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ABSTRACT 

 

Lupov, Ivan M.S., Purdue University, May 2011.  Acquired STAT4 deficiency as a 
consequence of cancer chemotherapy.  Major Professor: Hua-Chen Chang. 
 

Signal Transducer and Activator of Transcription 4 (STAT4) is an important 

transcription factor activated by IL-12 signaling. Activated STAT4 is essential for Th1 

cell differentiation, a process characterized by increased potential for interferon (IFN)-γ 

production. Defective IFN-γ production due to STAT4 deficiency occurs after autologous 

stem cell transplantation for lymphoma.   

We have investigated the mechanisms of post-transplant STAT4 deficiency. The 

tumor-bearing state is ruled out to be the cause because STAT4 levels were not 

significantly different in peripheral blood mononuclear cells (PBMCs) obtained from 

lymphoma patients prior to treatment and healthy control subjects. The magnitude of the 

decrease in STAT4 levels corresponded with increasing intensity of chemotherapeutic 

treatment in vivo. Furthermore, treatment of normal PBMC cultures or a natural killer 

(NK) cell line with chemotherapy drugs in vitro also resulted in reduced STAT4 protein 

and reduced IL-12-induced IFN-γ production. Chemotherapy drugs are shown to have no 

impact on the stability of STAT4 mRNA, while steady-state levels of STAT4transcripts 

are decreased in lymphoma patients.   
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Our findings demonstrated that chemotherapeutic drugs up-regulate the 

ubiquitination rates of the STAT4 protein, which in turn promotes its degradation via the 

proteasome-mediated pathway. Treatment with the proteasome inhibitor bortezomib 

largely reversed the chemotherapy-induced STAT4 deficiency. Thus, acquired STAT4 

deficiency in lymphoma patients is a consequence of treatment with chemotherapy. These 

results have important implications for design of optimal immunotherapy for lymphoma. 
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CHAPTER 1. LITERATURE REVIEW 

 

The purpose of this literature review is to provide an overarching background on 

what has been discovered about the structure and function of the transcription factor 

called Signal Transducer and Activator of Transcription 4 (STAT4). The information will 

demonstrate the ever expanding breath of knowledge about the mechanism by which 

STAT4 brings changes to the repertoire of an entire cell – modulating the expression of a 

wide rage of genes and in the process driving the systematic differentiation of what’s 

commonly known as T-helper 1 (Th1) cells. Th1 cells are crucial in mounting a proper 

immune response to a variety of intracellular pathogens and viruses, as well as 

contributing to the tumor surveillance by the immune system. Gaining greater 

understanding of what is the molecular structure and function of STAT4, how is it 

activated and its’ function regulated will help us understand the importance of its’ 

biological function. Furthermore, this information will help emphasize the significance of 

STAT4 deficiency not only for lymphoma patients, which are the object of our study, but 

for the ability to have a proper functional immune system in general.  

STAT4 is member of a family of transcription factors that are commonly referred 

to as STATs(1-4). Initially, about two decades ago, what piqued the scientific 

community’s interest in these transcription factors was their specific response to various 

extracellular signals and most importantly their direct impact on gene expression that 
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circumvented the need for secondary messengers. Currently, there are 7 known members 

of the STAT family that serve distinct biological functions from development to 

immunity(5-8).  

 

1.1. 

a. Structure 

STAT4 Structure and Expression 

STAT4 shares a well conserved protein structure with the rest of the STAT family 

transcription factors. There are 6 distinct domains (Figure 1C) – N-terminal (NH2

5

), 

coiled-coil (CC), DNA binding (DBD), linker (LK), SH2, tyrosine activation (Y) and 

transcriptional activation domain (TAD) ( , 6). Each one of these domains has distinct 

role in the overall function of each STAT molecule. In order to understand the specific 

role of each one of these, it is important to delineate the main steps in STAT4 activation 

and signaling, while leaving the details of the pathway to the following section of the 

paper.  

In general, all STAT molecules are found latent in the cytoplasm (Figure 1A). 

When outside signaling molecule (ex: IL-12) binds to a transmembrane receptor (IL-12R) 

it induces a conformational change that allows the recruitment of the Janus family of 

receptor associated kinases or JAKs. In turn, these JAK kinases phosphorylate the 

receptor making it a docking site for a STAT molecule (STAT4 in the case of IL-12 

stimulation) (Figure 1A). When the respective STAT binds to the phosphorylated part of 

the receptor, it becomes, in turn, phosphorylated and thus activated. It gets released from 

the docking site and forms a homodimer with another activated STAT molecule(4). 
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These partnering transcription factors then migrate to the nucleus where they either 

activate transcription of genes or they form heterodimers with other activated STATs 

allowing for greater variability in the DNA binding capability(Figure 1A)(9).     

It has been previously reported that the N-terminus of STAT4 consists of the first 

123 amino acids of the overall 748 amino acid long protein sequence (Figure 1B). The 

amino acids of N-terminus are said to come together and form a hook-like structure (10, 

11). This structure has been reported as crucial in 2 key functional characteristics of 

STAT4 – it is needed for the IL-12 receptor mediated phosphorylation and for allowing 

cooperative binding to DNA sequences in association with other activated forms of 

STATs (12, 13). Recently, researchers have challenged the commonly accepted model of 

STAT activation by showing that STAT1 and STAT4 can form homodimers prior to 

activation and that the N-terminal domain is essential for the process (14, 15).  

These findings about the function of the N-terminus demonstrate a rather 

prevalent issue within the STAT research field. Investigators have often taken the high 

level of homology among the STAT family members as an indicator of similarity in 

function. There is mounting evidence, as will be indicated later in this review, 

emphasizing the need to consider the potential existence of much greater specificity than 

has previously been envisioned (16, 17).  

The C-terminal domains of all STATs contain three individually characterized 

segments – SH2, tyrosine activation (Y) and transcriptional activation domains 

(TAD)(Figure 1B). The SH2 domain of all STATs is important for allowing binding to 

the JAK-tyrosine (Y) phosphorylated receptor. When the respective JAK, in turn, 
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phosphorylates the receptor associated STAT molecule, then the SH2 domain functions 

in driving the reciprocal homo or hetero dimerization of the STATs. Thus, each partner 

docks to the other partner’s phosphorylated site via their respective SH2 domains. (18) 

In order for STAT4 to get activated, released and partnered with another STAT4 

molecule it first has to be phosphorylated on the 693rd

19

 tyrosine residue of its protein 

sequence (Figure 1B)( ). Furthermore, STAT4, like other STAT members, can also be 

phosphorylated on the 721st

20

 serine amino acid residue via the activation of the p38/MKK 

pathway (Figure 1B) ( ). This has been shown to be complementing the full 

transcriptional activity of activated STAT4, that is in addition to the effects of the IL-12 

receptor mediated signaling pathway. (20-23). 

The third domain that is located within the C-terminus of all STAT molecules is 

the transcriptional activation domain (TAD). Beyond its ostensible role in activating gene 

expression, it’s the site of alternative splicing that leads to formation of different 

isoforms. By convention, the full protein structure is referred to as α, while the shorter 

spliced isoforms are termed β. Currently, the isoforms of STAT1,3, 4 and 5 have been 

sequenced and their function elucidated (2, 7, 24-26). The functional characteristics of 

STAT4β isoform have generated interesting variations in activation and function. So far 

the STAT4β has been shown to be phosphorylated and thus activated in response to 

growth hormones like estrogen (27). STAT4β has also been shown to differ from its 

alpha isoform by the number of genes that it activates. There are 29 unique genes 

activated by the beta isoform that are not activated by the alpha form, thus demonstrating 

their inherent capability of mediating IL-12 responses differently (7).  
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So far, the coiled-coil (CC) domain of STATs (Figure 1B) does not have a clearly 

defined functional characteristic. The evidence has pointed in the direction of it playing a 

role in either regulating protein half-life independent of the proteasome (28), interacting 

with other non-STAT transcription factors (29), mediating the receptor binding and 

subsequent activation (30), or aiding with the nuclear transport of the activated form (31). 

All of these findings have been reported after extensive investigation of either STAT 1, 2 

or 3 but not STAT4. 

 

b. Cellular and Tissue Expression of STAT4 

STAT4, unlike other transcription factors such as STAT3, is expressed 

predominantly within the hematopoietic lineage (32, 33). Within the lymphoid branch of 

the hematopoietic cells, STAT4 is expressed in Th1, CTL and NK cells (19, 34, 35). 

Within Th1 type, STAT4 is required for the proper cellular differentiation - as the lack of 

either IL-12R or STAT4 results in the loss of Th1 phenotype, traditionally associated 

with reduced IFNγ secretion (34-37). Even though, the evidence has firmly established 

the aforementioned paradigm, researchers have also shown the presence of a STAT4 

independent pathway that leads to a proper development of Th1 cells (38).  

A significant portion of the initial research focused on the role of STAT4 in T and 

NK cells alone, while recent findings have shown that STAT4 is expressed in activated 

monocytes (activated by LPS or IFNγ), mature dendritic cells (DC), connective tissue-

type mast cells, and B cells – three of which belong to the myeloid lineage (except B 
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cells)(39-42). In activated monocytes and mature DC, STAT4 is activated not by IL-12, 

as is the case with Th1 and NK cells, but by IFNα and other cytokines (39, 43).  

Going beyond hematopoietic cell lineage, STAT4 expression has also been 

confirmed in the testis (33) as well as human vascular endothelial cells and human 

vascular smooth muscle cells (44-47). Researchers have made interesting headway in 

elucidating the mechanism by which STAT4 expression in vascular endothelial cells 

might guide an inflammatory response (44).  

 

1.2. 

As the importance of proper cytokine signaling continues to be revealed, ever 

greater information surfaces about the regulatory mechanism that keeps the process under 

strict control. Because Th1 cells need to mount a quick response to stimuli like IL-12, 

different pathways must be in place to limit the impact and prevent exaggerated outcome, 

which is equally damaging to the propriety of the immune response.  

Mechanisms of STAT4 regulation  

There are two known mechanisms regulating transcriptional expression of STAT4 

– epigenetic control or regulation by other transcription factors. The epigenetic control of 

STAT4 transcription has been linked to the DNA methylation levels of its promoter, 

where hypermethylation has an inhibitory role, while hypomethylation has the opposite 

effect (48). In T cells, STAT4 expression is reported to be under the control of the 

transcription factor Ikaros, while in DCs the expression is controlled by the activity of 

NF-κB and AP-1, which are also transcription factors (43, 49). 
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There are 4 known players that have been implicated in the control of STAT4 

protein activity – PIASx, SLIM, SOCS3 and Hlx. Prior to explaining the function of each 

regulatory modulator, it is essential to point out that in order to fulfill their role as STAT4 

regulators (with the exception of Hlx) there needs to be a specific post-translation 

modification of the STAT4 protein. The three main types of modifications that have been 

linked to the JAK/STAT pathway are ubiquitination, sumoylation (SUMO), and 

ISGylation (ISG15) (50-52).  

Regardless of the difference in terminology, all three follow a pathway that’s very 

similar to the traditionally established ubiquitin mediated proteasome degradation – 

where an E1 enzyme binds to an ubiquitin molecule and transfers it to an E2 conjugating 

enzyme. The substrate specificity always comes from the E3 enzyme that recognizes its 

target and facilitates the ubiquitin transfer from the E2 to the target. Once ubiquitinated, 

the target is destined for degradation through the 26S proteasome (53). Ubiquitination has 

been long implicated in the regulation of JAK/STAT pathway – as early as few years 

after the initial discovery and even though research has grown tremendously in this area, 

much more remains (54).       

Protein-inhibitors of activated STATs (PIAS) were initially discovered at a time 

when the information about the importance of STAT1 signaling was rapidly growing 

while the knowledge of its regulation was completely missing (55). There are four 

members of the PIAS family that are currently recognized – PIAS1, PIAS3, PIASy and 

PIASx. Co-immunoprecipitation experiments have confirmed that three of the PIAS 

inhibitors have specific STAT partners – PAIS1 pairs with STAT1, PIAS3 with STAT3, 
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and PIASx with STAT4 (56-58). Even thought PIAS inhibitors possess the ability to 

directly modify their targets by sumoylation, the full function of PIASx has been shown 

to depend on the recruitment of yet unknown deacetylase (58-60).  

SLIM (or STAT-interacting LIM domain possessing protein) is the direct link 

between ubiquitin-mediated proteasome degradation and the total STAT4 protein levels. 

It has been shown that SLIM is an ubiquitin E3 ligase that specifically marks STAT1 and 

STAT4 for proteasome degradation (61). This was further verified by the phenotype of 

SLIM deficient mice, which had greater levels of STAT1 and STAT4 correlating with 

greater IFNγ secretion (61). Tanaka et al have also shown that in addition to the 

aforementioned function, SLIM might be involved in inhibiting STAT4 tyrosine 

phosphorylation via recruitment of yet unidentified adaptor molecule (61). Furthermore, 

the researchers do not dismiss the idea of SLIM as a monoubiquitin modifier that 

bypasses the proteasome and instead serves as a localization signal (61). Regardless of 

the limited evidence in favor of STAT specific E3 ligases, evidence implicating the 

proteasome in regulating either total or activated STATs have been mounting (62, 63).  

All of these scenarios provide an exciting future in understanding the role of 

ubiquitination in JAK/STAT signaling. 

Suppressors of cytokine signaling (SOCS) are the most extensively studied group 

of proteins that are involved in regulating JAK/STAT signaling (64). Their expression is 

typically minimal unless the cells are stimulated with specific cytokines(65). Increase in 

expression eventually leads to deactivating the cytokine stimulated signaling. There are 

numerous mechanisms involved by which SOCS actually suppress the JAK/STAT 
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pathway. They either bind directly to the respective JAK and competitively prevent 

STATs from binding to the receptor, or associate with specific E3 ligase in designating 

for destruction different components of the signaling pathway (66-69). Furthermore, 

SOCS molecules themselves can be ubiquitinated and marked for degradation thus 

eliminating the inhibitory signal on the JAK/STAT pathway (70). The signal that prompts 

proteasome degradation is phosphorylation of SOCS by various receptor associated 

kinases (JAKs) that are in turn activated by different cytokines (71).  

Evidence has demonstrated a direct interaction between STAT4 and SOCS3 (68). 

The evidence has shown that SOCS3 binds to the IL-12R in a way that prevents the 

recruitment of STAT4 via its SH2 domain (68, 72). In the same sense, SOCS3 has been 

shown to be upregulated in Th2 cells (characterized by lack of IFNγ secretion and 

STAT4 activation) as a way of ensuring proper cellular differentiation (72, 73).  

The Hlx transcription factor is expressed in both Th1 and NK cells. It has been 

found that Hlx accelerates dephosphorylation and proteasome-mediated degradation of 

Y-693 form of STAT4 in NK cells (74, 75). The finding was only consequential, 

meaning that the function of Hlx in NK cells is linked to the reduced form of the 

activated STAT4. The mechanism by which Hlx achieves this effect is yet to be 

elucidated. It has been suggested that since Hlx can not directly bind to the 

phosphorylated tyrosine on the activated form of STAT4, it likely recruits another 

phosphatase or displaces activated STAT4 from its target DNA sequences, which in turns 

exposes it to the work of phosphatases residing in the nucleus (74). If the information 

gathered from studying STAT1 is an indication of what could hold true for STAT4, it 
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will not be unreasonable to expect a substrate specific phosphatase to also be involved in 

the regulatory process (76, 77). Furthermore, the effect of Hlx on NK cells needs to be 

reconciled with its opposite effects in Th1 cells where it is involved in inducing IFNγ 

secretion which demands activation of STAT4 (74, 78) 

 
1.3. 

Prior to activation of the latent STAT4 found within the cytoplasm of CTL, Th1, 

and NK cells, there are a couple of important trigger events involving a ligand 

stimulation and kinase-mediated receptor activation.  

STAT4 Activation and Signal Transduction 

First, the cytokine IL-12 binds to its heterodimeric transmembrane receptor that 

consists of two chains – β1 and β2 (79-81). Because IL-12R belongs to the cytokine 

family of receptors it does not have an inherent enzymatic activity. Instead, upon ligation 

with IL-12, it undergoes a conformational change which allows the recruitment of the 

receptor associated kinases Tyk2 and Jak2. IL-12 β1 interacts with Tyk2 while IL-12R β2 

interacts with Jak2 (82-84). Both receptor associated kinases undergo 

autophosphorylation, which is followed by the phosphorylation of specific tyrosine 

residues on the respective chains of the IL-12 receptor (85-87). In humans, Jak2 

phosphorylates the tyrosine that is the 800th

88

 amino acid in the IL-12Rβ2 subunit which 

becomes the docking site for STAT4 ( ). In mice, the scenario is slightly more 

complicated due to the presence of additional number of tyrosines within the amino acid 

sequence of the IL-12Rβ2 receptor – all of which seem to bind equally well to STAT4 

(89).  
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Once STAT4 binds to the phosphorylated IL-12R, it in turn becomes 

phosphorylated by JAK2 (82). These events lead to the release of STAT4, to the 

subsequent homo- or heterodimerization and the eventual nuclear import where STAT4 

finally fulfils its function as an activator of cellular transcriptional activity (4). It is 

interesting that proliferative abilities of lymphocytes have been explained by STAT4’s 

function as a modulator of the cyclin dependent kinase inhibitor p27Kip1 90expression ( ). 

In addition to IL-12, STAT4 –in NK and T cells, can be activated by several other 

cytokines, namely IFNα, IL-2, IL-23, IL-21, IL-15, IL-18 in both mice and humans, 

while IL-4 can activate STAT4 in mouse NK cells(91-95). The activation can be 

achieved independently by stimulation with a single cytokine – such as IL-2 alone, IFNα 

alone etc, or it can be achieved synergistically where the simultaneous presence of two 

cytokines – such as IL-21 and IL-15, is required for full activation. 

 

1.4. 

The paucity of information regarding the mechanism of nuclear localization of 

STAT4 is interesting. A lot of research has been done on the mechanism of STAT1(

STAT4 Translocation 

17) 

and to a large extent of STAT2 and 3 (96), while there is only one report that has 

delineated a selectively enhanced nuclear translocation of STAT4 but the pathway is yet 

to be worked out (97). The initial presumption was that understanding the mechanism of 

STAT1 should be enough to help us understand the mechanism of all other STAT family 

members. As Reich et al has clearly pointed out in their review of STAT nuclear 

trafficking, the uniqueness of each STAT calls for a lot greater level of research (98).   
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Even though what we know about the nuclear localization of STAT1 might not 

necessarily apply to STAT4, for the purpose of understanding the general process, here is 

a minimal outline of the STAT1 nuclear localization steps.  

First, the phosphorylated form of STAT1 has been discovered to bind to a specific 

nuclear importer protein – importin α5 (99, 100). The target of STAT1 has been shown to 

be one particular amino acid in the protein sequence of importinα5, as a mutation in that 

particular amino acids was sufficient to abrogate its nuclear import (101). Once inside the 

nucleus, STAT1 remains associated with importinα5 until STAT1 binds to its designated 

DNA sequences, leading to the release importinα5(98).  

Research has identified the nuclear phosphatase TC45 as the main agent 

responsible for the deactivation and the recycling of STAT1 back to the cytoplasm (76, 

77). It will be incorrect to infer based on these studies, that only the tyrosine 

phosphorylated form of STAT1 gets localized in the nucleus. It has been shown that there 

are two pathways of STAT nuclear localization– phosphorylation dependent and 

independent pathways (102, 103). The importance and the potential utilization of these 

differential pathways for therapeutic purposes has not been explored but do provide novel 

directions. 

 

1.5.

The most cutting edge research on STAT4 is currently focused on the events 

within the nucleus, namely the transcriptional changes directly associated with the 

activated form of STAT4.  

Mechanism of Gene Regulation by STAT4 
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In order to bring about changes in cellular differentiation STAT4 has been shown 

to specifically bind in excess of 4000 genes (104). As the relative importance of each 

target gene is yet to be studied in depth, it is worth mentioning some of STAT4’s well 

established gene targets within the context of T cell differentiation, namely IFNγ (105-

107), IL18r1 (108), IL-12Ra (109), IL-12Rβ2 (110), Tpl2 (111) and Furin (112).  

Newer techniques such as chromatin immunoprecipitation that’s followed by 

microarray analysis (also referred to as ChiP-on-chip) and large scale sequencing of 

factors bound to transcription factors (also referred to as ChiP-seq) are going to provide 

further insight into the complexity of the STAT4 mediated T cell differentiation process 

(113).    

The two main areas that are receiving the most attention in studying STAT4’s 

ability to regulate gene expression are the histone acetylation and DNA methylation 

profiling during Th1 differentiation – partly a consequence of the advancement in the 

field of epigenetics. Since a digression into an explanation of this rapidly growing field of 

epigenetics, will distract from the main focus of this paper, several great reviews on the 

histone code, DNA methylation and the epigenetics of Th1 differentiation are included 

herein as background information (114-118).  

In short, histones are small proteins, found in the nucleus, that form tight 

complexes with DNA called nucleosomes. Depending on the positioning and binding 

interaction of the histones with the DNA, they could either promote or inhibit the 

transcription of various genes. Furthermore, evidence has shown a plethora of post-

translational modifications of the histones such as acetylation, methylation, and 



14 

 

 

ubiquitination. Histone methylation is rapidly being evaluated as the means by which a 

cell can reprogram its function and pass it to the next generation without having to make 

permanent changes to its actual DNA code.  

Considering the enormity of the task of having to re-model all nucleosomes 

during cellular differentiation, STAT4 has been deservedly implicated in promoting 

epigenetic markers that favor gene transcription (104). Furthermore, STAT4 has been 

shown to interact with several important players for modulating gene transcription like 

Brg1, Dnmt3a and CREB-binding protein (119-121). 

Brg1 is a member of the mammalian nucleosome remodeling complex which has 

the ability of activating or inhibiting gene expression in association with a host of 

associated-factors. It has been shown that the activity of Brg1 is dependent on STAT4 

during Th1 differentiation (119). In a mechanism similar to Brg1, the histone 

acetyltransferase CREB-binding protein has also been implicated in STAT4 driven gene 

expression, where the N-terminal domain of STAT4 is important for the interaction 

(120).  

Another way for STAT4 to mediate the expression of its target genes involves 

inhibiting the recruitment of the DNA methyltransferase – Dnmt3a. The absence of 

Dnmt3a prevents methylation of the DNA, relaxes the nucleosomes and allows for 

greater transcription (121).  

Lastly, it is important to acknowledge, when attempting to understand the 

processes involved in activation and inhibition of transcription, that the mere binding or 

the strength of binding by STAT4 to a target gene does not automatically mean greater 
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level of gene expression (113). Indubitably, a great deal of mystery remains around 

epigenetic means of cellular differentiation but major breakthroughs have already made a 

good deal of progress.      

 
1.6. 

Due to its role as a primary driving force of Th1 differentiation, STAT4 has been 

implicated in a variety of inflammatory and autoimmune diseases. 

Roles of STAT4 in Diseases 

The most therapeutically promising aspect of the STAT4 signaling pathway is its 

potential role in cancer immunotherapy (122, 123). Interleukin 12 (IL-12), as the primary 

activator of latent STAT4, has long been proven to cause tumor death in a variety of 

murine models such as melanomas, sarcomas and mammary, colon and renal carcinomas 

(124). Its antitumor effects are the main consequence of activating the primary mediator 

of IFNγ secretion – namely STAT4 (125, 126).  

Some of the reasons why STAT4 mediated IFNγ secretion is vital for the IL-12 

induced anti-tumor immunity is because endogenous IFNγ has been shown to induce 

apoptosis in tumor cells and bacterially infected monocytes (127, 128), to enhance MHCI 

and MHCII expression, and to augment CTL and NK cell cytotoxicity (129, 130). Even 

though, direct IL-12 administration has been proven to have extensive toxicity and 

diminished effects upon repetitive treatments, it is still a promising pathway in designing 

novel strategies for cancer immunotherapy (131, 132). 

One of the autoimmune diseases in the pathogenesis of which STAT4 has been 

implicated is multiple sclerosis (MS). The mouse model that is used in studying the 

disease is called experimental autoimmune encephalomyelitis (EAE) (133). Lovastatin, a 
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member of a class of drugs called statins, was initially reported to have anti-inflammatory 

effects that ameliorate the symptoms of EAE (134). Lovastatin, among other things, has 

been found to reduce phosphorylation of STAT4 by inhibiting the function of the 

upstream activating enzymes – Jak2 and Tyk2 (135). More recent findings has shown that 

the onset and the severity of the disease vary according to which STAT4 isoform is 

present in the mouse model (136).  

In addition to lovastatin, there several other drugs that have a reportedly 

inhibitory role on the activation of STAT4 in different disease settings. For example, the 

drug lisofylline has been found to inhibit STAT4 activation and thus reduce β-cell 

destruction in non-obese diabetic mice – where the importance of STAT4 has been 

previously established (137). Other drugs that have inhibitory role on STAT4 activation 

are thiols, curcumin, and rapamycin (89).  

STAT4 also plays a regulatory role in rheumatoid arthritis (RA) and systemic 

lupus erythematosus (SLE) (138-140). These findings have brought an interesting 

immunological question – how do Th1 cells participate in antibody-mediated diseases? 

Studies are yet to elucidate the exact mechanism, but the secret may rest with the function 

of the T follicular helper cells (Tfh).  

Tfh cells reside in the germinal centers of secondary lymphoid organs where B 

cells undergo isotype switching, somatic hypermutation and differentiation into antibody 

secreting plasma cells. It has been reported that the differentiation of Tfh cells is 

dependent on IL-12 secretion by DCs which are resident in the germinal centers (141). 

Thus IL-12/STAT4 axis is critical in the proper differentiation of Tfh cells and 
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consequently important for the B cell growth, differentiation and antibody production. 

Further insight into the STAT4-mediated Tfh cell differentiation could be crucial in 

understanding various autoimmune diseases.    

In addition to RA and SLE, STAT4 has been implicated in the pathology of a 

variety of other diseases. It is important in clearing the intracellular protozoan parasite 

Toxoplasma gondii (111, 142), Leishmania (L.)mexicana and its relative Leishmania (L.) 

major (143), the intracellular Mycobacterium tuberculosis and Mycobacterium avium 

(144, 145). STAT4 activation has been ascribed an active role in sustaining chronic 

intestinal inflammation (146, 147) as well as mediating IL-13 driven murine asthma 

model (148).  

Recently, STAT4 has also been identified as a risk factor for systemic sclerosis 

but more concrete details about how it contributes to sclerosis are to be investigated (149, 

150). Furthermore, the development of arteriosclerosis in cardiac transplant recipients has 

been attributed to up-regulated activation of STAT4 and IFNγ (151-153). It has been 

suggested that the elevated levels of these Th1 associated factors, could be due to 

defective TGFβ secretion (154, 155).   

In viral immunity, it has been shown that STAT4 is important in limiting the 

replication of coxsackievirus B3 (CVB3), which leads to the development of myocarditis 

(156, 157). Therefore, scientists are encouraged, when devising anti-inflammatory 

treatment plans that target lowering Th1 response, to consider the dangers of increased 

chronic inflammatory heart disease as a side effect. 
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1.7. 

The role of STAT4 in IL-12 mediated secretion of IFNγ by Th1, CTL and NK 

cells has been firmly established. The evidence in support of STAT4’s importance in 

mounting a proper immune response towards pathogens and tumors continues to increase. 

Significant information about the molecular structure and expression of STAT4 has 

already been compiled and it points to a much greater level of specificity among various 

members of the STAT family than was previously ascribed. The means by which STAT4 

is involved in re-programming and committing cell differentiation to the Th1 lineage is 

an exciting and rapidly growing field. Understanding the mechanisms involved would 

provide new tools for designing treatments for a variety of human diseases.   

  

Summary 
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CHAPTER 2: MATERIALS AND METHODS 

 

2.1. 

Collection of blood samples was approved by the Institutional Review Board at 

Indiana University Medical Center and written informed consent was obtained from each 

study subject. Blood samples were obtained from patients with Hodgkin’s or non-

Hodgkin’s lymphoma before and after treatment with standard chemotherapy or high-

dose chemotherapy and autologous PBSCT. Standard dose chemotherapy regimens 

included rituximab, cyclophosphamide, vincristine, and prednisone with (R-CHOP) or 

without (R-CVP) doxorubicin. High-dose chemotherapy regimens included 

cyclophosphamide, carmustine, and etoposide (CBV) and carmustine, etoposide, 

cytarabine, and melphalan (BEAM). Control PBMCs were obtained from healthy 

volunteer donors. Aliquots of PBMCs were cryopreserved in liquid nitrogen. NKL, a 

human NK cell line, was grown in culture as previously described (

Blood Samples, Cell Cultures, and Cell Lines 

158). Activated 

PBMCs were obtained by culturing PBMCs in medium containing PHA (2.5 μg/mL) and 

IL-2 (50 U/mL) for 3 days in a 5% CO2 incubator at 37oC. Activated PBMCs and NKL 

cells were incubated in medium with or without chemotherapeutic agents for 2-3 days. 

For some experiments, NKL cells were incubated with or without 5.2 nM bortezomib 

simultaneously with the addition of corresponding chemotherapeutic drugs for 2 days. In 
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other experiments, activated PBMCs were incubated with or without 5-aza-dC (2.5 

ng/mL) for 1 day after incubation with or without chemotherapeutic agents.  

 

2.2. 

Recombinant human IL-2 was obtained from Chiron (Emeryville, CA) and 

recombinant human IL-12 from PeproTech (Rocky Hill, NJ). Fluorochrome-conjugated 

monoclonal antibodies recognizing human CD4 and CD8, Alexa 647-conjugated 

streptavidin, and anti-STAT4 monoclonal antibody for immunoblot were obtained from 

BD Biosciences (San Jose, CA). Biotin-labeled anti-STAT4 antibody was purchased 

from R&D Systems (Minneapolis, MN), anti-ubiquitin monoclonal (SC-130410) and 

anti-STAT4 polyclonal (SC-486) antibodies from Santa Cruz Biotechnology (Santa Cruz, 

CA). Protein A agarose beads were obtained from Millipore (Temecula, CA). Bortezomib 

was obtained from Millennium Pharmaceuticals (Cambridge, MA). Phytohaemagglutinin 

(PHA), actinomycin D, cycloheximide, MG132, 5-aza-2'-deoxycytidine (5-aza-dC), 

prednisolone, cyclophosphamide, doxycycline, cisplatin, carmustine, and etoposide were 

purchased from Sigma-Aldrich (St. Louis, MO). 

 

Cytokines, Antibodies, Chemotherapy Drugs, and Other Reagents 

2.3. 

STAT4 mRNA and protein levels (see also Section 2.9) were analyzed using real 

time PCR and immunoblotting analysis, respectively (

Analysis of STAT4 Protein and RNA Levels 

159, 160). For flow cytometric 

analysis of STAT4 protein levels, cells were surface stained with CD4-FITC and CD8-

PE, washed, fixed with 4% paraformaldehyde, permeabilized with 0.1% saponin, and 
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stained with a biotin labeled anti-STAT4 antibody followed by Alexa 647-conjugated 

streptavidin. Histogram represents the STAT4 expression gated on 5000 events of live 

CD4 or CD8 positive cells using the WinMDI software. 

 

2.4. Analysis of Differential Cell Type Proliferation in Response to  

2.5. 

In vitro Stimulation 

 PBMCs from four healthy individuals were stimulated in vitro with IL-2 

(50U/mL) and PHA (2.5μg/mL) for a period of 3 days. Subsequently, the cells were 

surface stained with either CD3-APC, CD4-FITC and CD8-PE or CD3-APC,CD56-PE 

and CD16-FITC. The results were compared to the surface staining of unstimulated cells 

from the same individuals. Results were gated on 10,000 live events and the data is 

presented as the percentage of each cell type among all events.  

 

Lymphoma patient or control subject PBMCs were incubated with or without 

actinomycin D at 1 μg/mL for 0, 2, 4, and 6 hours in a 5% CO

Assessment of STAT4 mRNA and Protein Half-life 

2 incubator at 37o

161

C. RNA 

was extracted and the first-strand cDNA was synthesized followed by real time PCR 

( ). The half-life of STAT4 mRNA from each sample was calculated accordingly (161). 

NKL cells were treated without or with carmustine or etoposide for 2-3 days. 

Cells were incubated with cycloheximide at 80 µg/mL for 0, 2, 4, 6, 8, and 18 hours. The 

amount of STAT4 and GAPDH protein were determined using Western blot analysis.  

STAT4 protein levels were normalized to GAPDH, and the half-life was calculated (162). 
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2.6. 

NKL cells were incubated with or without carmustine and etoposide for 2 days. 

Total protein lysates were extracted as described (

Immunoprecipitation and Analysis of Ubiquitin-conjugated STAT4 Protein 

107). MG132 at concentration of 20 

μM was added to the cell lysis buffer (already containing protease inhibitors) to stall the 

activity of proteasome and prevent the further degradation of protein (163). Total protein 

extracts (2 mg) were incubated for 4 hrs at 4o

2.7. 

C with slow rotation with anti-ubiquitin 

monoclonal antibody from Santa Cruz Biotechnology (Santa Cruz, CA). Protein A 

agarose beads were added and incubated for another 2 hours at the same condition. The 

immunoprecipitated proteins were analyzed using western blot with anti-STAT4 

polyclonal (SC-486) antibodies from Santa Cruz Biotechnology (Santa Cruz, CA). 

 

Cells treated with carmustine or etoposide were incubated for 24 hours in medium 

alone or medium containing IL-12. Supernatant IFN-γ protein levels were measured 

using ELISA as previously described (

Evaluation of IFN-γ Production 

159, 160). 

 

2.8. 

 PBMCs from healthy individuals were stimulated with IL-2 (50U/mL) and PHA 

(2.5μg/mL) for 3 days. Cell pellets were collected and RNA was extracted by Trizol. The 

samples were separated in 2% agarose – from Sigma-Aldrich (St. Louis, MO), and 

visualized with ethidium bromide – from Genesee Scientific (San Diego, CA). See 

Gene Expression of STAT4 Isoforms 
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Appendix B and C for the exact sequence of the primers used to detect STAT4α and 

STAT4β isoforms.  

 

2.9. 

 The mice for each STAT4 isoform are in Stat4

STAT4 Expression in Murine NK Cells 

-/-

34

 background of C57BL/6, the 

generation of which has been previously explained ( ). The cDNA for each isoform was 

cloned within the CD2/LCR promoter (7, 12). The spleen from each mouse was obtained 

and the red blood cells were lysed in RBC Lysis buffer for 5min.The NK cells were 

magnetically separated (positive isolation) using CD49b (DX5) MicroBeads (Miltenyi 

Biotec Inc., Auburn, CA) according to the manufacturer’s instructions.  

Protein analysis: Isolated NK cells were washed in 1x Phosphate Buffered Saline 

and re-suspended in cold Igepal protein lysis buffer containing protease and phosphatase 

inhibitors (DTT, pepstatin, aprotonin, benzamidine, leupeptin, iodoacetimide, AEBSF, 

sodium vanidate, beta-glycerol, and sodium flouride). After 15min incubation, the 

solution was centrifuged (14K RPM for 10min), protein was collected and the 

concentration was measured using BIORAD Protein Assay kit based on the Bradford 

method. From each sample – 10μg were separated on 10% sodium dodecyl sulfate–

polyacrylamide gel electrophoresis (SDS-PAGE). The protein bands were 

electrophoretically transferred (at 200mV overnight) onto a nitrocellulose membrane 

(Whatman GMbH). The membranes were blocked for 1 hour in 3% by weight of dry non-

fat milk in phosphate buffered saline (PBS). Primary monoclonal STAT4 antibody (BD 

Biosciences) was added (2μg/mL)and membrane was left to incubate at 4ºC overnight. 
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The membrane was washed with 1xPBS+Tween20 solution 3 times for 10 min, and the 

secondary antibody – peroxidase–conjugated goat anti-mouse immunoglobulin G 

(1:3000), was added in 3% by weight of dry non-fat milk in PBS for 2 hours. The 

nitrocellulose was washed again with PBS+Tween20 3 times and the bands were 

visualized with a Western Lightning Chemiluminescence Reagent Plus (Perkin Elmer, 

Wellesley,MA). 

 

2.10. 

P-values were determined using the PASW Statistics (IBM-SPSS, Chicago, IL) 

with a two-sided test and a p-value ≤0.05 was considered statistically significant. 

  

Statistical Analysis  
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CHAPTER 3.ACQUIRED STAT4 DEFICIENCY AS A CONSEQUENCE OF 

CANCER CHEMOTHERAPY 

 

3.1. 

Signal Transducer and Activator of Transcription 4 (STAT4) is required for IL-12 

mediated biological functions including the differentiation of T helper type I (Th1) cells 

and IFN-γ production (

Introduction 
 

34, 35, 159). IL-12 has potent antitumor activity in preclinical 

models (122, 164-166). IL-12-mediated antitumor effects are dependent on the 

production of IFN-γ (125, 126). In a Th1-mediated inflammatory environment, IFNγ has 

pleiotropic effects such as promoting antitumor immunity and antimicrobial activity. 

IFN-γ induces apoptosis in tumor cells and bacterially infected monocytes (127, 128), 

enhances major histocompatibility class I and II expression, and augments cytotoxic T 

lymphocyte (CTL) and NK cell cytotoxicity (129, 130) 

In the context of IL-12-based immunotherapy, it was observed that IFN-γ 

production in vivo was markedly defective in patients with lymphoma who had 

undergone autologous peripheral blood stem cell transplantation (PBSCT). Moreover, 

PBMCs obtained from patients after PBSCT were profoundly deficient in IFN-γ 

production after direct stimulation with IL-12 in vitro. We have subsequently shown that 

defective IFN-γ production in this setting is due to a selective deficiency in STAT4 (159, 

160). STAT4 deficiency may impair not only IL-12-based immunotherapy, but any 
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therapeutic approach that requires Th1 immunity or optimal production of IFN-γ. The 

molecular mechanisms responsible for the observed deficiency of STAT4 are not known.  

Unlike several other STAT proteins (e.g., STAT1 and STAT3), which appear to 

be constitutively expressed in many tissues, STAT4 expression is mostly restricted to 

hematopoietic cells (32, 33). STAT4 is weakly expressed by resting T cells and is 

upregulated after T cell activation (19). STAT4 expression is maintained during 

development of Th1 cells, but is down-regulated during development of Th2 cells (37). 

Human NK cells constitutively express STAT4, but STAT4 protein levels can be 

increased or decreased in NK cells after cytokine stimulation (167, 168). Despite 

abundant evidence that STAT4 expression is subject to tight regulation, the mechanisms 

that control STAT4 expression in physiologic or pathologic conditions have not been 

well characterized. Previous studies indicate that transcriptional silencing of the STAT4 

gene due to hypermethylation of its promoter region and proteasome-dependent 

degradation of STAT4 protein can decrease STAT4 expression in human lymphocytes 

(48, 63). We have undertaken studies to elucidate the mechanisms of STAT4 deficiency 

in patients with lymphoma. 
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3.2. 

We have previously demonstrated that STAT4 protein levels are decreased in 

PBMCs obtained from lymphoma patients after PBSCT (

Results 

 

3.2.1.STAT4 Deficiency is a Consequence of Chemotherapy Treatment and 

is Not Due to Lymphoma Tumor Burden 

160). The observed STAT4 

deficiency could be due to the tumor-bearing state per se or could occur as a consequence 

of the therapy for lymphoma. To address this question, STAT4 protein levels were 

analyzed in PBMCs obtained from patients with active lymphoma who had not received 

any therapy. Levels of STAT4 protein in PBMCs of untreated lymphoma patients were 

not significantly different (P>0.05) from those in PBMCs of healthy controls after bands 

were normalized to β-actin levels (Figures 2 and 4B). Therefore, the presence of tumor 

burden does not result in STAT4 deficiency in patients with lymphoma.  

We hypothesized that STAT4 deficiency is caused by the chemotherapy used to 

treat lymphoma. To test this hypothesis, STAT4 levels were analyzed in PBMCs 

collected from lymphoma patients before and after they had received the initial 

chemotherapy used to treat their lymphoma. STAT4 protein levels were decreased after 

standard dose chemotherapy treatment compared to pre-treatment levels (Figures 3 and 

4B). This result indicates that chemotherapy exposure contributes to STAT4 deficiency in 

the PBMCs of lymphoma patients.  

We next wanted to evaluate whether or not the type of chemotherapy regimen 

correlates with the degree of reduction in STAT4 expression. PBMCs were obtained from 
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4 patients who underwent high dose chemotherapy and PBSCT. The reduction in STAT4 

protein levels was more severe in patient samples after high-dose chemotherapy (Figure 

4). 

 

3.2.2. Acquired STAT4 Deficiency in Normal 

PBMCs Treated In vitro With Chemotherapy Drugs 

To directly test our hypothesis that chemotherapy drugs cause STAT4 deficiency, 

PBMCs obtained from normal healthy control subjects were incubated in vitro with 

chemotherapeutic agents. Carmustine and etoposide were used in our experiments, as 

these agents are commonly included in the high-dose chemotherapy regimens that are 

associated with profound STAT4 deficiency after PBSCT. The levels of STAT4 protein 

detected in activated PBMCs incubated in vitro with etoposide or carmustine were 

significantly decreased in comparison to levels detected in cells cultured in medium 

alone(Figure 5A). In contrast, the levels of STAT3 protein were not affected by the 

presence of chemotherapy drugs in both – patient samples and in vitro treatment with 

chemotherapeutic drugs (Figures 3, 4A and 5A). The levels of STAT4 mRNA were also 

diminished in activated PBMCs treated in vitro with etoposide or carmustine (Figure 

5B).The reduced STAT4 protein levels in treated PBMCs were detected by 

immunoblotting of whole cell lysates. To confirm the relevance of the in vitro 

experiments on the STAT4 levels after incubation with high dose related agents, wild 

type mice weresubjected to treatment with either DTIC or Etoposide (Figure 6). Indeed, 
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the similarity in magnitude of STAT4 reduction further substantiates the contribution of 

these agents in the acquired deficiency among post treatment patients with lymphoma. 

Even though the in vitro studies and mice treatments make a strong case for the 

chemotherapeutic treatment as the causative agent of STAT4 deficiency, these studies 

cannot elucidate whether the deficiency is more or less severe in particular subsets of 

lymphocytes. To address this question, the effect of chemotherapy drugs on STAT4 

expression in different cell types was analyzed by flow cytometry. STAT4 protein levels 

were reduced in both CD4+ (Th1) and CD8+ T (CTL) cell subsets after chemotherapy 

exposure (Figure 7).  

Prior to flow cytometric analysis, PBMCs from healthy individuals was 

stimulated with the growth promoting cytokines – IL-2 and PHA. Stimulation was 

deemed necessary to mimic the in vivo conditions among lymphoma patients, where 

chemotherapy reduces overall lymphocyte counts demanding greater proliferation as a 

way of counteracting the reduction. Because NK cells are not responsive to PHA and IL-

2 is not sufficient to provide a strong proliferation signal to this cell type, the presence of 

NK cells within stimulated PBMCs had to be evaluated (Figure 8). Flow cytometric 

analysis showed that indeed IL-2 and PHA had little impact on the proliferation of NK 

cells which was demonstrated by their reduced numbers as a percentage of the total cells 

analyzed (Figure 8).  

Therefore, the effect of chemotherapeutic agents on STAT4 expression by NK 

cells was examined using a human NK cell line, NKL (158). Western blot analysis 
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demonstrated reduced STAT4 protein levels in NKL cells treated with carmustine or 

etoposide for 2 days (Figure 9A).   

To determine the potential functional consequences of chemotherapy-induced 

STAT4 deficiency, we measured IFN-γ production by NK cells incubated with or without 

chemotherapy drugs. The levels of IFN-γ secreted by IL-12-stimulated NKL cells were 

significantly lower in the presence of either carmustine or etoposide (Figure 9B). Thus, 

the partial reduction of STAT4 protein levels in NK cells exposed to chemotherapy drugs 

is associated with impaired IFN-γ production after cytokine stimulation.   

 

3.2.3. STAT4 mRNA Stability is Not Affected by Chemotherapy 

Our results indicate that both mRNA and protein levels of STAT4 were 

diminished in cells exposed to chemotherapy drugs. The reduction in STAT4 mRNA 

levels could be due to decreased transcription of the STAT4 gene and/or decreased 

stability of the STAT4 mRNA. We measured the half-life of STAT4 mRNA in PBMCs 

obtained from control subjects or chemotherapy-treated lymphoma patients. The mean 

half-life of STAT4 mRNA from lymphoma patient PBMCs obtained after PBSCT (3.967 

hours) was not significantly different (P=0.13) than that of control subject PBMCs (2.797 

hours; Figure 10B). Thus, although steady-state levels of STAT4 mRNA are decreased 

after chemotherapy treatment of lymphoma patients (Figure 10A) (160), the STAT4 

mRNA stability was not affected by high-dose chemotherapy. 

It has been shown that DNA methylation in the proximal promoter region plays a 

direct role in the regulation of STAT4 transcriptional activity (48). To determine whether 
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DNA methylation-related chromatin remodeling is involved in decreased STAT4 

transcripts after chemotherapy exposure, we used 5-aza-dC to inhibit de novo DNA 

methylation in both normal PBMCs and NKL cells treated with or without 

chemotherapeutic drugs. Despite increases in STAT4 gene expression following 5-aza-dC 

treatment of cells incubated with carmustine or etoposide, the total level of STAT4 

protein is minimally rescued upon 5-aza-dC treatment (Figures 11A and 11B). 

 

3.2.4. Ubiquitin-mediated Proteasomal Degradation of  

STAT4 in Chemotherapy-treated Cells 

Our results suggest that, despite the decreased STAT4 mRNA levels we observed 

in lymphoma patients, the transcription based mechanism of regulating STAT4 

expression post-chemotherapy treatment was unaffected as evidenced by the rescued 

levels of STAT4 mRNA after 5-aza-dC treatment. Since these rescued levels never 

translated into restored protein levels, we hypothesized that reduced stability of the 

STAT4 protein is the dominant mechanism of chemotherapy-induced STAT4 deficiency. 

To test this hypothesis, we measured the half-life of STAT4 protein in human NK cells 

cultured in the presence or absence of chemotherapy drugs. Consistent with this 

hypothesis, the half-life of STAT4 protein was found to be significantly reduced in NKL 

cells treated with carmustine or etoposide (Figures 12A and 12B). 

Ubiquitin-mediated proteasomal degradation has been implicated in the regulation 

of tyrosine phosphorylated (7) as well as total STAT4(61). To evaluate the role of the 

ubiquitin-mediated degradation pathway in regulation of STAT4 protein, the levels of 
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ubiquitinated STAT4 protein were determined in NKL cells treated without or with 

carmustine and etoposide. The ratios between ubiquitin-conjugated STAT4 and total 

STAT4 are substantially higher in cells treated with chemotherapy drugs as compared to 

those incubated in medium alone (Figure 13). 

To test the hypothesis that chemotherapy-induced reduction in STAT4 protein 

stability is due to proteasomal degradation, human NK cells were incubated with or 

without the proteasome inhibitor bortezomib in the presence of either carmustine or 

etoposide. The magnitude of the decrease in STAT4 protein levels following 

chemotherapy exposure was greatly reduced in the presence as compared to the absence 

of bortezomib (Figures 14A, 14B, and 9A). This result confirms that the proteasome 

pathway is involved in STAT4 protein degradation after chemotherapy exposure. 

We next evaluated whether restored STAT4 protein by bortezomib will 

circumvent the previously observed defective IFN-γ production by NK cells treated with 

carmustine or etoposide. The production of IFN-γ was determined following IL-12 

stimulation for 1 day. Results showed that bortezomib was capable of rescuing IFN-γ 

production to the levels produced by cells without receiving any chemotherapy (Figure 

15). This further supports the importance of STAT4 in IL-12 mediated IFN-γ production.  

In addition, circumventing STAT4 deficiency by Bortezomib has the potential for 

enhancing the efficacy of IL-12 immunotherapy as well as any therapeutic regimen that 

requires Th1 immunity for production of IFN-γ. 
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3.3. 

We have previously demonstrated that STAT4 deficiency contributes to impaired 

IFN-γ production in lymphoma patients after autologous PBSCT (

Discussion 

160). However, the 

mechanisms responsible for this STAT4 deficiency have not been previously elucidated.  

In this study, we have shown that STAT4 protein levels are normal in PBMCs obtained 

from treatment-naïve patients with active lymphoma. These results confirm that STAT4 

deficiency in patients is acquired and not an inherited condition that predisposes them to 

develop lymphoma. Furthermore, these data refute the possibility that acquired STAT4 

deficiency is due to the lymphoma-bearing state. Thus, the mechanism of STAT4 

deficiency presumably differs from that of the acquired ζ chain deficiency previously 

identified in lymphocytes of patients with advanced cancer(169). 

In comparison to the levels seen in PBMCs obtained from lymphoma patients 

before treatment, STAT4 protein levels were significantly diminished in PBMCs 

obtained after conventional standard dose chemotherapy. Moreover, STAT4 protein 

levels were even more strikingly reduced in PBMCs obtained from lymphoma patients 

after high-dose chemotherapy and autologous PBSCT. Consistent with this result, STAT4 

protein levels declined significantly in normal activated PBMCs and wild type treated 

mice after exposure to chemotherapy drugs used in high-dose regimen in vitro (Figures 5 

and 6). These findings suggest that acquired STAT4 deficiency in lymphoma patients is 

due to cytotoxic chemotherapy and that the severity of the deficiency is directly related to 

the type of chemotherapy regimen. In contrast to STAT4, levels of STAT3 (Figures 3, 4A 

and 5A) and STAT1 do not change significantly in chemotherapy-treated cells. 
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Therefore, the decrease in STAT4 expression is selective and cannot be ascribed to a 

generalized condition of cellular stress or cytotoxic damage induced by chemotherapy 

drugs. 

Chemotherapy-induced STAT4 deficiency was seen in multiple lymphocyte 

populations, including CD4 T cells, CD8 T cells, and NK cells. These results suggest that 

anti-tumor immune responses may be impaired after treatment with systemic 

chemotherapy. STAT4 protein levels were significantly diminished but generally still 

detectable in cells exposed to chemotherapy drugs in vitro or in vivo. Nevertheless, the 

degree of STAT4 deficiency caused by chemotherapy is sufficient to profoundly inhibit 

IL-12-induced IFN-γ production (Figure 9B). Therefore, the partial STAT4 deficiency 

occurring after chemotherapy is likely to be functionally relevant.   

Chemotherapy-induced STAT4 deficiency could be due to reduced transcript 

levels of the STAT4 gene, reduced stability of STAT4 mRNA, impaired translation of 

STAT4 mRNA into protein, or post-translational modifications of STAT4 protein that 

reduce its stability. We found that STAT4 mRNA levels were reduced in PBMCs of 

lymphoma patients after PBSCT even though STAT4 mRNA stability did not appear to be 

affected (Figures 10A and 10B). This result prompted the hypothesis that chemotherapy 

causes epigenetic modifications of the STAT4 gene that inhibit its transcription. 

Hypermethylation of CpG islands located 3’ to the core promoter of the STAT4 gene have 

been shown to inhibit its promoter activity (48). We therefore examined the effect of the 

DNA methyltransferase inhibitor 5-aza-dC on STAT4 expression in chemotherapy-

treated cells. Compatible with our hypothesis, STAT4 mRNA levels were significantly 
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higher in cells incubated with carmustine or etoposide plus 5-aza-dC compared to levels 

in cells incubated in carmustine or etoposide alone (Figure 11A). However, STAT4 

protein levels were only minimally increased after 5-aza-dC treatment (Figure 11B).  

Therefore, post-translational regulation of STAT4 protein levels may be the dominant 

mechanism of STAT4 deficiency after chemotherapy treatment.   

Indeed, we found that the half-life of STAT4 protein was significantly reduced in 

cells exposed to chemotherapy drugs (Figures 12A and 12B), suggesting that degradation 

of STAT4 protein is enhanced by chemotherapy. Ubiquitin-mediated proteasomal 

degradation has been implicated in the regulation of tyrosine-phosphorylated STAT4 as 

well as total STAT4 (7, 61). Furthermore, the H2.0-like homeobox 1 protein (HLX1) 

promotes proteasome-dependent STAT4 down-regulation in NK cells after IL-12 

stimulation (74). We observed increased ubiquitination of STAT4 in cells treated with 

carmustine or etoposide, suggesting that chemotherapy drugs reduce the stability of 

STAT4 protein at least in part by promoting proteasomal degradation of STAT4. 

Compatible with this hypothesis, we found that the proteasome inhibitor bortezomib can 

substantially rescue STAT4 protein in cells exposed to chemotherapy drugs (Figures 14A 

and 14B). Bortezomib is used for the treatment of relapsed or refractory mantle cell 

lymphoma patients (170)and can be safely given after autologous PBSCT(171). 

Therefore, it is clinically feasible to administer bortezomib also to non-Hodgkin’s 

lymphoma patients in attempts to ameliorate chemotherapy-induced STAT4 deficiency. 

The mechanism by which chemotherapy drugs target STAT4 for ubiquitination 

and proteasomal degradation remains to be identified. It has been shown that STAT-
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interacting LIM protein (SLIM) promotes ubiquitination and degradation of STAT4 in 

mice (61). However, SLIM also promotes the proteasomal degradation of STAT1 as well 

as STAT4. In contrast to STAT4, we have found that STAT1 levels are not reduced in 

PBMCs obtained from patients after PBSCT or in normal activated PBMCs treated with 

chemotherapy drugs in vitro. Thus, it is not likely that SLIM mediates the acquired 

STAT4 deficiency we have demonstrated.   

Becknell et al. have reported that cycloheximide treatment leads to increased 

STAT4 protein levels in the human NK cell line NK-92(74). Similarly we have observed 

that the levels of STAT4 protein are increased in PBMCs treated with cycloheximide for 

less than 3 hours. These results suggest that a labile protein can suppress STAT4 protein 

levels in human cells. We speculate that chemotherapy drugs can induce the expression 

of a labile ubiquitin E3 ligase that participates in the selective ubiquitination of STAT4 

protein, leading to its proteasomal degradation. Further investigation is necessary to test 

this hypothesis. 

Considering the reports detailing the differential structure and function of the β 

isoform STAT4 (7), we ventured to explore whether STAT4β might have a distinct role 

during and post chemotherapeutic treatment. For that purpose, we obtained three kinds of 

transgenic mice – STAT4-/-, STAT4α and STAT4β. We magnetically separated the NK 

cells and probed for STAT4 after in vitro IL-12 stimulation. Unfortunately, no STAT4 

expression was found in these NK cells (Figure A1) nor was any IFNγ secreted as was 

indicated by ELISA (data not shown). The most likely explanation is that the CD2/LCR 

promoter does not drive the expression of the inserted cDNA in the NK cell lineage. This 
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is further supported by the presence of STAT4αin cells from the spleen of STAT4α 

transgenic mice (Figure A1). 

 In order to further our ability of detecting STAT4 isoforms, we used primers that 

distinguish between each type in analyzing cDNA from healthy PBMCs (Figures A2, B1, 

C1). Further studies are needed in elucidating the extent of its expression and any 

variance in stability that might allow it to assume dominant function over the α isoform in 

stress conditions such as those induced by high dose chemotherapy. 

Systemic combination chemotherapy, with or without rituximab, is currently the 

mainstay of initial treatment for patients with lymphoma. Moreover, high-dose therapy 

and autologous PBSCT is the treatment of choice for eligible patients with relapsed or 

refractory lymphoma. We have shown both standard dose and high-dose chemotherapy 

cause a selective, acquired STAT4 deficiency leading to impaired IFN-γ production.  

Sufficient IFN-γ production has been shown to be required for effective cellular 

immunity to tumors in many experimental models. Optimal immunotherapy concurrent 

with or following chemotherapy for lymphoma will require strategies that can ameliorate 

or circumvent chemotherapy-induced STAT4 deficiency.   

 

3.4. 

 Due to the observed partial STAT4 restoration in post-chemotherapy treated cells, 

it is worth asking the question – could another ubiquitin mediated degradation pathway 

be involved in regulating STAT4 protein levels? The field of autophagy has been 

attracting ever greater interest from the scientific community with its complex crosstalk 

Future Directions 
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between various vesicular pathways some of which are know to mediate proteasome 

independent protein degradation (172).Generally, ubiquitin mediated degradation by 

macroautophagy has been considered to be non-specific yet greater understanding of the 

pathway could provide new insight in what promises to be a new realm in protein 

regulation. It will be interesting to explore whether some of the main macroautophagy 

inhibitors do indeed impact STAT4 levels, Furthermore, the potential interaction among 

known macroautophagy proteins such p62 (also known as sequestosome 1) (173, 174) 

with STAT4 in promoting the turnover of its ubiquitinated form is worth pursuing. 

Results from such interaction could redefine our understanding of how immune cells 

detect changes in their intracellular homeostasis and how that might impact capability of 

mounting an immune response.  
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Figure 1. General information about the STAT4 signaling pathway and the specific 
structures of both STAT4 isoforms. (A) When a cytokine binds to its receptor, it causes 
conformational change in its cytoplasmic fragment, which leads to the recruitment of 
receptor associated kinases of the JAK family. JAKs phosphorylate themselves and 
tyrosine residues (Y) on the receptor, which become docking sites for STAT proteins. 
Binding of STATs leads to their tyrosine phosphorylation (Y) and activation. They 
migrate to the nucleus and activate transcription of specific genes. (B) Schematic 
representation of the protein domains of STAT4 isoforms: N – amino terminal domain, 
CC – coiled-coil domain, DNA – DNA binding domain, LK – linker domain, SH2 – Src 
homology domain, Y – phosphotyrosyl tail segment, and TA – transactivation domain. 
Also listed are the serine (pSer) and tyrosine (pTyr) phosphorylation sites and the 
molecular weight in kDa.  



40 

 

 

 
 

Figure 2. Expression of STAT4 in PBMCs obtained from lymphoma patients before 
chemotherapy. STAT4 protein expression was analyzed by immunoblotting of PBMCs 
from 4 normal controls (C1-C4) and 6 untreated lymphoma patients (P1-P6). Samples 
from normal controls and patients were run in separate gels, while exposure was done at 
the same time. The indicated upper STAT4 band detected with anti-STAT4 monoclonal 
antibody was confirmed with anti-STAT4 polyclonal antibody (160).   
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Figure 3. Expression of STAT4 in PBMCs obtained from lymphoma patients after 
standard dose of chemotherapy. Immunoblot comparison of STAT4 expression in 
untreated lymphoma patient PBMCs (U), three weeks after their first cycle of standard 
dose chemotherapy (S), and in PBMC from healthy individuals (C).  
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Figure 4. Expression of STAT4 in PBMCs obtained from lymphoma patients after 
high dose chemotherapy. (A) Analysis of STAT4 expression in PBMCs obtained from 
lymphoma patients after high-dose chemotherapy (CBV or BEAM) and autologous 
PBSCT (designated by the letter “H” for high-dose). (B) The levels of STAT4 protein 
from Figures 1, 2, and 3A were quantified by the densitometry of the corresponding 
bands, normalized to endogenous control β-actin using the NIH ImageJ program, and 
presented as mean ± SD from all normal and patient samples. (*P<0.05, relative to 
normal controls (C) or untreated lymphoma patients (U); **P<0.05, relative to patients 
receiving standard dose chemotherapy (S); ***P>0.05, relative to normal controls). 
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Figure 5. Expression of STAT4 in cells treated in vitro with chemotherapeutic drugs 
associated with high dose treatment. PBMCs from healthy individuals stimulated with 
IL-2 and PHA, were treated with the indicated concentrations of 2 μM etoposide (ETO) 
and 50 μM carmustine (CAR). RNA was extracted and the first-strand cDNA was 
synthesized from the cells. STAT4 expression was analyzed using immunoblot (A) and 
real time PCR (B). 
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Figure 6. Effects on mouse STAT4 protein expression as a result of in vivo exposure 
to chemotherapeutic drugs. CD4+ T cells were isolated from spleens of wild type (WT) 
mice using positive selection with CD4+ magnetic beads as it is described in Materials 
and Methods. The collected cells were treated in vivo with the designated chemotherapy 
drugs: DTIC and etoposide (ETO). Total protein extracts were separated on SDS-PAGE 
followed by immunoblotting. 
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Figure 7. Expression of STAT4 among different T lymphocytes after in vitro 
treatment with chemotherapeutic drugs.STAT4 protein levels in individual cell types 
from normal PBMC treated above were analyzed using flow cytometry as described in 
Material and Methods. Histograms represent the STAT4 expression gated on 5000 events 
of live CD4 or CD8 positive cells using the WinMDI software.   
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Figure 8.Relative amounts of different cell types after in vitro stimulation with IL2 
and PHA of PBMCs from healthy individuals. These are results of a flow cytometric 
analysis which was conducted as described in the Materials and Methods section. The bar 
graph represents percentages of each cell type before and after stimulation with IL-2 
(50U/mL) and PHA (2.5μg/mL) from four different healthy individual PBMCs. Each 
condition was gated on 10,000 live cells of each type – CD4+ and CD8+are markers for T 
lymphocytes, while CD56+is a general marker for total NK cell populations.    
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Figure 9. Effects of in vitro chemotherapy treatment on NK cell population. (A) 
NKL cells were treated with 50 μM carmustine (CAR) and 2 μM etoposide (ETO) for 2-3 
days.  STAT4 protein levels were analyzed using western blotting. (B) NKL cells treated 
as described in (A) were incubated with medium alone or medium containing IL-12 (2 
ng/ml) for 1day. The cell-free supernatants were analyzed for IFNγ production using 
ELISA. The data is presented as mean± SD from 3 independent experiments. 
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Figure 10. STAT4 mRNA levels and half-life of STAT4 mRNA in PBMCs. PBMCs 
obtained from 6 healthy control subjects and 3 lymphoma patients after high-dose 
chemotherapy and PBSCT were treated with and without actinomycin D at 1μg/ml for 0, 
2, 4, and 6 hrs in a 5% CO2

161
 incubator at 37ºC. RNA was extracted, and the first-strand 

cDNA was synthesized followed by the real time PCR ( ). The half-life of STAT4 
mRNA from each sample was calculated accordingly (161). Results shown are mean ± 
SD.  
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Figure 11. Analysis of methylation based regulation of STAT4 via 5-Azacitidne 
treatment. PBMCs from healthy individuals were activated and subsequently treated 
with carmustine and etoposide as described in Figure 2A. Following the 3 day drug 
incubation, cells were washed and re-suspended in medium containing the methylation 
inhibitor 5-Azacitidine (5-Aza-dC) at 2.5 ng/mL. Cell pellets were collected after 1 day 
incubation followed by RNA extraction and gene expression analysis using real time 
PCR (A) or protein analysis using western blotting (B). 
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Figure 12. Chemotherapy drugs reduce STAT4 protein half-life.(A)NKL cells treated 
with 50 μM etoposide (ETO) or 2 μM carmustine (CAR) for 2 days. Subsequently, the 
cells were washed and incubated with cycloheximide (CHX) for 0, 2, 4, 6, 8, 10, 12, and 
24 hours. STAT4 protein expression was analyzed using western blotting. (B)The levels 
of STAT4 protein were determined by the densitometry of the corresponding bands 
normalized to the endogenous control – β-actin, using the NIH ImageJ program (Figure 
A3). The half-life of STAT4 protein was calculated accordingly, and results shown are 
mean ± SD from a total of 3 independent experiments. 
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Figure 13.Ubiquitin-mediated proteasomal degradation as the cause of 
chemotherapy induced STAT4 deficiency. NKL cells were treated with 50μM 
carmustine (CAR) or 2μM etoposide (ETO) for 2 days. Ubiquitin-conjugated STAT4 
protein levels were analyzed using immunoprecipitation (IP) of whole cell lysates (2 mg) 
with anti-ubiquitin monoclonal antibody followed by immunoblotting (IB) with anti-
STAT4 antibody (left side of panel A). Total STAT4 protein levels were analyzed using 
immunoblotting from 10 μg of whole cell lysates (right side of panel A and longer 
exposure of the same lanes in panel B). The results are representative of 3 independent 
experiments.  
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Figure 14. Rescuing the levels of STAT4 via inhibition of the proteasome 
machinery.(A) NKL cells were incubated with the proteasome inhibitor bortezomib at 
5.2 nM simultaneously with either 50μM carmustine (CAR) or 2μM etoposide (ETO) for 
2 days. STAT4 protein levels were determined using western blotting. The results are 
representative of 3 independent experiments. Ratio of total STAT4 to β-actin is indicated 
below.(B) Densitometric analysis of STAT4 protein levels in NKL cells treated with 
carmustine and etoposide in the presence or absence of bortezomib. The result is 
presented as the averaged ratio of STAT4 to β-actin from 2 independent experiments as 
mean ± SD.  
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Figure 15. Restoring IFNγ secretion in post chemotherapy treated cells with 
Bortezomib. NKL cells were treated with either 50μM carmustine (CAR) or 2μM 
etoposide (ETO) for 2 days. Subsequently, cells were washed and stimulated with IL-12 
at 2ng/ml for 1 day. The IFNγ levels in the cell supernatants were evaluated using 
ELISA. Results are averaged from 2 independent experiments as mean ± SD. 
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Figure A1. Expression of STAT4α and STAT4β isoforms in the NK cells from 
STAT4 transgenic mice.  Mouse NK cells were magnetically separated from the spleen 
of each mouse type as described in Materials and Methods. Cells were stimulated with 
IL-12 for 2 days, the protein was collected and resolved on SDS-PAGE.  
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Figure A2. Detecting STAT4 isoform transcripts in human PBMCs. PBMCs from 
healthy individual were stimulated in vitro with IL-2 and PHA for 3 days. The cell pellets 
were collected, the first-strand cDNA was synthesized and the expression analysis of 
either STAT4α or STAT4βwas conducted by PCR. The primer sequences differentiating 
the two isoforms are shown in Appendix A1.  

 

 

 

 

 

 

 



74 

 

 

time (in hours) Condition Stat 4 β-actin (Stat4)/(β-actin) Reltive Units 
0 No CXM -D 7295.58 4867.99 1.5 1.0
2 w/ CXM -D 6631.87 4688.75 1.4 0.9
4 w/ CXM -D 6471.75 5739.04 1.1 0.8
6 w/ CXM -D 6064.04 4930.21 1.2 0.8
8 w/ CXM -D 6340.46 6302.63 1.0 0.7

10 w/ CXM -D 5869.04 6172.51 1.0 0.6
11.5 w/ CXM -D 5654.16 6416.80 0.9 0.6
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time (in hours) Condition Stat 4 β-actin (Stat4)/(β-actin) Reltive Units 
0 No CXM ETO 9088.062 11094.23 0.8 1.0
2 w/ CXM ETO 8792.234 10974.7 0.8 1.0
4 w/ CXM ETO 7156.234 10961.99 0.7 0.8
6 w/ CXM ETO 4255.698 11329.11 0.4 0.5
8 w/ CXM ETO 2441.234 11706.99 0.2 0.3

10 w/ CXM ETO 1544.527 11806.99 0.1 0.2
11.5 w/ CXM ETO 1278.355 10005.82 0.1 0.2

time (in hours) Reltive Units 
0 1.0
2 1.0
4 0.8
6 0.5
8 0.3

10 0.2
11.5 0.2

t half-life ≈ 6

ETO

y = -0.086x + 1.058
R² = 0.943

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 5 10 15

Re
la

tiv
e U

ni
ts

hours

STAT4 half-life after ETO treatment

 

Figure A3. Calculating STAT4 protein half-life using the NIH ImageJ program. The 
intensity of the bands from Figure 12A were scanned and converted to a numerical unit 
using the NIH ImageJ software. The intensity from each time point was normalized to 
endogenous β-actin and the reduction in STAT4 protein was expressed relative to the 
initial time point (t=0 hours). The equation from the linear graph was used to calculate 
the time that it takes for the initial amount of STAT4 to be reduced by 50%.   
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     1 AAGGCTACTCAAGGAGAGTAGGAGGAGGCTAGGTCAGGAAGGGCAAGCACTGGTGGCCTA 
       ............................................................ 
       ............................................................ 
 
 
    61 CCCAGGACTTGGCCCAACCCTCTGGGTCAGGTCACCCTCGTCGGAGTGAGCGGACCCCGC 
       ............................................................ 
       ............................................................ 
 
 
   121 TGGAATTGGAGCCCAGTAAGGTCTATGAGTTTGGTGTTTTGATCCTGGCTACCCATCCCT 
       ............................................................ 
       ............................................................ 
 
 
   181 TCCATCCCAGGGGTGGTTCACCAGGCTGAGTGGAGCCTTATACTAGGGAGAGAGGAAGCT 
       ............................................................ 
       ............................................................ 
 
 
   241 GAAGAACTGGGCTCCAGCATGTCTCAGTGGAATCAAGTCCAACAGTTAGAAATCAAGTTT 
       ..................ATGTCTCAGTGGAATCAAGTCCAACAGTTAGAAATCAAGTTT 
       ..................-M--S--Q--W--N--Q--V--Q--Q--L--E--I--K--F- 
 
 
   301 TTGGAGCAGGTGGATCAATTCTATGATGACAACTTTCCCATGGAAATTCGGCATCTGTTG 
    43 TTGGAGCAGGTGGATCAATTCTATGATGACAACTTTCCCATGGAAATTCGGCATCTGTTG 
    15 -L--E--Q--V--D--Q--F--Y--D--D--N--F--P--M--E--I--R--H--L--L- 
 

Y 
   361 GCCCAATGGATYGAAAATCAAGACTGGGAGGCAGCTTCTAACAATGAAACCATGGCAACG 
   103 GCCCAATGGATTGAAAATCAAGACTGGGAGGCAGCTTCTAACAATGAAACCATGGCAACG 
    35 -A--Q--W--I--E--N--Q--D--W--E--A--A--S--N--N--E--T--M--A--T- 
 
 
 
Figure B1. Primer sequences for analyzing gene expression of STAT4α.The numbers 
on the left side of the sequence panels designate the position of each nucleotide in the 
STAT4 transcript. The letters in the third row designate the position of each amino acid 
in the STAT4 protein. The numbers differ slightly based on the type of sequencing used 
to generate them - as indicated in GenBank.  
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   421 ATTCTTCTTCAAAACTTGTTAATACAACTGGATGAACAGTTAGGTCGTGTTTCCAAAGAG 
   163 ATTCTTCTTCAAAACTTGTTAATACAACTGGATGAACAGTTAGGTCGTGTTTCCAAAGAG 
    55 -I--L--L--Q--N--L--L--I--Q--L--D--E--Q--L--G--R--V--S--K--E- 
 
 
 
   481 AAAAACCTACTCTTGATACACAATCTAAAAAGAATTAGGAAGGTCCTTCAGGGAAAATTT 
   223 AAAAACCTACTCTTGATACACAATCTAAAAAGAATTAGGAAGGTCCTTCAGGGAAAATTT 
    75 -K--N--L--L--L--I--H--N--L--K--R--I--R--K--V--L--Q--G--K--F- 
 
                           R 
   541 CATGGAAATCCAATGCATGTAGCTGTGGTTATTTCRAACTGTTTAAGGGAAGAGAGGAGA 
   283 CATGGAAATCCAATGCATGTAGCTGTGGTTATTTCAAACTGTTTAAGGGAAGAGAGGAGA 
    95 -H--G--N--P--M--H--V--A--V--V--I--S--N--C--L--R--E--E--R--R- 
 
                 R 
   601 RTATTGGCTGCAGCCAACATGCCTGTCCAGGGGCCTCTAGAGAAATCCTTACAAAGTTCT 
   343 ATATTGGCTGCAGCCAACATGCCTGTCCAGGGGCCTCTAGAGAAATCCTTACAAAGTTCT 
   115 =I=-L--A--A--A--N--M--P--V--Q--G--P--L--E--K--S--L--Q--S--S- 
 
 
   661 TCAGTTTCAGAAAGACAGAGGAATGTGGAGCACAAAGTGGCTGCCATTAAAAACAGTGTG 
   403 TCAGTTTCAGAAAGACAGAGGAATGTGGAGCACAAAGTGGCTGCCATTAAAAACAGTGTG 
   135 -S--V--S--E--R--Q--R--N--V--E--H--K--V--A--A--I--K--N--S--V- 
 
                              R 
   721 CAGATGACAGAACAAGATACCAAATACTTAGAAGATCTGCARGACGAATTTGACTACAGG 
   463 CAGATGACAGAACAAGATACCAAATACTTAGAAGATCTGCAAGACGAATTTGACTACAGG 
   155 -Q--M--T--E--Q--D--T--K--Y--L--E--D--L--Q--D--E--F--D--Y--R- 
 
 
   781 TATAAAACAATTCAGACAATGGATCAGAGTGACAAGAATAGTGCCATGGTGAATCAGGAA 
   523 TATAAAACAATTCAGACAATGGATCAGAGTGACAAGAATAGTGCCATGGTGAATCAGGAA 
   175 -Y--K--T--I--Q--T--M--D--Q--S--D--K--N--S--A--M--V--N--Q--E- 
 
                W 
   841 GTTTTGACACTGCAGGAAATGCTWAACAGCCTCGATTTCAAGAGAAAGGAGGCTCTCAGT 
   583 GTTTTGACACTGCAGGAAATGCTTAACAGCCTCGATTTCAAGAGAAAGGAGGCTCTCAGT 
   195 -V--L--T--L--Q--E--M--L--N--S--L--D--F--K--R--K--E--A--L--S- 
 
 
   901 AAAATGACCCAAATCATCCATGAGACAGACCTGTTAATGAACACCATGCTCATAGAAGAG 
   643 AAAATGACCCAAATCATCCATGAGACAGACCTGTTAATGAACACCATGCTCATAGAAGAG 
   215 -K--M--T--Q--I--I--H--E--T--D--L--L--M--N--T--M--L--I--E--E- 
 
                 R 
   961 CTGCAAGACTGGAAGCRGCGGCAGCAAATCGCCTGCATCGGGGGTCCACTCCACAATGGG 
   703 CTGCAAGACTGGAAGCGGCGGCAGCAAATCGCCTGCATCGGGGGTCCACTCCACAATGGG 
   235 -L--Q--D--W--K-=R=-R--Q--Q--I--A--C--I--G--G--P--L--H--N--G- 
 
 
Figure B1. Primer sequences for analyzing gene expression of STAT4α. 
(continued…)  
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                         M 
  1021 CTCGACCAGCTTCAGAACTGCTTTACACTATTGGCAGAAAGTMTTTTCCAACTGAGAAGG 
   763 CTCGACCAGCTTCAGAACTGCTTTACACTATTGGCAGAAAGTCTTTTCCAACTGAGAAGG 
   255 -L--D--Q--L--Q--N--C--F--T--L--L--A--E--S-=L=-F--Q--L--R--R- 
 
 
  1081 CAATTGGAGAAACTAGAGGAGCAATCTACCAAAATGACATATGAAGGTGATCCCATTCCA 
   823 CAATTGGAGAAACTAGAGGAGCAATCTACCAAAATGACATATGAAGGTGATCCCATTCCA 
   275 -Q--L--E--K--L--E--E--Q--S--T--K--M--T--Y--E--G--D--P--I--P- 
 
 
  1141 ATGCAAAGAACTCACATGCTAGAAAGAGTCACCTTCTTGATCTACAACCTTTTCAAGAAC 
   883 ATGCAAAGAACTCACATGCTAGAAAGAGTCACCTTCTTGATCTACAACCTTTTCAAGAAC 
   295 -M--Q--R--T--H--M--L--E--R--V--T--F--L--I--Y--N--L--F--K--N- 
 
 
  1201 TCATTTGTGGTTGAGCGACAGCCATGTATGCCAACCCACCCTCAGAGGCCGTTGGTACTT 
   943 TCATTTGTGGTTGAGCGACAGCCATGTATGCCAACCCACCCTCAGAGGCCGTTGGTACTT 
   315 -S--F--V--V--E--R--Q--P--C--M--P--T--H--P--Q--R--P--L--V--L- 
 
 
  1261 AAAACCCTAATTCAGTTCACTGTAAAACTAAGGCTACTAATAAAATTGCCAGAACTAAAC 
  1003 AAAACCCTAATTCAGTTCACTGTAAAACTAAGGCTACTAATAAAATTGCCAGAACTAAAC 
   335 -K--T--L--I--Q--F--T--V--K--L--R--L--L--I--K--L--P--E--L--N- 
 
 
  1321 TATCAGGTAAAGGTTAAGGCATCAATTGACAAGAATGTTTCAACTCTAAGCAACCGAAGA 
  1063 TATCAGGTAAAGGTTAAGGCATCAATTGACAAGAATGTTTCAACTCTAAGCAACCGAAGA 
   355 -Y--Q--V--K--V--K--A--S--I--D--K--N--V--S--T--L--S--N--R--R- 
 
 
  1381 TTTGTACTTTGTGGAACTAATGTCAAAGCCATGTCTATTGAAGAATCTTCCAATGGGAGT 
  1123 TTTGTACTTTGTGGAACTAATGTCAAAGCCATGTCTATTGAAGAATCTTCCAATGGGAGT 
   375 -F--V--L--C--G--T--N--V--K--A--M--S--I--E--E--S--S--N--G--S- 
 
 
  1441 CTCTCAGTAGAATTTCGACATTTGCAACCAAAGGAAATGAAGTCCAGTGCTGGAGGTAAA 
  1183 CTCTCAGTAGAATTTCGACATTTGCAACCAAAGGAAATGAAGTCCAGTGCTGGAGGTAAA 
   395 -L--S--V--E--F--R--H--L--Q--P--K--E--M--K--S--S--A--G--G--K- 
 
 
  1501 GGAAATGAGGGCTGTCACATGGTGACTGAAGAACTTCATTCCATAACGTTTGAAACACAG 
  1243 GGAAATGAGGGCTGTCACATGGTGACTGAAGAACTTCATTCCATAACGTTTGAAACACAG 
   415 -G--N--E--G--C--H--M--V--T--E--E--L--H--S--I--T--F--E--T--Q- 
 
                       * 
  1561 ATCTGCCTCTATGGCCTGACCATAGATTTGGAGACCAGCTCATTGCCTGTGGTGATGATT 
  1303 ATCTGCCTCTATGGCCTGACCATAGATTTGGAGACCAGCTCATTGCCTGTGGTGATGATT 
   435 -I--C--L--Y--G--L--T--I-=D=-L--E--T--S--S--L--P--V--V--M--I- 
 
Figure B1. Primer sequences for analyzing gene expression of STAT4α. 
(continued…)  
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  1621 TCCAATGTCAGTCAGTTACCTAATGCTTGGGCATCCATCATTTGGTACAACGTGTCAACC 
  1363 TCCAATGTCAGTCAGTTACCTAATGCTTGGGCATCCATCATTTGGTACAACGTGTCAACC 
   455 -S--N--V--S--Q--L--P--N--A--W--A--S--I--I--W--Y--N--V--S--T- 
 
                           Y     M 
  1681 AACGATTCCCAGAACTTGGTTTTCTTTAATAATCCYCCMCCTGCCACATTGAGTCAACTA 
  1423 AACGATTCCCAGAACTTGGTTTTCTTTAATAATCCTCCACCTGCCACATTGAGTCAACTA 
   475 -N--D--S--Q--N--L--V--F--F--N--N--P--P--P--A--T--L--S--Q--L- 
 
 
  1741 CTGGAGGTGATGAGCTGGCAGTTTTCATCGTACGTTGGTCGTGGTCTTAACTCAGATCAA 
  1483 CTGGAGGTGATGAGCTGGCAGTTTTCATCGTACGTTGGTCGTGGTCTTAACTCAGATCAA 
   495 -L--E--V--M--S--W--Q--F--S--S--Y--V--G--R--G--L--N--S--D--Q- 
 
 
  1801 CTCCATATGCTGGCAGAGAAGCTTACAGTCCAATCTAGCTACAGTGATGGTCACCTCACC 
  1543 CTCCATATGCTGGCAGAGAAGCTTACAGTCCAATCTAGCTACAGTGATGGTCACCTCACC 
   515 -L--H--M--L--A--E--K--L--T--V--Q--S--S--Y--S--D--G--H--L--T- 
 
 
  1861 TGGGCCAAGTTCTGCAAGGAACATTTACCTGGTAAATCATTTACCTTTTGGACATGGCTT 
  1603 TGGGCCAAGTTCTGCAAGGAACATTTACCTGGTAAATCATTTACCTTTTGGACATGGCTT 
   535 -W--A--K--F--C--K--E--H--L--P--G--K--S--F--T--F--W--T--W--L- 
 
 
  1921 GAAGCAATATTGGATCTAATTAAGAAACACATTCTTCCCCTTTGGATTGATGGGTATGTC 
  1663 GAAGCAATATTGGATCTAATTAAGAAACACATTCTTCCCCTTTGGATTGATGGGTATGTC 
   555 -E--A--I--L--D--L--I--K--K--H--I--L--P--L--W--I--D--G--Y--V- 
 
        Y 
  1981 ATGGGCTTTGTTAGCAAAGAGAAGGAAYGGCTGTTGCTAAAGGATAAAATGCCTGGCACC 
  1723 ATGGGCTTTGTTAGCAAAGAGAAGGAACGGCTGTTGCTAAAGGATAAAATGCCTGGCACC 
   575 -M--G--F--V--S--K--E--K--E-=R=-L--L--L--K--D--K--M--P--G--T- 
 
 
  2041 TTTTTATTAAGATTCAGTGAAAGCCATCTCGGAGGAATAACTTTCACCTGGGTGGACCAT 
  1783 TTTTTATTAAGATTCAGTGAAAGCCATCTCGGAGGAATAACTTTCACCTGGGTGGACCAT 
   595 -F--L--L--R--F--S--E--S--H--L--G--G--I--T--F--T--W--V--D--H- 
 
 
  2101 TCTGAAAGTGGGGAAGTGAGATTCCACTCTGTAGAACCCTACAATAAAGGCCGGTTGTCT 
  1843 TCTGAAAGTGGGGAAGTGAGATTCCACTCTGTAGAACCCTACAATAAAGGCCGGTTGTCT 
   615 -S--E--S--G--E--V--R--F--H--S--V--E--P--Y--N--K--G--R--L--S- 
 
 
  2161 GCTCTGCCATTCGCTGACATCCTGCGAGACTACAAAGTTATTATGGCTGAAAACATTCCT 
  1903 GCTCTGCCATTCGCTGACATCCTGCGAGACTACAAAGTTATTATGGCTGAAAACATTCCT 
   635 -A--L--P--F--A--D--I--L--R--D--Y--K--V--I--M--A--E--N--I--P- 
 
Figure B1. Primer sequences for analyzing gene expression of STAT4α. 
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  2221 GAAAACCCTCTGAAGTACCTATATCCTGACATTCCCAAAGACAAAGCCTTCGGTAAACAC 
  1963 GAAAACCCTCTGAAGTACCTATATCCTGACATTCCCAAAGACAAAGCCTTCGGTAAACAC 
   655 -E--N--P--L--K--Y--L--Y--P--D--I--P--K--D--K--A--F--G--K--H- 
 
 
  2281 TACAGCTCTCAGCCTTGCGAAGTTTCAAGACCAACAGAAAGGGGTGACAAAGGTTATGTT 
  2023 TACAGCTCTCAGCCTTGCGAAGTTTCAAGACCAACAGAAAGGGGTGACAAAGGTTATGTT 
   675 -Y--S--S--Q--P--C--E--V--S--R--P--T--E--R--G--D--K--G--Y--V- 
 
 
  2341 CCTTCTGTTTTTATCCCCATCTCAACAATCCGAAGTGATTCAACAGAGCCACATTCTCCA 
  2083 CCTTCTGTTTTTATCCCCATCTCAACAATCCGAAGTGATTCAACAGAGCCACATTCTCCA 
   695 -P--S--V--F--I--P--I--S--T--I--R--S--D--S--T--E--P--H--S--P- 
 
 
  2401 TCAGACCTTCTTCCCATGTCTCCAAGTGTGTATGCGGTGTTGAGAGAAAACCTGAGTCCC 
  2143 TCAGACCTTCTTCCCATGTCTCCAAGTGTGTATGCGGTGTTGAGAGAAAACCTGAGTCCC 
   715 -S--D--L--L--P--M--S--P--S--V--Y--A--V--L--R--E--N--L--S--P- 
 
                               M 
  2461 ACAACAATTGAAACTGCAATGAAGTCTCCTTATTCTGCTGAATGACAGGATAMACTCTGA 
  2203 ACAACAATTGAAACTGCAATGAAGTCTCCTTATTCTGCTGAATGA............... 
   735 -T--T--I--E--T--A--M--K--S--P--Y--S--A--E--*-............... 
 
 
  2521 CGCACCAAGAAAGGAAGCAAATGAAAAAGTTTAAAGACTGTTCTTTGCCCAATAACCACA 
       ............................................................ 
       ............................................................ 
 
                     R 
  2581 TTTTATTTCTTCAGCTTTGTAAATACCAGGTTCTAGGAAATGTTTGACRTCTGAAGCTCT 
       ............................................................ 
       ............................................................ 
 
 
  2641 CTTCACACTCCCGTGGCACTCCTCAATTGGGAGTGTTGTGACTGAAATGCTTGAAACCAA 
       ............................................................ 
       ............................................................ 
 
        W 
  2701 AGCTTCAGATAAWCTTGCAAGATAAGACAACTTTAAGAAACCAGTGTTAATAACAATATT 
       ............................................................ 
       ............................................................ 
 
 
  2761 AACAGAAGA 
       ......... 
       ......... 
 
Figure B1. Primer sequences for analyzing gene expression of STAT4α. 
(continued…). The line which begins with the nucleotide number 2221/1963 contains 
the forward primer sequence for STAT4α (shaded in gray), while the line beginning with 
2401/2143 contains the sequence of the reverse primer (shaded in gray).   
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     1 AAGGCTACTCAAGGAGAGTAGGAGGAGGCTAGGTCAGGAAGGGCAAGCACTGGTGGCCTA 
       ............................................................ 
       ............................................................ 
 
 
    61 CCCAGGACTTGGCCCAACCCTCTGGGTCAGGTCACCCTCGTCGGAGTGAGCGGACCCCGC 
       ............................................................ 
       ............................................................ 
 
 
   121 TGGAATTGGAGCCCAGTAAGGTCTATGAGTTTGGTGTTTTGATCCTGGCTACCCATCCCT 
       ............................................................ 
       ............................................................ 
 
 
   181 TCCATCCCAGGGGTGGTTCACCAGGCTGAGTGGAGCCTTATACTAGGGAGAGAGGAAGCT 
       ............................................................ 
       ............................................................ 
 
 
   241 GAAGAACTGGGCTCCAGCATGTCTCAGTGGAATCAAGTCCAACAGTTAGAAATCAAGTTT 
       ..................ATGTCTCAGTGGAATCAAGTCCAACAGTTAGAAATCAAGTTT 
       ..................-M--S--Q--W--N--Q--V--Q--Q--L--E--I--K--F- 
 
 
   301 TTGGAGCAGGTGGATCAATTCTATGATGACAACTTTCCCATGGAAATTCGGCATCTGTTG 
    43 TTGGAGCAGGTGGATCAATTCTATGATGACAACTTTCCCATGGAAATTCGGCATCTGTTG 
    15 -L--E--Q--V--D--Q--F--Y--D--D--N--F--P--M--E--I--R--H--L--L- 
 

Y 
   361 GCCCAATGGATYGAAAATCAAGACTGGGAGGCAGCTTCTAACAATGAAACCATGGCAACG 
   103 GCCCAATGGATTGAAAATCAAGACTGGGAGGCAGCTTCTAACAATGAAACCATGGCAACG 
    35 -A--Q--W--I--E--N--Q--D--W--E--A--A--S--N--N--E--T--M--A--T- 
 
 
   421 ATTCTTCTTCAAAACTTGTTAATACAACTGGATGAACAGTTAGGTCGTGTTTCCAAAGAG 
   163 ATTCTTCTTCAAAACTTGTTAATACAACTGGATGAACAGTTAGGTCGTGTTTCCAAAGAG 
    55 -I--L--L--Q--N--L--L--I--Q--L--D--E--Q--L--G--R--V--S--K--E- 
 
 
Figure C1. Primer sequences for analyzing gene expression of STAT4β isoform. The 
meaning of the numbers on the left side of the sequence panels are explained in Figure 
B1.   
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   481 AAAAACCTACTCTTGATACACAATCTAAAAAGAATTAGGAAGGTCCTTCAGGGAAAATTT 
   223 AAAAACCTACTCTTGATACACAATCTAAAAAGAATTAGGAAGGTCCTTCAGGGAAAATTT 
    75 -K--N--L--L--L--I--H--N--L--K--R--I--R--K--V--L--Q--G--K--F- 
 
         R 
   541 CATGGAAATCCAATGCATGTAGCTGTGGTTATTTCRAACTGTTTAAGGGAAGAGAGGAGA 
   283 CATGGAAATCCAATGCATGTAGCTGTGGTTATTTCAAACTGTTTAAGGGAAGAGAGGAGA 
    95 -H--G--N--P--M--H--V--A--V--V--I--S--N--C--L--R--E--E--R--R- 
 
                 R 
   601 RTATTGGCTGCAGCCAACATGCCTGTCCAGGGGCCTCTAGAGAAATCCTTACAAAGTTCT 
   343 ATATTGGCTGCAGCCAACATGCCTGTCCAGGGGCCTCTAGAGAAATCCTTACAAAGTTCT 
   115 =I=-L--A--A--A--N--M--P--V--Q--G--P--L--E--K--S--L--Q--S--S- 
 
 
   661 TCAGTTTCAGAAAGACAGAGGAATGTGGAGCACAAAGTGGCTGCCATTAAAAACAGTGTG 
   403 TCAGTTTCAGAAAGACAGAGGAATGTGGAGCACAAAGTGGCTGCCATTAAAAACAGTGTG 
   135 -S--V--S--E--R--Q--R--N--V--E--H--K--V--A--A--I--K--N--S--V- 
 
                                         R 
   721 CAGATGACAGAACAAGATACCAAATACTTAGAAGATCTGCARGACGAATTTGACTACAGG 
   463 CAGATGACAGAACAAGATACCAAATACTTAGAAGATCTGCAAGACGAATTTGACTACAGG 
   155 -Q--M--T--E--Q--D--T--K--Y--L--E--D--L--Q--D--E--F--D--Y--R- 
 
 
   781 TATAAAACAATTCAGACAATGGATCAGAGTGACAAGAATAGTGCCATGGTGAATCAGGAA 
   523 TATAAAACAATTCAGACAATGGATCAGAGTGACAAGAATAGTGCCATGGTGAATCAGGAA 
   175 -Y--K--T--I--Q--T--M--D--Q--S--D--K--N--S--A--M--V--N--Q--E- 
 
                W 
   841 GTTTTGACACTGCAGGAAATGCTWAACAGCCTCGATTTCAAGAGAAAGGAGGCTCTCAGT 
   583 GTTTTGACACTGCAGGAAATGCTTAACAGCCTCGATTTCAAGAGAAAGGAGGCTCTCAGT 
   195 -V--L--T--L--Q--E--M--L--N--S--L--D--F--K--R--K--E--A--L--S- 
 
 
   901 AAAATGACCCAAATCATCCATGAGACAGACCTGTTAATGAACACCATGCTCATAGAAGAG 
   643 AAAATGACCCAAATCATCCATGAGACAGACCTGTTAATGAACACCATGCTCATAGAAGAG 
   215 -K--M--T--Q--I--I--H--E--T--D--L--L--M--N--T--M--L--I--E--E- 
 
                  R 
   961 CTGCAAGACTGGAAGCRGCGGCAGCAAATCGCCTGCATCGGGGGTCCACTCCACAATGGG 
   703 CTGCAAGACTGGAAGCGGCGGCAGCAAATCGCCTGCATCGGGGGTCCACTCCACAATGGG 
   235 -L--Q--D--W--K-=R=-R--Q--Q--I--A--C--I--G--G--P--L--H--N--G- 
 
        M 
  1021 CTCGACCAGCTTCAGAACTGCTTTACACTATTGGCAGAAAGTMTTTTCCAACTGAGAAGG 
   763 CTCGACCAGCTTCAGAACTGCTTTACACTATTGGCAGAAAGTCTTTTCCAACTGAGAAGG 
   255 -L--D--Q--L--Q--N--C--F--T--L--L--A--E--S-=L=-F--Q--L--R--R- 
 
 
Figure C1. Primer sequences for analyzing gene expression of STAT4β isoform. 
(continued …) 
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  1081 CAATTGGAGAAACTAGAGGAGCAATCTACCAAAATGACATATGAAGGTGATCCCATTCCA 
   823 CAATTGGAGAAACTAGAGGAGCAATCTACCAAAATGACATATGAAGGTGATCCCATTCCA 
   275 -Q--L--E--K--L--E--E--Q--S--T--K--M--T--Y--E--G--D--P--I--P- 
 
 
  1141 ATGCAAAGAACTCACATGCTAGAAAGAGTCACCTTCTTGATCTACAACCTTTTCAAGAAC 
   883 ATGCAAAGAACTCACATGCTAGAAAGAGTCACCTTCTTGATCTACAACCTTTTCAAGAAC 
   295 -M--Q--R--T--H--M--L--E--R--V--T--F--L--I--Y--N--L--F--K--N- 
 
 
  1201 TCATTTGTGGTTGAGCGACAGCCATGTATGCCAACCCACCCTCAGAGGCCGTTGGTACTT 
   943 TCATTTGTGGTTGAGCGACAGCCATGTATGCCAACCCACCCTCAGAGGCCGTTGGTACTT 
   315 -S--F--V--V--E--R--Q--P--C--M--P--T--H--P--Q--R--P--L--V--L- 
 
 
  1261 AAAACCCTAATTCAGTTCACTGTAAAACTAAGGCTACTAATAAAATTGCCAGAACTAAAC 
  1003 AAAACCCTAATTCAGTTCACTGTAAAACTAAGGCTACTAATAAAATTGCCAGAACTAAAC 
   335 -K--T--L--I--Q--F--T--V--K--L--R--L--L--I--K--L--P--E--L--N- 
 
 
  1321 TATCAGGTAAAGGTTAAGGCATCAATTGACAAGAATGTTTCAACTCTAAGCAACCGAAGA 
  1063 TATCAGGTAAAGGTTAAGGCATCAATTGACAAGAATGTTTCAACTCTAAGCAACCGAAGA 
   355 -Y--Q--V--K--V--K--A--S--I--D--K--N--V--S--T--L--S--N--R--R- 
 
 
  1381 TTTGTACTTTGTGGAACTAATGTCAAAGCCATGTCTATTGAAGAATCTTCCAATGGGAGT 
  1123 TTTGTACTTTGTGGAACTAATGTCAAAGCCATGTCTATTGAAGAATCTTCCAATGGGAGT 
   375 -F--V--L--C--G--T--N--V--K--A--M--S--I--E--E--S--S--N--G--S- 
 
 
  1441 CTCTCAGTAGAATTTCGACATTTGCAACCAAAGGAAATGAAGTCCAGTGCTGGAGGTAAA 
  1183 CTCTCAGTAGAATTTCGACATTTGCAACCAAAGGAAATGAAGTCCAGTGCTGGAGGTAAA 
   395 -L--S--V--E--F--R--H--L--Q--P--K--E--M--K--S--S--A--G--G--K- 
 
 
  1501 GGAAATGAGGGCTGTCACATGGTGACTGAAGAACTTCATTCCATAACGTTTGAAACACAG 
  1243 GGAAATGAGGGCTGTCACATGGTGACTGAAGAACTTCATTCCATAACGTTTGAAACACAG 
   415 -G--N--E--G--C--H--M--V--T--E--E--L--H--S--I--T--F--E--T--Q- 
 
     * 
  1561 ATCTGCCTCTATGGCCTGACCATAGATTTGGAGACCAGCTCATTGCCTGTGGTGATGATT 
  1303 ATCTGCCTCTATGGCCTGACCATAGATTTGGAGACCAGCTCATTGCCTGTGGTGATGATT 
   435 -I--C--L--Y--G--L--T--I-=D=-L--E--T--S--S--L--P--V--V--M--I- 
 
 
  1621 TCCAATGTCAGTCAGTTACCTAATGCTTGGGCATCCATCATTTGGTACAACGTGTCAACC 
  1363 TCCAATGTCAGTCAGTTACCTAATGCTTGGGCATCCATCATTTGGTACAACGTGTCAACC 
   455 -S--N--V--S--Q--L--P--N--A--W--A--S--I--I--W--Y--N--V--S--T- 
 
 
Figure C1. Primer sequences for analyzing gene expression of STAT4β isoform. 
(continued …) 
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         Y     M 
  1681 AACGATTCCCAGAACTTGGTTTTCTTTAATAATCCYCCMCCTGCCACATTGAGTCAACTA 
  1423 AACGATTCCCAGAACTTGGTTTTCTTTAATAATCCTCCACCTGCCACATTGAGTCAACTA 
   475 -N--D--S--Q--N--L--V--F--F--N--N--P--P--P--A--T--L--S--Q--L- 
 
 
  1741 CTGGAGGTGATGAGCTGGCAGTTTTCATCGTACGTTGGTCGTGGTCTTAACTCAGATCAA 
  1483 CTGGAGGTGATGAGCTGGCAGTTTTCATCGTACGTTGGTCGTGGTCTTAACTCAGATCAA 
   495 -L--E--V--M--S--W--Q--F--S--S--Y--V--G--R--G--L--N--S--D--Q- 
 
 
  1801 CTCCATATGCTGGCAGAGAAGCTTACAGTCCAATCTAGCTACAGTGATGGTCACCTCACC 
  1543 CTCCATATGCTGGCAGAGAAGCTTACAGTCCAATCTAGCTACAGTGATGGTCACCTCACC 
   515 -L--H--M--L--A--E--K--L--T--V--Q--S--S--Y--S--D--G--H--L--T- 
 
 
  1861 TGGGCCAAGTTCTGCAAGGAACATTTACCTGGTAAATCATTTACCTTTTGGACATGGCTT 
  1603 TGGGCCAAGTTCTGCAAGGAACATTTACCTGGTAAATCATTTACCTTTTGGACATGGCTT 
   535 -W--A--K--F--C--K--E--H--L--P--G--K--S--F--T--F--W--T--W--L- 
 
 
  1921 GAAGCAATATTGGATCTAATTAAGAAACACATTCTTCCCCTTTGGATTGATGGGTATGTC 
  1663 GAAGCAATATTGGATCTAATTAAGAAACACATTCTTCCCCTTTGGATTGATGGGTATGTC 
   555 -E--A--I--L--D--L--I--K--K--H--I--L--P--L--W--I--D--G--Y--V- 
 
        Y 
  1981 ATGGGCTTTGTTAGCAAAGAGAAGGAAYGGCTGTTGCTAAAGGATAAAATGCCTGGCACC 
  1723 ATGGGCTTTGTTAGCAAAGAGAAGGAACGGCTGTTGCTAAAGGATAAAATGCCTGGCACC 
   575 -M--G--F--V--S--K--E--K--E-=R=-L--L--L--K--D--K--M--P--G--T- 
 
 
  2041 TTTTTATTAAGATTCAGTGAAAGCCATCTCGGAGGAATAACTTTCACCTGGGTGGACCAT 
  1783 TTTTTATTAAGATTCAGTGAAAGCCATCTCGGAGGAATAACTTTCACCTGGGTGGACCAT 
   595 -F--L--L--R--F--S--E--S--H--L--G--G--I--T--F--T--W--V--D--H- 
 
 
  2101 TCTGAAAGTGGGGAAGTGAGATTCCACTCTGTAGAACCCTACAATAAAGGCCGGTTGTCT 
  1843 TCTGAAAGTGGGGAAGTGAGATTCCACTCTGTAGAACCCTACAATAAAGGCCGGTTGTCT 
   615 -S--E--S--G--E--V--R--F--H--S--V--E--P--Y--N--K--G--R--L--S- 
 
 
  2161 GCTCTGCCATTCGCTGACATCCTGCGAGACTACAAAGTTATTATGGCTGAAAACATTCCT 
  1903 GCTCTGCCATTCGCTGACATCCTGCGAGACTACAAAGTTATTATGGCTGAAAACATTCCT 
   635 -A--L--P--F--A--D--I--L--R--D--Y--K--V--I--M--A--E--N--I--P- 
 
 
Figure C1. Primer sequences for analyzing gene expression of STAT4β isoform. 
(continued …) 
 
 
 
 
 



84 

 

 

  2221 GAAAACCCTCTGAAGTACCTATATCCTGACATTCCCAAAGACAAAGCCTTCGGTAAACAC 
  1963 GAAAACCCTCTGAAGTACCTATATCCTGACATTCCCAAAGACAAAGCCTTCGGTAAACAC 
   655 -E--N--P--L--K--Y--L--Y--P--D--I--P--K--D--K--A--F--G--K--H- 
 
 
  2281 TACAGCTCTCAGCCTTGCGAAGTTTCAAGACCAACAGAAAGGGGTGACAAAGGTTATGTT 
  2023 TACAGCTCTCAGCCTTGCGAAGTTTCAAGACCAACAGAAAGGGGTGACAAAGGTTATGTT 
   675 -Y--S--S--Q--P--C--E--V--S--R--P--T--E--R--G--D--K--G--Y--V- 
 
 
  2341 CCTTCTGTTTTTATCCCCATCTCAACAATGTGAGTAATGTTAGTCACATGTGAAATATTT 
       TTATAAAAAGCTTTCCTATAGGAGATTTAAAGGTAGAGCAGAGTACACATAACTGAGAAC 
       AAAGCATTGTAATGTGCAATGTCCCATTTCCTTTAATACATAAGGCTAGCCTTCAGGGCA 
       CACTTACCACAATCTATTGTGCCTAAAATTATAAAATTCCCCTTTTATATGCCATATATG 
       CCACAGTAAGTTGAGTGTTCTGATATGAAATGATGAATTAGATAACTCAATGTCACAAAT 
       AGATGAAGCCCTAGAAATGAGTTCCTGACATAGTAAGTCACCGTGAACTATTATTATTTT 
       TTAATCCTTGTCCATATTGACCTTGTTATCTCTTTAAG 
 
        CCGAAGTGATTCAACAGAGCCACATTCTCCA 
  2083 CCTTCTGTTTTTATCCCCATCTCAACAATCCGAAGTGATTCAACAGAGCCACATTCTCCA 
   695 -P--S--V--F--I--P--I--S--T--I--R--S--D--S--T--E--P--H--S--P- 
 
 
  2401 TCAGACCTTCTTCCCATGTCTCCAAGTGTGTATGCGGTGTTGAGAGAAAACCTGAGTCCC 
  2143 TCAGACCTTCTTCCCATGTCTCCAAGTGTGTATGCGGTGTTGAGAGAAAACCTGAGTCCC 
   715 -S--D--L--L--P--M--S--P--S--V--Y--A--V--L--R--E--N--L--S--P- 
 
             M 
  2461 ACAACAATTGAAACTGCAATGAAGTCTCCTTATTCTGCTGAATGACAGGATAMACTCTGA 
  2203 ACAACAATTGAAACTGCAATGAAGTCTCCTTATTCTGCTGAATGA............... 
   735 -T--T--I--E--T--A--M--K--S--P--Y--S--A--E--*-............... 
 
 
  2521 CGCACCAAGAAAGGAAGCAAATGAAAAAGTTTAAAGACTGTTCTTTGCCCAATAACCACA 
       ............................................................ 
       ............................................................ 
 
                     R 
  2581 TTTTATTTCTTCAGCTTTGTAAATACCAGGTTCTAGGAAATGTTTGACRTCTGAAGCTCT 
       ............................................................ 
       ............................................................ 
 
 
 
Figure C1. Primer sequences for analyzing gene expression of STAT4β isoform. 
(continued …). The line which begins with the nucleotide number 2221/1963 contains 
the forward primer sequence for the STAT4β. The primer’s sequence is the same as the 
forward primer for STAT4α forward.  The thymine at position 2351 (based on the top 
row sequencing) is the site of intron retention that is unique to the beta isoform. The 
reverse primer is located within the same beta specific segment and it is highlighted in 
grey. Highlighted “TC” – indicates the site of beta specific intron retention. 
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  2641 CTTCACACTCCCGTGGCACTCCTCAATTGGGAGTGTTGTGACTGAAATGCTTGAAACCAA 
       ............................................................ 
       ............................................................ 
 
        W 
  2701 AGCTTCAGATAAWCTTGCAAGATAAGACAACTTTAAGAAACCAGTGTTAATAACAATATT 
       ............................................................ 
       ............................................................ 
 
 
 
  2761 AACAGAAGA 
       ......... 
       ......... 

 

Figure C1. Primer sequences for analyzing gene expression of STAT4β isoform. 
(continued …) 
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