterol biosynthetic pathway 

preventing the production of the ergosterol end product, cells can utilize cholesterol (the 

animal kingdom end product sterol) in place of ergosterol. Studies exploring this 

phenomenon of sterols have lead to a greater understanding of the biological functions 

sterols play in the cell. These molecules are known critical constituents of a cells plasma 

membrane and play significant roles in many biological functions including: membrane 

fluidity (1), membrane bound enzyme regulation (2), membrane permeability (3), 

endocytosis (4), and growth rates of fungal cells (38).  
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1.2 Sterol Biosynthesis 

 

1.2.1 The Mevalonate Pathway 

The first half of the biosynthetic pathway of sterols is referred to as the 

mevalonate pathway. This half of the pathway converts acetyl-CoA to farnesyl 

pyrophosphate (FPP) in nine steps (5). Acetyl-CoA is produced during glycolysis from 

the oxidative decarboxylation of pyruvate (41). In order for cells to produce sterols, 

acetyl-CoA must go through the mevalonate or isoprenoid pathway (41). 

The nine steps of the isoprenoid pathway are illustrated in Figure 1.2 (42). 
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Figure 1.2 Isoprenoid Biosynthetic Pathway. 

 

First, ERG10, an acetoacetyl-CoA thiolase, combines two acetyl-CoA molecules 

to produce acetoacetyl-CoA. Second, the ERG13 gene product, an HMG-CoA synthase, 

produces HMG-CoA, which is then reduced to mevalonic acid by the HMG-CoA 

reductase product of HMG1 or HMG2. Steps four and five phosphorylate mevalonic acid 
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in two steps: first the mevalonate kinase (ERG12 gene product) produces mevalonate-5-

phosphate and second the phosphomevalonate kinase (ERG8 gene product) produces 

mevalonate-5-pyrophosphate. At step six, the ERG19 gene product converts mevalonate-

5-pyrophosphate to isopentenyl pyrophosphate (IPP), which is in turn converted to 

dimethylallyl pyrophosphate by the IDI1 gene product, isopentenyl pyrophosphate 

isomerase. Finally, the ERG20 gene product, farnesyl pyrophosphate synthase, converts 

IPP, in two steps, to farnesyl pyrophosphate (5). Farnesyl pyrophosphate is the starting 

product for the second half of the pathway, known as the ergosterol biosynthetic pathway.  

 

1.2.2 Sterol Biosynthesis: Farnesyl Pyrophosphate to Ergosterol 

This second part of the pathway is referred to as the ergosterol biosynthetic 

pathway and utilizes 13 gene-encoded enzymes to convert farnesyl pyrophosphate to the 

end product ergosterol in an 11-step process. Figure 1.3 illustrates this conversion process 

as a flow chart for easy reference.  
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Figure 1.3 Flow chart diagramming the 11-step enzymatic process of the ergosterol 
biosynthetic pathway 
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First, ERG9, or squalene synthase, synthesizes squalene from farnesyl 

pyrophosphate. This is a molecular oxygen-requiring step of the pathway. Second, ERG1, 

or squalene epoxidase, converts squalene to squalene epoxide. Third, ERG7, or lanosterol 

synthase, transforms squalene epoxide into lanosterol, the first sterol precursor of the 

ergosterol pathway. Then, ERG11 removes a methyl group from the C-14 position of 

lanosterol creating the 4,4-dimethylcholesta-8,14,24-tienol intermediate. ERG24, a sterol 

C-14 reductase, turns this intermediate into 4,4-dimethylzymosterol. The next three 

genes: ERG25 (a sterol C-4 methyloxidase), ERG26 (a sterol C-3 dehydrogenase), and 

ERG27 (a sterol C-3 keto-reductase), function together with a scaffold protein ERG28 to 

remove two methyl groups at the C-4 position on the sterol A ring creating zymosterol. 

These first nine genes and their encoded gene products (ERG9, ERG1, ERG7, ERG11, 

ERG24, ERG25, ERG26, ERG27, and ERG28) leading up to the production of 

zymosterol, a sterol precursor intermediate in the pathway, are essential for cell viability. 

An error or defect in this portion of the pathway is lethal to the cell.  

Zymosterol is converted to fecosterol by the ERG6 gene product sterol C-24 

methyltransferase. ERG2, sterol C-8 isomerase, converts fecosterol to episterol. Next, 

two desaturases, ERG3 (sterol C-5 desaturase) and ERG5 (sterol C-22 desaturase), 

convert episterol to ergosta-5,7,24(28)-trienol and ergosta-5,7,24(28)-trienol to ergosta-

5,7,22,24(28)-tetraenol, respectively. Finally, ERG4 (sterol C-24 reductase) converts 

ergosta-5,7,22,24(28)-tetraenol to ergosterol. These genes involved after the production 

of zymosterol, ERG6, ERG2, ERG3, ERG5, and ERG4, are non-essential for growth 

because the resulting products can be used in place of ergosterol to support membrane 
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function (6). Figure 1.4 illustrates the chemical structure changes during the ergosterol 

biosynthetic pathway (42). 
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Figure 1.4 Ergosterol Biosynthetic Pathway 

           

1.2.3 The Role of Heme in Ergosterol Biosynthesis 

Heme consists of iron surrounded by a pyrrole ring system and is utilized to 

selectively bind molecules, in this pathway, molecular oxygen (41). Heme is bound to 

mitochondrial proteins known as cytochromes, which act as electron transporters in 

several different cellular functions (43). In yeast, the ERG11 and ERG5 encoded 
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enzymes are cytochrome P450’s, while the ERG3 and ERG25 enzymes require 

cytochrome b5 as a co-factor (44). These heme-requiring steps indicate sterols can only 

be endogenously produced aerobically due to the requirement for molecular oxygen.  

Sterol auxotrophic strains can be studied in some species of yeast because of their 

ability to uptake exogenous sterol anaerobically. When endogenous sterol production is 

compromised, yeast cells are capable of utilizing alternative sterol sources (48). This 

phenomenon is known as aerobic sterol exclusion. This phenomenon suggests yeast 

cannot take up exogenous sterol aerobically, rather only anaerobically (5). Although the 

mechanism is not clear, studies have indicated that heme plays a significant role in this 

phenomenon (49, 64). Gallub and colleagues reported that a heme product participates in 

transforming lanosterol to ergosterol (49). Lewis and colleagues reported that a heme 

mutation is required for aerobic rescue of an erg mutation (64). Of significant concern for 

this study are the recent reports indicating some strains of C. glabrata (an opportunistic 

human pathogen) are capable of aerobic sterol uptake (51).
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CHAPTER 2  

MATERIALS AND METHODS 

 

2.1 Strains, Media, and Growth Conditions 

 

2.1.1 Bacterial Strains, Media and Growth Conditions 

 Escherichia coli strains used in these studies include DH5α™ competent cells [F- 

ф80lacZ∆M15 ∆(lacZYA-argF)U169 recA1 endA1 hsdR17(rk
-, mk

+) phoA supE44 thi-1 

gyrA96 relA1 λ-(Invitrogen, CA)] and XL10-Gold® Ultracompetent Cells [Tetr∆ 

(mcrA)183 ∆(mcrCB-hsdSMR-mrr)173 endA1 supE44 thi-1 recA1 gyrA96 relA1 lac 

Hte [F’ proAB lacIqZ∆M15 Tn10 (Tetr) Amy Camr] (Stratagene, La Jolla, CA)]. Bacterial 

strains were grown in Luria-Bertani (LB) media with the addition of 60 µg/ml of 

ampicillin for selection. LB media consisted of 10 g of pancreatic digest of casein, 5 g of 

yeast extract, and 10 g/L of sodium chloride (46) dissolved in milli-Q water and 

autoclaved for 25 minutes. Solid media required the addition of 2% (w/v) granulated 

Difco agar (Becton Dickinson, Sparks, MD) prior to autoclaving. Liquid cultures were 

grown at 37˚C in a walk in incubator with shaking at 225 rpm and solid media was grown 

in a 37˚C incubator for 16-20 hours.
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2.1.2 Yeast Strains 

Table 2.1 Yeast strains used and created in this study 
Strain Genotype Source 
S. cerevisiae   
SCY876 Matα, upc2.1 hap Ty (hi), ura3-1,  

his3-11,-15, leu2-3,-112, trp1-1 
S. Sturley (55) 

D1 SCY876; erg25::HIS3 This Study 
 From Random mutagenesis  
JWSC213 D1; with pRM213 This Study 
JWSC2118 D1; with pRM2118 This Study 
JWSC2148 D1; with pRM2148 This Study 
JWSC21100 D1; with pRM21100 This Study 
JWSC393 D1; with pRM393 This Study 
JWSC41 D1; with pRM41 This Study 
   
 From Site-directed mutagenesis  
JWSCF67A D1; with pJWF67A This Study 
JWSCQ88A D1; with pJWQ88A This Study 
JWSCQ98A D1; with pJWQ98A This Study 
JWSCC101A D1; with pJWC101A This Study 
JWSCL102A D1; with pJWL102A This Study 
JWSCI115A D1; with pJWI115A This Study 
JWSCE152A D1; with pJWE152A This Study 
JWSCD153A D1; with pJWD153A This Study 
JWSCY157F D1; with pJWY157F This Study 
JWSCH160A D1; with pJWH160A This Study 
JWSCY169F D1; with pJWY169F This Study 
JWSCK170A D1; with pJWK170A This Study 
JWSCH176A D1; with pJWH176A This Study 
JWSCP182A D1; with pJWP182A This Study 
JWSCE188A D1; with pJWE188A This Study 
JWSCH191A D1; with pJWH191A This Study 
JWSCR228A D1; with pJWR228A This Study 
JWSCH236A D1; with pJWH236A This Study 
JWSCY239F D1; with pJWY239F This Study 
JWSCH258A D1; with pJWH258A This Study 
C. glabrata   
CG2001HT ∆trp1::Scura3∆his3::ScURA3∆ura3 Nakayama (63) 
JWCG∆erg1 CG2001HT; erg1::HIS3 This Study 
JWCG∆erg7 CG2001HT; erg7::HIS3 This Study 
JWCG∆erg11 CG2001HT; erg11::HIS3 This Study 
JWCG∆erg25 CG2001HT; erg25::HIS3 This Study 
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JWCG∆erg27 CG2001HT; erg27::HIS3 This Study 
97SQS ∆ura3 ∆trp1::Scura3::PScADH1-

tetRGAL4-TRP1∆his3::ScURA3 
erg9::97tERG9-URA3 

Nakayama (63) 

97SQS/∆AUS1 ∆ura3 ∆trp1::Scura3::PScADH1-
tetRGAL4-TRP1∆his3::ScURA3 
erg9::97tERG9-URA3 ∆aus1::HIS3 

Nakayama (63) 

 

2.1.3 Yeast Media and Growth Conditions 

All strains of S. cerevisiae and C. glabrata used in this study were grown non-

selectively in either 1) YPAD nutrient rich media consisting of 1% w/v Yeast extract 

(Difco), 2% w/v Peptone (Difco), 120 mg/L Adenine hemisulfate (Sigma), and 2% w/v 

Dextrose (Sigma) or 2) Complete Synthetic Media (CSM) consisting of 0.79 g/L CSM (Q 

Biogene) [40 mg/l adenine, 20 mg/l arginine, 100 mg/l aspartic acid, 100 mg/l glutamic 

acid (monosodium sulfate), 20 mg/l histidine, 60 mg/l leucine, 30 mg/l lysine, 20 mg/l 

methionine, 50 mg/l phenylalanine, 375 mg/l serine, 200 mg/l threonine, 40 mg/l 

tryptophan, 30 mg/l tyrosine, 150 mg/l valine, 20 mg/l uracil (46)], 1.7 g/L yeast nitrogen 

base without amino acids (YNB) (Difco), 5 g/L ammonium sulfate (Fisher Scientific), 

and 20 g/L glucose (Sigma). Synthetic dropout media, where a specific nutrient is left out 

of the media based on nutritional requirements of the strain, were used for genetic marker 

selection. For S. cerevisiae the media lacked uracil and for C. glabrata the media lacked 

histidine. CSM media had the pH adjusted to 5.8 and 2%-granulated agar (Difco) for 

solid media. End product ergosterol or cholesterol was added to media from a 2 mg/ml 

stock solution in Tween80/EtOH (1:1 v/v) for both species to screen for sterol 

auxotrophy. For anaerobic growth, both liquid and solid cultures were used in the 
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anaerobic jars with the GasPak EZ system (Becton Dickinson, Sparks, MD). Yeast strains 

were grown at 30˚C. 

 

2.2 DNA Manipulations 

 

2.2.1 List of Plasmids Used in These Studies 

Table 2.2 Plasmids used and created in this study 
Plasmid Description Reference 
pRS303 CEN6/ARS, LacZ, HIS3, ampR (4.453 kb) Hieter 
pIU800 Bluescript(SR)+ vector with ERG25 Bard 
p426ADH 2µ, URA3, prom-ADH, MCS: SpeI,BamHI,SmaI 

EcoRV,EcoRI, PstI, HindIII,ClaI, SalI, XhoI; CYC1-
term 

Mulbury 

 From Random mutagenesis  
pRM213 p426ADH; erg25: no change, wild type   This Study 
pRM2118 p426ADH; erg25, change: W276R This Study 
pRM2148 p426ADH; erg25: no change, wild type This Study 
pRM21100 p426ADH; erg25, change: R274G This Study 
pRM393 p426ADH; erg25, change: S45G This Study 
pRM41 p426ADH; erg25, change: H263L This Study 
   
 From Site-directed mutagenesis  
pJWH62A p426ADH; erg25; H62 changed to A (EcoRI/SalI) This Study 
pJWF67A p426ADH; erg25; F67 changed to A (EcoRI/SalI) This Study 
pJWQ88A p426ADH; erg25; Q88 changed to A (EcoRI/SalI) This Study 
pJWQ98A p426ADH; erg25; Q98 changed to A (EcoRI/SalI) This Study 
pJWC101A p426ADH; erg25; C101 changed to A (EcoRI/SalI) This Study 
pJWL102A p426ADH; erg25; L102 changed to A (EcoRI/SalI) This Study 
pJWI115A p426ADH; erg25; I115 changed to A (EcoRI/SalI) This Study 
pJWE152A p426ADH; erg25; E152 changed to A (EcoRI/SalI) This Study 
pJWD153A p426ADH; erg25; D153 changed to A (EcoRI/SalI) This Study 
pJWY157F p426ADH; erg25; Y157 changed to F (EcoRI/SalI) This Study 
pJWH160A p426ADH; erg25; H160 changed to A (EcoRI/SalI) This Study 
pJWY169F p426ADH; erg25; Y169 changed to F (EcoRI/SalI) This Study 
pJWK170A p426ADH; erg25; K170 changed to A (EcoRI/SalI) This Study 
pJWH173A p426ADH; erg25; H173 changed to A (EcoRI/SalI) This Study 
pJWH176A p426ADH; erg25; H176 changed to A (EcoRI/SalI) This Study 
pJWP182A p426ADH; erg25; P182 changed to A (EcoRI/SalI) This Study 
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pJWE188A p426ADH; erg25; E188 changed to A (EcoRI/SalI) This Study 
pJWH191A p426ADH; erg25; H191 changed to A (EcoRI/SalI) This Study 
pJWR228A p426ADH; erg25; R228 changed to A (EcoRI/SalI) This Study 
pJWH236A p426ADH; erg25; H236 changed to A (EcoRI/SalI) This Study 
pJWY239F p426ADH; erg25; Y239 changed to F (EcoRI/SalI) This Study 
pJWH258A p426ADH; erg25; H258 changed to A (EcoRI/SalI) This Study 

 

2.2.2 Endonuclease Restriction Digest 

Restriction digests were done with 1 µl DNA, 1-5 Units of restriction enzyme 

(Roche) and 2 µl of the corresponding 10X digestion buffer (Roche) to a final volume of 

20 µl. The solution was incubated at 37˚C for 1-4 hours. Up to two enzymes would be 

used simultaneously if the digestion buffer were the same for both enzymes. If digestion 

buffers did not correspond, separate digests were done separated by EtOH precipitation. 

Final digested product was verified and quantitated by 1% agarose gel electrophoresis. 

 

2.2.3 Agarose Gel Electrophoresis 

 Gel electrophoresis separates DNA fragments by size. These were utilizied to 

verify and quantify DNA. Preparing agarose gels consisted of dissolving 1% (w/v) 

agarose (Sigma) in 10X TAE buffer pH 8.0 (20 mM Tris-HCl, 20 mM Acetate, 0.5 mM 

EDTA). The gel was poured into a cast cleaned with 95% EtOH and a comb inserted to 

create wells for DNA samples. DNA samples were prepared with water and 10X blue 

juice loading dye to a total volume of 10 µl. A Hi-Lo ladder (Minnesota Molecular) and λ 

phage DNA molecular weight standards digested with HindIII were used as comparisons 

for DNA. Gels were run at 40-60 V for four to six hours and then stained in 10 ug/ml 



 15

EtBr solution for 10-20 minutes. DNA was visualized on the gels with a transilluminator 

and pictures were taken with a Kodak camera when required. 

 

2.2.4 Ethanol Precipitation 

 Ethanol precipitation was used to precipitate and purify DNA. The same volume 

of 5 M sodium acetate was added to a volume of DNA. This solution was vortexed to mix 

well. Then two volumes of -20˚C 95% EtOH were added to the DNA and sodium acetate 

solution. This solution was then vortexed to mix well and incubated for five to ten 

minutes at room temperature. This was then pelleted at 13,000 rpm for twelve minutes at 

room temperature and the supernatant carefully removed. The pellet was washed with 

100 µl of -20˚C 70% EtOH and pelleted at 13,000 rpm for twelve minutes at room 

temperature and again, the supernatant carefully removed. The pellet was dried in the 

hood for no more than ten minutes to remove residual EtOH. The pellet was then 

resuspended in 20 µl of TE pH8.0. The DNA was finally run out on a gel to quantify. 

 

2.3 Transformations 

 

2.3.1 Bacterial Transformations 

 Bacterial cells stored at -80˚C were gently thawed on ice. While cells are thawing, 

1-10 µg plasmid DNA was aliquoted into microcentrifuge tubes. Once cells are thawed, 

they were swirled very gently in their original tube and 40 µl were pipetted onto the DNA. 

Cell and DNA solution were incubated on ice for 30 minutes and the remaining bacterial 

cells were replaced in the –80˚C freezer. After 30 minutes, the solution was heat shocked 
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at 42˚C for 45-60 seconds and then placed immediately back on ice for 2 minutes. 500-

1000 µl of room temperature LB broth was added to reaction and mixture is incubated at 

37˚C for 1 hour with 225 rpm of shaking. Finally, cells were plated onto LB + ampicillin 

plates and incubated for 16-20 hours at 37˚C. 

 

2.3.2 Yeast Transformations 

 Yeast cells were freshly grown overnight (or occasionally for two nights when 

growing anaerobically) in appropriate liquid media for all transformations. If aerobic 

growth was appropriate, cell cultures were grown to an OD of 1.0. Cells were pelleted for 

5 minutes at 3,000 X g. The supernatant was decanted and cells were washed twice with 

25 mL sterile H2O for 5 minutes at 3,000 X g. Yeast cells were resuspended in a 10% 

10X TE [pH 7.5], 10% 1M Lithium Acetate [pH 7.5], and 80% dH2O solution and 

incubated at 30˚C for 15 minutes. While the cells incubated, a transformation solution 

with 100 µg carrier DNA (denatured salmon sperm DNA) and 1-5 µg template DNA was 

combined in a microcentrifuge tube. This transformation solution containing DNA had 

100 µl of the cell solution and 600 µl of PEG solution (10% 10X TE [pH 7.5], 10% 1M 

lithium acetate [pH 7.5], and 80% of a 50% PEG 3400 solution) was vortexed briefly, 

incubated for 30 minutes at 30˚C, and heat shocked at 42˚C for 15 minutes. This 

transformation solution was pelleted for 5 seconds at 3,000 X g and the supernatant 

decanted. An appropriate amount of liquid dropout media or sterile water, generally 500-

1000 µl, was added to dissolve the pelleted cells. The cells were plated in 100 µl aliquots 

onto appropriate dropout media plates with sterol supplementation when required. Plates 

were incubated 3-5 days. 
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2.3.3 Spot Plate Assays 

 Spot plate assays were used to monitor different yeast strains’ growth 

characteristics on different media. Cells were freshly grown in appropriate media for each 

strain. For example, strains with essential gene disruptions were grown anaerobically on 

YPD plates with sterol supplementation and strains not containing essential gene 

disruptions were grown aerobically on YPD. Either pelleting liquid cultures or scrapping 

cells from plates and dissolving cells in sterile water created cell solutions. The 

concentration of the cell suspension was measured on a spectrophotometer. Dilutions 

were made from this suspension to plate 5-10 µl spots with OD values ranging from 0.1 

to 4.0. Depending on the parameters being tested, different sterols were added for 

supplementation to plates at different concentrations. Plates were poured to 25ml. 

 

2.4 Preparation of DNA 

 

2.4.1 Bacterial Plasmid DNA Preparation  

 Bacterial cells were grown in 2 ml cultures tubes of LB + ampicillin liquid 

overnight for 16-20 hours at 37˚C with 225 rpm shaking. Aliquots of 1.5 ml of cells were 

pelleted at 13,000 rpm for 3 minutes. The pellet was resuspended in 250 µl P1 buffer 

(Qiagen) or 100 µl GTE (50 mM glucose, 25 mM Tris-HCl, 10mM EDTA) by vortexing. 

Next, 250 µl P2 buffer (Qiagen) or 200 µl of lysis buffer (1% SDS and 200mM NaOH) 

was added to tubes and inverted gently 4-6 times. Cell debris was precipitated by adding 

350 µl buffer N3 (Qiagen) or 150 µl KOAc (5.0 M KOAc, 29.5% v/v glacial acetic acid 

[pH 4.8]) and inverting gently 4-6 times. The solution was then pelleted at 13,000 rpm for 
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10 minutes. The supernatant was transferred to a spin column (Qiagen) or new 

microcentrifuge tube. For the Qiagen protocol, the supernatant was spun down for 1 

minute, the column washed with 500 µl buffer PB and pelleted for 1 minute, the column 

washed with 750 µl buffer PE and pelleted for 1 minute, and finally the DNA eluted with 

25 µl of elution buffer. For the second protocol, two volumes of 95% EtOH was added to 

the pellet to precipitate the DNA and pelleted for 5 minutes. Then the pellet was washed 

with 70% EtOH and finally eluted in 25 µl TE buffer. 

 

2.4.2 Yeast DNA Preparation 

 Plasmid DNA was extracted from yeast cells using the Zymoprep yeast plasmid 

miniprep kit (Zymo Research). Yeast cells were grown overnight at 30˚C in either liquid 

media or on solid media; whichever was the most appropriate for the best growth of the 

strain. If liquid cultures were grown, 1.5 mL of sample was pelleted at 1,000 X g for 2 

minutes to obtain a cell pellet that was then resuspended in 150 µl of Solution 1 and 2 µl 

of zymolyase. If solid media was used, cells were scraped from the plate and added to the 

150 µl Solution 1 and 2 µl zymolyase solution and mixed. The cell solution was then 

incubated at 37˚C for 60 minutes. Once the incubation was completed, 150 µl of Solution 

2 was added to the tube and mixed by inverting 4-6 times followed by the addition of 200 

µl Solution 3. Samples were then pelleted at 13,000 rpm for 5 minutes. The supernatant 

was then decanted into a fresh microcentrifuge tube and 400 ul of isopropanol added for 

DNA precipitation. The tube was pelleted at 13,000 rpm again for 10 minutes. The 

supernatant was decanted and the pellet was resuspended in TE pH 8.0. The presence of 

DNA was verified by 1% agarose gel electrophoresis. 
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2.5 Gas Chromotography 

 

2.5.1 Saponification 

 Yeast cells, grown on appropriate media, were grown to stationary phase 

overnight at 30˚C. Cells were pelleted in 50 mL conical tubes for 5 minutes at 5,000 X g 

and the supernatant decanted. Cells were washed twice with 25-50 mL 1% igepal solution 

and twice with 25-50 mL sterile H2O with five-minute centrifugation times at 5,000 X g 

in between to wash off residual exogenous sterol. The washed cells were then 

resuspended in 4 ml alcoholic KOH (25% w/v) and transferred to glass tubes. These were 

then incubated at 87˚C for 2 hours. After incubating, cells were cooled to room 

temperature and 3 mL of n-heptane and 1 mL dH2O were added to extract the non-

saponifiable lipid fraction. Samples were run on GC the same day if possible or stored at 

–20˚C and run the following day. 

 

2.5.2 Gas Chromatography 

The gas chromatograph is an HP5890 series II that utilizes a fused silica DB5-MS 

capillary column and the Hewlett Packard CHEMSTATION software and uses nitrogen 

as the carrier gas for the sample through a 15-meter column. The semi-splitless mode was 

used with a starting temperature of 195˚C for one minute increasing to 240˚C in 

20˚C/min increments and then 2˚C/min increments to a final temperature of 280˚C where 

the temperature held for five minutes. The injection volume per sample was 2 µl. 
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2.5.3 Gas Chromatography/Mass Spectrophotometery 

The gas chromatograph/mass spectrophotometer is an HP6890 series that utilizes 

a 5% phenyl methyl siloxane (HP-5MS) column (30mL X 0.25mm, 0.25µm) and uses 

helium as the carrier gas for the sample through a 30-meter column. The splitless mode 

was used with a starting temperature of 100˚C for one minute increasing to 300˚C in 

7˚C/min increments and then held for 15 minutes at the final temperature of 300˚C. The 

injection volume per sample was 3 µl. 

 

2.6 DNA sequencing 
 

 DNA sequencing reactions were performed at the Biochemistry Biotechnology 

Facility (BBF) Indiana University School of Medicine. Primers (Invitrogen) used for 

sequencing are listed in Table 2.3. R-seqMCS is a reverse strand primer located at the 3’ 

end past ERG25, F-seq426ADH is a forward primer located at the 5’ end before ERG25, 

and primers with ‘ERG25’ are located somewhere within the ERG25 gene (F- designates 

it is on the forward strand and R- designates it is on the reverse strand). DNA sequence 

was obtained from both forward and reverse strands around the site-directed mutations 

and for the entire strand for random mutations. The sequence was analyzed using Gene 

Runner software and Chromas electropherogram viewer both on a PC. To be considered 

valid, the mutation must have been verified on both directions of the DNA strand. 

Table 2.3 ERG25 mutagenesis sequence primers 
Primer Name Sequence 
R-seqMCS 5’-TCGGTTAGAGCGGATGTGGG-3’ 
F-seq426ADH 5’-GCACAATATTTCAAGCTATACCAAGC-3’ 
F-ERG25seq1 5’-GGTACAGTTACATGAACAATGATGTTTTGGCC-3’ 
R-ERG25seq1 5’-GGCCAAAACATCATTGTTCATGTAACTGTACC-3’ 
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F-ERG25seq2 5’-CCGTTCTTCTATCTCATTTCTTGGTCGAGGCC-3’ 
R-ERG25seq2 5’-GGCCTCGACCAAGAAATGAGATAGAAGAACGG-3’ 
F-ERG25seq3 5’-GGGTTTTGGTACCGTTGGTATGCC-3’ 
R-ERG25seq3 5’-GGCATACCAACGGTACCAAAACCC-3’ 
F-ERG25seq4 5’-CCCATGGTCTTTGAACAAGATCATGCCATTCTGGGC-3’ 
R-ERG25seq4 5’-GCCCAGAATGGCATGATCTTGTTCAAAGACCATGGG-3’ 
F-ERG25seqA 5’-GATAGTAGCATAGAGGACTAAGG-3’ 
R-ERG25seqA 5’-CTTCTCTGGAGGCCTTAGC-3’ 
F-ERG25seqB 5’-GCCATGGTTCATCATCGACC-3’ 
R-ERG25seqB 5’-TTAGGGTGATCCATACACATAGAG-3’ 
F-ERG25seqC 5’-CACCGTCTATTCCACTACGG-3’ 
R-ERG25seqC 5’-ACGAAGAATAGACCAATTTCTAGAGC-3’ 
F-ERG25seqD 5’-AAGATCATGCCATTCTGGGCTG-3’ 
R-ERG25seqD 5’-TAGTTGGTTGTAACTTCCATCTTCT-3’ 

 
 

2.7 DNA Manipulations 

 

2.7.1 Yeast Gene Disruptions 

 ERG1, ERG7, ERG11, ERG25, and ERG27 gene disruptions were made in C. 

glabrata wild type strain 2001HT and the ERG25 gene disruption was made in S. 

cerevisiae wild type strain SCY876 using histidine as the selectable marker. The pRS303 

plasmid was used for PCR amplification of the HIS3 gene with specifically designed 

primers (listed in Table 2.4) containing 60 base pairs of homology at the ends for the 

specific gene being disrupted. PCR reactions contained: 1 µg of pRS303 plasmid DNA, 

100 pmol of forward and reverse primers (Invitrogen), 1.5 mM dNTPs (Stratagene), 5 µl 

10X Taq polymerase buffer (Promega), 1µl of 1 Unit/µl Taq polymerase (Promega), and 

the volume brought to 50µl with autoclaved dH20. PCR program parameters are listed in 

Table 2.5. PCR products were verified and quantified via 1% agarose gel electrophoresis. 

Approximately 1 µg of PCR product was transformed into the wild type yeast strain 
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using the LiAc transformation protocol (see section 2.3). Growth was screened for 

complementation on synthetic drop out media (without histidine). Yeast sterol 

auxotrophy was screened on synthetic media with and without sterols anaerobically and 

aerobically. Yeast colonies that grew anaerobically with sterol but not aerobically without 

sterol were then qualified as the correct gene disruptions based on gas chromotagraphy 

analysis. 

Table 2.4 PCR primers for yeast gene disruptions: ERG gene homology in capital letters, 
homology with pRS303 in lower case 

Forward C.g. ERG1 
GCTATTTAGTCGCTTAACACCTTATCAAGTGCTCTCCTGAAAACAATCAAG 
GACCAAAAAggcgggtgtcggggctggc 
Reverse C.g. ERG1 
ATAAGAGAAAATACAATGAGTCGTTTAAGTGCAAAACACGTCTATATCAA 
ATGTTAGTCCttgccgatttcggcctattg 
Forward C.g. ERG7 
CATAAGTTTATAAATTTGTATATTGAAAAATTGGAAGTGCAACGGTGTTGT 
AAAGCAATAggcgggtgtcggggctggc 
Reverse C.g. ERG7 
AGTTTAAAAAAATTTTCGTTCGTAGCGCGGTATATAATATTATGCAGTGTA 
TATAGGAAAttgccgatttcggcctattg 
Forward C.g. ERG11 
ATCTCGTATAATCAGTAGTCAAGACTTGTGCTAAACATCTTTACAAAAAA 
ATGTATATAATGGGCGATCCCTTCATGTCCggcgggtgtcggggctggc 
Reverse C.g. ERG11 
TCAGCGTATATCCCGTATACGAGCCAGACAGCAATATTGTTTGAAGTAGG 
TTTTGACCATTGATTATTGGAAGAAAATGttgccgatttcggcctattg 
Forward C.g. ERG25 
ACTTGATAAGATAAGAATTTGGTAAACAGGATATCTATTCTTCTTTCTCA 
CATTTAGAGCCTTAGACAAAACAACAAGCCggcgggtgtcggggctggc 
Reverse C.g. ERG25 
GGTTAATTCTGTTTGTTATTGAAAAAAACAAAATCAAATGAAAGCGAGT 
TAGTGAAAAAAAAGTATAGTGATATGTAGTCCGttgccgatttcggcctattg 
Forward C.g. ERG27 
TCATGAAATCAACTGCTACAACTTCAATATCAGGTAATAAACAGGATAT 
TAACAATCATTggcgggtgtcggggctggc 
Reverse C.g. ERG27 
GCTATTTTACCAGTTTCAACCACCGAAACAAAGGCCAACATTCCACAAA 
ATATGATACCTttgccgatttcggcctattg 
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Forward S.c. ERG25  
TTAGTTGTAACTTTTTCTCTTTAGATAGTAGCATAGAGGACTAAGGAAA 
AGTAGTACAGCCATAAAAAAAAGAGGAAAAGggcgggtgtcggggctggc 
Reverse S.c. ERG25  
ATATAGTTTTTAGAATTAACCTGAATTAATTTAAAAATCATATATTAAAA 
TAAACAATTGTGAAGGTAAAAAGAAAGAGTttgccgatttcggcctattg 
 

 
Table 2.5 PCR parameters yeast gene disruptions  

Parameter Temperature Time (min) 
1 94˚C 5:00 
2 94˚C 0:30 
3 53˚C 0:30 
4 72˚C 2:00 
5  Repeat 2-4 (x25) 
6 72˚C 5:00 
7 4˚C ∞ 

 

 

2.7.2 Site-Directed Mutagenesis 

Strategene’s QuickChange II XL Site-Directed Mutagenesis Kit was used to 

perform site-directed mutagenesis. Primers (Invitrogen) were created in a complementary 

fashion with a range of 10-21 base pairs bordering each nucleotide change taking codon 

bias into account. Table 2.6 lists all primer sets for site-directed mutagenesis in ERG25 in 

S. cerevisiae. A wild type DNA template, RM213, utilized for these reactions was created 

by inserting ERG25 gene into a p426ADH vector, PCR reactions had a final volume of 

50 µl and contained 5.0 µl 10X Quick Change Lightening reaction buffer, 1.5 µl 

QuickSolution, 5 µl dNTP mix, 1 µl of PfuUltra HF DNA polymerase, 100-200 ng 

dsDNA template (RM213), and 125 ng of forward and reverse primer (listed in Table 

2.6). PCR parameters are listed in Table 2.7. Upon completion of the PCR reaction, 2 µl 
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of DpnI restriction enzyme was added to the reaction tube and incubated at 37˚C for 1-2 

hrs. This enzyme digests any remaining methylated parent vector and ideally leaves only 

vector with the mutagenized gene insert. Next, 3 µl of the digested DNA was transformed 

into XL10 Gold Ultracompetent Cells (Stratagene) supplied with the kit. Cells were 

plated onto LB + amp (60 µg/ml) and incubated at 37˚C for 16-20 hrs. Plasmids were 

extracted from bacterial cells and sequenced to confirm the presence of the intended 

mutation. 

Table 2.6 ERG25 site-directed mutagenesis primer sets: codon changes are underlined, 
italicized, and in bold, nucleotides changed from original are in lower case 

Change Primers 
H62A F-SDM-H62A 

5’-GGTCTAATGTTCTTTTTATTGgcTGAATTTATGTATTTC-3’ 
R-SDM-H62A 
5’-GAAATACATAAATTCAgcCAATAAAAAGAACATTAGACC-3’ 

F67A F-SDM-F67A 
5’-CATGAATTTATGTATgcCTTTAGATGTTTGCC-3’ 
R-SDM-F67A 
5’-GGCAAACATCTAAAGgcATACATAAATTCATG-3’ 

Q88A F-SDM-Q88A 
5’-CCATACTTTAGAAGATGGAAGTTAgcACCAACTAAGATTCC-3’ 
R-SDM-Q88A 
5’-GGAATCTTAGTTGGTgcTAACTTCCATCTTCTAAAGTATGG-3’ 

Q98A F-SDM-Q98A 
5’-CCAAGTGCTAAGGAAgcACTATACTGTTTGAAATCCG-3’ 
R-SDM-Q98A 
5’-CGGATTTCAAACAGTATAGTgcTTCCTTAGCACTTGG-3’ 

C101A F-SDM-C101A 
5’-GCTAAGGAACAACTATACgcTTTGAAATCCGTTC-3’ 
R-SDM-C101A 
5’-GAACGGATTTCAAAgcGTATAGTTGTTCCTTAGC-3’ 

L102A F-SDM-L102A 
5’-GGAACAACTATACTGTgcGAAATCCGTTCTTCTA-3’ 
R-SDM-L102A 
5’-TAGAAGAACGGATTTCgcACAGTATAGTTGTTCC-3’ 

I1115A F-SDM-I115A 
5’-TTCTTGGTCGAGGCCgcCCCTATCTGGACCTTC-3’ 
R-SDM-I115A 
5’-GAAGGTCCAGATAGGGgcGGCCTCGACCAAGAA-3’ 
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E152A F-SDM-E152A 
5’-GGTCTATTCTTCGTCTTGGcAGATACATGGCATTACTGGG-3’ 
R-SDM-E152A 
5’-CCCAGTAATGCCATGTATCTgCCAAGACGAAGAATAGACC-3’ 

D153A F-SDM-D153A 
5’-GGTCTATTCTTCGTCTTGGAAGccACATGGCATTACTGGG-3’ 
R-SDM-D153A 
5’-CCCAGTAATGCCATGTggCTTCCAAGACGAAGAATAGACC-3’ 

Y157F F-SDM-Y157F 
5’-GGAAGATACATGGCATTtCTGGGCTCACCGTCTATTCC-3’ 
R-SDM-Y157F 
5’-GGAATAGACGGTGAGCCCAGaAATGCCATGTATCTTCC-3’ 

H160A F-SDM-H160A: 
5’-GGCATTACTGGGCTgcCCGTCTATTCCACTACGG-3’ 
R-SDM-H160A 
5’-CCGTAGTGGAATAGACGGgcAGCCCAGTAATGCC-3’ 

H164A F-SDM-H164A 
5’-CCGTCTATTCgcCTACGGTGTCTTC-3’ 
R-SDM-H164A 
5’-GAAGACACCGTAGgcGAATAGACGG-3’ 

Y169F F-SDM-Y169F 
5’-CGGTGTCTTCTtCAAGTACATTCACAAGCAACATCAC-3’ 
R-SDM-Y169F 
5’-GTGATGTTGCTTGTGAATGTACTTGaAGAAGACACCG-3’ 

K170A F-SDM-K170A 
5’-CGGTGTCTTCTACgcGTACATTCACAAGCAACATCAC-3’ 
R: SDM-K170 
5’-GTGATGTTGCTTGTGAATGTACgcGTAGAAGACACCG-3’ 

H173A F-SDM-H173A 
5’-CAAGTACATTgcCAAGCAACATCAC-3’ 
R-SDM-H173A 
5’-GTGATGTTGCTTGgcAATGTACTTG-3’ 

H176A F-SDM-H176A 
5’-GTACATTCACAAGCAAgcTCACAGATACGCTGC-3’ 
R-SDM-H176A 
5’-GCAGCGTATCTGTGAgcTTGCTTGTGAATGTAC-3’ 

H177A F-SDM-H160A 
5’-CACAAGCAACATgcCAGATACGCTGCTCCATTCGG-3’ 
R-SDM-H160A 
5’-CCGAATGGAGCAGCGTATCTGgcATGTTGCTTGTG-3’ 

P182A F-SDM-P182A 
5’-CACAGATACGCTGCTgcATTCGGTCTTTCTGC-3’ 
R-SDM-P182A 
5’-GCAGAAAGACCGAATgcAGCAGCGTATCTGTG-3’ 
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E188A F-SDM-E188A 
5’-CGGTCTTTCTGCTgcATATGCTCATCCTGCTG-3’ 
R-SDM-E188A 
5’-CAGCAGGATGAGCATATgcAGCAGAAAGACCG-3’ 

H191A F-SDM-H191A 
5’-GCTGAATATGCTgcTCCTGCTGAAACTTTGTCTTTGGG-3’ 
R-SDM-H191A 
5’-CCCAAAGACAAAGTTTCAGCAGGAgcAGCATATTCAGC-3’ 

L198A F-SDM-L198A 
5’-GCTGAAACTTTGTCTgcGGGTTTTGGTACCGTTGG-3’ 
R-SDM-L198A 
5’-CCAACGGTACCAAAACCCgcAGACAAAGTTTCAGC-3’ 

R228A F-SDM-R228A 
5’-GGATCACCCTAgcATTATTCCAAGC-3’ 
R-SDM-R228A 
5’-GCTTGGAATAATgcTAGGGTGATCC-3’ 

H236A F-SDM-H236A 
5’-CCAAGCTGTTGACTCTgcTTCTGGTTATGACTTCCCATGG-3’ 
R-SDM-H236A 
5’-CCATGGGAAGTCATAACCAGAAgcAGAGTCAACAGCTTGG-3’ 

Y239F F-SDM-Y239F 
5’-GTTGACTCTCATTCTGGTTtTGACTTCCCATGGT-3’ 
R-SDM-Y239F 
5’-ACCATGGGAAGTCAaAACCAGAATGAGAGTCAAC-3’ 

H258A F-SDM-H258A 
5’-GGGCTGGCGCTGAACACgcCGATTTGCATCATC-3’ 
R-SDM-H258A 
5’-GATGATGCAAATCGgcGTGTTCAGCGCCAGCCC-3’ 

H261A
H262A 

F-SDM-H261AH262A 
5’-CCACGATTTGgcTgcTCACTACTTTATTGG-3’ 
R-SDM-H261AH262A 
5’-CCAATAAAGTAGTGAgcAgcCAAATCGTGG-3’ 

T282A F-SDM-T282A 
5’-GGGATTACTGTCTAGACgcTGAATCTGGTCC-3’ 
R-SDM-T282A 
5’-GGACCAGATTCAgcGTCTAGACAGTAATCCC-3’ 

K306A, 
K307A 

F-SDM-K306AK307A 
5’-GAAAACAATGCTCAAgcGgcGACTAACTAACCCACATCCG-3’ 
R-SDM-K306AK307A 
5’-CGGATGTGGGTTAGTTAGTCgcCgcTTGAGCATTGTTTTC-3’ 
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Table 2.7 PCR parameters for ERG25 site-directed mutagenesis 
Parameter Temperature Time (min) 
1 95˚C 2:00 
2 95˚C 0:20 
3 61˚C 0:10 
4 68˚C 10:00 
5  Repeat 2-4 

(x17) 
6 68˚C 7:00 
7 4˚C ∞ 

 

 

2.7.3 Random Mutagenesis 

 Random mutagenesis was undertaken in S. cerevisiae ERG25 to generate point 

mutations at potentially novel sites in the gene. The method used is referred to as “gap 

repair” as described by Muhlrad et al. (47). First, an ERG25 gene “insert” with a random 

mutation was created via PCR as diagrammed in Figure 2.1. 

 

  

 

 

 

 

PIU800

With EcoRI & 
ERG25 seq. 

With SalI & 
ERG25 seq. PCR 

Reaction

ERG25 insert with mutation 
EcoRI SalI

Figure 2.1 Diagrammatic scheme of random mutagenesis “insert” creation. 

 

Using Taq polymerase, which introduces an error in replication in 1 of 

approximately 1000 base pairs, created the random mutation. The ERG25 gene is 937 

base pairs; therefore each PCR reaction should theoretically contain one mutation. Each 
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PCR reaction contained: 100 pmol of forward and reverse primers (listed in Table 2.8), 1 

Unit Taq polymerase (Promega), 5 µl of 10X Taq buffer (Promega), 4 mM dNTPs 

(Stratagene), 100ng pIU800 plasmid DNA and brought to a volume of 50 µl with 

autoclaved dH2O. The PCR program parameters are listed in Table 2.9. The PCR product, 

also referred to as the insert, contains ERG25 with a potential mutation and EcoRI and 

SalI capped ends. 

Table 2.8 Gap repair primers for insert. ERG25 sequence lowercase, Restriction site 
underlined and in bold, plasmid sequence in uppercase 

Forward 
5’CCTCTTCTTGTTTTATCTAGAACTAGTGGATCCCCCGGGCTGCAGGAATTC
atgtctgccgttttcaacaacgctaccc-3’ 
Reverse 
5’GAATGTAAGCGTGACATAACTAATTACATGATGCGGCCCTCCTCGAGGTCGAC
ttagttagtcttcttttgagcattg-3’ 

 
 

Table 2.9 PCR parameters Gap Repair 
Parameter Temperature Time (min) 
1 94˚C 5:00 
2 94˚C 0:30 
3 53˚C 0:30 
4 72˚C 2:00 
5  repeat 2-4 (X 34) 
6 72˚C 5:00 
7 4˚C ∞ 

 

 

 Next, digesting p426ADH plasmid created a gapped vector, also referred to as the 

“backbone” as diagrammed in Figure 2.2. 
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 The p426ADH plasmid (7457 bp) was linearized via restriction digest with EcoRI 

and SalI endonucleases creating a 7430 bp plasmid vector with EcoRI and SalI capped 

ends. This vector and the insert were co-transformed into S. cerevisiae yeast strain D1 

(∆erg25) where homologous recombination between the vector and insert creates a 

functional plasmid while simultaneously transforming into yeast. Cells were plated onto 

CSM-ura + ergosterol plates and colonies were screened for complementation. 
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CHAPTER 3 

AEROBIC UPTAKE OF EXOGENOUS CHOLESTEROL BY ERGOSTEROL 

AUXOTROPHS IN CANDIDA GLABRATA 

 

3.1 Introduction 

Many Candida species of yeast are opportunistic human pathogens (52). Candida 

species are the fourth leading cause of fungal bloodstream infections (28). When a 

Candida species infects an individual’s bloodstream, the resulting disease is referred to as 

candidiasis, or more specifically candidemia. Individuals undergoing immunosuppressive 

therapies for cancer and organ transplantation, these with immunosuppressive diseases, 

such as HIV/AIDS, and/or surgical hospital patients are at a much higher risk for 

candidemia (7).  From 1980 to 1990, 78.3% of nosocomial fungal infections were 

reportedly caused by Candida species (8). Candida infections are of particular concern 

due to the increasing resistance to current treatments (9) as well as the numerous studies 

showing an association between the disease and an increase in mortality rate and 

excessive length of hospital stays (8, 10, 11, 12, 13).  

Several risk factors are recognized that may predispose higher risk individuals to 

acquiring sepsis from a Candida species infection. These include: prior cortiocosteroid 

use, the use of chemotherapy agents, neutropenia, burns, massive surgery, central 

catheters (29); hemodialysis, previous fungal infection and/or use of antimicrobial agents 
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(30); and organ malignancy (either solid or hematolgic) (31). Clinical symptoms of 

candidemia are generally non-specific and laboratory testing is complicated. Therefore it 

can be difficult to diagnose until late in the infection and is typically based on clinical 

status of the patient (14). Although early diagnosis and appropriate treatment of these 

infections is vital in decreasing the rate of mortality associated with such disease (17), a 

clearer understanding of Candida’s increasing resistance to the current treatments as well 

as its increase in incidence also important for potentially creating new drugs for improved 

treatments and/or potential improvements in preventative methods of the spread of said 

disease.  

Of the Candida species, C. albicans is the leading causative species of candidasis, 

although other Candida species are steadily increasing in their incidence of infection (15). 

C. albicans is found in approximately 48% of candidemia patients while approximately 

24% of infected patients have C. glabrata growing in their bloodstream (14). Studies 

have shown that the increase in prophylactic use of antifungal drugs is associated with 

this increase of infection by non-albicans Candida species (16). Of these non-albicans 

Candida species, C. glabrata is of particular concern because of it’s: significantly 

increasing occurrence, association with high mortality rate (19) and decrease in 

susceptibility to azole antifungal drugs (18) the most prevalent treatment for such 

infections.  

The ergosterol pathway is an ideal target for antifungal drug treatments because 

the sterol itself and at least one step, such as ERG24, of its biosynthetic pathway are 

specific to fungi. Therefore, medications affecting sterol synthesis in the fungi causing 

the infection should not interfere with the sterol synthesis of mammalian cells. Several 
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types of antifungal drugs are available as treatment options targeting varying steps in the 

ergosterol pathway including: allylamines, thiocarbomates, pyridines, pyrimidines, 

morpholines, polyenes, and the most significant for this study, azoles. 

Allylamines and thiocarbomates both target the ERG1 gene product squalene 

epoxidase, as autoradiography studies have shown by an accumulation of radioactive 

squalene (23). Some ultrastructural studies also suggest these drugs interfere with cell 

wall biosynthesis (24). These drugs are most commonly used as topical medications and 

have been shown to work against C. albicans and C. parapsilosis (23). 

Pyridines, such as pyrifenox, and pyrimidines, such as fenarimol, like azoles, 

target the ERG11 gene product lanosterol C-14 demethylase. The mechanism used by 

these fungistatic antifungals is not clear (25), but these products are used most commonly 

in agriculture. 

Morpholines target two steps in the ergosterol pathway increasing their fungistatic 

abilities. The target enzymes are the ERG24 gene product, C-14 sterol reductase, and the 

ERG2 gene product, C-8 sterol isomerase (26). Like the pyridines and pyrimidines, most 

morpholines are used in agricultural applications. 

Polyenes are the major class of fungicidal antifungal drugs and do not target 

ergosterol biosynthesis. Rather, polyenes, such as Amphoteracin B, target ergosterol in 

the fungal cell membrane (27). These antifungal drugs open up channels in the cell 

membrane allowing leakage of ions in and out of the cell ultimately leading to cell death 

(53). These antifungals are known for their negative side effects including renal failure 

and resistance is common.  
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The antifungal drug group with the most significance to this study is also the most 

commonly used azole antifungal drugs. These azole drugs target the ERG11 gene product 

by preventing the C-14 demethylation of the first sterol intermediate, lanosterol, thereby 

inhibiting the production of the pathways end product ergosterol (20). The azole ring of 

the drug binds nitrogen to the iron center of the heme interfering with the binding of 

oxygen to cytochrome P-450 (21). This in turn deactivates the enzyme preventing the C-

14 demethylation of lanosterol. ERG11 is an essential gene in the pathway. Lanosterol is 

the first sterol intermediate created in the pathway and is required for conversion to an 

active, functional sterol. 

These azole drugs appear to be having a diminished effectiveness due to the 

recent increase in resistant fungal strains. Several mechanisms for resistance to these 

drugs include an increase in the expression of drug efflux pumps and alterations in genes 

encoding up regulation of target enzymes in the ergosterol pathway (20) as well as long-

term use of antifungals leading to strains resistant to these drugs. Some studies have 

attributed C. glabrata’s resistance to azole antifungal drugs to an increase in CgCDR1 

and CgPDH1 transporters (32, 33) as well as AUS1 sterol transporter (50). In this study, 

we suggest another mechanism: that the overuse of triazole drugs has led to the increase 

in resistance by C. glabrata through a 2-step process: 1) accumulation of ergosterol 

auxotrophic mutations due to prior azole treatment and 2) the ability of such mutants, 

able to take up exogenous cholesterol anaerobically in the body, to acquire a second 

mutation allowing uptake of cholesterol aerobically.  

 Several studies have reported and identified sterol auxotrophic strains in C. 

glabrata. Hazen and colleagues isolated six bile salt requiring C. glabrata strains from 
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ICU patients (60) urinary tracts. In collaboration with the Bard lab, these six isolates were 

found to be sterol-requiring and based on GC sterol profiles: two were erg1, three were 

erg7, and one had a single heme mutation (61). Rezusta and colleagues have also 

reported two C. glabrata sterol-requiring isolates (62), one of which was found to be erg7 

(unpublished). Interestingly, all patients harboring these clinical isolate specimens were 

previously treated with azole antifungals, supporting the first step of our hypothesized 

mechanism. 

Sterol uptake by C. glabrata is more similar to sterol uptake by S. cerevisiae than 

C. albicans (22). Both S. cerevisiae and C. glabrata can take up exogenous sterol under 

anaerobic conditions or aerobically in heme deficient strains. This is referred to as 

aerobic sterol exclusion. The S. cerevisiae UPC2 transcription factor regulates AUS1 and 

PDR11 genes, which are required for sterol uptake. It also has a heme-binding protein, 

Rox1, which will repress UPC2 aerobically resulting in AUS1 and PDR11 being turned 

off aerobically along with sterol uptake (55). C. glabrata has two UPC2 transcription 

factors; a short form and a long form, it also has an AUS1 transporter; however, not a 

PDR11. On the other hand, C. albicans will not uptake exogenous sterols aerobically or 

anaerobically presumably due to a lack of UPC2 gene(s).  

In this work, sterol auxotrophs have been created in the C. glabrata strain 

2001HT by disrupting different essential genes (ERG1, ERG7, ERG11, ERG25, and 

ERG27) in the ergosterol pathway to assess which strain will acquire mutations to allow 

the uptake of exogenous sterols aerobically. ERG1, ERG7, ERG11, ERG25, and ERG27 

are essential genes, indicating they are required to produce the end product ergosterol. 

ERG1, or squalene epoxidase, converts squalene to squalene epoxide. ERG7, or 
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lanosterol synthase, transforms squalene epoxide into lanosterol, the first sterol precursor 

of the ergosterol pathway. ERG11 removes a methyl group from the C-14 position of 

lanosterol creating the 4,4-dimethylcholesta-8,14,24-tienol intermediate. ERG25, a sterol 

C-4 methyloxidase, oxidizes the alcohol to a carboxylic acid. ERG27, a sterol C-3 keto-

reductase, reduces the ketone to an alcohol. Should one of these genes become disrupted, 

the pathway will stop and depending on the gene, will begin accumulating a sterol 

precursor (See Table 3.1). 

Nakayama et al. have shown that a C. glabrata strain with its ERG9 promoter 

replaced with a tet-promotor (Cg97SQS) will take up cholesterol from serum-enriched 

media aerobically for survival (63). The ERG9 enzyme is squalene synthase and is 

essential for the ergosterol pathway. The squalene synthase converts farnesyl 

pyrophosphate to squalene. The 97SQS strain ERG9 gene is under the control of a tet-

promoter, which is regulated by doxycycline. Thus, ERG9 expression is turned off in the 

presence of doxycycline preventing squalene synthesis. AUS1 expression is required for 

the uptake of sterol. Experiments were initiated to compare the growth of two C. glabrata 

strains, one with the AUS1 gene (97SQS) and one without the AUS1 gene 

(97SQS/∆AUS1) on media with different concentrations of cholesterol, human serum, or 

bovine serum and varying amounts of doxycycline. Based on Nakayama’s work, we 

expected doxycycline to inhibit growth of both strains because both are under the control 

of the tet-promoter; however 97SQS would be better able to utilize exogenous cholesterol 

than 97SQS/∆AUS1.
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3.2 Results  

 Gene disruptions were created for each of ERG1, ERG7, ERG11, ERG25, and 

ERG27 genes. First, a PCR product of the HIS3 selectable marker and 60 base pairs of 

homology to each specific ERG gene was created using pRS303 and primers designed to 

target the HIS3 marker in the plasmid with tails of ERG gene homology (See Tables 2.4 

and 2.5 for primers and PCR parameters). Each PCR product was then transformed into C. 

glabrata 2001HT by homologous recombination in separate reactions and plated onto 

CSM-his supplemented with ergosterol and grown anaerobically for 3-5 days. Colonies 

were picked and plated into columns on CSM-his plus ergosterol and grown 

anaerobically again. These “master” plates were then replica plated onto CSM-his 

supplemented with and without ergosterol grown anaerobically. Colonies that grow only 

with ergosterol supplementation were considered as potential candidates for the gene 

disruption because sterol supplementation would be required for any essential gene 

disruption. Sterol profiles of the colonies were further analyzed via gas 

chromatography/mass spectrophotometry. Each gene knockout was verified when the 

appropriate ergosterol pathway intermediate accumulated on the GC/MS profile (refer to 

Table 3.1). 
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Table 3.1 Accumulating sterol precursors for specific ergosterol genes 
Gene in pathway Expected sterol precursor accumulated 

ERG1 Squalene 

ERG7 Squalene epoxide 

ERG11 Lanosterol 

ERG25 4,4-dimethylzymosterol 

ERG27 Squalene epoxide 

 

 

Each potential gene knockout was grown in 50mL CSM-his liquid media 

supplemented with cholesterol and grown anaerobically with shaking at approximately 

225rpm for 2 days. Each sample was then saponified in a KOH/EtOH solution for 2 hours 

to separate the non-saponifiable sterols from rest of the yeast cells. The sterol samples 

were drawn out in heptane and run on the GC program as described in Chapter 2. The 

following five figures (Figures 3.1, 3.2, 3.3, 3.4, and 3.5) each display the GC profile for 

each of the ERG1, ERG7, ERG11, ERG25, and ERG27 gene disruptions respectively. 

Where ERG1 displays an accumulation of squalene, ERG7 displays an accumulation of 

squalene epoxide, ERG11 displays an accumulation of lanosterol, ERG25 displays an 

accumulation of 4,4-dimethylzymosterol, and ERG27displays an accumulation of 

squalene epoxide, all as expected and verifying the correct gene disruptions were created. 
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Figure 3.1 GC profile of wild type Cg2001HT strain grown with cholesterol 

aerobically 
 

This GC profile illustrates the sterol profile of the wild type strain of C. glabrata 

used for these gene disruptions in this study. The largest sterol peak is ergosterol and 

every sterol precursor and intermediate is represented in the profile. 
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Figure 3.2 GC profile of ERG1 in C. glabrata. Cells grown anaerobically with cholesterol 

for two days 
 

This illustrates the GC profile of ERG1 disruption in C. glabrata. As expected 

from what is known of the biosynthetic pathway, there is an accumulation of squalene. 

The second peak represents cholesterol, which is residual from the cells having been 

grown anaerobically in CSM-his + Cholesterol with shaking at approximately 225 rpm 

for 2 days.  
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Figure 3.3 GC profile of ERG7 in C. glabrata. Cells grown anaerobically with cholesterol 

for two days 
 

 

This illustrates the GC profile of ERG7 disruption in C. glabrata. As expected, 

there is an accumulation of squalene, squalene epoxide, and squalene diepoxide. Again, 

the fourth peak represents cholesterol, which is residual from the cells having been grown 

anaerobically in CSM-his+cholesterol with shaking at approximately 225 rpm for 2 days.  
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Figure 3.4 GC profile of ERG11 in C. glabrata. Cells grown anaerobically with 

cholesterol for two days 
 

This illustrates the GC/MS profile of ERG11 disruption in C. glabrata. As 

expected, there is an accumulation of lanosterol. The other larger peak represents 

cholesterol, which is residual from the cells having been grown anaerobically in CSM-

his+cholesterol anaerobically with shaking at approximately 225 rpm for 2 days. The 

remaining tiny peaks represent cholesterol break down intermediates. 
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Figure 3.5 GC profile of ERG25 in C. glabrata. Cells grown anaerobically with 
cholesterol for two days 

 

This illustrates the GC profile of ERG25 disruption in C. glabrata. As expected, 

there is an accumulation of 4,4-dimethylzymosterol. The other larger peak represents 

cholesterol, which is residual from the cells having been grown anaerobically in CSM-

his+cholesterol with shaking at approximately 225 rpm for 2 days. The remaining tiny 

peaks, again, represent cholesterol break down intermediates. 
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Figure 3.6 GC profile of ERG27 in C. glabrata. Cells grown anaerobically with 
cholesterol for two days 

 
 

This illustrates the GC profile of ERG27 disruption in C. glabrata. As expected 

and similar to ERG7, there is an accumulation of squalene, squalene epoxide, and 

squalene diepoxide. Again, the third largest peak represents cholesterol, which is residual 

from the cells having been grown anaerobically in CSM-his+cholesterol with shaking at 

approximately 225 rpm for 2 days. There is a very small lanosterol peak. 
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The percentage of sterol accumulation was calculated based on GC profiles for 

each gene disruption and are listed in Table 3.2. Values are based on single peak values 

compared to total sterol precursor values of each GC profile. 

Table 3.2 GC sterol profiles of ∆erg1, ∆erg7, ∆erg11, ∆erg25, and ∆erg27 strains.  
Values represent percent sterol. All samples were grown anaerobically in CSM-his + 

cholesterol with shaking at approximately 225 rpm for two days 
 

 

 

 

 

 

erg1 erg7 erg11 erg25 erg27
Sterol
squalene 95 46 0 40 24
squalene-2,3-epoxide 0 29 0 0 42
squalene-2,3;22,23-diepoxide 0 16 0 0 4
cholesterol 5 8 80 30 16
ergosterol 0 0 0 0 0
lanosterol 0 0 20 0 3
4,4-dimethylzymosterol 0 0 0 25 0

 

After all five gene disruptions were verified by GC/MS, each strain was spot 

plated with OD values of 4.0, 2.0, 1.0, 0.5, and 0.1 onto YPD plates with no 

supplementation and with Tween 80 (an oleic acid detergent) and with cholesterol, 

cholesterol linoleate and cholesterol oleate supplementation and grown aerobically. The 

control plates, YPD and YPD+Tween80, should not show growth due to a lack of sterol 

supplementation that is required for ergosterol auxotrophic strains. Growth on any of the 

cholesterol and cholesterol ester supplemented plates indicates the ergosterol auxotrophs 

have acquired secondary mutations allowing for the aerobic uptake of cholesterol. 

Figures 3.6, 3.7, 3.8, 3.9, and 3.10 display the results for the spot plates of each of the 

ERG1, ERG7, ERG11, ERG25, and ERG27 gene disruptions, respectively. 
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Figure 3.7 shows the spot plate results for ERG1. Control plates, YPD and 

YPD+Tween80, do not show any growth as expected due to the lack of sterol 

supplementation. Plates supplemented with cholesterol do acquire single colony growth 

aerobically on day 1 that increases daily. Plates supplemented with cholesterol esters, 

similarly to the control plates, also do not acquire any growth by day 3. All plates show 

full growth by day 1 when grown anaerobically. 
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Figure 3.7 A) ∆erg1 grown anaerobically with cholesterol. B) Spot plate analysis of 
∆erg1. Strains grown on YPD media supplemented with 20 µg/ml sterol in Tween 

80/EtOH (1:1 v/v) 
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Figure 3.8 shows the spot plate results for ERG7, which are similar to ERG1. 

Control plates, YPD and YPD+Tween80, do not show any growth as expected due to the 

lack of sterol supplementation. Plates supplemented with cholesterol do acquire single 

colony growth aerobically on day 1 that increases daily. Plates supplemented with 

cholesterol esters, similarly to the control plates, also do not acquire any growth by day 3. 

All plates show full growth by day 1 when grown anaerobically. 
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Figure 3.8 A) ∆erg7 grown anaerobically with cholesterol. B) Spot plate analysis of 
∆erg7. Strains grown on YPD media supplemented with 20 µg/ml sterol in Tween 

80/EtOH (1:1 v/v) 
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Figure 3.9 shows the spot plate results for ERG11. YPD control plates do not have 

any growth; however, the YPD+Tween80 plates do show single colony growth on day 

three. Plates supplemented with cholesterol acquire lawn growth aerobically on day 1 that 

increases daily. Plates supplemented with cholesterol esters begin to acquire satellite 

colonies on day 3. All plates show full growth by day 1 when grown anaerobically. 
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Figure 3.9 A) ∆erg11 grown anaerobically with cholesterol. B) Spot plate analysis of 
∆erg11. Strains grown on YPD media supplemented with 20 µg/ml sterol in Tween 

80/EtOH (1:1 v/v) 
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Figure 3.10 shows the spot plate results for ERG25, which are similar to ERG11. 

YPD control plates do not have any growth; however, the YPD+Tween80 plates do show 

single colony growth on day three. Plates supplemented with cholesterol acquire lawn 

growth aerobically on day 1 that increases daily. Plates supplemented with cholesterol 

esters begin to acquire satellite colonies on day 1 for higher OD values and by day 3 for 

lower OD values. All plates show full growth by day 1 when grown anaerobically. 
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Figure 3.10 A) ∆erg25 grown anaerobically with cholesterol. B) Spot plate analysis of 
∆erg25. Strains grown on YPD media supplemented with 20 µg/ml sterol in Tween 

80/EtOH (1:1 v/v) 
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Figure 3.11 shows the spot plate results for ERG27, which are similar to ERG1 

and ERG7. Control plates, YPD and YPD+Tween80, do not show any growth as 

expected due to the lack of sterol supplementation. Plates supplemented with cholesterol 

do acquire single colony growth aerobically on day 1 that increases daily. Plates 

supplemented with cholesterol esters, similarly to the control plates, also do not acquire 

any growth by day 3. All plates show full growth by day 1 when grown anaerobically. 
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Figure 3.11 A) ∆erg27 grown anaerobically with cholesterol. B) Spot plate analysis of 
∆erg27. Strains grown on YPD media supplemented with 20 µg/ml sterol in Tween 

80/EtOH (1:1 v/v) 
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It was also important to evaluate ERG9 in C. glabrata particularly based on 

Nakayama’s findings (63). These experiments compared the growth of two C. glabrata 

strains, one with the AUS1 gene (97SQS) and one deleted for the AUS1 gene 

(97SQS/∆AUS1). Serial dilutions were made such that cell concentrations of 106, 105, and 

104 in 10 µl spots were plated onto YPD+Tween 80, YPD + 1X Cholesterol (2mg/mL in 

1:1 [w/v] Tween 80), YPD + 3X Cholesterol, YPD + 5% Human serum, YPD + 10% 

Human serum, YPD + 5% Bovine serum, and YPD + 10% Bovine serum with varying 

concentrations of doxycycline from 0 mg, 0.1 mg, 0.15 mg, and 0.2 mg. The expected 

results were noted: Doxycycline inhibits the growth of both strains because both are 

under the control of the tet-promoter; however 97SQS will be able to utilize exogenous 

cholesterol for better growth than 97SQS/∆AUS1. The following seven figures (Figures 

3.11, 3.12, 3.13, 3.14, 3.15, 3.16, and 3.17) display the spot plates for each type of media 

examined. 
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Figure 3.12 Cg 97SQS and 97SQS/∆AUS1 on YPD + Tween 80 

 

Doxycycline obviously inhibits the growth of both strains; however more so the 

97SQS/∆AUS1 than the 97SQS. 
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Figure 3.13 Cg 97SQS and 97SQS/∆AUS1 on YPD + 1X Cholesterol 

Again, doxycycline obviously inhibits the growth of both strains; however 97SQS 

can accumulate more growth due to the presence of the AUS1 gene. 
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Figure 3.14 Cg 97SQS and 97SQS/∆AUS1 on YPD + 3X Cholesterol 

Again, doxycycline inhibits the growth of both strains; however 97SQS can 

accumulate even more growth with a higher concentration of cholesterol. 
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Figure 3.15 Cg 97SQS and 97SQS/∆AUS1 on YPD + 5% Human serum 

Again, doxycycline obviously inhibits the growth of both strains; however 97SQS 

can accumulate more growth due to the presence of the AUS1 gene. 
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Figure 3.16 Cg 97SQS and 97SQS/∆AUS1 on YPD + 10% Human serum 

Again, doxycycline inhibits the growth of both strains; however 97SQS can 

accumulate even more growth with a higher concentration of human serum. 



 57

 

 
Day 1        Day 2    Day 3 

106    105    104 106    105    104 106     105     104 

 

 

 

 

 

 

 

 

 

 

 

 

 

YPD+5%BS 
 
 
YPD+5%BS+ 
0.1mg doxy 
 
 
Y

97S
Q

S
 PD+5%BS+ 

0.15mg doxy 
 
 
YPD+5%BS+ 
0.2mg doxy 
 
 
 
 
 
YPD+5%BS 
 
 
YP
0.1
 
 
YP
0.15m

97S
Q

S
/∆

AU
S

1

D+5%BS+ 
mg doxy 

D+5%BS+ 
g doxy 

 

 

 
YPD+5%BS+ 
0.2mg doxy 

 

Figure 3.17 Cg 97SQS and 97SQS/∆AUS1 on YPD + 5% Bovine serum 

Again, doxycycline inhibits the growth of both strains; however 97SQS can 

accumulate even more growth than 97SQS/∆AUS1 with bovine serum. 
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Figure 3.18 Cg 97SQS and 97SQS/∆AUS1 on YPD + 10% Bovine serum 

Again, doxycycline inhibits the growth of both strains; however 97SQS can 

accumulate even more growth with a higher concentration of bovine serum. 
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3.3 Discussion and Conclusions 

Sterol auxotrophs have been isolated in C. glabrata clinical strains. Analyses of 

these strains have revealed mutations occurring in erg1 and erg7 or a single heme 

mutation. Therefore, we have decided to create knockout mutations in C. glabrata in 

ERG1 and ERG7 to compare these strains aerobic behavior with the clinical isolate 

strains able to grow aerobically. Also, we have decided to create knockout strains with 

the other essential genes ERG11, ERG25, and ERG27. We chose ERG27 because of the 

relationship with ERG7. ERG27 is required for ERG7 to function (34). Disruptions in 

ERG1, ERG7, and/or ERG27 will prevent the sterol ring structure from forming, whereas 

disruptions in ERG11 and ERG25 will have formation of the sterol ring structure. We 

hypothesize; the disruptions that allow a sterol ring structure to form will not take up 

exogenous sterol as readily as the disruptions without a sterol ring structure.  

The sterol profiles obtained from gas chromatography verify that each expected 

gene disruption was successful. ERG1 sterol profile indicates an accumulation of 

squalene as expected. ERG7 and ERG27 sterol profiles both show an accumulation of 

squalene epoxides with little lanosterol for ERG27. ERG11 sterol profile has an 

accumulation of lanosterol and ERG25 has an accumulation of 4,4-dimethylzymosterol. 

All of these sterol profiles indicated the desired ergosterol auxotrophic strains were 

created. All strains have stock solutions frozen and are stored at –80°C. 

All five ergosterol auxotrophic strains show a uniform growth pattern 

anaerobically when supplemented with sterol as expected. Again, C. glabrata can uptake 

exogenous sterol under anaerobic conditions. Also, all five ergosterol auxotrophic strains 

begin to accumulate single colonies aerobically after two days in the presence of 
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exogenous cholesterol. This accumulation of aerobic sterol-uptake competent isolates 

implies the hypothesized secondary mutations allowing aerobic sterol-uptake are 

occurring in all five ergosterol auxotrophs.  

As expected, ERG1, ERG7, and ERG27 knockout strains do not acquire growth 

on the control plates without supplementation and with Tween 80, or with 

supplementation of cholesterol esters. However, ERG25 and ERG11 knock out strains do 

accumulate single colony growth after approximately 3 days with cholesterol esters and 

Tween 80 supplementation. This phenomenon was not expected, particularly with the 

Tween 80 plates due to a complete lack of exogenous sterol as well as a lack of sterol 

production.  

There are several potential explanations for this phenomenon. ERG1 and ERG7 

steps occur before any endogenous sterol intermediates are created in the ergosterol 

pathway. Although the ERG27 step happens after the production of lanosterol, the first 

sterol precursor created in the pathway, the ERG27 knockout will accumulate more 

squalene epoxides than lanosterol (34). The ERG11 and ERG25 steps, on the other hand, 

occur after endogenous sterol intermediates are created in the pathway allowing their 

knockout strains to accumulate such intermediates; lanosterol and 4,4-

dimethylzymosterol, respectively. It is known that C. glabrata can utilize cholesterol in 

place of ergosterol due to the similarity in structure of the molecules. These auxotrophic 

strains could be acquiring mutations allowing them to utilize these sterol intermediates as 

a form of sterol supplementation for survival.  

Another potential explanation for these satellite colonies accumulating aerobically 

with Tween 80 and cholesterol ester supplementation are suppressor mutations as 
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previously demonstrated by Gachotte et al. (57). This study found that erg25 lethality 

could be suppressed by a combination of mutations in erg11 and slu1 or slu2. Further 

analysis of these satellite colonies could reveal they are erg11 suppressor mutations. To 

further examine this possibility, the satellite colonies could be isolated and individually 

analyzed by GC/MS to verify their sterol profile. An accumulation of lanosterol and not 

4,4-dimethylzymosterol would indicate an erg11 suppressor mutation. 

The ability of C. glabrata to uptake exogenous cholesterol aerobically has 

significant implications in human pathogenicity. These findings support the hypothesis of 

a secondary mutation occurring in ergosterol auxotrophs allowing a mechanism for C. 

glabrata aerobic sterol uptake. Further analysis of this secondary mutation could give 

insight into C. glabrata’s growing resistance to current therapies and offer a potentially 

new route of exploration for new antifungal drug treatments. 

Regarding ERG9 spot plates, they clearly show that an increase in the amount of 

doxycycline in the media inhibits the growth of both 97SQS strains, however the strain 

with the AUS1 gene can uptake sterol aerobically from the media for a higher survival 

rate. The higher the concentration of sterol in the media and the source of the cholesterol 

also appear have an effect on aerobic sterol uptake. Just as Nakayama showed (63), the 

97SQS strain appears to have better growth with serum for cholesterol supplementation 

rather than cholesterol. 

 

3.4 Future Work 

Further analysis of erg11 and erg25 strains is required to verify the cause of 

growth without cholesterol supplementation and with cholesterol esters and Tween 80. 
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Again, the first step would be to verify the satellite colonies are not suppressor mutations. 

Secondly, further studies as to what mutation(s) are causing the aerobic sterol uptake 

would be warranted. Of particular interest, would be the analysis of the UPC (uptake of 

cholesterol) genes, which are required for the uptake of exogenous cholesterol.
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CHAPTER 4 

RANDOM AND SITE-DIRECTED MUTAGENESIS OF ERG25 IN 

SACCHAROMYCES CEREVISIAE 

 

4.1 Introduction 

The ERG25 gene encodes a sterol C-4 methyloxidase essential for sterol 

biosynthesis in plants, animals, and yeast (59). This gene functions in turn with ERG26, a 

sterol C-3 dehydrogenase (57), and ERG27, a sterol C-3 keto reductase (58), to remove 

two methyl groups at the C-4 position on the sterol A ring in two rounds (Figure 4.1). 

ERG28 acts as a scaffold protein helping these three enzymes to work together. 
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Figure 4.1 Demethylation at C-4: One round involving Erg25, Erg26, and Erg27 shown. 
Two rounds are required to remove both methyl groups 

 

This demethylation reaction at C-4 has been shown to be essential for the 

ergosterol pathway through several disruption studies (57, 58, 59). It has also been 

compared on an amino acid level to desaturases and hydroxylases (36). Shanklin (35) 

found three conserved histidine clusters in desaturases-hydroxylases that work as binding 

motifs for oxo-diiron supplying iron and oxygen for desaturase reactions. Kaplan et al. 

(36) proposed the ERG3-ERG25 family of proteins have the same three putative histidine 

clusters plus a novel fourth cluster, which binds non-heme iron. The ERG25 gene also 

has a C-terminal KKXX motif, which is a Golgi to ER retrieval motif. 
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 Due to this interesting comparison, this study analyzed site-directed and random 

mutagenesis of S. cerevisiae using wild-type strain SCY876. Site-directed mutagenesis 

focused on these four histidine clusters, the KKXX C-terminal motif and other conserved 

amino acids among species including: Mus musculus, Homo sapien, Arabidopsis thaliana, 

Candida albicans, and Saccharomyces cerevisiae. Random mutagenesis of ERG25 was 

used in an effort to find novel changes in enzyme function outside of the parameters 

utilized for site-directed mutagenesis.  

For site-directed mutagenesis, plasmids were created carrying specific ERG25 

mutations, verified by DNA sequencing, screened for complementation in yeast, and 

analyzed by GC/MS. For random mutagenesis, yeast with plasmids carrying potential 

ERG25 mutations were screened for complementation to restore the wild type phenotype, 

the plasmid extracted and sequenced, and the plasmid transformed back into yeast for 

GC/MS analysis. Strains that do not complement should have sterol profiles indicating 

the inability to synthesize ergosterol and an accumulation of 4,4-dimethylzymosterol. The 

four putative histidine clusters are expected to be essential for gene function by acting as 

non-heme iron binding ligands bringing in the oxygen required for the oxidation-

reduction in the C-4 demethylation reaction. Strains that do complement should have a 

wild type GC profile. 
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4.2 ERG25 Consensus Diagram 

 

Complement 
ting 

Not finished Non-complemen

 
Figure 4.1 Erg25 sequence alignment. Homology plot of: Mus musculus (top), Homo 
sapien, Arabidopsis thaliana, Candida albicans, Saccharomyces cerevisiae (bottom).  

Histidine clusters are outlined in yellow. Cluster 1 HX3H (amino acids 160-164). Cluster 
2 HX2H2 (amino acids 173-177). Cluster 3 HX2H2 (amino acids 258-262). Cluster 4 

HX2YD/H (amino acids 236-240). Amino acids changes underlined in red complement 
and amino acid changes underlined in green do not complement when transformed back 
into yeast. Amino acid changes underlined in black were attempted, but never acquired. 
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4.3 Results 

 

4.3.1 Site-Directed Mutagenesis Results 

Site-directed mutagenesis was accomplished using the Stratagene QuickChange 

Lightning Site-Directed Mutagenesis Kit. Primers were created with 1 or 2 base pair 

changes to create a single amino acid change to an alanine or to a phenylalanine if the 

original codon coded for a tyrosine. This is known as alanine change site-directed 

mutagenesis. A list of primers and PCR parameters are listed in Chapter 2. Table 4.1 lists 

all of the site-directed mutations attempted and the reasoning for each alteration. 

Table 4.1 Site-directed amino acid changes 
Amino Acid Change Reason for Change 

F67A Conserved 
Q88A Conserved 
Q98A Conserved 
C101A Conserved 
L102A Conserved 
I115A Conserved 
E152A Conserved 
D153A Conserved 
Y157F Histidine cluster 
H160A Histidine cluster 
H164A Histidine cluster 
Y169F Histidine cluster 
K170A Histidine cluster 
H173A Histidine cluster 
H176A Histidine cluster 
H177A Histidine cluster 
P182A Conserved 
E188A Conserved 
H191A Conserved 
L198A Conserved 
R228A Conserved 
H236A Histidine cluster 
Y239F Histidine cluster 
H258A Histidine cluster 
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H261AH262A Histidine cluster 
T282A Conserved 

K306AK307A KKXX motif 
 

 This Stratagene kit utilized a high fidelity polymerase to insert only the intended 

amino acid change(s) into a PCR product based on the created PCR primer (listed in 

Chapter 2). This PCR product was then transformed into bacteria supplied with the kit. 

Colonies from this bacterial transformation were prepared and sent for DNA sequencing 

to verify that the amino acid change occurred in the plasmid. The plasmid with the altered 

amino acid was then transformed into a diploid strain designated D1. Yeast transformants 

were screened for complementation on CSM-ura with and without ergosterol 

anaerobically.  

Once the ability to complement was established, GC sterol profiles were analyzed. 

Cells were grown anaerobically in 50mL CSM-ura + cholesterol liquid cultures for two 

days in triplicate regardless of the ability to complement. All strains able to complement 

were also grown aerobically in 50mL CSM-ura liquid culture for two days in triplicate. 

(Non-complementing strains do not grow aerobically and therefore they were not grown 

under these conditions.) Cells grown aerobically and anaerobically were grown; sterols 

extracted, and run on GC as described in Chapter 2. Table 4.2 lists complementation 

and % sterol from the GC profiles for all site-directed mutants attempted. 
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Table 4.2 Amino Acid Changes, Complementation, and Gas Chromatography 
data for site-directed mutagenesis. GC values are % and samples were grown 

anaerobically with cholesterol supplementation 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Amino Complement squalene ergosterol ergosterol 4-methyl- lanosterol 4,4-dimethyl- Cholesterol
Acid ∆ precursors lanosterol zymosterol
F67A + 33.4 ± 10.2 1.9 ± 1.6 7.7 ± 4.4 1.9 ± 1.4 3.4 ± 0.6 2.4 ± 0.5 49.4 ± 7
Q88A + 33.6 ± 6.9 1.2 ± 1 8.2 ± 1.2 0.4 ± 0.4 2.8 ± 0.1 2.9 ± 0.3 51 ± 6
Q98A + 51.7 ± 1.9 0.5 ± 0.8 4.6 ± 1.4 1.7 ± 2 1.8 ± 0.6 2.2 ± 0.4 37.5 ± 1.2
C101A + 36.7 ± 1.6 7.2 ± 1 11.2 ± 3 1.7 ± 0.1 6.7 ± 2.5 6.7 ± 3.2 30 ± 4
L102A + 41.3 ± 3.6 7.9 ± 0.7 8.8 ± 3.6 1.7 ± 0.4 8.5 ± 0.6 4.4 ± 0.4 27.4 ± 0.1
I115A + 52.1 ± 2.6 0 3.6 ± 0.8 1.5 ± 1.5 1 ± 1.5 1.5 ± 1.6 40.3 ± 4.4
E152A - 33.2 ± 11 0 8.6 ± 3.2 0.4 ± 0.7 0.5 ± 0.9 5.3 ± 1.4 52 ± 10
D153A - 51.6 ± 3.7 0 0 0 0.4 ± 0.7 7.1 ± 0.9 40.9 ± 4.2
Y157F - 25 ± 17.7 0.8 ± 1.4 2.8 ± 1.7 0 0 3.9 ± 1 33.5 ± 20
H160A - 49.5 ± 2.3 0 5.6 ± 1 4.7 ± 4.8 0 3.6 ± 0.4 36.6 ± 3
H164A not acquired
Y169F + 19.2 ± 1.9 12 ± 1.3 12.1 ± 1.5 1.1 ± 0.2 6.8 ± 1.3 1.5 ± 0.3 47.4 ± 4.4
K170A - 29.1 ± 8.2 0 6.5 ± 1.3 0 0.2 ± 0.4 4.6 ± 1.3 59.6 ± 10
H176A - 46.7 ± 7 0 7.4 ± 5.9 0.4 ± 0.7 1.6 ± 0.5 3.4 ± 0.3 40.5 ± 3
H177A not acquired
P182A + 34.8 ± 11.9 1.1 ± 1 4.5 ± 2.1 1.7 ± 1.1 2.2 ± 2.1 4.7± 1.4 51 ± 10.2
E188A + 9.6 ± 2.4 2.9 ± 0.8 9.9 ± 3.7 0.4 ± 0.2 3.3 ± 0.3 0.4 ± 0.4 73.5 ± 7
H191A + 32.4 ± 7.4 7.5 ± 1.3 7.6 ± 1.1 2.5 ± 0.6 2.2 ± 0.3 6 ± 1.3 41.8 ± 10.2
L198A not acquired
R228A + 42.1 ± 1.8 0 6.3 ± 1.3 1.6 ± 2.8 1 ± 1 5.2 ± 2.7 43.8 ± 3
H236A - 24 ± 7.8 0 8.2 ± 2.7 0.7 ± 1.2 1.4 ± 0.6 2.2 ± 1 63.5 ± 10
Y239F + 10.1 ± 1.1 52.7 ± 1.3 16.9 ± 2.7 4 ± 0.5 0.6 ± 0.9 5.4 ± 1.1 9.7 ± 1.1
H258A - 35.4 ± 3 2 ± 0.2 0.2 ± 0.3 0 0.3 ± 0.5 0 60.5 ± 4.3

H261AH262A not acquired
T282A not acquired

K306AK307A not acquired
RM213 wild type 35.2 1.8 0.5 0 0.7 2 60.5
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Non-complementing strains, as expected, do not accumulate ergosterol. However, 

Y157F, a non-complementing strain, will produce small amounts of ergosterol, but not on 

every sample analysis of the sterol profile. Cholesterol peaks appear on each sample 

because cells are grown with sterol supplementation and there were difficulties in 

washing off all of the exogenous cholesterol in the saponification steps. Complementing 

strains are able to produce end product ergosterol as shown by the GC profiles. These 

strains can therefore be grown aerobically without the presence of cholesterol for 

supplementation. This data is listed in Table 4.3. 

 
Table 4.3 Amino acid changes and gas choromatography data for site-directed mutations 

that are positive for complementation. GC values are % and samples were grown 
aerobically 

 

 

 

 

 

 

 

 

 

 

Amino Acid ∆ Complement squalene ergosterol ergosterol 4-methyl- lanosterol 4,4-dimethyl-
precursors fecosterol zymosterol

F67A + 21.7 ± 2.5 33.7 ± 2.7 7.4 ± 1.2 10.8 ± 0.5 0.2 ± 0.2 26.2 ± 1.9
Q88A + 20.8 ± 5.1 35.2 ± 2.3 6.7 ± 1.9 8.7 ± 2.3 0.33 ± 0.16 28.3 ± 0.5
Q98A + 23 ± 5.2 37.8 ± 4.7 10.7 ± 2 7 ± 0.5 1.5 ± 1.2 20 ± 3.4
C101A + 13.4 ± 2.8 39.4 ± 1.9 11 ± 1 8.7 ± 0.6 2.5 ± 0.05 25 ± 1
L102A + 19 ± 2.2 34.3 ± 2.8 9.4 ± 1.5 9.5 ± 0.3 1.7 ± 0.6 27.1 ± 0.8
I115A + 32.4 ± 1.4 28 ± 1.4 7 ± 2.1 5 ± 0.5 3.9 ± 0.5 23.7 ± 1.4
Y169F + 2.9 ± 1 76 ± 2 17.8 ± 1.4 0.5 ± 0.3 2.2 ± 0.5 1.7 ± 0.6
P182A + 30.5 ± 2.8 21.8 ± 0.6 1 ± 0.07 14.6 ± 0.3 0 32.2 ± 2
E188A + 2.6 ± 0.9 65.7 ± 3 12.5 ± 7.2 1.4 ± 0.4 4.3 ± 1.2 3.3 ± 0.2
H191A + 16.7 ± 3.7 34.1 ± 1.8 4.2 ± 1.2 10.4 ± 0.5 0.1 ± 0.1 34.5 ± 1.6
R228A + 12.4 ± 2.6 12.5 ± 1.3 0.7 ± 0.7 13.1 ± 1.9 0 61.3 ± 4.6
H236A +/- 4.7 ± 1.9 62.7 ± 8.3 17.6 ± 2.5 2.7 ± 1.9 2.8 ± 0.3 9.5 ± 6.5
Y239F + 14.1 ± 2.8 38.5 ± 3.3 15.7 ± 1.5 9.8 ± 1 0.12 ± 0.1 29 ± 1.4
RM213 + 10.3 ± 2.8 44.4 ± 1.4 15.8 ± 2 4.6 ± 0.4 0 25 ± 1.4

 
 

 



 72

4.3.2 Random Mutagenesis Results 

Random mutagenesis was accomplished through a multi-step process known as 

gap repair. The first step was to create a DNA fragment called the “insert.” Primers 

(listed in Chapter 2) were created using the pIU800 plasmid as template giving a PCR 

product of the ERG25 gene with EcoRI and SalI restriction sites at the ends. Using Go 

Taq polymerase in the PCR reaction will result in approximately 1 base pair error in 1000 

base pairs and the ERG25 gene is approximately 937 base pairs. After the PCR reaction, 

the product or “insert” should contain the ERG25 gene with one potential base pair 

change with the restriction enzymes, EcoRI and SalI, at the ends. Figure 4.3 is a diagram 

of creating the “insert.” 

 

 

 

 

 

 

 

PIU800

With EcoRI & 
ERG25 seq. 

With SalI & 
ERG25 seq. PCR 

Reaction

ERG25 insert with mutation 
EcoRI SalI

 

Figure 4.3 Diagrammatic scheme of creating the “insert” for random mutagenesis 

 

A vector, also referred to as the “backbone,” was also created in p426ADH by 

digesting the EcoRI and SalI sites. This restriction digest will linearize the plasmid vector 

in which the “insert,” by homologous recombination, can repair the gapped vector. This 

will occur simultaneously as the functional plasmid (vector + insert) transforms into the 
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wild type yeast strain already created. Figure 4.4 is a diagram illustrating the creation of 

the vector “backbone” and combination with the “insert” to create the functional plasmid 

with a potential random mutation. 
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Once the yeast transformants in D1 became available, they were screened for 

complementation on CSM-ura with and without cholesterol supplementation. Strains that 

were negative for complementation were then yeast colony PCR’d to verify they had the 

insert. If the insert was noted on gel electrophoresis, the plasmid was extracted from the 

yeast and transformed into E. coli. These bacterial colonies were then prepped and sent 

for DNA sequencing. Table 4.4 lists the sequencing results for the random mutations 

created in this study.  

Table 4.4 Sequence results for random mutants 
Mutant Nucleotide change(s) Amino acid change(s) 
RM213 No mutations (used as WT control)  
RM2148 No mutations (extra WT control)  
RM2118 T826C W276R 
RM21100 A820G R274G 
RM393 A133G S45G 
RM41 A788T H263L 

 
 

Once a mutation was verified, the GC profile of each was analyzed. Cells were 

grown anaerobically in 50mL CSM-ura + cholesterol liquid cultures for 2 days in 

triplicate regardless of the ability to complement. All strains able to complement were 

also grown aerobically in 50mL CSM-ura liquid culture for 2 days in triplicate (data 

listed in table 4.3). (Non-complementing strains do not grow aerobically and therefore 

they were not grown under these conditions.) Cells grown aerobically and anaerobically 

were saponified and sterols run on GC as described in Chapter 2. Table 4.5 lists all of the 

random mutations acquired with complementation information and % sterols. 
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4.5 Amino Acid Changes, Complementation, and Gas Chromatography data for 
random mutagenesis. GC values are % and samples were grown anaerobically with 

cholesterol supplementation  
 
 

 

 

 
 
 

Amino Acid ∆ Complement squalene ergosterol ergosterol 4-methyl- lanosterol 4,4-dimethyl- Cholesterol
precursors lanosterol zymosterol

RM213 + 35.2 1.8 0.5 0 0.7 2 60.5

W276R - 33 ± 12 0 6.1 ± 4.4 0 0.7 ± 0.6 3.2 ± 0.2 57 ± 12
R274G - 34 ± 13 0 4.4 ± 2.1 0.8 ± 0.5 5.2 ± 8.9 5.1 ± 4.5 50.5 ± 19.7
S45G - 47.9 ± 16.6 0 3.2 ± 3.1 0.2 ± 0.3 0 12 ± 1.3 36.7 ± 13

H263L - 37.1 ± 9.2 0 2.6 ± 3.6 0 0.15 ± 0.2 16.8 ± 8 43.4 ± 13.3

 

 

Complementing strains are wild type and are able to produce end product 

ergosterol as shown by the GC profiles. Non-complementing strains, as expected, cannot 

produce ergosterol. Cholesterol peaks appear in each sample because cells are grown 

with sterol supplementation and there were difficulties in washing off all of the 

exogenous cholesterol in the saponification steps.   

 

4.4 Discussion and Conclusions 

All site-directed and random mutants were verified by DNA sequencing and 

analyzed for complementation in yeast with and without sterol supplementation. Strains 

positive for complementation could grow aerobically without the presence of sterol 

suggesting the amino acid residue change does not affect gene function. Mutant strains 

that do not complement only grow anaerobically in the presence of sterol suggesting 

these amino acid residue changes do affect gene function. Again, sterol uptake in yeast 

occurs under anaerobic conditions.  
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The sterol profile for each mutant was analyzed via gas chromatography. All 

strains, complementing and non-complementing, were grown anaerobically in the 

presence of cholesterol (Tables 4.2 and 4.5) and complementing strains were also grown 

aerobically without sterol (Table 4.3) for two days in liquid media and saponified. GC 

data is listed in Tables 4.2 and 4.5 as a percentage of sterol accumulation. The ‘ergosterol 

precursors’ include: zymosterol, fecosterol, episterol, and other ergosta-diene sterols. The 

key points to the sterol profile are an accumulation or lack of accumulation of ergosterol, 

4-methylfecosterol, lanosterol, and 4,4-dimethylfecosterol. Complementing strains show 

a wildtype or nearly wildtype ergosterol profile on GC, whereas non-complementing 

mutant strains show an accumulation of 4,4-dimethylzymosterol. 

The mutations created in the three putative histidine clusters including: H160A, 

H173A, H176A, H258A, and H263A were all negative for complementation and required 

sterol supplementation anaerobically for growth. However, mutants created in the fourth 

histidine cluster suggested by Kaplan (36) including H236A and Y239F do complement. 

H236A had particularly interesting results regarding complementation. After one day of 

growth, H236A does not complement. However, small, slow-growing satellite colonies 

were noted between day two and day three. Plating known cell concentrations onto solid 

media in decreasing increments further quantitated these single colonies. Based on the 

number of single colonies that survived compared to the number of cells plated, it was 

calculated that 2% of cells survived with sterol supplementation aerobically. This 

phenomenon is most likely due to a second spontaneous mutation occurring before these 

cells die allowing for aerobic growth. Site-directed mutants E152A and D153A, which 

are adjacent to the first histidine cluster, are also negative for complementation. All other 
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site-directed mutations accumulated thus far are complementing strains. The KKXX C-

terminal motif (K306AK307A) was attempted along with conserved sites L198A and 

T282A and histidine sites in clusters H164A, H177A, and H261AH262A however were 

never acquired. Each had a minimum of five attempts with the Stratagene QuickChange 

Lightning Site-Directed Mutagenesis kit and always resulted in wild type colonies. New 

primers were attempted for K306AK307A and H261AH262A unfortunately with no 

success. 

The four random mutations analyzed thus far including: S45G, H263L, R274G, 

and W276R, were negative for complementation and appear just before the proposed 

transmembrane domain (S45G) and in (H263L) or adjacent to (R274G and W276R) the 

last conserved histidine cluster. RM213 is a wild-type control strain, which was also 

created during random mutagenesis.  

Mutations created thus far in and adjacent to the histidine boxes suggested by 

Shanklin et al. (35) have been negative for complementation and show a mutant sterol 

profile by GC analysis indicating that as expected these amino acid residues are essential 

for the ERG25 gene to function. However, mutations created thus far in the fourth 

histidine cluster suggested by Kaplan et al. complement and show a wild-type profile by 

GC analysis indicating this putative histidine cluster is not essential for ERG25 gene 

function. Several other conserved amino acids complement and do not require 

supplementation with sterol displaying a wild-type GC profile indicating these residues 

are also not essential for gene function. 
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4.5 Future Work 

Continued work to analyze the remaining site-directed mutations would be ideal. 

These sites are important for finishing the evaluation of these histidine clusters as well as 

the KKXX C-terminal motif. Further analysis of all of these mutations by western blot 

will indicate whether the amino acid change results in the loss of function of the gene 

product or if it is causing a decrease in stability of the Erg25 protein. 
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