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ABSTRACT 
 
 
 

Billingsley, Cherie Nicole. M.S., Purdue University, August 2010. Developmental 
Differences and Altered Gene Expression in the Ts65Dn Mouse Model of Down 
Syndrome. Major Professor: Randall Roper. 
 
 
 
 Trisomy 21 occurs in approximately 1 out of 750 live births and causes 

brachycephaly, a small oral cavity, a shortened mid-face, and mental impairments in 

individuals with Down syndrome (DS). Craniofacial dysmorphology occurs in essentially 

all individuals with trisomy 21 and causes functional difficulties. Mouse models are 

commonly used to study the etiology of human disorders because of the conserved 

phenotypes between species. The Ts65Dn Down syndrome mouse model has triplicated 

homologues for approximately half the genes on human chromosome 21 and exhibits 

many phenotypes that parallel those found in individuals with DS. Specifically, newborn 

and adult Ts65Dn mice display similar craniofacial defects as humans with DS. Ts65Dn 

embryos also exhibit smaller mandibular precursors than their euploid littermates at 

embryonic day 9.5 (E9.5). Furthermore, Ts65Dn mice exhibit reduced birth weight which 

suggests a possible generalized delay in overall embryonic growth. 

 Based on previous research at E9.5, it was hypothesized that Ts65Dn E13.5 

embryos would have reduced mandibular precursors with altered gene expression. It was 

also hypothesized that other neural crest derived structures would be reduced in trisomic 



viii 

 
 

embryos. Using morphological measurements it was determined that the mandible, 

Meckel’s cartilage, and hyoid cartilage were significantly reduced in E13.5 trisomic 

embryos. The tongue was of similar size in trisomic and euploid embryos while cardiac 

and brain tissue volumes were not significantly different between genotypes. Analysis of 

total embryonic size at E9.5 and E13.5 revealed smaller trisomic embryos with 

developmental attenuation that was not related to maternal trisomy.  

 A microarray analysis performed on the mandibular precursor revealed 155 

differentially expressed non-trisomic genes. Sox9 was of particular interest for its role in 

cartilage condensation and endochondral ossification. It was hypothesized that the 

overexpression of Sox9 in the developing mandible would be localized to Meckel’s and 

hyoid cartilages. Immunohistochemistry performed on the mandibular precursor 

confirmed an overexpression of Sox9 in both Meckel’s and the hyoid cartilages. This 

research provides further insight into the development of trisomic tissues, both neural 

crest and non-neural crest-derived, and also the specific molecular mechanisms that 

negatively affect mandibular development in Ts65Dn mice and presumably individuals 

with Down syndrome.



1 
 

CHAPTER 1 INTRODUCTION 
 
 
 

1.1 

 Down syndrome (DS or trisomy 21) is caused by the triplication of chromosome 

21 (FRACCARO 1960; JACOBS 1959; LEJEUNE 1959) and affects approximately 1 of 750 

newborns each year (CANFIELD 2006; CHRISTIANSON 2006; LEJEUNE 1959; WEIJERMAN 

2008) (Figure 1.1.1). The majority of DS cases are caused by an error during meiosis 

(95%), but other incidences of DS result from a translocation (4%) or mosaicism (1%) 

(ALLEN 2009; FREEMAN 2007; MUTTON 1996). When DS results from a meiotic error, it 

is most commonly caused by nondisjunction of chromosome 21 during meiosis I in the 

oocyte (MUTTON 1996) (Figure 1.1.2). Translocations that result in trisomy 21 are most 

often Robertsonian translocations (BEREND 2003; GIRAUD 1975). Robertsonian 

translocations are whole-arm rearrangements between acrocentric chromosomes and 

rob(14q21q) is the most common arrangement resulting in Down syndrome (BEREND 

2003). In cases of mosaicism, a percentage of cells contain a normal karyotype while the 

other cells have a third copy of chromosome 21 (MUTTON 1996). It is not fully 

understood why these errors occur, but increased maternal age is known to increase the 

risk for meiotic errors in the oocyte (FREEMAN 2007; HASSOLD 1985). 

Down Syndrome Etiology and History 

 Down syndrome was first recognized as a separate condition from other cognitive 

impairments in 1866 by John Langdon Down (DOWN 1866). Although it was not 
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recognized as a syndrome until somewhat recently, ancient art indicates that individuals 

with DS have existed since at least 2500 years ago (BERNAL 2006). Little is known about 

the quality of life for individuals with trisomy 21 before the 19th century, but advances in 

medical knowledge and technology continue to improve the life expectancy and 

functional capabilities of individuals with DS. For example, life expectancy for people 

with trisomy 21 has increased from an average age of 9 years in 1929, to 12 years in 

1949, to 35 years in 1982, and to 55 years or older currently (BARNHART and CONNOLLY 

2007; BITTLES and GLASSON 2004). Modern technology also improves physical 

functioning in individuals with DS through occupational and other therapies (VAN CLEVE 

et al. 2006). With ongoing research, the life expectancy and functional capabilities of 

individuals with DS will continue to improve. 

 
 

1.2 

 Even with advances in medical knowledge and technology, the phenotypes caused 

by trisomy 21 still cause functional difficulties in the lives of individuals with DS. The 

phenotypes caused by trisomy 21 vary greatly among individuals with DS, but the most 

common features are cognitive impairment, craniofacial dysmorphology, and cardiac 

malformations (BROWN 1990; CUNNIFF 2001; FREEMAN 1998; GUIHARD-COSTA 2006). 

Individuals with DS generally have an IQ ranging from 30-70 which causes intellectual 

difficulties on several different levels (CHAPMAN 2000). Specifically, people with trisomy 

21 have short and long-term memory deficits, deficiencies in language production, and 

early onset Alzheimer disease (BROWN 1990; CARLESIMO 1997; CHAPMAN 2000; 

DALTON 1986; NADEL 2003). Along with altered neurological development, individuals 

Down Syndrome Phenotypes Cause Functional Difficulties 
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with DS also have brachycephaly which develops during gestation and remains 

throughout adulthood (ALLANSON 1993; GUIHARD-COSTA 2006). Further complicating 

learning difficulties, approximately 35-76% and 64% of children with DS experience 

ophthalmological disorders and hearing loss, respectively (BALKANY 1979; CUNNIFF 

2001; DAHLE 1986; ROIZEN 2003).  

 Trisomy 21 not only affects intellectual development, but also increases the risk 

for cardiac deformities, Hirschsprung disease, and childhood onset leukemia (CUNNIFF 

2001; FERENCZ et al. 1989; PUFFENBERGER et al. 1994). Approximately half of children 

with DS are born with a cardiovascular malformation which most commonly presents as 

an atrioventricular septal defect (FREEMAN 1998). Nearly 1% of individuals with trisomy 

21 also suffer from leukemia or Hirschsprung disease (CUNNIFF 2001).  

 As adults, individuals with DS have a higher incidence of obesity that is 

exacerbated by lower resting metabolic rates (ALLISON et al. 1995; RUBIN et al. 1998). 

Craniofacial dysmorphology also complicates dieting and weight issues by causing 

difficulties with chewing and swallowing (VAN CLEVE and COHEN 2006). The most 

common craniofacial abnormalities in individuals with DS are a flattened nose bridge, 

small oral cavity, shortened mid-face, and a hypoplastic mandible (EPSTEIN 2001; 

ROIZEN 2003; SHOTT 2006; VAN CLEVE and COHEN 2006). The small oral cavity results 

in a proportionally larger tongue and relative macroglossia which complicates important 

daily functions such as speaking and eating (GUIMARAES 2008). Approximately 50-75% 

of patients with trisomy 21 also suffer from sleep apnea which is exacerbated by 

craniofacial deformities (CUNNIFF 2001; MARCUS 1991; TROIS et al. 2009). Craniofacial 

dysmorphology develops prenatally and persists throughout adulthood which indicates 
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that individuals with Down syndrome may struggle with functional difficulties for the 

entirety of their lives (ALLANSON 1993; DAGKLIS et al. 2006; GUIHARD-COSTA 2006). 

 
 

1.3 

 Mice serve as beneficial model organisms for the study of human disease because 

considerable homology exists between the murine and human genomes (DAVISSON 1993) 

(Figure 1.3.1). Specifically, mice have served as useful models for DS because of the 

homology between Homo sapiens 21 (Hsa21) and Mus musculus 16, 17, and 10 (Mmu16, 

Mmu17, and Mmu10) (DIERSSEN 2001). In humans, chromosome 21 is the smallest 

autosome and represents only about 1-1.5% of the human genome (HATTORI 2000). 

Approximately 364 genes have been identified on Hsa21 and about 170 of these genes 

are highly conserved human/mouse orthologues (GARDINER 2003; HATTORI 2000). One 

of the first trisomic mouse models, Ts16, was created by a bilateral Robertsonian 

translocation of Mmu16 (DAVISSON 1993; DIERSSEN 2001). This mouse model had 

limited usefulness because Mmu16 has many genes that were not present on Hsa21 and is 

also missing several important genes found on human chromosome 21. It was also 

impossible to study the later development of Ts16 mice because they died in utero 

(DAVISSON 1993; DIERSSEN 2001). Since then, several segmental trisomic mouse models 

have been created including the Ts(12;16C-tel)1Cje, Dp(16Cbr1-ORF9)1Rhr, 

Ts[Rb(12.Ts171665Dn)]2Cje, Ts(1716)65Dn, Dp(16)1Yu, and 

Dp(10)1Yey/+;Dp(16)1Yey/+;Dp(17)1Yey/+ (Ts1Cje, Ts1Rhr, Ts2Cje, Ts65Dn, Dp16, 

and Ts1Yey;Ts2Yey;Ts3Yey, respectively) (LI 2007; MOORE 2007; VILLAR 2005; YU et 

al. 2010). The Ts65Dn mouse model has three copies of Mmu16 from App to Mx1 and is 

Down Syndrome Mouse Models 



5 

 
 

homologous to approximately half of Hsa21 genes (DAVISSON 1993; DIERSSEN 2001; 

GARDINER 2003; REEVES 1995) (Figure 1.3.2). It is the most widely used mouse model 

for DS because it displays many phenotypes that parallel those found in individuals with 

trisomy 21 such as reduced birth weight, cognitive and behavioral impairments, 

neurological structural deficiencies, craniofacial dysmorphology, and cardiovascular 

abnormalities (MOORE 2007). 

 Initial research on the Ts65Dn mouse model revealed reduced birth weight in 

newborns and functional sterility in males (REEVES 1995). More recent research has also 

shown that only ~35% of the offspring from Ts65Dn mothers are trisomic at weaning 

(MOORE 2006; ROPER 2006a). Much research on the Ts65Dn mouse model has focused 

on neurological development and function because of the intellectual disabilities that 

occur in individuals with DS. Specifically, Ts65Dn mice were found to exhibit impaired 

functioning in complex learning and memory tasks that correlates with the intellectual 

difficulties displayed by humans with DS (REEVES 1995). To more specifically study the 

cause of learning and memory disabilities, many researchers focused on the structure and 

function of the hippocampus. One study found reduced long term potentiation (LTP) in 

the hippocampus (HOLTZMAN 1996; SIAREY 1997) while another study discovered 

significantly enlarged presynaptic and postsynaptic elements in Ts65Dn brains 

(BELICHENKO 2004). Furthermore, Ts65Dn embryos were shown to exhibit altered 

growth of the hippocampus due to abnormal proliferation of embryonic precursor cells 

(CHAKRABARTI 2007). Extended research on hippocampal development revealed reduced 

cell proliferation in the Ts65Dn dentate gyrus and cell cycle differences between trisomic 

and euploid cells (CONTESTABILE 2007). The altered growth and development in the 
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Ts65Dn hippocampus parallels the reduced hippocampal size found in individuals with 

DS which further supports the use of the Ts65Dn mouse model to study human trisomy 

21 (AYLWARD et al. 1999; CHAKRABARTI 2007).   

 Cerebellar development has also been of particular interest because of motor 

impairments exhibited by individuals with DS. The cerebellar volume in adult Ts65Dn 

mice was shown to be significantly reduced because of a reduction in both granule and 

molecular layers of the cerebellum (BAXTER 2000). The cerebellum was found to be 

significantly reduced as early as postnatal day 6 (P6) in Ts65Dn mice (BAXTER 2000; 

ROPER 2006b). As with the hippocampus, the reduced cerebellar volume in Ts65Dn mice 

correlates with the smaller cerebellar size found in individuals with DS (CROME 1966).  

 In addition to altered hippocampal and cerebellar growth, Ts65Dn mice also 

demonstrate early signs of Alzheimer disease similar to those found in individuals with 

DS. Trisomic mice were found to have age-related degeneration of septohippocampal 

cholinergic neurons and elevated amyloid precursor protein (APP) levels in the 

hippocampus which are indicative of Alzheimer disease found in elderly individuals with 

DS (HOLTZMAN 1996; SEO 2005). 

 Trisomy in the Ts65Dn mouse model not only affects the development of the 

brain but also the growth of many other structures. One study found that cell proliferation 

of fibroblasts was impaired in Ts65Dn mice which suggests that expansion of body 

tissues occurs at a slower rate in trisomic mice when compared to euploid littermates 

(CONTESTABILE 2009a). Other studies have revealed a high rate of heart defects in 

Ts65Dn pups. Specifically, one study found that 17% of trisomic pups had aortic arch 

defects and enlarged foramen ovales (WILLIAMS 2008).  
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 Trisomy in the Ts65Dn mouse model also causes defects in craniofacial structures 

that are analogous to those found in individuals with DS (RICHTSMEIER 2000) (Figure 

1.3.3). In both neonatal and adult trisomic mice, differences in craniofacial shape and 

reductions in size of the anterior face, palate, and mandible parallel those found in 

individuals with trisomy 21 (HILL 2007). Specifically, the mandible inTs65Dn mice at P0 

was found to be significantly reduced (HILL 2007). In E9.5 Ts65Dn embryos, a reduced 

first pharyngeal arch (PA1) with fewer cranial neural crest (CNC) cells indicates an early 

origin to the mandibular abnormalities seen postnatally (ROPER 2009).  

 The Ts65Dn mouse model has been found to exhibit many neurological, 

cardiovascular, and craniofacial abnormalities that parallel those found in humans with 

DS (BAXTER 2000; CHAKRABARTI 2007; CROME 1966; HILL 2007; WILLIAMS 2008). 

Since the development of many structures is conserved between humans and mice, 

abnormalities found in both Ts65Dn mice and individuals with DS suggest common 

developmental pathways that are affected by trisomy. 

 
 

1.4 

 In normal embryonic development, the mandible is derived mainly from CNC 

cells and paraxial mesoderm (KNIGHT 2006; MINA 2001). CNC are pluripotent cells that 

delaminate from the ectoderm overlying the dorsal neural tube and migrate to form 

skeletal structures, connective tissue, and peripheral nervous system components 

(KNIGHT 2006; MINA 2001; TRAINOR et al. 2002) (Figure 1.4.1). Paraxial mesoderm is 

responsible for forming craniofacial muscles and some skeletal elements of the skull 

(MINA 2001). 

Craniofacial Development 
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 The CNC cells migrate in three distinct streams from the hindbrain to colonize the 

pharyngeal arches (PAs). After migration, each PA consists of a core of mesoderm 

surrounded by CNC cells that are encompassed by endodermal and ectodermal epithelia 

(KNIGHT 2006). The first pharyngeal arch (PA1) gives rise to the mandibular and 

maxillary processes while the PA2 contributes to hyoid development (MINA 2001) 

(Figure 1.4.2). The ventral portion of the PA1 becomes Meckel’s cartilage and 

contributes to the formation of the lower jaw while the distal portion becomes the maxilla 

(KNIGHT 2006). Meckel’s cartilage, a transitory structure in the jaw that provides the 

template for mandibular growth, undergoes endochondral ossification to form the incus, 

malleus, and part of the mandible (ASLING 1973; BERESFORD 1975; BHASKAR 1953; 

FROMMER 1971; ISHIZEKI 1999; RAMAESH 2003). Excluding secondary cartilages, the 

rest of the mandible develops through intramembranous ossification (BERESFORD 1975; 

BHASKAR 1953; FROMMER 1971). 

 Bone is formed through intramembranous ossification when mesenchymal cells 

develop directly into osteoblasts. In endochondral ossification, undifferentiated 

mesenchymal cells first condense and then differentiate into chondrocytes. The 

chondrocytes proliferate and become hypertrophic. Hypertrophic chondrocytes then 

create a calcified matrix and undergo apoptosis so that blood vessels can invade the 

matrix and osteoblasts can enter to lay the bone matrix. Hypertrophic chondrocytes are 

particularly important in regulating chondrogenesis and osteogenesis because they form 

the scaffold for bone formation (PROVOT and SCHIPANI 2005). 

 Several genes and other molecules are known to regulate or affect both 

osteogenesis and mandibular development. For example, Hox genes are thought to 
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coordinate A-P patterning of the hindbrain with corresponding pharyngeal arches 

(KNIGHT 2006). CNC cells that migrate to the PA1 do not express Hox genes while the 

CNC that fill the PA2 express Hox group 2 genes (KNIGHT 2006). While Hox genes are 

responsible for the A-P patterning of PAs, the nested expression of Dlx genes is 

contribute to D-V specification (KURAKU et al. 2010). Specifically, Dlx3, Dlx5, and Dlx5 

are expressed in the mandibular processes, and Dlx5 and Dlx6 are also expressed in 

developing bones, cartilage, and teeth and may play an important role in mandibular 

formation (MINA 2001). Dlx genes in PAs are regulated by endothelin-1 (Edn-1), a 

signaling molecule that has conserved functions in the formation of the mandible 

(KIMMEL et al. 2003; KNIGHT 2006; KURAKU et al. 2010). 

 Sonic hedgehog (Shh) is also thought to have an important function in 

craniofacial development and has been shown to be expressed during epithelial-

mesenchymal interactions (MINA 2001). Fibroblast growth factor 8 (Fgf8) is another key 

molecule in epithelial-mesenchymal interactions, and it has been shown that a deficit of 

Fgf8 results in loss of skeletal mandibular elements (KNIGHT 2006). Bone morphogenetic 

proteins (BMPs) also play a crucial role in osteogenesis of the mandible, and the Wnt 

gene family also affects endochondral ossification by regulating chondrocyte 

differentiation (MERRILL et al. 2008; MINA 2001). Normal development of the mandible 

depends heavily on the expression of these genes and molecules, but the dysregulation of 

other genes may also indirectly affect mandibular development. 
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1.5 

 One gene of particular interest to the development of the mandible is Sox9 (Sry-

box containing gene 9), a transcription factor located on Hsa17 that regulates testis 

development and chondrogenesis (BELL et al. 1997; BI 1999; FOSTER et al. 1994; 

WAGNER et al. 1994) (Figure 1.5.1). Sox9 initiates chondrogenesis by binding 

specifically to sequences in the first intron of collagen, type II, alpha 1 (Col2a1) (BELL et 

al. 1997; BI 1999; LEFEBVRE et al. 1997; NG 1997; WAGNER et al. 1994; ZHAO 1997). 

Col2a1 encodes for type-II collagen which is a major cartilage matrix protein (BELL et al. 

1997; NG 1997). Expression of Sox9 occurs mainly in mesenchymal condensations 

throughout the embryo where cartilage or bone formations develop, but it is also present 

in other areas such as the central nervous and urogenital systems (BI 1999; WRIGHT 

1995). Sox9 expression is necessary for the differentiation of CNC into cartilage and 

endochondral bone structures but not for the correct migration and localization of CNC 

into pharyngeal arches (MORI-AKIYAMA et al. 2003). Haploinsufficiency of Sox9 in 

humans results in campomelic dysplasia which is characterized by skeletal malformation 

and XY sex reversal (FOSTER et al. 1994; WAGNER et al. 1994). 

Sox9 Affects Endochondral Bone Development 

 In mice, the homologue of human Sox9 is located on Mmu11 (DIETRICH et al. 

1994; SCHMITT et al. 1996). Haploinsufficiency of Sox9 in murine models results in a 

phenotype characteristic of the human syndrome campomelic dysplasia. Mice with only 

one copy of Sox9 display hypoplasia and premature mineralization of endochondral 

bones (BI et al. 2001). When Sox9 is completely absent in undifferentiated mesenchymal 

cells of limb buds, both cartilage and endochondral bone fails to develop which indicates 

that Sox9 has an important role in the differentiation of mesenchymal cells into 
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chondrocytes (AKIYAMA et al. 2002). Sox9 also inhibits the transition of proliferating 

chondrocytes into hypertrophic chondrocytes, but Sox9 expression is not actually present 

in hypertrophic chondrocytes (AKIYAMA et al. 2002; HARGUS et al. 2008; ZHAO 1997). 

Dysregulation of Sox9 could have deleterious effects on both Meckel’s cartilage and the 

hyoid bone, which develop through endochondral ossification (MINA 2001). 

 
 

1.6 

 The DNA microarray is a relatively new form of technology that emerged in the 

early 1990’s and allows for comprehensive genetic analysis of an organism (BILITEWSKI 

2009; ROGERS and CAMBROSIO 2007). Microarrays utilize probes, either spotted cDNAs 

or oligonucleotides, which are specific to an organism, gene, or genetic variant. This 

specific design allows for genotyping, expression analysis, and studies of protein-DNA 

interactions. Microarrays are unique from traditional blot analysis because the nucleic 

acids hybridize to immobilized probes and are separated and identified based on their 

affinity to each specific probe rather than by their size (BILITEWSKI 2009). 

Microarrays Used to Determine Abnormal Gene Expression 

 Microarrays are beneficial to the study of DS because they provide a method to 

uncover the gene dosage effects caused by a triplicated chromosome. Two separate 

hypotheses have been formulated to explain the pathogenesis of trisomy 21. The gene 

dosage effect hypothesis proposes that the DS phenotype is caused by the overexpression 

of genes located on the triplicated chromosome. Alternatively, the amplified 

developmental instability hypothesis attests that most symptoms of DS are the result of a 

non-specific disturbance of chromosome balance which disrupts developmental 

homeostasis (AMANO 2004; EPSTEIN 1990; PRITCHARD and KOLA 1999). 
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 Regardless of which hypothesis is true, it is most commonly thought that 

triplicated genes will exhibit a 1.5 fold increase in expression (EPSTEIN 1990; KAHLEM et 

al. 2004). Since this theory was first introduced, many experiments have both supported 

and contradicted this hypothesis. For example, one study performed a microarray on 

lymphoblastoid cells and determined that Hsa21 gene expression in individuals with DS 

could be grouped into four different classes. Class I contained 30 genes with an 

expression ratio of DS/control close to 1.5 which supports the original gene dosage 

hypothesis. Class II had only 9 genes with an expression ratio greater than 1.64, and it is 

hypothesized that these genes may have a more dominant role in creating the DS 

phenotype. Class III consisted of 77 genes that had an expression ratio below 1.4. It is 

thought that these genes may be compensated for by negative feedback systems (AIT 

YAHYA-GRAISON et al. 2007; LYLE et al. 2004). Class IV genes had differing expression 

rates between individuals with trisomy 21 which could possibly explain the variability in 

DS phenotypes. Other studies have discovered a global up-regulation of chromosome 21 

gene expression ranging from 1.37 fold in fetal cerebellum and heart tissues, 1.27 in 

blood, and 1.28 in amniocytes (CHOU et al. 2008; MAO et al. 2005; TANG et al. 2004). 

According to these studies, approximately 20% of Hsa21 genes are significantly 

dysregulated in human fetal cells while 10.2% of individual genes are dysregulated in 

fetal cerebellum and heart tissues (FITZPATRICK et al. 2002; MAO et al. 2005). In DS 

amniocytes, euploid gene expression is close to 1.00 fold, but approximately 17 

individual euploid genes in trisomic individuals are significantly dysregulated (CHOU et 

al. 2008). 
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 Because of the difficulty in accessing trisomic human tissue, DS mouse models 

have provided a useful alternative for examining gene expression with microarray 

technology. Currently, most microarray studies on mice have been performed to 

determine the genetic etiology of cognitive disabilities that occur in DS. In Ts1Cje mice, 

trisomic genes in the cerebellum have an average 1.5 fold gene expression ratio when 

compared euploid mice (DAUPHINOT et al. 2005; LAFFAIRE et al. 2009; POTIER et al. 

2006). Approximately 2.4-7.5% of non-trisomic genes are also significantly dysregulated 

in the cerebellum of trisomic mice (LAFFAIRE et al. 2009; POTIER et al. 2006). 

Interestingly, six non-trisomic homeobox genes were severely repressed in the 

cerebellum, but there was no noticeable developmental delay in the Ts1Cje mice 

(DAUPHINOT et al. 2005). Another study examined gene expression in the brain of P0 

Ts1Cje mice and found approximately a 1.5 fold expression level of trisomic genes 

(AMANO 2004). In the Ts65Dn mouse model, a study of the cerebellum revealed an 

expression level of 1.45 fold in trisomic genes which is similar to what was found in the 

cerebellum of the Ts1Cje model (SARAN et al. 2003). More specifically, microarray 

analysis revealed that the cerebellum of trisomic mice had a significantly decreased 

expression level of Cyclin B1, which regulates cell cycle elongation and affects 

neurogenesis in the cerebellum (CONTESTABILE 2009b).  

 Furthermore, another study on the Ts65Dn mouse model examined nine separate 

tissues and found a general upregulation of trisomic genes by approximately 1.5 fold. 

Similar to the study on human lymphoblastoid cells, it was revealed that the expression 

level of 1.5 fold was a general trend in trisomic genes, but that many genes were actually 

expressed at significantly lower or higher levels (AIT YAHYA-GRAISON et al. 2007; 
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KAHLEM et al. 2004). It was also discovered that some disomic genes were significantly 

dysregulated in the Ts65Dn tissues (KAHLEM et al. 2004). 

 
 

1.7 

 Recent advances in genomic sequencing have indicated that many genes and their 

functions are conserved between eukaryotes. This suggests that the discovery of a gene or 

protein in one species could have implications for its function in another species. With 

the constant influx of new information about genes and their functions, an organized 

database with all known information would be invaluable to scientists. Gene ontology 

(GO) is a concept that was created with the intentions of creating a common vocabulary 

for genes and protein sequences between different species. GO organizes current 

biological knowledge and also serves as a guide for organizing new data. The GO 

database organizes genes based on their biological function, molecular function, and 

cellular component. The database provides a centralized source of known information 

which allows scientists from many different research backgrounds to effectively share 

information (ASHBURNER et al. 2000). 

Gene Ontology Organizes Genes According to Functions 

 The GO database has been particularly helpful in Down syndrome research. Many 

DS researchers use microarrays to determine abnormal expression of genes in certain 

tissues, and the GO database enables scientists to quickly determine the known function 

of dysregulated genes. Knowledge of a dysregulated gene’s function in a certain tissue 

allows experimenters to formulate potential biochemical pathways that are affected by 

trisomy 21. For example, one experiment analyzed gene expression in human fetal 

cerebellum and heart tissues with DNA microarrays. The GO database allowed for the 
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functional grouping of dysregulated genes which provided indications of possible 

biological pathways affected by DS (MAO et al. 2005). Another experiment analyzed 

gene expression in Ts1Cje mice and determined that Girk2 was over-expressed in 

postnatal cerebellar development. Use of the GO database revealed Girk2’s role in 

cerebellar development and allowed the researchers to hypothesize a potential cause of 

the hypoplastic cerebellum in Ts1Cje mice (LAFFAIRE et al. 2009). Because the GO 

database is constantly accruing new information, it will continue to be a beneficial tool 

for scientists. 

 
 

1.8 

 Since the PA1, or mandibular precursor, is significantly smaller at E9.5 and the 

mandible is reduced at P0, it is hypothesized that the mandibular precursor at E13.5 will 

also be significantly smaller in Ts65Dn mice (HILL 2007; ROPER 2009). Furthermore, it is 

hypothesized that the CNC deficit at E9.5 will cause other neural crest derived structures 

such as Meckel’s cartilage, the hyoid cartilage, and the tongue to be significantly smaller 

at E13.5 in trisomic embryos. Along with reduced CNC derived structures, it is 

hypothesized that there will be an overall reduction in size at E13.5 in trisomic embryos 

because both Ts65Dn mice and newborns with DS exhibit reduced birth weight. 

Thesis Hypothesis 

 Because of the reduced trisomic mandibular precursor at E13.5, it was originally 

hypothesized that triplicated genes would exhibit altered expression and adversely affect 

the growth of the mandible at E13.5. When the results from the microarray analysis 

revealed only non-trisomic genes with abnormal expression, it was hypothesized that 

triplicated genes were dysregulated earlier in development and consequently, altering the 
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expression of downstream non-trisomic genes at E13.5. Furthermore, it was hypothesized 

that the dysregulated non-triplicated gene Sox9 would be expressed in Meckel’s and the 

hyoid cartilage which would further delay mandibular growth. 
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CHAPTER 2 MATERIALS AND EXPERIMENTAL METHODS 
 
 
 

2.1 

 Female B6EiC3Sn a/A-Ts(1716)65Dn (Ts65Dn) and female and male B6CBA-

Tg(Wnt1-lacZ)206Amc/J (Wnt1-lacZ), B6.129S4-Gt(ROSA)26Sortm1Sor/J (B6.R26R) and 

C3H/HeJ (C3H) mice were purchased from the Jackson Laboratory (Bar Harbor, ME). 

Wnt1-Cre mice came from the lab of Dr. Yang Chai of the University of Southern 

California and backcrossed >6 generations to C57BL/6J (B6) mice. Wnt1-lacZ mice were 

brother-sister mated and mice homozygous for the Wnt1-lacZ transgene were identified 

and maintained in our colonies on an approximate B6 background. B6(R26R)C3F1 mice 

were created by mating B6.R26R females with C3H males. The Ts65Dn and euploid 

embryos used in this study were generated at Indiana University-Purdue University 

Indianapolis (IUPUI) by crossing Ts65Dn females with B6(R26R)C3F1 males. All 

animal use and protocols were reviewed and approved by the IACUC committee at 

IUPUI. 

Ts65Dn and B6C3F₁ Breeding 

 

2.2 

 Ts65Dn mice were prescreened through a restriction digest of a polymerase chain 

reaction (PCR) product amplified from the small translocation marker chromosome 

(1716). The mouse DNA was isolated and PCR was performed and followed with a SacI 

Ts65Dn Genotyping 
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(New England BioLabs, Ipswich, MA) restriction digest. SacI cuts the DNA from the 

B6C3F₁ background but not from the DBA background which causes the trisomic pups to 

be represented by two bands since they contain the digestion site (LORENZI 2010). The 

ploidy was confirmed through fluorescent in situ hybridization (FISH) after three weeks 

of age (MOORE 1999). 

 
 

2.3 

 Pregnant female mice were sacrificed thirteen and a half days after a vaginal plug 

had been confirmed. The mice were then anesthetized with isoflurane (Webster 

Veterinary Supply, Inc., USA) and euthanized through cervical dislocation. Embryos 

were then dissected out of the uterus and placed onto ice to induce hypothermia. Embryos 

were dissected in Phosphate Buffered Saline (PBS) (Mediatech, Herndon, VA), and yolk 

sacs were removed for later genotyping. After the dissection, embryos were rinsed twice 

in PBS and photographed with a Nikon Digital Sight Camera at 0.75X. Embryos that 

originated from a mother without the R26R transgene were then fixed in 4% 

paraformaldehyde (MP Biomedicals, Solon, OH) at 4°C overnight. 

E13.5 Dissections 

 If the mother was either R26R +/- or +/+, then the embryos were only fixed in 4% 

paraformaldehyde for two hours before being rinsed with β-gal buffer. They were then 

placed in β-gal overnight at 4°C. The following day the embryos were first washed with 

β-gal and then were placed in X-gal substrate (Fisher Science Education, Rochester, NY) 

and allowed to incubate at 37°C for 72 hours. After the first 24 hours, the X-gal substrate 

was replaced in all stained embryos. After the total 72 hours incubation the embryos were 
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washed twice in β-gal and then pictures were once again taken at 0.75X. Finally, embryos 

were fixed in 4% paraformaldehyde overnight before processing. 

 Whether or not originating from an R26R positive mother, all embryos began 

processing after they had been fixed in 4% paraformaldehyde overnight. Processing of 

the embryos began with a dehydration step. Embryos were placed in 50%, 70%, 70%, 

95%, 95%, 100%, and 100% ethanol for 20 minutes each. After dehydration, the embryos 

were cleared by being placed in a 1:1 mixture of 100% ethanol and xylenes (Fisher 

Scientific, Fair Lawn, NJ) for 20 minutes. They were then placed in xylenes twice for 20 

minutes. Finally the embryos went through the embedding process by first incubating the 

embryos in 1:1 xylenes and paraplast at 56°C for one hour. This was followed by a 20 

minute incubation in paraplast and then an overnight incubation in paraplast at 56°C. The 

following day embryos were placed in a mold for later sectioning. Embryos were allowed 

to cure at 4°C before sectioning. 

 
 

2.4 

 Embryos were sectioned after they had been embedded for at least one week. 

Embryos were first removed from the plastic mold and then melted onto a small block 

that fits into the microtome. Embryos were sectioned at 22 µm and then placed into a 

40°C water bath to allow the sections to smooth out. While the sections were in the water 

bath, slides were prepared with the embryo’s number, date of dissection, and the numbers 

of the sections. Five sections were then placed onto each slide (Fisher Scientific, Fair 

Lawn, NJ). The five sections were ribboned off the microtome together to ensure the 

Sectioning E13.5 Embryos 
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order of the sections. After the entire embryo was sectioned, slides dried on a 55°C slide 

warmer overnight. 

 

2.5 

 Following sectioning, slides were melted in a 56°C incubator for at least an hour 

or until the paraplast was melted. Slides then went through an Eosin staining protocol. 

The slides were placed in citrisolve (Fisher Scientific, Fair Lawn, NJ) three times for four 

minutes each. They were placed in 100% ethanol twice for two minutes and then placed 

into 90%, 70%, and 50% ethanol for two minutes each. Next they were placed into a 1% 

eosin (Fisher Scientific Company, LLC, Kalamazoo, MI) 100% ethanol solution for two 

minutes to stain them. This was followed by two rounds of 95% ethanol for 30 seconds 

each and then two rounds of 95% ethanol for two minutes each. Finally, the slides went 

through three rounds of citrisolve for three minutes each. After the staining process, the 

slides were carefully dried and then coverslipped with dibutyl phthalate with xylenes 

(DPX mounting medium) (Electron Microscopy Sciences, Hatfield, PA). Slides were 

allowed to cure for a least one week before being examined. 

Staining E13.5 Sections 

 
 

2.6 

 All calculations of volume were made with the program Stereologer 2000 on a 

Nikon Eclipse 80i microscope. For all regions measured, the region volume fraction and 

a Cavaleri point grid were used to determine the measurements. The thickness of all 

sections was viewed at 100X magnification. The slab sampling interval was one, and the 

common probe information for all measurements was the same. The frame area was 

Unbiased Stereology 
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25.00% screen height and the screen height was 0.01 mm. The frame spacing was 0.002 

mm and the dissector placement was centered. Also, all measurements were made with 

systematic random sampling and the measurements were made with blind knowledge 

toward the genotype of the embryo. The measurements of each structure were performed 

by the same experimenter to reduce possibility of procedural error and all structures were 

defined with an atlas for mouse development (KAUFMAN 2003). Random starting 

numbers were produced by the Stereologer 2000 program. The volume, thickness, and 

coefficient of error (CE) were recorded for each measurement. 

 To determine the total volume of each embryo, a random sampling of every 15th 

section was examined. The area per point was 0.1 mm². The area of each embryo was 

determined at 4X magnification. For mandibular analysis, the mandible was defined so 

that it included Meckel’s cartilage but not the hyoid bone or the tongue. (Figure 2.6.1 C). 

Once the mandibular precursor was defined, a random sampling of every 5th section was 

examined to determine the total volume of the precursor. The area per point was 0.01 

mm² and was determined at 4X magnification. 

 When measuring brain volume, the area inside the ventricles was included in the 

calculation (Figure 2.6.1 A). A random sampling of every 10th section was measured. 

The area per point was 0.009 mm² and examined at 4X magnification. For neocortical 

examination, the neocortical precursor was considered to be the outer lining around the 

lateral ventricles and was bound by the choroid plexus on one side and the ganglionic 

eminences on the other (Figure 2.6.1 B). Measurements were taken at every 7th section. 

The area per point was 1.5E-06 mm² and was measured at 10X magnification. 
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2.7 

 Results from embryos that were marked as being damaged or questionable were 

removed from the analysis. Data from the stereological results was analyzed with either a 

one-tailed or two-tailed student’s t-test to determine significance. Measurements that 

were hypothesized to be smaller (total volume, mandibular precursor, tongue, Meckel’s 

cartilage, hyoid cartilage, neocortex, brain/total volume, neocortex/total volume, and 

mandibular precursor/total volume) were analyzed with a one-tailed student’s t-test. 

Structures that were not hypothesized to be either larger or smaller (heart, liver, brain, 

and heart/total volume) were analyzed with a two-tailed student’s t-test. A p-value of 

0.05 or below was considered statistically significant. 

Statistics for Volume Measurements 

 For the comparison of total embryonic size, differences between offspring from 

B6C3F₁, euploid control, Ts65Dn euploid, and Ts65Dn trisomic mothers were 

determined using analysis of variance in PROC GLM (SAS, Cary, NC). Least significant 

difference post hoc comparisons (contrasts) were used to determine differences between 

strains. A significance level of α = 0.05 was used in all multiple comparison tests. 

Correlation between E13.5 CRL, area, and volume was determined using PROC CORR 

in SAS. A one-tailed t-test was performed to determine genotypic and phenotypic 

differences between two strains of offspring. 
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2.8 
 

Fluorescent In Situ Hybridization (FISH) 

 
 

2.8.1 Processing the Yolk Sac for FISH Analysis 

 Yolk sacs were removed from E13.5 embryos and placed in 0.5 ml of Dulbecco’s 

PBS (DPBS) (Mediatech, Inc., Herndon, VA) in a 1.5 ml tube. Yolk sacs were then 

centrifuged at 12,000 rpm for one minute. The supernatant was discarded and yolk sacs 

were resuspended in DPBS and vortexed. Once again, the yolk sacs were centrifuged at 

12,000 rpm for one minute. The supernatant was removed and 0.5 ml of collagenase 

(type X1-S, 1000 U/mL in HBSS) (Sigma, St. Louis, MO) was added to each yolk sac 

and vortexed. The yolk sacs were then incubated in a 37°C water bath for 30 minutes. 

After incubation, yolk sacs were centrifuged at 12,000 rpm for one minute and then the 

supernatant was removed. Next, 0.5 ml of KCl (Invitrogen, Carlsbad, CA) was added and 

resuspended by vortexing. Yolk sacs were once again incubated in a 37°C water bath for 

30 minutes. After incubation, one drop of 3:1 methanol: acetic acid (Fisher Scientific, 

Fair Lawn, NJ and J.T. Baker, USA) fix was added to each tube. The yolk sacs were then 

centrifuged at 13,000 rpm for one minute and then the supernatant was removed. Finally, 

the yolk sacs were resuspended in 0.5 ml of 3:1 methanol: acetic acid fix. Pellets were 

resuspended with a pipette tip and then were stored at 4°C for up to a week before 

dropping (ROPER 2009). 

 
 

2.8.2 Dropping of Yolk Sacs 

 At least 24 hours after processing, the yolk sacs were then prepared to be 

“dropped” onto a VCE slide. The yolk sacs were centrifuged at 12,000 RPM for five 
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minutes. In the meantime, a 250 ml beaker was half-filled with water and heated until 

boiling. Two slides for each embryo were prepared by labeling each slide with the 

embryo number and the date dissected. Once the yolk sacs finished centrifuging, a single 

drop of distilled water was placed onto the “C” portion of the slide. Then a glass pipette 

was used to resuspend the yolk sac and then to place one drop of the yolk sac mixture 

onto each slide. It was best to avoid getting large samples of tissue on the slide. The 

slides were then placed on top of the beaker of boiling water for 30 seconds. While the 

first slides were being heat fixed, the same process would be repeated for the next slide. 

After all slides were heat fixed with cells from the yolk sac, they were fixed to the slide 

with 1 ml of a 3:1 methanol: acetic acid. Finally, they were allowed to dry at room 

temperature for 24 hours before the hybridization process could begin. 

 

2.8.3 Hybridization 

 Before beginning the process, a humidified box was made and placed into a 37°C 

incubator. The slides that were previously fixed with the yolk sac cells were placed into a 

Coplin jar filled with 2X sodium chloride and sodium citrate solution (SSC) and were 

incubated in a 37°C water bath for 30 minutes. While slides were incubating, the probe 

and Denhyb (Insitus Biotechnologies, Albuquerque, NM) were warmed to room 

temperature. A 10:1 Denhyb/probe solution was made and warmed in the 37°C water 

bath. After the 30 minute incubation, the slides were dehydrated in cold 70%, 85%, and 

100% ethanol for two minutes each. The slides were taken to a dark room and placed on a 

37°C dry bath for three minutes. Next 7 µl of the Denhyb/probe solution was added to 

each slide. An 18 x 18 coverslip was then placed on the slide and sealed with rubber 
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cement. Slides were then quickly moved to an 85°C dry bath for five minutes. Finally, 

the slides were placed in the humidified box and allowed to incubate overnight. 

 

2.8.4 Viewing of FISH Slides 

 The day following the hybridization step, slides were removed from the 

humidified box in a dark room. The rubber cement was removed and the slides were 

placed in a solution of 2X SSC for five minutes at 68°C. The slides were placed into 

another solution of 2X SSC set at room temperature for seven minutes. Then 8 µl of 

Antifade/4’,6-diamidino-2-phenylindole (DAPI) (Chemicon International, Temecula, 

CA) was placed onto each slide and sealed with a 22 X 22 coverslip. Slides were then 

immediately viewed with a Nikon Eclipse 80i microscope and fluorescent light. Trisomic 

mice were then able to be identified because the specific probe used was created from the 

BAC clones 401C2 and 433G17 which bind to the distal triplicated portion of Mmu16 

(MOORE et al. 1999). The embryos were then able to be genotyped based on the number 

of markers found in each nucleus. Trisomic mice would have three signals in the nucleus 

of each cell while the euploid mice would only have two. A genotype was confirmed 

after ten separate cells had been examined and determined to have the same number of 

markers in the nuclei. 

 
 

2.9 

 E13.5 embryos used for immunohistochemistry (IHC) were processed similarly to 

the embryos used for the volumetric measurements, but embryos used for IHC were not 

incubated with X-gal. After the washing steps they were immediately placed into 4% 

Sox9 Immunohistochemistry 
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paraformaldehyde overnight and were processed the next day instead of incubating in X-

gal for 72 hours.  

 After allowing to cure in paraplast for one week, embryos were sectioned at 10 

µm and melted at 45°C for five hours before the IHC process. To deparaffinize the 

embryos they were placed in xylene twice for three minutes, 1:1 xylene/100% ethanol for 

three minutes, 100% ethanol twice for three minutes, and 95%, 70%, and 50% ethanol for 

three minutes each. They were then placed in running tap water to rinse. 

 To perform the antigen retrieval step, a water bath was heated to 100°C. Then 75 

ml of a 10 mM Sodium Citrate (pH 6.0) buffer was brought to boiling in a microwave 

and then immediately poured into a glass Coplin jar. The Coplin jar was then placed into 

the 100°C water bath and the slides were then placed in to the Coplin jar for 20 minutes. 

The slides were then removed and allowed to cool before rinsing them with tap water for 

10 minutes. 

 A PAP pen (Research Products International, Corp., Japan) was used to create a 

barrier around the sections. The slides were then washed with a mixture of PBS and 

0.025% Triton (PBST) (Promega Corporation, Madison, WI) twice for 5 minutes each. 

Next, the sections were blocked with 10% donkey serum (MP Biomedicals, Solon, OH) 

with 1% Bovine Serum Albumin (BSA) (Invitrogen, Carlsbad, CA) in PBS for two hours 

at room temperature. While the donkey serum mixture was on the slides, the primary 

antibody (Sox9 (H-90) anti-mouse rabbit polyclonal IgG, 200 µg/ml) (Santa Cruz 

Biotechnology, Santa Cruz, CA) was diluted 1:500 in PBS with 1% BSA. After the two 

hour blocking period, the donkey serum was removed and the diluted Sox9 antibody was 

pipetted onto the slide. The slides were then incubated overnight at 4°C. 
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 The following day, the primary antibody was removed and the sections were 

washed twice with PBST for five minutes each. The secondary antibody (Alexa Fluor 

594 donkey anti-rabbit IgG (H+L), 2 mg/ml) (Invitrogen, Eugene, OR) was then diluted 

1:500 in PBST. The secondary antibody was applied to the sections in a dark room and 

then allowed to incubate for one hour at room temperature. After the incubation, the 

secondary antibody was removed and the slides were rinsed three times with PBS for five 

minutes each rinse. The hydrophobic barrier created by the PAP was then carefully 

removed with a razor blade and then 3 µl of Antifade/DAPI was then added to each 

individual section. The slides were then coverslipped and sealed with clear nail polish. 

 

2.10 

 Sections that included both hyoid and Meckel’s cartilage were chosen for IHC. 

All chosen sections had a fully developed tongue and were closely matched so that each 

sample came from approximately the same sectioned area. Two sections from each 

embryo were chosen to be quantified. All images were taken with an Olympus FV 1000 

confocal microscope. For the DAPI images, a laser emitting light with a wavelength of 

405 nm was used. For the secondary antibody (Alexafluor 594) a laser with a wavelength 

of 548 nm was used. Images were taken with a 20X water lens and image was zoomed in 

2.5X for a total of 50X magnification. There was an average of four scans per image. 

Image Capturing and Quantification of DAPI and Sox9 Expression 

 DAPI and antibody images for each animal were opened in ImageJ. The “Image” 

type was set to “RGB” and then “Image--->Composition” was selected. The DAPI 

picture was set as blue and the antibody was red. Files were then saved as a “tif” file. 

Images were then opened and quantified with Adobe Photoshop CS4 with a procedure 
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based on previous work by Kirkeby and Matkowskyj (KIRKEBY 2005; MATKOWSKYJ 

2000). To start, either Meckel’s or the hyoid cartilage was selected with the lasso tool 

with care to only select cells within the perichondrium, but not including the 

perichondrium. Once the selection was created, two copies of the selection were made to 

produce two new layers. On one layer, the background was painted black with the paint 

bucket tool. This was to allow for objective selection with the wand tool. Previous studies 

have used the wand tool to select a dark background which would slightly vary in color 

and affect the areas selected, but selecting a completely black background allows for 

exactly the same selection each time. 

 After the background was “painted” black, the channels tool was selected and the 

red and green channels were deselected. This allowed for only the blue DAPI expression 

to be visualized. Next, the wand tool was selected with a tolerance set to 35 and “anti-

alias” was checked. Using the wand tool, the artificial “black background” was selected. 

This selection would then be inverted and then only cells expressing DAPI were selected. 

The histogram tool was then set to “blue” channel and the source image was set to 

“selected layer”. The values for mean intensity, standard deviation, median intensity, and 

pixel area could then be recorded. To determine Sox9 expression within the DAPI 

selected region, the histogram channel was simply changed to red and the values 

recorded. 

 To analyze Sox9 expression, each Sox9 value was divided by DAPI intensity to 

control for experimental variations such as sectioning differences and signal fading. Then 

the values were simply compared with a student’s t-test with a p value of 0.05 or below 

determining significance. To determine that DAPI was an effective control, a correlation 
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analysis was performed with PROC CORR in SAS. Cell density was calculated by 

counting the number of selected nuclei and dividing by the area of either Meckel’s or the 

hyoid cartilage. 

 

2.11 

 The 155 genes that were found to be dysregulated at E13.5 in the mandibular 

precursor were inputted into a gene ontology database 

(

Gene Ontology 

http://www.genetools.microarray.ntnu.no/common/intro.php). The site then organized 

the genes based on molecular function, biological process, and cellular component. The 

biological process category was divided into 18 different subcategories. Each of these 

categories was then further divided into subsequent categories. Each category had a gene 

ontology number and then identifiers for each gene in the category. Selecting the 

identifier for a particular gene would bring up all known processes related to that 

particular gene and links to PubMed (http://www.ncbi.nlm.nih.gov/pubmed/) where the 

information could be verified. 

 

http://www.genetools.microarray.ntnu.no/common/intro.php�
http://www.ncbi.nlm.nih.gov/pubmed/�
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CHAPTER 3 RESULTS 

 
 

3.1 

 Both neonatal and adult Ts65Dn mice have a reduced anterior face, palate, and 

mandible (HILL 2007). Recent research has also shown that at E9.5, Ts65Dn mice have a 

significantly smaller PA1, or mandibular precursor, with fewer CNC (ROPER 2009) 

(Figure 3.1.1). To examine how early developmental changes at E9.5 affect mandibular 

growth at later stages, the mandibular precursor and other structures of 19 Ts65Dn and 21 

euploid littermates were examined at E13.5. Using unbiased stereology, it was 

determined that the Ts65Dn mandibular precursor was significantly reduced when 

compared to euploid littermates (p= 0.005) (Figure 3.1.2). Contrary to the reduced size of 

the mandibular precursor, the Ts65Dn tongue was not significantly different from euploid 

littermates (p= 0.17) (Figure 3.1.3). This data indicates that the early developmental 

changes found in the PA1 at E9.5 continue to affect the development of the mandible at 

E13.5. These results also indicate an embryonic origin for relative macroglossia (normal 

tongue size in smaller oral cavity) that has been seen in individuals with trisomy 21 

(GUIMARAES 2008). 

Volumetric Measurements Show Reduced Volume and Relative Macroglossia in E13.5 

Ts65Dn Embryos 
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3.2 

 It was originally hypothesized that the reduction of CNC in the PA1 and PA2 of 

E9.5 Ts65Dn embryos would affect the development of CNC derived structures at E13.5. 

As expected, the mandibular precursor, which is mostly CNC derived (KNIGHT 2006), 

was significantly smaller in trisomic mice, but the tongue, which is partially CNC derived 

(YAMANE 2005), was not significantly different between Ts65Dn and euploid embryos. 

Since the CNC deficit did not seem to adversely affect the growth of the tongue as 

expected, other CNC derived structures, such as Meckel’s cartilage and the hyoid 

cartilage, were evaluated to further understand the role of CNC in the developing 

embryo. 

Trisomic Structures Derived from CNC Reduced While Partial or Non-CNC Derived 

Structures Similar in Size to Euploid 

 Meckel’s cartilage and the hyoid cartilage primordium are CNC derived structures 

that are located within and posterior to the mandibular precursor, respectively. Meckel’s 

cartilage develops from the PA1 and provides a template for mandibular growth (KNIGHT 

2006; RAMAESH 2003) while the hyoid cartilage primordium develops mainly from the 

PA2 and later becomes the hyoid bone (LIEBERMAN et al. 2001). As hypothesized, the 

volumes of the trisomic hyoid cartilage primordium and Meckel’s cartilage were 

significantly reduced when compared to euploid littermates (p= 0.0002 and 0.05, 

respectively) (Figure 3.2.1 and 3.2.2). Cardiac tissue, which has minimal NC contribution 

(MORIKAWA 2008), was also examined to understand the development of a structure with 

little NC contribution. The cardiac tissue volume was not significantly different between 
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trisomic and euploid littermates (p= 0.90) (Figure 3.2.3). The data indicate that, of the 

examined tissues, most of the structures that are derived mainly from CNC are smaller in 

Ts65Dn embryos while trisomic structures that are non-CNC derived, or only have 

minimal NC contribution, are similar in size to the corresponding structures in the 

euploid mice.  

 

3.3 

 Adults with Down syndrome have hypoplastic brains and neocortexes with 

enlarged lateral ventricles (PEARLSON 1998; SCHAPIRO 1987; WEIS et al. 1991). 

Similarly, human fetuses with trisomy 21 exhibit decreased brain weight when 

normalized for total body weight (GUIHARD-COSTA 2006). Contrary to what is found in 

humans with DS, adult Ts65Dn mice do not have reduced overall brain volume, but 

embryonic Ts65Dn mice have demonstrated reduced brain weight (ALDRIDGE 2007; 

BAXTER 2000; CHAKRABARTI 2007). Since the size of the embryonic Ts65Dn brain has 

only been evaluated by weight without normalization for size differences, 19 Ts65Dn and 

21 euploid littermates were examined with unbiased stereology to determine brain 

volume at E13.5. Although there was shown to be a significant difference in brain weight 

at E13.5 (CHAKRABARTI 2007), the volume of the Ts65Dn brain was not significantly 

different from the euploid brain (p= 0.49) (Figure 3.3.1). The similar total brain volume 

found between E13.5 trisomic and euploid littermates correlates with the similar total 

brain size reported in adult Ts65Dn mice (ALDRIDGE 2007; BAXTER 2000).  

Abnormal Neurological Development in E13.5 Trisomic Embryos 

 Individuals with DS have reduced cerebral cortex volumes (WEIS et al. 1991), and 

it has recently been shown that E13.5 Ts65Dn mice have a reduced thickness of 
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neocortical layers (CHAKRABARTI 2007). To determine if the entire volume of the 

developing neocortex was reduced in E13.5 trisomic embryos, evaluation of total 

neocortical volume with unbiased stereology was performed. As expected, the total 

volume of the trisomic neocortex was significantly reduced when compared to euploid 

littermates (p= 0.05) (Figure 3.3.2). When normalized for total brain volume, the volume 

of the Ts65Dn neocortex remained significantly reduced (p= 0.02) (Figure 3.3.3). 

 

3.4 Reduced E9.5 and E13.5 Ts65Dn Embryos Related to Trisomic, not Maternal,  

 To determine that differences in tissue size were a direct cause of embryonic 

trisomy and not related to a trisomic mother’s uterine environment, the total area of E9.5 

and E13.5 embryos from Ts65Dn, euploid control, and B6C3F₁ mothers was examined. 

Average somite number of 117 trisomic, 158 euploid, 120 euploid control, and 105 E9.5 

B6C3F₁ embryos was measured. From Ts65Dn mothers, trisomic embryos had an 

average of 19.12 somites (SEM= ± 0.29) which was significantly less than the average of 

20.41 (± 0.24) somites in euploid littermates. Embryos from euploid control mothers had 

an average somite number of 20.67 (± 0.31) and did not differ significantly from euploid 

embryos from Ts65Dn mothers. Embryos from B6C3F₁ mothers had a significantly larger 

number of somites (23.10 ± 0.18) (Figure 3.4.1). The similar somite number between 

euploid embryos from Ts65Dn mothers and embryos from euploid control mothers 

indicates that trisomy of the mother does not affect embryonic growth of the embryos. 

The significantly smaller somite number in trisomic mice indicates embryonic trisomy, 

and not maternal trisomy, affects development of embryos. 

Trisomy 
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 Because it is difficult to determine somite number at E13.5, total area 

measurements were taken to evaluate embryonic size at E13.5. Once again, trisomic 

embryos (49.26 ± 0.96 mm²; n= 14) were significantly smaller than euploid littermates 

(52.00 ± 0.59 mm²; n= 20), and euploid embryos from Ts65Dn mothers were not 

significantly different from euploid control embryos (53.47 ± 0.83 mm²; n= 89). Embryos 

from B6C3F₁ were still significantly larger than all other embryo types (59.08 ± 0.38 

mm²; n= 89) (Figure 3.4.2). These results further strengthen the argument that maternal 

trisomy does not affect embryonic development or growth. 

 

3.5 

 Because some of the E13.5 embryos included in the area measurements already 

had total volume measurements determined through unbiased stereology, a comparison of 

area and crown rump length (CRL) measurements was performed to determine if area 

would be a better determinant of embryonic size than CRL. Analysis of 49 E13.5 

embryos (34 non-trisomic and 15 trisomic with similar genetic backgrounds) determined 

embryo volume had a higher correlation to area (r= 0.43; p= 0.0023) than CRL (r= 0.26; 

p= 0.0770). CRL is most commonly used to determine embryonic size, but these results 

indicate that evaluation of embryonic area would more accurately determine total 

embryonic size.  

Area Better Determinant of Embryonic Size than CRL 

 To obtain the most accurate evaluation of total embryonic size, unbiased 

stereology was performed on 40 E13.5 embryos (19 trisomic, 21 euploid) to determine 

total volume of each embryo. Correlating with the results from the area calculation, 
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trisomic mice were found to be significantly smaller than euploid littermates (p= 0.02) 

(Figure 3.5.1). 

 Because of the significant reduction in trisomic embryonic size, it was 

hypothesized that specific tissues may be smaller in Ts65Dn mice because of the overall 

size difference. To account for this, all tissues were normalized to each specific embryo 

volume. Both trisomic cardiac and brain tissues were not significantly different in size 

when compared directly to euploid embryos, but when normalized for total embryonic 

volume, the trisomic cardiac tissue was significantly larger (p= 0.03) (Figure 3.5.2) while 

the brain tissue was almost significantly larger in Ts65Dn embryos (p= 0.054) (Figure 

3.5.3). Interestingly, the mandibular precursor was significantly smaller when directly 

compared to euploid littermates, but when normalized for total embryonic volume, no 

significant difference was found (p= 0.17) (Figure 3.5.4). 

 

3.6 

 A microarray analysis of RNA from 13 Ts65Dn and 11 euploid mandibular 

precursors was previously performed to elucidate the molecular pathways that alter the 

development of the Ts65Dn mandible. Interestingly, 155 genes were differentially 

expressed in the Ts65Dn mandibular precursor at E13.5, but none of these genes were 

triplicated in the Ts65Dn mouse model or homologous to genes found on Hsa21. Of the 

155 differentially expressed genes, 75 genes exhibited increased expression levels while 

80 genes were down regulated in Ts65Dn embryos. 

Microarray Analysis on E13.5 Mandibular Precursor Reveals Dysregulated Non- trisomic 

Genes 
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 To understand how these dysregulated genes affect development of the Ts65Dn 

mandibular precursor, the biological functionality of each gene was examined through the 

use of the GeneTools database (http://www.genetools.microarray.ntnu.no/adb/index.php). 

The database automatically categorized genes based on their known functions. It is 

important to note that the database sorts genes based on their known functions at any 

developmental stage and in any organism. Therefore, functional groups that were not 

directly related to the developing mouse mandible, such as “multicellular organismal”, 

were not of particular interest to this study. Functional groups that were relevant to the 

developing mouse mandible were more closely examined. 

 Initial examination of the functional groups revealed 80 dysregulated genes in the 

mandible that were involved with biological processes (Figure 3.6.1). When these genes 

were further categorized, it was revealed that 53 were involved with cellular processes 

while 40 had roles in development processes (Figure 3.6.2 and 3.6.3). Other notable 

functional groups were cell differentiation, cell proliferation, and apoptosis (Figure 3.6.4, 

3.6.5, and 3.6.6). Closer examination of these groups revealed that many genes did not 

have known functions directly related to mandibular development. For example, Gata3 

has known functions in kidney and sympathetic neuron development, trophoblast gene 

expression, and T helper 2 cell differentiation. Lyz1, another gene in the cell 

differentiation group, has primarily a bacteriolytic function and no known effect on 

mandibular development. 

 To try and focus on genes that would have a direct effect on mandibular growth, 

genes that were involved in cartilage and skeletal development were more closely 

examined (Figure 3.6.7 and 3.6.8). Since stereological measurements revealed a reduced 

http://www.genetools.microarray.ntnu.no/adb/index.php�
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hyoid cartilage primordium and Meckel’s cartilage, these groups were of particular 

interest. Two genes with cartilage related functions and 14 genes involved with skeletal 

development were significantly dysregulated in the trisomic mandible. Interestingly, the 

transcription factor Sox9 had roles in cartilage condensation, skeletal development, cell 

proliferation, and cell differentiation. Seeming to correlate with Sox9 expression, Col2a1 

was present in many of the same functional groups. Both Sox9 and Col2a1 were found to 

be upregulated in the trisomic mandibular precursor by 1.19 and 1.16 fold, respectively. 

The transcription factor Six2 was also upregulated (1.17 fold) and had known functions in 

craniofacial skeletal development. Also of notable interest, there were 11 down regulated 

Hox genes in the skeletal development group, six of which were in the top 20 most 

dysregulated genes (Figure 3.6.9). Further examination of these genes and their functions 

will provide additional insight into the biological processes that are affected by trisomy in 

the developing mandible. 

 

3.7 

 To further verify the overexpression of Sox9 shown in the microarray and to 

determine the specific location of Sox9 expression, immunohistochemistry was 

performed on E13.5 embryos. Because Sox9 is known to be expressed in chondrocytes, 

expression in Meckel’s and the hyoid cartilage was examined.  

Sox9 Overexpressed in Meckel’s Cartilage and Hyoid Cartilage Primordium of E13.5 

Trisomic Embryos 

 Even though the IHC procedure was performed as uniformly as possible, variation 

in intensity caused by differences in sections or fading of signals was unavoidable. To 

control for these variations, DAPI intensity was measured for each section and used to 
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normalize the Sox9 intensity. Because DAPI fluoresces by binding to DNA and because 

the Sox9 protein is located inside the nucleus, comparing Sox9 to DAPI would control 

for differences in sections that might affect either DAPI or the Sox9 antibody penetration 

into the nucleus. Using DAPI as a control also controlled for potential fading of the 

signals that may have occurred. 

 To confirm that DAPI would be a good control for Sox9 expression, a correlation 

analysis was performed. There was significant correlation between Sox9 and DAPI 

intensity in both euploid and trisomic samples, in both Meckel’s and the hyoid cartilages. 

(Euploid Meckel’s cartilage p= 0.0513; Trisomic Meckel’s cartilage p= 0.0077; Euploid 

Hyoid cartilage p= 0.0207; Trisomic Hyoid Cartilage p= 0.0035) (Figure 3.7.1). 

 After excluding sections that were damaged or that did not produce usable photos, 

analysis of nine samples from euploid Meckel’s cartilage and eight from trisomic 

embryos was performed. (A total of five different animals provided euploid samples and 

four for trisomic samples). When normalized for DAPI intensity, Sox9 expression was 

significantly higher in the trisomic Meckel’s cartilage (p= 0.02) (Figure 3.7.2). Similarly, 

Sox9 expression was also significantly higher in the trisomic hyoid cartilage when 

compared to euploid littermates (p= 0.02) (four euploid animals provided eight samples 

and five trisomic animals provided eight samples) (Figure 3.7.3). The results from the 

Sox9 IHC confirm what was found in the microarray analysis and also show the specific 

structures where Sox9 overexpression is located in the mandibular precursor (Figures 

3.7.4, 3.7.5, 3.7.6). 

 To determine that the Sox9 overexpression found in both Meckel’s and hyoid 

cartilages was from an actual increase in the level of expression and not from an 
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increased number of cells expressing Sox9, the cell density was measured for each 

sample. There was no significant difference between the cell density of euploid and 

trisomic Meckel’s or hyoid cartilages which suggests the overexpression is caused by an 

actual increase in expression in the cells (Meckel’s cartilage: p= 0.35, hyoid cartilage: p= 

0.75) (Figure 3.7.7). 



40 

 
 

CHAPTER 4 DISCUSSION 

 
4.1 Relative Macroglossia and Reduced Mandibular Precursor, Meckel’s Cartilage, 

 The mandibular precursor was measured at E13.5 to determine whether the 

reduced PA1 found at E9.5 affected mandibular development at later stages. As 

hypothesized, the trisomic mandibular precursor was significantly reduced at E13.5. The 

CNC deficit found in both the PA1 and PA2 of E9.5 Ts65Dn embryos seems to 

negatively affect the growth of the mandibular precursor at E13.5 (ROPER 2009). This 

suggests that other structures derived from the PA1 and PA2 CNC may also be 

significantly reduced. 

and Hyoid Cartilage in E13.5 Ts65Dn Embryos 

 Both Meckel’s and the hyoid cartilage are derived from CNC from the PA1 and 

PA2, respectively (KNIGHT 2006; MINA 2001). These structures were also measured at 

E13.5 to determine if the CNC deficit found at E9.5 negatively altered their growth as 

well as the mandibular precursor. As hypothesized, both of these structures were 

significantly reduced in Ts65Dn embryos. Since later growth and function of the 

mandible is dependent upon both Meckel’s and the hyoid cartilage, a reduction in these 

cartilages at E13.5 could indicate developmental and functional difficulties at later stages 

of development. Specifically, a reduced Meckel’s cartilage would result in a smaller 

template for mandibular growth which could further exacerbate the already altered 

growth of the mandible. 
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 A reduced hyoid cartilage may not specifically affect mandibular growth, but it 

has the potential to negatively affect mandibular function. The hyoid cartilage later 

develops into the hyoid bone which interacts with the tongue and overall craniofacial 

function. The hyoid cartilage is located posterior to the mandibular precursor and is 

derived from PA2 and PA3 NC (KNIGHT 2006). Since the hyoid bone develops through 

endochondral ossification, the reduced size of the hyoid cartilage primordium at E13.5 

suggests there will be a smaller cartilage matrix for bone development which could result 

in a reduced hyoid bone postnatally (KNIGHT 2006). The hyoid bone serves as an 

insertion point for more than a dozen muscles that control functions such as 

deglutination, phonation, and respiration (VAN DE GRAAFF et al. 1984). A reduced hyoid 

bone might have deleterious effects on the control of these muscles which would further 

complicate the difficulties that individuals with DS have with swallowing, speaking, and 

breathing. 

 Also of interest, in post-natal human life, the hyoid descends concurrently with 

the enlargement of the oral cavity and mandible (LIEBERMAN et al. 2001). Since the oral 

cavity and mandible have reduced growth in individuals and mice with trisomy, it seems 

likely that the position of the hyoid would be also altered (HILL 2007; RICHTSMEIER 

2000). This is supported by a study that has shown that the location of the hyoid bone is 

positioned farther from the mandibular symphysis and more posteriorly located in 

brachyfacial subjects (PAE et al. 2008). A lower positioned hyoid causes the epiglottis to 

lose the ability to form a seal with the soft palate which increases the risk of aspirating 

food and of developing dysphagia from poor intermuscular coordination during 

swallowing (LIEBERMAN et al. 2001). Difficulties in swallowing and the aspiration of 
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food are common functional difficulties in newborns with DS and can be explained by 

the small oral cavity and subsequent altered hyoid descent (VAN CLEVE and COHEN 

2006). 

 As with the mandibular precursor, Meckel’s cartilage, and the hyoid cartilage 

primordium, the tongue is mostly CNC derived. Since the tongue is mainly CNC derived, 

it was hypothesized that the tongue would be smaller in size between trisomic and 

euploid embryos but relatively larger when compared to the significantly reduced 

mandibular volume (YAMANE 2005) . Evaluation of the E13.5 tongue volume revealed no 

significant difference between trisomic and euploid littermates. These results indicate that 

trisomic and euploid tongues are developing at a similar rate at E13.5 while the 

mandibular precursor, Meckel’s cartilage, and hyoid cartilage are reduced in trisomic 

embryos (KNIGHT 2006). The reduced mandible with the “normal” sized tongue also 

seems to support the development and occurrence of relative macroglossia in Ts65Dn 

mice. These findings are important to the DS community because they indicate trisomy is 

severely affecting the size of the oral cavity while the tongue seems to be relatively 

normal in size. This indicates that many functional difficulties with sleeping and eating 

are caused by a smaller oral cavity and a relatively larger tongue. Oral-facial functional 

capabilities in individuals with DS are further complicated by hypotonia which makes it 

more difficult to control tongue movements in a reduced oral cavity. 

 
 

4.2 

 Along with craniofacial dysmorphology, essentially all individuals with Down 

syndrome have some degree of cognitive impairment and have also been shown to have 

Abnormal Neurological Development in E13.5 Ts65Dn Embryos 
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hypoplastic brains (CROME 1966; PEARLSON 1998; PINTER 2001; RAZ 1995; SCHAPIRO 

1987; WEIS et al. 1991). Similarly, the Ts65Dn mouse model has been shown to have 

reduced cognitive abilities, but at 12 weeks they have slightly larger brains when 

compared to their euploid littermates, although the difference is not significant 

(ALDRIDGE 2007; LORENZI 2006). At E13.5, the wet brain weight was found to be 

significantly reduced in trisomic mice in comparison to their euploid littermates, but 

these results were not normalized for the variation in total size of the embryos 

(CHAKRABARTI 2007). 

 To determine if the reduced brain weight found at E13.5 was indicative of overall 

brain volume reduction, the total volume of the brain was measured. It was hypothesized 

that the total brain volume would be reduced, but the results show no significant 

differences between trisomic and euploid brains. These results do not correlate with the 

reduced brain weight found at E13.5 but do coincide with the volume measurements of 

Ts65Dn mice at 12 weeks. When normalized for total embryonic volume, the trisomic 

brains were found to be larger than euploid brains, although the difference was not 

significant. The differing results between the weight and volume of embryonic brains can 

be explained with two different factors. In measuring the brain weight, it is likely the 

lateral ventricles did not contribute a significant amount of weight even though they take 

up a significant amount of space (PEARLSON 1998). Another study which used the Ts2Cje 

mouse, which carries a trisomic segment similar to that found in Ts65Dn mice, found that 

Ts2Cje mice have significantly enlarged brain ventricles (ISHIHARA 2009). In our own 

volumetric measurements of the brain, the lateral ventricles were included in the 
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calculation which could make a significant difference in the measurement of the brain if 

there is a significant alteration in ventricular size between Ts6Dn and euploid mice.  

 In a previous study, the total thickness of the neocortical wall was determined to 

be significantly thinner in the brains of E13.5 Ts65Dn mice when compared to the brains 

of euploid littermates and a delay in neocortical expansion was also found 

(CHAKRABARTI 2007). To further corroborate those results, the total volume of the 

neocortex was examined in E13.5 Ts65Dn and euploid embryos. In our own study, it was 

determined that there was a significant difference in the total volume of the neocortex. To 

account for individual variations in brain size, the measurements of the neocortex were 

normalized for total brain volume and the trisomic neocortex was proportionally smaller. 

Our results correlate with previous research and further suggest the occurrence of brain 

abnormalities early in embryonic development. This indicates that the origin of mental 

impairment begins early in the development of the DS brain. 

 
 

4.3 

 Both individuals with Down syndrome and Ts65Dn mice exhibit reduced birth 

weight and display developmental attenuation of many structures (ROPER 2006a). During 

embryonic development of Ts65Dn mice, the PA1 is significantly smaller, and both the 

cerebral cortex and hippocampus display abnormal growth caused by reduced 

proliferation of neural precursor cells (CHAKRABARTI 2007; ROPER 2009). Because of 

low birth weight and hypoplastic embryonic structures, it was hypothesized that E13.5 

Ts65Dn mice would be significantly smaller than euploid littermates. Volumetric 

Embryonic and not Maternal Trisomy Causes Developmental Attenuation in Ts65Dn 

Embryos 
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analysis of 19 trisomic and 21 euploid embryos confirmed that hypothesis. Since trisomic 

mice were significantly smaller than euploid littermates, specific structures were 

normalized for total body volume. Interestingly, the trisomic mandibular precursor was 

not smaller when controlled for overall body size.  

 Because CNC contribute to the development of a wide array of structures 

including bone, cartilage, and connective tissue, a reduced number of proliferating CNC, 

as seen in the PA1 and PA2 at E9.5, may affect enough structures to present as an overall 

reduction in embryonic size (MINA 2001). This might explain why the CNC derived 

mandibular precursor is significantly smaller when compared directly to euploid 

littermates but not when normalized for total embryonic volume. This theory also 

explains why trisomic cardiac tissue, which has minimal CNC contribution, is not 

significantly different when directly compared to non-trisomic embryos but is larger 

when normalized to the significantly smaller total embryonic volume (MORIKAWA 2008). 

Similarly, when controlled for total embryonic volume, the Ts65Dn brain was slightly 

larger than in euploid littermates, although not significantly.  

 While performing the stereological experiments to determine size differences 

between Ts65Dn embryos and their euploid littermates, it was generally assumed that 

embryonic trisomy was the main contributor to the abnormal development in Ts65Dn 

embryos. To verify that embryonic trisomy was the main cause of the developmental 

abnormalities seen at E9.5 and E13.5, and not a trisomic mother’s uterine environment, 

total embryonic area of several different types of embryos was examined. Embryos from 

Ts65Dn, euploid control, and B6C3F₁ mothers were evaluated for size differences. As 

expected, trisomic embryos from Ts65Dn mothers were significantly smaller than all 
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other embryos. Interestingly, there was no significant difference between euploid 

embryos from Ts65Dn mothers and embryos from euploid controls which indicates that a 

trisomic uterine environment does not affect overall growth of embryos. This verifies the 

differences seen in the stereological experiments are a result of embryonic trisomy and 

not maternal trisomy. 

 Although volumetric and area measurements revealed a significant difference in 

the size of E13.5 Ts65Dn and euploid embryos, previous studies using CRL have found 

no significant difference in size (CHAKRABARTI 2007). CRL is a one-dimensional linear 

measurement that is commonly used to determine developmental size of embryos 

(BROWN 2006; MU 2008). Previous studies have used CRL to determine that no 

significant size difference exists between E13.5 Ts65Dn and euploid embryos 

(CHAKRABARTI 2007). Contrary to those results, volumetric analysis of 40 E13.5 Ts65Dn 

and euploid embryos has revealed a significant reduction in overall size of trisomic 

embryos when compared to euploid littermates (p= 0.02). Ideally, volumetric 

measurements would be the ultimate determinant of embryonic size, but unfortunately, 

gathering volumetric data often requires embedding and sectioning entire embryos that is 

often expensive and impractical in most experiments. In an attempt to find a practical, but 

accurate way to determine embryonic size, area measurements of the same 40 E13.5 

embryos were quantified and compared to CRL measurements. As hypothesized, embryo 

volume had a higher correlation to embryo area (r = 0.43; p= 0.0023) than CRL (r = 0.26; 

p= 0.0770). These results indicate that an area measurement would be a better 

determinant of embryonic size than CRL. Area measurements are also practical because 

they can be simply calculated by quantifying the area on a single image of an embryo. 
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4.4 

 The original goal of this research was to further examine the abnormal 

development of the mandible in Ts65Dn mice. Even though some interesting size 

differences were found in the cardiac and neural tissue of E13.5 Ts65Dn mice, it was 

decided to maintain focus on the developing craniofacial structures. In accordance with 

this decision, a microarray analysis was performed on RNA isolated from the mandibular 

precursor of several E13.5 trisomic and euploid embryos to elucidate the molecular 

mechanisms behind the developing craniofacial dysmorphology. The analysis revealed 

155 differentially expressed genes in the mandibular precursor of Ts65Dn embryos. 

Surprisingly, out of these 155 genes, none are located on the triplicated mouse 

chromosome 16 or were homologous to genes on Hsa21. Although it was surprising that 

no trisomic genes were dysregulated at E13.5, it is thought that the triplicated genes are 

differentially expressed at a developmental stage prior to E13.5 in the trisomic 

mandibular precursor. It seems that the altered expression of the trisomic genes prior to 

E13.5 affects the expression of non-trisomic at E13.5. 

Microarray Analysis on E13.5 Mandibular Precursor Reveals 155 Non-trisomic 

Dysregulated Genes 

 Using gene ontology (http://www.genetools.microarray.ntnu.no/adb/index.php) 

the 155 dysregulated genes were categorized based on their specific functions in 

biological processes. Genes involved in skeletal development, cartilage formation, 

cellular proliferation, and cellular differentiation were of particular interest because of the 

reduced Meckel’s cartilage and hyoid cartilage primordium found within the developing 

trisomic mandible at E13.5. Both of these structures develop through endochondral 

http://www.genetools.microarray.ntnu.no/adb/index.php�
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ossification so any genes involved with this process might affect the growth of these two 

important mandibular cartilages (KNIGHT 2006).  

 Of the 14 dysregulated genes involved with skeletal development, 11 were down 

regulated Hox genes. Hox genes are important developmental regulators that specify 

segmental identity in the developing embryo but little is known about the molecular 

events that are directly controlled by these genes (CARROLL 1995; KUTEJOVA 2005). In 

the developing vertebrate embryo, the location and order of Hox genes on the 

chromosome determines their expression domains along the anteroposterior (A-P) axis 

(KRUMLAUF 1994). Hoxa2 and Hoxb2 are expressed in the CNC that migrate to the PA2 

and exhibit the most anterior expression of the Hox genes (MALLO 1997; NONCHEV 1996; 

PRINCE 1994). Considering known functions of Hox genes, expression of the Hox genes 

(c6,a5,b7,b5,b6,b4,a7,d4,a4,b9,b2,d8) in the E13.5 mandible was unexpected. 

Interestingly, Hoxa2, the only Hox gene known to affect craniofacial skeletal 

development, was not dysregulated in the trisomic mandibular precursor. The presence of 

the other Hox genes indicates a possible function in mandibular development that has yet 

to be discovered.  

 Even though abnormal Hoxa2 expression was not detected in the E13.5 

mandibular precursor, over-expression of Six2, a gene known to be regulated by Hoxa2, 

was revealed by the microarray. Hoxa2 has been shown to negatively regulate Six2 

expression during PA2 formation (KUTEJOVA 2005). Hoxa2 expression is mainly 

confined to the PA2 and its expression at E13.5 in mice would not be expected (MALLO 

1997; NONCHEV 1996; PRINCE 1994). However, Six2 is widely expressed in the head 

mesenchyme and would be expected to be present at E13.5 (OLIVER 1995). 
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Overexpression of Six2 has been shown to cause morphological abnormalities in the 

skeletal structures derived from the PA2 (stapes, styloid process and lesser horn of the 

hyoid bone (KUTEJOVA 2005). Results from our microarray performed on E13.5 Ts65Dn 

and euploid embryos revealed an overexpression of Six2 by 1.17 fold in the trisomic 

mouse. Considering the expression of all 12 Hox genes expressed at E13.5 was 

downregulated, it is plausible that Hoxa2 expression may have been downregulated as 

well but at an earlier time period in development. Since Hoxa2 negatively regulates Six2, 

a reduction in Hoxa2 earlier in development would explain the increase of Six2 found at 

E13.5. The overexpression of Six2 found at E13.5 may be negatively affecting the 

development of the hyoid and could partially explain the smaller hyoid found in trisomic 

embryos. 

 
 

4.5 

 Although many genes contribute to the abnormal phenotypes found in E13.5 

trisomic embryos, Sox9, like the Hox genes, was of particular interest because of its 

involvement in many different functional groups such as cartilage condensation, cell 

proliferation, skeletal development, and cell differentiation. As previously mentioned, 

Sox9 and Col2a1 control chondrogenesis, which is a necessary precursor for the 

formation of endochondral bones (PROVOT and SCHIPANI 2005). Although the mandible 

is mainly formed through intramembranous ossification, which does not require a 

cartilaginous template, both Meckel’s cartilage and the hyoid cartilage undergo 

endochondral ossification (ISHIZEKI 1999; RAMAESH 2003). Since Meckel’s cartilage and 

the hyoid cartilage primordium were both found to be reduced at E13.5, overexpression 

Sox9 Dysregulated in Trisomic Mandibular Precursor 
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of both Sox9 and Col2a1 may be responsible for the altered growth of these cartilages in 

trisomic embryos.  

 It was recently demonstrated that a 1.2 fold overexpression of Sox9 in 

chondrocytes caused shortened endochondral bones, reduced chondrocyte proliferation, 

and delayed hypertrophy of chondrocytes (AKIYAMA 2004). More specifically, the hyoid 

cartilage exhibited delayed endochondral ossification. In our own experiment, the 

microarray revealed a 1.19 fold overexpression of Sox9 in the trisomic mandibular 

precursor (including the hyoid cartilage). Based on the previous research by Akiyama, it 

was hypothesized that the overexpression of Sox9 in the Ts65Dn mandibular precursor 

would reduce chondrocyte proliferation and delay hypertrophy of chondrocytes which 

would negatively affect the growth of Meckel’s cartilage and subsequently, the entire 

mandible.  

 To further examine the hypothesis that an overexpression of Sox9 in the 

mandibular precursor would affect the development of both the hyoid and Meckel’s 

cartilage, immunohistochemistry was performed to determine the precise location of Sox9 

expression in the mandibular precursor and to quantify its expression specifically in 

Meckel’s and the hyoid cartilage. As hypothesized, immunohistochemistry revealed Sox9 

expression that was mainly isolated to Meckel’s and hyoid cartilages. Sox9 expression 

was found to be significantly higher in both Meckel’s and the hyoid cartilage. 

Overexpression of Sox9 in Meckel’s cartilage would delay the chondrocytes from 

becoming hypertrophic and would cause a delay in bone formation. Along with the 

growth deficit caused by reduced CNC, overexpression of Sox9 at E13.5 in Meckel’s 

cartilage would further restrict the growth of the mandible in trisomic embryos since 
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Meckel’s cartilage serves as the template for mandibular growth (MINA 2001). This may 

further explain the reduced mandible seen in both neonatal and adult Ts65Dn mice (HILL 

2007). Similarly, the overexpression of Sox9 found in the trisomic hyoid cartilage would 

most likely result in a reduced hyoid bone which could negatively affect craniofacial 

functions. The combined effects of reduced CNC in the mandibular precursor at E9.5 

with the overexpression of Sox9 found at E13.5 explain the craniofacial abnormalities 

that have been found postnatally in both Ts65Dn mice and individuals with DS. 

 
 

4.6 

 This research mainly focused on the abnormal development of the mandible in 

Ts65Dn mice through both structural and genetic analyses. Although the mandible was 

the main focus, stereological evaluations revealed a reduced neocortex and enlarged 

cardiac tissue. Microarray analysis could be performed on these structures to further 

elucidate the genetic anomalies that are causing the abnormal phenotypes. Alternatively, 

many genes were found to be dysregulated in the trisomic mandibular precursor that have 

yet to be analyzed in depth. Further research and the application of 

immunohistochemistry could further explain the functions and locations of other genes in 

mandibular development. Specifically, the expression of Six2 should be analyzed because 

of its known role in hyoid development. The hyoid had a much more pronounced 

reduction in size than other CNC derived structures. Altered expression of Six2 may be 

further exacerbating the growth reduction caused by a reduction of CNC. 

Future Work 

 Because the microarray did not reveal altered expression of any triplicated genes 

at E13.5 in the mandibular precursor, a microarray analysis should be performed at an 
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earlier stage of development to determine which trisomic genes are affecting the 

expression levels of euploid genes at E13.5. This would elucidate the molecular pathways 

that are affected by trisomy and causing altered mandibular development. 

 Furthermore, previous research has shown that the overexpression of Sox9 causes 

reduced growth in all endochondral bones (AKIYAMA 2004) which suggests that the 

overexpression of Sox9 in Ts65Dn mice may not be localized to just the mandibular 

precursor. A generalized overexpression of Sox9 could potentially explain the reduced 

size of Ts65Dn mice. A microarray or q-PCR could be performed on specific structures 

to see if Sox9 is overexpressed in other tissues. Analysis of Sox9 expression in the 

somites would be of particular interest because of their role in vertebrae cartilage 

development. The developing femur would also be of interest. Smaller vertebrae and 

shortened femurs resulting from a Sox9 overexpression would explain the reduced size of 

Ts65Dn mice. 

 Finally, examination of the hyoid bone in postnatal Ts65Dn mice could 

potentially show that a reduced oral cavity affects the location of the hyoid. The distance 

between the hyoid and previously defined craniofacial landmarks could be measured to 

determine if the hyoid is abnormally located in Ts65Dn mice (RICHTSMEIER 2000). If the 

hyoid is found to be more posteriorly located in Ts65Dn mice, then this could potentially 

explain some of the feeding and breathing problems found in individuals with DS. 
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Figure 1.1.1: Down Syndrome Karyotype. Karyotypes show the number and 
appearance of chromosomes in the nucleus of eukaryote cells. Most cases of Down 
syndrome can be easily diagnosed by the presence of three copies of chromosome 21. 
(http://images1.clinicaltools.com/images/gene/karyotypes/trisomy21.jpg). 
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Figure 1.1.2: Nondisjunction in Meiosis I and Meiosis II. 95% of DS cases occur when 
homologous chromosomes fail to separate during meiosis. The majority of DS cases are 
caused by an error during meiosis I. 
(http://www.bio.miami.edu/~cmallery/150/mendel/c15x11nondisjunction.jpg). 
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Figure 1.3.1: Conserved Skull Bone Structures between Humans and Mice. 
Individual bony elements are conserved between mouse and human skulls. The colors 
show the parts of the human skull that are analogous to the mouse skull. The conservation 
in structure between humans and mice allows the comparison of skull development in 
Ts65Dn mice to humans with Down syndrome. (RICHTSMEIER 2000). 
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Figure 1.3.2: Human Chromosome 21 Gene Homologues in the Ts65Dn Mouse. 
Genes found on Hsa21 are found on three different murine chromosomes (Mmu) 10, 16 
and 17. The Ts65Dn mouse model displays many phenotypes similar to those found in 
individuals with DS and is the most commonly used mouse model for Down syndrome. It 
is trisomic for nearly half of the genes located on Hsa21 (ANTONARAKIS et al. 2004). This 
figure shows the 132 genes in the Ts65Dn mouse that are orthologus to Hsa21. 

 

 



67 
 

 
 

 

 
 
Figure 1.3.3: Ts65Dn Skulls Significantly Differ from Euploid Mice. Ts65Dn skulls 
differ significantly from euploid mice in patterns that parallel craniofacial 
dysmorphology found in individuals with DS. Biological landmarks were incorporated to 
make three-dimensional measurements of euploid and trisomic skulls. The mandible and 
maxilla were significantly smaller which is a common phenotype observed in individuals 
with DS. Ts65Dn mice also displayed a shorter, wider skull mice that also correlates to 
skull shape in humans with trisomy 21 (RICHTSMEIER 2000). 
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Figure 1.4.1: Neural Crest Derived Tissues. Neural crest (NC) are pluripotent cells that 
delaminate from the ectoderm overlying the dorsal neural tube and migrate to various 
locations. Cranial neural crest (CNC) migrate and become neurons, cartilage, bone, and 
connective tissue. Trunk neural crest migrate and become melanocytes or sensory 
neurons (KNECHT and BRONNER-FRASER 2002). 
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Figure 1.4.2: CNC Migration and Development of Vertebrate Head. This diagram 
illustrates the migration route of CNC from rhombomeres to branchial arches and then 
the subsequent craniofacial skeletal structures in both human and mice. (BA stands for 
branchial arch and is synonymous with pharyngeal arch. The BA will be referred to as 
PA for the explanation of this diagram). Purple and blue structures in the craniofacial 
skeleton are derived from the PA1 which is smaller in E9.5 Ts65Dn embryos. Yellow 
structures form from the PA2 which is also reduced in E9.5 Ts65Dn embryos. CNC 
migrate from rhombomeres 1, 2, and 3 migrate to the first branchial arch which then 
gives rise to the maxilla, mandible, incus, malleus, and Meckel’s cartilage. CNC from 
rhombomeres 3, 4, and 5 migrate to the PA2 which forms the stapes, styloid process, 
hyoid, and Reichert’s cartilage. Both the PA1 and PA2 form structures that are affected 
by trisomy 21 (SANTAGATI and RIJLI 2003) 
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Figure 1.5.1: Sox9 Controls Chondrocyte Development. Sox9 expression causes 
undifferentiated mesenchymal cells to differentiate into osteochondroprogenitors and 
then to become condensed mesenchymal cells. With the help of Sox5 and Sox6, Sox9 
causes the mesenchymal cells to differentiate into chondrocytes and then to proliferate. 
Sox9 presence inhibits proliferating chondrocytes from becoming hypertrophic. An over 
expression of Sox9 delays cartilage formation and subsequent endochondral bone 
formation (AKIYAMA et al. 2002). 
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Figure 2.6.1: E13.5 Structures Measured with Unbiased Stereology. Parasagittal 
Sections of E13.5 embryos demonstrating measured structures.  
A. Blue shading defines the brain which includes the ventricles. 
B. Blue shading defines the neocortical precursor which was defined as lining the lateral 
ventricles and bordered by ganglionic eminences and choroid plexus.  
C. Mandibular precursor was defined as including Meckel’s cartilage and extending 
posteriorly to the hyoid cartilage. Meckel’s cartilage was characteristically spherical or 
rod shaped. The hyoid cartilage was located posterior to the mandibular precursor and 
usually exhibited a spherical shape. 
D. Cardiac was easily identified beneath the mandibular precursor and hepatic tissue was 
directly below the heart. 
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Figure 3.1.1: Reduced Cranial Neural Crest Cells in PA1 of Ts65Dn Mice. Reduced 
number of CNC in PA1 becomes apparent at E9.5 in Ts65Dn embryos. Error bars were 
calculated as standard error of the mean. 
A. Evaluation of CNC in the PA1 of E9.25 trisomic and euploid littermates revealed no 
significant difference in CNC number.                
B. At E9.5, there is a significant reduction in number of CNC in the PA1 of Ts65Dn mice 
when compared to euploid littermates (p= 0.03, n= 10 euploid, 8 trisomic).    
This deficit is hypothesized to cause the reduced mandibular precursor seen at E13.5 and 
smaller mandible found at birth in Ts65Dn mice (ROPER 2009).  
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Figure 3.1.2: Reduced Mandibular Precursor in E13.5 Trisomic Embryos. Average 
size of trisomic mandibular precursor (0.779 mm³) compared to euploid mandibular 
precursor (0.939 mm³). Error bars were calculated as standard error of the mean. 
Trisomic mandibular precursor is significantly reduced (p= 0.005). This supports the 
hypothesis that a reduced PA1 at E9.5 affects later mandibular development. 
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Figure 3.1.3: Similarly Sized Tongue in E13.5 Trisomic and Euploid Embryos. 
Average size of trisomic tongue (0.332 mm³) compared to euploid tongue (0.355 mm³) 
(p= 0.17). Error bars were calculated as standard error of the mean. No significant 
difference between euploid and trisomic tongue volume. This indicates feeding, 
breathing, and sleeping difficulties are caused by a smaller oral and a relatively larger 
tongue (relative macroglossia). 
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Figure 3.2.1: Reduced Meckel’s Cartilage in E13.5 Trisomic Embryos. Average size 
of trisomic Meckel’s cartilage (0.018 mm³) compared to euploid Meckel’s cartilage 
(0.022  mm³). Error bars were calculated as standard error of the mean. Trisomic 
Meckel’s cartilage is significantly reduced (p= 0.05). Meckel’s cartilage serves as a 
template for mandibular growth and it is hypothesized that a reduced Meckel’s cartilage 
at E13.5 will negatively influence the growth of the mandible. 
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Figure 3.2.2: Reduced Hyoid Cartilage in E13.5 Trisomic Embryos. Average size of 
trisomic hyoid cartilage (0.005 mm³) compared to euploid hyoid cartilage (0.007 mm³). 
Error bars were calculated as standard error of the mean. Trisomic hyoid cartilage is 
significantly reduced (p= 0.0002).  
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Figure 3.2.3: Similar Cardiac Volumes in E13.5 Euploid and Trisomic Embryos. 
Average size of euploid (0.877 mm³) and trisomic (0.883 mm³) cardiac tissue. Error bars 
were calculated as standard error of the mean. No significant difference in cardiac tissue 
volume was found between euploid and trisomic littermates (p= 0.90). 

  

0.877 0.883
0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

V
ol

um
e 

(m
m

³)

E13.5 Cardiac Volume

Euploid

Ts65Dn



78 
 

 
 

 

 
Figure 3.3.1: Similar Brain Volume in E13.5 Euploid and Ts65Dn Mice. Average size 
of euploid brain was 10.04 mm³ and 9.63 mm³ for Ts65Dn brain. Error bars were 
calculated as standard error of the mean. There was no significant difference in size (p= 
0.49).  
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Figure 3.3.2: Reduced Neocortex Volume in E13.5 Trisomic Embryos. Average size 
of trisomic neocortex (0.462 mm³) compared to euploid neocortex (0.530 mm³). Error 
bars were calculated as standard error of the mean. Trisomic neocortex is significantly 
reduced when compared to euploid littermates (p= 0.05). This further corroborates the 
reduced neocortical thickness found in trisomic embryos. 
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Figure 3.3.3: Reduced Neocortex when Normalized for Total Brain Volume in E13.5 
Trisomic Embryos. Average size of trisomic normalized neocortex volume (0.048 mm³) 
compared to euploid normalized neocortex precursor (0.053 mm³). Error bars were 
calculated as standard error of the mean. Trisomic neocortex normalized for brain volume 
is significantly reduced (p= 0.02). This indicates the Ts65Dn neocortex is proportionally 
smaller when normalized for total brain volume. 
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Figure: 3.4.1: Developmental Attenuation in Trisomic E9.5 Ts65Dn Embryos.  
Average Somite numbers in E9.5 embryos from Ts65Dn and control mothers. A: Euploid 
(Ts65Dn) and trisomic (Ts65Dn) indicates these embryos are offspring of Ts65Dn 
mothers. (*) Trisomic embryos exhibit significantly fewer somites compared with their 
euploid littermates and control embryos. (**) There is no significant difference between 
Ts65Dn euploid somite number and euploid controls; however, both have significantly 
fewer somites than B6C3F1 embryos (***). Stars represent significantly different 
groupings from analysis of variance and post hoc. Error bars are calculated as standard 
error of the mean. B-E Representative E9.5 offspring from B6C3F1 mother (B), a euploid 
control mother (C), and a Ts65Dn mother (D,E). D is a euploid embryo, and E is a 
trisomic embryo from a Ts65Dn mother. (BLAZEK 2010) 
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Figure 3.4.2: Developmental Size Alterations at E13.5 in Ts65Dn Trisomic Mice. A-
E: Average area of E13.5 embryos from B6C3F1 mother (A), a euploid control mother 
(B), and a Ts65Dn mother (C); euploid embryo (D) and trisomic embryo (E). D,E: 
Euploid (Ts65Dn) and trisomic (Ts65Dn) indicates these embryos are offspring of 
Ts65Dn others. Average area of E13.5 trisomic embryos from Ts65Dn mothers is 
significantly less than euploid littermates and Ts65Dn background control and B6C3F1 
mothers. There is no statistical difference in the area of euploid embryos from Ts65Dn 
trisomic mothers or background control mothers. The E13.5 embryos from B6C3F1 
mothers are larger than all other embryos. Stars represent significantly different 
groupings from analysis of variance and post hoc. Error bars are calculated as standard 
error of the mean.(BLAZEK 2010). 
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Figure 3.5.1: Reduced Total Volume in E13.5 Trisomic Embryos. Average size of 
trisomic embryos (38.28 mm³) compared to euploid (44.13 mm³). Error bars were 
calculated as standard error of the mean. Trisomic embryos are significantly reduced (p= 
0.02). This supports the hypothesis of developmental attenuation in Ts65Dn embryos. 
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Figure 3.5.2: Enlarged Cardiac Tissue When Normalized for Total Embryonic 
Volume. Average size of trisomic heart normalized for total volume (0.023 mm³) 
compared to euploid normalized heart volume (0.021 mm³) indicates a larger heart in 
trisomic embryos (p= 0.03). Error bars were calculated as standard error of the mean. 
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Figure 3.5.3: Slightly Enlarged Trisomic Brain When Normalized for Total 
Embryonic Volume. Average size of trisomic brain normalized for total volume (0.252 
mm³) compared to euploid normalized brain volume (0.234 mm³) indicates a slightly 
larger brain in trisomic embryos, although not quite reaching statistical significance (p= 
0.054). Error bars were calculated as standard error of the mean. 
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Figure 3.5.4: No Significant Difference Between Euploid and Ts65Dn Mandible 
when Normalized for Total Volume. This graph illustrates the similar size in euploid 
and Ts65Dn mandibles when normalized for total volume (p= 0.17). Error bars were 
calculated as standard error of the mean. 
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Figure 3.6.1: Dysregulated Genes Involved in Biological Processes. The dysregulated 
genes revealed through the microarray analysis on the E13.5 mandibular precursor were 
categorized through gene ontology. This graph reveals the percentage of genes in the 
“biological process” group that are involved with specific biological processes. The 
majority of genes in the biological process group had functions in cellular (15%), 
multicellular organismal (13%), metabolic (13%), or developmental processes (11%).  
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Figure 3.6.2: Dysregulated Genes Involved in Developmental Processes. The 
dysregulated genes from the microanalysis were initially categorized by their biological 
processes and then further subcategorized into their developmental processes. This graph 
reveals the percentage of genes in the “developmental processes” subcategory that are 
involved with different types of developmental functions. Most of the dysregulated genes 
with developmental process functions were involved with anatomical structure 
development (20%), multicellular organismal development (20%), or cellular 
developmental processes (15%). 
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Figure 3.6.3: Dysregulated Genes Involved with Cellular Processes. The dysregulated 
genes from the microanalysis performed on E13.5 mandibular precursors were 
categorized by their biological processes and then further subcategorized by their cellular 
processes. This graph reveals the percentage of genes in the “cellular processes” 
subcategory that are involved with different types of cellular functions. Most of the 
dysregulated genes within the cellular process group had functions involved with cellular 
metabolic processes (16%), regulation of cellular processes (12%), or gene expression 
(11%). 
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Figure 3.6.4: Dysregulated Genes Involved with Cell Proliferation. This graph shows 
dysregulated genes found in the microarray that are involved with cell proliferation. 
Genes that are downregulated are represented with a bar below 1.0 fold while upregulated 
genes are represented with a bar above 1.0 fold. Genes involved with cellular 
proliferation are of interest because decreased cellular proliferation would have an effect 
on mandibular growth. 
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Figure 3.6.5: Dysregulated Genes Involved with Apoptosis. This graph shows 
dysregulated genes from the microarray that are involved with the regulation of 
apoptosis. Genes that are downregulated are represented with a bar below 1.0 fold while 
upregulated genes are represented with a bar above 1.0 fold. Genes involved in the 
regulation of apoptosis are important because misexpression of these genes could cause 
premature death of cells needs for the normal development of the mandible. 
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Figure 3.6.6: Dysregulated Genes Involved with Cell Differentiation. This graph 
shows dysregulated genes from the microarray analysis that are involved with cellular 
differentiation. Genes that are downregulated are represented with a bar below 1.0 fold 
while upregulated genes are represented with a bar above 1.0 fold. Genes involved with 
cellular differentiation are important in the developing mandible because mesenchymal 
cells need to differentiate into either chondrocytes or osteoblasts to allow for normal 
ossification of the mandible. 
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Figure 3.6.7: Dysregulated Genes with Skeletal Development Function. This graph 
shows genes that were dysregulated in the E13.5 trisomic mandibular precursor that have 
a function in skeletal development. Genes that are downregulated are represented by a bar 
beneath 1.0 fold whiles genes that are overexpressed have a bar above 1.0 fold. Genes of 
interest are the downregulated Hox genes and the upregulated Sox9 and Col2a1. Genes 
involved with skeletal development are of particular interest because the mandibular 
precursor is preparing to undergo bone formation at E13.5. 
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Figure 3.6.8: Dysregulated Genes Involved with Cartilage Condensation. This graph 
shows dysregulated genes that are involved in cartilage condensation. Sox9 and Col2a1 
are the only genes involved with cartilage condensation and are both overexpressed in the 
E13.5 trisomic mandibular precursor. Genes involved with cartilage condensation are of 
interest because of their role in endochondral ossification. 
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Figure 3.6.9: Top Dysregulated Genes from E13.5 Mandibular Precursor. A fold 
change below 1.0 indicates the gene was downregulated while a change above one 
indicates upregulation.  
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Figure 3.7.1: DAPI Intensity Correlates with Sox9 Expression. This graph plots the 
trisomic and euploid DAPI and Sox9 intensity in both Meckel’s and the hyoid cartilages. 
There is a significant correlation between DAPI and Sox9 intensity (R= 0.67, p= 0.0001). 
This suggests DAPI would be a good control for measuring Sox9 intensity in IHC 
sections. 
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Figure 3.7.2: Increased Sox9 Expression in Ts65Dn Meckel’s Cartilage. After 
controlling Sox9 results for DAPI, Sox9 expression was significantly higher in the 
trisomic Meckel’s cartilage (p= 0.02). Error bars were calculated as standard error of the 
mean. 
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Figure 3.7.3: Increased Sox9 Expression in Ts65Dn Hyoid Cartilage. After 
controlling Sox9 results for DAPI, Sox9 expression was significantly higher in the 
trisomic hyoid cartilage (p= 0.02). Error bars were calculated as standard error of the 
mean. 
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Figure 3.7.4: Sox9 Expression in Euploid and Trisomic Meckel’s Cartilage. 
Meckel’s cartilage from E13.5 euploid (A) and trisomic (B) embryos with Sox9 
antibody and DAPI stain. Sox9 expression is indicated by red color while DAPI 
expression is blue. Sox9 intensity (when controlled for DAPI) is significantly higher 
in the trisomic Meckel’s cartilage. 
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Figure 3.7.5: Sox9 Expression in Euploid and Trisomic Hyoid Cartilage. The 
hyoid cartilage from E13.5 euploid (A) and trisomic (B) embryos with Sox9 antibody 
and DAPI stain. Sox9 expression is indicated by red color while DAPI expression is 
blue. Sox9 intensity (when controlled for DAPI) is significantly higher in the trisomic 
hyoid cartilage. 
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Figure 3.7.6: Sox9 Expression in E13.5 Mandibular Precursor. E13.5 mandibular 
precursor with Sox9 antibody and DAPI stain. Red color indicates Sox9 protein and 
blue indicates nuclei. As hypothesized, Sox9 expression is mainly localized to 
Meckel’s cartilage in the mandibular precursor and is overexpressed in Ts65Dn 
embryos. (A) Trisomic (B) Euploid. 
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Figure 3.7.7: Cell Density in Meckel’s and Hyoid Cartilages. There was no significant 
difference in the cell density of euploid and trisomic embryos in either Meckel’s or hyoid 
cartilages (p= 0.35, n= 8 euploid and 8 trisomic; p= 0.75, n= 6 euploid, 5 trisomic). Error 
bars were calculated as standard error of the mean. These results indicate Sox9 
overexpression is not from an increased number of cells per area. 
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