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We have shown that nuclear matrix protein 4 (Nmp4) attenuates the response to 

intermittent parathyroid hormone (PTH) in healthy and ovariectomized (OVX) female mice 

using a global knockout of the Nmp4 gene. Additionally, these mice have increased bone 

marrow osteoprogenitors and CD8+ T-cells which support osteoblast differentiation. The 

animals were not protected from bone loss following OVX, but retained the hypersensitivity 

seen in the intact mice. Mesenchymal stem/progenitor cells (osteoprogenitors) 

demonstrated increased growth rate in culture and showed more robust differentiation into 

mineralizing bone cells. Chromosome precipitation followed by next generation 

sequencing and bioinformatics analysis characterized Nmp4 as a negative regulator of 

synthetic processes and suggested the IGF1/Akt and BMP2/Smad biochemical pathways 

which are likely targets for Nmp4 regulation. We have experimentally verified these 

pathways in immortalized bone marrow mesenchymal cells from wild type and Nmp4-KO 

mice.  
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CHAPTER 1 

 
 INTRODUCTION 

Osteoporosis disease burden and treatment approaches 

Osteoporosis (OP) is a chronic skeletal disorder characterized by loss of bone 

mineral density (BMD) and increased risk of fracture. Although OP is a multifactorial 

disease, major risk factors include ethnicity, sex steroid deficiency, age and chronic steroid 

use. Likely, these factors work in combination with the end result being declining bone 

mass and weaker bone strength (Bidwell, Alvarez et al. 2013). Diagnosis of OP has 

traditionally relied on BMD measurements and/or presence of a non-traumatic (fragility) 

fracture with 10 million Americans currently diagnosed as osteoporotic and another 40 

million at risk. These numbers will not likely decline as the US population ages, which it is 

expected to do until 2050. The economic burden imposed by OP, most accounted for by 

fractures, is approximately $20 billion annually (Burge, Dawson-Hughes et al. 2007). 

Despite this prevalence, treatment modalities are limited and largely focus on decreasing 

bone resorption. Bisphosphonates and newer generation anti-resorptives such as anti-

RANKL antibodies have led to improved risk for fractures, but are not effective at 

stimulating bone formation (Boonen, Ferrari et al. 2012). Currently only intermittent 

parathyroid hormone, or teriparatide (PTH 1-34), is FDA approved as an anabolic therapy 

for OP. Intermittent treatment with PTH results in a rapid increase in bone formation in the 

osteoporotic skeleton followed by a delayed increase in bone resorption. The molecular 

actions of PTH are not fully known, but hormone treatment is known to increase bone 

turnover with a positive bone balance. Unfortunately, effectiveness is time restricted and 

the drug carries a black box warning limiting use to 2 years due to a slight increase in 

cancer reported in animal studies (Tella and Gallagher 2014). This thesis will explore the 

role that Nmp4 plays in restricting the anabolic actions of intermittent PTH in mice including 

some of the cellular and molecular actions that are involved.  
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Nmp4 characteristics 

Nuclear matrix protein 4 (Cas interacting zinc finger protein - CIZ, Zfp384) was 

independently cloned as a PTH-responsive architectural transcription factor in the nuclear 

matrix and a cytosolic protein that was shown to bind p130Cas by far western analysis. 

Interspecies heterokaryon formation assays showed Nmp4 to be a nucleocytomasmic 

shuttling protein. Nmp4 binds to the minor groove of AT-rich DNA and bends DNA, as is 

characteristic of architectural transcription factors (Nakamoto, Yamagata et al. 2000, 

Thunyakitpisal, Alvarez et al. 2001). Sub-cellular localization studies show the protein to 

largely localize in the nucleus, however a punctate distribution was also observed in the 

cytoplasm (Feister, Torrungruang et al. 2000). This punctate distribution is consistent with 

binding to p130Cas, an adaptor protein which localizes near focal adhesions (Cary, Han 

et al. 1998). The protein is highly conserved at the nucleotide and amino acid level from 

yeast to humans with mouse and humans sharing about 92% amino acid identity. There 

are known isoforms of Nmp4 which are the result of alternately spliced variants from a full 

length transcript in mouse, rats, and humans. Surprisingly, despite the high sequence 

homology Nmp4 appears to be dispensable in mouse gestation, growth, and longevity. Its 

absence is not associated with reported pathological changes except for a spermatogenic 

abnormality which leads to sporadic infertility (Nakamoto, Shiratsuchi et al. 2004). At the 

genetic level Nmp4 is controlled by two independent promoter and EMSA and ChIP-seq 

analysis suggests that binds its own promoter and contributes to its own expression 

regulation (Alvarez, Shah et al. 2005).  

 

Knockout Phenotype 
Two labs have independently generated mice with a global genetic deletion of 

Nmp4/CIZ. Studies using this mice have revealed the despite the protein’s strong 

conservation across species and phyla the protein is dispensable for development and 

growth. In 2005 work from the Noda lab in Japan revealed that Nmp4 (CIZ) deletion 

resulted in a defect in spermatogenetic development which left male mice sporadically 

infertile. In addition the mice were noted to have a slightly higher mineral apposition rate 

(MAR) and bone formation rate with normal osteoclast activity resulting in a modestly 

enhanced skeleton (Morinobu, Nakamoto et al. 2005). These comparisons were made 

between F2 generation KO and WT mice. In our lab comparisons made in mice 

backcrossed 6 or 7 generations with C57/B6 mice differed slightly. We have observed 
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increases in cancellous bone, but these increases are modest and not consistently found 

(Robling, Childress et al. 2009, Childress, Philip et al. 2011, He, Childress et al. 2013). 

Additionally clonogenic assays, histomorphometry, serum analysis, and in vitro studies 

suggest a mild increase in osteoclast numbers and activity in healthy mice. Osteoclast 

enriched cultures stimulated with receptor activator of nuclear factor ƙB ligand (RANKL) 

and macrophage colony stimulating factor (MCSF) yielded more multinucleated 

osteoclasts in Nmp4-KO mice compared to WT. Also, pit formation assay showed these 

osteoclasts to be more effective at resorption on dentin slices (Childress, Philip et al. 

2011). Histomorphometric analysis of WT and KO mice treated with PTH or vehicle control 

revealed an increase in tartrate-resistant acid phosphatase (TRAP) positive osteoclasts 

and TRAP stained surface in vehicle treated knockout animals which was statistically 

significant by 2-way ANVOA and Tukey’s HSD post-hoc test (Childress, Philip et al. 2011). 

Finally, these Nmp4-KO mice had higher serum levels of c-terminal telopeptide (CTX), a 

marker for bone resorption, in both vehicle treated and PTH treated groups. This 

comparison of serum CTX was made in Nmp4-KO mice backcrossed 6 generations with 

C57/B6 mice and wildtype C57/B6 mice from Jackson Laboratories so there remains a 

formal possibility that the differences noted were due to genetic background differences 

despite the extensive backcrossing (Robling, Childress et al. 2009). Nonetheless, taken 

together the evidence points to a modest, but significant increase in bone resorption in 

Nmp4-KO mice compared to wildtype (Bidwell, Childress et al. 2012) . Because the mice 

are not osteopenic, and the KO mice have been reported to have a modestly enhanced 

skeleton the evidence suggests a skeletal phenotype where Nmp4-KO mice have 

increased bone formation and bone resorption which result in a net (albeit small) increase 

in bone mass. This likely results from increases in both the osteoblast and osteoclast 

progenitor populations. However, it is not clear if the same cellular mechanism is 

responsible for the increases in each population.  

Mice with a global deletion of Nmp4/CIZ are hyper-responsive to multiple anabolic 

bone signals. In 2005 it was reported that mice these mice respond to local delivery of 

BMP2 with about a 2 fold increase in calvarial bone growth over WT controls as seen on 

soft x-ray (Morinobu, Nakamoto et al. 2005). Our previous work has characterized the 

increased anabolic response healthy Nmp4-KO mice have compared to healthy WT 

animals. After 2 weeks of intermittent PTH (30ug/kg/day), KO and WT mice had a similar 

increase in distal femur trabecular bone accrual. However, by 3 weeks of treatment, the 

KO mice accrual had begun to pace the WT significantly (Childress, Philip et al. 2011). 
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The enhanced bone growth was even more exaggerated after 7 weeks of treatment when 

the KO mice gained over 2 fold more bone in the trabecular compartment (Robling, 

Childress et al. 2009). Consistent with this, Nmp4-KO mice had a larger percent increase 

in serum osteocalcin (OCN, marker for bone formation) after 3 weeks of PTH than WT 

mice. By 7 weeks of treatment, the disparity in serum OCN was again more exaggerated; 

the percent change of osteocalcin in WT mice had plateaued, but the KO mice showed a 

marked increase in concentration of this serum marker for bone formation. Interestingly, 

bone histomorphometry after 7 weeks of hormone did not reveal any differences in mineral 

apposition rate (MAR) or bone formation rate (BFR). The amount of mineralizing surface 

was much greater in the Nmp4-KO animals, but the proportion to bone surface was not 

different (Childress, Philip et al. 2011).  

We also examined the marrow of these mice by FACS and clonogenic assay which 

revealed changes in the Nmp4-KO mice which were independent of PTH treatment. The 

number of CD45-/CD146+/Nestin+ osteoprogenitors was approximately 4 fold higher in 

the KO mice. Though some controversy exists regarding how to define an osteoprogenitor 

in the field, the cell surface markers CD146 and the intermediate filament nestin are 

generally accepted to define a large percentage of the osteogenic activity in the mouse 

(Sacchetti, Funari et al. 2007, Méndez-Ferrer, Michurina et al. 2010, Park, Spencer et al. 

2012). Interestingly, this difference may arise from expansion of specific subset of 

mesenchymal stem/progenitor cells because a different set of osteoprogenitor markers 

(Lin- CD45- CD105+ CD29+) did not show any differences with control animals (unpublished 

data). These FACS analyses agree with results of our CFU-Falk phos clonogenic assay, as 

well as CFU-Ob assays in the CIZ-KO mice (Hino, Nakamoto et al. 2007). Additionally, 

Nmp4-KO mice have a statistically significantly higher ratio of CFU-Falk phos to total CFU-F 

colonies suggestive of a greater commitment to the osteoblast lineage, but will require 

further work to confirm (He, Childress et al. 2013).  

The osteoclast lineage cells also showed an increase in the bone marrow of Nmp4-

KO mice. This increase was to a lesser magnitude than what has been shown in the 

osteoblast progenitor population, however. The number of CFU-GM cells was shown to 

be ~2 fold higher in Nmp4-KO marrow compared to WT marrow. CFU-GM have previously 

been reported to be a rich source of osteoclast progenitors (Menaa, Kurihara et al. 2000). 

Consistent with these results the marrow from KO animals yielded more multinucleated 

osteoclasts in vitro after stimulation with MCSF and RANKL, a standard osteoclastogenic 

protocol. Moreover, osteoclasts generated from the Nmp4-KO marrow have an increased 
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capacity for resorption on dentin slices. Consistent with these ex vivo and in vitro results, 

serum from KO mice treated with PTH or vehicle for 7 weeks had a higher CTX 

concentration at the beginning of the experiment (age 10 weeks), after 3 week of treatment 

and after 7 weeks. The increase was seen in both vehicle and PTH treated groups. It 

should be mentioned however, that this comparison was made between WT C57/B6 mice 

obtained from Jackson labs and Nmp4-KO mice which had been backcrossed for 6 

generations on a C57/B6 background.   

Spermatogenesis provides another example of Nmp4 (aka CIZ) having a role in 

developing progenitors. This case, unlike that of osteoblastogenesis and 

osteoclastogenesis however, is one in which the end result is a reduction in the number 

of differentiated progeny. Nakamoto and co-workers examined the testis and found 

degenerated tissue and increased apoptosis in dividing secondary spermatocytes in 

tissue from the KO mice. Both of these phenomenon showed heterogeneity in the KO 

population which corresponds to a phenotype of sporadic infertility in these mice. Although 

the mechanisms involved were not fully described, SMAD1 signaling was suggested a 

playing a role (Nakamoto, Shiratsuchi et al. 2004). What is clear from these studies is that 

null mice are largely phenotypically normal, but do have differences which manifests 

during differentiation from progenitor populations in the adult animal. Thus far there have 

been no reports of other defects in development. 

In addition to the enhanced response to various anabolic agonists, null mice also 

are resistant to bone loss associated with disuse from hind limb unloading. The molecular 

mechanisms of bone loss in this model are not known, however increased osteocyte 

apoptosis which proceeds osteoclast recruitment is believed to be important and may 

direct resorption at the endosteal surface in rats (Aguirre, Plotkin et al. 2006). Male mice 

without a functional copy of Nmp4 are protected from bone loss in this model by a 

mechanisms which does not involve reduced bone resorption. However, these mice are 

also resistant to the loss of osteoprogenitors associated with HLU as measured by the 

number of mineralized nodules obtained from bone marrow cultures. Given the role that 

mechanical stimulation plays in maintaining osteoprogenitors and osteocytes through 

reduced apoptosis (Aguirre, Plotkin et al. 2006) and the involvement of Nmp4 deficiency 

in the apoptotic response in secondary spermatozoa, it is tempting to speculate that 

osteocytes in the null mice are protected from apoptosis. Further work is needed to clarify 

the cellular and molecular pathways involved.  
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Parathyroid hormone - anabolic, but why? 

      Endogenous PTH is synthesized as a 115 amino acid pre-pro-hormone which is 

cleaved to an active 84 amino acid peptide and maintains serum calcium levels through 3 

main mechanism. The first is increased calcium reuptake in the renal tubular system 

(Murray, Rao et al. 2005). Also in the renal tubular system the hormone stimulate 

production of 1,25-dihydroxyvitamin D3, which increases calcium uptake in the small 

intestine and distal convoluted tubule of the kidney (Christakos 2012). PTH also works to 

increase bone resorption by stimulating osteoclastogenesis through osteoblastic release 

of receptor activator of NF-κB ligand (RANKL). In this manner PTH stimulates calcium 

release, and ultimately bone loss. The paradoxical effect PTH (Yasuda, Shima et al. 1998, 

Udagawa, Takahashi et al. 1999) as an anabolic agent to treat osteoporosis remains 

incompletely understood. 

     The anabolic actions of intermittent parathyroid hormone are well-documented and it 

remains the only FDA- approved treatment for osteoporosis which adds bone to the aged 

skeleton. The cellular, molecular, and tissue level mechanisms are not completely 

understood, but do include direct effects on osteoblasts, indirect effects on osteoclasts, 

and encompass several molecular pathways highlighting the pleiotropic nature of this 

hormone. The PTH receptor, PTHR1, is a 7-transmembrane receptor which stimulates 

both the PKA/cAMP and PKC/phospholipase C pathways, among others (Hruska, 

Moskowitz et al. 1987, Juppner, Abou-Samra et al. 1991). Receptor internalization limits 

the response to hormone, and as will be described, may also contribute to sensitizing the 

BMP2 response (Goltzman 2008).  

Perhaps the most fundamental aspect of anabolic PTH is its mode of delivery. 

Continuously elevated and intermittently elevated levels of PTH have distinct and 

paradoxical effects on bone mass. Chronic elevation such as is see with 

hyperparathyroidism is typified by hyperkalemia and loss bone mass. This phenotype is 

consistent with the primary action of endogenous PTH which is to increase serum calcium 

concentration, in part by mobilizing osteoclasts to differentiate and increase bone 

resorption thereby releasing Ca2+ stores in the skeleton. Seminal work by Walter Bauer, 

Joseph Aub, and Fuller Albright in 1929 demonstrated that parathyroid hormone could 

lead to bone resorption or apposition if given continuously vs a daily injection (Bauer, Aub 

et al. 1929). This work was confirmed by Hans Selye a few years later (Selye 1932).  
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Direct effects of PTH on osteoblasts involve increasing life span via decreasing 

apoptosis (Jilka, Weinstein et al. 1999). Because apoptosis is the eventual fate for most 

osteoblasts, this increases the number of bone-forming cells and a concomitant increase 

in osteocyte density. Osteocytes are a major source for RANKL-driven osteoclastogenesis 

and whether the increases in osteocyte density contributes to the increases in resorption 

seen after extended PTH treatment is not known. However, in mice osteocytic PTH 

signaling is required for hormone-induced RANKL expression and anabolic action from 

intermittent PTH, suggesting active bone remodeling is required for bone gain (Saini, 

Marengi et al. 2013). Intermittent PTH also has direct effects on matrix-forming osteoblasts 

by increasing the rate of bone formation. This can be seen clinically by rapid increases in 

serum bone formation markers within weeks of starting treatment and by measuring bone 

formation rates (BFR) in both humans and rodents (Hodsman 2005, Delmas, Licata et al. 

2006). Associated with increased bone formation are increases in many genes involved 

in the process such as Col1a1, Runx2, MMPs, BMPs, and others. Importantly, PTH 

causes a marked increase in RANKL expression in vitro and in vivo. RANKL stimulated 

osteoclastogenesis via PTH-stimulated osteoblast expression has been a long held 

paradigm in osteobiology; however, this has recently come under question. Mice depleted 

for osteoblasts do not have a significant reduction in RANKL production and mice null for 

Runx2 (required for osteolineage commitment) maintain a significant PTH-stimulated 

RANKL increase in stromal fibroblastic cells (Galli, Fu et al. 2009). On the other hand, 

osteocytic suppression of Sost has been suggested as a critical component of the 

intermittent PTH response, suggesting that terminally differentiated osteolineage cells are 

indeed important for PTH action (similar to RANKL production above). Sclerostin (product 

of the Sost gene) is a potent inhibitor of osteoblastic bone formation ostensibly down 

regulation of Wnt signaling. PTH decreases sclerostin expression and this action 

potentially contributes to bone gain seen with hormone therapy (Bellido 2006). 

Additionally, the dependence of PTH anabolic action on Sost inhibition in mice has been 

shown by genetic deletion and over-expression: in both cases bone gain was blocked due 

to PTH was blunted (Kramer, Loots et al. 2010). A possible confounding factor with the 

Sost-Tg mice in this study was the use of the endogenous SOST promoter, which is 

directly responsive to PTH-stimulated cAMP signaling. Additionally, these mice were 

osteopenic and the effect of the transgene on osteoprogenitor pools was not evaluated. 

Similarly, the Sost-KO mice started with a high bone mass phenotype, which may have 

affected the amount of bone gain possible with PTH. Finally, multiple studies have 
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documented a decrease in Sost expression with PTH (Keller and Kneissel 2005). As 

mentioned previously PTH decreases OB apoptosis, and this phenomenon was shown to 

be dependent on proteasomal degradation of pro-apoptotic Bad. Also, the master bone 

transcription factor Runx2 is stimulated for degradation by PTH in a Smurf1 in an apparent 

self-limiting feedback mechanism. The kinetics of intermittent hormone administration may 

favor then a reduction in apoptosis while avoiding the full effect of the self-limiting nature 

of PTH by Runx2 degradation (Bellido, Ali et al. 2003) Consistent with this proteasomal 

inhibitors have been shown to be bone anabolic in patients with multiple myeloma. These 

drugs also stabilized ß-catenin and Runx2 (Zangari, Terpos et al. 2012). The story is 

complex however as Runx2 is necessary for mesenchymal differentiation to osteoblasts, 

but may inhibit proliferation and differentiation at later stages (Marie 2008). Therefore, the 

role Runx2 plays in osteoblast differentiation in vivo and in cultured osteoblasts may not 

be straightforward. 

At the tissue level the pleiotropic nature of anabolic PTH action is complex and 

involves many cell types beyond those direct effects discussed previously on osteoblasts. 

This is due at least in part various growth factors and anabolic factors such as BMPs, 

IGF1, and RANKL which are target genes of PTH stimulation. An example of the 

dependence on these factors is highlighted by osteoblastic IGF1 signaling which is 

required for bone gain from intermittent PTH (Bikle, Sakata et al. 2002). Similarly, Wnt10b 

secreted by bone marrow CD8+ T-cells in response to intermittent hormone treatment is 

necessary for bone gain in mice. This was shown by both depletion of PTH receptors from 

T-cells and selective deletion of Wnt10b from these cells (Bedi, Li et al. 2012, Li, Walker 

et al. 2014). Wnt10b functions to promote differentiation of mesenchymal precursors along 

the osteogenic pathway (Bennett, Ouyang et al. 2007). Additionally, work in Tg mice 

expressing constitutively active PTHr1 in osteocytes demonstrated the increased bone 

mass in these animals was dependent on Wnt signaling on the periosteal surface and Wnt 

signaling along with osteoclastic bone resorption on the endocortical surface (Rhee, Lee 

et al. 2013). PTH is primarily responsible for trabecular bone formation as shown in mice 

null for the Pth gene. This was coincident with decreases in both osteoblasts and 

osteoclasts (Goltzman 2008). The pth-KO mice also revealed a defect in vascular invasion 

in the chondro-osseous junction of developing fetus. That PTH stimulates vasculogenesis 

is also seen in the adult where intermittent PTH preferentially stimulates small arteriole 

formation over larger arteriogenesis in the context of allograft transplant healing. The 

former being mediated by an induction of Angiopoietin-1 and the latter being mediated by 
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a large decrease in angiopoietin-2 (Dhillon, Xie et al. 2013). These data are complemented 

by work by Kusumbe and colleagues who showed that osteogenesis is coupled to specific 

types of capillaries. They suggest this network at the distal end of the arterial network in 

bone represents a specialized location with increased oxygen and nutrients for osteoblasts 

(Kusumbe, Ramasamy et al. 2014).  

Anabolic PTH increases bone volume in the cortical and cancellous envelopes and 

increases mineral apposition rate in animal models as well as patients (Mitlak 2002). 

Though, capturing these rate increases depends on time of analysis and is confounded 

by ongoing treatments for osteoporosis (i.e. previous anti-resorptives), leading to 

discrepancies in the literature (Jiang, Zhao et al. 2003, Ma, Zeng et al. 2014). Special 

consideration has been given to the effect of PTH on the hip because differences have 

been shown at the cortical and cancellous sites in the femoral neck; specifically PTH 

decreases volumetric BMD at the femoral neck – at least for the first half of treatment. 

Employing finite element analysis to evaluate strength after a simulated sideways fall, 

Keaveny et. al. showed that that despite loss of BMD, predicted strength did not change. 

This was hypothesized to result from improved trabecular architecture which took place 

over the 18 months of the study (Keaveny, Hoffmann et al. 2008). The apparent 

inconsistency between decreased cortical bone at the femoral neck compared to other 

sites in the skeleton might be explained by the timing of measurements. Most human 

studies are conducted from 6-18 months, and during this time the femoral neck cortical 

shell might be especially vulnerable to increases in bone resorption which PTH causes. 

However, in a study of patients with glucocorticoid induced osteoporosis (GIOP) which 

tracked patients 36 months, there was a 6.3% increase in femoral neck BMD (Saag, 

Zanchetta et al. 2009). This study is not directly comparable to the work by Keavney. 

Though the doses were similar (20µg/day), the first evaluated female patients only with 

post-menopausal osteoporosis, while the second group suffered from GIOP. Still the 

suggestion is that the site specific dynamics of PTH action are complex and may depend 

greatly on the timing of experimental endpoints.  

The mechanism(s) which limit PTH anabolism are unknown but may be the result 

of increased osteoclastogenesis, proteosomal degradation of Runx2 as suggested above, 

depletion of the progenitor pool, as well as thus far unknown phenomenon. Of course 

these need not be mutually exclusive and multiple overlapping pathways likely contribute 

to negative regulation of the bone gains seen with PTH. Work in Xu Cao’s lab provides 

support for depletion of progenitor cells as central to the endogenous restriction of bone 
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gain with PTH. Working in mice these researchers showed that Sca-1+ bone marrow 

stromal cells (an osteoprogenitor) are recruited to remodeling sites by release of matrix 

TGFβ following bone resorption. The bisphosphonate alendronate decreased osteoclast 

activity and the intermittent PTH response. Also, TGFβ-/- mice had a decreased response 

to PTH (Wu, Pang et al. 2010). This study suggests that exhaustion of the osteoprogenitor 

pool can limit the PTH response, also osteoclast activity is shown to be a critical 

component of that that response. However, this work does not provide evidence that bone 

forming progenitors are exhausted with hormone therapy. Studies evaluating the numbers, 

proliferation and bone forming potential of osteoprogenitors is compromised with 

increasing age. Combined, these mechanisms support the hypothesis that once aged 

marrow is exposed to PTH, its ability to respond with new bone would be attenuated 

(Bergman, Gazit et al. 1996, Nishida, Endo et al. 1999, Chen 2004). Interestingly, recent 

work in the Marie lab describes N-cadherin mediating an age-dependent decrease in 

osteoprogenitor number in favor of adipogenesis in a BMSC-derived Wnt5a and Wnt10b 

dependent manner (Haÿ E 2013). This suggests possible mechanistic clues to the 

osteoprogenitor pool decrease. Wnt10b is a crucial component of the anabolic PTH 

response, and it is possible that a restricted osteoprogenitor pool is less responsive to 

PTH, in part, due to lower Wnt10b levels. Other studies show that bone lining cells are 

rapidly differentiated into bone forming osteoblasts in response to PTH, and that depletion 

of this population restricts the anabolic effect (Dobnig and Turner 1995) 

The Role of Estrogen 

Osteoporosis has multiple contributing factors including significant genetic and 

environmental components. The complex nature of the disease leads to a varied patient 

population. However, the prototypical patient is that of postmenopausal women of 

American or Japanese descent (Bidwell, Alvarez et al. 2013). This profile suggests a 

strong role for estrogen in determining bone mass and indeed estrogen effects both 

osteoblasts and osteoclasts are profound. Evidence supports both direct effects as a 

classical sex steroid binding nuclear receptors which affect gene expression and indirect, 

or non-genotropic, effects which affect signal transduction. This section will consider first 

estrogen’s effect on osteoblasts (or formation) and then effects on osteoclasts (or 

resorption). 
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Formation 

Post-menopausal accumulation of adipocytes in the marrow cavity has been 

proposed as a cellular mechanism for decreased bone formation with age (Syed, Oursler 

et al. 2008). Syed et al tested this hypothesis directly in post-menopausal women in 

placebo controlled trial. They reported women receiving estrogen replacement for 1 year 

experienced no change in marrow adipocyte number compared to a 20% increase in the 

placebo group. At the same time hormone treatment decreased adipocyte volume/tissue 

volume approximately 24%, while placebo group experience a nearly equal increase in 

this parameter (Syed, Oursler et al. 2008). The mechanism(s) involved are not fully 

described, but many of the details have been reported. Estrogen binding to ERα or ER β 

in osteoprogenitors directs differentiation into osteoblasts in vitro while antagonizing 

adipocyte development. This was shown in ST-2 cells, an incompletely differentiated 

stromal line which can be driven to both osteogenic and adipogenic fates by BMP2. 

Osteogenic potential was shown to be positively mediated by estrogen receptors α and β. 

While adipocyte differentiation was inhibited by lines carrying only ERα and ERβ 

individually (Okazaki, Inoue et al. 2002). 

Transdifferentiation of osteoprogenitors into adipocytes may contribute to the 

increase in marrow adiposity as well. Gao et al recently showed a dose dependent 

suppression of osteolineage to adipocyte transdifferentiation using MC3T3 and primary 

murine BMMNCs cells grown in osteogenic media for 14 days and subsequently grown in 

adipogenic media (Gao, Huang et al. 2014). Although this needs to be verified in vivo, the 

results might contribute to understanding the paradox of decreased bone formation and 

increased adipocyte formation despite multiple studies reporting no decrease of 

osteoblast producing MSCs with age (Sethe, Scutt et al. 2006).  

Estrogen negatively impacts osteoblast progenitor numbers through direct action 

involving ERα by decreasing their self-renewal. This population of cells characterized by 

CFU-Ob activity has limited capacity for self-renewal, which is decreased by 17β-estradiol 

in vitro and in vivo (Di Gregorio, Yamamoto et al. 2001). This effect is seemingly 

paradoxical to the overall anabolic effect of estrogen. However, the authors of this study 

suggest the action of suppressing osteoblast numbers ultimately suppressed osteoclast 

numbers because the latter rely on the former for developmental cues. In this regard, 

estrogen can be viewed as a coupling factor in bone formation and resorption. Consistent 

with this notion is the fact that post-menopausal osteoporosis is described as a high 

turnover disease state in which resorption is uncoupled from and outpaces formation 
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(Pacifici 1996). Curiously, bone formation increases in the post-menopausal woman, but 

not as much as resorption based on systemic markers of bone turnover. Serum 

osteocalcin, bone specific alkaline phosphatase and C-propeptide of type I collagen in the 

case of formation, and urinary N-terminal & C-terminal telopeptides in the case of 

resorption (Garnero, Sornay-Rendu et al. 1996) which suggests that estrogen restricting 

the number of osteoblasts is not the only mechanism for restricting the number of 

osteoclasts. Indeed as described below, estrogen simulated cytokine production which 

increase osteoclast apoptosis. Similar results showing increases in the formation an 

resorption arms of bone homeostasis were noted in animals models as early as 1987 

(Turner, Vandersteenhoven et al. 1987). It should be noted as well that reports of bone 

formation and aging are inconsistent. The issue of bone formation with aging is confused 

by sex steroid independent declines in bone formation related to senile osteoporosis, seen 

in both men and women, which are separate from post-menopausal (or sex steroid 

deficiency) osteoporosis. Some studies indicated normal osteoblast progenitor numbers 

and bone formation parameters is study populations, while other studies indicate 

decreases in one or both of these parameters (Pei, Bellows et al. 2006, Bidwell, Alvarez 

et al. 2013).  

Finally, recently it has become clear that estrogen has differential effects in the 

cortical and trabecular bone components. This differences likely arises from the 

expression patterns of ERβ, which is more highly expressed in osteoblasts and osteocytes 

in the trabecular compartment (Bord, Horner et al. 2001). ERβ can form heterodimers with 

ERα which are less responsive to transcriptional activation upon binding with E2. These 

heterodimers therefore require more circulating estrogen to realize the overall anabolic 

response estrogen has on bone formation (Hall and McDonnell 1999).  

 

Resorption 
As mentioned previously, estrogen attenuates osteoblastic production of cytokines 

which contribute to bone loss. In particular, IL6, TNFα, and FASL. In 1992 Girasole and 

coworkers showed using multiple in vitro systems that 17beta-estradiol attenuated IL-6 

production and induction of IL-6 by TNFα. Mixed-cell calvarial cultures demonstrated that 

IL-6 regulates, in part, osteoclastogenesis. This work suggested for the first time a 

potential mechanism for cytokine-mediated bone loss with estrogen depletion (Girasole, 

Jilka et al. 1992). This effect was later shown to be dependent on NF-kB and C/EBP 
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interactions with the estrogen receptor (ER), but not on an ER-binding cis element (Stein 

and Yang 1995).  

Estrogen control of osteoclast apoptosis has been long understood (Kameda, 

Mano et al. 1997, Kousteni, Chen et al. 2002). This control of osteoclast life span by 

estrogen is through direct action of ERα receptor binding to a FAS Ligand enhancer 

element in osteoblasts to induce pre-osteoclastic apoptosis. The canonical action of 

estrogen binding ERα and causing transcriptional changes was shown in vitro and 

genetically in vivo (Krum, Miranda-Carboni et al. 2008). However, the effects of estrogen 

on osteoclast apoptosis are not restricted to those induced by changing genetic 

expression. Kousteni and co-workers showed in vitro with pharmacological agents 

capable of binding ERα, but not inducing transcriptional changes, that non-genotropic 

effects of the estrogen receptor are sufficient to induce osteoclasts apoptosis. 

Interestingly, this same group demonstrated that non-genotropic effects of estrogen are 

capable of decreasing osteoblast apoptosis placing this activity at a junction potentially 

convenient to pharmacological intervention to affect formation and resorption (Kousteni, 

Bellido et al. 2001, Kousteni, Chen et al. 2002).  

T-cells also contribute to bone resorption in estrogen deficiency by increasing 

production of the pro-osteoclastogenic cytokine TNF-α. This phenomenon was first 

described in mice (Cenci, Weitzmann et al. 2000) and has since been accepted as part of 

the pathophysiology of post-menopausal osteoporosis (Pacifici 2010).  
Working with murine osteoclasts in vitro Jimi and co-workers showed that 

osteoclasts spontaneously apoptose in culture and addition of IL-1 protected cells from 

this fate. Furthermore, the researchers showed this protection was NF-kB dependent 

(Jimi, Nakamura et al. 1998). Consistent with the role of estrogen in protecting bone mass, 

stimulation of IL-1 by stromal cells, osteoblasts and lymphocytes is under direct control by 

estrogen acting through its classical transactivation capacity. Estrogen also affects 

osteoclast formation by stimulating osteoblastic production of osteoprotegrin (OPG). This 

decoy receptor for RANKL binds the RANK receptor on osteoclast progenitors, but does 

not result in maturation. As such, soluble OPG serves as an inhibitor of bone resorption 

(Hofbauer, Khosla et al. 1999).  
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Abstract 

How parathyroid hormone (PTH) increases bone mass is unclear, but 

understanding this phenomenon is significant to the improvement of osteoporosis therapy. 

Nmp4/CIZ is a nucleocytoplasmic shuttling transcriptional repressor that suppresses PTH-

induced osteoblast gene expression and hormone-stimulated gains in murine femoral 

trabecular bone. To further characterize Nmp4/CIZ suppression of hormone-mediated 

bone growth, we treated 10-week-old Nmp4-knockout (KO) and wild-type (WT) mice with 

intermittent human PTH(1-34) at 30 μg/kg daily or vehicle, 7 days/week, for 2, 3, or 7 

weeks. Null mice treated with hormone (7 weeks) gained more vertebral and tibial 

cancellous bone than WT animals, paralleling the exaggerated response in the femur. 

Interestingly, Nmp4/CIZ suppression of this hormone-stimulated bone formation was not 

apparent during the first 2 weeks of treatment. Consistent with the null mice enhanced 

PTH-stimulated addition of trabecular bone, these animals exhibited an augmented 

hormone-induced increase in serum osteocalcin 3 weeks into treatment. Unexpectedly, 

the Nmp4-KO mice displayed an osteoclast phenotype. Serum C-terminal telopeptide, a 

marker for bone resorption, was elevated in the null mice, irrespective of treatment. Nmp4-

KO bone marrow cultures produced more osteoclasts, which exhibited elevated resorbing 

activity, compared to WT cultures. The expression of several genes critical to the 

development of both osteoblasts and osteoclasts was elevated in Nmp4-KO mice at 2 

weeks, but not 3 weeks, of hormone exposure. We propose that Nmp4/CIZ dampens PTH-

induced improvement of trabecular bone throughout the skeleton by transiently 

suppressing hormone-stimulated increases in the expression of proteins key to the 

required enhanced activity and number of both osteoblasts and osteoclasts. 
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INTRODUCTION: 
 
 Parathyroid hormone (PTH) therapy is the only osteoporosis treatment that 

restores bone to the aged skeleton, however its expense makes it the least cost-effective 

(Liu, Michaud et al. 2006, Stroup, Kane et al. 2008). The development of shorter PTH-

based treatments yielding similar efficacy as the longer-term therapy will improve its cost-

benefit ratio (Liu, Michaud et al. 2006) but this requires a better understanding of the 

mechanisms underlying the PTH anabolic response.  

 Data on the self-limiting pathways to PTH action, inherent to all endocrine 

response loops, are lacking and it is these molecules that may provide the best 

pharmaceutical targets for improving hormone efficacy and cost-effectiveness (Childress, 

Robling et al.). For example, as PTH activates the osteoblast generation of cAMP and the 

enhanced expression of RUNX2 it simultaneously stimulates phosphodiesterase activity 

(Ahlstrom and Lamberg-Allardt 1997) and Smurf1-mediated RUNX2 proteasomal 

degradation (Bellido, Ali et al. 2003).  

 We recently demonstrated that disabling the nucleocytoplasmic shuttling 

transcription factor Nmp4/CIZ (nuclear matrix protein 4/cas interacting zinc finger protein) 

in mice enhances the skeletal response to anabolic PTH (Robling, Childress et al. 2009) 

suggestive of a significant role in the hormone’s self-limiting pathways. Ten wk-old Nmp4-

knockout (KO) mice treated with intermittent PTH for 7 wks exhibited an augmented 

increase in femoral trabecular bone compared to wild-type (WT) mice without 

compromising the hormone-stimulated increases in bone mineral density and content 

throughout the skeleton (Robling, Childress et al. 2009).  

 The ubiquitously expressed Nmp4/CIZ appears to act as a general repressor of 

anabolic bone growth, in part, by suppressing the transcription of genes that support the 

development of the osteoblast phenotype, including the pro-alpha1(I) chain (Col1a1) and 

the Mmp-13 promoters(Childress, Robling et al. , Thunyakitpisal, Alvarez et al. 2001, 

Shah, Alvarez et al. 2004). This trans-acting protein suppressed the PTH induction of rat 

Mmp-13 transcription in UMR-106-01 osteoblast-like cells via its binding to a PTH-

responsive element in the 5' regulatory region of the gene (Shah, Alvarez et al. 2004) but 

whether Nmp4 represses the hormone responsiveness of other tissues has not been 

reported. 

 In the present study we determined that Nmp4/CIZ suppressed the PTH-stimulated 

improvement of trabecular bone throughout the mouse skeleton and was not site-specific 

as is common in other mouse models (Chung, Castro et al. 2006, Philip, Childress et al. 
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2010). Most surprisingly, we discovered that the null mice have an osteoclast phenotype. 

The analysis of serum biochemistry, bone histomorphometry, bone mRNA expression 

profiles, and osteoclast cell culture, suggest that the numbers and activities of both 

osteoblasts and osteoclasts are enhanced in the Nmp4-KO mice due, in part, to a transient 

de-repression of key transcription factors and signaling proteins common to pathways 

critical for the development and hormone-responsiveness of both cell types.  

 
MATERIALS AND METHODS: 
 
Mice 
Construction of the Nmp4-KO mouse, its backcrossing six generations onto a C57BL/6J 

background, and the baseline phenotype, has been described (Robling, Childress et al. 

2009). As in our previous study wild-type C57BL/6J mice from The Jackson Laboratories 

(Bar Harbor, ME) were used as controls (6). Experiments designed to compare the 

response of WT and Nmp4-KO mice to PTH compensated for any differences in genetic 

and environmental factors (see Statistical Analyses). Our local Institutional Animal Care 

and Use Committee approved all experiments and procedures involving the production 

and use of the experimental mice described in this study.  

 

PTH treatment regimen:  

 Prior to the start of an experiment 8 wk-old female WT and Nmp4-KO mice were 

given 100µl sterile saline by subcutaneous (sc) injection once daily to acclimatize them to 

handling. At 10 wks of age, mice were sorted into four groups based on equivalent mean-

group-body weight. The four treatment groups included 1) vehicle-treated WT; 2) PTH-

treated WT; 3) vehicle-treated Nmp4-KO and 4) PTH-treated Nmp4-KO. Mice were 

injected sc with human PTH 1-34 (hPTH(1-34), Bachem Bioscience Inc, PA) at 

30µg/kg/day, daily or vehicle control (0.2% BSA/0.1% 1.0 mN HCl in saline, Abbott 

Laboratory, North Chicago, IL) for the times specified in the Results. Additionally, animals 

were administered by intraperitoneal injection calcein green (20 mg/kg, Sigma-Aldrich, St 

Louis, MO) and alizarin red (25 mg/kg, Sigma-Aldrich) 6 days and 3 days before 

euthanasia, respectively. 

 

Dual energy x-ray absorptiometry (DEXA) 

 Bone mineral content (BMC; g), areal bone mineral density (aBMD; mg/cm2), and 

body weight were measured weekly (8 wks to 12 wks of age). The BMC and aBMD were 
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obtained for the post-cranial skeleton by dual-energy X-ray absorptiometry (DEXA) using 

an X-ray PIXImus mouse densitometer (PIXImus II; GE-Lunar Corp., Madison, WI) as 

previously described (Robling, Childress et al. 2009). We report whole body (WB), femur, 

tibia, and spine BMD and BMC. 

 

Micro computed tomography (µCT) 

 Vertebrae, femurs, and tibiae were dissected from the WT and Nmp4-KO animals 

after euthanasia, the connective tissue and muscle removed, and the bones stored in 10% 

buffered formalin at 4°C. After 48 hr the bones were transferred to 70% ethanol and stored 

at 4°C until analyzed. We have previously described our methodology for assessing the 

trabecular microarchitecture at the distal femoral metaphysis and within the 5th lumbar 

vertebra using the desktop micro-computed µCT 20 tomographer (Scanco Medical AG, 

Bassersdorf, Switzerland; [6, 9]). Cancellous bone of the tibia was evaluated by scanning 

the proximal 20% of each tibia at 9 µm resolution. A microfocus X-ray tube with a focal 

spot of 10 µm was used as a source. Precisely 90 micro-tomograph slices were acquired 

per bone beginning 1 mm from the epiphysis and extending distally 1.53 mm using a slice 

increment of 17 µm. For each slice, 600 projections were taken over 216° (180° plus half 

of the fan angle on either side). Proximal tibia stacks were reconstructed to the 3rd 

dimension using a standard convolution-backprojection procedure with a Shepp-Logan 

filter using a threshold value of 275. The Scanco software permitted evaluation of tibial, 

femoral and vertebral trabecular bone volume per total volume (BV/TV, %), connectivity 

density (Conn.D, mm-3), structure model index (SMI), trabecular number (Tb.N, mm-1), 

trabecular thickness (Tb.Th, mm), and spacing (Tb.Sp, mm) from the 3D constructs. To 

evaluate cortical architecture, a single slice was taken through the midshaft femur (simply 

by measuring the number of slices for the whole femur and dividing by 2), and the cortical 

area (CA, mm2), marrow area (MA, mm2), and the total area (TA, mm2) were calculated 

(6). Additionally, the moments of inertia, the resistance of the bone to a bending load, were 

derived from these data. These parameters included the greatest (IMAX, mm4) and smallest 

(IMIN, mm4) flexural rigidity as well as the polar moment of inertia (J, mm4), which is the 

torsional and bending rigidity around the neutral axis of the bone and perpendicular to the 

x- and y-axes passing through the center of mass (Cheng, Sipilä et al. 2002).  

 

Quantitative real-time PCR (qRT-PCR) analysis:  
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 Femoral or tibial RNA from mice that had been treated with intermittent PTH or 

vehicle for 2 wks or 3 wks was harvested either 1 hr or 24 hrs after the last injection. The 

harvesting, processing, and analysis protocols for qRT-PCR analysis have been described 

(6, 9). Real-time PCR primers and probes were obtained from Assays-on-Demand 

(Applied Biosystem, Foster City CA, see Table 1). The ∆∆CT method was used to evaluate 

gene expression between WT and KO animals using Rplp2 as the normalizer after 

screening several housekeeping gene candidates. The coefficient of variation of Rplp2 

was typically 2-3% between all samples. Normalization against internal control genes is 

most frequently used because it can control all variables including cell number (Goossens, 

Van Poucke et al. 2005, Zhang, Ding et al. 2005). The data represent the mean ± standard 

deviation from at least 6 mice per genotype.  
   
 

Bone histomorphometry: 

 Femurs were removed from the WT and Nmp4-KO animals after euthanasia and 

fixed as described above. The anterior face of the epiphyseal plate was cut to expose the 

marrow cavity. Samples were then dehydrated with graded alcohols, embedded in methyl-

methacrylate, sectioned (4µm) with a Leica RM2255 microtome (Leica Microsystems, 

Wetzlar, Germany), and mounted on standard microscope slides. All histomorphometric 

parameters were obtained following ASBMR guidelines (14). Mineral apposition rate 

(MAR), mineralizing surface (MS/BS) and bone formation rate (BFR), were obtained from 

a 0.03mm2 metaphyseal region of interest from 250µm to 1750µm below the growth plate 

using ImagePro 3.1 software (Media Cybernetics, Bethesda, MD, USA). Some sections 

were stained for tartarate resistant acid-phosphatase (TRAP). The number of TRAP-

positive (TRAP+) cells on the bone surface (TRAP+ cell N/BS) and the TRAP-stained 

surface to bone surface (TRAP+ S/BS) were determined.  

 

Serum biochemistry: 

Intact serum osteocalcin was measured using the sandwich ELISA BTI Mouse 

Osteocalcin EIA Kit (Biomedical Technologies, Inc., Stoughton MA; [15]). Serum C-

terminal telopeptides (CTX) were determined using the RatLaps™ ELISA 

(Immunodiagnostic Systems Inc., Scottsdale, AZ; (O'Brien, Plotkin et al. 2008)).  

 

Osteoclast culture and activity:  
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 To compare the number of osteoclasts derived from Nmp4-KO and WT mice, bone 

marrow was flushed from the long bones of 6-8 week-old animals. Cells were seeded into 

24-well culture dishes at an initial density of 2.1x105 cells/mm2 and cultured in alpha-MEM 

(Invitrogen, Carlsbad, CA) supplemented with 10% FBS (FBS, Hyclone, Logan Utah) and 

20 ng/ml of recombinant human M-CSF (Peprotech, Rocky Hill, NJ) for 2 days and then 

supplemented with 20 ng/ml of recombinant human M-CSF and 80 ng/ml of recombinant 

human RANKL (Peprotech) for the duration of the experiment. The cell culture medium 

was changed every third day until osteoclasts were visible. Once osteoclasts had formed, 

the cells were fixed with 2.5% glutaraldehyde in phosphate buffered saline for 30 minutes 

at room temperature, stained for TRAP (Sigma-Aldrich), and TRAP+, multinucleated (≥3) 

cells were counted. 

 The osteoclast resorption activity of cells derived from the KO and WT mice was 

evaluated using a standard pit assay (Tanaka, Amling et al. 1996). Bone marrow was 

isolated as above and plated into 6-well culture dishes at 2x106 cells/well (2.1x105 

cells/mm2). As detailed above, cells were incubated in alpha-MEM containing 10% FBS 

and 20 ng/ml M-CSF for 2 days. The media was removed and replaced with fresh media 

containing 20 ng/ml M-CSF and 80 ng/ml RANKL for an additional 2-3 days. Mature 

osteoclasts were detached by trypsinization, washed once, re-plated onto dentin slices 

(Immunodiagnostics Systems Inc, Fountain Hills, AZ) and cultured for an additional 48 hrs 

in media containing 20 ng/ml M-CSF and 80 ng/ml RANKL. Dentin slices were washed, 

incubated in 6% NaOCl for 5 min, and sonicated for 20 s to remove cells. Resorption pits 

were stained with a solution containing 1% toluidine blue and 1% sodium borate for 1 min, 

washed with water and air-dried. Pit surface area was quantified using the ImagePro 7.0 

on a Leica DMI4000 with a 10X objective. Results were normalized for osteoclast number, 

as determined by counting TRAP+ cells containing 3 or more nuclei. Experiments were 

performed in triplicate and results represent average pit area per dentin slice/OC number. 

 

Statistical analyses:  

Statistical analysis was processed using JMP Version 7.0.1 (SAS Institute, Cary, NC). 

Experiments designed to compare the response of WT and Nmp4-KO mice to PTH 

compensated for any differences in genetic and environmental factors, i.e. the fact that 

WT mice were not bred in-house was accounted for by our analyses. For example, the 

raw BMD and BMC data were converted to % change (between 8 and 12 wks of age). 

Comparing hormone-treated to vehicle-treated within each genotype for all the endpoint 
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analyses removed baseline differences from those factors and permitted analysis for 

genotype x treatment interactions, i.e. whether the WT and Nmp4-KO mice responded 

differently to hormone for the parameter under consideration. We employed a two-factor 

ANOVA for these analyses. If a genotype x treatment interaction was indicated the data 

were then analyzed by a Tukey's HSD post hoc test to determine significant differences 

between the experimental groups. For the serum analysis experiment we used a repeated-

measures multivariate analysis of variance (MANOVA) to evaluate the raw longitudinal 

serum osteocalcin and CTX levels over the 7 wk hormone treatment period. Additionally, 

we converted the serum data to % change and analyzed with the two-factor ANOVA. The 

genotype x time term for the raw longitudinal serum data is equivalent to the genotype 

term for the % change data i.e. both terms indicate a difference in the rate of either 

osteocalcin/CTX increase or bone accrual (for the BMD/BMC study) between the WT and 

null mice. For some experiments, unpaired t-tests were employed as indicated. Data are 

presented as mean ± SD unless otherwise indicated. Statistical significance was taken at 

p<0.05. 

 
RESULTS:  
 
Nmp4-KO mice exhibited an enhanced PTH-induced acquisition of trabecular bone 

throughout the skeleton compared to WT mice after 7 wks but not 2 wks of treatment.  

 We previously showed that Nmp4-KO mice exhibited a significantly exaggerated 

PTH-stimulated increase in femoral trabecular bone compared to WT mice after 7 wks of 

hormone challenge (6); here we addressed whether Nmp4/CIZ represses PTH-induced 

improvement in other parts of the skeleton and if this suppression is evident from the start 

of the treatment regimen. Animals were treated with intermittent hPTH(1-34) 30µg/kg/day 

or vehicle for 7 wks from 10 wks of age. Mice were sorted in the four treatment groups 

and the cancellous architecture characterized as described in the Material and Methods. 

The Nmp4-KO L5 vertebra BV/TV exhibited a more robust increase in response to 7 wks 

of PTH than the WT BV/TV as demonstrated by a strong treatment effect and significant 

genotype x treatment interaction (Figure 2-1A). The PTH-induced change in vertebral 

morphology from a rod-like to plate-like form was more pronounced in the null mice (SMI, 

Figure 1C). Vertebral Tb Th was significantly enhanced in response to 7 wks of hormone 

in the null mice but not in the WT animals (Figure 1E), whereas PTH had an equivalent 

impact on Tb Sp (Figure 1F); a consequence of the fact that these parameters do not have 

a simple reciprocal relationship (14). PTH had an equivalent impact on Conn D (Figure 2-
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1B) in the genotypes. Finally, there was a strong genotype effect for all the measured 

vertebral parameters consistent with the more robust trabecular architecture in the null 

mice (Figures 2-1 A-F). Typical µCT scans of L5 vertebra from mice treated with 

intermittent hormone or vehicle for 7 wks are shown in Figure 2-1G. 

 To evaluate the early hormone response of the L5 vertebra we compared bones 

from WT and Nmp4-KO mice that had been treated with PTH or vehicle for 2 wks. The L5 

vertebra trabecular bone showed no improvement after 2 wks of hormone in either the WT 

or null animals (Figure 2-1A-F). However, there was a genotype effect for BV/TV, Conn 

D, SMI, and Tb Th (Figures 2-1A, B, C, and E, respectively), thus the enhanced vertebral 

trabecular architecture observed in the 17 wk-old null mice irrespective of treatment, was 

apparent in these mice at 12 wks of age.  
 Nmp4/CIZ also repressed the hormone-induced increase in tibial cancellous bone 

(Figure 2). The PTH-stimulated increase in tibial BV/TV after 7 wks of hormone was 

greater in the null than the WT mice (Figure 2-2A). PTH increased tibial Tb N in both 

genotypes but significantly more so in the null mice (Figure 2-2D) and the hormone-

stimulated change in tibial SMI was more pronounced in the null mice (Figure 2-2C). PTH 

had a comparable positive effect on Conn D (Figure 2-2B), Tb Th, (Figure 2-2E), and Tb 

Sp (Figure 2-2F) in the WT and null mice with 7 wks of treatment. Typical µCT scans of 

tibia from mice treated with hormone or vehicle for 7 wks are shown in Figure 2-2G. 

 To evaluate the early hormone response of the tibia we compared bones from WT 

and Nmp4-KO mice that had been treated with PTH or vehicle for 2 wks. Both genotypes 

showed equal hormone-induced improvement of tibial BV/TV, Conn D, SMI, and Tb Th 

during the initial 2 wks of treatment (Figures 2-2A, B, C, and E). PTH failed to improve Tb 

N and Tb Sp in both WT and null mice during this period of the regimen, however there 

was a genotype effect for these two parameters indicating enhanced aspects of tibial 

architecture in the null mice at 12 wks of age (Figure 2-2D & F).  
 Disabling Nmp4 had no impact on any aspect of the skeletal response to PTH (no 

genotype x treatment interaction) during the first 2 wks of treatment including femoral 

cancellous architecture (Table 2-2A), midshaft cortical architecture (Table 2-2B) and the 

percent change skeletal BMD and BMC (Table 2-2C). Consistent with Nmp4 repressive 

action on bone growth (Robling, Childress et al. 2009) genotype effects were observed for 

some of these parameters indicative of the modestly enhanced skeletal phenotype of the 

null animals. Interestingly, the genotype effects for WB BMC and femur and tibia BMD and 
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BMC (Table 2-2C) indicated that the rate of bone accrual was lower in the null mice over 

the four-week period of measurement irrespective of treatment. 

 

The enhanced PTH-stimulated increase in femoral trabecular bone observed in Nmp4-KO 

mice occurred after 2 wks and before 7 wks of hormone exposure.  

 Histological sections of the femoral spongiosa prepared for histomorphometry 

(Figure 2-3A) confirmed our previous analysis using µCT (Robling, Childress et al. 2009) 

that the Nmp4-KO mice added more cancellous bone in response to 7 wks of hormone 

treatment than WT mice. However, bone formation rate parameters were not different 

between the null and WT mice at the end of treatment and in fact were declining 

suggesting that PTH response was beginning to plateau in both genotypes. MS/BS, 

proportion of bone surface undergoing mineralization, was significantly decreased in both 

genotype treatment groups consistent with the declining PTH-responsiveness (Table 2-

2D). Additionally, we did not observe a significant hormone-induced increase in bone 

formation rate (BFR) in either of the genotypes at this point in treatment (Table 2-2D). 

Nevertheless, PTH equally enhanced the mineral apposition rate (MAR) in both genotypes 

at this time point (Table 2-2D).  

 Our histomorphometric analysis of mice treated with PTH or vehicle for 7 wks 

included the parameters of TRAP+ S/BS and TRAP+ N/BS, which provide an estimate of 

the size and number of osteoclast precursors and mature osteoclasts normalized to bone 

surface. Clearly the anabolic hormone treatment enhanced the absolute number of 

osteoclasts and the total osteoclast surface over bone in both genotypes as evident from 

the histological sections (Figure 2-3B); normalizing these parameters to bone surface 

reveals that although both parameters are elevated in the null mice the differences are not 

statistically significant (Table 2-2D). However there were strong treatment effects, i.e. PTH 

significantly attenuated the percent bone surface covered by TRAP+ cells and their 

number/surface (Table 2-2D). Interestingly there was a genotype x treatment interaction 

for TRAP+ S/BS indicating that hormone had a larger impact on the reduction of bone 

surface covered by osteoclasts in the null mice than in the WT animals (Table 2-2D).  

 

Nmp4-KO mice exhibited strikingly different serum osteocalcin and CTX profiles compared 

to WT animals. 

 Whole blood was collected and serum separated from the mice of the four 

treatment groups at 10 wks of age (before initiation of treatment), 13 wks of age (3 wks of 
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PTH/vehicle treatment), and 17 wks of age (7 wks of PTH/vehicle treatment). The raw 

longitudinal data and the % change data for osteocalcin, a standard marker for bone 

formation and osteoblast number, revealed that null and WT mice had equivalent serum 

levels just prior to hormone treatment but the Nmp4-KO mice exhibited a higher rate of 

increase over the hormone treatment period (genotype x time interaction, longitudinal 

data; genotype interaction, % change data) and exhibited an enhanced response to 

hormone (genotype x treatment interaction, Figures 2-4A & B). Specifically, the null mice 

showed an enhanced and sustained increase in osteocalcin after 3 wks of treatment while 

the WT animals showed a peak at 3 wks of treatment followed by a decline by 7 wks of 

treatment (Figure 2-4A & B).  
 Serum C-terminal telopeptides (CTX), a marker for bone resorption, was 

significantly elevated in the Nmp4-KO mice compared to the WT animals before and 

during the hormone treatment period. CTX was elevated with PTH treatment in both 

genotypes but this increase was not statistically significant (Figure 2-4C & D). 
 

Bone marrow from Nmp4-KO mice yields more osteoclasts than marrow from WT mice 

and the null osteoclasts exhibit an enhanced resorbing activity.  

 To confirm our serum data indicating an increased activity of osteoclasts in the 

Nmp4-KO mice we compared the number of these cells derived from the bone marrow 

cultures of the untreated null and WT animals at 7-8 wks of age. Bone marrow 

preparations from 3 null mice and 4 WT mice were cultured in 6-well plates and treated 

with M-CSF and RANKL as described in the Materials and Methods section. On average, 

the Nmp4-KO bone marrow cultures produced 2-fold more osteoclasts than the WT 

marrow (null = 1608 ± 87 OC/well; WT = 877 ± 243 OC/well; p<0.05, data presented as 

average ± SD). This experiment was performed twice yielding similar results. 

 Next we compared the dentin-resorbing activities of the Nmp4-KO and WT 

osteoclasts. Mature osteoclasts were obtained from the bone marrow of WT and null mice 

(n=2-3 mice per group) as described in the Materials and Methods section. Fully 

differentiated bone marrow-derived osteoclasts were re-plated on dentin slices for 48 hrs. 

The area resorbed was quantified and normalized for TRAP+ osteoclasts. The Nmp4-KO 

osteoclasts exhibited a 50% increase in the area resorbed on dentin compared to the WT 

osteoclasts (null = 154 ± 4.6 % area resorbed/Trap+ cells; WT = 100 ± 13.3 % area 

resorbed/Trap+ cells; p<0.05, data presented as average ± SD). 
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Nmp4-KO mice exhibit a transiently enhanced basal or PTH-stimulated expression of 

genes common to osteoblast and osteoclast development.  

 To follow up on our observation that both osteoblast and osteoclast numbers were 

enhanced in the null mice, we analyzed femoral RNA harvested during the early phase of 

PTH treatment to evaluate the expression of genes that support the development of both 

cells. Animals were treated with intermittent PTH or vehicle for 2 or 3 wks and RNA 

harvested 1 hr after the last injection. The AP-1 transcription factors c-fos and Fra-2 both 

exhibited a significantly enhanced PTH-stimulated increase in the Nmp4-KO mice 

(genotype x treatment interaction) after 2 wks of treatment but these differences were 

absent after 3 wks of PTH (Table 2-3A). Additionally, the transcription factor Nfatc1 was 

significantly elevated in the femur of null mice (genotype effect) at the 2 wk time point but 

was equivalent to the WT expression at 3 wks of treatment (Table 2-3A). We also 

examined the expression of several genes that mediate osteoblast-osteoclast signaling. 

Interestingly, the Nmp4-KO mice showed a significant increase in the expression of EphB4 

the receptor for EphrinB2, its transmembrane ligand, which also showed an elevation in 

expression that approached significance but again these differences between the 

genotypes disappeared at the 3 wk time point (Table 2-3A). Both EphB4 and EphrinB2 

were responsive to PTH in the null and WT mice (Table 2-3A). Interestingly, the Rankl/Opg 

ratio was diminished in the null mice compared to WT animals at 2 and 3 wks of treatment, 

which was significant at the latter time point (Figure 2-3A).  

 Further comparative analysis of femoral gene expression profiles between WT and 

null mice at the 2 wk time period failed to show any significant differences between the 

two genotypes with one exception (Table 2-3B). The expression of the pro-survival gene 

Bcl2 was not different in WT and null mice and did not respond to hormone in either 

genotype at this point in the treatment regimen, however, the expression of Bax, the pro-

apoptotic gene was significantly attenuated in the Nmp4-KO mice (Table 2-3B). M-csf, its 

receptor c-fms, and the osteoclast recruitment cytokine Mcp-1 showed no difference in 

their expression or PTH-responsiveness between WT and Nmp4-KO animals (Table 2-

3B). Hormone induced over a 25-fold increase in Nurr1 expression in both WT and null 

mice (Table 2-3B). The expressions of Mkp-1, JunD, Smad3, and Lef1 were modestly but 

equally elevated with PTH in both genotypes (Table 2-3B). Conversely, the mRNA 

expression of the receptor for advanced glycation end products (Rage) was attenuated by 

hormone treatment in both WT and Nmp4-KO mice (Table 2-3B).  
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 Next we characterized the expression of genes that support bone formation by 

analyzing femoral RNA obtained 24 hr after the last injection of intermittent PTH or vehicle 

after 2 wks of treatment. We observed a treatment effect, but no genotype effect or 

genotype x treatment interaction for Runx2, Osterix, Col1a1, Alpl and Mmp13, Sost, 

Bmp2, and Pthr1 mRNA profiles (Table 2-3B). Intermittent hormone treatment did not 

impact the expression of PTH-related peptide (Pthrp) in either genotype (Table 2-3B).  

 Our preliminary evaluation of gene expression in the tibia showed that the RNA 

profiles at 3 wks of treatment were generally similar to those observed for the femur at the 

same time point with the exception of Nfatc1, which was still significantly elevated in the 

tibia of the null mice (Table 2-3C). Additionally, the decrease in the Rankl/Opg ratio did 

not reach significance in the tibia as demonstrated for the femur (Table 2-3C). 

 

DISCUSSION:  
 
 The present data demonstrate that Nmp4/CIZ significantly blunts PTH-stimulated 

improvement in cancellous bone throughout the skeleton, that this repression of bone gain 

is apparent between 2 wks and 7 wks of hormone treatment, and that Nmp4/CIZ 

suppresses osteoclast as well as osteoblast number and activity likely by regulating key 

transcription factors critical to the development of both cells. The global impact of Nmp4 

on the trabecular skeleton is in stark contrast to recent studies showing the site-specific 

effects of Rage (Philip, Childress et al. 2010) and connexin 43 (Chung, Castro et al. 2006) 

on PTH-induced cancellous bone improvement. 

 Nmp4/CIZ repression of the PTH-mediated increase in trabecular bone was not 

observed during the initial 2 wk treatment period; WT and KO mice showed equivalent 

hormone-stimulated increases in BMD, BMC, trabecular improvement, and enhanced 

expression of numerous genes that support bone formation. At 7 wks of hormone 

challenge the striking expansion of the null trabecular compartment had been added and 

bone histomorphometry indicated that both the KO and WT mice exhibited a diminished 

response to PTH consistent with previous observations on C57BL/6 mice (Iida-Klein, Zhou 

et al. 2002). However, starting at 3 wks of hormone challenge the KO mice exhibited an 

enhanced and sustained PTH-induced increase in serum osteocalcin. The significance of 

the 2-3 wk lag period required for distinguishing the difference in PTH-stimulated bone 

formation between the Nmp4-KO and WT mice remains to be elucidated. Does this delay 

represent the time necessary to dramatically expand the null bone-forming osteoblast 
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population?  Further histomorphometric analysis at various time points throughout the 

treatment regimen is required to address this question.  

 Of particular significance was our discovery of an osteoclast phenotype in the 

Nmp4-KO mouse. The null mice had significantly higher serum CTX; more osteoclasts 

were recovered from Nmp4-KO marrow cultures than from WT cultures, and the null 

osteoclasts were more active as determined by in vitro resorption of dentin. Interestingly, 

PTH had a more significant impact on decreasing the osteoclast-covered bone surface in 

null mice without significantly lowering serum CTX, perhaps in part a consequence of the 

enhanced activity of the null osteoclasts. Despite the multiple lines of evidence suggesting 

higher bone resorption in the untreated nulls these mice are not osteopenic and in fact 

have a modestly enhanced skeleton, although the rate of bone accrual from 8-12 wks is 

marginally slower in the null animals. Femoral bone marrow-derived osteoblasts from 

Nmp4/CIZ-deficient mice exhibited an enhanced alkaline phosphatase expression and 

formed more mineralized nodules than wild-type osteoblasts (Morinobu, Nakamoto et al. 

2005), suggesting in vivo that the null osteoblast outpaces the null osteoclast. Further 

study is required to determine if there is an increased rate of remodeling (activation 

frequency) with a positive bone balance in the untreated mice and if so, how this is 

achieved.  

 Although the in vivo mRNA expression profiles represent a composite of multiple 

marrow and bone cell types, the transiently enhanced expression of c-fos, Fra-2, and 

Nfatc1 in the null mice may be part of the molecular mechanism contributing to the 

apparent increased number of osteoblasts and osteoclasts. Fra-2 plays a significant role 

in chondrocyte differentiation and matrix production in embryonic and newborn mice 

(Karreth, Hoebertz et al. 2004) and in regulating the size of osteoclasts (Bozec, Bakiri et 

al. 2008).  

 The contribution of c-Fos to the PTH anabolic response involves both osteoblasts 

and osteoclasts; in the former it is part of the immediate-early gene response (Liang, Hock 

et al. 1999) and as such is critical for subsequent induction of select target genes. As a 

key regulator of bone cell growth and differentiation, c-Fos often interacts with RUNX2 

(Qin, Raggatt et al. 2004). PTH stimulation of Mmp-13 transcription in osteoblast-like cells 

requires the cooperative interaction between the c-Fos•c-Jun AP-1 complex and RUNX2 

(D'Alonzo, Selvamurugan et al. 2002), and Nmp4/CIZ dampens this induction (Shah, 

Alvarez et al. 2004). Consequently, the heightened PTH-stimulated increase in osteoblast 

c-Fos activity in the Nmp4-KO mice may boost hormone transcriptional induction of some 
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genes supporting the anabolic response. The impact of Nmp4/CIZ on c-fos and Fra-2 was 

specific within the context of the PTH-induce immediate-early response because we did 

not observe differences in other aspects of this gene program including Nurr1, a 

transcription factor participating in PTH-mediated osteoblast gene induction (Nervina, 

Magyar et al. 2006), Mkp-1, a phosphatase implicated in PTH-mediated osteoblast cell 

cycle arrest (Qin, Li et al. 2005), JunD, involved in osteoblast differentiation (Wagner 

2010), or Smad3 and Lef1, trans-acting proteins involved in coupling the PTH and Wnt 

signaling pathways in osteoblasts (Tobimatsu, Kaji et al. 2006).  

 In addition to its role as a PTH-responsive osteoblast transcription factor c-Fos is 

critical to osteoclastogenesis and plays a role in supporting the precursor cell’s capacity 

to undergo differentiation(Boyle, Simonet et al. 2003). It fulfills this role in part by mediating 

the induction of Nfatc1, another key transcription factor that supports osteoclastogenesis 

and osteoblast development (Takayanagi 2007); the elevation of c-fos mRNA expression 

in the nulls may ultimately contribute to the enhanced Nfatc1 expression in these mice. 

Additionally, c-Fos has multiple and complex roles in regulating osteoblast-derived signals 

that regulate osteoclastogenesis and mature osteoclast activity including the RANKL/OPG 

signaling axis by governing the transcriptional activity of the Opg gene in the osteoblast 

and by activating RANKL target genes in osteoclasts; c-Fos also activates the IFN-

gamma-driven RANKL negative feedback pathway in the osteoclast (Fu, Jilka et al. 2002, 

Takayanagi, Kim et al. 2002). The Rankl/Opg ratio was attenuated in the null mice, which 

achieved significance in the femur by 3 wks of treatment; perhaps this ultimately 

contributed some protective effect from the enhanced osteoclast activity. Nmp4/CIZ had 

negligible impact on the mRNA expression of other osteoclastogenic cytokines including 

Mcp-1, a cytokine involved in osteoclast recruitment (Li, Qin et al. 2007), M-csf and its 

receptor c-fms that activate the proliferation and survival of osteoclast precursors (Negishi-

Koga and Takayanagi 2009). The significantly attenuated expression of the pro-apoptotic 

gene, Bax, in the null mice may contribute to a longer-lived osteoblast, critical to the PTH-

induced anabolic mechanism (Bellido, Ali et al. 2003), but further studies are required to 

confirm this possibility.  

 Recent studies with c-fos-null animals indicate that interaction between immature 

osteoclasts and pre-osteoblasts may be necessary for an optimal response to intermittent 

PTH; specifically the osteoclast precursors support the differentiation of pre-osteoblasts 

(Koh, Demiralp et al. 2005, Zhao, Irie et al. 2006, Luiz de Freitas, Li et al. 2009). In one 

potential scenario this coupling is mediated by the bidirectional interaction between an 
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EphrinB2 ligand on the pre-osteoclast and the EphB4 receptor on the pre-osteoblast 

(Zhao, Irie et al. 2006, Luiz de Freitas, Li et al. 2009). Forward signaling from the 

osteoclast precursor to the pre-osteoblast enhances differentiation of the latter whereas 

reverse signaling suppresses osteoclast differentiation (Zhao, Irie et al. 2006). Therefore, 

PTH appears to activate both forward and reverse EphrinB-EphB4 signaling resulting in 

the enhancement of bone formation and the restraining of resorption (Luiz de Freitas, Li 

et al. 2009). This is consistent with the observed increased expression of EphB4 in the 

Nmp4-KO mice and the marginally enhanced ephrinB2 expression in these animals. 

Future osteoblast-osteoclast co-culture studies will be needed to investigate the potential 

impact of Nmp4/CIZ on the reciprocal regulation of these cells. 

 We propose that Nmp4/CIZ governs both the osteoblast and osteoclast cellular 

arms of the PTH-induced anabolic response by controlling the size, activity, and/or PTH-

responsiveness of these cell populations in part via the modest suppression of several key 

transcription factors and receptors critical to the developmental and/or response pathways 

of both cells. The complex sequence of molecular and cellular events underlying 

Nmp4/CIZ regulation of bone remodeling remains to be elucidated. Nmp4/CIZ has been 

previously identified as an attractive potential therapeutic target for treating osteoporosis 

(Krane 2005), and the present finding that this protein not only regulates the osteoblast 

but also the osteoclast underscores this assertion. 
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TABLE 2-1: Real-time PCR primers from Assays-on-Demand (Applied Biosystems, 
Foster City CA).  
 
GENE (mRNA)        ABI Assay ID 
Alpl    (Alkaline phosphatase)    Mm01187117_m1 
Bcl2    (B-cell lymphoma 2)     Mm00477631_m1 
Bmp2    (Bone morphogenic protein 2)   Mm01340178_m1 
c-fms    (Colony stimulating factor 1 receptor [CSF1R]) Mm01266652_m1 
c-fos   (FBJ murine osteosarcoma oncogene)  Mm00487425_m1 
Col1a1     (Type I; pro-alpha1(I) chain)               Mm00801666_g1 
EphB4     (Ephrin type-B receptor 4)    Mm01201157_m1 
EphrinB2 (EPH-related receptor tyrosine kinase ligand 5) Mm00438670_m1 
Fra-2   (fos-related antigen 2)     Mm00484442_m1 
Igf-1    (Insulin-like growth factor 1)    Mm0043559_m1 
JunD     (Jun proto-oncogene related gene d)   Mm00495088_s1 
Lef1  (Lymphoid enhancer-binding factor-1)  Mm00550265_m1 
M-csf  (Macrophage colony stimulating factor 1)  Mm00432686_m1 
Mcp-1  (Monocyte chemotactic protein-1)   Mm00441242_m1 
Mkp-1  (MAPK phosphatase 1)    Mm00457274_g1 
Mmp-13 (Matrix metalloproteinase 13)    Mm00439491_m1 
Nfatc1  (nuclear factor of activated T-cells, cytoplasmic 1) Mm012479445_m1 
Nurr-1  (Nuclear receptor-related factor 1)   Mm00443056_m1 
Opg  (Osteoprotegerin)     Mm00435452_m1 
Osterix  (Sp7 transcription factor)    Mm00504574_m1 
Pthr1  (Parathryroid hormone receptor 1)   Mm00441046_m1 
Pthrp  (Parathryoid hormone-related peptide)  Mm00436057_m1 
Rage    (receptor for advanced glycation endproducts) Mm00545815_m1 
Rankl  (Receptor activator for nuclear factor κ B ligand) Mm00441908_m1 
Runx2  (Runt-related transcription factor 2)   Mm00501578_m1 
Smad3  (Sma- and Mad-related protein)   Mm01170760_m1 
Sost  (Sclerostin)      Mm00470479_m1 
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TABLE 2-2A: PTH-induced improvements in femoral trabecular architecture were 
equivalent in WT and Nmp4-KO mice, after the first 2 wks of treatment. The WT and 
Nmp4-KO mice were treated with intermittent PTH or vehcile (number of 
mice/experimental group=6-7) for 2 wks. A two-factor ANOVA was used to evaluate the 
individual parameters. Units: Conn. D in mm-3, Tb N in mm-1, Tb Th and Tb Sp in mm. 
(Geno=Genotype, Treat=Treatment, G x T= Genotype x Treatment interaction)  
 
                WT                           KO         2-WAY ANOVA p-value                     

     VEH  PTH                 VEH              PTH         Geno         Treat    G x T 
BV/TV  0.016±0.001  0.042±0.012  0.019±0.007  0.047±0.017  0.3349   <0.0001   0.8654 
Conn D   0.86±0.81   22.11±7.10 1.66±1.09    14.14±11.74  0.1904   <0.0001 0.1131 
SMI    3.39±0.21    2.72±0.39 3.51±0.25     3.24±0.37     0.0170     0.0009 0.1197 
Tb N    1.61±0.19 1.78±0.19 1.98±0.35     2.44±0.39     0.0002     0.0131 0.2100 
Tb Th 0.043±0.002  0.056±0.004   0.042±0.003   0.052±0.005  0.1232   <0.0001 0.4117 
Tb Sp 0.629±0.066  0.575±0.058   0.523±0.103   0.422±0.080  0.3048     0.0004  0.4783 
 
 
 
 
TABLE 2-2B: Cortical architecture at the midshaft femur from WT and Nmp4-KO mice 
treated with vehicle or intermittent PTH for 2 wks (number of mice/experimental group=7-
10). The parameters include cortical area (CA, mm2), marrow area (MA, mm2), and total 
area (TA, mm2) and the maximum, minimum, and polar moments of inertia (IMAX, IMIN, and 
J, respectively [mm4]). A two-factor ANOVA was used to evaluate the individual 
parameters.  
 

                WT                     KO            2-WAY ANOVA p-values        
   VEH              PTH            VEH     PTH         Genotype   Treatment G x T  

MA 1.40±0.08    1.34±0.07   1.39±0.09 1.39±0.13   0.5363       0.4618 0.4141 
CA 0.98±0.03    1.04±0.06   1.01±0.07 1.08±0.07   0.1073       0.0067           0.6478 
TA 2.38±0.09     2.38±0.11  2.40±0.13 2.47±0.17   0.2392       0.4539 0.4223 
IMAX 0.41±0.02     0.41±0.05   0.40±0.04 0.43±0.06    0.9661      0.2440 0.2649 
IMIN 0.21±0.02     0.23±0.02   0.23±0.02 0.26±0.03    0.0084      0.0382 0.6726 
J 0.63±0.04    0.64±0.07    0.63±0.07 0.69±0.09    0.3048      0.1254 0.3670 
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TABLE 2-2C: Values for percent change (%∆) BMD and BMC between 8 wks and 12 wks 
of age. Mice were challenged with vehicle or intermittent PTH for 2 wks (10-12 wks of age; 
number of mice/experimental group=6-7). The listed p-values were determined with a two-
factor ANOVA. Abbreviations: WB (whole body), FM (femur), Sp (spine). 
 

                          WT                      KO                   2-WAY ANOVA p-values        
               VEH          PTH           VEH              PTH         Gene       Treat  G x T  

%∆WB BMD   5.27±3.0    10.28±2.83   6.18±3.6      9.04±2.81    0.8895     0.0032         0.3791 
%∆WB BMC 15.94±7.4    22.73±8.79   6.73±6.14  16.34±8.56  0.015       0.0116        0.6410 
%∆Fm BMD  12.86±4.84  18.49±1.69   8.93±5.0    13.84±3.74    0.0113     0.0026        0.8220 
%∆Fm BMC  29.71±11.7  36.0±11.6   11.74±8.9   23.59±8.7   0.0009    0.0332      0.4950 
%∆Tb BMD    7.25±3.5    14.43±4.90  5.98±4.73   8.64±4.86   0.0545     0.0096     0.2086 
%∆Tb BMC   9.70±7.20    24.84±6.07   6.67±4.53  11.61±8.68 0.0045   0.0007      0.0608 
%∆Sp BMD   6.22±7.26   12.93±6.41   9.57±11.24 10.99±9.44 0.8366   0.2421     0.4423 
%∆SP BMD  7.60±8.61  15.11±11.39   6.59±15.10 10.96±8.96  0.5635   0.1903    0.7246 
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TABLE 2-2D: Bone histomorphometry of the distal femur from WT and Nmp4-KO mice 
treated with intermittent PTH or vehicle for 7 wks (number of mice/experimental group=5-
6). The parameters include mineral apposition rate (MAR), mineralizing surface/bone 
surface (MS/BS), bone formation rate (BFR), the TRAP-stained surface to bone surface 
(TRAP+ S/BS), and the number of TRAP-stained cells on the bone surface (TRAP+ N/BS). 
A two-factor ANOVA was used to evaluate the impact of genotype and treatment on the 
individual parameter. A Tukey's HSD post hoc test was used to determine differences 
between treatment groups if a significant genotype x treatment interaction was indicated 
(TRAP+ S/BS). Groups not connected by the same letter are significantly different. 
 

                          WT                        KO                   2-WAY ANOVA p-values        
               VEH               PTH           VEH           PTH         Gene       Treat  G x T  

MAR (µm/day)   2.80±0.20   3.30±0.21   2.88±0.22   3.19±0.16    0.8288     <0.0001   0.2628 
MS/BS (%)   0.53±0.08  0.49±0.05   0.52±0.03    0.50±0.04    0.9331       0.0507   0.3275 
BFR (µm2/µm/day)1.49±0.08    1.61±0.     1.49±0.16    1.59±0.15   0.9135    0.0905   0.9175 
Trap+ S/BS (%) 0.37±0.03   0.36±0.09   0.48±0.07   0.33±0.12  0.2420    0.0383   0.0549 

Tukey's HSD 
KO VEH   A 
WT VEH   A B 
WT PTH   A B 
KO PTH    B 

Trap+ N/BS (mm-1) 0.45±0.06  0.41±0.11  0.60±0.10   0.41±0.10   0.0863    0.0110     0.0918 
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TABLE 2-3A: Comparative femoral RNA expression of WT and Nmp4-KO mice treated 
with PTH or vehicle for 2 wks (number of mice/experimental group=6-9) or 3 wks (number 
of mice/experimental group=6) and harvested 1 hr after the last injection. The listed p-
values were determined with a two-factor ANOVA. A Tukey's HSD post hoc test was used 
to determine differences between treatment groups if a significant genotype x treatment 
interaction was indicated. Groups not connected by the same letter are significantly 
different. 
 

                          WT                        KO                   2-WAY ANOVA p-values        
                           VEH            PTH           VEH           PTH         Gene       Treat  G x T 
c-fos (2wks)   0.73±0.25  7.94±1.00  1.87±0.71  12.04±2.31    <0.001   <0.0001      0.0121 

Tukey's HSD 
KO VEH    A 
WT VEH    B 
WT PTH    C 
KO PTH     C 

 c-fos (3wks) 1.04±0.31   8.73±2.07  1.05±0.31   8.33±1.85  0.7380     <0.0001      0.7235 
Fra-2 (2wks) 0.72±0.15   4.25±0.50 0.96±0.13   5.56±0.97   0.0028    <0.0001       0.0301 

Tukey's HSD 
KO VEH    A 
WT VEH    B 
WT PTH    C 
KO PTH     C 

Fra-2 (3wks)   1.01±0.12   5.32±1.23   1.03±0.18   4.72±0.98    0.3905      <0.0001      0.3441 
Nfatc1 (2wks) 1.03±0.43 1.46±0.31   1.48±0.43   1.96±0.27    0.0051       0.0074      0.8659 
Nfatc1 (3wks) 1.00±0.11  1.76±0.48  1.02±0.27  1.41±0.26    0.2008       0.0002      0.1699 
EphB4 (2wks) 0.80±0.16  1.27±0.12  0.98±0.22  1.41±0.21    0.0466      <0.0001     0.7544 
EphB4 (3wks) 1.01±0.16  1.78±0.39  0.95±0.33  1.74±0.40    0.7131     <0.0001      0.9257 
EphrinB2 (2)   0.75±0.18  5.16±0.68  1.19±0.27  5.87±1.23    0.0658     <0.0001      0.6555 
EphrinB2 (3)   1.02±0.24   6.85±2.82   1.01±0.32  6.24±1.05     0.6209    <0.0001      0.6355 
Opg (2wks)    0.85±0.14   0.82±0.14  1.23±0.41  0.97±0.21    0.0150       0.1625      0.2862 
Opg (3wks)    1.03±0.29  1.19±0.33   1.13±0.26  1.34±0.26    0.2943      0.1372      0.8389 
Rankl (2wks) 0.96±0.11  21.34±6.20  1.19±0.59  16.75±3.43   0.1492      <0.0001      0.1124 
Rankl (3wks) 1.04±0.34  13.72±4.58  0.82±0.26  11.04±1.79  0.1663     <0.0001      0.2367 
Rankl/Opg (2) 1.14±0.18 27.39±12.45 0.94±0.23  17.84±5.60  0.0954     <0.0001      0.1092 
Rankl/Opg (3) 1.04±0.18 11.53±2.04   0.73±0.22  8.60±2.38   0.0207     <0.0001      0.0558 
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TABLE 2-3B: Comparative femoral RNA expression of WT and Nmp4-KO mice treated 
with PTH or vehicle for 2 wks (number of mice/experimental group=6-9) and harvested 1 
hr or 24 hr after the last injection. The listed p-values were determined with a two-factor 
ANOVA. A Tukey's HSD post hoc test was used to determine differences between 
treatment groups if a significant genotype x treatment interaction was indicated. Groups 
not connected by the same letter are significantly different. 
 

                          WT                     KO                     2-WAY ANOVA p-values        
                         VEH          PTH           VEH           PTH         Gene       Treat  G x T 
1hr post-injection 
M-csf         1.13±0.72   2.14±0.70     1.19±0.09   2.87±0.53   0.1056      <0.0001 0.1665 
Mcp-1        0.79±0.20   2.60±0.90    0.99±0.24    2.61±0.70  0.6657      <0.0001 0.7156 
Bcl2           0.96±0.12   1.02±0.14    1.06±0.20    1.03±0.08   0.2997        0.7913     0.4563 
Bax            1.02±0.25   0.91±0.14    0.69±0.12    0.71±0.04   0.0005       0.4604     0.3321 
Nurr1        0.69±0.22  56.37±6.56   2.06±1.49   58.62±14.05 0.5750     <0.0001 0.8914 
Mkp-1       0.83±0.09    2.31±0.90   1.13±0.48     1.95±0.32   0.8708     <0.0001 0.1022 
JunD         0.80±0.16   0.94±0.16    0.78±0.19    1.10±0.16   0.3366        0.0036      0.2206 
Smad3      0.78±0.12    1.97±0.34    1.05±0.26   2.14±0.63   0.1736      <0.0001 0.7403 
Lef1          0.99±0.19    1.52±0.30    1.08±0.21   1.36±0.27    0.7196        0.0006     0.2293 
Rage         0.87±0.16   0.74±0.13    1.07±0.35   0.72±0.27    0.3655        0.0261 0.2829 
24hr post-injection 
Runx2       0.86±0.21   1.45±0.34     0.59±0.23   1.35±0.84   0.2960        0.0007 0.6482 
Osterix      0.63±0.20   1.61±0.48     0.49±0.37   1.67±0.96   0.8385      <0.0001 0.6460 
Col1a1      0.92±0.14   2.35±0.65     0.75±0.49    2.70±2.45  0.8424        0.0017 0.5964 
Alpl           0.96±0.18    2.95±0.69     0.81±0.47   2.42±1.63   0.3286      <0.0001 0.5814 
Mmp13     0.73±0.21    1.05±0.28     0.51±0.22   1.23±0.61   0.3987        0.0007 0.3997 
Sost          1.17±0.22    1.79±0.31     1.15±0.38   1.59±0.33   0.3328      <0.0001 0.4419 
Bmp2       1.01±0.14    1.41±0.24     0.91±0.26    1.15±0.39   0.0898        0.0036 0.4394 
Pthr1        0.86±0.23    1.59±0.40     0.68±0.28    1.38±0.68   0.2223      <0.0001 0.9071 
Pthrp        0.75±0.18    1.10±0.44      0.89±0.44   1.00±0.44   0.9024        0.1154 0.4214 
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TABLE 2-3C: Comparative tibial RNA expression of WT and Nmp4-KO mice treated with 
PTH or vehicle for 3 wks (number of mice/experimental group=6) and harvested 1 hr after 
the last injection. The listed p-values were determined with a two-factor ANOVA. 
 

                        WT                    KO                         2-WAY ANOVA p-values        
                       VEH         PTH           VEH           PTH           Gene       Treat  G x T 
c-fos           1.05±0.39    9.05±3.57    1.66±1.19   10.65±3.05  0.2775    <0.0001 0.6243 
Fra-2          1.02±0.23    4.62±1.63    1.28±0.31    7.21±3.08   0.0604    <0.0001 0.1178 
Nfatc1        1.02±0.20    1.42±0.60    1.36±0.45    2.00±0.53   0.0262      0.0136 0.5470 
EphB4        1.02±0.22    1.80±0.75    1.25±0.34   2.07±0.34     0.2372      0.0010     0.9216 
EphrinB2    1.08±0.45    5.13±3.31    1.22±0.31   7.40±2.19     0.1551    <0.0001 0.2065 
Opg            1.03±0.25    1.4±0.63      1.07±0.23   1.57±0.40     0.5314      0.0181 0.6969 
Rankl          1.01±0.18  10.51±3.46     0.79±0.18   11.19±3.61     0.8226     <0.0001    0.6618 
Rankl/Opg 1.07±0.49     7.98±1.64   0.76±0.16    7.07±0.75    0.1248     <0.0001    0.4467 
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FIGURE 2-1 (A-C) 
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Figure 2-1 (D-F) 

38 
 



 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2-1: Disabling Nmp4 enhanced PTH responsiveness of vertebral cancellous bone. 

Micro-CT-acquired vertebral (L5) trabecular architecture including (A) BV/TV, %; (B) Conn 

D, mm-3; (C) SMI, (D) Tb N mm-1, (E) Tb Th mm, (F) Tb Sp mm was compared between 

WT and Nmp4-KO mice that had been treated with intermittent hPTH(1-34) 30µg/kg/day 

or vehicle for 7 wks (number of mice/experimental group=11-12). To evaluate the early 

hormone response we compared bones from WT and Nmp4-KO mice that had been 

treated with intermittent PTH or vehicle for 2 wks using the same experimental design 

(number of mice/experimental group=5-7). No improvement was observed after 2 wks of 

intermittent PTH treatment in either the WT or null animals (A-F). There was a genotype 

effect for BV/TV, Conn D, SMI, and Tb Th (A, B, C, and E, respectively) consistent with 

the enhanced trabecular architecture of the null mice, regardless of treatment. (G) µCT 

images of vertebral trabecular bone from WT and Nmp4-KO mice that had been treated 

with intermittent PTH or vehicle for 7 wks, Scale bar=1mm. Data is presented as average 

± SD. The listed p-values were determined with a two-factor ANOVA. A Tukey's HSD post 

hoc test was used to determine differences between the treatment groups if a significant 

genotype x treatment interaction was indicated. 

  

Figure 2-1 (G) 
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  Figure 2-2 A-C 
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  Figure 2-2 D-F 
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Figure 2-2: Nmp4-KO mice exhibited an enhanced PTH-induced increase in tibial 

trabecular bone. Micro-CT-acquired tibial trabecular architecture including (A) BV/TV, %; 

(B) Conn D, mm-3; (C) SMI, (D) Tb N mm-1, (E) Tb Th mm, (F) Tb Sp mm was compared 

between WT and Nmp4-KO mice that had been treated with intermittent PTH or vehicle 

for 7 wks (number of mice/experimental group=8). To evaluate the early hormone 

response we compared bones from WT and Nmp4-KO mice that had been treated with 

intermittent PTH or vehicle for 2 wks (number of mice/experimental group=7-9). Both 

genotypes showed equal hormone-induced improvement of tibial (A) BV/TV, (B) Conn D, 

(C) SMI, and (E) Tb Th during the initial 2 wks of treatment. There was a genotype effect 

for (D) Tb N and (F) Tb Sp indicating enhanced aspects of tibial architecture in the null 

mice at 12 wks of age irrespective of treatment. (G) µCT images of tibial trabecular bone 

from WT and Nmp4-KO mice that had been treated with intermittent PTH or vehicle for 7 

wks, Scale bar=1mm. The listed p-values were determined with a two-factor ANOVA. A 

Tukey's HSD post hoc test was used to determine differences between the treatment 

groups if a significant genotype x treatment interaction was indicated. 

Figure 2-2G 
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Figure 2-3: [A] PTH-induced improvements in femoral trabecular architecture were 

enhanced in Nmp4-KO mice, after 7 wks of treatment. The femoral tissue sections were 

obtained from WT and Nmp4-KO mice treated with intermittent PTH or vehicle for 7 wks 

(number of mice/experimental group=5-6). Additionally, animals were administered by 

intraperitoneal injection calcein green (20mg/kg) and alizarin red (25mg/kg) 6 days and 3 

days before euthanasia, respectively. [B] Sections were stained for tartarate resistant acid-

phosphatase (TRAP) to evaluate osteoclast number and surface. Histological sections 

were prepared as described in the Materials and Methods. Scale bar=200 µm 

A 

B 
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Figure 2-4: PTH-treated Nmp4-KO mice exhibited strikingly distinct serum chemistries 

from the WT animals. Whole blood was collected and serum separated from WT and 

Nmp4-KO mice treated with intermittent PTH or vehicle (number of mice/experimental 

group=6-7) at baseline just prior initiation of treatment, at 3 wks of treatment, and at 7 wks 

of treatment. (A) The raw longitudinal serum osteocalcin concentrations showed no 

genotype effect, but revealed a significant treatment effect, a genotype x treatment 

interaction and a genotype x time interaction indicating that the WT and null mice had 

equivalent baseline values but that the Nmp4-KO had an enhanced response to hormone 

and a higher rate of increase over the experimental time period. (B) The % change data 

confirmed the raw longitudinal data revealing a significant genotype effect (higher rate of 

osteocalcin increase in the nulls), a treatment effect, and a genotype x treatment 

interaction over the experimental period. (C) The raw longitudinal serum CTX 

concentrations showed a genotype effect, but no significant treatment effect, no genotype 

x treatment interaction and no genotype x time interaction. (D) The % change CTX data 

showed no significant responsiveness to hormone treatment in WT and null mice. The 

listed p-values were determined with a repeated-measures MANOVA (longitudinal data) 

or a two-factor ANOVA (% change data). 
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DISABLING NMP4 INCREASES MESENCHYMAL STEM CELL AND 
OSTEOPROGENITOR FREQUENCY IN MICE RENDERING ANIMALS HYPER-

RESPONSIVE TO ANABOLIC BONE AGENTS 
 
 

*He Y1, *Childress P2, Hood M Jr2., Alvarez, M2, Kacena MA3, Hanlon M2, McKee B2, 

Bidwell JP2, Yang FC1 

 

1. Department of Pediatrics, Indiana University School of Medicine (IUSM), Indianapolis, 

IN 46202. 

2. Department of Anatomy and Cell Biology, (IUSM). 

3. Department of Orthopaedic Surgery, IUSM. 

 

*These authors contributed equally to this work.  

 
 

Material in this Chapter was published in: 
Stem Cells and Development February 1, 2013 vol.22, issue 3, pages 492-500.  

45 
 



ABSTRACT:  
Parathyroid hormone (PTH) anabolic osteoporosis therapy is intrinsically limited 

by unknown mechanisms. We previously showed that disabling the transcription factor 

Nmp4/CIZ in mice expanded this anabolic window while modestly elevating bone 

resorption. This enhanced bone formation requires a lag period to materialize. Wild type 

(WT) and Nmp4-knockout (KO) mice exhibited equivalent PTH-induced increases in bone 

at 2wks of treatment but by 7wks the null mice showed more new bone. At 3wks treatment 

serum osteocalcin, a bone formation marker, peaked in WT mice but continued to increase 

in null mice. To determine if 3wks when the addition of new bone diverges is and to 

investigate its cellular basis, we treated 10-wk-old null and WT animals with human PTH 

(1-34) [30 µg/kg/day] or vehicle before analyzing femoral trabecular architecture and bone 

marrow (BM) and peripheral blood (PBL) phenotypic cell profiles. PTH-treated Nmp4-KO 

mice gained over 2-fold more femoral trabecular bone than WT by 3wks. There was no 

difference between genotypes in BM cellularity or profiles of several blood elements. 

However, the KO mice exhibited a significant elevation in CFU-F cells, CFU-FALK PHOS+ 

cells (osteoprogenitors), and a higher percentage of CFU-FALK PHOS+ cells/CFU-F cells 

consistent with an increase in CD45-/CD146+/CD105+/nestin+ mesenchymal stem cell 

frequency. Null BM exhibited a 2-fold enhancement in CD8+ T cells known to support 

osteoprogenitor differentiation and a 1.6-fold increase in CFU-GM colonies (osteoclast 

progenitors). We propose that Nmp4/CIZ limits the PTH anabolic window by restricting the 

number of BM stem, progenitor, and blood cells that support anabolic bone remodeling. 
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INTRODUCTION: 
 Anabolic therapy is the preferred pharmacological intervention for osteoporosis 

(Trivedi, Goswami et al. 2010) and PTH is the only FDA-approved drug that adds bone to 

the osteoporotic skeleton; however, its bone-forming activity, or “anabolic window” is 

intrinsically limited to about two years, thereafter falling to baseline (Cusano and Bilezikian 

, Bilezikian 2008, Cusano and Bilezikian 2010). Therefore, PTH is not approved as a long-

term osteoporosis therapy and its use is indicated only for those patients who are at a high 

risk of fractures or who are unresponsive to other available therapies (Silverman and 

Christiansen 2012).  

 While the mechanisms regulating the extent of the PTH anabolic window are 

unknown, we demonstrated that disabling the transcription factor nuclear matrix protein 

4/cas interacting zinc finger protein (Nmp4/CIZ) in mice significantly extends and 

augments PTH bone-forming capacity; treatment of WT and Nmp4-KO mice with 

intermittent PTH for 7wks resulted in significant increases in serum osteocalcin, a marker 

for bone formation, but these serum profiles as a function of time were strikingly different 

(Robling, Childress et al. 2009, Childress, Philip et al. 2011). In the WT mice, serum 

osteocalcin peaked at 3wks of treatment and returned to baseline by 7wks of hormone 

administration (Childress, Philip et al. 2011). However, in the null mice, this PTH-induced 

surge in serum osteocalcin exceeded that observed in the WT mice and was still climbing 

at the end of the 7wk treatment regimen (Childress, Philip et al. 2011). Consistent with this 

sustained serum osteocalcin surge, at the end of the 7wk treatment period the null mice 

had gained significantly more femoral, vertebral, and tibial trabecular bone than WT mice 

while maintaining robust increases in cortical bone (Robling, Childress et al. 2009, 

Childress, Philip et al. 2011). These enhanced increases in cancellous bone in the Nmp4-

KO skeleton all showed significant treatment x genotype interactions, thus demonstrating 

that Nmp4/CIZ suppresses PTH-stimulated anabolism (Robling, Childress et al. 2009, 

Childress, Philip et al. 2011).  

 When in the PTH treatment regimen does bone formation in the Nmp4-KO mice 

eclipse WT growth and what sustains this extended and enhanced anabolic activity? The 

WT and Nmp4-KO mice exhibited equivalent PTH-induced increases in trabecular bone 

during the first 2wks of treatment, however, at this treatment point femoral mRNA profiles 

revealed a transient enhanced increase in PTH-stimulated c-fos and Fra-2 expression in 

the null mice as well as an elevated expression of Nfatc1 in these animals (Childress, 

Philip et al. 2011). Although these transcription factors mediate numerous functions within 
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the context of bone, this is consistent with an enhanced PTH-induced increase in 

mesenchymal stem cell self-renewal and/or recruitment of null osteoblasts and osteoclasts 

into the anabolic window (Qin, Tamasi et al. 2005, Satija, Gurudutta et al. 2007, Bozec, 

Bakiri et al. 2008). Interestingly, the untreated Nmp4-KO mice had a modest but 

significantly elevated bone mineral density and bone mineral content compared to WT 

animals (Robling, Childress et al. 2009) despite modestly elevated levels of serum C-

terminal telopeptides of type I collagen (CTX), a marker for bone resorption. The Nmp4-

KO bone marrow (BM) yielded approximately 1.8-fold more osteoclasts in vitro compared 

to WT marrow and the null osteoclasts were significantly more active than their WT 

counterparts (Childress, Philip et al. 2011). Therefore, bone formation was exceeding 

resorption but how this occurred was not clear (e.g., osteoblast-osteoclast coupling (Kular, 

Tickner et al. 2012) and/or intrinsic differences in stem and progenitor pools that support 

bone formation or resorption). 

 To address whether the enhanced PTH-stimulated addition of trabecular bone in 

the Nmp4-KO mice is coincident with the initial surge in the serum osteocalcin and to 

determine the cellular basis of this sustained enhanced anabolic activity, we treated WT 

and Nmp4-KO female mice with intermittent PTH for 3 wks before harvesting femurs, 

femoral BM, and peripheral blood (PBL). Our data reveal that the Nmp4-KO mice show 

significantly enhanced PTH-stimulated addition of trabecular bone at 3wks of hormone 

treatment and that Nmp4 has a profound regulatory role in BM population dynamics. 

Disabling this transcription factor results in alterations in stem, progenitor, and blood cell 

populations that accommodate the prolongation of the PTH anabolic window while 

maintaining bone remodeling. These data reveal novel aspects of how the PTH anabolic 

window is regulated and have implications for a novel adjuvant osteoporosis therapy. 
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MATERIALS AND METHODS: 
 
Mice: Nmp4-KO mice, backcrossed onto a C57BL/6J background for 6-7 generations 

(Robling, Childress et al. 2009, Childress, Philip et al. 2011), and their WT littermates were 

used for these studies. Our local Institutional Animal Care and Use Committee approved 

all experiments and procedures involving the production and use of the mice described in 

this investigation.  

 

PTH treatment: Before initiating hormone treatment 8 wk-old female WT and Nmp4-KO 

mice were given 100µl sterile saline by subcutaneous (sc) injection once daily to habituate 

them to handling. At 10 wks of age, animals were sorted into four treatment groups based 

on equivalent mean-group-body weight. These four groups included 1) vehicle-treated 

WT; 2) PTH-treated WT; 3) vehicle-treated Nmp4-KO and 4) PTH-treated Nmp4-KO mice. 

Experimental animals were injected sc with human PTH 1-34 (hPTH(1-34), Bachem 

Bioscience Inc, PA) at 30µg/kg/day, daily or vehicle control (0.2% BSA/0.1% 1.0 mN HCl 

in saline, Abbott Laboratory, North Chicago, IL) for 3 weeks. In a separate experiment, the 

BM of untreated female WT and Nmp4-KO mice (13wks of age) was harvested to compare 

multipotent mesenchymal stem cell (CD45-/CD146+/CD105+/Nestin+) frequency.  

 

CFU-FALK PHOS + assay (Nishida, Yamaguchi et al. 1994): BM was flushed from femurs, 

single cell suspensions prepared, and cells were seeded into 6-well plates at an initial 

density of 1x106 cells/well. Each culture well contained 2 ml of complete α-MEM medium 

supplemented with 100 IU/ml penicillin, 100 µg/ml streptomycin, 25 µg/ml amphotericin, 2 

mM L-glutamine (Gibco BRL, Grand Island, NY), ascorbic acid (50µg/ml, Sigma), and 10% 

fetal bovine serum (FBS; Sigma). Medium was changed every two days for 14 days. 

Subsequently, cells were fixed and stained for alkaline phosphatase using a Sigma-Aldrich 

Alkaline Phosphatase Staining Kit and then counted for colony forming units-

fibroblastic/alkaline phosphatase+ (CFU-FALK PHOS+). Colonies were defined as positive 

staining with 25 or more cells per colony. After counting CFU-FALK PHOS+ colonies, the cells 

were stained with crystal violet and all colonies were counted for total CFU-F. 

 

Flow cytometry: Whole BM was isolated by flushing the femurs of experimental mice with 

α-MEM supplemented with 10% FBS. PBL was collected from the mice by cardiac 

puncture. The red blood cells (RBCs) were lysed with RBC lysis buffer (Qiagen, Valencia, 
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CA) before the PBL and BM was processed for flow cytometric analysis. All antibodies for 

flow cytometry were purchased from BD Biosciences (San Jose, CA). Stained samples 

were analyzed on an FACS Calibur (BD Biosciences) and results were quantified using 

FlowJo Version 8.8.6 software (TreeStar Inc, Ashland OR). 

 

Clonogenic assays: Colony-forming units (CFU-Cs) were assayed as previously described 

(Yang, Watanabe et al. 1998). Briefly, 2.5x104 BM mononucleated cells (BMMNCs) or 

25μl PBL were seeded onto a 35-mm gridded dish containing methylcellulose and murine 

stem cell factor (SCF, 100ng/mL), murine granulocyte-macrophage colony stimulating 

factor (GM-CSF, 10ng/mL), murine interleukin 3 (IL3, 5ng/mL), murine recombinant 

macrophage-colony stimulating factor (M-CSF, 10 ng/mL) and human erythropoietin (Epo, 

4 U/mL) for 7 days at 37°C in a 5% CO2 incubator. Colonies were scored using an inverted 

light microscope. All cytokines were purchased from PeproTech (Rocky Hills, NC). 

 

Hemavet analysis: PBL was collected from the WT and Nmp4-KO mice and processed for 

blood cell enumeration using the Hemavet 950 FS according to the manufacturer’s 

instructions (Drew Scientific, Dallas, TX).  

 

Micro computed tomography (µCT): After euthanasia, a 2.6-mm span (∼5 mm3 of 

medullary space) of the distal femoral metaphysis was scanned in 70% ethanol on a 

desktop µCT (µCT 35; Scanco Medical AG, Bassersdorf, Switzerland) at 10 µm resolution 

using 55-kVp tube potential and 400-msec integration time, to measure trabecular three-

dimensional morphometric properties as previously described (Niziolek, Murthy et al. 

2009). From the 3D constructs, trabecular bone volume per total volume (BV/TV, %), 

connectivity density (Conn.D, mm-3), structure model index (SMI), trabecular number 

(Tb.N, mm-1), trabecular thickness (Tb.Th, mm), and spacing (Tb.Sp, mm) were calculated 

using the Scanco software. 

 

Statistical analysis: The program JMP version 7.0.1 (SAS Institute, Cary, NC) was used 

to process all statistical evaluations. We employed a two-way ANOVA for the PTH studies 

using genotype and treatment as the independent variables. If a genotype x treatment 

interaction was indicated, the data were analyzed by a Tukey HSD post hoc test to 

determine significant differences between the experimental groups. Statistical significance 

was set at p≤0.01 to guard against type I errors. A separate experiment was conducted 
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using a distinct group of our experimental mice for the purpose of comparing the frequency 

of multipotent mesenchymal stem cells (CD45-/CD146+/CD105+/Nestin+) in untreated 

female WT and Nmp4-KO mice. These data were analyzed with a two-sample t-test, 

assuming unequal variances and statistical significance was set at p≤0.05. The numbers 

of mice per treatment group are indicated in the appropriate figures and tables. 

 

RESULTS: 
 

Nmp4-KO mice exhibited an enhanced increase in femoral trabecular bone after 3wks of 

treatment 

 To determine if the divergence between the WT and Nmp4-KO mice in serum 

osteocalcin levels at 3wks is coincident with the beginning of the enhanced addition of 

trabecular bone in the null animals observed at 7wks (Childress, Philip et al. 2011) we 

sorted WT and Nmp4-KO mice into four treatment groups and harvested the femurs for 

µCT analysis as described in the Materials and Methods. Although the WT and null mice 

had previously shown equivalent PTH-induced increases in trabecular bone at 2wks of 

treatment (Childress, Philip et al. 2011), in the present study the null mice exhibited 

significantly augmented PTH-stimulated increase in femoral trabecular bone compared to 

their WT littermates at 3wks (Figure 3-1). The Nmp4-null mice showed a more robust PTH-

stimulated increase in BV/TV compared to the WT animals during the first 3wks of 

treatment (Figure 3-1A). The KO mice added approximately 2.3-fold more bone than their 

WT littermates in response to PTH (Figure 3-1A). The 2-way ANOVA indicated a strong 

genotype x treatment interaction and the Tukey HSD post hoc determined that there was 

no difference in BV/TV between the vehicle-treated WT and KO animals (Figure 3-1A). 

While PTH treatment increased connectivity parameters (Conn.D, mm-3) for both 

genotypes, a significantly greater enhancement was observed in Nmp4-KO mice 

compared to WT mice (Figure 3-1B). Again there was no trabecular number (Tb.N, mm-

1, Figure 3-1E) and decreased spacing (Tb.Sp, mm, Figure 3-1F) in both genotypes.  

 

BM cellularity, spleen weight, and the profiles of most blood elements did not differ 

between the WT and Nmp4-KO mice 

 To address whether there are differences between the Nmp4-null and WT mice in 

the BM or PBL cellular profiles supportive of the observed enhanced PTH-induced addition 

of trabecular bone, we obtained immunophenotypic, clonogenic, and hematological 
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profiles at 3wks of treatment (Tables 3-1 through 3-3). The spleen weight measured, as 

% of total body weight did not differ with genotype but did modestly increase with PTH 

treatment in both WT and null mice (Table 3-1). The profiles of blood elements between 

the Nmp4-KO and WT mice were unremarkable. We observed no differences between 

any of the treatment groups in the BM and PBL profiles of the RBCs, WBCs, platelets, 

neutrophils, lymphocytes, eosinophils, monocytes, B-cell lineages, CD4+ T cells, or the 

Lin(-)Sca-1(+)c-Kit(+) (LSK) cells (Tables 3-1 and 3-2). Finally, there were no differences 

between WT and Nmp4-KO mice in CFU-C, CFU-G, CFU-GEMM, and CFU-M cells (Table 

3). PTH treatment had no impact on any of these parameters (Tables 3-1 through 3-3). 

 

Nmp4-KO BM yielded more multipotent MSCs (CD146+/nestin+), CFU-FAlk Phos+, CFU-GM, 

and CD8+ T cells than WT BM.  

 To determine if the source of this augmented bone formation in Nmp4-null mice is 

derived, in part, from an expanded pool of osteoprogenitors we obtained BM from our 

experimental groups for analysis of CFU-FAlk Phos+ colonies as described in the Materials 

and Methods. We recovered approximately 4-fold more CFU-FAlk Phos+ colonies from the 

null mice than the WT animals (Figure 3-2A). The total number of CFU-F colonies was 

significantly elevated in the Nmp4-KO cultures (Figure 3-2B) and the percentage of CFU-

FAlk Phos+/total CFU-F colonies was significantly increased in the cultures from the Nmp4-

null BM as compared to the WT BM (Figure 3-2C). There was a trend toward increased 

yield of CFU-F and CFU-FAlk Phos+ cells with PTH treatment in both genotypes but this was 

not significant. Therefore, we next addressed whether the frequency of the self-renewing 

multipotent mesenchymal stem cell (CD45-/CD146+/CD105+/nestin+), the precursor of 

CFU-F-derived lineages including osteoprogenitors, is elevated in untreated Nmp4-KO 

mice. Indeed, we observed a nearly 4-fold increase in this cell phenotype in the null BM 

(Figure 3-2D).  

 Nmp4 has no significant influence on the percentage of CD4+ T cells in the BM or 

PBL (Table 2) but recent studies have demonstrated that CD8+ T cells play an obligatory 

role in the PTH anabolic response via their release of the glycoprotein Wnt10b a potent 

agonist for osteoprogenitors (Terauchi, Li et al. 2009, Bedi, Li et al. 2012). Indeed the 

present data show that the percentage of CD8+ T cells in the null BM was 2-fold greater 

that observed in the WT BM (Figure 3-3A), but there was no difference in the percent 

CD8+ T cells in the PBL between the genotypes (Figure 3-3B). Additionally, PTH treatment 

had no effect on the size of this population of cells in either the BM or PBL.  
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 Next, to address whether the observed modest elevation in bone resorption in the 

null mice and the enhanced number of osteoclasts derived from their BM [7] is due, in 

part, to an increase in osteoclast progenitors, we evaluated the number of CFU-GM cells 

from our treatment groups. Indeed the Nmp4-null mice exhibited a modest (~1.6-fold) but 

significant increase in CFU-GM cells as compared to their WT littermates (Figure 3-4). 

PTH had no effect on the number of these cells (Figure 3-4). 

 
DISCUSSION: 
 

 A significant drawback to the use of PTH as an osteoporosis drug is that its 

anabolic potency declines within a relatively short period of time, which is particularly 

problematic in treating a chronic degenerative disease (Baron and Hesse 2012). The 

cellular and molecular mechanisms underlying this closing of the PTH anabolic window 

are unknown. We have recently determined that deleting the transcription factor Nmp4/CIZ 

from mice significantly extends the PTH anabolic window and results in enhanced 

trabecular bone formation without compromising hormone-stimulated gains in cortical 

bone (Robling, Childress et al. 2009, Childress, Philip et al. 2011).  

 An intriguing aspect of the Nmp4-KO mouse response to anabolic doses of PTH 

is that the enhanced addition of trabecular bone requires a lag period to materialize 

(Childress, Philip et al. 2011). Previously, we reported that both WT and null mice exhibited 

equivalent PTH-stimulated increases in trabecular bone during the first 2wks of a 7wk 

treatment. In this study we compared hormone-induced increases in femoral cancellous 

bone after 3wks of treatment and indeed observed that the Nmp4-KO mice exhibited a 

greater than 2-fold increase in PTH-induced accrual of femoral trabecular bone formation 

compared to their WT littermates. This enhanced response to PTH was manifested in an 

augmented increase in BV/TV, trabecular connectivity (Conn D), and trabecular thickness 

(Tb Th). Additionally, PTH had a greater impact on the structural model index (SMI) in the 

null mice. A decrease in SMI indicates a change in cancellous architecture from a rod-like 

to a plate-like morphology and is a result of alterations in modeling and remodeling (Ding 

and Hvid 2000, Riggs and Parfitt 2005, Allen and Burr 2006). This suggests that PTH-

stimulated increases in bone strength are enhanced in the Nmp4-KO mice although this 

must be confirmed by biomechanical testing. 

 Our data indicate that deleting Nmp4/CIZ establishes a BM microenvironment that 

is primed for anabolic signals. We observed no differences in femur cellularity, % spleen 
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weight, or in the profiles of the vast majority of blood elements, however, there was a 

striking difference in the number of osteoprogenitor cells as evaluated by the clonogenic 

CFU-FAlk phos+ assay. The Nmp4-null BM yielded 4-fold more of these colonies than did the 

WT BM. In an earlier study Noda and colleagues observed that BM cultures from null mice 

yielded about 3-fold more mineralized nodules than WT mice (Morinobu, Nakamoto et al. 

2005), which is equivalent to measuring CFU-osteoblasts (OB) colonies (Owen and 

Friedenstein 1988). In the present study, we also determined that the total number of CFU-

F colonies obtained from the null mice was significantly elevated as was the % CFU-FAlk 

phos+/total CFU-F. These data together suggest that Nmp4 suppresses the frequency of 

CFU-F cells and impedes commitment to the osteogenic lineage. This is consistent with 

the elevated number of CD45-/CD146+/CD105+/nestin+ cells obtained in the Nmp4-KO 

mice. These cells are self-renewing multipotent mesenchymal stem cells and contain all 

the bone-marrow colony-forming-unit fibroblastic colony activity (Sacchetti, Funari et al. 

2007, Méndez-Ferrer, Michurina et al. 2010). PTH did not significantly impact the number 

of CFU-FAlk phos+ colonies recovered from the BM of either genotypes although there was 

a trend toward modestly elevating the frequency of these cells. A variety of studies have 

shown conflicting stimulatory and inhibitory effects of PTH on osteoprogenitor proliferation 

(Isogai, Akatsu et al. 1996, Onyia, Miller et al. 1997, Wang, Liu et al. 2007); however, the 

prevailing view is that intermittent PTH recruits osteoprogenitors into the osteoblast 

differentiation pathway and enhances their survival instead of increasing the size of this 

progenitor pool (Jilka 2007). It is the accumulation of repeated new waves of 

osteoprogenitors with enhanced osteogenic potential that mediates the PTH-stimulated 

increase in bone mass (Wang, Liu et al. 2005, Wang, Liu et al. 2007). This may also 

explain the observed lag period before the enhanced PTH-induced bone formation phase 

is initiated in the Nmp4-null mice. If indeed the anabolic effect of intermittent PTH is the 

result of consecutive waves of committed osteoblast differentiation accumulated from 

each PTH exposure, in which hormone only acts on the BM early osteoprogenitor cells 

(Wang, Liu et al. 2007), then the rate of PTH osteoprogenitor recruitment would be 

equivalent in both the WT and KO mice, but the WT osteoprogenitor pool would be 

depleted before the KO population. This is consistent with the observed equivalent 

addition of bone during the first 2wks of treatment but the divergence in both serum 

osteocalcin and bone formation in the null mice at 3wks (Childress, Philip et al. 2011). 

Finally, the Nmp4/CIZ-KO osteoblast exhibits a modest but significant enhanced response 

to numerous anabolic stimuli, including PTH, BMP2, and mechanical loading (Shen, 
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Nakamoto et al. 2002, Morinobu, Nakamoto et al. 2005, Yang, Bidwell et al. 2010, Alvarez, 

Childress et al. 2012); therefore, an expanded population of such cells is certainly 

consistent with the augmented skeletal bone mineral density and bone mineral content of 

the null animals. 

 The expanded Nmp4-KO osteoprogenitor pool may be supported by the 2-fold 

increase in BM CD8+ T cells as compared to the WT mice. CD8+ T cells express the PTH 

receptor PTHR1 and support intermittent hormone anabolic activity via their secretion of 

the glycoprotein Wnt10b a potent agonist of osteoblast activity (Terauchi, Li et al. 2009, 

Bedi, Li et al. 2012). PTH-induced bone formation was significantly reduced in T cell-

deficient mice and in these mice reconstituted with Wnt10b—/— T cells (Terauchi, Li et al. 

2009). Interestingly, we observed no difference in the level of CD8+ T cells in the PBL 

suggesting that the recruitment and/or the retention of these cells is enhanced in the null 

BM microenvironment. BM CD8+ T cells consist chiefly (~50%) of CCR7+ L-selectin+ 

central memory cells (Mazo, Honczarenko et al. 2005) and the mechanisms underlying 

this concentration in the marrow involves PSGL-1-mediated rolling and VCAM-1-VLA-4-

mediated arrest in BM venules (Mazo, Honczarenko et al. 2005). The retention of these 

cells may be enhanced by CXCL12 (a ligand for CXCR4 on central memory T cells) (Mazo, 

Honczarenko et al. 2005). Finally, IL15-dependent homeostatic proliferation of memory T 

cells contributes to their disproportionate presence in the BM (Becker, Coley et al. 2005, 

Herndler-Brandstetter, Landgraf et al. 2011). Whether the null BM microenvironment is 

enriched in these various cytokines and/or selectin ligands and adhesion molecules 

remains to be determined.  

 A second provocative aspect of the Nmp4-KO skeletal phenotype is that the 

baseline bone mineral density and bone mineral content are slightly increased despite a 

modest elevation of bone resorption (Childress, Philip et al. 2011). While the increase in 

osteoclast number may be attributed to coupling (e.g., increased osteoblast support of an 

increase in osteoclastogenesis (Kular, Tickner et al. 2012), the present data suggests this 

reflects intrinsic differences in osteoclast progenitor populations. We observed a modest 

(1.6-fold) but statistically significant increase in CFU-GM cells in the null mice as 

compared to their WT counterparts. Although CFU-C cells were elevated in the Nmp4-KO 

mice this only approached significance and there was no difference in the levels of CFU-

M cells between the genotypes. The precise lineage of the osteoclast and its relationship 

to other hematopoietic cells is controversial; however, there are a number of studies 

supporting the hypothesis that the osteoclast lineage branches to terminal differentiation 
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via the CFU-GM cells before further passage toward the monocyte/macrophage lineage 

(Menaa, Kurihara et al. 2000, Hodge, Kirkland et al. 2004).  

 The present data suggest that the heightened bone anabolism and modestly 

elevated bone resorption in the global Nmp4-KO mouse is derived, in part, from a unique 

confluence of BM stem, progenitor and blood cells. The null BM harbors an expanded pool 

of MSCs (CD146+/nestin+), osteoprogenitors and CD8+ T cells, which together supply 

the osteoblasts necessary for the observed augmented bone-forming activity, even in the 

presence of elevated bone resorption driven by the modestly enlarged CFU-GM pool (1.6-

fold) that contributes the osteoclasts. This may support an environment of enhanced 

anabolic remodeling. The use of Nmp4/CIZ conditional KO mice will be necessary to 

disentangle the contribution of each of these cell types to this phenomenon. It is certainly 

tenable that multiple stem/progenitor types are necessary for maintaining an open PTH 

anabolic window; that one transcription factor has significant direct and/or indirect control 

over these populations was unexpected despite the fact that Nmp4/CIZ is expressed in 

multiple cell and tissue types (Thunyakitpisal, Alvarez et al. 2001). Nmp4/CIZ has been 

proposed as a potential target for osteoporosis therapy (Krane 2005) and the present data 

further develop this idea suggesting that disabling Nmp4/CIZ may provide an adjuvant 

therapy for extending PTH clinical efficacy by expanding the stem/progenitor populations 

sustaining its anabolic action.  
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Figure 3-1: Disabling Nmp4 enhanced PTH-induced increases in femoral cancellous bone 

after 3wks of treatment. Micro-CT-acquired femoral trabecular architecture including (A) 

BV/TV %; (B) Conn D mm-3; (C) SMI; (D) Tb Th mm: (E) Tb N mm-1: (F) Tb Sp mm was 

compared between WT and Nmp4-KO mice that had been treated with intermittent 

hPTH(1-34) 30µg/kg/day or vehicle for 3 wks (average ± SD, number of mice/experimental 

group=10). Statistical differences were determined using a two-way ANOVA. A Tukey's 

HSD post hoc test was used to determine differences between the treatment groups if a 

significant genotype x treatment interaction was indicated and there was such an 

interaction for BV/TV, Conn D, SMI, and Tb Th . 
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Figure 3-2: Nmp4-KO BM yielded more osteogenic stem and progenitor cells irrespective 

of treatment. [A] Total number of CFU-FAlk Phos+ colonies in BM cultures derived from WT 

and Nmp4-KO mice treated with intermittent hPTH(1-34) 30µg/kg/day or vehicle for 3 wks 

[B] Total number of CFU-F colonies [C] The percent CFU-FAlk Phos+ colonies/total CFU-F 

colonies (average ± SD, number of mice/experimental group=6-8; statistical differences 

determined by a two-way ANOVA) [D] The frequency of femoral CD45-

/CD146+/CD105+/Nestin+ multipotent mesenchymal stem cells in untreated WT and 

Nmp4-KO mice; FACS was used to evaluate the BM from each mouse as described in the 

Materials and Methods (average ± SD, number of mice/experimental group =12-20; 

statistical difference was determined using a two sample t-test assuming unequal 

variances).  
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Figure 3-3: Nmp4-KO BM harbored more CD8+ T cells than WT BM irrespective of 

treatment. [A] FACS analysis showed that there were significantly more CD8+ T cells in 

the BM of Nmp4-KO mice as compared to that observed in WT mice. [B] No differences 

between WT and Nmp4-KO mice in CD8+ T cells were detected in the PBL (average ± 

SD, number of mice/experimental group 11-14; statistical differences were determined 

using a two-way ANOVA)  
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Figure 3-4: More CFU-GM cells were obtained from Nmp4-KO mice than WT mice, 

irrespective of treatment. Intermittent hPTH (1-34) 30µg/kg/day or vehicle was 

administered for 3wks as described in the Materials and Methods (average ± SD, number 

of mice/experimental group=10-14; statistical differences were determined using a two-

way ANOVA).  
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TABLE 3-1: Peripheral blood of the WT and Nmp4-KO mice was analyazed using the 
Hemavet 950 as described in the Materials and Methods. WT and null mice were treated 
with intermittent PHT or vehicle for 3 weeks (number of mice/experimental group=9-14). 
A two-factor ANOVA was used to evaluate the impact of genotype and treatment on the 
individual parameters. Statistical significance was set at p<0.01 to guard against type I 
errors. % spleen weight is the weight of the organ divided by the total body weight. 
Abbreviations: EO eosinophils; LY Lymphocytes; MO monocytes; NE neutrophils;  PLT 
platelets; RBC red blood cells; WBC white blood cells.  
 
                                         WT                                 Nmp4-/-                   2-WAY ANOVA p-values 
                   VEH            PTH            VEH               PTH           Geno    Treat   G x T 
Cellularity     9.1±6.2       8.1±5.6       14.3±7.1         11.5±6.6        0.04    0.33     0.64 
% Spleen Wt.   0.40±0.3     0.47±0.06    0.42±0.08        0.46±0.07      0.84   0.01      0.49 
WBC (K/µl)          4.8±1.1       4.9±1.4        4.5±1.6           5.6±1.6         0.07   0.16      0.24 
NE (K/µl)           0.70±0.28    0.62±0.4      0.56±0.32       0.73±0.33      0.86    0.67     0.22 
NE %                 14.2±3.3      12.6±6.1     12.7±12.8       12.8±4.7         0.88    0.33     0.82 
LY (K/µl)              4.0±0.78     4.1±1.1        3.7±1.4           4.8±1.3         0.62    0.11     0.26 
LY %                  82.4±4.3     83.8±5.9      82.2±8.1         84.4±4.8         0.88    0.33    0.82 
MO (K/µl)           0.13±0.05   0.14±0.06    0.16±0.09       0.12±0.03       0.89    0.53    0.21   
MO %                  2.7±0.87     2.9±1.0       3.6±2.1            2.2±0.53       0.69     0.15    0.66 
EO (K/µl)           0.03±0.05    0.3±0.04    0.04±0.05        0.02±0.03       0.92     0.49    0.51   
EO %                 0.54±0.88    0.56±0.53   1.17±1.57        0.43±0.52      0.42     0.24   0.23 
RBC (M/µl)          9.6±0.46     9.1±1.5      8.96±1.2            8.8±1.4        0.09     0.67   0.38 
PLT (K/µl)          494±125     487±167      379±208          488±143        0.27     0.32   0.26 
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TABLE 3-2: Immunophenotypic evaluation of BM and PBL cell types in WT and Nmp4-
KO mice using FACS analysis as described in the Materials and Methods. Mice were 
treated with PTH or vehicle for 3 weeks (number of mice/experimental group=11-14). 
Statistical significance was set at p<0.01. Abbreviations: LSK, lin-/Sca1+/c-Kit+.  
 
                                         WT                                 Nmp4-/-                   2-WAY ANOVA p-values 
                   VEH            PTH             VEH              PTH           Geno    Treat   G x T 
Pre-B (BM)   11.6±7.2      12.1±7.0      7.6±4.7          9.7±5.7          0.08      0.45    0.65 
Pre-B (PBL)      17.5±6.5      20.0±7.8    11.7±6.5         16.9±7.6     0.04     0.06     0.52 
 
Immature B (BM) 5.9±1.3       6.3±2.7       6.8±3.5          6.3±4.4         0.64      0.95     0.65 
Immature B (PBL) 20.7±10.9 22.3±8.5    25.1±11.3      22.8±0.11.6    0.43      0.90    0.54 
 
Mature B (BM)  13.5±3.5       3.5±3.7         3.0±3.0        3.5±3.4            0.81    0.75     0.79 
Mature B (PBL)  5.7±3.8       5.5±4.8         7.2±6.7         8.3±6.7           0.20    0.79     0.68 
 
CD4+ T (BM)     1.6±0.39     1.4±0.40       1.9±0.74        2.0±1.0           0.03     0.73    0.36 
CD4+ T (PBL)  15.8±0.05   15.6±4.3       16.3±5.5       17.1±3.7            0.41     0.79   0.68  
  
Myeloid (BM)     34.5±5.7     36.4±4.8       32.0±7.6        34.1±11.2       0.30     0.38    0.97 
Myeloid (PBL)     6.0±2.5        5.3±1.3        5.9±2.9           7.4±4.4         0.24    0.65     .22   
 
LSK (BM)         0.11±0.06     0.11±0.06    0.12±0.14       0.26±0.05      0.05     0.07    0.09 
LSK (PBL)        0.03±0.03    0.03±0.03     0.03±0.04         0.02±0.03    0.60     0.95   0.92 
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TABLE 3-3: Clonogenic assays of WT and Nmp4-KO mice as described in the Materials 
and Methods. WT and null mice were treated with intermittent PTH or vehicle for 3 weeks 
(number of mice/experimental group=10-14). A two-factor ANOVA was used to evaluated 
the impact of genotype and treatment on the individual paramters. Statistical significance 
was set at p<0.01 to guard against type I errors.  
 
                                WT                                  Nmp4-/-                   2-WAY ANOVA p-values 
          VEH                  PTH                VEH                 PTH         Geno   Treat   G x T 
CFU-C   27307±13080   31311±17107   44898±22460  40573±27265  0.04    0.98    0.52 
CFU-G     1145±2204        963±1402          560±998          284±460      0.12    0.54   0.93 
CFU-GEMM 941±1219   762±830            1065±1817         847±987      0.78   0.61    0.96 
CFU-M      7409±4319     9405±7227      11229±6172       9629±6478   0.27   0.91    0.33    
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ABSTRACT: 
Parathyroid hormone (PTH) is an osteoanabolic for treating osteoporosis but its 

potency wanes. Disabling the transcription factor Nmp4 in healthy, ovary-intact mice 

enhances bone response to PTH and BMP2 and protects from unloading-induced 

osteopenia. These Nmp4-/- mice exhibit expanded bone marrow (BM) populations of 

osteoprogenitors and supporting CD8+ T cells. To determine whether the Nmp4-/- 

phenotype persists in an osteoporosis model we compared PTH response in 

ovariectomized (ovx) wild type (WT) and Nmp4-/- mice. To identify potential Nmp4 target 

genes we performed bioinformatic/pathway profiling on Nmp4 ChIP-seq data from various 

cell lines. Mice (12wks) were ovx or sham-operated 4wks before the initiation of PTH 

therapy. Skeletal phenotype analysis included µCT, histomorphometry, serum profiles, 

FACS sorting and the growth/mineralization of cultured WT and Nmp4-/- BM 

mesenchymal stem/progenitor cells (MSPCs). ChIP-seq data were derived using MC3T3-

E1 pre-osteoblasts, murine embryonic stem cells, and two blood cell lines. Ovx Nmp4-/- 

mice exhibited an improved response to PTH therapy coupled with elevated numbers of 

osteoprogenitors and CD8+ T cells, but were not protected from ovx-induced bone loss. 

Cultured Nmp4-/- MSPCs displayed accelerated proliferation and enhanced 

mineralization. ChIP-seq/gene ontology analyses identified target genes likely under 

Nmp4 control as enriched for negative regulators of biosynthetic processes. PTH 

regulation of Nmp4 occupancy was gene-specific. Moreover, bioinformatic profiling 

predicted the mTOR/IGF1/insulin pathway as an Nmp4 target. We confirmed that disabling 

Nmp4 enhanced IGF1-induced Akt phosphorylation in osteoprogenitors. This pathway is 

critical for mediating PTH anabolism. Therefore, changes in Nmp4 status may lead to 

improvements in osteoprogenitor response to therapeutic cues. 

  

65 
 



INTRODUCTION:  
 Patients with severe osteoporosis are often treated with parathyroid hormone 

(PTH), a potent osteoanabolic agent (Kraenzlin and Meier 2011), however, the bone-

building ability of this drug or its ‘anabolic window’ wanes, likely due to latent increases in 

bone resorption. (Yu, Neer et al. 2011, Baron and Hesse 2012, Cipriani, Capriani et al. 

2012). This limits its effectiveness to treat a chronic degenerative disease. Recent 

advances in bone-forming agents have shown that one can increase the extent of bone 

mass accrual with anti-SOST treatment compared to PTH (McClung, Grauer et al. 2014). 

However, there may be unique pathways triggered by PTH, which allows for sustained 

targeting of early osteogenesis as evidenced by serum markers of bone formation such 

as N-terminal propeptide of type 1 procollagen (P1NP) and osteocalcin (OCN, (Saag, 

Zanchetta et al. 2009, Padhi, Jang et al. 2011)). In contrast to PTH, anti-SOST antibodies 

may have a limited capacity for targeting osteoprogenitors as evidenced by a relatively 

transient up-regulation of collagen-based markers such as P1NP (McClung, Grauer et al. 

2014). Therefore given PTH’s unique mode of action, therapies that could enhance PTH-

mediated recruitment of osteoprogenitors may add value to some patients. How to achieve 

this enhancement is not clear. For example, attempts to extend and enhance PTH efficacy 

by combining treatment with anti-resorptive medications have met with mixed success and 

have generally been underwhelming (Black, Greenspan et al. 2003, Finkelstein, Wyland 

et al. 2010, Cosman, Eriksen et al. 2011).  

 Blocking the activity of Nmp4/CIZ (nuclear matrix protein 4/cas interacting zinc 

finger protein, ‘Nmp4’) in mice dramatically enhanced their response to anabolic doses of 

PTH (Robling, Childress et al. 2009, Childress, Philip et al. 2011, He, Childress et al. 

2013), suggesting a potential strategy for an adjuvant therapy (Krane 2005). Intermittent 

exogenous doses of hormone stimulated equivalent new bone formation in wild type (WT) 

and Nmp4-/- mice during the first 2wks of challenge, but at 3wks of treatment the null mice 

exhibited greater than a 2-fold increase in new trabecular bone compared to their WT 

littermates (Childress, Philip et al. 2011). This augmented skeletogenesis in the Nmp4-/- 

mice was extended to 7wks of treatment and was observed in the femur, tibia, and 

vertebra. Serum osteocalcin continued to rise at this time point in the Nmp4-/- mice but had 

decreased in the WT animals (Childress, Philip et al. 2011). However, the PTH response 

of the cortical compartment was equivalent throughout treatment in the WT and null mice 

(Robling, Childress et al. 2009).  
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 Nmp4-/- bone may have a generalized heightened response to systemic or local 

anabolic cues. For example, these mice also exhibited augmented BMP2-induced ectopic 

bone formation compared to their WT littermates (Morinobu, Nakamoto et al. 2005). The 

Nmp4-null mice showed an accelerated osseous regeneration after marrow ablation 

(Morinobu, Nakamoto et al. 2005) and did not lose bone during hind limb unloading, which 

appeared to derive from an enhanced osteoblast activity (Hino, Nakamoto et al. 2007). 

 Prerequisite for an adjuvant therapy target, disabling Nmp4 has little impact on the 

health, longevity, or global baseline phenotype of the mouse, with a few exceptions. The 

Nmp4-/- baseline skeletal phenotype (i.e., bone mineral density and/or content and 

trabecular architecture) is generally equivalent compared to WT animals], although we 

have occasionally observed an unprovoked increase in bone properties in Nmp4-/- mice 

(Morinobu, Nakamoto et al. 2005, Robling, Childress et al. 2009, Childress, Philip et al. 

2011, He, Childress et al. 2013). Similarly, male Nmp4-/- mice exhibit variable degrees of 

spermatogenic cell degeneration resembling germinal-cell aplasia with focal 

spermatogenesis resulting in sporadic infertility (Nakamoto, Shiratsuchi et al. 2004). 

 Our recent work suggests that the cellular basis of the osteoanabolic repressor 

function of Nmp4 is due to its effect on the bone marrow derived stromal stem/progenitor 

cells aka mesenchymal stem progenitor cells (MSPCs). Nmp4-/- mice have significantly 

more osteoprogenitor cells in their marrow, which lie in wait to be quickly mobilized to 

differentiate into active osteoblasts upon stimulation with various osteoanabolic stimuli 

(He, Childress et al. 2013). There was no difference between WT and Nmp4-/- BM 

cellularity or profiles of several blood elements however, the null mouse exhibited a 4-fold 

increase in CD45-/CD105+/nestin+/CD146+ BM osteoprogenitor cells. These markers are 

a common hallmark to CFU-F cells with osteogenic potential (Isern, Martín-Antonio et al. 

, Méndez-Ferrer, Michurina et al. 2010) and indeed 4-fold more CFU-FAlk phos+ and CFU-

FOb cells have been recovered from these mice compared to the WT animals (Morinobu, 

Nakamoto et al. 2005, He, Childress et al. 2013). A second, related phenomenon we have 

observed in Nmp4-/- mice is a 2-fold increase in the prevalence of CD8+ T-cells in the 

femoral marrow—the lymphocyte population that provides potent input to induce MSPCs 

down the osteoblast differentiation pathway (Terauchi, Li et al. 2009, Li and Durbin 2010, 

Bedi, Li et al. 2012, He, Childress et al. 2013). These blood cells express the PTHR1 

receptor and support the PTH anabolic response via the release of Wnt10b upon hormone 

challenge, which drives osteoprogenitor differentiation to pre-osteoblasts and mature 
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matrix-producing bone cells (Terauchi, Li et al. 2009, Li and Durbin 2010, Bedi, Li et al. 

2012).  

 There is little information on the molecular mechanisms and cellular pathways that 

mediate the anti-anabolic action of Nmp4. This transcription factor is a Cys2His2 zinc finger 

protein that primarily localizes to the nucleus although there is evidence for cytoplasmic 

activity (Nakamoto, Yamagata et al. 2000, Bidwell, Childress et al. 2012). The zinc fingers 

recognize the DNA minor groove of an AT-rich consensus sequence and two 

transactivation domains can suppress or activate transcription depending on the cellular 

context (Alvarez, Thunyakitpisal et al. 1998, Nakamoto, Yamagata et al. 2000, 

Thunyakitpisal, Alvarez et al. 2001, Torrungruang, Alvarez et al. 2002, Shah, Alvarez et 

al. 2004). The amino terminus of the rodent protein contains an SH3-binding domain that 

associates with the adaptor signaling protein p130Cas, but the functional significance of 

this interaction remains unknown.  

 The Nmp4-/- progenitor cells and their progeny have an exaggerated stimulus 

response at the levels of transcription and cell signaling (Shen, Nakamoto et al. 2002, 

Yang, Bidwell et al. 2010, Alvarez, Childress et al. 2012). Nmp4-null bone marrow stromal 

cells (BMSCs) show an enhanced transcriptional response to PTH and BMP2(Shen, 

Nakamoto et al. 2002, Shah, Alvarez et al. 2004, Yang, Bidwell et al. 2010, Alvarez, 

Childress et al. 2012). The Nmp4-/- derived calvarial cells exhibit an increased load-

induced phosphorylation of Pi3k and Akt and beta-catenin nuclear translocation (Yang, 

Bidwell et al. 2010). Analogous to heightened response to anabolic signals in Nmp4-/- 

osteolineage cells, osteoclast preparations from the null mice exhibited a heightened 

response to the remodeling signals of RANKL and M-CSF (Childress, Philip et al. 2011). 

 In the present study we addressed whether Nmp4-null mice are resistant to 

ovariectomy (ovx)-induced bone loss and if disabling Nmp4 improves PTH-based bone 

therapy in an OVX model. We used expanded cultures of WT and Nmp4-/- mesenchymal 

stem/progenitor cells (MSPCs) to probe the cell autonomous proliferative and 

mineralization activities of this cell population. To delineate the framework of the Nmp4 

anti-anabolic network we performed genome-wide chromatin immunoprecipitation 

sequencing (ChIP-seq) on MC3T3-E1 cells and combined these data with the data 

available for Nmp4 (a.k.a. Znf384) from the Mouse Encyclopedia of DNA Elements 

(ENCODE) Consortium for transcription factors (Consortium, Stamatoyannopoulos et al. 

2012). Bioinformatic profiling, gene ontology (GO), and pathway analysis were performed 
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on these data sets to infer a map of the negative regulation of bone anabolism under 

Nmp4 control. 

 

MATERIALS AND METHODS: 
Mice: Male and female Nmp4-/- mice, backcrossed onto a C57BL/6J background for 7 

generations (Robling, Childress et al. 2009, Childress, Philip et al. 2011, He, Childress et 

al. 2013), and their WT littermates were produced and maintained in our colony at Indiana 

University Bioresearch Facility, Indiana University School of Dentistry. Our local 

Institutional Animal Care and Use Committee approved all husbandry practices and 

experimental procedures and regimens described in this investigation.  

 

Bilateral ovariectomy surgery: 12wk-old virgin mice were anesthetized using isoflurane 

inhalation followed by a mixture of xylazine and ketamine administered intraperitoneally. 

A 1-2cm dorsal incision was made in the midline below the level of the last rib and the skin 

bluntly dissected from the muscle on either side of the incision. Through the skin incision, 

the muscle wall was incised 1cm lateral to the midline 1-2cm below the last rib to enter the 

abdominal cavity. The periovarian fat pad was located and gently grasped and 

exteriorized. Care was taken not to directly handle the ovary to avoid abdominal 

implantation of ovarian tissue. While holding the periovarian fat pad with forceps, the 

fallopian tube between the fat pad and uterus was clamped and crushed using mosquito 

hemostats. The crushed area was cut with scissors and the fat pad with ovary removed. 

The procedure was repeated on the contralateral side. The skin incision was closed with 

one or two surgical wound clips. The sham surgeries involved all the outlined steps except 

the crushing the fallopian tubes and the actual removal of the ovaries. To confirm the 

efficacy of OVX, uteri were weighed following euthanasia. 

 

PTH treatment: At 16 wks of age, ovx animals were sorted into four treatment groups 

based on equivalent mean-group-body weight. These four groups included 1) vehicle-

treated WT; 2) PTH-treated WT; 3) vehicle-treated Nmp4-/- and 4) PTH-treated Nmp4-/- 

mice. Mice were injected subcutaneously (sc) with human PTH 1-34 (Bachem Bioscience 

Inc, PA) at 30µg/kg/day, daily or vehicle control (0.2% BSA/1.0µN HCl in saline, Abbott 

Laboratory, North Chicago, IL) for the length of time indicated.  
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Cell culture: Cells from ATCC (MC3T3-E1 subclone 4) were maintained in α-MEM medium 

supplemented with 100 IU/ml penicillin, 100 µg/ml streptomycin, 25 µg/ml amphotericin, 2 

mM L-glutamine (Gibco BRL, Grand Island, NY), ascorbic acid (50µg/ml, Sigma-Aldrich, 

St Louis, MO), and 10% fetal bovine serum (FBS; Sigma-Aldrich, St Louis, MO). Expanded 

mesenchymal stem/progenitor cell (MSPC) cultures were established as previously 

described [Wu et al., 2006]. Briefly, long bone BM was isolated from euthanized mice 6-

8wks of age and the mononuclear cells (BMMNCs) were isolated using a Ficoll gradient. 

These cells were plated in Mesencult Media + Mesencult Stimulatory Supplement 

(StemCell Technologies, Vancouver BC, Canada) and maintained in culture for 3-4wks 

without passage and fed every 5-7 days by removing 50% of the old media and adding 

50% fresh media, very gently so as not to disturb the cells. At approximately 80% 

confluence, the cells were passaged at 1:3 dilution for two more passages before use or 

were frozen for storage. Cells were used for experiments between passages 5-10. For 

comparing cell proliferation rates between WT and Nmp4-/- MSPCs, the cells were 

transferred to α-MEM medium without the ascorbic acid in 12-well plates at 5,000 cells/well 

(Day 0). Cells were counted on Day 2, 4, and 6 post-seeding prior to refreshing the 

medium for the remaining cells. To evaluate mineralizing capacity cells were transferred 

to α-MEM medium and after 48hrs (Day 0) the medium was supplemented with ascorbic 

acid (5-50µg/ml, Sigma Aldrich), dexamethasone (0-10nM, Sigma-Aldrich), and 10mM 

glycerol 2-phosphate disodium salt hydrate (BGP, Sigma-Aldrich). For controls, cells were 

passaged into fresh Mesencult medium without the osteogenic/mineralization 

supplements. Cells were stained for alkaline phosphatase activity using naphthol AS-MX 

phosphate and fast red violet B salt following the manufacturer's instructions (Sigma cat# 

85L3R-1KT) or for mineralization using alizarin red. 

 To assess the impact of Nmp4 on IGF1 responsiveness, immortalized WT and Nmp4-/- 

BM stromal cells (BMSCs) (Alvarez, Childress et al. 2012) were seeded in complete α-

MEM with ascorbic acid and grown to confluency (one day) and starved of serum (0.1% 

FBS) overnight. The cells were then treated with IGF1 (Sigma-Aldrich) at 10ng/mL for 30 

minutes. Cell lysates were collected in 2X Laemmli sample buffer and prepared for 

Western analysis.  

 

Western analysis: The cell lysates harvested in 2X Laemmli sample buffer were quantified 

by the amido black method and equal mass loaded onto a sodium dodecylsulfate–

polyacrylamide gel (SDS–PAGE, 10%) and transferred to a PVDF membrane (Bio-Rad 
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Laboratories, Hercules, CA). The immunoblots were probed with Phospho-Akt (Ser473) 

antibody (Cat# 9271, Cell Signaling Technology, Danvers, MA, 01923) and developed 

with SuperSignal® West Femto Maximum Sensitivity Substrate Antibodies (Pierce). The 

antibody signals were detected using a LAS-1000 plus luminescent image analyzer 

(Fujifilm, Sunnyvale, CA). Subsequently the blots were stripped and re-probed with total 

Akt antibody (CAT 9272) and developed as described above. Results were expressed as 

ratio of phospho-AKT/total AKT. 

 

Flow cytometry: Cellular surface marker profiles from BM and peripheral blood (PBL) were 

assessed as previously described (He, Childress et al. 2013)[He et al., 2013]. The 

antibodies employed for flow cytometry were obtained from BD Biosciences (San Jose, 

CA). Stained cells were analyzed on an FACS Calibur (BD Biosciences) and results were 

quantified using FlowJo Version 8.8.6 software (TreeStar Inc, Ashland OR).  

 

Micro computed tomography (µCT): Trabecular bone architecture was analyzed as we 

have previously described (Childress, Philip et al. 2011, He, Childress et al. 2013). Briefly, 

femurs and L5 vertebra were excised from the WT and Nmp4-/- mice after euthanasia, the 

muscle and connective tissue removed, and the bones transferred to 10% buffered 

formalin, 4°C for 48 hr, after which the bones were placed in 70% ethanol (4°C) until 

analyzed. For femur analysis a 2.6-mm span (<5 mm3 of medullary space) of the excised 

distal femoral metaphysis was scanned in 70% ethanol on a desktop µCT (µCT 35; 

Scanco Medical AG, Bassersdorf, Switzerland) at 10 µm resolution using 55-kVp tube 

potential and 400-msec integration time, to measure three-dimensional morphometric 

properties. The entire vertebra (L5) were scanned using standard methods (Skyscan 

1172). Bones were reconstructed and analyzed using the manufacturer’s software. The 

trabecular bone between the two growth plates was isolated from the cortical shell via 

manual tracing and assessed for trabecular architecture. From the three dimensional 

reconstructions the following parameters were obtained using the Scanco and Skyscan 

software analyses: trabecular bone volume per total volume (BV/TV, %), connectivity 

density (Conn.D, mm-3), structure model index (SMI), trabecular number (Tb.N, mm-1), 

trabecular thickness (Tb.Th, mm), and spacing (Tb.Sp, mm) [Bouxsein et al., 2010]. 

 

Bone histomorphometry: All histomorphometric parameters were obtained as previously 

described (Childress, Philip et al. 2011) following the ASBMR guidelines (Dempster, 
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Compston et al. 2013). Briefly, mice were administered intraperitoneal injections of calcein 

green (20 mg/kg; Sigma-Aldrich) and alizarin red (25 mg/kg, Sigma-Aldrich) 6 and 3 days 

before euthanasia, respectively. The femur marrow cavity was exposed via cutting the 

anterior face of the epiphyseal plate. Bones were embedded in methyl-methacrylate 

subsequent to dehydration with graded alcohols, sectioned (4µm) with a Leica RM2255 

microtome (Leica Microsystems, Wetzlar, Germany), and mounted unstained on 

microscope slides and imaged under fluorescent light with a microscope 

system(Childress, Philip et al. 2011). Bone formation rate (BFR), mineral apposition rate 

(MAR), and mineralizing surface (MS/BS) were obtained from a 0.03mm2 metaphyseal 

region of interest from 250µm to 1750µm below the growth plate using ImagePro 3.1 

software (Media Cybernetics, Bethesda, MD, USA).  

 

Serum biochemistry: We analyzed serum N-terminal propeptide of type 1 procollagen 

(P1NP) to evaluate global bone formation in our experimental mice using the Rat/Mouse 

P1NP EIA from IDS Immunodiagnostic Systems (Scottsdale, AZ) following the 

manufacturer’s instructions. To follow bone resorption we analyzed serum C-terminal 

telopeptides (CTX) with the RatLaps™ ELISA (Immunodiagnostic Systems Inc) 

(Childress, Philip et al. 2011).  

 

Quantitative real-time PCR (qRT-PCR) analysis: ChIP-qPCR was used to authenticate 

select ChIP-seq profiles employing SYBR Green assays and SYBR Green Supermix (Bio-

rad, Hercules, CA). qRT-PCR reactions were carried out in triplicate on specific genomic 

regions. The resulting signals were normalized for primer efficiency by carrying out qRT-

PCR reactions for each primer pair using Input DNA. 

 

Chromatin immunoprecipitation sequencing (ChIP-seq) and ChIP analysis: Cells from 

ATCC (MC3T3-E1 subclone 4) were seeded into twenty-one 150mm plates at an initial 

density of 50,000 cells/plate (320 cells/cm2) and maintained in αMEM complete medium 

+ ascorbic acid. On Day 14 post-seeding, cells were treated with 25nM hPTH(1-34) or 

vehicle control for 1hr before harvest. Subsequent to treatment cells were fixed with 1% 

formaldehyde for 15min and quenched with 0.125M glycine. Cell pellets were frozen in an 

ethanol dry ice bath and shipped to Active Motif for FactorPath™ analysis. The chromatin 

was isolated from the pellets by adding lysis buffer followed by disruption with a Dounce 

homogenizer. Lysates were sonicated and the DNA sheared to an average length of 300-
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500 bp. Genomic DNA (Input) was prepared by treating aliquots of chromatin with RNase, 

proteinase K and heat for de-crosslinking, followed by ethanol precipitation. Pellets were 

resuspended and the resulting DNA was quantified on a NanoDrop spectrophotometer. 

Extrapolation to the original chromatin volume allowed quantitation of the total chromatin 

yield. An aliquot of chromatin (30µg) was precleared with protein A agarose beads 

(Invitrogen, ThermoFisher Scientific, Waltham, MA). Genomic DNA regions of interest 

were isolated using 4µg antibody against ZNF384 (Sigma HPA004051, Lot A57874). 

Complexes were washed, eluted from the beads with SDS buffer, and subjected to RNase 

and proteinase K treatment. Crosslinks were reversed by incubation overnight at 65°C, 

and ChIP DNA was purified by phenol-chloroform extraction and ethanol precipitation.  

 

ChIP Sequencing (Illumina): ChIP and Input DNAs were prepared for amplification by 

converting overhangs into phosphorylated blunt ends and adding an adenine to the 3’-

ends. Illumina genomic adapters were ligated and the sample was size-fractionated (200-

300 bp) on an agarose gel. After a final PCR amplification step (18 cycles), the resulting 

DNA libraries were quantified and sequenced on HiSeq 2000. Sequences (50nt reads, 

single end) were aligned to the mouse genome (mm10) using the BWA algorithm. 

Alignments were extended in silico at their 3’-ends to a length of 150 bp, which is the 

average genomic fragment length in the size-selected library, and assigned to 32-nt bins 

along the genome. The resulting histograms (genomic “signal maps”) were stored in BAR 

and bigWig files. ZNF384 peak locations were determined using the MACS algorithm 

(v1.4.2) with a cutoff of pvalue = 1e-7 (Li and Durbin 2009).  

 

Bioinformatic profiling: In addition to generating our own Nmp4 ChIP-seq data from the 

MC3T3-E1 cells we used Nmp4 (Znf384) ChIP-seq data from murine embryonic stem cell 

line (ES-E14) and the B-cell lymphoma cell lines Ch12 and MEL from the ENCODE 

Consortium for transcription factors 2011 Freeze data sets in NarrowPeak format 

(Rosenbloom et al., 2013). To assign an Nmp4 peak to a promoter region it had to be 

within -5kb to +2kb from a transcription start site (TSS). To assign a peak to an intragenic 

region it had to be located within the range defined by the TSS and the transcription end 

site (TES), and not within the promoter range of the same gene. To assign a peak to an 

intergenic region it had to be -10,000kb from the TSS and +10,000kb from the TES, and 

not within the promoter range of the same gene. A peak could be assigned to multiple 

functional regions in an area of the genome harboring multiple genes. A common example 
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of this is an area with genes on both strands. A peak may not fit any of these definitions 

and was assigned to the classification “other”. This methodology yielded 34,317 functional 

assignments for the peaks in the MC3T3-E1 cells. 

GEM analysis: Genome wide Event finding and Motif discovery (GEM) (Guo, Mahony et 

al. 2012) was used to derive the Nmp4 consensus sequence. The latest mouse genome 

build (mm10) was employed together with the GEM default ChIP-seq read distribution file 

and a minimal k-mer width of 6 and maximum of 20.  
Gene Ontology: Gene ontology analysis was conducted using DAVID (Huang, Sherman 

et al. 2009), and terms summarized using REVIGO (Supek, Bošnjak et al. 2011, 

Auerbach, Chen et al. 2013). The ENCODE ChIP-Seq Significance Tool was employed to 

identify enriched transcription factors in our Nmp4 gene target list (Auerbach, Chen et al. 

2013). Additionally some functional analysis was also generated through the use of 

QIAGEN’s Ingenuity Pathway Analysis (IPA®, QIAGEN Redwood City, 

www.qiagen.com/ingenuity). 
 
Bone phenotype statistical analysis: Statistical evaluations were processed using the 

program JMP version 7.0.1 (SAS Institute, Cary, NC). The animal studies employed a two-

way ANOVA using genotype and treatment as the independent variables followed by 

either a Tukey HSD or LS Means post hoc test if a genotype x treatment interaction was 

indicated. Statistical significance was set at p≤0.05. To compare growth rates of the WT 

and Nmp4-/- MSPCs derived from various experimental mice, we evaluated the slopes of 

log-transformed cell counts regressed onto experimental day using a t-test. The numbers 

of mice per treatment group and replicates/treatment for the cell studies are indicated in 

the appropriate figures and tables. 

 
RESULTS: 
Nmp4-/- mice are not protected from ovx-induced bone loss 

 To determine whether genetically disabling Nmp4 activity protects mice from ovx-

induced bone loss as it does from unloading-associated osteopenia (Hino, Nakamoto et 

al. 2007), we removed the ovaries or performed sham operations on both WT and Nmp4-

/- mice (Figure 4-1). Both the ovx WT and ovx Nmp4-/- mice experienced significant weight 

gain at 4wks post-op (Table 4-1) consistent with previous mouse studies (Vieira Potter 

2012). Additionally, ovx resulted in a significant decrease in uterine weight in both 
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genotypes (Table 4-1). There was no genotype x treatment interaction in either of these 

parameters. 

 Both WT and Nmp4-/- mice exhibited significant bone loss 4wks after ovx surgery 

as measured in the trabecular bone compartment of the distal femur and the L5 vertebra 

(Table 4-1). The Nmp4-/- mice exhibited a trend towards enhanced loss of bone that neared 

significance in the distal femur (BV/TV, genotype x treatment interaction = 0.06, Table 4-

1) and reached significance in the L5 vertebra (BV/TV, genotype x treatment interaction 

<0.05, Table 4-1). Despite this enhanced (or nearly enhanced) rate of bone loss the Nmp4-

/- animals maintained more trabecular bone compared to WT mice during the first 4wks 

after ovariectomy. Finally, we observed no differences in the level of serum bone formation 

marker P1NP or the resorption marker CTX at 4wks post-op between the genotypes 

(Table 4-1). 

 

Ovx Nmp4-/- mice show an enhanced bone gain response to PTH therapy  

 With a separate group of ovx mice we initiated treatment of both WT and Nmp4-

null animals with PTH (30µg/kg/day) and vehicle control 4wks after surgery. The duration 

of hormone therapy lasted 4wks (8wks post-op) and 8wks (12wks post-op). The ovx Nmp4-

/- mice showed an enhanced PTH-induced gain in femoral BV/TV and Conn D at 4wks and 

8wks of therapy compared to their ovx WT littermates as well as an augmented gain in 

trabecular thickness at 8wks (Figure 4-2, Table 4-2). The null mice also showed an 

enhanced PTH response at the L5 vertebra at 8wks of treatment (Figure 4-3, Table 4-2). 

Specifically the 2-way ANOVA indicated strong genotype x treatment effects for the distal 

femur for both 4wks and 8wks therapy and for the L5 vertebra for 8wks therapy (see 

Figures 4-2A and 4-3A); the post-hoc tests concluded that the difference between the 

genotypes was within the hormone-treated groups. The vehicle-treated ovx WT and ovx 

Nmp4-/- groups showed no difference in BV/TV (Figures 4-2 and 4-3) at the end of the 

treatment regimens indicating that the modest enhanced loss in bone in the Nmp4-/- was 

stabilized by 4wks therapy. PTH significantly elevated MAR, MS/BS, and BFR at the end 

of 4wks treatment as shown by strong treatment effects (Table 4-3). However, there was 

no genotype effect or genotype x treatment interaction for any of these parameters (Table 

4-3). Hormone significantly elevated serum levels of the bone formation marker P1NP and 

the resorption marker CTX at 8wks of therapy, but there was no treatment x genotype 

interaction for either of these parameters (Table 4-3).  
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 FACS analysis of the BM CD45-/CD105+/CD146+/nestin+ osteoprogenitors 

revealed a significant elevation in the number of these cells in the BM obtained from the 

Nmp4-/- mice at the end of 4wk therapy, irrespective of treatment (Figure 4-4A). This is 

consistent with our previous observation in the ovary-intact null mice [He et al., 2013]. By 

the end of 8wks treatment (12wks post-op) the observed increase in the number of these 

Nmp4-/- cells in the BM failed to reach statistical significance, but there was a significant 

elevation in the number of the PBL Nmp4-/- osteoprogenitors in the vehicle-treated mice 

(Figure 4-4D). The Nmp4-/- mice showed a significant elevation in CD8+ T cells in both the 

BM and the PBL throughout the entire therapy regimen (Figure 4-4B & E). PTH 

significantly decreased the numbers of these cells in the BM at 8wks therapy in both 

genotypes (Figure 4-4B) but had no impact on the number of these cells in the PBL (Figure 

4-4E). Disabling Nmp4 had little to no effect on CD4+ T cells, nor did treatment with PTH 

(Figure 4C and 4F). The modest increase in BM CD4+ T cells approached significance 

(p<0.06) but this was not reflected in the PBL, just as we previously observed in the ovary-

intact mice [He et al., 2013].  

 To determine if the enhanced osteogenic potential of the BM could be reliably and 

reproducibly maintained in vitro in MSPC cultures over several passages and in the 

absence of supporting cells (e.g. T-cells) we established expanded WT and Nmp4-/- 

MSPCs from ovary-intact mice. The expanded Nmp4-/- MSPCs from ovary-intact mice 

exhibited modest but significantly enhanced proliferation compared to the WT cells (Figure 

4-5A). Both the null and WT expanded MSPCs showed strong alkaline phosphatase 

expression (Figure 4-5B). However, the expanded Nmp4-/- MSPCs were typically more 

mineralization competent than WT cells under various concentrations of dexamethasone 

and ascorbic acid (Figure 4-5B). Finally, the expanded Nmp4-/- and WT MSPCs exhibited 

varying degrees of alkaline phosphatase staining while maintained in Mesencult 

medium, depending on the confluence of the cells and time in culture (3-9 days), however 

no mineralization was observed in these control cultures (data not shown). 

 

Genome-wide ChIP-seq/gene ontology analysis reveals Nmp4 target genes and potential 

pathways of the anti-anabolic axis. 

 Nmp4 is expressed in nearly all cells, yet the most singular consequence of 

globally disabling this protein is the enhanced mobilization of bone cells upon 

osteoanabolic induction (Morinobu, Nakamoto et al. 2005, Robling, Childress et al. 2009, 

Childress, Philip et al. 2011, He, Childress et al. 2013). As a first step in understanding 
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the origins of this phenotype, which may have clinical significance, we needed the 

following information: (1) the identity of the Nmp4 target genes including ‘core’ target 

genes common to multiple cell types; (2) identify common functions of these core genes 

to distinguish pathways that make osteoprogenitors particularly vulnerable to the effects 

of Nmp4 and (3) experimental confirmation of some of these pathways. To begin to 

understand how Nmp4 works we set out to understand (4) whether Nmp4 targets 

functional regions of the genome, (5) if it binds directly to DNA or via other proteins, and 

(6) whether osteoanabolic agents, e.g. PTH, alter Nmp4 DNA-binding along target genes. 

 The potential Nmp4 target genes identified by ChIP-seq in the MC3T3-E1 (vehicle-

treated) cells and those established in the three ENCODE cell lines were compared using 

those genes that had one or more peaks associated with the TSS. A Venn diagram of 

these genes showed that 2114 Nmp4 ‘core’ target genes were common to the four cell 

lines (Figure 4-6A, and Appendix 1). These core target genes were classified into 

functionally related categories using gene ontology (GO) analysis with the Database for 

Annotation, Visualization, and Integrated Discovery (DAVID) tool (Huang, Sherman et al. 

2009). The functional annotation-clustering algorithm was applied to the target list, which 

is able to give a more insightful view of the relationships between annotation categories 

and terms compared to other analytic modules (Huang, Sherman et al. 2009). The 

significance of group classification was defined by enrichment scores based on Fisher 

exact statistics (false discovery rate, FDR p<0.05). The DAVID-derived biological profile 

was further summarized using REVIGO (Supek, Bošnjak et al. 2011). GO analysis of the 

core target genes designated Nmp4 as a negative regulator of cellular biosynthetic 

processes showing significant enrichment for genes involved in the regulation of 

transcription, chromatin modification, protein catabolic processes, regulation of the cell 

cycle, and mRNA processing/splicing (Figure 6B). Interestingly, the genes specific to any 

one particular cell line or specific to vehicle-treated or PTH-treated MC3T3-E1 cells did 

not yield a distinct biological process profile that reached statistical significance as 

obtained with the core target genes (data not shown). However, peak-associated genes 

common to the vehicle- and PTH-treated MC3T3-E1 cells yielded a profile nearly identical 

to that obtained with the core target genes. 

 DAVID also uses the KEGG (Kyoto Encyclopedia of Genes and Genomes) 

database to map large gene lists to signaling pathways (Huang, Sherman et al. 2009). 

The DAVID/KEGG profile of the Nmp4 core target genes included the TOR and insulin 

signaling pathways (Table 4-4) and indeed the insulin/IGF1->IRS1->PI3K->Akt signaling 

77 
 



response limb is common to many of the pathways listed (see Figure 4-7A). This is also 

consistent with our IPA analysis (Appendix 2). Since PTH anabolic action is mediated, in 

part, by local production of IGF1 [Elis et al., 2010], we addressed whether Nmp4-/- BM 

stromal cells (BMSCs) exhibit an enhanced response to this growth factor. A 30min 

challenge with IGF1 induced a significantly enhanced Akt phosphorylation in the Nmp4-

null cells as compared to WT-derived cells (Figure 4-7B). The IPA analysis also identifies 

the glucocorticoid signaling pathway and the glucocorticoid receptor gene (Nr3c1) as 

Nmp4 targets (Supplemental Tables 1 and 2), a particularly potent differentiation signal to 

osteoprogenitors (Eijken, Koedam et al. 2006, Hamidouche, Haÿ et al. 2008, 2012).  

 Next we probed existing datasets for enriched transcription factors within our 

Nmp4 core target gene list using the ENCODE ChIP-seq Significance Tool (Auerbach, 

Chen et al. 2013) (Table 4-5). This profile shows that Nmp4 binding in the promoter 

regions of its target genes predominantly co-occurs with proteins that regulate chromatin 

organization and with proteins that contribute to maintaining stem/progenitor 

pluripotency/multipotency and the poised gene state, e.g. CHD2, SIN3a, and GCN5 (Lin, 

Srajer et al. 2007, Nascimento, Cox et al. 2011, Harada A 2012). 

 In an effort to gain further understanding of how Nmp4 regulates gene expression 

we prepared a genome-wide functional region map of the Nmp4 binding sites for all four 

cell types as described in Materials and Methods. The majority of the occupancy peaks 

were located in or near the TSS or in intragenic regions, areas typically associated with 

regulatory functions (Figure 4-8A). To determine if Nmp4 binds directly to DNA or can 

associate with the genome via other proteins we used the discovery algorithm GEM to 

derive the Nmp4 consensus-binding site from the MC3T3-E1 data. In support of previous 

studies by our lab and others the derived binding site matched the unusual homopolymeric 

(dA·dT) consensus sequence previously derived by cyclic amplification and 

electrophoretic mobility shift assay (Alvarez, Thunyakitpisal et al. 1998, Nakamoto, 

Yamagata et al. 2000) (Figure 4-8B). No other consensus sequences were identified 

suggesting a single and direct mode of genome association, mediated by the Cys2His2 

DNA-binding domain (Torrungruang, Alvarez et al. 2002). To determine whether PTH 

challenge altered Nmp4 DNA-binding along target genes we generated genome-wide 

Nmp4 ChIP-seq profiles using the pre-osteoblast cell line MC3T3-E1 treated with hPTH(1-

34) or vehicle control for 1hr. We used the 1hr time point because we observed the most 

significant differences in femoral mRNA expression profiles between WT and Nmp4-/- mice 

1hr after injection (Childress, Philip et al. 2011). Hormone reduced Nmp4 genome-wide 
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occupancy from a total of 15,446 to 13,109 binding sites. However, at the level of the 

single gene there was a diversity of changes in Nmp4 occupancy, i.e. PTH was observed 

to remove (e.g. Nid2), induce (e.g. Ccdc53) or have no effect on Nmp4-DNA association 

(e.g. Akt2, Arrb2) (Figure 4-9; also see ChIP-qPCR confirmation of Nmp4 binding, Figure 

4-11). 

 

DISCUSSION: 
 Bone restoration by PTH therapy is improved in ovx mice by disabling Nmp4. The 

ovx Nmp4-/- mice displayed an enhanced hormone-induced recovery of femoral and L5 

trabecular BV/TV despite delaying treatment until 4wks post-op to allow for significant 

bone loss. Both the ovx WT and ovx Nmp4-/- mice showed strong responses to PTH 

therapy. After 4wks and 8wks of treatment the WT mice displayed a 3.2-fold and 4.6-fold 

increase in femoral BV/TV over vehicle-treated mice, respectively. However the Nmp4-/- 

mice showed a 3.6-fold and 8.8-fold increase over the same time period resulting in a very 

strong genotype x treatment interaction. Differences in PTH-mediated BV/TV restoration 

efficacy between the WT and Nmp4-/- mice took longer to manifest in the L5 vertebra and 

was less striking although statistically significant (1.3-fold vs 1.6-fold at 8wks in the WT 

and Nmp4-/- mice, respectively). We observed similar PTH-responsive femoral and L5 

profiles between younger, ovary-intact WT and Nmp4-null mice (Robling, Childress et al. 

2009, Childress, Philip et al. 2011, He, Childress et al. 2013). The histomorphometry and 

serum data reported here tracked the PTH-induced increases in bone mass in the ovx 

animals showing strong treatment effects for bone formation parameters MAR, BFR, and 

MS/BS (at 4wks treatment) as well as strong increases in bone remodeling serum P1NP 

and CTX (at 8wks treatment). However, these parameters did not distinguish the 

genotypes in regards to the amount of bone formed over this time period as was achieved 

with the µCT data. Interestingly, the histomorphometry data did not distinguish the 

differences in PTH-induced bone formation in ovary-intact WT and Nmp4-/- mice 

(Childress, Philip et al. 2011). Therefore, this may indicate that Nmp4 regulates PTH-

induced bone formation predominantly in the early treatment period, consistent with an 

expanded pool of osteoprogenitors poised for mobilization. A more extensive time course 

for harvesting histomorphometry samples may be required to capture this aspect of the 

phenomenon.  

 The most robust phenotypic characteristic of Nmp4 ablation is the exaggerated 

bone formation response to PTH or BMP2, which suggests that the adult mice harbor an 
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increased number of BM MSPCs with heightened sensitivity to osteoanabolic signals. 

Disabling Nmp4 has no observable impact on embryonic or perinatal skeletal 

development. Adult MSPCs are a heterogeneous population of multipotent stem, 

progenitor, and stromal cells that contribute to BM homeostasis (Mizoguchi, Pinho et al. 

2014). In mouse bone marrow much of the CFU-F activity is in the nestin+ cell population 

and in the human marrow the CD146+ population (Sacchetti, Funari et al. 2007, 

Mizoguchi, Pinho et al. 2014). In ovary-intact, Nmp4-/- mice we observed a 4-fold increase 

in the frequency of CD45-/CD105+/CD146+/nestin+ cells irrespective of treatment (PTH 

vs vehicle control), which paralleled the magnitude increase in CFU-F and CFU-Falk phos+ 

cell number in culture (He, Childress et al. 2013). Similarly, the ovx Nmp4-/- mice exhibited 

an approximate 3-fold increase in the CD45-/CD105+/CD146+/nestin+ cells at 8wks post-

op compared to the ovx WT animals. Nevertheless, it is not clear whether this potential 

source of osteoprogenitors is inexhaustible since at 12wks ovx post-op there was no 

statistical difference in the number of BM CD45-/CD105+/CD146+/nestin+ cells between 

the Nmp4-/- and WT mice but there was a significant increase in the number of these cells 

in the vehicle-treated null PBL. The origins and functional significance of circulating 

osteoprogenitors are not fully understood (Pirro, Leli et al. 2010, Pignolo and Kassem 

2011), but these cells may contribute to the enhanced osteogenic reserve of the Nmp4-/- 

mice. 

 The enhanced osteogenic potential of the Nmp4-/- BM as measured by the 

frequency of cells capable of becoming osteoprogenitors persists in expanded Nmp4-/- 

MSPC cultures over 5-10 passages and removed from the supporting CD8+ T cells. In 

culture these cells displayed a modest increase in proliferative activity and perhaps this 

aspect of the phenotype contributes to the observed expanded pool of osteoprogenitors 

in vivo. In an earlier study, Noda and colleagues demonstrated that Nmp4-/- BM yielded 

significantly more CFU-FOb mineralizing colonies at passage P0 than WT BM [Morinobu et 

al., 2005]. Our present data extend these observations and show that the serially 

passaged Nmp4-/- MSPCs maintain a strikingly enhanced capacity for mineralization 

compared to the capacity of the WT cultures. The mechanisms underlying this phenotype 

remain to be elucidated, however the IGF1/Akt pathway plays a significant role in MSC 

proliferation and mineralization [Kumar and Ponnazhagan, 2012; Xian et al., 2012] and 

the glucocorticoid pathway governs MSC mineralization (Langenbach and Handschel 

2013), both targets of Nmp4. Taken together these observations suggest that there is a 

cell autonomous role of Nmp4 for regulating MSPC osteogenesis.  
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 Further parsing of the enhanced Nmp4-/- BM osteogenic potential implicates the 

elevated frequency of CD8+ T cells in both ovary-intact and ovx Nmp4-/- mice, although 

this requires functional confirmation in these models. The ovx null animals exhibited 

elevated numbers of CD8+ T cells in both BM and PBL compartments throughout the 

entire treatment regimen, similar to what we previously observed in the younger ovary-

intact Nmp4-/- mice, although this increase was limited to the BM (He, Childress et al. 

2013). The elevated number of CD8+ T cells is intriguing since these cells are documented 

to amplify the PTH anabolic response (Terauchi, Li et al. 2009, Bedi, Li et al. 2012). 

MSPCs regulate T cell proliferation and survival (Wang, Zhao et al. 2012) and perhaps 

disabling Nmp4 de-represses this aspect of the cell-cell interaction, although this apparent 

alteration in proliferation/survival may be a cell autonomous feature of the Nmp4-/- T cell 

phenotype. It remains to be determined whether the Nmp4-/- phenotype requires CD8+ T 

cells for enhanced PTH anabolism or whether this phenomena is dependent on increased 

MSPC number/function or both. 

 Disabling Nmp4 did not protect the mice from ovx-induced bone loss, indeed the 

initial rate of loss during the first 4wks after ovariectomy was higher (L5) or nearly higher 

(distal femur) in the Nmp4-/- mice. These animals harbor a modestly elevated number of 

osteoclast progenitors (CFU-GM) (He, Childress et al. 2013) that upon differentiation 

exhibit an enhanced bone-resorbing activity in vitro (Childress, Philip et al. 2011). 

Therefore a decrease in estrogen might accentuate this aspect of the phenotype. 

Moreover, differences in sex steroid levels may underlie why intact male Nmp4-/- mice did 

not lose bone under hind limb suspension (Hino, Nakamoto et al. 2007). As mentioned, 

the Nmp4-/- baseline phenotype includes an occasional unprovoked enhancement in 

trabecular architecture, which we observed in the present study. That is to say, despite 

the elevated initial bone loss, the cohort of sham and ovx Nmp4-/- mice had more femoral 

and L5 trabecular bone compared to WT at the time of harvest (Table 4-3). However, there 

was no statistical difference between vehicle-treated animals in either the 4wk or 8wk 

hormone therapy cohorts (Figures 4-2 and 4-3). Longitudinal studies for serum turnover 

markers coupled with pQCT in live mice could be used to track the real-time dynamics of 

ovx-induced bone loss and subsequent therapy-induced bone gain between the WT and 

Nmp4-/- mice. In lieu of this, we employed a 2-way ANOVA, which incorporates differences 

in control groups, to evaluate whether there is an interaction between genotype and 

treatment. 
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 Bioinformatic profiling of ChIP-seq data derived from bone, blood, and embryonic 

stem cells identifies Nmp4 as a negative regulator of cellular biosynthetic processes and 

distinguishes several pathways by which this transcription factor potentially regulates the 

number and stimuli responsiveness of MSPC-derived osteoprogenitors. Although Nmp4 

is constitutively expressed in several tissues (Thunyakitpisal, Alvarez et al. 2001) and 

targets many of the same genes in multiple cell types, several of these core target genes 

are particularly consequential to osteogenesis and bone metabolism/physiology. It may 

be the unique expression profile of adult MSPCs that make them particularly vulnerable 

to the action of Nmp4 ablation in the global knockout. The enhanced frequency of Nmp4-

/- MSPCs and their heightened sensitivity to osteoanabolic differentiation signals may 

occur by de-repressing pathways supporting these phenotypic characteristics while 

conversely diminishing the activities of pathways repressive to them. This hypothesis is 

consistent with previous studies identifying Nmp4 as a context dependent transcription 

factor that can accommodate or suppress gene activity (Thunyakitpisal, Alvarez et al. 

2001, Shen, Nakamoto et al. 2002, Torrungruang, Alvarez et al. 2002, Shah, Alvarez et 

al. 2004).  

 Our ChIP-seq/GO map predicts that Nmp4 suppresses IGF1 and BMP2 stimulus 

response, both key local mediators of PTH anabolic action (Elis, Courtland et al. 2010, 

Yu, Zhao et al. 2012). We experimentally confirmed that the Nmp4-/- bone marrow stromal 

cells exhibited an exaggerated IGF1-induced Akt phosphorylation compared to their WT 

counterparts. The IGF1-Akt pathway plays a well-described significant role in bone 

metabolism (Elis, Courtland et al. 2010, Bikle and Wang 2012, Sun, Kim et al. 2013, 

Tahimic, Wang et al. 2013). How the transcription factor Nmp4 governs Akt signaling 

remains to be determined. Nmp4 specifically targets Akt2 of the three Akts expressed in 

mammals. Akt2 is required for BMP2-mediated MSPC osteogenic differentiation, while 

Akt1 is dispensable [Mukherjee et al., 2010]. Loss of Akt2 prevents induction of Runx2 

gene expression in MSPCs (Mukherjee, Wilson et al. 2010). Other Nmp4 Akt pathway 

target genes include phosphatidylinositol 3-kinase (Pi3k), pyruvate dehydrogenase kinase 

(Pdk1), β-arrestin 2 (Arrb2), and protein tyrosine phosphatase 4a1 (Ptp4a1). Arrb2 plays 

multiple regulatory roles in bone response to anabolic PTH including the induction of 

MSPC differentiation (Bouxsein, Pierroz et al. 2005, Yu, Zhao et al. 2012). Previous 

studies have demonstrated that Nmp4 also suppresses BMP2 stimulus response in 

osteogenic cells (Shen, Nakamoto et al. 2002, Morinobu, Nakamoto et al. 2005, Alvarez, 

Childress et al. 2012) and our ChIP-seq/GO map identifies Smad7 and Tob2 as potential 
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Nmp4 target genes, both of which inhibit BMP signaling [Yano et al., 2012; Gámez et al., 

2013; Ajima et al., 2008; Yoshida et al., 2000; Takahashi et al., 2012]. 

 The ChIP-seq/GO analysis identified other potential Nmp4 targets worth exploring 

as primary or collateral pathways in suppressing MSPC frequency and osteoanabolic 

response (Figure 4-10). Briefly, Nmp4 binds to the glucocorticoid receptor (GR) gene and 

IPA analysis identifies the GR signaling pathway as a significant Nmp4 target (Appendices 

1 and 2). Endogenous glucocorticoids drive osteogenic differentiation [Hamidouche et al., 

2008; Eijken et al., 2006] and the exaggerated mineralization of the Nmp4-/- MSPCs may 

in part, be the response of the cells to the low concentration of added dexamethasone. 

Nmp4 targets numerous genes that comprise or regulate heterochromatin including the 

polycomb repressive complexes 1 and 2 (PRC1, PRC2), which are epigenetic modifiers 

governing the equilibrium between stemness and differentiation in pluri- and multipotent 

cell populations (Aloia et al., 2013; Surface et al., 2010). Nmp4 itself may engage with 

chromatin complexes. The Nmp4 homopolymeric (dA•dT) consensus sequence can act 

as a nucleosome positioning signal (Hughes et al., 2012; Raveh-Sadka et al., 2012) and 

the ENCODE ChIP-seq Significance profile shows that Nmp4 co-occupies the core target 

genes with numerous chromatin remodeling proteins. The ubiquitin-proteasome and the 

unfolded protein response (UPR) pathways are identified as potential Nmp4 targets, and 

these may contribute to the observed enhanced IGF1/Akt and BMP2/SMAD signaling in 

the Nmp4-/- osteogenic cells (Figure 4-10). Proteasomes regulate osteoblast differentiation 

[Zhao et al., 2003; Qiang et al., 2012] and proteasome inhibitors induce MSPC osteogenic 

differentiation and enhance bone formation [Giuliani et al., 2007; Mukherjee et al., 2008; 

Lund et al., 2010]. Treatment of mouse embryonic fibroblasts with the proteasome inhibitor 

MG132 significantly increased Igf1-induced Akt phosphorylation, since this growth factor 

not only mediates Akt phosphorylation but also ubiquitination and degradation of the 

activated Akt [Wu et al., 2011]. BMP2-induced osteoblast differentiation activates the 

PERK–eIF2a–ATF4 UPR pathway [Tanaka et al., 2014; Saito et al., 2011]. Gadd34, an 

identified target gene of Nmp4, inhibits this BMP2-UPR mechanism [Schewe and Aguirre-

Ghiso, 2009]. Thus disabling Nmp4 may decrease Gadd34 expression and contribute to 

the enhanced BMP2 response observed in the Nmp4-KO mice [Morinobu et al., 2005; 

Shen et al., 2002]. Finally, Nmp4 targets numerous transcription factors involved in 

regulating MSPC self-renewal, proliferation, and osteogenic differentiation. 

 The present data also contribute to our knowledge as to how Nmp4 works at the 

molecular level. Nmp4 binds throughout the genome but is primarily localized to regions 
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near the TSS and within the gene, consistent with mediating a regulatory role. GEM 

analysis confirmed the AT-rich homopolymeric binding-site and did not identify other 

consensus sequences expected only if Nmp4 also interacted with the genome indirectly 

via other DNA-binding proteins. Nmp4 association with the genome is responsive to PTH 

since hormone decreased genome-wide occupancy in the MC3T3-E1 cells after 1hr of 

exposure. However, the impact of PTH on Nmp4 occupancy was gene and site-specific 

and hormone stimulation was observed to induce, remove, or have no effect on Nmp4 

genomic occupancy. This may further augment the fine control that this transcription factor 

has over the regulation of osteoprogenitor and/or bone-forming capacity. 

 There is a critical need for more safe and improved osteoanabolic agents beyond 

teraparatide/PTH [Lewiecki, 2011]. We have taken a two-pronged approach in our 

research to serve this clinically unmet need: (1) identify molecular and cellular 

mechanisms that could be used, for example in an adjuvant setting to promote enhanced 

efficacy or less frequent dosing with current osteoanabolic agents; and (2) identify 

innovative approaches to identify new drug targets/pathways or mechanisms of action that 

would provide needed substrate for the future drug discovery initiatives in bone disease, 

including osteoporosis. Our discovery-driven approaches have mapped a global network 

of Nmp4-regulated pathways potentially comprising a bone anti-anabolic axis. Further 

functional studies charting the hierarchy and interactions of theses network pathways will 

provide a novel integrated mechanism underlying the natural constraints on bone 

formation. We postulate that the Nmp4 anti-anabolic network may constitute a novel 

strategy to identify and reveal pharmacologically accessible pathways for adding new 

bone to the old skeleton. 
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Figure 4-1: Schematic of treatment regimen for WT and Nmp4-/- mice; Group 1 mice were 

subjected to ovariectomy (ovx) or sham operation at 12wks of age and evaluated for bone 

loss 4wks post-op (16wks of age). Group 2 mice were ovx at 12wks of age and began 

PTH or vehicle therapy at 16wks of age for a duration of 4wks and 8wks. Endpoint 

analyses included micro–computed tomography µCT, serum analysis for N-terminal 

propeptide of type 1 procollagen (P1NP) and C-terminal telopeptides (CTX), and dynamic 

histomorphometry. 
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Figure 4-2: Disabling Nmp4 enhances PTH restorative therapy in the distal femur of ovx 

Nmp4-/- mice [A] Interaction plots of femoral trabecular bone volume/total volume (BV/TV) 

of ovx WT and ovx Nmp4-/- mice as determined by µCT at 4wks of treatment and 8wks of 

treatment. Data are average ± SD, number of mice/experimental group = 8-9). Statistical 

differences were determined using a 2-way ANOVA and significance was set at p≤0.05. 

The Tukey’s HSD post hoc test was used to determine differences between the treatment 

groups. There were genotype, treatment and genotype x treatment interaction at both time 

points. There was no difference between the vehicle-treated WT and Nmp4-/- mice. [B] 

µCT images showing PTH-induced improvements in distal femur trabecular architecture 

in ovx WT and Nmp4-/- mice after 8 weeks of treatment (12wks post-op, 24wks of age).   
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Figure 4-3: The exaggerated response to anabolic PTH persists in the L5 vertebra of ovx 

Nmp4-/- mice. [A] Interaction plots of L5 vertebra bone volume/total volume (BV/TV) of 

ovx WT and ovx Nmp4-/- mice as determined by µCT at 4wks of treatment and 8wks of 

treatment. Data are average ± SD, number of mice/experimental group = 8-9). Statistical 

differences were determined using a 2-way ANOVA and significance was set at p≤0.05. 

The LS Means Student t post hoc test was used to determine differences between the 

treatment groups. There were genotype, treatment effects at both time points and a 

genotype x treatment interaction at 8wks therapy. There was no difference between the 

vehicle-treated WT and Nmp4-/- mice. [B] µCT images showing PTH-induced 

improvements in L5 trabecular architecture in ovx WT and Nmp4-/- mice after 8 weeks of 

treatment (12wks post-op, 24wks of age).  
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Figure 4-4: Ovx does not abrogate the expanded population of osteoprogenitors and 

CD8+ T cells in Nmp4-/- mice. FACS analysis of BM and PBL osteoprogenitors, CD8+ T 

cells, and CD4+ T cells. [A, D] The frequency of femoral BM and PBL CD45-

/CD105+/CD146+/CD105+/nestin+ osteoprogenitor cells in WT and Nmp4-/- mice at the 

end of 4wks and 8wks treatment with intermittent PTH or vehicle control; [B, E] the 

frequency of BM and PBL CD8+ T cells from the WT and Nmp4-/- mice; [C, F] the frequency 

of BM and PBL CD4+ T cells from the WT and null mice. Data are average ± SD, number 

of mice/experimental group = 8–9; Statistical differences were determined using a 2-way 

ANOVA and significance was set at p≤0.05. 
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Figure 4-5: Expanded Nmp4-/- MSPCs exhibit enhanced proliferation and mineralization 

in culture. [A] Comparative growth rates of expanded WT and Nmp4-/- MSPCs. Cell 

counts/day (n=4 lines per genotype log10 cells/well, 3 wells/sample, average ± SD, t test, 

t<0.05). Note: each ‘line’ is derived from a single mouse [B] Alkaline phosphatase (alk 

phos) and alizarin red staining of a WT and Nmp4-/- MSPC cultures from Day7-Day28. 

See text for details 
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Figure 4-6: Nmp4 associates with core target genes common to multiple cell types and 

acts as a negative regulation of cellular biosynthetic processes [A] Venn diagram 

illustrating the shared Nmp4 target genes in the MC3T3-E1 osteoblast-like cells (vehicle-

treated), and the three ENCODE cells lines, ES-E14 (embryonic stem cells), MEL, and 

CH12 cells (B-cell lymphomas). [B] DAVID/REVIGO gene ontology (GO) profile of Nmp4 

core target genes. 
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Figure 4-7: KEGG pathway analysis of the Nmp4 ‘core’ genes predicts that the 

mTOR/IGF1/Insulin response limb is regulated by the proposed anti-anabolic axis. [A] 

KEGG readout from DAVID analysis showing the identity of Nmp4 target genes (red stars) 

in the mTOR/IGF1/Insulin signaling pathway. [B] Interaction plot of IGF1-induced Akt 

phosphorylation in immortalized WT and Nmp4-/- bone marrow stromal cells (BMSC). 

Data are average ± SD, n=3 wells/treatment. Statistical differences were determined using 

a 2-way ANOVA and significance was set at p≤0.05. The Tukey’s HSD post hoc test was 

used to determine differences between the treatment groups. There was a genotype, 

treatment and genotype x treatment interaction. There was no difference between the 

vehicle-treated WT and Nmp4-/- cells. This experiment was performed three separate 

times, all yielding the same result).  
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Figure 4-8: Nmp4 binds to AT-rich DNA typically proximal to TSS sites or within intragenic 

regions. [A] Genome-wide mapping of the Nmp4 binding sites show that most sites are 

distributed in the TSS and intragenic regions of the genome. ChIP-seq analysis included 

vehicle-treated and PTH-treated MC3T3-E1 osteoblast-like cells (vMC and pMC, 

respectively) and three murine cell lines from the ENCODE Consortium including ES-E14 

(Es14), which are E14 undifferentiated mouse embryoinic stem cells, and two mouse 

erythroleukemia cell lines (Ch12 and MEL) derived from B-cell lymphomas. [B] GEM 

analysis for the Nmp4 consensus sequence derived from MC3T3-E1 cells. A minimal k-

mer width of 6 and maximum of 20 were used. The optimal position weight matrix (PWM) 

score for the MC3T3-E1 data was 10.07. The hypergeometric P-value (hgp) was 1e-

1466.1. 
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Figure 4-9: ChIP-seq reveals Nmp4 binding profiles at specific gene loci. Mouse MC3T3-

E1 cells were seeded into twenty-one 150mm plates at an initial density of 50,000 

cells/plate (320 cells/cm2) and maintained in αMEM complete medium + ascorbic acid for 

14 days. Prior to harvest cells were treated with 25nM hPTH(1-34) or vehicle control for 

1hr. Processing for ChIP-seq analysis was performed as described in the Materials and 

Methods. Sequences (50nt reads, single end) were aligned to the mouse genome (mm10) 

using the BWA algorithm. Alignments were extended in silico at their 3’-ends to a length 

of 150bp, which is the average genomic fragment length in the size-selected library, and 

assigned to 32-nt bins along the genome. Nmp4 (Znf384) peak locations were determined 

using the MACS algorithm (v1.4.2) with a cutoff of pvalue = 1e-7. The genomic loci 

including the chromosome number and nucleotide interval are indicated. Read scales are 

indicated on the Y-axis. An arrow indicates the transcriptional start sites and direction of 

transcription for each of the genes; vertical boxes within the gene indicate exons. The 

Nmp4 ChIP-seq gene profiles include (A) Nid2 (B) Akt2, (C) Pdk1 (D) ccdc53, (E) Arrb2 

and (F) Irs1. The input DNA profiles were devoid of peaks. 
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Figure 4-10: Schematic of hypothetical Nmp4 anti-anabolic axis based on ChIP-seq/GO 

analyses and experimental data. We propose that Nmp4 is a negative regulator of cellular 

biosynthetic processes; it suppresses target genes that are positive regulators of 

growth/development and conversely supports genes that repress these pathways. 

Disabling Nmp4 enhances the expansion of self-renewing osteoprogenitors while 

sensitizing them to osteoanabolic differentiation signals. This involves the alteration of 

polycomb repressor complex activity and chromatin accessibility. Nmp4 target genes that 

code for proteins comprising these complexes including histone methyltransferases 

(HMT) and histone demethylases (HDM) are listed. Furthermore we propose that Nmp4 

regulates the expression of genes that govern the response to the local mediators of PTH 

action including the IGF1 and BMP2 signaling pathways. These include genes directly 

involved in these pathways and the collateral pathways of ubiquitin-proteasome activity 

and the unfolded protein response (UPR). This select list of Nmp4 target genes is from 

either the core target gene list or from the MC3T3-E1 list. Abbreviations: DUBs 

deubiquitinating enzymes, HMT histone methyltransferase; HDM histone demethylases; 

PRC1 polycomb repressor complex 1; PRC2 polycomb repressor complex 2 
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Figure 4-11: qRT-PCR validates the ChIP-seq profiles. [A] The Nmp4 ChIP-seq profile for 

the gene Col1a1. The genomic loci including the chromosome number and nucleotide 

interval are indicated. Read scale is indicated on the Y-axis. An arrow marks the 

transcriptional start site and direction of transcription; vertical boxes within the gene 

identify exons. [B] qRT-PCR was used to authenticate the ChIP-seq peaks as described 

in the Materials and Methods. 
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Table 4-1: Bone loss data.  
The % change body weight, uterine weight, microCT (distal femur and L5 vertebra) and 
serum formation/resorption markers from WT and Nmp4-/- mice after ovx or sham 
operation 4wks post-op. Data are average ± SD, number of mice/experimental group=8-
14 [4 mice in WT SHAM uterine weight]). Statistical significance was set at p≤0.05 and 
differences were determined using a 2-way ANOVA. (G x T= Genotype x Treatment 
interaction) 
 
            WT  Nmp4-/-     2-WAY ANOVA p-values 
                                  SHAM OVX      SHAM  OVX   Genotype    Treatment      G x T 
%∆ Body weight    2.48±7.73   8.65±5.48  4.14±4.70    5.66±2.94      0.69             0.03             0.17 
Uterine weight (g)  0.10±0.05   0.04±0.02  0.10±0.02   0.05±0.02       0.30          <0.0001      0.34 
 
Distal Femur 
BV/TV           0.019±0.004   0.012±0.004  0.038±0.011  0.021±0.010  <0.0001   <0.0001       0.06 
SMI                 3.818±0.250   4.055±0.357  3.387±0.263  3.810±0.294    0.0008     0.0011       0.32 
Tb.N (mm-1)    2.554±0.239   2.165±0.385  3.128±0.218  2.797±0.276  <0.0001 0.0004        0.76 
Tb.Th (mm)    0.040±0.005    0.041±0.005  0.039±0.003 0.037±0.004    0.08 0.87            0.23 
Tb.Sp (mm)    0.393±0.036    0.477±0.097  0.317±0.026 0.359±0.037  <0.0001 0.0012        0.25 
 
L5 Vertebra  
BV/TV            0.189±0.028   0.177±0.013   0.253±0.019 0.212±0.019   <0.0001 0.0004         0.05 
Tb.N (mm-1)   3.797±0.513   3.580±0.285   4.491±0.345 4.022±0.254   <0.0001 0.0091        0.32 
Tb.Th (mm)   0.050±0.003         49±0.002   0.056±0.002 0.053±0.002   <0.0001 0.0032        0.02 
Tb.Sp (mm)   0.227±0.023    0.229±0.013   0.202±0.020 0.214±0.012     0.0013   0.25            0.44 
 
Serum   
   WT       Nmp4-/-           2-WAY ANOVA p-values  
      Pre-op         Post-op4wks       Pre-op           Post-op4wk      Gene     Treat        G x T 
P1NP (ng/ml)   6.018±1.794  5.830±1.349   6.017±1.412    4.769±1.223      0.19       0.08          0.19 
CTX (ng/ml)  13.498±2.423 12.932±2.910 13.372±1.878 12.898±2.717   0.92        0.46          0.96 
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Table 4-2: PTH-induced bone gain data.  
MicroCT (distal femur and L5 vertebra) from ovx WT and ovx Nmp4-/- mice after 4 wks and 
8wks PTH/VEH therapy. Data are average ± SD, number of mice/experimental group = 8-
9. Statistical significance was set at p≤0.05 and differences were determined using a 2-
way ANOVA. (Geno=Genotype, Treat=Treatment, G x T= Genotype x Treatment 
interaction). 
 
Distal Femur 
4wks                                 WT              Nmp4-/-                     2-WAY ANOVA p-values 
                    VEH                PTH              VEH                  PTH             Geno    Treat    G x T 
Conn D (mm-3)  3.180±3.87  33.230±26.73  9.681±15.979  67.533±14.111  0.0018   <0.0001  0.03 
SMI                  3.752±0.437   3.013±0.384   3.472±0.327     2.514±0.113    0.0025   <0.0001  0.36 
Tb.N (mm-1)         2.1±0.519    2.441±0.281  2.712±0.241     2.833±0.224    0.0002     0.06       0.36 
Tb.Th (mm)     0.039±0.010    0.042±0.007  0.033±0.003     0.044±0.003     0.54        0.004     0.09 
Tb.Sp (mm)     0.510±0.157    0.409±0.051  0.370±0.036     0.342±0.032     0.0019    0.04       0.24 
8wks 
Conn D (mm-3)  3.123±5.307  38.658±14.91   0.982±1.103  58.128±13.570  0.03   <0.0001  0.0064 
SMI                   3.808±0.479    2.470±0.284   3.589±0.218    2.262±0.141    0.05 <0.0001      0.96 
Tb.N (mm-1)      2.132±0.297    2.164±0.431   2.286±0.145    2.552±0.277    0.02      0.17          0.28 
Tb.Th (mm      0.037±0.006     0.048±0.005   0.030±0.004    0.049±0.003    0.12   <0.0001      0.02 
Tb.Sp (mm)     0.476±0.072     0.471±0.109   0.438±0.033    0.378±0.045    0.01     0.20          0.27 
 
L5 Vertebra 
4wks                                 WT              Nmp4-/-                     2-WAY ANOVA p-values 
                    VEH                PTH              VEH                  PTH             Geno    Treat    G x T 
 Tb.N (mm-1) 3.453±0.451    4.875±0.587  3.891±0.504    5.518±0.381    0.0049  <0.0001   0.56 
Tb.Th (mm)       0.051±0.002    0.049±0.002  0.054±0.004    0.051±0.001    0.04        0.03       0.60 
Tb.Sp (mm)       0.246±0.021    0.224±0.030  0.229±0.021    0.197±0.021    0.02       0.0036    0.52 
8wks 
Tb.N (mm-1)      4.046±0.917     5.648±1.191  3.627±0.235    5.906±0.754    0.79     <0.0001    0.26 
Tb.Th (mm)      0.053±0.003     0.049±0.004   0.055±0.001   0.054±0.001    0.0018   0.0044    0.09 
Tb.Sp (mm)      0.239±0.021     0.206±0.037   0.256±0.020   0.186±0.023    0.86     <0.0001    0.05 
 
  

97 
 



Table 4-3: Histomorphometry and serum analyses.  
Dynamic bone histomorphometry data of the distal femur from WT and Nmp4-/- mice 
treated with intermittent PTH or vehicle for 4wks (8wks post-op). Sera data were collected 
at the end of 8wks treatment (12wks post-op). The parameters include mineral apposition 
rate (MAR), mineralizing surface/bone surface (MS/BS), and bone formation rate (BFR). 
Data are average ± SD, number of mice/experimental group = 4-7. A 2-way ANOVA was 
used to determine statistical differences and significance was set at p≤0.05. 
(Geno=Genotype, Treat=Treatment, G x T= Genotype x Treatment interaction). 
 
 
                                  WT              Nmp4-/-                     2-WAY ANOVA p-values 
                    VEH                PTH              VEH                  PTH            Geno    Treat    G x T 
Dynamic histo 
MAR (µm/day)  2.28±0.37 3.80±0.73     2.29±0.37      3.61±0.40    0.70     <0.0001      0.66 
MS/BS (%)  0.41±0.09 0.55±0.05     0.44±0.10      0.52±0.06        0.98          0.01     0.45 
BFR (µm2/µm/day)  0.95±0.28 2.09±0.52     1.01±0.25      1.86±0.22    0.60    <0.0001     0.37 
 
 
Serum 
                                WT              Nmp4-/-                     2-WAY ANOVA p-values 
  VEH8wks               PTH8wk            VEH8wk               PTH8wk               Geno      Treat     G x T 
P1NP (ng/ml)  3.147±0.653   10.066±2.66    2.806±0.760     8.042±3.304   0.19     <0.0001    0.34 
CTX (ng/ml)  11.466±2.239   15.147±3.518  9.361±1.222   14.157±1.532   0.12       0.0002    0.56 
 
 
  

98 
 



 
 
 
 
Table 4-4: DAVID profile of KEGG pathway mapping.  
 
GO Term Pathways     FDR 
TOR signaling pathway    0.003 
Insulin signaling pathway    0.004 
Chronic myeloid leukemia    0.026 
JAK-STAT signaling pathway    0.026 
Neurotrophin signaling pathway   0.034 
 
Only pathways with an FDR of p<0.05 are listed  
 
 
 
 
 
 
 
 
Table 4-5: ENCODE ChIP-Seq Significance Tool profile for enriched transcription 
factors [TFs] within the Nmp4 target core gene list  
 
Factor  Q-value*  Factor  Q-value  
Nmp4  0.00E+00  Max  0.00E+00 
CHD2  0.00E+00  Mxi1  0.00E+00 
CTCF  0.00E+00  NELFe  0.00E+00 
GCN5  0.00E+00  Pol2  0.00E+00 
HCFC1 0.00E+00  SIN3A  0.00E+00 
MAZ  0.00E+00  TBP  0.00E+00 
p300  0.00E+00  c-Myc  7.352e-317 
* Hypergeometric test; Benjamini-Hochberg; (select TFs from 72 entries). 
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CHAPTER 5 

Summary 
 

We have been able to improve the efficacy of intermittent parathyroid in a mouse 

model of post-menopausal osteoporosis using a global knockout for the transcription 

factor Nmp4. The KO mice treated with anabolic doses of PTH did show enhanced 

response to hormone after 4 and 8 weeks as measured by uCT. This recapitulates the 

phenotype seen with healthy Nmp4-Kmice after 3 and 7 weeks of therapy. Bone marrow 

from these mice showed a nearly 4-fold increase for frequency of CD146+/Nestin+ 

osteoprogenitors and CD8+ T-cell. However, these increased pools of cells did not confer 

protection from bone loss associated with estrogen loss due to ovx. This is in contrast to 

male mice which are null for Nmp4/CIZ and protected from osteopenia associated with 

hind limb suspension. We and others have also shown both in vitro and in vivo that Nmp4 

restricts multiple anabolic stimuli in what appears to be a limited set of cells based on the 

unremarkable phenotype of the Nmp4 global knockout animal. A genome wide ChIP-seq 

approach using vehicle and PTH treated osteoblasts has confirmed Nmp4 binding to a 

homopolymeric consensus sequence and also its PTH-sensitive DNA occupancy. This 

discovery driven technique also suggests biochemical pathways and biological processes 

which may contribute to the Nmp4-KO phenotype. The data included herein however 

leaves some questions unanswered. In particular the role, if any, that CD8+ T-cells play 

in enhancing the PTH response is unknown. Though enhanced responses to IGF1, BMP2 

and fluid sheer stress have been shown in vitro, their contribution to the baseline 

differences in osteoprogenitors, proliferation and pool size, has yet to be experimentally 

shown. Also Nmp4 acts as an architectural transcription factor and GO analysis of its core 

target genes suggests control over chromatin organization. How this protein may affect 

genomic super structure and change genetic expression is still largely undescribed. The 

future research into how Nmp4 restricts bone gain in response to anabolic stimuli will 

should include the cell type contributions of osteoprogenitors, T-cells, and osteoclast 

progenitors. Also the difficult question of understanding how loss of Nmp4 appears to 

affect only a select number of progenitor cell types should be addressed. The discussion 

will summarize these findings, open questions and future directions for research. 
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Enhanced response to PTH 

Previous work published in the Bidwell lab looked at wild type and Nmp4-KO mice 

treated with PTH (30µg/kg/day) or vehicle for 7 weeks. As predicted the KO mice 

experienced a significantly enhanced response to hormone. This was consistent with other 

work using Bmp2 which showed a similar response. Importantly, the PTH demonstrated 

the enhanced response to a second anabolic agonist. Moreover, intermittent PTH is the 

only FDA approved anabolic therapy to treat osteoporosis, a devastating and costly 

disease. Work included in this thesis went on to characterize this phenotype further. After 

2 weeks of PTH therapy estrogen replete WT and Nmp4-KO female mice responded 

equally to PTH. By 3 weeks of treatment the KO mice had begun to pull away with more 

bone anabolism. BMP2 injected directly on calvaria resulted in enhanced bone gain in the 

KO mice after 10 days. The results are not directly comparable because of different 

treatment regimens (systemic PTH vs. local BMP2 delivery), but it remains possible that 

the enhanced BMP2 response is upstream of and contributes to PTH hypersensitivity. 

This concept is constent with ChIP-seq analysis which predicts Nmp4 restricts biological 

processes which control Bmp2 signaling, potentially by limiting the unfolded protein 

response. Additionally, PTH engaging the PTHR1 receptor induces internalization of the 

complex as well as BMP2 inhibitors such as Noggin thus potentiating BMP2 signals. 

Whether crosstalk between these two pathways contributes to the enhanced response to 

PTH remains unclear. Nevertheless, by 7 weeks of PTH treatment the KO mice continued 

to increase cancellous bone production. The formation marker osteocalcin was also still 

increasing at the end of this treatment period as well after WT levels began to decline. 

This suggests the anabolic window for increased bone production has been extended in 

the KO mice. OVX Nmp4-KO mice have a similar pattern of enhanced response. At 4 

weeks and 8 weeks of treatment the KO mice still have enhanced bone in the distal femur 

and L5 vertebra as evidenced by a significant genotype x treatment interaction for BV/TV 

from microCT. The magnitude of the difference was less, but still significant. Contrary to 

the intact mice, the formation marker P1NP was used to monitor bone formation in the 

OVX study. This marker revealed a significant treatment effect, but not a difference 

between WT and Nmp4-KO animals. The reasons for this are unclear, but the easiest 

explanation is that the magnitude difference seen between PTH treated WT and Nmp4-

KO mice is captured in the intact mice, but not in the OVX group with a smaller magnitude 

difference. That said, other factors may contribute to this difference as well such as 

osteoclast activity which releases matrix bound osteocalcin. Because the KO phenotype 
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includes modest increases in osteoclast numbers and activity, the difference in markers 

may be the result of that increase. Vehicle treated OVX Nmp4-KO mice did experience 

increased bone loss 8 weeks post-OVX which was statistically significant in the L5 and 

nearly so in the distal femur which would support the argument that osteoclast activity 

increased the osteocalcin in the serum. However, this was only true in the OVX group and 

Tukey's HSD post-hoc tests did not reveal a difference in the vehicle treated animals 

indicating the osteoclast phenotype was not a dominant effect. Another reason for the 

discordant serum formation markers is the hypersensitivity to Bmp2, which induces 

expression of osteocalcin directly. The Nmp4-KO mice would be expected to increase 

expression of this marker if indeed PTH treatment potentiates Bmp2 signaling. P1NP on 

the other hand is a biochemical byproduct matrix deposition and not directly regulated by 

Bmp2 (or PTH).  

 

Differences in in BM cells 

One of the most striking aspect of this work is the discovery that the Nmp4-KO 

baseline phenotype includes an increase in the number of CD146+/Nestin+ 

osteoprogenitors. These cells contain a large fraction of the CFU-F population in the bone 

marrow which ultimately go on to form matrix producing osteoblasts [REF]. Their detection 

by FACS counting matches results from independent CFU-Ob and CFU-Falk phos+ 

clonogenic assays, and the increase is independent of PTH therapy. Expanded cultures 

of heterogeneous mesenchymal bone marrow stem and progenitors (MSPCs) from single 

animals demonstrated that Nmp4 acts to attenuate proliferation to a mild degree. These 

cultures also revealed that KO MSPCs have an accelerated differentiation based on 

alkaline phosphatase activity and mineralization assays. In the untreated KO animal these 

characteristics likely counterbalance the increased osteoclastogenic potential to yield an 

unremarkable phenotype which varies between indistinct from wild type to a modest 

increase in bone mass. This cell type expansion also renders the KO animals capable of 

an enhanced response when challenged with anabolic agents that result in progenitor 

recruitment and bone anabolism such as PTH and BMP2 (Yu, Zhao et al. 2012). 

Underpinning the MSPC expansion is potentially the hypersensitivity to growth factors 

such as IGF1. This is consistent with the dependence upon Igf1/Akt signaling seen with 

intermittent PTH treatment. Future studies to link IGF1 signaling with the expanded KO 

MPSCs and delineate cell stage specific sensitivity, as exists with BMP2, will confirm this 

hypothesis (Alvarez, Childress et al. 2012). 

102 
 



A largely unexplored, but potentially important observations is the increase of CD8+ 

T-cells in the Nmp4-KO bone marrow. This increase is not consistently seen in the 

peripheral blood of these animals. Parathyroid hormone is pleiotropic and directly affects 

CD8+ T-cells inducing the release of Wnt10b, a secreted glycoprotein which causes 

progenitor differentiation to osteoblasts. Work in Pacifici's laboratory has demonstrated 

the reliance of the intermittent PTH response on this interaction with T-cells (Terauchi, Li 

et al. 2009, Bedi, Li et al. 2012), and it would be important to evaluate if the increased 

numbers participate in the enhanced KO response. Based on the cell autonomous 

behavior seen in MSPC cultures, it is unclear if more T-cells in the marrow are required, 

dispensable, or contribute in part to the hyper response to hormone.  

 

The paradoxical observation that Nmp4-KO bone marrow contains more CFU-GM 

osteoclast progenitors, gives more osteoclasts in vitro, and these cells have a greater 

resorption capacity on dentin slices is again incompletely understood. These results are 

consistent with the transient increase in bone loss seen after OVX in the Nmp4-KO mice 

where osteoclast activity the predominate effector. It has been suggested that osteoclastic 

bone resorption is required for the PTH anabolic response [REF], though this is hypothesis 

is controversial [REF]. Regardless of whether osteoclasts participate in the enhanced PTH 

response, the fact that at baseline the Nmp4-KO animal is not osteopenic and we have 

observed no baseline differences in bone formation rate implies an increase in bone 

remodeling unit activation frequency. This remains to be experimentally determined, but 

could represent a higher 'idling' state in the KO marrow which is capable of greater 

response to anabolics.  

 

Differences in histomorphometry 

Dynamic histomorphometry in healthy female mice after 7 weeks of PTH treatment 

and OVX mice after 4 weeks of PTH did not reveal any differences in mineral apposition 

or bone formation rate despite seeing clear treatment effects for both parameters. This 

was unexpected and has not been resolved. Perhaps the most likely reason is that these 

parameters showed differences earlier in the treatment period. It also remains possible 

that the differences are subtle and cannot not be distinguished by these measurements. 

The enhanced response to PTH shows a steady progression whereby the KO mice 

respond equally as the WT to hormone then begin to put on more bone as a function of 
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time. So, the aggregate bone mass may be the result of small differences in formation rate 

that only reveal themselves after a period of time into the treatment regime.  

 

Discussion of ChIP-seq results 

Nmp4 is a nucleocytoplasmic shuttling transcription factor therefore its genomic 

binding occupancy can be interrogated with chromosome immunoprecipitation followed 

by high throughput sequencing. We choose the MC3T3 osteoblast-like cell model for this 

experiments. This model is widely used and supported by decades of literature. 

Importantly MC3T3-E1 cells can be differentiated in culture using ascorbic acid and beta-

glycerophosphate to approximate the maturation of pre-osteoblast to a mature, bone 

matrix synthesizing cell. These cells are a spontaneously immortal line originally cultured 

from newborn mouse calvaria (Sudo, Kodama et al. 1983). Our studies utilized subclone 

4, selected for it high alkaline phosphatase activity and robust response to PTH (Wang, 

Christensen et al. 1999). The cells were grown in osteogenic media for 14 days prior to 

harvest to represent a committed osteoblast that was producing matrix and experienced 

significant increases in the mature bone marker osteocalcin (Bglap). Gene ontology (GO) 

analysis of Nmp4 ‘core’ target genes predicted, and we have confirmed that cells lacking 

Nmp4 are hyper-responsive to IGF1 stimulation. Additionally, our GO results suggest 

potential mechanisms for hyper-sensitivity to BMP2 by identifying Tob2 and Smad7 as 

Nmp4 target genes; both of this gene products are endogenous inhibitors of Bmp2 

signaling. Further, Gadd34 is another core target gene which is involved in the unfolded 

protein response and contributes to down regulation of translation in professional 

secretory cells. Disrupting the unfolded protein response confers hypersensitivity to 

BMP2. Over 20 genes identified as core target genes are also involved in the chromatin 

remodeling which is central to mesenchymal stem cell differentiation (Chen and Dent 

2014). 

 

Conclusion 

This thesis presents evidence to show that Nmp4 acts to attenuate bone anabolic 

signals through a variety of possible cellular and molecular mechanisms. Bone marrow 

from the KO animal appears to be primed for anabolic signals which intermittent PTH 

exploits with the end result being more bone added to the skeleton. Though not completely 

described, the molecular mechanism for this attenuation involves the level of 

phosphorylated Akt which participates in many cellular processes such as proliferation 
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and differentiation. Nmp4 is a transcription factor which binds regulatory regions of several 

genes involved in these processes as well, thus the mechanism of action may be at the 

level of signal transduction and/or genetic expression. The protein itself is expressed in 

most tissues and is highly conserved at the nucleic acid and protein sequence levels 

implying conserved function. Despite its wide expression pattern however, mice without a 

functional copy of the gene have almost not baseline phenotype and no observed 

deleterious effects beyond sporadic spermatogenic defects. Thus Nmp4 or the pathways 

which it regulates may be an effective target for interventions to treat diseases of low bone 

mass.  
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Gm10762 
Gm10837 
Gm11184 
Gm11206 
Gm11292 
Gm11335 
Gm11336 
Gm11437 
Gm11453 
Gm11464 
Gm11474 
Gm11491 
Gm11521 

Gm11602 
Gm11612 
Gm11619 
Gm11627 
Gm11630 
Gm11680 
Gm11696 
Gm11715 
Gm11827 
Gm12035 
Gm12054 
Gm12057 
Gm12060 
Gm12063 
Gm12245 
Gm12257 
Gm12279 
Gm12308 
Gm12309 
Gm12314 
Gm12358 
Gm12396 
Gm12795 
Gm12951 
Gm12974 
Gm12981 
Gm13054 
Gm13182 
Gm13201 
Gm13256 
Gm13297 
Gm13334 
Gm13363 
Gm13375 
Gm13398 
Gm13447 
Gm13548 
Gm13559 
Gm13564 
Gm13626 
Gm13630 
Gm13657 
Gm13705 
Gm13770 
Gm13830 
Gm13836 
Gm13855 

Gm13936 
Gm14005 
Gm14167 
Gm14216 
Gm14455 
Gm14634 
Gm15411 
Gm15420 
Gm15454 
Gm15688 
Gm15747 
Gm15760 
Gm15787 
Gm15831 
Gm15860 
Gm15892 
Gm15903 
Gm15927 
Gm15962 
Gm16023 
Gm16185 
Gm16196 
Gm16197 
Gm16230 
Gm16274 
Gm16540 
Gm16557 
Gm16580 
Gm16740 
Gm16880 
Gm17077 
Gm17098 
Gm17112 
Gm17138 
Gm17157 
Gm17300 
Gm17617 
Gm17661 
Gm17705 
Gm19705 
Gm20257 
Gm20748 
Gm4221 
Gm4673 
Gm4978 
Gm5069 
Gm5134 

Gm5258 
Gm5428 
Gm5432 
Gm5464 
Gm5512 
Gm608 
Gm6225 
Gm6297 
Gm6444 
Gm6471 
Gm6525 
Gm7598 
Gm9812 
Gm9850 
Gm9900 
Gm9959 
Gm9985 
Gna13 
Gnb2 
Gnb2l1 
Gnl3 
Golga3 
Got2 
Gpbar1 
Gpn3 
Gpr19 
Gpr35 
Gpr82 
Gpr85 
Gramd1a 
Grb2 
Grcc10 
Grik4 
Gse1 
Gskip 
Gstt3 
Gtf2h2 
Gtf2i 
Gtf2ird2 
Gyk 
Gypc 
Gys1 
Gzmm 
H1f0 
H2afz 
H2-D1 
H2-DMb1 
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H2-DMb2 
H2-L 
Hacl1 
Hbp1 
Hdac7 
Hdgfrp2 
Heatr5a 
Helb 
Helz 
Herc4 
Hes1 
Hes7 
Hexim2 
Hic1 
Hic2 
Hif1a 
Hint2 
Hip1r 
Hira 
Hirip3 
Hist1h2ac 
Hist1h2af 
Hist1h2bb 
Hist1h2bc 
Hist1h3c 
Hivep1 
Hlcs 
Hlx 
Hmbs 
Hmg20b 
Hmox2 
Hnrnpf 
Hnrnph1 
Hnrnph3 
Hnrnpk 
Hnrnpl 
Hnrnpu 
Hnrnpul1 
Hnrnpul2 
Homer1 
Hoxb6 
Hoxb8 
Hoxc5 
Hoxd10 
Hoxd3 
Hps3 
Hsd17b12 

Hsp90ab1 
Hspa13 
Hspa4 
Hspb9 
I830077J02Rik 
Ica1 
Icam1 
Id3 
Ifi35 
Ift80 
Igf1r 
Igfbp6 
Ik 
Il1rap 
Il3ra 
Ilf2 
Ilf3 
Ilk 
Immt 
Impdh1 
Ing1 
Ing3 
Ing4 
Inip 
Ino80 
Ino80d 
Ino80e 
Inpp5b 
Ints8 
Ipo11 
Iqce 
Iqcg 
Irf2bp2 
Irf2bpl 
Irs3 
Itfg2 
Itgb2 
Itgb5 
Itm2b 
Itpkb 
Izumo4 
Jarid2 
Kalrn 
Kansl1 
Kars 
Kat2a 
Kat2b 

Kbtbd7 
Kcnh3 
Kctd19 
Kctd20 
Kdm3a 
Kdm4d 
Kdm5a 
Kif11 
Kif23 
Kif24 
Kif5b 
Klc1 
Klhdc10 
Klhl11 
Klhl18 
Kmt2d 
Kntc1 
Kpna2 
Kpnb1 
Krt222 
L3mbtl2 
L3mbtl3 
Lamp2 
Lamtor3 
Larp4 
Lars2 
Las1l 
Lck 
Lctl 
Ldb1 
Leo1 
Leprel4 
Leprotl1 
Letm2 
Lhb 
Lias 
Lipe 
Lmf2 
Lmna 
Lmo2 
Lmo4 
Lmtk2 
Lnx2 
LOC100504608 
LOC100504703 
Loxl3 
Lpar5 

Lphn1 
Lpin2 
Lpxn 
Lrch1 
Lrg1 
Lrig2 
Lrp2bp 
Lrrc1 
Lrrc16a 
Lrrc16b 
Lrrc46 
Lrrc49 
Lrrc58 
Lrrk1 
Lrsam1 
Lsmd1 
Luc7l 
Luc7l2 
Luc7l3 
Luzp1 
Ly6g6f 
Lyrm4 
Lyrm7 
Lysmd3 
Lyzl6 
Mad2l1 
Mad2l1bp 
Madd 
Maea 
Magt1 
Malat1 
Maml2 
Manea 
Map2k6 
Map2k7 
Map3k12 
Map3k3 
Map4k1 
Map4k2 
Map4k3 
Mapk6 
Mapkbp1 
Mapt 
March5 
March6 
March7 
March8 
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Mark2 
Marveld1 
Mast4 
Mbnl2 
Mbnl3 
Mbtps2 
Mccc1 
Mcm3 
Mcm3ap 
Mcm9 
Mcts1 
Mdp1 
Med13 
Med14 
Med18 
Med6 
Melk 
Memo1 
Mettl1 
Mettl14 
Mettl17 
Mettl8 
Mga 
Mical3 
Midn 
Mif4gd 
Mir125a 
Mir132 
Mir152 
Mir15b 
Mir17 
Mir17hg 
Mir18 
Mir1931 
Mir1956 
Mir199b 
Mir19a 
Mir19b-1 
Mir20a 
Mir212 
Mir3058 
Mir3109 
Mir5122 
Mir5135 
Mir615 
Mir670 
Mir677 

Mir702 
Mir92-1 
Mir99b 
Mirlet7e 
Mitd1 
Mkks 
Mlec 
Mlf2 
Mllt10 
Mlxip 
Mmp25 
Mms19 
Mob1a 
Mob3a 
Morc3 
Morf4l1 
Morf4l2 
Morn1 
Morn2 
Morn3 
Mpnd 
Mpp6 
Mpv17 
Mrc2 
Mrfap1 
Mrpl10 
Mrpl14 
Mrpl30 
Mrpl32 
Mrpl40 
Mrpl45 
Mrpl48 
Mrpl52 
Mrpl9 
Mrps2 
Mrps36 
Mrps6 
Mrs2 
Ms4a10 
Msh5 
Msl1 
Msrb3 
Mtf2 
Mtif3 
Mtmr3 
Muc6 
Mxi1 

Mxra7 
Myadm 
Myc 
Myg1 
Myh9 
Myl12b 
Mylpf 
Myo1g 
Myo1h 
Myo9a 
Mzf1 
N4bp2 
N4bp2l2 
Naa16 
Naa20 
Naa25 
Naa50 
Nadk 
Nagk 
Nap1l1 
Napa 
Nasp 
Nat10 
Nat2 
Nbeal1 
Nbeal2 
Nbr1 
Ncaph2 
Nck1 
Ncoa3 
Ncoa4 
Ncor1 
Ncor2 
Ncrna00085 
Ndfip2 
Ndrg4 
Ndufaf4 
Ndufs7 
Necap1 
Nedd4 
Nek10 
Nek8 
Nek9 
Neu1 
Neurl2 
Nf2 
Nfat5 

Nfic 
Nfil3 
Nfix 
Nfkbia 
Nfx1 
Nfxl1 
Nhlrc2 
Nhp2 
Nipbl 
Nkrf 
Nktr 
Nlk 
Nol7 
Nono 
Nop58 
Notch3 
Npepps 
Nphp1 
Nploc4 
Nppa 
Nptn 
Nqo2 
Nr2f6 
Nr3c1 
Nr4a2 
n-R5s79 
Nrf1 
Nrg4 
Nt5c2 
Ntf5 
Nub1 
Nubp2 
Nufip2 
Numa1 
Nup133 
Nup153 
Nup205 
Nup98 
Nyx 
Oas1b 
Oas1c 
Oas2 
Ocrl 
Ogt 
Olfr1414 
Oma1 
Opn1sw 
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Orai2 
Orc1 
Orc2 
Osbpl3 
Osbpl7 
Osbpl8 
Otub1 
Otud4 
Ovol1 
Oxnad1 
Oxsr1 
P2rx4 
P4ha1 
Pacsin2 
Palld 
Pan3 
Papd4 
Papss1 
Papss2 
Paqr8 
Parl 
Patz1 
Pax2 
Pax6 
Pbld2 
Pbrm1 
Pcbd2 
Pcbp1 
Pcbp2 
Pcca 
Pccb 
Pcgf2 
Pcm1 
Pcnxl2 
Pcsk4 
Pde4d 
Pdia3 
Pdia6 
Pdk1 
Pdpk1 
Pdxdc1 
Peg13 
Peli1 
Pes1 
Pex19 
Pfkm 
Pfn2 

Pgam1 
Pgap2 
Pgd 
Phactr4 
Phc1 
Phc3 
Phf12 
Phf15 
Phf20 
Phf21a 
Phf6 
Phf8 
Phgdh 
Phip 
Phospho1 
Phyhd1 
Pias4 
Picalm 
Pif1 
Pigl 
Pigp 
Pigv 
Pik3c3 
Pik3ca 
Pik3cb 
Pik3cd 
Pik3r1 
Pik3r3 
Pim1 
Pisd 
Pisd-ps1 
Pisd-ps2 
Pitpnc1 
Pitpnm2 
Pja1 
Pkd2l1 
Pkig 
Pkn3 
Pknox1 
Pla2g6 
Plbd2 
Plcg1 
Plcl2 
Plekha3 
Plekha4 
Plekha8 
Plekhf2 

Plekhg2 
Plekhg3 
Plin3 
Plk1s1 
Plod3 
Plxna2 
Plxnd1 
Pml 
Pmm2 
Pnpla8 
Poc1a 
Poldip2 
Pole2 
Polg 
Polg2 
Poll 
Polr2h 
Polr2i 
Polr3c 
Polrmt 
Pop4 
Pou2f1 
Pou4f3 
Pou6f1 
Ppard 
Ppcdc 
Ppfia3 
Ppil1 
Ppm1b 
Ppm1h 
Ppm1k 
Ppp1r12a 
Ppp1r15a 
Ppp1r16a 
Ppp1r3f 
Ppp1r8 
Ppp2cb 
Ppp2r5c 
Ppp6r2 
Prdm1 
Prex1 
Prickle1 
Prkaa1 
Prkag1 
Prkag2 
Prkar1a 
Prkcg 

Prkrip1 
Prpf19 
Prpf3 
Prpf38a 
Prpf38b 
Prpf39 
Prpf4 
Prpf4b 
Prpsap1 
Prpsap2 
Prr12 
Prr13 
Prr14l 
Prrc2a 
Prrg2 
Psap 
Psma1 
Psma2 
Psma3 
Psmb3 
Psmb6 
Psmc1 
Psmd14 
Psmd7 
Pspc1 
Psph 
Ptbp3 
Ptch1 
Ptp4a1 
Ptp4a2 
Ptplad2 
Ptpmt1 
Ptpn11 
Ptpn6 
Ptprj 
Ptrh2 
Pttg1 
Pum1 
Pycard 
Pycr2 
Pygl 
Qk 
Qrich1 
Qsox2 
R3hdm2 
Rab1 
Rab21 
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Rab28 
Rab3gap2 
Rab42 
Rab5b 
Rab6a 
Rab7 
Rad51ap1 
Rad51c 
Rad9b 
Ralbp1 
Ralgapa1 
Ralgps1 
Rap1b 
Rap2a 
Rapgef6 
Rarg 
Rasal2 
Rasd1 
Rb1 
Rbbp5 
Rbbp6 
Rbck1 
Rbm12b2 
Rbm27 
Rbms1 
Rcc1 
Rcc2 
Rccd1 
Rcor1 
Rdh10 
Rdm1 
Rell1 
Reps2 
Rere 
Rexo2 
Rffl 
Rft1 
Rftn2 
Rfwd3 
Rfx2 
Rfx3 
Rhbdd2 
Rhbg 
Rhob 
Rhobtb2 
Rhot1 
Rilpl2 

Riok1 
Rlim 
Rmi1 
Rmnd1 
Rnase4 
Rnf10 
Rnf121 
Rnf13 
Rnf146 
Rnf157 
Rnf167 
Rnf2 
Rnf34 
Rnf5 
Rnft1 
Rp9 
Rpa1 
Rpa2 
Rpl10 
Rpl10-ps2 
Rpl12 
Rpl24 
Rpl27 
Rpl30-ps5 
Rpl35a 
Rpl35a-ps2 
Rpl38 
Rpl41 
Rpl5 
Rpl6 
Rpl7 
Rpl9 
Rpp21 
Rprd2 
Rps10 
Rps15a 
Rps26 
Rps6ka1 
Rps6kb1 
Rps8 
Rptor 
Rreb1 
Rrm1 
Rrm2b 
Rrp8 
Rsbn1l 
Rsrc2 

Rtfdc1 
Rtn4rl2 
Rufy3 
Rundc3a 
Runx1 
Rybp 
S100pbp 
Sacm1l 
Sae1 
Samd1 
Samd8 
Samd9l 
Samhd1 
Sap30 
Sapcd2 
Sarm1 
Sbds 
Sbf1 
Sbno2 
Scamp3 
Scara5 
Scarb1 
Scgb1a1 
Schip1 
Scmh1 
Scn1a 
Scn3a 
Scpep1 
Sec14l1 
Sec22c 
Sec23a 
Sec24b 
Sec24c 
Sec31a 
Sec31b 
Sec61a1 
Seh1l 
Selt 
Sema3c 
Sephs1 
Sept5 
Sept8 
Serf1 
Serpinb9 
Sertad1 
Sertad2 
Sesn2 

Setd2 
Setd3 
Setd4 
Setd5 
Setd7 
Setd8 
Sfmbt1 
Sfpq 
Sfxn2 
Sgk1 
Sgk2 
Sgk3 
Sgms2 
Sh2b3 
Sh3bgrl 
Sh3bp5l 
Sh3glb2 
Sh3kbp1 
Shc4 
Shisa5 
Shmt1 
Shroom3 
Siae 
Sigmar1 
Sin3a 
Sirt1 
Sit1 
Six6 
Skil 
Slain2 
Slc16a1 
Slc18a1 
Slc23a2 
Slc25a11 
Slc25a14 
Slc25a3 
Slc25a35 
Slc25a36 
Slc25a38 
Slc25a39 
Slc25a43 
Slc25a51 
Slc26a10 
Slc30a1 
Slc30a7 
Slc31a2 
Slc32a1 
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Slc35b1 
Slc35b4 
Slc38a10 
Slc38a2 
Slc39a2 
Slc3a2 
Slc43a2 
Slc5a3 
Slc5a6 
Slc7a7 
Slc9a1 
Slc9a8 
Slu7 
Slx1b 
Slx4ip 
Smad6 
Smad7 
Smap1 
Smarca2 
Smarcc2 
Smarcd2 
Smc4 
Smg7 
Smim13 
Smndc1 
Smpd1 
Smyd4 
Snai1 
Snf8 
Snhg1 
Snhg12 
Snhg5 
Snora16a 
Snora44 
Snora61 
Snora70 
Snord19 
Snord21 
Snord38a 
Snord52 
Snord55 
Snord7 
Snord88a 
Snord88c 
Snord96a 
Snord99 
Snrnp35 

Snrnp70 
Sntb2 
Snupn 
Snx10 
Snx27 
Snx29 
Snx30 
Soat1 
Socs1 
Socs2 
Socs3 
Socs7 
Sod1 
Sorbs1 
Sos2 
Sp1 
Sp3 
Spa17 
Spag8 
Specc1 
Spg11 
Spin1 
Spp1 
Sppl2a 
Spred1 
Spred2 
Spry4 
Spryd3 
Spryd4 
Spsb3 
Sptan1 
Sptlc2 
Sqrdl 
Srek1 
Srgap3 
Srrm1 
Srrm2 
Srsf1 
Srsf3 
Ssb 
Ssbp3 
Ssbp4 
Ssh2 
St13 
St6galnac2 
Stac2 
Stag2 

Stam 
Stam2 
Stard6 
Stard9 
Stat2 
Stim2 
Stip1 
Stk25 
Stk30 
Stk38 
Stk38l 
Stoml1 
Strada 
Strn3 
Stx11 
Stx16 
Styk1 
Suco 
Sumo1 
Sun1 
Suz12 
Swsap1 
Syne1 
Syngr1 
Syngr3 
Syngr4 
Synj1 
Synj2 
Tacc1 
Tacc2 
Taco1 
Taf1 
Taf1c 
Taf1d 
Taf3 
Taf4a 
Taf6 
Tagln2 
Tango2 
Tango6 
Taok2 
Taok3 
Tarbp2 
Tatdn2 
Tbc1d1 
Tbc1d10a 
Tbc1d10b 

Tbcb 
Tbcc 
Tbl1xr1 
Tbx15 
Tcam1 
Tceanc2 
Tcf12 
Tcf4 
Tcf7l2 
Tcof1 
TCR-alpha 
chain 
Tctn1 
Tdrd3 
Tead2 
Tecr 
Terf2 
Terf2ip 
Tet2 
Tex14 
Tex30 
Tfap4 
Tfdp2 
Tfg 
Tfrc 
Tgif1 
Thrap3 
Tia1 
Tial1 
Ticam1 
Timm13 
Timm8a2 
Timm9 
Timmdc1 
Tipin 
Tjap1 
Tjp3 
Tle2 
Tle3 
Tle6 
Tlk2 
Tln1 
Tm2d2 
Tm9sf4 
Tmbim1 
Tmcc2 
Tmem100 
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Tmem106a 
Tmem120b 
Tmem143 
Tmem156 
Tmem164 
Tmem18 
Tmem180 
Tmem186 
Tmem192 
Tmem194 
Tmem199 
Tmem231 
Tmem242 
Tmem259 
Tmem29 
Tmem33 
Tmem5 
Tmem59 
Tmem67 
Tmem82 
Tmem88 
Tmpo 
Tnfaip8 
Tnfrsf9 
Tnk2 
Tnp2 
Tnpo2 
Tnpo3 
Tnrc18 
Tnrc6a 
Tob1 
Tob2 
Tom1l1 
Top1 
Top2a 
Tor1aip1 
Tor1aip2 
Tpm1 
Tprgl 
Tpt1 
Tpx2 
Tra2b 
Traf6 
Trafd1 
Traj58 
Traj59 
Tram1 

Trap1 
Trdv5 
Trerf1 
Triap1 
Trib1 
Trib2 
Trim35 
Trim37 
Trim59 
Trim7 
Trim8 
Triobp 
Trip12 
Trmt12 
Trpc2 
Trpv2 
Trpv4 
Trub2 
Tsc22d3 
Tsen54 
Tspan10 
Tspan14 
Tspan17 
Tspan31 
Ttc17 
Ttc19 
Ttc28 
Ttc3 
Ttc7 
Ttc9c 
Tuba1a 
Tuba1c 
Tubb5 
Tubd1 
Tulp1 
Tulp3 
Txlna 
Txn2 
Txndc12 
Txndc9 
Txnl4b 
Txnrd1 
Txnrd2 
Tyw1 
U05342 
U3 
U7 

Uba1 
Uba5 
Uba52 
Ubald1 
Ubap2l 
Ubb 
Ubc 
Ube2b 
Ube2e3 
Ube2f 
Ube2h 
Ube2v1 
Ublcp1 
Ubn2 
Ubr2 
Ubtd2 
Ubtf 
Ubxn1 
Ubxn4 
Ubxn7 
Uchl4 
Ulk2 
Umodl1 
Unc119 
Uqcrq 
Urgcp 
Urm1 
Usb1 
Usf2 
Usp1 
Usp10 
Usp15 
Usp2 
Usp20 
Usp28 
Usp3 
Usp32 
Usp34 
Usp45 
Usp48 
Usp49 
Utp14a 
Vac14 
Vcp 
Vdac1 
Vezf1 
Vezt 

Vgll4 
Vhl 
Vmp1 
Vprbp 
Vps13d 
Vps29 
Vps37b 
Vps53 
Vps54 
Vtn 
Wbscr16 
Wdfy2 
Wdpcp 
Wdr1 
Wdr34 
Wdr37 
Wdr47 
Wdr5 
Wdr6 
Wdr63 
Wdr75 
Wee1 
Whsc1 
Whsc1l1 
Wibg 
Wipf1 
Wrnip1 
Wtap 
Wwp1 
Wwp2 
Xbp1 
Xiap 
Xpnpep3 
Xpot 
Yars 
Ybey 
Ydjc 
Yipf2 
Yipf4 
Ypel2 
Ywhag 
Yy2 
Zan 
Zbtb1 
Zbtb24 
Zbtb25 
Zbtb38 

116 
 



Zbtb45 
Zbtb7a 
Zc3h10 
Zc3h6 
Zc3hav1 
Zc3hc1 
Zcchc8 
Zdhhc17 
Zdhhc5 
Zer1 
Zfand3 
Zfat 
Zfp1 
Zfp101 
Zfp106 
Zfp182 
Zfp184 

Zfp207 
Zfp217 
Zfp251 
Zfp27 
Zfp280b 
Zfp319 
Zfp324 
Zfp36l1 
Zfp383 
Zfp384 
Zfp39 
Zfp395 
Zfp40 
Zfp428 
Zfp438 
Zfp507 
Zfp512 

Zfp52 
Zfp553 
Zfp592 
Zfp606 
Zfp607 
Zfp608 
Zfp64 
Zfp646 
Zfp664 
Zfp668 
Zfp672 
Zfp703 
Zfp719 
Zfp809 
Zfp866 
Zfp91 
Zfp948 

Zfpl1 
Zfx 
Zkscan17 
Zkscan3 
Zmat1 
Zmiz2 
Zmym5 
Zmynd11 
Zmynd8 
Znhit1 
Znhit3 
Zscan25 
Zswim7 
Zufsp 
Zw10
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B. 
Ingenuity Canonical Pathways -log(p-val) 

Insulin Receptor Signaling 5.74E00 
Glucocorticoid Receptor Signaling 5.48E00 
Prolactin Signaling 5.47E00 
Hereditary Breast Cancer Signaling 5.42E00 
FAK Signaling 5.42E00 
Integrin Signaling 5.16E00 
Huntington's Disease Signaling 5.15E00 
IGF-1 Signaling 5.03E00 
Melanocyte Development and Pigmentation Signaling 5.03E00 
JAK/Stat Signaling 4.97E00 
p53 Signaling 4.95E00 
Protein Ubiquitination Pathway 4.94E00 
Leptin Signaling in Obesity 4.88E00 
IL-4 Signaling 4.88E00 
Erythropoietin Signaling 4.86E00 
Neurotrophin/TRK Signaling 4.86E00 
AMPK Signaling 4.47E00 
B Cell Receptor Signaling 4.43E00 
Molecular Mechanisms of Cancer 4.4E00 
EIF2 Signaling 4.38E00 
Prostate Cancer Signaling 4.28E00 
mTOR Signaling 4.26E00 
ErbB2-ErbB3 Signaling 4.13E00 
Growth Hormone Signaling 4.1E00 
Telomerase Signaling 4.1E00 
Acute Myeloid Leukemia Signaling 4.07E00 
FLT3 Signaling in Hematopoietic Progenitor Cells 3.94E00 
NGF Signaling 3.9E00 
PI3K/AKT Signaling 3.88E00 
CTLA4 Signaling in Cytotoxic T Lymphocytes 3.76E00 
GM-CSF Signaling 3.59E00 
RAR Activation 3.58E00 
Gap Junction Signaling 3.5E00 
Chronic Myeloid Leukemia Signaling 3.43E00 
CREB Signaling in Neurons 3.4E00 
Non-Small Cell Lung Cancer Signaling 3.36E00 
Endometrial Cancer Signaling 3.34E00 
P2Y Purigenic Receptor Signaling Pathway 3.22E00 
Virus Entry via Endocytic Pathways 3.16E00 
HER-2 Signaling in Breast Cancer 3.07E00 
Renal Cell Carcinoma Signaling 3.07E00 
Cardiac Hypertrophy Signaling 3.02E00 
PDGF Signaling 3.01E00 
Axonal Guidance Signaling 3E00 
Hypoxia Signaling in the Cardiovascular System 3E00 
ErbB Signaling 2.96E00 
FGF Signaling 2.96E00 
Natural Killer Cell Signaling 2.94E00 
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Small Cell Lung Cancer Signaling 2.93E00 
SAPK/JNK Signaling 2.93E00 
14-3-3-mediated Signaling 2.93E00 
Neuregulin Signaling 2.9E00 
Fc Epsilon RI Signaling 2.89E00 
Glioma Signaling 2.87E00 
Myc Mediated Apoptosis Signaling 2.86E00 
ErbB4 Signaling 2.86E00 
p70S6K Signaling 2.83E00 
Role of Oct4 in Mammalian Embryonic Stem Cell Pluripotency 2.82E00 
Clathrin-mediated Endocytosis Signaling 2.8E00 
Role of NFAT in Cardiac Hypertrophy 2.78E00 
Docosahexaenoic Acid (DHA) Signaling 2.78E00 
Acute Phase Response Signaling 2.77E00 
VEGF Signaling 2.73E00 
ERK/MAPK Signaling 2.72E00 
IL-2 Signaling 2.72E00 
Glioblastoma Multiforme Signaling 2.7E00 
Lymphotoxin β Receptor Signaling 2.65E00 
Type II Diabetes Mellitus Signaling 2.64E00 
Biotin-carboxyl Carrier Protein Assembly 2.59E00 
Sphingosine-1-phosphate Signaling 2.55E00 
Role of p14/p19ARF in Tumor Suppression 2.54E00 
Cell Cycle: G1/S Checkpoint Regulation 2.52E00 
EGF Signaling 2.51E00 
Regulation of eIF4 and p70S6K Signaling 2.49E00 
Mouse Embryonic Stem Cell Pluripotency 2.47E00 
PTEN Signaling 2.46E00 
eNOS Signaling 2.44E00 
Estrogen Receptor Signaling 2.43E00 
iCOS-iCOSL Signaling in T Helper Cells 2.42E00 
Thrombin Signaling 2.39E00 
Angiopoietin Signaling 2.39E00 
HGF Signaling 2.37E00 
Role of JAK2 in Hormone-like Cytokine Signaling 2.25E00 
Antiproliferative Role of Somatostatin Receptor 2 2.25E00 
Superpathway of Inositol Phosphate Compounds 2.24E00 
Paxillin Signaling 2.23E00 
Role of BRCA1 in DNA Damage Response 2.19E00 
TR/RXR Activation 2.14E00 
Estrogen-Dependent Breast Cancer Signaling 2.13E00 
Sulfate Activation for Sulfonation 2.11E00 
Thrombopoietin Signaling 2.1E00 
IL-9 Signaling 2.08E00 
3-phosphoinositide Degradation 2.08E00 
PEDF Signaling 2.06E00 
3-phosphoinositide Biosynthesis 2.03E00 
ILK Signaling 2.03E00 
Breast Cancer Regulation by Stathmin1 2.03E00 
CNTF Signaling 2.02E00 
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Cell Cycle: G2/M DNA Damage Checkpoint Regulation 2.02E00 
CD28 Signaling in T Helper Cells 1.99E00 
PKCθ Signaling in T Lymphocytes 1.99E00 
Ovarian Cancer Signaling 1.99E00 
Germ Cell-Sertoli Cell Junction Signaling 1.99E00 
Glioma Invasiveness Signaling 1.99E00 
PPARα/RXRα Activation 1.98E00 
Protein Kinase A Signaling 1.98E00 
Amyotrophic Lateral Sclerosis Signaling 1.97E00 
Sonic Hedgehog Signaling 1.94E00 
Pancreatic Adenocarcinoma Signaling 1.94E00 
NRF2-mediated Oxidative Stress Response 1.89E00 
ATM Signaling 1.88E00 
Aldosterone Signaling in Epithelial Cells 1.87E00 
Renin-Angiotensin Signaling 1.86E00 
Role of JAK1 and JAK3 in γc Cytokine Signaling 1.82E00 
VEGF Family Ligand-Receptor Interactions 1.82E00 
MSP-RON Signaling Pathway 1.75E00 
RANK Signaling in Osteoclasts 1.74E00 
Superpathway of Serine and Glycine Biosynthesis I 1.74E00 
UVA-Induced MAPK Signaling 1.7E00 
IL-3 Signaling 1.68E00 
Mitotic Roles of Polo-Like Kinase 1.67E00 
ERK5 Signaling 1.67E00 
1D-myo-inositol Hexakisphosphate Biosynthesis II (Mammalian) 1.66E00 
D-myo-inositol (1,3,4)-trisphosphate Biosynthesis 1.66E00 
Apoptosis Signaling 1.66E00 
CD40 Signaling 1.63E00 
CXCR4 Signaling 1.6E00 
FcγRIIB Signaling in B Lymphocytes 1.6E00 
NF-κB Activation by Viruses 1.59E00 
Role of Tissue Factor in Cancer 1.59E00 
IL-6 Signaling 1.58E00 
Cell Cycle Control of Chromosomal Replication 1.56E00 
IL-1 Signaling 1.54E00 
Melanoma Signaling 1.54E00 
Assembly of RNA Polymerase II Complex 1.53E00 
Amyloid Processing 1.53E00 
GNRH Signaling 1.51E00 
IL-8 Signaling 1.48E00 
Endoplasmic Reticulum Stress Pathway 1.48E00 
Leukocyte Extravasation Signaling 1.47E00 
Melatonin Signaling 1.45E00 
GDNF Family Ligand-Receptor Interactions 1.45E00 
Macropinocytosis Signaling 1.45E00 
Cyclins and Cell Cycle Regulation 1.43E00 
Nitric Oxide Signaling in the Cardiovascular System 1.4E00 
Role of PI3K/AKT Signaling in the Pathogenesis of Influenza 1.39E00 
UVB-Induced MAPK Signaling 1.38E00 
Methylmalonyl Pathway 1.38E00 
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Role of IL-17A in Arthritis 1.34E00 
RAN Signaling 1.33E00 
Neuropathic Pain Signaling In Dorsal Horn Neurons 1.28E00 
Colorectal Cancer Metastasis Signaling 1.27E00 
Estrogen-mediated S-phase Entry 1.26E00 
Superpathway of D-myo-inositol (1,4,5)-trisphosphate Metabolism 1.26E00 
Actin Nucleation by ARP-WASP Complex 1.25E00 
HMGB1 Signaling 1.25E00 
Ephrin A Signaling 1.24E00 
Neuroprotective Role of THOP1 in Alzheimer's Disease 1.23E00 
D-myo-inositol (1,4,5,6)-Tetrakisphosphate Biosynthesis 1.22E00 
D-myo-inositol (3,4,5,6)-tetrakisphosphate Biosynthesis 1.22E00 
Role of NFAT in Regulation of the Immune Response 1.22E00 
Androgen Signaling 1.22E00 
HIF1α Signaling 1.22E00 
IL-15 Signaling 1.2E00 
Remodeling of Epithelial Adherens Junctions 1.2E00 
Serine Biosynthesis 1.19E00 
2-oxobutanoate Degradation I 1.19E00 
Endothelin-1 Signaling 1.18E00 
D-myo-inositol (1,4,5)-trisphosphate Degradation 1.16E00 
α-Adrenergic Signaling 1.15E00 
Systemic Lupus Erythematosus Signaling 1.15E00 
Production of Nitric Oxide and Reactive Oxygen Species in Macrophages 1.15E00 
Relaxin Signaling 1.13E00 
VDR/RXR Activation 1.12E00 
T Cell Receptor Signaling 1.1E00 
GADD45 Signaling 1.09E00 
Ephrin Receptor Signaling 1.09E00 
Type I Diabetes Mellitus Signaling 1.08E00 
Nucleotide Excision Repair Pathway 1.08E00 
G Beta Gamma Signaling 1.06E00 
PAK Signaling 1.06E00 
D-myo-inositol-5-phosphate Metabolism 1.06E00 
Reelin Signaling in Neurons 1.06E00 
Adenine and Adenosine Salvage VI 1.05E00 
Sertoli Cell-Sertoli Cell Junction Signaling 1.05E00 
Gαq Signaling 1.05E00 
Gα12/13 Signaling 1.04E00 
Arginine Biosynthesis IV 1.04E00 
Chondroitin and Dermatan Biosynthesis 1.04E00 
Thioredoxin Pathway 1.04E00 
Superoxide Radicals Degradation 1.04E00 
DNA Methylation and Transcriptional Repression Signaling 1.03E00 
Wnt/β-catenin Signaling 1.02E00 
Pyridoxal 5'-phosphate Salvage Pathway 9.94E-01 
STAT3 Pathway 9.65E-01 
Role of CHK Proteins in Cell Cycle Checkpoint Control 9.61E-01 
IL-17A Signaling in Airway Cells 9.61E-01 
Fcγ Receptor-mediated Phagocytosis in Macrophages and Monocytes 9.28E-01 
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DNA Double-Strand Break Repair by Homologous Recombination 9.19E-01 
Leukotriene Biosynthesis 9.19E-01 
Vitamin-C Transport 9.19E-01 
Regulation of the Epithelial-Mesenchymal Transition Pathway 9.01E-01 
Netrin Signaling 9E-01 
PI3K Signaling in B Lymphocytes 8.99E-01 
Epithelial Adherens Junction Signaling 8.9E-01 
Signaling by Rho Family GTPases 8.89E-01 
G Protein Signaling Mediated by Tubby 8.73E-01 
TGF-β Signaling 8.4E-01 
Tec Kinase Signaling 8.32E-01 
fMLP Signaling in Neutrophils 8.25E-01 
Sphingomyelin Metabolism 8.15E-01 
Tumoricidal Function of Hepatic Natural Killer Cells 8.03E-01 
Glycolysis I 8.03E-01 
CD27 Signaling in Lymphocytes 7.94E-01 
Actin Cytoskeleton Signaling 7.76E-01 
Lipoate Biosynthesis and Incorporation II 7.72E-01 
L-DOPA Degradation 7.72E-01 
Uridine-5'-phosphate Biosynthesis 7.72E-01 
Cardiolipin Biosynthesis II 7.72E-01 
Putrescine Biosynthesis III 7.72E-01 
Glycine Biosynthesis I 7.72E-01 
Glutamate Biosynthesis II 7.72E-01 
Glutamate Degradation X 7.72E-01 
Human Embryonic Stem Cell Pluripotency 7.41E-01 
IL-17 Signaling 7.36E-01 
Assembly of RNA Polymerase I Complex 7.31E-01 
PXR/RXR Activation 7.2E-01 
Role of Macrophages, Fibroblasts and Endothelial Cells in Rheumatoid 
Arthritis 7.17E-01 
Antiproliferative Role of TOB in T Cell Signaling 7.13E-01 
LPS-stimulated MAPK Signaling 7.12E-01 
Cellular Effects of Sildenafil (Viagra) 6.86E-01 
Regulation of Cellular Mechanics by Calpain Protease 6.77E-01 
nNOS Signaling in Neurons 6.61E-01 
NAD Phosphorylation and Dephosphorylation 6.59E-01 
Dolichyl-diphosphooligosaccharide Biosynthesis 6.59E-01 
Synaptic Long Term Potentiation 6.49E-01 
Dopamine-DARPP32 Feedback in cAMP Signaling 6.48E-01 
Notch Signaling 6.46E-01 
Phospholipase C Signaling 6.34E-01 
TNFR1 Signaling 6.33E-01 
Dendritic Cell Maturation 6.25E-01 
NF-κB Signaling 6.25E-01 
Regulation of Actin-based Motility by Rho 6.23E-01 
Agrin Interactions at Neuromuscular Junction 6.23E-01 
Dopamine Receptor Signaling 6.22E-01 
NADH Repair 6.15E-01 
Methylglyoxal Degradation I 6.15E-01 
Coenzyme A Biosynthesis 6.15E-01 
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Glutathione Biosynthesis 6.15E-01 
Glutathione Redox Reactions II 6.15E-01 
D-glucuronate Degradation I 6.15E-01 
Hypusine Biosynthesis 6.15E-01 
Glutamate Degradation II 6.15E-01 
Tyrosine Biosynthesis IV 6.15E-01 
Aspartate Biosynthesis 6.15E-01 
Corticotropin Releasing Hormone Signaling 6.1E-01 
Purine Nucleotides De Novo Biosynthesis II 5.96E-01 
Role of Osteoblasts, Osteoclasts and Chondrocytes in Rheumatoid Arthritis 5.85E-01 
RhoGDI Signaling 5.84E-01 
Induction of Apoptosis by HIV1 5.78E-01 
PPAR Signaling 5.66E-01 
Ceramide Signaling 5.62E-01 
Cholecystokinin/Gastrin-mediated Signaling 5.54E-01 
Death Receptor Signaling 5.48E-01 
Assembly of RNA Polymerase III Complex 5.41E-01 
Superpathway of Methionine Degradation 5.34E-01 
Salvage Pathways of Pyrimidine Ribonucleotides 5.31E-01 
Role of RIG1-like Receptors in Antiviral Innate Immunity 5.3E-01 
CCR3 Signaling in Eosinophils 5.28E-01 
Sperm Motility 5.28E-01 
Uracil Degradation II (Reductive) 5.09E-01 
Pentose Phosphate Pathway (Oxidative Branch) 5.09E-01 
Heme Degradation 5.09E-01 
Thymine Degradation 5.09E-01 
Geranylgeranyldiphosphate Biosynthesis 5.09E-01 
Proline Biosynthesis I 5.09E-01 
Trans, trans-farnesyl Diphosphate Biosynthesis 5.09E-01 
Rapoport-Luebering Glycolytic Shunt 5.09E-01 
L-cysteine Degradation I 5.09E-01 
N-acetylglucosamine Degradation II 5.09E-01 
Phenylalanine Degradation I (Aerobic) 5.09E-01 
Semaphorin Signaling in Neurons 5.08E-01 
NAD biosynthesis II (from tryptophan) 4.93E-01 
BMP signaling pathway 4.81E-01 
p38 MAPK Signaling 4.7E-01 
nNOS Signaling in Skeletal Muscle Cells 4.5E-01 
Urate Biosynthesis/Inosine 5'-phosphate Degradation 4.5E-01 
γ-glutamyl Cycle 4.5E-01 
Role of JAK1, JAK2 and TYK2 in Interferon Signaling 4.46E-01 
CDK5 Signaling 4.36E-01 
Ceramide Biosynthesis 4.31E-01 
Tetrapyrrole Biosynthesis II 4.31E-01 
CMP-N-acetylneuraminate Biosynthesis I (Eukaryotes) 4.31E-01 
dTMP De Novo Biosynthesis 4.31E-01 
Folate Polyglutamylation 4.31E-01 
RhoA Signaling 4.29E-01 
Role of JAK family kinases in IL-6-type Cytokine Signaling 4.17E-01 
Gluconeogenesis I 4.17E-01 
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Cardiac β-adrenergic Signaling 4.15E-01 
Regulation of IL-2 Expression in Activated and Anergic T Lymphocytes 4.14E-01 
Mitochondrial Dysfunction 4.11E-01 
Telomere Extension by Telomerase 4.11E-01 
The Visual Cycle 4.11E-01 
Interferon Signaling 4.03E-01 
G-Protein Coupled Receptor Signaling 4E-01 
Calcium-induced T Lymphocyte Apoptosis 3.9E-01 
Antigen Presentation Pathway 3.81E-01 
Aryl Hydrocarbon Receptor Signaling 3.8E-01 
Granzyme B Signaling 3.77E-01 
Superpathway of Geranylgeranyldiphosphate Biosynthesis I (via 
Mevalonate) 3.77E-01 
NAD Biosynthesis from 2-amino-3-carboxymuconate Semialdehyde 3.7E-01 
Proline Biosynthesis II (from Arginine) 3.7E-01 
Urea Cycle 3.7E-01 
Arginine Degradation VI (Arginase 2 Pathway) 3.7E-01 
Acetyl-CoA Biosynthesis I (Pyruvate Dehydrogenase Complex) 3.7E-01 
Selenocysteine Biosynthesis II (Archaea and Eukaryotes) 3.7E-01 
UDP-N-acetyl-D-glucosamine Biosynthesis II 3.7E-01 
Glycogen Biosynthesis II (from UDP-D-Glucose) 3.7E-01 
Citrulline-Nitric Oxide Cycle 3.7E-01 
Pregnenolone Biosynthesis 3.7E-01 
GDP-mannose Biosynthesis 3.7E-01 
Rac Signaling 3.69E-01 
April Mediated Signaling 3.6E-01 
tRNA Charging 3.6E-01 
Granzyme A Signaling 3.46E-01 
γ-linolenate Biosynthesis II (Animals) 3.46E-01 
Phosphatidylglycerol Biosynthesis II (Non-plastidic) 3.46E-01 
Mitochondrial L-carnitine Shuttle Pathway 3.46E-01 
Antioxidant Action of Vitamin C 3.44E-01 
Caveolar-mediated Endocytosis Signaling 3.42E-01 
Thyroid Cancer Signaling 3.4E-01 
Role of Wnt/GSK-3β Signaling in the Pathogenesis of Influenza 3.28E-01 
Ephrin B Signaling 3.28E-01 
Nur77 Signaling in T Lymphocytes 3.24E-01 
Role of PKR in Interferon Induction and Antiviral Response 3.22E-01 
B Cell Activating Factor Signaling 3.22E-01 
Tryptophan Degradation to 2-amino-3-carboxymuconate Semialdehyde 3.21E-01 
Ketolysis 3.21E-01 
Aspartate Degradation II 3.21E-01 
Gαs Signaling 3.11E-01 
Mechanisms of Viral Exit from Host Cells 3.04E-01 
Role of IL-17F in Allergic Inflammatory Airway Diseases 3.04E-01 
Role of NANOG in Mammalian Embryonic Stem Cell Pluripotency 3.01E-01 
Xenobiotic Metabolism Signaling 3.01E-01 
Retinol Biosynthesis 2.99E-01 
Tight Junction Signaling 2.97E-01 
Cardiomyocyte Differentiation via BMP Receptors 2.92E-01 
Purine Nucleotides Degradation II (Aerobic) 2.92E-01 
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Tryptophan Degradation III (Eukaryotic) 2.92E-01 
DNA damage-induced 14-3-3σ Signaling 2.92E-01 
Sucrose Degradation V (Mammalian) 2.81E-01 
Salvage Pathways of Pyrimidine Deoxyribonucleotides 2.81E-01 
Cytotoxic T Lymphocyte-mediated Apoptosis of Target Cells 2.8E-01 
OX40 Signaling Pathway 2.79E-01 
Phospholipases 2.79E-01 
Complement System 2.62E-01 
CCR5 Signaling in Macrophages 2.6E-01 
Chondroitin Sulfate Biosynthesis (Late Stages) 2.57E-01 
Calcium Transport I 2.48E-01 
Glycogen Degradation II 2.48E-01 
Leucine Degradation I 2.48E-01 
Heme Biosynthesis II 2.48E-01 
Histidine Degradation VI 2.48E-01 
Folate Transformations I 2.48E-01 
NAD Salvage Pathway II 2.48E-01 
Pyrimidine Deoxyribonucleotides De Novo Biosynthesis I 2.48E-01 
TWEAK Signaling 2.45E-01 
MIF-mediated Glucocorticoid Regulation 2.45E-01 
Triacylglycerol Biosynthesis 2.45E-01 
Polyamine Regulation in Colon Cancer 2.28E-01 
Ketogenesis 2.19E-01 
Oleate Biosynthesis II (Animals) 2.19E-01 
Pentose Phosphate Pathway 2.19E-01 
Glycine Betaine Degradation 2.19E-01 
Glutaryl-CoA Degradation 1.95E-01 
Acyl-CoA Hydrolysis 1.95E-01 
Glycogen Degradation III 1.95E-01 
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