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Yohance Mandela Allette 
MODULATORY ACTIONS OF HMGB1 ON TLR4 AND RAGE IN THE PRIMARY AFFERENT 

SENSORY NEURON 
 

Damage Associated Molecular Patterns (DAMPs) act largely as endogenous 

ligands to initiate and maintain the signaling of both inflammatory processes and the 

immune response. Prolonged action of these endogenous signals are thought to play a 

significant role in sterile inflammation which may be, integral to the development of 

chronic inflammation pathology. 

HMGB1 (High Mobility Group Box 1) is a highly conserved non-acetylated protein 

which is among the most important chromatin proteins and serves to organize DNA and 

regulate transcription. Following stress or injury to the cell, hyperacetylation of lysine 

residues causes translocation of HMGB1 and eventual release into the extracellular 

environment where it can take the form of a DAMP and interact with cell types bearing 

either the Receptor for Advanced Glycation End-products (RAGE) or Toll-Like Receptor 4 

(TLR4). Activation of these surface receptors contribute directly to both acute and chronic 

inflammation.  

This project investigated the role of HMGB1 through its receptors Receptor for 

Advanced Glycation End-products (RAGE) and Toll-Like Receptor 4 (TLR4) as it pertained 

to the development of chronic inflammation and pathology in small diameter, nociceptive 

sensory neurons. It was demonstrated that the neuronal signaling associated with 

exposure to HMGB1 is dependent upon the ligands conformational states, as the state 

dictates its affinity and types of neuronal response.  
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Neuronal activation by bacterial endotoxin or the disulfide state of HMGB1 is 

dependent on TLR4 and the associated signaling adapter protein, Myeloid differentiation 

primary response gene 88 (MYD88).  Interruption of the receptor-mediated signaling 

cascade associated with MyD88 was shown to be sufficient to mitigate ligand-dependent 

neuronal activation and demonstrated significant behavioral findings. Further 

downstream signaling of HMGB1 in the neuron has yet to be identified, however 

important steps have been taken to elucidate the role of chronic neuroinflammation with 

hopes of eventual translational adaptation for clinical therapeutic modalities. 
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Chapter 1: Introduction 

What is Pain 

Pain is universal. It is a result of evolutionary development for a feedback system 

within an organism to signal harm. It exists to inform of a disturbance in homeostasis, 

alerting the organism to a circumstance that is not conducive to survival (Woolf and 

Salter, 2000). The word ‘pain’ originates from Latin for punishment, often from a 

supernatural origin and an indictment of the individual, and their suffering is a trial that 

must not be interfered with by others (Morris, 1998). This experience is usually transitory 

(acute pain) lasting only until the noxious stimulation is removed or healed. Some painful 

conditions may persist for years (chronic pain).  Though both of these conditions may 

seemingly exist in the world of multicellular organisms, the term pain is typically 

associated with a subjective experience which is not present in the non-humanoid world. 

In its place is the term nociception. Nociception was coined to distinguish the 

physiological process from the subjective experience (pain), and can generally be 

categorized into two separate entities, acute and persistent (Sherrington, 1973 #3699). 

The sensation associated with superficial injury, or acute nociception, indicates a clear 

need for attention, medical or otherwise. Persistent nociception, is typically much more 

severe in nature, and is exemplified by inflammatory or pathological events.  

Both pain and nociception exist as critical alarm systems to alert organisms to 

threats and are essential for initiation of escape behaviors (Woolf and Salter, 2000). The 

functional process of recognizing harmful stimulation (or nociception) is transduced by a 

nociceptor which can detect thermal, mechanical, and chemical sensations. The majority 
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of nociceptors are classified by which of the environmental modalities they respond to 

such as heat and pressure (Dubin, 2010 #3708). However, some nociceptors respond to 

more than one of these modalities and are consequently designated polymodal. Other 

nociceptors respond to none of these modalities (although they may respond to 

stimulation under conditions of inflammation) are referred to as sleeping or silent. 

Traditionally, the distinction between acute and chronic nociceptive conditions in 

animals and persistent pain in humans has relied upon an arbitrary interval of time from 

onset. The two most commonly used markers that distinguish acute and chronic pain are 

3 months and 6 months since the onset respectively. Some theorists and researchers have 

placed the transition from acute to chronic nociceptive conditions at 12 months (Katz and 

Seltzer, 2009, Voscopoulos and Lema, 2010). For the purpose of attributing observations 

of rodent models of peripheral nerve injury-induced nociceptive conditions, the chronic 

condition of nociception can be defined by when duration extends beyond the expected 

period of healing. The condition of chronic pain in humans can be viewed as a subjective 

experience that outlives its original causes which can worsen over time and become a 

disease in its own right. 

As a disease, the human persistent pain condition is one of the most wide-reaching 

and debilitating afflictions of the patient population. In its various incarnations, persistent 

pain is typically disregarded as merely a symptom of a greater issue. Medically, it is simply 

another clue in clinical detective work of the ‘true’ underlying pathology that needs to be 

treated. From a cultural standpoint, the chronic pain condition is often something to be 

dismissed when expressed, and not treated as a viable malady (Eccleston, 2001). One 
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study revealed that in a population suffering from chronic pain, over a third expressed 

personal issues of self-esteem, and internalized stigma due to use of medications for pain 

relief (Asmundson et al., 1996, Eccleston, 2001). Another study describes that pain-

related fear can actually prove more damaging and weigh heavier on the patient than 

experiencing the chronic pain they originally feared (Crombez et al., 1999). These 

psychological findings mirrored changes in cognitive function with these same patients 

demonstrating lower feelings of control over their individual situation, which permeates 

into other aspects of life (Eccleston, 2001).  

The human chronic pain condition has been found to affect over 100 million 

patients in the U.S. health care system, with medical costs and expenditures greater than 

$550 billion dollars annually (Dzau and Pizzo, 2014). These numbers fall significantly short 

of global totals, emphasizing that pain in all its manifestations, and its treatment methods, 

equate to a worldwide healthcare issue. Furthermore, as medicine and bio-medical 

research continue to advance and extend life expectancy, they also increase the presence 

of pain and other chronic maladies within the patient population (Oeppen and Vaupel, 

2002, Vaupel and KG, 2005). 

The Link between Chronic Inflammation and the Persistent Nociceptive Condition 

Inflammation is the mechanism by which an organism responds to injurious 

stimuli, exogenous or endogenous in nature, in an effort to maintain homeostasis. This 

mechanism is a complex compilation of temporal and mechanical structures and events, 

requiring the proper function of multiple cell types and precise intercellular 
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communication via multiple ligands and both pro and anti-inflammatory mediators 

(Kumar et al., 2005, Medzhitov, 2010). The resolution of inflammation may be the most 

important aspect of the process. Although advantageous and productive for the survival 

of an organism, unmitigated inflammatory signaling or unresolved processes of 

inflammation can have severe health consequences leading to the development of 

multiple diseases types (Nathan and Ding, 2010). Chronic inflammation can result in the 

development of arthritis, sepsis/septic shock, asthma, multiple sclerosis, atherosclerosis, 

and pain (McFarland and Martin, 2007, Waldburger and Firestein, 2009, Van-Assche et 

al., 2011, Chung, 2012, Feldman et al., 2012, Sankowski et al., 2015). In fact, one of 

Virchow’s cardinal signs of inflammation is pain. When unresolved, the beneficial and 

necessary process of inflammation transforms into the maladaptive cascade of chronic 

inflammation. 

The acute inflammatory response is largely sustained by the presence of constant 

stimulation, be it based on a pathogen or disease entity. The resolution of inflammation 

is typically an active process. It requires a number of mechanisms, including the 

production and release of anti-inflammatory cytokines, down-regulation of pro-

inflammatory cytokines, and the desensitization of the associated receptors in the 

affected tissue or organ system (Chandrasoma, 1997, Medzhitov and Janeway, 1998). In 

the absence of these regulatory inflammatory processes, a state of chronic inflammation 

can result. The transition from acute to chronic inflammation is not well understood, 

especially given that the regulatory and resolution mechanisms of acute inflammation are 

not fully defined. 
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Chronic inflammation is abnormal and does not benefit the body. The disease process of 

chronic inflammation can be described as simultaneous circuits of destruction and 

healing, both preventing the other from coming to a halt (Kumar et al., 2005). As the 

process carries on, cytokines, chemokines, and other related signaling ligands are 

continued to be released and evoke response via multiple receptors and cells, resulting 

in a feed-forward mechanism (Heap and van Heel, 2009). Chronic inflammation has been 

connected to multiple immune disorders and non-immune system disease outside of the 

aforementioned chronic pain. This includes, but is not limited to, cancer (in its many 

variations), heart disease, traumatic brain injury, several autoimmune disorders, and 

diabetes (Kang et al., 2010, Mohammad et al., 2012). 

What the two processes of acute and chronic inflammation have in common is the 

need for a starting point. Often in error, pathogenic or exogenous sources are assumed 

for the initiation of an inflammatory response. Although inflammation can indeed arise 

via pathogenic means, this is not to exclude an internal, or endogenous, starting point for 

the inflammatory process (Chen and Nunez, 2010). In relation to the aforementioned 

topic of chronic pain and inflammation it would be logical to surmise that an endogenous 

ligand is responsible for the inflammatory cascade in the development of a chronic pain 

state. 

Chronic nociceptive conditions and chronic inflammation share a loss of a 

functional purpose; existing only as maladaptive processes to the host organism. 

Interestingly, evidence continues to build in the literature supporting the theory that 

chronic nociceptive conditions are actually products of chronic inflammation. This is 
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further grounded in the observations that both the immune system and the nervous 

system developed and evolved in concert with one another, encouraging communication 

between the two systems (Sankowski et al., 2015). Once considered to be ‘immune 

privileged’ and not a benefactor or recipient of the inflammatory process, the nervous 

system has now been identified both exhibiting contributing to inflammation (Lucas et 

al., 2006). 

In one study of experimental colitis in a murine model, the stimulation of 

cholinergic nerves (e.g. vagus nerve, splenic nerve) through agonists or administration of 

acetylcholinesterase inhibitors led to lower levels of inflammatory mediators and reduced 

mucosal inhibition, a marker of inflammatory severity (Ji, 2014 #2988;Borovikova, 2000 

#3714). The ligation or removal of these key neuronal structures resulted in a diminished 

anti-inflammatory profile in the observed tissue (Ji et al., 2014a). This example falls under 

the neuronal-controlled cholinergic anti-inflammatory pathway. This pathway results in 

neurons releasing the signaling compound noradrenaline, which in turn activates splenic 

T-cells and continues the signal cascade to the effect of Tumor Necrosis Factor-α (TNFα) 

downregulation (Rosas-Ballina et al., 2011). Interestingly, the nervous system is 

particularly vulnerable to the process of inflammation, as seen on a systemic level in 

severe septic patients (Sankowski et al., 2015). These same patients demonstrate a 

susceptibility to nervous system dysfunction, with the development of cognitive 

impairment in over eighty percent of patients (Ely et al., 2004). 

Many of the cytokine and chemokine signaling pathways of chronic inflammation 

have been observed to play a role in the mitigation of pain, originating from both neuronal 
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and non-neuronal sources, and have been shown evoke peripheral neuronal sensitization, 

and elicit persistent nociceptive responses in various circumstances (White et al., 2007, 

Okun et al., 2011). Currently, the literature fully endorses that products of the 

inflammation associated with tissue insult or injury can indeed directly affect nociception 

(Ji et al., 2014b, Schaible, 2014). The inflammatory mediator interleukin-1β has been 

shown to directly signal through nociceptive neurons, and TNFα when introduced either 

locally or systemically can result in both thermal and mechanical hyperalgesia (Cunha et 

al., 1992, Binshtok et al., 2008). These are only a few of the examples of inflammatory 

products affecting nociceptors and eliciting a neuronal response.  

The mammalian nervous system has shown to be reactive to numerous 

inflammatory mediators and signaling compounds. This responsivity on the part of the 

neuronal system allows for the identification of these inflammatory signals on scale larger 

than the cellular level, through the generation of pain, alerting the nervous system and 

innate immune cells to the present of microbial aggressors, and possible modification of 

neuronal characteristics (Hensellek et al., 2007, Mina-Osorio et al., 2012, Chiu et al., 

2013). Thus, in order to better understand and eventually treat chronic pain effectively, 

it would be beneficial to study its relationship with inflammation as well as use chronic 

inflammation as a model for understanding chronic pain. 

Similar to nociception, inflammation exists in two forms, acute and chronic. 

Generally, inflammation can be described as an organism’s response to offensive stimuli 

or insult. However, this is more descriptive of the acute inflammatory process exemplified 

by innate immunity.  
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Actions of Exogenous and Endogenous Ligands 

Stimuli for inflammation can be classified into two separate groups, pathogen-

associated molecular patterns (PAMPs) and damage associated molecular patterns 

(DAMPs). Both PAMPs and DAMPs can initiate and perpetuate the host immune response, 

with the main difference being the signal’s origin. PAMPs are indicative of invading 

microorganisms and initiate the host’s innate immune response to protect itself from 

infection (Janeway and Medzhitov, 2002). PAMPs are recognized by cells in the immune 

system via pattern recognition receptors, or PRRs, a class which includes the Toll-like 

receptor (TLR) family that upon activation, can initiate several inflammatory signal 

pathways, an example of which being nuclear factor-κB (NF-κB) (Bianchi, 2007). These 

receptors are particularly attuned to detection of foreign elements, or conserved ‘non-

self’ ligands, usually of microbial origin. 

DAMPs, on the other hand, are endogenously produced signals and are often 

referred to as ‘alarmins’. As their alternate name suggests, they serve as an internal alarm 

system, and bring attention to cellular damage and stress in the absence of exogenous 

injury or infection. DAMPs range greatly in structure and function, due to their roles in 

biological homeostasis outside of inflammation (Tang et al., 2012b). The majority of these 

molecules activate the immune system’s inflammatory response upon their extracellular 

release. This extracellular release only occurs in the face of cellular necrosis, or stress 

arising from injury or insult to the tissue; apoptosis will not result in the release of 

functioning alarmins into the extracellular compartment (Bianchi, 2007). The regulated 

and controlled clearance of apoptotic cells results in a subsequent halt in cellular activity 
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and inflammatory processes, making apoptosis the ‘most desirable’ form of death 

courted by inflammatory resolution (Savill, 1997, Rossi et al., 2007). Apoptosis results in 

chromatin condensation, a decrease in cytoplasmic volume, and other processes focused 

on the containment of DAMPs and to prohibit unwarranted inflammatory signal cascades 

(Kroemer et al., 2009). Cell death via necrosis, pyroptosis (caspase-1 dependent), and 

NET-osis (disintegration of the nuclear envelope), have been observed to activate 

inflammation through the release of nuclear materials and other pro-inflammatory 

mediators (Alessandri et al., 2013). 

The subsequent inflammatory response as a result of DAMP-mediated activity is 

known as ‘sterile inflammation’, given the absence of any pathogen or exogenous 

microbial signal. Sterile inflammation serves as a mechanism of protection from UV 

radiation, noxious heat exposure, and physical trauma (Paterson et al., 2003, Candeias 

and Testard, 2015). Categorically, DAMPs include Heat Shock Protein (HSP) 70 and 90, S-

100 proteins, oxidative-modified lipids, and members of the High Mobility Group protein 

family (Bianchi, 2007, Jin and Lee, 2008, Rohde et al., 2010).  

As previously stated, the chronic inflammatory response closely mimics the 

maladaptive process of chronic pain, and vice versa. Thus, the concept of chronic sterile 

inflammation in particular makes for a more focused and interesting target of study to 

better investigate chronic pain. Sterile inflammation provides a process for the 

inflammatory products linked to chronic pain to be produced en masse and, given a 

problem in inflammatory regulation, also provides the possible positive feedback loop for 

chronic pain to progress and develop within the organism. However, with a possible 
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process defined, a culpatory ligand still needs to be identified for the continued 

nociceptive activity of chronic pain. 

High Mobility Group Box 1 

Survival for any organism is predicated upon eliciting the proper response. This 

mantra extends to the intracellular compartment, and involves a cell’s ability to both send 

and receive signals from one another. One signal of particular interest is the chromatin 

protein High Mobility Group Box 1, or HMGB1. In the wake of cellular stress, injury, or 

death, HMGB1 can be released into the extracellular milieu triggering the rapid action of 

the innate immune system. This nature succinctly defines the role of many DAMPs, with 

its functionality within an organism fluidly changing according to the current cellular 

environment. 

Formerly known as the molecule Amphoterin, HMGB1 has a molecular mass of 

approximately 27 kilodaltons, is devoid of any discernable enzymatic activity, and 

demonstrates the ability to moderate a wide variety of signaling pathways (Parkkinen et 

al., 1993, Bianchi and Manfredi, 2007). The molecule is highly conserved across all species, 

and is found in nearly all nucleated cell types (Klune et al., 2008). The first known role of 

HMGB1 was in neurite outgrowth, with its original nomenclature of amphoterin derived 

from its noted dipolar nature (Merenmies et al., 1991). Knockout of the HMGB1 gene has 

been shown to be a lethal mutation, signifying that the nascent role of the molecular 

ligand is integral to cellular homeostasis outside of its inflammatory capabilities (Calogero 

et al., 1999). HMGB1 is a member of the HMG family of nuclear proteins, a family that 
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possesses greater than 80% sequence identity conservation, and was originally identified 

with three distinct subsets (Bustin, 2001, Yang et al., 2013). These subsets are based upon 

an individual proteins’ sub-domain, the box domain for HMGB proteins, the ‘AT-hook’ for 

HMGA, and the nucleosomal binding domain for HMGB-N (Bustin, 2001).  

The HMG-box of HMGB1 acts as a DNA/RNA binding domain under naïve 

conditions (Stros, 2010). The molecular structure of HMGB1 is composed of three distinct 

domains, a negatively charged carboxyl terminus (C-terminus) and the ‘A’ and ‘B’ 

domains. The ‘A’ and ‘B’ domains bind in a transient fashion to the minor groove of DNA, 

which leaves the C terminus free to interact with transcription factors (TF) such as HOX 

proteins or p53, TATA binding proteins, and the core histones (Joshi et al., 2012). The 

binding between HMGB1 and DNA is for facilitation of structure modification, repair, and 

replication of the DNA (Andersson et al., 2002). In a similar fashion to the histone protein 

H1, HMGB1 demonstrates preferential binding to what is known as alternative DNA 

structures. Alternative DNA structures, also known as non-B type DNA, includes bent, 

misshapen, unwound, or kinked DNA (Stros, 2010). This preference for alternative DNA 

structures most likely arises from a desire at the cellular level to minimize the possibility 

of genetic mutations that could endanger the organism as a whole (Jackson and Bartek, 

2009). Unlike H1, HMGB1 binding to the DNA constructs results in the HMGB1 molecule 

severely bending the corrupted genetic material (Thomas, 2001, Lange and Vasquez, 

2009). 

The structural composition of HMGB1 is intriguing in its complexity. HMGB1 is 

lysine-rich, making it adept at binding negatively charged compounds such as the protein 
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heparin and DNA, as well as providing a key target for post-translational modifications. As 

the study of HMGB1 continues, what becomes increasingly clear is the high level flexibility 

of the molecule, not only in a structural capacity, but function when one considers the 

specificity introduced upon post-translational modification. 

Further investigation of the ‘A’ and ‘B’ domains reveal their respective anti-

inflammatory and pro-inflammatory functionality (Yang et al., 2004, Tsung et al., 2014). 

Interestingly, the ‘A’ domain in particular can act in an anti-inflammatory capacity in an 

antagonistic response to the pro-inflammatory signaling of HMGB1 or the truncated ‘B’ 

domain (Andersson et al., 2002, Yang et al., 2004).  

Prior to being secreted from the nucleus of the cell, post-translational 

modifications of HMGB1 affects the molecule’s ability to bind to DNA and affect histone 

function, in addition to crossing both the nuclear and cytoplasmic membranes. Within the 

nucleus, HGMB1 can be found in either a hyper or hypo-acetylated states. HMGB1 

acetylation takes place at lysine residues 2, 11, and 81 (Sterner et al., 1979, Bonaldi et al., 

2003, Assenberg et al., 2008, Elenkov et al., 2011). In particular, the lysines at positions 2 

and 11 are hypothesized to be critical for HMGB1 ‘A’ domain to bind to distorted DNA 

structures (Assenberg et al., 2008). Hypo-acetylation restricts HMGB1 to the nucleus to 

continue in its role of DNA repair and replication (Polanska et al., 2014). Hyper-acetylation 

of HMGB1 shifts its responsibility from a protein of nuclear maintenance to one of 

extracellular signaling (Yang et al., 2013). The mechanism by which hyper-acetylation 

occurs has been hypothesized to involve deacetylase inhibitors presented from 

fibroblasts to reduce the overall nuclear import of HMGB1. The hyper-acetylation occurs 
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at the lysine group directly within both of the nuclear export signals, NLS1 and NLS2, 

which ultimately results in the extracellular release of HMGB1 (Bonaldi et al., 2003).  

Acetylation is not the only post-translational modification of HMGB1 that can have 

an effect upon its nuclear to cytoplasmic translocation. Phosphorylation has been shown 

to have a strong influence upon other proteins in regards to their nuclear presence and 

translocation (Stemmer et al., 2002). This suggests that phosphorylation of HMGB1 may 

act similar in nature to acetylation of the ligand. However, where acetylation is important 

for HMGB1 to exit the nucleus, phosphorylation of HMGB1 prevents the molecule from 

binding to the necessary nuclear import proteins and decreases its overall nuclear 

presence (Youn and Shin, 2006). HMGB1 phosphorylation may impact the molecule’s 

interaction with nuclear import proteins by affecting key residues (Conti et al., 1998, 

Stemmer et al., 2002, Stemmer et al., 2003).  

The release of HMGB1, and its eventual function as a DAMP, is attributed to 

cellular insult or injury. First observed and described in macrophages and monocytes, 

HMGB1 release has been demonstrated in cells outside of the typical immune cell, 

including neurons both cortical and peripheral in origin (Feldman et al., 2012, Sun et al., 

2014, Zou and Crews, 2014). The release of HMGB1 is still being studied and observed, 

with a focus on vesicle mediated release, from the cytoplasm into the extracellular system 

(Gardella et al., 2002). The cellular injuries assessed from HMGB1 release include bacterial 

endotoxin exposure, chemically-induced seizure activity, ischemia-reperfusion injury, and 

ionic imbalance in the cell media (Zurolo et al., 2011, Feldman et al., 2012). It has been 

observed that the release of HMGB1 from necrotic cells can also trigger inflammation and 
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subsequent signal pathways, whereas HMGB1’s release during apoptosis does not result 

in an inflammatory cascade. Given the difference between these two states of cell death, 

it can be inferred that HMGB1 is used as a means of cellular communication for states of 

extreme stress and to signal in both an autocrine and paracrine fashion to other cells in 

order to start necessary recovery processes (Shibasaki et al., 2010, Magna and Pisetsky, 

2014). 

When HMGB1 is released from the cell of interest, its three key cysteine residues 

determine the ligand’s conformational state and its subsequent receptor affinity. These 

three cysteine residues are responsible for the particular conformation of the HMGB1 

molecule and are affected by the extracellular environment (Yang et al., 2012, 

Zandarashvili et al., 2013). Upon first release, all three cysteine residues are reduced, and 

the molecule is in its all-thiol form. When the cysteines at positions 45 and 106 are 

oxidized, this results in a disulfide bond forming and the disulfide conformation of HMGB1 

(Tang et al., 2012a). Further oxidation of the molecule results in the final conformation 

state, where the HMGB1 is devoid of signaling function and no longer has a mechanism 

of action (Tang et al., 2012a). This inert form of HMGB1 has been found to be released 

from apoptotic cells, suggesting that in order to preemptively act against unwarranted 

inflammation, the apoptotic process must involve neutering the potent signaling 

capabilities of HMGB1 (Bell et al., 2006, Kazama et al., 2008). As the molecule shifts from 

the all-thiol state, to containing a disulfide bond, to inert, key binding motifs are revealed. 

These binding motifs are specific to two different receptors with strong ties to 

inflammation, the Toll-Like Receptor 4 (TLR4) and the Receptor for Advanced Glycation 
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End-products (RAGE) (Yang et al., 2013, Lee et al., 2014). In the all-thiol state, HMGB1 has 

a RAGE binding domain accessible for binding by the receptor from positions 150 to 183, 

when the molecule is in its all-thiol form after cellular secretion (Yang et al., 2013). The 

TLR4 binding affinity of HMGB1 (positions 89-108) is only revealed when oxidation at 

cysteines 23 and 45 result in formation of the disulfide bond (Yang et al., 2013). 

Multiple groups have demonstrated that the conformational changes of HMGB1 

due to oxidation are reversible and depend upon the extracellular environment to 

determine its needed role in cellular response to insult or injury. Intriguingly, the half-

lives of the all-thiol, disulfide, and inert HMGB1 forms vary greatly in non-pathological or 

non-injury situations. The all-thiol molecule has a half-life of approximately 17 minutes, 

with the disulfide form existing in excess of 10 hours, or approximately 642 minutes 

(Zandarashvili et al., 2013). These values again change when pathology is considered; 

conditional media used for cell culture of prostate cancer increased the half-life of all-

thiol HMGB1, while decreasing that of the disulfide HMGB1 (Zandarashvili et al., 2013). 

Glycyrrhizin, a licorice root derivative with affinity for HMGB1, significantly increases the 

half-life of both HMGB1 conformations (Mollica et al., 2007). Interestingly, glycyrrhizin 

administration has also been demonstrated to have an antagonistic effect on HMGB1 

signaling (Mollica et al., 2007, Feldman et al., 2012).  

The three identified conformation states of HMGB1 allow the model to compare 

variably to a skeleton key, with an ability to open multiple locks/bind to different 

receptors. The aforementioned TLR4 and RAGE have been demonstrated to not only be 

important to inflammation, but both receptors have affinity to different conformations 
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of the HMGB1 molecule. Thus, HMGB1 has at minimum two different receptors and 

HMGB1’s ability to bind to either receptor depends upon the extracellular environment, 

which can change due to injury, stress, or pathological presence. The different 

conformations of HMGB1 are mutually exclusive in nature, which by extension means that 

HMGB1 functions of chemotaxis/cytokine-stimulating and RAGE binding versus TLR4 

affinity are also mutually exclusive properties of HMGB1 (Venereau et al., 2012a). In 

essence, HMGB1, through its ability to help maintain and repair DNA to being capable of 

initiation of inflammation through various cell types, demonstrates the versatility of the 

ligand in the aforementioned model of cellular communication. The versatility of HMGB1 

becomes more intriguing when framed with HMGB1’s functionality in the nervous 

system, as a factor in multiple disease mechanisms through multiple receptors (Maroso 

et al., 2010, Shibasaki et al., 2010, Allette et al., 2014). 

HMGB1 has been investigated in several formats regarding its inflammatory 

functionality within the confines of the nervous system. Several publications have 

demonstrated that HMGB1 has several effects on neuronal tissue, ranging from 

epileptogenic pathology, to neurodegenerative disorders, traumatic nervous tissue 

injury, and the focus of this work, pain (Muhammad et al., 2008, Maroso et al., 2010, 

Shibasaki et al., 2010, Zurolo et al., 2011, Luo et al., 2014, Weber et al., 2014). In each of 

the aforementioned pathological events, the ligand HMGB1 acts through the receptors 

TLR4 and RAGE to bring about important developments key to pathology. In order to work 

towards novel therapeutics broader than the scope of chronic pain, further dissection of 

the signaling axis HMGB1 shares with TLR4 and RAGE would be incredibly beneficial. 
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Pain and neuronal pathologies are not the only disease mechanisms that seem 

dependent upon the function of HMGB1. Increasing evidence in the literature supports 

the integral role of inflammation in cancer biology (Mantovani et al., 2008). This 

inflammation presence in cancer and tumor growth has been strongly correlated with 

significant overexpression of HMGB1 when compared to naïve tissue, exemplified in 

colon, breast, prostate, and lung cancer (Tang et al., 2010). Post-translation modification 

of HMGB1 via phosphorylation has been observed to impact the ligand’s ability to inhibit 

or enhance cancer cell replication in vitro (Topalova et al., 2008). The ability of HMGB1 to 

interact with several transcription factors (TFs) is also thought to be important to cancer 

development. The NF-κB family of TFs is activated in order to initiate cellular response to 

various demands, such as growth, apoptosis, homeostasis maintenance, and tumor 

regulation (Baeuerle and Henkel, 1994). HMGB1 can interact directly with the NF-κB 

subunit p50 and affect the subunit’s affinity for DNA binding, possibly leading to increased 

tumor activity (Agresti et al., 2003). The retinoblastoma (RB) protein is another example 

of HMGB1-mediated cancer development. Improper function of the RB protein can result 

in a loss of its intrinsic growth suppressive activity and through union with HMGB1; it 

demonstrates significant increases in cell growth suppression (Jiao et al., 2007). Both the 

NF-κB and RB interactions with HMGB1 only show a portion of the role of HMGB1 in the 

tumor microenvironment (Ellerman et al., 2007). The ligand appears to have a high level 

of oncological importance, although its exact mechanisms of action are not fully 

understood or known at this time. 
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As mentioned earlier, HMGB1 signaling appears to play a significant role in the 

pathological neuronal hyperactivity seen in epileptogenesis. An epileptic seizure 

demarcates an event of neurological dysfunction, resulting in abnormal behavior, 

changes in sensorial perception, and maladaptive neuronal firing (Pitkanen and Lukasiuk, 

2009). Epilepsy defines changes in neuronal function that allow and potentially encourage 

for the recurrence of seizure activity (Pitkanen and Lukasiuk, 2009). One of the subsets of 

epilepsy, temporal lobe epilepsy, has been observed to involve the HMGB1 in its 

pathological development (Chiavegato et al., 2014). In a cohort of rats assessed for 

HMGB1 translocation to the cytoplasm, this translocation was largely confined to the 

epileptic animals (Choy et al., 2014). Furthermore, glycyrrhizin (known for its affinity for 

HMGB1 and neutralizing subsequent signaling) was demonstrated in another study to 

have neuroprotective effects in a rodent model of kainic acid-induced seizures (Luo et al., 

2014). In a similar affect to both nociceptive and neuropathic pain, epileptic events 

involving HMGB1 also demonstrate ties to the receptors RAGE and TLR4, which begets 

further dissection of the two pattern recognition receptors (Maroso et al., 2010, Zurolo 

et al., 2011). 
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Figure 1-1: HMGB1 receptors RAGE and TLR4 
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The HMGB1 Receptors 

TLR4 

TLR4 is one of eleven transmembrane receptors that belong to the Toll-like 

Receptor (TLR) family. These receptors are typically located in the membranes of cells 

belonging to the innate immune system, including but not limited to, mast cells, 

monocytes, and macrophages (Barton and Medzhitov, 2002). Cells involved with barrier 

functionality, such as epithelial and endothelial cells, also express TLR family members 

(Fitzner et al., 2008, Leow-Dyke et al., 2012). The detection of pathological material and 

subsequent activation of the necessary inflammatory cascade for the particular insult is 

one of the main functions of the TLR family (Muzio et al., 1998). Activation of any member 

of the TLR family results in the secretion of cytokines in order to begin the process of 

inflammation (Yamamoto et al., 2003). However, as previously stated, and especially in 

the case of TLR4, the activating ligands for TLRs need not be PAMPs; DAMPs can also serve 

as endogenous activators of the receptors (O'Neill et al., 2003, O'Neill and Bowie, 2007). 

Structurally, all of the members of the TLR family share the Toll IL-Receptor (TIR) 

domain as part of their respective signaling complexes. In fact, the TIR domain is 

considered to be representative of an ancestral link between vertebrates and 

invertebrates in the realm of immunity (Roach et al., 2005). The ligand binding domains 

of the TLRs are composed of repeating structure motifs rich in leucine; the majority of 

pattern recognition receptors (including TLRs) either possess the leucine repeating 

regions, scavenger-receptor protein domains, or calcium-dependent lectin domains 
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(Medzhitov and Janeway, 1997). Excluding the TLRs 1, 2, and 6, in order for signal 

propagation after ligand activation, TLRs homodimerize prior to initiation of a signal 

cascade (Takeda and Akira, 2005). The aforementioned leucine-rich repeating motifs of 

TLR allow for the dimerization and also allow for the TLR structures to recruit the 

necessary adaptor proteins within the cell for signal transduction (O'Neill et al., 2003, 

Takeda and Akira, 2005). Differences between the TLRs occurs with either of their 

extracellular elements, changing the particular receptor’s affinity for specific PAMPs and 

DAMPs, and adaptor binding proteins attached to the intracellular TIR domain (Hallman 

et al., 2001). 

A commonly-referred agonists of TLR4 is bacterial lipopolysaccharide (LPS). LPS is 

a major constituent of the outer cellular membrane of gram-negative bacteria and is 

essential for bacterial survival (Leone et al., 2007). LPS is an exogenous molecule and 

would be classified as a PAMP, signaling to the host immune system possible infection, 

resulting in the response of the innate immune system through TLR4 (Nijland et al., 2014). 

LPS-RS is another exogenous compound that can bind favorably with TLR4; LPS-RS is 

lipopolysaccharide extracted from Rhodobacter sphaeroides and acts as a competitive 

antagonist to LPS without issuing its own TLR4-mediated signal cascade. However, 

exogenous molecules such as LPS are considered less as the exclusive ligands for TLR4, 

thanks in large part due to the waning theory that discernment between self and non-self 

is of the utmost importance to immune functionality (Erridge, 2010). Endogenous ligands 

and the concept of ‘sterile inflammation’ are becoming more prevalent when discussing 
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TLR4-mediated inflammation. This is exemplified by free fatty acid activation of TLR4, 

resulting in the production of inflammatory cytokines in adipose tissue (Pal et al., 2012). 

In addition, there are several xenobiotic agents that can evoke TLR4 activation, 

which mandates a level of respect be installed for the promiscuity of the TLR4 receptor. 

Naloxone and naltrexone are used clinically to initiate partial or complete antagonism of 

administered opioids, can bind to the TLR4 receptor (Skolnick et al., 2014). Upon binding, 

either drug can mitigate a subsequent signal cascade, replete with possible mitigation of 

opioid-induced allodynia (pain from a stimulus that would normally not evoke a pain 

response) and even the suppression or down-regulation of TLR4 expression (Franchi et 

al., 2012). Ibudilast, a phosphodiesterase inhibitor, is another example of a 

pharmaceutical that can be a potential antagonist for TLR4 (Hutchinson et al., 2010). 

Ibudilast was originally marketed in Japan for the treatment of asthma; research has 

demonstrated that the drug has anti-inflammatory modalities, theoretically through its 

TLR4 binding (Rolan et al., 2009). Other xenobiotics that can bind to TLR4 include 

oxycodone, amytrityline, fentanyl, and ketotifen (Li, 2012). 

Morphine is one of the most commonly used opioids for patient relief in both 

chronic and severe acute pain settings (1992). Numerous adverse effects aside, it is 

another example of a xenobiotic agent possessing binding affinity for TLR4 (Stevens et al., 

2013). In fact, morphine can demonstrate LPS competitive-inhibition in a concentration 

dependent fashion, with concentrations as low as 3mM (Madera-Salcedo et al., 2013). 

This effect of morphine is neither blocked nor augmented in the presence of naloxone 

(Stevens et al., 2013). Upon metabolism of morphine, morphine-3-glucuronide (M3G) is 
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produced with no known analgesic activity; M3G also can account for approximately two 

thirds of the starting pharmacological dose of morphine (Hasselstrom and Sawe, 1993, 

Wilson et al., 2011). M3G can stimulate the nervous system through activation of TLR4 as 

its high polarity prevents M3G crossing the blood-brain barrier (Yaksh et al., 1986, Smith, 

2000, Due et al., 2012a). 

Within the TLR family, TLR4 becomes one of the more complex members due to it 

possessing the greatest number of intracellular adaptor proteins. After binding of a ligand, 

TLR4 responds with activation of the core TLR signaling pathways of early-phase Nuclear 

Factor kappa B (NF-κB) and Mitogen-Activated Protein Kinase (MAPK). They also can 

activate the late-phase NF-κB and Interferon Regulatory Factor-3 (IRF3) pathway, which 

can lead to further changes in gene expression as well as more specific immune 

responses, tailored to certain PAMPs or DAMPs (Saitoh et al., 2004). This more diverse 

group of adaptor proteins theoretically allow TLR4 to modify subsequent signal 

transduction events to a higher level than the other TLRs. If this is assumed to be correct, 

the presence of TLR4 on such a diverse range of cell types in addition to a high level of 

signal modification after activation, allows TLR4 to be an extremely useful component of 

the cellular response and communication through inflammation (Buchanan et al., 2010). 

Prior to activation, the glycoprotein MD-2 can have a significant effect on the 

levels of TLR4 expression at the cell plasma membrane (Rallabhandi et al., 2008). MD-2 

possesses a hydrophobic pocket for ligand binding and forms a multimer complex with a 

complementing TLR4 homodimer (Kim et al., 2007, Ohto et al., 2007). MD-2 is not only 

enhances the responsiveness of TLR4 to ligands, specifically LPS; it is actually necessary 
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for proper LPS-TLR4 binding (Shimazu et al., 1999, Park et al., 2009). In fact, TLR4 knockout 

mice demonstrate the same lack of response to LPS administration as MD-2 knockout 

mice when compared to normal activation in naïve animals (Nagai et al., 2002). In human 

monocytes, MD-2 increases the level of trafficking of TLR4 from the Golgi Apparatus in 

resting cells to the plasma membrane as demonstrated (McGettrick and O'Neill, 2010). 

Upon activation, the TIR domain of TLR4 recruits the requisite adaptor proteins 

for signal propagation. There are four main TIR domain adaptor proteins, which can be 

separated by their dependence on the adaptor protein Myeloid Differentiation Factor 88 

(MyD88), for their ability to transduce a signal from a ligand effector. The MyD88-

dependent pathway involves MyD88, and the Toll-interleukin 1 Receptor domain 

containing Adaptor Protein (TIRAP). The MyD88-dependent pathway is the core TLR 

pathway mentioned earlier, functioning to activate the early-phase NF-κB and MAPK 

processes (Akira et al., 2006). The MyD88-independent pathway includes the TIR-domain-

containing-adaptor-inducing interferon-β (TRIF), and the TRIF-related adaptor molecule 

(TRAM) (Roach et al., 2005, Akira et al., 2006). 

Inflammasome activation is another term to describe the downstream signal 

cascade TLR4 activates in response to ligand binding. The inflammasome is composed of 

multiple intracellular proteins within the cell, and acts to connect PAMP recognition by a 

Pattern Recognition Receptor (PRR), to the eventual maturation and production of the 

requisite inflammatory factors and cytokines (Lamkanfi and Dixit, 2009, Rathinam and 

Fitzgerald, 2013). Assembly of the inflammasome occurs in response to extracellular 

stimuli, such as HMGB1, and takes place in the cytosol of the innate immune cells 
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(Kayagaki et al., 2013, Keyel, 2014). Altogether, the signaling variances afforded by TLR4 

through different ligands, adaptor protein recruitment, and inflammasome formation 

emphasize their importance in the immune response of an organism, and inflammation. 

This inflammasome/TLR4 process cannot be attributed to one particular pathway or 

signal type but rather a component of an intricate network poised to deal with multiple 

communication needs. 

With the functions of TLRs, and TLR4 in particular, to induce inflammatory 

responses and immune processes, it is curious as to why a neuronal cell would express 

these receptors, considering that the nervous system is considered immune privileged. 

Interestingly, TLR4 can affect both neurogenesis and neurodegeneration. Microglial TLR4 

function is akin to that of TLR4 on dendritic cells, resulting in increases of both Tumor 

Necrosis Factor-α (TNFα) and Interferon-β (IFNβ) production (Okun et al., 2011). Both 

microglial and dendritic TLR4 function highlight a primary function of debris analysis and 

phagocytosis (Okun et al., 2011). Astrocytes, important for biochemical support and 

homeostasis of the nervous system environment, display low levels of TLR4 expression 

unless in the presence of inflammation, when their expression increases significantly (Liu 

et al., 2012, Gong et al., 2014). TLR4 function has also been observed on neuronal cell 

types, such as neural progenitor cells, cortical and hippocampal neurons, motor neurons, 

and primary afferent neurons (Bsibsi et al., 2002). The expression level of TLR4 on neurons 

is dynamic in nature and relies upon the presence of environmental cues, such as DAMP 

concentrations (McGettrick and O'Neill, 2010). 
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The expression of TLR4 on sensory neurons in particular has been linked to the 

processes and development of neuropathic pain (Tanga et al., 2005). A growing body of 

evidence demonstrates that TLRs, and specifically TLR4, represent a significant presence 

in the nervous system in both its central and peripheral manifestations (Bsibsi et al., 2002, 

Acosta and Davies, 2008, Maroso et al., 2010, Okun et al., 2011). Gene knockout 

mutations for the TLR4 gene in mice results in a significant decrease in both pain behavior 

and inflammation of the central nervous system (Tanga et al., 2005).  

RAGE 

The Receptor for Advanced Glycation End-products (RAGE), a member of the 

immunoglobin (Ig) superfamily, is a transmembrane protein (Neeper et al., 1992). It is 

highly conserved across humans, rats, and mice, with expression levels in naïve settings 

highest in pulmonary tissue, specifically alveolar and pulmonary cells (Sims et al., 2010). 

RAGE signaling and activation has been linked to several different pathological events, 

including diabetes, Alzheimer’s disease, oncological manifestations, traumatic injury, liver 

disease, and disorders of chronic inflammation (Bucciarelli et al., 2006, Gebhardt et al., 

2008, Chen et al., 2011, Du et al., 2012, Abolfathi Momtaz et al., 2013, Bansal et al., 2013). 

The signal cascade activated in response to RAGE ligand binding is thought to be an 

important proponent of tissue repair after insult and a return to environmental 

homeostasis through inflammatory resolution (Sorci et al., 2012). Baseline levels of RAGE 

expression are low, RAGE gene expression can significantly increase during pathology 

(Mangalmurti et al., 2012). The exception to this expression profile being the lungs, where 

RAGE protein is at high levels on the alveolar epithelium and endothelial cells of the 
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microvasculature (Mangalmurti et al., 2012). RAGE expressed on the endothelium is able 

to mediate and affect the adhesion and transmigration of leukocytes through 

chemoattractant effects (Kierdorf and Fritz, 2013).  

Structurally, RAGE is a transmembrane protein and requires the recruitment of 

adaptor proteins to initiate intracellular signaling cascades (Sorci et al., 2012). The 

extracellular region of RAGE consists of three Ig domains: a V-type domain integral for 

ligand specificity and the C1 and C2 domains (Xie et al., 2013). The extracellular region of 

RAGE is large in size, and a study of the three Ig-like domains (V domain, C1 and C2 

domains) reveal that the structure is composed of β-pleated sheets (Bork et al., 1994, 

Huttunen et al., 1999). The β-pleated sheets contain a disulfide bond, which could impact 

ligand recognition (Bork et al., 1994, Dattilo et al., 2007). The intracellular domain of RAGE 

is small in comparison, and demonstrates minimal secondary or tertiary structure, which 

may affect adaptor protein recruitment for signal transduction (Bork et al., 1994). The 

structure of the RAGE receptor becomes more interesting with closer inspection of its 

transmembrane and signaling domains. Across multiple species, RAGE has numerous 

structural variants due to differential transcript splicing. The RAGE splice variants differ 

across the cell types and in function. Some variants have no functional capabilities aside 

from ligand binding, due to changes in the intracellular signaling domain of the RAGE 

protein, resulting in the inability to recruit the necessary cellular machinery for signal 

transduction (Sterenczak et al., 2013). These splice variants are referred to as decoy RAGE 

receptors. Splice variants of RAGE are tissue specific, with certain splices only present in 

high levels in certain tissue conditions or types (Lopez-Diez et al., 2013). 
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In addition to splice variants, the metalloproteinase, A Disintegrin and 

metalloproteinase domain-containing protein 10 (ADAM10), can cleave the intracellular 

domain of RAGE from the surface of the cell membrane, producing soluble RAGE (sRAGE) 

(Sessa et al., 2014). sRAGE can be found in the serum and extracellular milieu, and can act 

as a decoy or sink for excessive ligands; sRAGE can also be produced through post-

translational cleavage processing of the protein (Kalea et al., 2009, Buckley and Ehrhardt, 

2010, Lopez-Diez et al., 2013). What is fascinating about this process is that it provides 

the organism with a fine level of control regarding inflammation. In other words, if an 

excessive amount of DAMPs are released, not only will the nascent levels of sRAGE or 

decoy RAGE on cell membranes act to prevent the mitigation of inflammation, these 

ligand ‘heat sinks’ can be increased in concentration through ADAM10 up-regulation or 

post-translational processing of RAGE. 

There are multiple ligands that can bind to RAGE, suggesting that RAGE shares the 

characteristic promiscuity observed in TLR4. Paralleling TLR4, RAGE is also a PPR and plays 

a key role in the scope of innate responses to PAMPs and DAMPs (Zeng et al., 2012). The 

promiscuity of the RAGE protein is most likely due to structural design; the C1 and C2 

domains of the protein are linked in such a way that allows for free rotation of the  

extracellular domain of the receptor (Dattilo et al., 2007). This free rotation allows for the 

combined V and C1 domains to interact with its various signaling compounds through 

multiple protein surfaces; the rotation does not impact the downstream signal 

capabilities of the RAGE protein (Dattilo et al., 2007). A significant difference between 

TLR4 and RAGE is found in their role within the innate immune system. TLR4 is known for 
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its inflammatory support through the production of cytokines, whereas RAGE acts in the 

method of cellular migration as demonstrated in an earlier example of leukocyte 

transmigration to the injured or affected tissue (Schiraldi et al., 2012). 

The name RAGE is derived from a large constituent of its specific ligands, advanced 

glycation end-products (AGE) (Huttunen et al., 1999, Xue et al., 2011). AGEs can be 

produced as the byproducts of oxidative processes in the extracellular environment (Xue 

et al., 2011). Chronic inflammatory diseases, diabetic complications, and cardiovascular 

disorders have all been observed having palpable links to AGE signaling through RAGE 

(Gebhardt et al., 2008). β-amyloid fibrils are another potential ligand for RAGE. The β-

amyloid protein is one of the markers of Alzheimer’s disease and demonstrates binding 

affinity for RAGE, which also increases in concentration when comparing Alzheimer’s 

disease subjects with the appropriate controls (Yan et al., 1996, Yan et al., 2009). 

Other possible ligands for RAGE include assorted S100 proteins, nucleic acids (i.e. 

DNA, RNA), and HMGB1 (Donato, 2007, Luan et al., 2010). The interaction of RAGE and 

HMGB1 was first investigated in the growth of the nervous system and neurite outgrowth 

(Hori et al., 1995, Saleh et al., 2013). However, the HMGB1-RAGE axis of inflammatory 

signaling is also of particular interest given its involvement in several severe pathologies, 

such as traumatic brain injury and cancer (Okuma et al., 2014, Weber et al., 2014). In the 

both gastric and colorectal cancers, overexpression of both RAGE and HMGB1 has been 

shown to be key components of tumor metastasis (Fahmueller et al., 2012). Diabetes is 

another disease that shows positive correlation with its development and the 
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upregulation of RAGE, HMGB1, and several key downstream signaling motifs 

(Mohammad et al., 2012). 

RAGE activation can also serve to up-regulate and promote the host’s immune 

defense to microbial agents, through increased in leukocyte activity (Chavakis et al., 2003, 

van Zoelen et al., 2011). Septic events show increased levels of both mRNA and protein 

expression of RAGE on the cell plasma membrane. In the murine model, limiting RAGE 

response in sepsis through genetic or use of antagonists results in an increased survival 

(Yamamoto et al., 2011). In the case of sepsis, which is considered a LPS-mediated event, 

there is evidence to suggest that HMGB1 plays a key role in RAGE’s inflammatory activity 

during sepsis (Sunden-Cullberg et al., 2005, Aneja et al., 2008). 

The activation of the RAGE receptor initiates activation of NF-κB and the MAPK 

signaling cascades. Activation of these cascades through RAGE and its ligands in turn lead 

to the propagation and perpetuation of inflammation (Kang et al., 2010). The suppression 

of both NF-κB and MAPK pathways can be induced by the introduction of neutralizing 

antibodies for RAGE, or synthesized sRAGE (Lander et al., 1997). Genetic knockout 

animals for the RAGE gene reveal a diminished susceptibility to not only acute 

inflammation but tumor-development as well (Gebhardt et al., 2008, Kang et al., 2010). 

Another parallel between RAGE and TLR4 can be drawn with regards to their 

adaptor protein selection. The RAGE signal cascade uses both TIRAP and MyD88 for its 

eventual inflammatory function, chemoattraction. Diaphenous-1 (Dia1) is another 

adaptor protein that can bind to RAGE; Dia1 belongs to a family of proteins known as 
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formins, proteins responsible for proper function and regulation of actin filaments and 

cytoskeleton formation (Wallar and Alberts, 2003). Dia1 acts as an in-between for RAGE 

and the GTPase RhoA in order to affect cell motility (Wallar and Alberts, 2003, Hudson et 

al., 2008). Downstream of RhoA lies a fork in the signal pathway, with one option being 

the activation of the N-terminal kinase/activator protein-1 (JNK/AP-1) pathway, the other 

being the Rac1 and Cdc42 pathway, bringing about the production of chemoattractants, 

or cell mobilization, respectively (Watanabe et al., 1997, Hudson et al., 2008, Bianchi et 

al., 2011).    

The HMGB1-RAGE signal axis not only shows inflammatory mediator production 

in several tissue types and disease models; it also demonstrates an intriguing feed-

forward mechanism. Specifically, binding of all-thiol HMGB1 to RAGE leads to increased 

expression of RAGE at the cellular plasma membrane, and increased signal duration 

through HMGB1 release (Bierhaus et al., 2005). This positive feedback loop is not limited 

to HMGB1 as a stimuli; advanced glycated end-products (AGEs) result in the increased 

concentrations of reactive oxygen species (ROS) which in turn act to produce more AGEs 

(Ott et al., 2014). The feed-forward mechanism of all-thiol and HMGB1 and RAGE provides 

a focus for study given that chronic inflammation and chronic pain exemplify the results 

of unmitigated signal transduction. The presence of all-thiol HMGB1 is short lived before 

it is oxidized into the TLR4 ligand disulfide HMGB1, which suggests that diseases with 

etiology requiring rapid and uncontrolled inflammatory response may look to the 

HMGB1-RAGE axis for further insight.  
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Expression of RAGE in the nervous system is not limited to any particular cell type. 

In positive correlation with TLR4, RAGE has also been observed within the nervous system 

environment both on neurons and glial cells (Schmidt et al., 2001, Miller et al., 2008, Iori 

et al., 2013). Currently studies suggest the presence of RAGE on neuronal membranes, in 

conjunction with its activation, may provide a front line defense mechanism against 

neurotoxic levels of inflammation. However, RAGE has also been shown to be tightly 

connected with the development and sometimes fatal propagation of assorted 

neurodegenerative disorders (Sousa et al., 2001). This convoluted nature and role of 

RAGE in the neuronal setting may simply be a result of differential downstream signaling, 

but also the initiating ligand responsible for RAGE activation (Kierdorf and Fritz, 2013). 

Neural regeneration is another area of RAGE action within the peripheral nervous system. 

Specifically the absence of the cell surface RAGE receptor has demonstrated a lowered 

level of signaling after neuronal injury, decreased neurite outgrowth, and a reduced 

amount of monocyte infiltration (Rong et al., 2004b). 

In the instance of RAGE and HMGB1 signaling, evidence has linked the interaction 

of these two proteins in a capacity of growth, specifically neurite outgrowth (Huttunen et 

al., 1999). Specifically, the RAGE pathway utilizing the activation of Rac and Cdc42 was 

linked to the process of neurite outgrowth (Huttunen et al., 1999). Introduction of HMGB1 

into the sciatic nerve results in promotion of immune activation, while simultaneously 

resulting in pain hypersensitivity (Shibasaki et al., 2010). Ligation of the same sciatic nerve 

shows a significant increase in the expression of RAGE as detected by 

immunofluorescence in the damaged nerve and the majority of neurons in the associated 
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dorsal root ganglia (Shibasaki et al., 2010). Antagonism of HMGB1 binding and activation 

resulted in a decrease in both pain hypersensitivity as well as mechanical allodynia 

(Shibasaki et al., 2010). Since RAGE, TLR4, and HMGB1 are major factors in the 

inflammatory process, and they are expressed in the nervous system, further 

investigation into their signal cascades, the adaptor proteins, is of importance. 

The TIR Domain 

Both TLR4 and RAGE share the adaptor proteins TIRAP and MyD88 as part of their 

respective signal cascades (Horng et al., 2001, Sakaguchi et al., 2011). Since both 

receptors are important in innate immunity and have been linked to severe pathogenic 

consequences, dissection of the receptors’ functionality may prove most efficacious when 

focused upon the adaptor proteins (Ibrahim et al., 2013). TIRAP and MyD88 make up the 

MyD88-dependent signaling pathway of both RAGE and TLR4, with TRAM and TRIF being 

exclusive to TLR4 function and MyD88-independent in signaling activity (Yamamoto et al., 

2003, Ibrahim et al., 2013). 

As stated previously, TIRAP and MyD88 bind to the TIR domain of the recruiting 

receptor to transduce the related signal of host defense or inflammation, according to 

the receptor-bound ligand. To be more specific, TIRAP, which may also be known as MAL 

(MyD88-Adaptor-Like), functions by binding to the receptor and then recruiting MyD88 

afterwards (Yamamoto et al., 2004, O'Neill and Bowie, 2007). This was demonstrated by 

the attenuation of TLR signaling through genetic manipulation of TIRAP; this mutated 

TIRAP also resulted in a significant decrease in recruited MyD88 to the cellular membrane 
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(George et al., 2010). TIRAP in particular is highly conserved, suggesting a standard role 

within host defense across species, including humans, mice, and zebrafish (Woo, 2012). 

Extracellular domains and differential ligand binding affinities aside, it is the 

recruitment and function of the adaptor proteins that bring about the specific 

characteristics of both RAGE and TLR4 that are so heavily studied. This shared adaptor 

protein aspect between RAGE and TLR4 suggests possible crosstalk between receptors 

and may further explain their separate but related roles in the mitigation of neuronal 

excitation. Additionally, targeting the adaptor proteins TIRAP and MyD88 may provide an 

interesting model for novel treatment of multiple disease pathologies, including those 

specifically of chronic inflammation such as chronic pain. If the loss-of-function genetic 

manipulations can result in the decrease of signaling functionality for both or either TLR4 

and RAGE, then pharmacological targeting with small molecule inhibition may prove 

highly effective in a therapeutic manner (Khor et al., 2007, Nejentsev et al., 2008). Since 

inflammation is a process key to survival, the benefit of utilizing pharmacology is dosing; 

activation of HMGB1 does not need to be attenuated, but rather controlled in order to 

prevent pathological events. 

Thesis Aims 

The ultimate goal of this research project was to reveal the key mechanisms and 

components of the HMGB-1-dependent activation states that are present during 

hyperactivity and excitation of both nociceptive and non-nociceptive sensory neurons. By 

delving into this topic, the results of this research may lend themselves to uncovering 
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novel therapeutic targets for maladies deriving from chronic inflammatory signaling. 

Further investigation may also elucidate and provide a better understanding of the 

mechanisms of inflammation that are present in the nervous system, primarily that within 

the peripheral circuit. 

Within this dissertation, I will investigate both conformation states of HMGB1, all-

thiol and disulfide, as well as the expression and function of both TLR4 and RAGE. A large 

focus will be also placed upon the role of both TIRAP and MyD88 as the associated adaptor 

proteins associated with both the HMGB1-TLR4 and HMGB1-RAGE signal cascades. If the 

common pathway between RAGE and TLR4 is evident, pharmacological targeting of the 

adaptor protein complex could serve as suitable targets for the control of the 

inflammation to prevent pathological development within the organism. 

The first specific aim of this project is to determine the degree to which the all-

thiol HMGB1 and disulfide HMGB1 conformations are integral to both RAGE and TLR4 

nociceptive neuronal signaling. Given the alarmin’s aforementioned flexibility with 

receptor-mediated binding and overall mobility within the intracellular and extracellular 

spaces, HMGB1 is an ideal target of study. Previous work in the White lab has noted that 

HMGB1 is released in states of neuronal cellular stress and mediates observed pain 

behavior in a peripheral nerve injury model (Feldman et al., 2012). This data, in 

combination with findings of HMGB1 organically converting from all-thiol (RAGE) to 

disulfide (TLR4) forms, implicates HMGB1 as being the key connection between both 

RAGE and TLR4 being observed as integral to pain mediation via neuronal excitation 

(Zandarashvili et al., 2013). 
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The second aim of this thesis is to investigate the dependency of neuronal 

excitation upon functionality of the MyD88 and TIRAP adaptor proteins following ligand 

binding and activation of both RAGE and TLR4. Both RAGE and TLR4 are linked to the 

MyD88 and TIRAP adaptor proteins, thus these adaptor proteins are most likely highly 

integral to proper signaling cascades for both receptors. In turn, this signifies the 

importance of both adaptor proteins to neuronal excitation. The forthcoming assays 

should reveal both MyD88 and TIRAP as key targets for modulation of chronic neuronal 

inflammation. 
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Abstract 

Recent studies indicate that the release of high mobility group box 1 (HMGB1) 

following nerve injury may play a central role in the pathogenesis of neuropathic pain. 

HMGB1 is known to influence cellular responses within the nervous system via two 

distinct receptor families; the Receptor for Advanced Glycation End-products (RAGE) and 

Toll-like receptors (TLRs). The degree to which HMGB1 activates a receptor is thought to 

be dependent upon the oxidative state of the ligand, resulting in the functional isoforms 

of all-thiol HMGB1 (at-HMGB1) acting through RAGE, and disulfide HMGB1 (ds-HMGB1) 

interacting with TLR4. Though it is known that dorsal root ganglia (DRG) sensory neurons 

exposed to HMGB1 and TLR4 agonists can influence excitation, the degree to which at-

HMGB1 signaling through neuronal RAGE contributes to neuropathic pain is unknown. 

Here we demonstrate that at-HMGB1 activation of nociceptive neurons is dependent on 

RAGE and not TLR4. To distinguish the possible role of RAGE on neuropathic pain, we 

characterized the changes in RAGE mRNA expression up to one month after tibial nerve 

injury (TNI). RAGE mRNA expression in lumbar dorsal root ganglion (DRG) is substantially 

increased by post-injury day (Holmbeck et al.) 28 when compared with sham injured 

rodents. Protein expression at PID28 confirms this injury-induced event in the DRG. 

Moreover, a single exposure to monoclonal antibody to RAGE (RAGE Ab) failed to 

abrogate pain behavior at PID 7, 14 and 21. However, RAGE ab administration produced 

reversal of mechanical hyperalgesia on PID28. Thus, at-HMGB1 activation through RAGE 

may be responsible for sensory neuron sensitization and mechanical hyperalgesia 

associated with chronic neuropathic pain states.
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Introduction 

Recent studies indicate inflammatory mediators released by nerve injury play a 

central role in the pathogenesis of chronic pain conditions (Calvo et al., 2012). Although 

poorly understood, a key feature of these inflammatory events is the presence of Danger 

Associated Molecular Patterns (DAMPs; alarmins) (Bianchi, 2007). A DAMP of particular 

interest to the injured nervous system is high mobility group protein box-1 (HMGB1; 

previously known as amphoterin) (Andersson and Tracey, 2011). HMGB1, a nuclear 

protein that binds DNA and regulates gene expression is structurally composed of two 

tandem DNA-binding domains, Box A and B, and a highly acidic C-terminal tail composed 

of a string of aspartate and glutamate residues (Bianchi et al., 1992, Giese et al., 1992, 

Czura et al., 2001, Dumitriu et al., 2005). Originally described as a membrane-associated 

protein that regulated neurite outgrowth during development, it is now known that 

HMGB1 also plays a crucial role in the inflammatory responses associated with tissue 

injury, reparative responses and disease (Parkkinen et al., 1993, Hori et al., 1995, Ulloa 

and Tracey, 2005, Maroso et al., 2010, Zhang et al., 2011) and may contribute significantly 

to chronic neuropathic pain states (Shibasaki et al., 2010, Feldman et al., 2012). 

The action of HMGB1 on different cell types is known to differ dramatically based 

on the oxidation state of the protein. When first released into the extracellular space, 

HMGB1 is initially in the all-thiol state (at-HMGB1) and is thought to largely act on a 

member of the Ig superfamily, the Receptor for Advanced Glycation End-products (RAGE) 

(Huttunen et al., 2002). There are also reports that at-HMGB1 can form a complex with 

CXCL12 and act through CXCR4 (Venereau et al., 2012b). Once present in an oxidative 
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environment, cysteines 23 and 46 of HMGB1 Box A form a sulfide bond, effectively 

producing the disulfide isoform of HMGB1 (ds-HMGB1). ds-HMGB1 appears to primarily 

act on the receptor toll-like receptor 4 (TLR4) in order to influence the production of 

inflammatory cytokines (Venereau et al., 2012b, Yang et al., 2012). ds-HMGB1 can then 

be further reduced by sulfonation of cysteine 106 in the Box B domain of the ligand, 

resulting in an inert form (Kazama et al., 2008).  

It has been suggested that release of HMGB1 from injured neurons can contribute 

to seizure activity associated with epilepsy; however, the receptor responsible for this 

pathological activity is still disputed. (Maroso et al., 2010, Iori et al., 2013).  The actions of 

HMGB1 have also been implicated in both inflammatory and neuropathic pain conditions, 

though it is unclear as to whether the TLR4 or RAGE receptor is responsible (Chacur et al., 

2001, O'Connor et al., 2003, Shibasaki et al., 2010, Otoshi et al., 2011, Feldman et al., 

2012, Nakamura et al., 2013). Endotoxin-mediated TLR4 activation is known to directly 

increase neuronal excitation states in acutely dissociated nociceptive neurons (Hua et al., 

1996, Ochoa-Cortes et al., 2010, Diogenes et al., 2011b, Due et al., 2012b) and 

administration of xenobiotic TLR4 agonists can produce tactile behavioral hypersensitivity 

in uninjured rodents (Due et al., 2012b). Since the effects of HMGB1 could be mediated 

by either TLR4 and RAGE depending on the oxidation state of the protein, we set out to 

determine the contribution of at-HMGB1 on neuronal excitation of nociceptive neurons 

using a small molecule inhibitor of TLR4 (Bevan et al., 2010) and a neutralizing antibody 

against RAGE, 11E6 (Guo et al., 2012, Strakhova and Desiree-Brderson, 2013). Moreover, 

as little direct evidence exists to support a direct role for RAGE in pain, additional studies 



41 
 

examined tibial nerve injury (TNI)-induced RAGE expression in associated lumbar DRG and 

the ability of RAGE neutralizing antibody to reverse injury-induced behavioral 

hypersensitivity in the rat across time.  Our data indicates that at-HMGB1 elicits neuronal 

excitation via RAGE, in acutely dissociated sensory neurons. In addition, the use of the 

neutralizing RAGE antibody reverses tactile pain hypersensitivity. This evidence, together 

with the increased expression of RAGE in the sensory ganglia, identifies a new potential 

therapeutic target which appears to contribute to pathological pain.  

 

  



42 
 

Methods 

Animals   

Pathogen-free, adult female and male Sprague-Dawley (S/D) rats (150–200 g; 

Harlan Laboratories, Madison, WI) were housed in temperature (23 ± 3°C) and light (12-h 

light: 12-h dark cycle; lights on at 07:00 h) controlled rooms with standard rodent chow 

and autoclaved tap water available. Experiments were performed during the light cycle. 

Animals were randomly assigned to the treatment groups. All animal related experiments 

were approved by the Institutional Animal Care and Use Committee of Indiana University 

School of Medicine. All procedures were conducted in accordance with the Guide for Care 

and Use of Laboratory Animals published by the National Institutes of Health and the 

ethical guidelines established by the International Association for the Study of Pain.  

Tibial Nerve Injury 

All rodents were anesthetized during the procedure with isoflurane (4% induction, 

2% maintenance). To model neuropathic pain, we performed a tibial nerve injury (TNI) 

[23; 30; 58]. S/D rats 150-200g were anesthetized using isoflurane at 4% induction and 

2% maintenance. Under anesthesia, the right sciatic nerve was isolated under aseptic 

surgical conditions by blunt dissection of the femoral biceps muscle, without damaging 

the epimycium. The sciatic nerve and its three branches were isolated: the sural, common 

peroneal and tibial nerves; only the tibial nerve was tightly-ligated with 5-0 silk and 

transected distal to the ligation. The removal of an additional 2-4mm of distal nerve 

stump was removed in order to prevent re-innervation by the proximal end of the nerve. 
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The overlying muscle and skin was then sutured in two separate layers. Sham-injured 

animals were subjected to all preceding procedures with the exception of ligation and 

transection. 

Reagents 

All reagents were freshly prepared in buffer on day of use. The neutralizing 

monoclonal RAGE antibody (11E6) was generated against the murine C2-domain of RAGE 

(Guo et al., 2012, Strakhova and Desiree-Brderson, 2013) (Abbvie Laboratories, Deerfield, 

IL). Administration of 11E6 or control (Ig1 non-neutralizing) antibody was given as 

intraperitoneal injections. A TLR2 [(Cheng et al., 2012); CU-CPT22] and a TLR4 [(Bevan et 

al., 2010); compound 15] small molecule inhibitor were synthesized as previously 

described (Kindly provided by Hang Yin, University of Colorado). LPS was purchased by 

Sigma (St. Louis, MO). Non-oxidizable, chemotaxis-HMGB1 (all-thiol) and cytokine-

HMGB1 (disulfide) was purchased from HMGBiotech (Milan, Italy; <1.0 endotoxin per 1 g 

of the protein by the LAL method), and was reconstituted in sterile 0.1% BSA/PBS.  

Behavioral assessment 

All rodents were habituated to testing chambers for at least two days. Rodents 

were randomly assigned to sham or injured test groups. All baseline testing occurred 

before and after TNI. The incidence of foot withdrawal in response to mechanical 

indentation of the plantar surface of each hindpaw was measured with a flat-tipped 

filaments capable of exerting forces of 10, 20, 40, 60, 80 and 120 mN with a uniform tip 

diameter was applied to a designated loci present on the plantar surface of the foot. 
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During each test, the rodent was placed in a transparent plastic cage with a wire grid floor 

with ~1°-1 cm openings. The cage was elevated so that stimulation was applied to each 

hind foot from beneath the rodent. The filaments were applied in order of ascending 

force, and each filament was applied alternately to each foot. The duration of each 

stimulus was approximately 1 s and the inter-stimulus interval was approximately 10–15 

s. The incidence of foot withdrawal was expressed as a percentage of the 6 applications 

of each stimulus and the percentage of withdrawals was then plotted as a function of 

force. The von Frey withdrawal threshold was defined as the force that evoked a 

minimum detectable withdrawal observed on 50% of the tests given at the same force 

level. For cases in which none of the specific filaments used evoked withdrawals on 

exactly 50% of the tests, linear interpolation was used to define the threshold. Pre-TNI 

baseline behavioral assessment was established in all rodents. The rats were tested pre 

dose and 1 h post dose on days 7, 14, 21 and 28. Optimum 11E6 dosing was established 

using TNI animals at day 28 using 1, 5, 10, and 15 mg/kg (data not shown). For drug 

studies, all behavioral assessments were performed by blinded pain assessors. 

RNA isolation and RT-qPCR 

Lumbar dorsal root ganglia (DRG; L4-L5) were dissected from adult female Sprague 

Dawley rats, frozen in liquid nitrogen, and maintained at -80°C until processed for RNA 

extraction. Total RNA was extracted from the samples using the RNeasy RNA extraction 

and purification kit (Qiagen). Single stranded cDNA was synthesized using reverse 

transcriptase (Bioline) with oligo-dT primers. Quantitative PCR was performed as 

previously described [10]. Briefly, resultant cDNA samples were amplified on an ABI 
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PRISM 7900HTSequence Detection System (Applied Biosystems) using the reporter, SYBR 

Green. The PCR reaction was as follows: 1x, 50°C, 2 min; 1x, 95°C, 10 min; 45x, 95°C, 15 s, 

60°C, 1 min; 1x, 25°C, hold. To check for DNA contamination, PCR was run using an L27 

(ribosomal housekeeping gene) primer pair, whose PCR product crosses an intron. The 

mRNA level for each gene (x) relative to L27 mRNA (internal control) was calculated using 

the following equation where Ct refers to threshold cycles: mRNA (x%) = 2Ct (L27)-Ct(x) x 

100. 

Western blot analysis 

Female animals were sacrificed and transcardially-perfused with saline and tissue 

was removed and frozen immediately with liquid nitrogen and stored at -80°C. The fresh 

frozen L4-L5 DRG tissue samples, ipsilateral to the injury, were homogenized in RIPA 

buffer with protease/phosphatase inhibitors and protein concentration was determined 

using the BCA protein assay (Thermoscientific). Samples (40 μg/lane) were separated by 

10% SDS-PAGE and transferred to a nitrocellulose membrane. After incubation in 10% 

non-fat milk blocking solution overnight at 4°C, the membrane was incubated with rabbit 

anti-RAGE (1:1,000; Sigma–Aldrich) followed by incubation with horseradish peroxidase-

conjugated secondary antibodies (Jackson ImmunoResearch). The membrane was probed 

again with a monoclonal anti- β actin antibody (1:5,000; Sigma– Aldrich, St. Louis, MO). 

Immunopositive bands were detected by enhanced chemiluminescence (ECL) and 

measured by a densitometric analysis (UnscanIt; Silk Scientific Inc., Orem, UT, USA). 

Preparation of acutely dissociated dorsal root ganglion neurons 
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The L4-L6 DRGs were acutely dissociated using methods described by Ma and 

LaMotte (Ma and LaMotte, 2005). Briefly, L4-L6 DRGs were removed from uninjured 

female animals. The DRGs were treated with collagenase A and collagenase D in HBSS for 

20 min (1 mg/ml; Roche Applied Science, Indianapolis, IN), followed by treatment with 

papain (30 U/ml, Worthington Biochemical, Lakewood, NJ) in HBSS containing 0.5 mM 

EDTA and cysteine at 35 C. The cells were then dissociated by mechanical trituration in 

culture media containing 1 mg/ml bovine serum albumin and trypsin inhibitor 

(Worthington Biochemical, Lakewood, NJ). The culture media was Ham’s F-12 mixture, 

DMEM, supplemented with 10% fetal bovine serum, penicillin and streptomycin (100 

µg/ml and 100 U/ml) and N2 (Life Technologies). The cells were then plated on coverslips 

coated with poly-L lysine and laminin (BD bioscience) and incubated for 2–3 h before 

more culture media was added to the wells. The cells were then allowed to sit 

undisturbed for 12–15 h to adhere at 37° C (with 5% CO2). 

Following some in vitro experiments, cells were fixed for 10 minutes using 2% 

buffered paraformaldehyde, washed with saline and incubated with blocking buffer (3% 

BSA/3% horse serum/0.4% Triton-X; Fisher Scientific, Pittsburgh PA) for 1 hour, followed 

by overnight incubation with the goat polyclonal antisera generated against TLR4 L14 

extracellular monoclonal antibody (1:200 dilution; Santa Cruz Biotechnology Inc., Santa 

Cruz, CA, USA) and rabbit anti-RAGE (1:1,000; Sigma–Aldrich) at 4° C. Additional 

monoclonal antibodies were used against CGRP (1;100; Rockland Inc) and IB4 conjugated 

directly to fluorescein isothiocyanate (IB4-FITC; Sigma-Aldrich). After primary incubation, 

secondary antibodies (anti-rabbit, anti-goat or anti-mouse conjugated to CY3 and CY2, 
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made in donkey at 1:800; Jackson ImmunoResearch, West Grove, PA) were used to 

visualize cells. Coverslips were washed in PBS for 5 min each (×3), stained with Hoechst 

33258 nuclear marker (Invitrogen Corporation, Carlsbad CA) and mounted with a 

PBS/glycerol solution onto glass slides.  

Ca2+ imaging  

The dissociated DRG cells were loaded with fura-2 AM (3 mM, Invitrogen Corp., 

Carlsbad, CA USA) for 25 minutes at room temperature in a balanced sterile salt solution 

(BSS) (NaCl (140 mM), Hepes (10 mM), CaCl2 (2 mM), MgCl2 (1 mM), glucose (10 mM), 

KCl (5 mM). The cells were rinsed with the BSS and mounted onto a chamber that was 

placed onto the inverted microscope. Intracellular calcium was measured by digital video 

microfluorometry with an intensified CCD camera coupled to a microscope and MetaFluor 

software (Molecular Devices Corp., Downington, PA USA). Cells were illuminated with a 

150 W xenon arc lamp, and the excitation wavelengths of the fura-2 (340/380 nm) were 

selected by a filter changer. Sterile solution was applied to cells prior to HMGB1 

application, any cells that responded to buffer alone were not used in neuronal 

responsive counts. HMGB1 (27 μM) was applied directly into the coverslip bathing 

solution. HMGB1 was purchased from R&D Systems (Minneapolis, MN, USA; <1.0 

endotoxin per 1 g of the protein by the LAL method), and was reconstituted in sterile 0.1% 

BSA/PBS. 27 μM of HMGB1 was applied for calcium imaging. A period of three minutes 

was allowed for observation after the treatment was introduced to the bath. After 

HMGB1 application, LPS (1μg/mL) and capsaicin (3 nM) were added. Calcium imaging 
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traces were analyzed by two independent analyzers and only responses that were in 

agreement between two individuals were used in the counts.     

Electrophysiology 

Sharp-electrode intracellular recordings were obtained from primary afferent 

neurons 12-18 hours after dissociation.  Coverslips were transferred to a recording 

chamber that was mounted on the stage of an inverted microscope (Nikon Eclipse Ti, 

Nikon Instruments Inc., Melville, NY).  The chamber was perfused with a bath solution 

containing (mM): NaCl 120, KCl 3, CaCl2 1, MgCl2 1, Hepes 10, Glucose 10, adjusted to pH 

7.4 and osmolarity 300 mosM.  The recordings were obtained at room 

temperature.  Intracellular recording electrodes were fabricated from borosilicate glass 

(World Precision Instruments, Sarasota, FL) and pulled on a Flaming/Brown micropipette 

puller (P-98, Sutter Instruments, Novato, CA).  Electrodes were filled with 1.0 M KCl 

(impedance: 40-80 MΩ) and positioned by a micromanipulator (Newport Corporation, 

Irvine, CA).  -0.1 nA current injection was used to bridge-balance the electrode 

resistance.  Diameter was measured by visual examination prior to electrode impalement 

using a calibrated eyepiece graticule within the microscope.  The size of the soma to be 

recorded was classified according to its diameter as small (≤30 µm), medium (31–45 µm) 

and large (≥45 µm). Electrophysiological recordings were performed with continuous 

current-clamp in bridge mode using an AxoClamp-2B amplifier, stored digitally via 

Digidata 1322A interface, and analyzed offline with pClamp 9 software (Axon 

Instruments, Union City, CA).  A neuron was accepted for study only when it exhibited a 

resting membrane potential (Balermpas et al.) more negative than -45 mV.  For each 
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neuron isolated for study, a continuous recording was obtained for 1 minute without the 

delivery of any external stimulus.  Neuronal excitability of small and medium diameter 

dissociated DRG sensory neurons was measured by injecting 1-s current pulses into the 

soma every 30 s.  Current was adjusted in order to elicit 1-2 action potentials per current 

injection under baseline conditions. Non-responding cells were discarded.   Following 3 

control current injections, at-HMGB1 (27 μM) or LPS (1μg/mL) was applied to the 

coverslip and current injections continued every 30 s.  Neuronal excitability was measured 

as number of action potentials elicited per current pulse before and immediately after 

addition of HMGB1 (15 and 45 s, respectively). If at-HMGB1 increased neuronal 

excitability, RAGE 11E6 (50 µM), TLR4 small molecule inhibitor (compound 15, 50 µM), or 

TLR2 inhibitor (CU-CPT22, 50 µM) was added to the bath to determine if at-HMGB1-

elicited neuronal excitation could be reversed. If LPS increased neuronal excitability, RAGE 

11E6 was added to the bath to determine if LPS-elicited neuronal excitation could be 

reversed. Excitation and blocking of excitation was analyzed within the first two minutes 

of application of RAGE 11E6, TLR2 or TLR4 inhibitors. 

Statistics 

GraphPad Software (LaJolla, CA) was used to determine the statistical significance. 

Results were expressed as mean ± SEM. When only two groups were compared, Student’s 

unpaired t test was used. Multiple comparisons were evaluated by Dunnett’s multiple 

comparison test after one-way ANOVA. p< 0.05 was considered to be statistically 

significant. GraphPad Software was used to determine the statistical significance of 
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differences in calcium response among HMGB1 oxidation state groups using Chi-square 

test with Yates correction with p<0.05 set as statistical significance. 
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Results 

Neuronal RAGE-immunoreactivity colocalizes with TLR4, the isolectin IB4 and calcitonin-

gene related peptide (CGRP) expression. 

We previously reported that the TLR4 receptor is localized to both peptidergic and 

non-peptidergic sensory neurons within the dorsal root ganglia (Due et al., 2012b). We 

examined cells in vitro for co-expression of RAGE and TLR4, IB4 and CGRP. Dissociated L4 

and L5 DRGs removed from naïve animals and cultured for 16-20 hours, exhibited a near 

complete colocalization of TLR4 and RAGE in small and medium diameter neurons (Fig. 1 

B, C) with little to no TLR4 or RAGE immunoreactivity present in non-neuronal cells (Fig. 

1 A). Further examination revealed that there was some colocalization of the RAGE with 

the non-peptidergic marker of nociceptive neurons, IB4 (Fig. 1 E, F), and the peptidergic 

nociceptive neuronal marker, CGRP (Fig. 1 H, I). 

Differential increases in neuronal [Ca2+]i by oxidation state specific HMGB1  

To determine whether neuronal RAGE or TLR4 receptors are capable of 

modulating depolarization-evoked Ca2+ transients, we used ratiometric Ca2+ imaging to 

measure at-HMGB1 or ds-HMGB1 responses in neurons isolated from rat lumbar DRG. As 

many LPS-sensitive sensory neurons are activated by capsaicin (Due et al., 2012b), we also 

compared the actions of at-HMGB1 and ds-HMGB1 in LPS-sensitive nociceptive and non-

nociceptive sensory neurons. Virtually all responsive neurons were small (≤30 µm) to 

medium diameter cells (31-45 µm). Exposure to media containing at- or ds-HMGB1 at a 

27μM concentration for 3 minutes was used as a maximal stimulus. This treatment 

produced a total of 14 of 96 cells that were responsive to at-HMGB1, of which only 6 cells 
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responded to both at-HMGB1 and LPS (Table 1). Upwards of 70.1% of at-HMGB1 

responsive cells were nociceptive (capsaicin-sensitive) (Table 2). These data indicate that 

many at-HMGB1 responses in vitro were likely mediated by the RAGE receptor.  

When sensory neurons were subjected to ds-HMGB1, considerably fewer cells 

exhibited calcium transients (7.55%; Table 1). Though there was a decrease in the 

percentage of total responsive cells, 100% of the disulfide HMGB1-responsive neurons 

responded to LPS (Table 1) and only 42% of the assayed cells were sensitive to capsaicin 

(Table 2).  Together, these results support the functional expression of both RAGE and 

TLR4 in nociceptive and non-nociceptive DRG neurons in vitro.      

All-thiol HMGB1-elicited increase in sensory neuron excitation is dependent on RAGE and 

not TLR4 

HMGB1-induced neuronal hyperexcitability has been recently described in rodent 

models of cerebral ischemia, epilepsy (Maroso et al., 2010, Qiu et al., 2010) and in DRG 

sensory neurons in vitro (Feldman et al., 2012). Though it is now known that oxidation 

state-dependent HMGB1 interactions signal through specific receptor types (RAGE 

receptor or TLR4 receptor), it is largely unknown what receptor is responsible for neuronal 

excitation (Yang et al., 2010, Venereau et al., 2012b, Yang et al., 2012). To determine the 

identity of the functional receptor by which oxidation state specific forms of HMGB1 can 

induce changes in sensory neuron excitability, we examined cellular responses using 

current clamp in the presence of at-HMGB1. If the cells responded to at-HMGB1, a small 

molecule inhibitor for TLR4 and TLR2, or the RAGE 11E6 antibody was administered 

followed by repeated current pulses. Due to the limited numbers of cells that were 
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responsive to ds-HMGB1 (see Table 1), we substituted this form of HMGB1 for the known 

agonist of TLR4, LPS.  Administration of the toll receptor antagonists or RAGE 11E6 alone 

failed to alter resting membrane potentials (data not shown).  

Repeated current pulses in the presence of at-HMGB1 produced a significant 

increase in the excitability of small diameter sensory neurons when compared to baseline 

levels (1.4 ± 0.2 action potentials (APs) for control vs. 5.7 ± 0.4 APs for at-HMGB1) (Fig. 2 

A).  Bath exposure to at-HMGB1 in combination with the TLR4 small molecule inhibitor 

(compound 15) and repeated current pulses failed to alter repeated current pulse induced 

APs (5.1 ± 0.4 APs; n=5; ANOVA, interaction F(3,14) = 52.60, p<0.0001; Bonferroni’s 

multiple comparisons, p>0.05 for at-HMGB1 vs. at-HMGB1 + Comp.15) (Fig. 2 A, B).  

Following exposure to at- HMGB1 plus RAGE antibody 11E6, we observed a statistically 

significant decrease in the number of APs when compared with at-HMGB1 alone (1.2 ± 

0.1 APs for control vs. 6.8 ± 1.3 APs for at-HMGB1 vs. 1.6 ± 0.2 APs for at-HMGB1 + RAGE 

Ab; n=5; ANOVA, interaction F(3,14) = 17.36, p < 0.001; Bonferroni’s multiple 

comparisons, p<0.001 for at-HMGB1 vs. at-HMGB1 + RAGE antibody, 11E6)  (Fig 2. C, D).  

The consequences of at-HMGB1 neuronal exposure in the presence of TLR2 inhibitor (CU-

CPT22) were similar to those observed with Compound 15 (1.1 ± 0.1 APs for control vs. 

4.3 ± 0.4 APs for at-HMGB1 vs. 3.7 ± 0.2 APs for at-HMGB1 + CU-CPT22; n=5; ANOVA, 

interaction F(3,14) = 32.43, p<0.0001; Bonferroni’s multiple comparisons, p>0.05 for at-

HMGB1 versus at-HMGB1 + CU-CPT22)  (Fig. 2 E, F).   

LPS-elicited increase in sensory neuron excitation is not dependent on RAGE 
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Given the ability of LPS to elicit an inward current in sensory neurons (Ochoa-

Cortes et al., 2010, Diogenes et al., 2011b, Due et al., 2012b), we also tested whether the 

LPS-induced neuronal responses were dependent on TLR4 or RAGE. Representative 

recordings and grouped data demonstrate that the excitability of sensory neurons was 

significantly increased by LPS when compared with control levels (Fig. 2 G, I).  We then 

utilized the RAGE 11E6 antibody to discern the degree to which LPS-induced neuron 

response was dependent on the RAGE receptor. RAGE 11E6 did not alter endotoxin-

induced APs (1.2 ± 0.1 APs for control vs. 4.3 ± 0.4 APs for LPS vs. 4.9 ± 0.4 APs for LPS + 

RAGE 11E6; n=5; ANOVA, interaction F(3,11) = 32.65, p < 0.0001; Bonferroni’s multiple 

comparisons, p > 0.05 for LPS vs. LPS + RAGE 11E6) (Fig. 2 G, H).   

A previously reported small molecule inhibitor of TLR4, Compound 15, was then 

used as a chemical probe to further investigate the molecular mechanism of LPS-induced 

neuron response (Bevan et al., 2010, Due et al., 2012b). Similar to our previous 

observations, Compound 15 completely blocked the increased excitability of LPS (1.2 ± 

0.1 APs for control vs. 4.9 ± 0.8 APs for LPS vs. 1.7 ± 0.2 APs for LPS + Comp. 15; n=5; 

ANOVA, interaction F(3,14) = 29.95, p < 0.0001; Bonferroni’s multiple comparisons, p < 

0.001 for LPS vs. LPS + Comp. 15) (Fig. 2 I, J). In contrast, Compound 15 demonstrated no 

effect upon blocking the increased neuronal hyperexcitability induced by HMGB1 

treatment (Fig. 2 A, B). 

RAGE expression in the Lumbar DRG following Tibial Nerve Injury 

Previous findings suggest that HMGB1 may be important for neuropathic pain 

behavior in rodents (Shibasaki et al., 2010) and that HMGB1 can be released for extended 
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periods of time following peripheral nerve injury (Feldman et al., 2012). Based on the 

kinetic breakdown of at-HMGB1 in different oxidative environments, it is likely that the 

neuronal RAGE receptor may be associated with nociceptive behavior in the rodent. In 

order to better understand the potential influence of RAGE in rodent neuropathic pain 

models, we studied changes in expression of RAGE and other genes known to be modified 

following peripheral nerve injury including the α2δ1 auxiliary subunit of the voltage-

dependent calcium channel (CACNA2D1) and the voltage-gated sodium channel isoform 

1.8 (NaV1.8) SCN10A. We initially quantified the mRNA level of individual genes in the 

DRG using quantitative real time PCR. Although CACNA2D1 mRNA appeared to increase 

from naïve levels to post-injury day 14 and 28, the data was not significantly different (Fig. 

3A; n=4, ANOVA, F= 2.51; p> 0.05). SCN10A mRNA level comparing naive control tissue 

with post-injury day 14 and 28 also lacked a statistically different level of significance (Fig. 

3B; n=4, ANOVA, F= 0.62; p> 0.05). RAGE expression was strongly upregulated by PID 28 

when compared to both PID 14 and naïve control tissue (Fig. 3C; n=4, ANOVA, F= 8.41; p< 

0.05). Given the pronounced effect of TNI on RAGE mRNA expression within the L4-L6 

DRGs at PID28, we next compared the TNI-induced changes on RAGE protein expression 

levels in L4-L6 DRGs. Lumbar DRG derived from TNI rodents exhibited a 3-fold increase in 

RAGE protein levels at PID28 (Fig. 4; n=6,ANOVA, F= 12.93; p< 0.05). 

Effects of RAGE 11E6 on pain hypersensitivity in the TNI model of neuropathic pain 

To determine the degree to which neutralization of RAGE contributes to chronic 

pain hypersensitivity induced by nerve injury, we performed nociceptive behavioral tests 

in the presence of a RAGE neutralizing antibody. TNI significantly reduced the pressure 
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and tactile withdrawal thresholds of the hind paw on the ipsilateral side (Fig. 5; n=3, 70.54 

± 1.37 mN; p>0.05) and a single systemic injection of RAGE 11E6 (10 mg/kg) had no effect 

on uninjured rodents (data not shown). Systemic administration of RAGE 11E6 failed to 

affect tactile hyperalgesia when administered at 7, 14, or 21 days. However, tactile 

withdrawal thresholds of the hind paw ipsilateral to TNI at PID28 were transiently 

returned to baseline levels by 4 hours (Fig. 5; n=6-8, 58.33 ± 2.21 mN, ANOVA; p< 0.01). 

The finding that RAGE 11E6 did not elevate tactile hypersensitive levels above the pre-

injury state shows that the animals ability to detect noxious tactile stimulus was not 

altered by the use of the antibody.  Similar observations of RAGE 11E6 behavioral reversal 

in age-matched male rodents subjected to TNI was also observed (data not shown; n=6-

8 per post injury time point).  
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Discussion   

Our study provides evidence that the ligand at-HMGB1 acting through RAGE is a 

critical regulator of nociceptive signaling and sensitization in vitro. Moreover, as ongoing 

pain following peripheral nerve injury is thought to be maintained in part by activity in 

sensitized primary afferent neurons and could be influenced by an injury-induced 

upregulation of de novo receptors (White et al., 2005), latent upregulation of RAGE in the 

DRG corresponds with the ability of a monoclonal antibody against RAGE to modulate 

neuropathic pain-related behavior in the rat.  

HMGB1 receptor signaling in the nervous system 

There is growing evidence that the presence of cytosolic HMGB1 in the nervous 

system following insult contributes to neuropathologic neuronal excitability, including 

epilepsy, neuropathic pain and migraine (Maroso et al., 2010, Feldman et al., 2012, 

Karatas et al., 2013). A number of pain studies have demonstrated that the perisciatic or 

intrathecal administration of HMGB1 can produce rapid and transient mechanical and 

thermal hyperalgesia in rodents (Chacur et al., 2001, O'Connor et al., 2003, Shibasaki et 

al., 2010). However, given the possibility that either of the two isoforms of HMGB1 may 

be present after injury to the nervous system (Zandarashvili et al., 2013), there is little 

knowledge regarding which of the cogent HMGB1 receptors, RAGE and TLRs, contribute 

to changes in neuropathological conditions. Although sensory neurons exhibit both 

functional TLR4 and RAGE receptors, our studies show that RAGE 11E6 completely inhibits 

at-HMGB1-dependent neuronal excitability in vitro.  In contrast, there is no evidence to 
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suggest that at-HMGB1 activates neuronal TLR4, considering a small molecule inhibitor of 

TLR4 failed to reverse at- HGMB1 elicited neuronal excitability in vitro.    

RAGE signaling in the nervous system 

HMGB1 acting through RAGE was initially implicated in neurite outgrowth in 

embryonic neurons and migration of numerous immune and non-immune cells types 

during states of inflammation (Rauvala and Pihlaskari, 1987, Merenmies et al., 1991, 

Fages et al., 2000, Rouhiainen et al., 2004). The relevance of HMGB1/RAGE to 

inflammation is relatively well described for the pathogenesis of diabetes, cardiovascular 

disease and various cancers (Rouhiainen et al., 2013). Whether HMGB1 activation of 

neuronal RAGE and the resultant increase in neuronal excitability during or following 

nerve injury-induced inflammation, represents a neuropathological consequence, is 

generally unknown. Initial reports in mice suggest that pharmacological and genetic 

blockade of RAGE impairs both innate immune response and nerve regeneration 

following sciatic nerve crush (Rong et al., 2004a, Rong et al., 2004b). Though the degree 

to which this injury altered tactile hyperalgesic behavior was not tested, the potential 

effects may not have manifested measurable changes given that both the nerve 

conduction velocities and gait analysis were tested for only three weeks post-nerve injury 

while the behavioral effects of increased RAGE expression in the rat DRG following 

peripheral nerve injury could only be adequately assayed at four weeks. A mechanism 

that might account for this latent change in RAGE could be due to a HMGB1 feed forward 

mechanism that exists in some immune cells and could serve to increase the levels of 

RAGE ligands and subsequently increased RAGE expression (Akirav et al., 2012).   
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Oxidation State dependent HMGB1 signaling in the nervous system 

Functional delays in the expression of RAGE in the affected DRG and the latent 

ability of RAGE neutralization to reverse tactile behavior in the rodent may also be 

dependent on changes in the state of HMGB1. It is well known that HMGB1 may form a 

complex with other molecules to enhance proinflammatory responses, including LPS, IL-

1, bacterial DNA, CXCL12, and viral RNA (Sha et al., 2008, Campana et al., 2009, 

Hreggvidsdottir et al., 2012). The state-dependent characteristics that contribute to 

protein/receptor interaction appear to depend on the molecular properties of three 

cysteine residues; the redox state of cysteine (C) 106, and a disulfide bond between C23 

and C45 (Hoppe et al., 2006, Sahu et al., 2008). For example, during active inflammation 

the predominant form of HMGB1 is C106 thiol (all-thiol) and disulfide bond C23-45 

(disulfide-HMGB1); however, when inflammation begins to subside, HMGB1 terminally 

oxidizes its cysteine residues and greatly diminishes biological activity (oxidized-HMGB1) 

(Antoine et al., 2010, Vezzoli et al., 2010, Yang et al., 2011). Moreover, an oxidizing 

environment following inflammation or injury may promote HMGB1 cytokine activity 

(Vezzoli et al., 2011). These changes in HMGB1 conformation over time combined with 

the feed forward expression mechanisms that exist may account for the delayed influence 

observed in this neuropathic pain model.   

Several published works have shown the importance of HMGB1 in the 

propagation of pain pathology, and when combined with the duality of function of the 

HMGB1 molecule, the change of the expression of the RAGE receptor as time progresses 

in vivo, as well as the efficacy of the antibody against the RAGE receptor with pain 
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reversal, the conclusion can be drawn that RAGE and its signaling pathway are integral to 

pain pathology at later stages. Results of further study regarding the RAGE signaling axis 

may uncover targets for novel therapeutics and possibly have direct impact upon current 

clinical practice, through the discovery of potential biomarkers for pathologies of chronic 

inflammation, and through better understanding of the mechanisms of inflammation as 

they relate to disease. RAGE could possibly be a lynchpin to understanding the complete 

pathway leading to the pathogenesis of neuropathic pain. 
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Figure Legend 

Figure 2-1. RAGE, TLR4, IB4 and CGRP immunohistochemistry in primary sensory neuron 

cultures. Images depicting corresponding images of the cell nucleus label DAPI (A), RAGE 

(B) and TLR4 (C). Note that the majority of RAGE immunoreactive neurons are also 

positive for TLR4 (yellow arrows indicates co-expression).  Corresponding images of DAPI 

(D), RAGE (E), and the non-peptidergic marker of nociceptive neurons, IB4 (F). A minority 

of IB4 cells exhibit RAGE (yellow arrow indicates co-expression). Corresponding images of 

DAPI (G), RAGE (H), and the peptidergic marker of nociceptive neurons, CGRP (I). Note 

that there are numerous RAGE immunoreactive neurons which are also positive for CGRP. 

Scale bar is 50 μm. 

Figure 2-2. RAGE neutralizing antibody, but not the TLR4 small molecule inhibitor, 

Compound 15, suppresses at-HMGB1-dependent neural excitation in acutely 

dissociated sensory neurons.  Current clamp recordings were performed on small-to-

medium (>30 μm - >40 μm) diameter lumbar 4–5 DRG neurons from naive rats. Firing of 

1–2 action potentials (Tesana et al.) was elicited by a 1 second depolarizing current 

injection (ranging from 0.1 to 2.0 nA depending on the cell) every 30 seconds. 

Representative recordings demonstrating that application of at-HMGB1 (27μM) increases 

the number of elicited action potentials in DRG sensory neurons is not reversed by TLR4 

small molecule inhibitor (compound 15) (A) or a TLR2 inhibitor (CU-CPT22) (E). In contrast, 

exposure to RAGE antibody effectively suppresses at-HMGB1-dependent action potential 

(C). Group data showing that compound 15 (B) and CU-CPT22 (F) do not reverse at-

HMGB1-elicited increase in DRG neuron action potential firing while RAGE Ab does 
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reverse increased excitation (D).  Representative recording demonstrating that 

application of LPS (1 μg/ml) increases the number of elicited action potentials in DRG 

sensory neurons which is unaffected by RAGE antibody (G). In contrast, the neuronal 

effects of LPS can be suppressed with compound 15 (I). Group data showing that 

compound 15 (J), but not RAGE Ab  (H), reverses LPS-elicited increase in DRG neuron 

action potential firing. (Ligand treatment compared to receptor inhibitor; *p < 0.05)  

Figure 2-3.  Tibal Nerve Injury (TNI) alters the expression of neuronal transcripts in 

dorsal root ganglion (DRG) derived from TNI rats. (A – D) RT-PCR analysis showing the 

mRNA expression profile of CaV alpha2delta1 (A) NaV1.8 (B) and RAGE (*p< 0.05) (C) at 

different time points following TNI; post injury day (Holmbeck et al.) 14 and PID 28 (n=3).  

RT-PCR data were analyzed using the Ct method and mRNA expression levels are 

expressed relative to L27- ribosomal housekeeping gene.  

Figure 2-4. RAGE protein expression following TNI at post injury day 28. Immunoblot of 

RAGE in L4/5 DRGs from naïve, sham injured and TNI ipsilateral to the injury at [PID] 28 

(n=3, sham versus injury; *p< 0.05). Actin was used as a loading control to which samples 

were normalized.  

Figure 2-5. Decreased tactile hyperalgesia following intraperitoneal injection of a 

neutralizing RAGE antibody in tibial nerve-injured rats at Day 28. Paw withdrawal 

threshold (PWT) in rodents subjected to TNI (n = 6-8, white bars) were significantly 

reduced when compared with pre-TNI thresholds (n = 6-8, black bar) for at least 28 days. 

Administration of control, non-neutralizing antibody did not alter PWT at baseline or after 
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TNI at 7, 14, 21 or 28 days (n = 6-8, CT Ab; gray bars). A humanized monoclonal antibody 

to RAGE (RAGE Ab; 10 mg/kg body weight; n = 6-8 each) was administered 

intraperitoneally and ipsilateral PWT was assessed using the von Frey filament test.  

Behavior was tested at 1 h post injection and again at 4 hours (data not shown). A single 

injection of RAGE Ab did not produce a change in PWT at TNI PID 7, 14, and 21 (striped 

bar) that differed from pre-RAGE Ab (white bars). At TNI PID 28 a single injection of RAGE 

Ab successfully reversed TNI decreases in PWT when compared with pre-RAGE Ab 

treatment (*p< 0.05).   
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Figure 2-1 
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Figure 2-2 
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Table 1 

 

Differential increases in neuronal [Ca2+]I by oxidation specific HMGB1 

 

 

 

 

 

 

Table 2 

 

Population of nociceptive neurons via capsaicin sensitivity responsive to HMGB1 

isoforms 

 

N = 217 Percent Responsive to capsaicin 

at-HMGB1 70.1% 

ds-HMGB1 42% 
 

 

 

 

  

 Percent Total Neurons 
 

Percent Responsive 
to LPS 

at-HMGB1 14.58%  
(14/96) 

43%  
(6/14) 

ds-HMGB1 7.55%  
(8/106) 

100%  
(8/8) 
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Figure 2-3  
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Figure 2-4  
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Figure 2-5 
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Introduction 

Opioid analgesics are primarily known for treating severe pain, but these 

beneficial effects are often accompanied by sedation, respiratory depression, 

constipation and the paradoxical phenomenon known as opioid-induced hyperalgesia 

(OIH).  Though clinically used opioids are known to bind to GPCR opioid receptors and 

produce analgesia, this class of drugs also creates a neuroinflammatory response which 

can compromise pain relief (Hutchinson et al., 2011).  

Investigations of opioid-induced neuroinflammation suggest that both the natural 

alkaloids found in the resin of the Papaver somniferum and synthetic substances can 

activate a non-GPCR known as toll-like receptor 4 (TLR4). Early work by Roy and 

colleagues first established that low dose morphine in combination with LPS potentiated 

activation of NF-kB and pro-inflammatory cytokine production. Conversely, naloxone 

could block the morphine augmentation of cytokine production by LPS stimulated 

macrophages (Roy et al., 1998). More recent studies demonstrate that morphine and its 

metabolite, morphine-3-glucuronide (M3G), binds to TLR4 and its accessory protein, 

myeloid differentiation protein 2 (MD-2), triggering signaling cascades which lead to pro-

inflammatory cytokine production in macrophages and microglial cells (Lewis et al., 2010, 

Wang et al., 2012).  

TLR4-mediated effects by LPS and opioids/metabolites are not restricted to 

immune cells as small nociceptive neurons bearing TLR4 can elicit pro inflammatory 

cytokine and prostaglandin production, modulation of opioid-related peptides and 

activity dependent release of neuropeptides (Hou and Wang, 2001, Acosta and Davies, 
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2008, Tse et al., 2014). More importantly, these same TLR4 agonists produce rapid 

increases in neuronal calcium flux, elevated states of excitability and potentiation of 

voltage-gated sodium current in nociceptive sensory neurons (Wadachi and Hargreaves, 

2006, Ochoa-Cortes et al., 2010, Diogenes et al., 2011b, Due et al., 2012b, Due et al., 

2014). Taken together, the deleterious properties of opioid-induced TLR4 activation in 

neurons and glial cells can produce stimulus-dependent behavioral tactile and thermal 

hyperalgesia (Lewis et al., 2010, Due et al., 2012b, Eidson and Murphy, 2013, Due et al., 

2014). 

TLR4 is comprised of an extracellular domain with multiple leucine-rich repeats, a 

single transmembrane helix, and an intracellular region approximately 150 amino acids in 

size and comprised largely of a Toll/IL-1R (TIR) resistance domain (Medzhitov et al., 1997, 

Rock et al., 1998). Interactions of TIR domains with TLRs such as TLR4 are pivotal in the 

early stages of inflammatory signaling including inhibition of NF-kB translocation and 

early IL- ression in LPS-stimulated macrophages (Toshchakov et al., 2007). 

Four TIR-containing adapter proteins including MyD88, TIR domain-containing adapter 

protein [TIRAP], TIR domain-containing adaptor inducing IFN- –related adaptor 

molecule [TRAM], and TRIF are responsible for propagation of signal to downstream 

targets (Horng et al., 2001, Horng and Medzhitov, 2001, Kagan et al., 2008).  Signal 

transduction of the assembled TLR signaling complex is achieved through the 

coordination of the initial TIR domain interactions that mediate adapter recruitment to 

the receptor TIR (Kagan and Medzhitov, 2006). 
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To diminish TLR4 agonist-dependent events in vitro and nociceptive behavioral 

changes due to opioids in vivo, we assayed the ability of a select group of cell permeating 

decoy peptides to affect LPS-induced neuronal activation and M3G-dependent 

hyperalgesia in rodents. The protein-protein interface targeted by the decoy peptides 

used a conserved structural feature, the BB loop, and functionally inhibited LPS signaling 

in primary murine macrophages (Toshchakov et al., 2007, Toshchakov et al., 2011). The 

data presented in this study identify decoy peptides that target TLR4 TIR and provide 

evidence for the mechanism of decoy peptide action in both dissociated nociceptive 

sensory neurons and rodent OIH. 
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Methods 

Animals 

Pathogen-free, adult female and male Sprague-Dawley (S/D) rats (150–200 g; 

Harlan Laboratories) were housed in temperature (23 ± 3°C) and light (12-hr light: 12-hr 

dark cycle; lights on at 07:00AM) controlled rooms with standard rodent chow and 

autoclaved tap water available. Experiments were performed during the light cycle. 

Animals were randomly assigned to the treatment groups. All animal related experiments 

were approved by the Institutional Animal Care and Use Committee of Indiana University 

School of Medicine. All procedures were conducted in accordance with the Guide for Care 

and Use of Laboratory Animals published by the National Institutes of Health and the 

ethical guidelines established by the International Association for the Study of Pain. 

Reagents 

All reagents were freshly prepared in buffer the day of experimentation. Capsaicin 

and lipopolysaccharide (biologically reactive serotype B5:55) were obtained from Sigma 

and reconstituted in deionized H2O (Sigma; St. Louis, MO). The culture media used for 

acute dissociation cultures was made of Ham’s F-12 mixture, DMEM, supplemented with 

10% fetal bovine serum, penicillin and streptomycin (100μg/ml and 100U/ml), and N2 

(Life Technologies, Corp.). Decoy peptide sequences for 4BB, 4aE, 4R1, 4R3, and 4R9 

(Toshchakov et al., 2011) were modified to include a TAT (transduction domain of human 

immunodeficiency virus-1 (HIV)) segment in order to aid in membrane permeability in our 

neuronal cell cultures (Schwarze et al., 1999, Brittain et al., 2011). Morphine-3-β-D-
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glucuronide (M3G) was supplied by NIH/NIDA Drug Supply Program and utilized at a 

concentration (10mg/kg, i.p.) (Due et al., 2012b). 

Preparation of acutely dissociated dorsal root ganglion neuron 

In order to maintain a nociceptive population in the primary cell culture, the L4, 

L5, and L6 dorsal root ganglia (DRG) were removed via dissection post mortem following 

the methods outlined by Ma and Lamotte (Ma and LaMotte, 2005). The DRGs were 

dissected and placed in a test tube containing DMEM and neutral protease and 

collagenase (Worthington Biochemical), while gently rocking at 37°C for 40 minutes. The 

cells were then dissociated by mechanical trituration, in culture media containing 1 mg/ml 

bovine serum albumin and trypsin inhibitor (Worthington Biochemical). The cells were 

then plated on coverslips coated with poly-L lysine and laminin (BD Biosciences) and 

incubated for two to three hours before more culture media was added to the wells. The 

cells were then allowed to sit undisturbed for 12 to 15 hours to adhere at 37°C (with 5% 

CO2). 

Ca2+ imaging 

Dissociated DRG cells were loaded with fura-2 AM (3mM, Invitrogen Corp.) for 

25 min at room temperature in a balanced sterile salt solution (BSS) (NaCl 140mM, Hepes 

10mM, CaCl2 2mM, MgCl2 1mM, glucose 10mM, KCl 5mM). The cells were rinsed with 

the BSS and mounted onto a chamber that was placed onto the inverted microscope. 

Intracellular calcium was measured by digital video microfluorometry with an intensified 

CCD camera coupled to a microscope and MetaFluor software (Molecular Devices Corp.). 
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Cells were illuminated with a 150 W xenon arc lamp, and the excitation wavelengths of 

the fura-2 (340/380nm) were selected by a filter changer. Sterile solution was applied to 

cells prior to treatment, any cells that responded to buffer alone were not used in 

neuronal responsive counts. The cells were assayed for the ability of the decoy peptide to 

interrupt/reverse the ability of LPS to elicit a calcium flux from the cell. The treatments 

were given in the order of LPS (1-2μg/mL), the decoy peptide (15μM), a second treatment 

of LPS (1-2μg/mL), and capsaicin (3nM). A minimum period of three minutes was allowed 

for observation after each treatment was introduced to the bath; the next treatment 

would only be administered if the signal re-established a baseline signal output. Calcium 

imaging traces were analyzed by two independent analyzers and only responses that 

were in agreement between two individuals were used in the counts. 

Electrophysiology 

Sharp electrode intracellular recordings were obtained from primary afferent 

neurons 12 to 18 hours after acute dissociation. Coverslips were transferred to a 

recording chamber mounted on the stage of an inverted microscope (Nikon Eclipse Ti; 

Nikon Instruments, Inc.). The chamber was perfused with a bath solution (NaCl 120mM, 

KCl 3mM, CaCl2 1mM, MgCl2 1mM, Hepes 10mM, Glucose 10mM) adjusted to a pH 7.4 

and osmolarity of 300 Osm. All recordings were obtained at room temperature. 

Intracellular recording electrodes were fabricated from borosilicate glass (World Precision 

Instruments: Sarasota, FL) and pulled on a Flaming/Brown micropipette puller (P-98, 

Sutter Instruments). Electrodes were filled with 1.0M KCl (impedance: 40–80 MΩ) and 
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positioned by a micromanipulator (Newport Corp.: Irvine, CA). A current injection of 

−0.1nA was used to bridge-balance the electrode resistance. 

Prior to electrode impalement, the size of the soma to be recorded was classified 

according to its diameter as small (≤30μm), medium (31 to 45μm) and large (≥45μm). 

Electrophysiological recordings were performed with continuous current-clamp in bridge 

mode using an AxoClamp-2B amplifier, stored digitally via Digidata 1322A interface, and 

analyzed offline with pClamp 9 software (Axon Instruments, Inc.). A neuron was accepted 

for study only when it exhibited a resting membrane potential (Balermpas et al.) more 

negative than −45mV. For each neuron isolated for study, a continuous recording was 

obtained for one minute without the delivery of any external stimulus. Neuronal 

excitability of small and medium diameter dissociated DRG sensory neurons was 

measured by injecting one second current pulses into the soma every 30 seconds. Current 

was adjusted in order to elicit one to two action potentials per current injection under 

baseline conditions. Following 3 control current injections, LPS (1-2ug/mL) was applied to 

the coverslip and current injections continued every 30 seconds; coverslip(s) may have 

been exposed to decoy peptide (15μM) prior to LPS administration depending on the 

experiment. Neuronal excitability was measured as number of action potentials elicited 

per current pulse before and after addition of LPS. If LPS increased neuronal excitability, 

decoy peptides or vehicle was added to the bath to determine if LPS-elicited neuronal 

excitation could be reversed. 
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Behavioral assessment 

All rodents were habituated to testing chambers for at least two days. Rodents 

were randomly assigned to sham or injured test groups. All baseline testing occurred 

before and after exposure to reagents. The incidence of foot withdrawal in response to 

mechanical indentation of the plantar surface of each hindpaw was measured with 

custom-designed Von Frey filaments capable of exerting forces of 10, 20, 40, 60, 80 and 

120mN and a uniform tip diameter to designated loci present on the plantar surface of 

the foot (Bhangoo et al., 2007). The filaments were applied six times in order of ascending 

force to each hind foot of the rodent. The von Frey withdrawal threshold was defined as 

the force that evoked a minimum detectable withdrawal observed on 50% of the tests 

given at the same force level. All behavioral assays were performed by double-blinded 

individuals. 

Statistics   

Data are presented as group mean ± SEM. Tactile threshold time course curves 

(plotted as the mean ± SEM vs. time after treatment) were analyzed with a one-way 

analysis of variance (ANOVA) with repeated measures over time, followed by Dunnett’s 

post hoc test to compare each time point to the same group’s baseline. All analyses 

employed Prism statistical software, CA, USA. 
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Results  

Recent studies targeting surface-exposed segments of TLR4 TIR domain protein 

with decoy peptides effectively inhibit receptor-mediated signaling (Toshchakov et al., 

2011). To test the degree to which TLR4 TIR domain diminish excitatory events in LPS 

responsive sensory neurons we utilized five decoy peptides, 4R9, 4R3, 4aE, 4R1 and 4BB 

which are known to potently inhibit TLR4-mediated events in LPS-stimulated 

macrophages (Toshchakov et al., 2011). All of these decoy peptides exhibited 

approximately equal length and a surface-exposed segment of TLR4 TIR primary 

sequence. The peptide sequences were modified to include a TAT precursor at the N-

terminus of each peptide, in order to assist bypassing the neuronal cell membrane 

(Brittain et al., 2011).  

TIR-binding decoy peptides decreases LPS induced Ca2+ mobilization in dissociated sensory 

neurons  

Activation of TLR4 expressed by primary sensory neurons results in the increase in 

the intracellular Ca2+concentration (Due et al., 2012b). In the first series of experiments, 

assessed neurons were selected for morphological qualities (small (≤30μm) and medium 

(31-45μm) diameter cells) and exposed to LPS in the absence or presence of the five decoy 

peptides after which capsaicin (3 nM) was added to characterize the responsive neurons. 

A positive response to capsaicin indicates the cell is a nociceptor expressing the TRPV1 

channel (O'Neill et al., 2012).  
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We observed that LPS application increased [Ca2+]i in a moderate number of DRG 

sensory neurons (27%; n=575 cells) derived from female rodents (n=8).  Application of the 

decoy peptides interrupted TLR4 neuronal activation to different degrees. The decoy 

peptide 4BB yielded inhibition in 71% of LPS-sensitive neurons; the decoy peptide 4aE 

elicited a 56% rate of inhibition, and the 4R9 peptide inhibited 48% of LPS-sensitive cells. 

Peptide 4R1 and 4R3 demonstrated a blockade of LPS-sensitive signal in 41% and 18% of 

cells, respectively (Fig 1 and Table 1). 

Numerous LPS-responsive cells, which were sensitive to the decoy peptide 

exposure, did not respond to capsaicin. Only 33% of LPS-sensitized neurons were affected 

by 4R9 followed by 4BB (24%) and 4R3 (18%).  A sub-population of LPS-responsive 

neurons TRPV1 cells exhibited presence of the decoy peptides. 4aE and 4R1 peptides were 

limited to only a 17% and 12% block of LPS- and capsaicin-sensitive neurons, respectively 

(see Table 1).  

TIR-binding decoy peptides diminish inward current facilitation in nociceptive neurons 

TLR4 agonists such as LPS have been shown to elicit inward current in nociceptive 

sensory neurons and increase the excitability of sensory neurons (Ochoa-Cortes et al., 

2010, Diogenes et al., 2011b, Due et al., 2012b) and activation of TLR4-mediated 

excitation in nociceptive neurons increases density in a number of voltage-gated sodium 

currents (Due et al., 2012b). To determine the degree to which the decoy peptide 4BB 

inhibited LPS-induced neuronal excitation, we examined neuronal response using sharp 

electrodes in current clamp mode. 

 

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0107399#pone-0107399-g001
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Repeated current pulse combined with LPS administration produced a significant 

increase in the excitability of small diameter neurons when compared to baseline levels, 

though less than 27% of neurons responded to LPS (n=49). We also observed 1.6±0.2 APs 

in cells under control conditions compared to 4.8±0.6 APs in cells subjected to LPS (n = 

13) (Fig. 2A). Subsequent treatment with decoy peptide 4BB completely blocked LPS-

dependent excitability in all sensory neurons that responded to LPS (1.2±0.2 APs for 4BB, 

n = 13; F = 41.82, p<0.05; Dunnett's multiple comparison test, P<0.05) (Fig. 2B). 

Pretreatment of rodents with decoy peptides prevents the rapid induction of tactile 

hyperalgesia due to systemic M3G administration  

It has been noted in rodents that the level of antinociception achievable with 

morphine or morphine analogues is reduced due to glial and neuronal TLR4 activation 

(Lewis et al., 2010, Due et al., 2012b, Due et al., 2014). To further explore the role of TLR4 

signaling in rodent OIH, we examined the degree to which rats treated with a combination 

of M3G and decoy peptides produced changes in tactile behavioral assays. M3G 

administration (10 mg/kg, i.p.) produced significant reductions in the paw withdrawal 

threshold to tactile stimulus (Figure 3-3A-E; P < 0.05). In contrast, paw withdrawal 

threshold to tactile stimulus in rodents pretreated with either 1 or 10 mg/kg, i.p. of 4BB 

or 4aE 30 minutes prior to M3G administration did not differ from baseline thresholds or 

the combination of decoy peptides plus vehicle (Figure 3-3A,B;n = 12, F = 47.62, P < 0.05; 

Dunnett’s multiple comparison test, P < 0.05). The decoy peptide effect in M3G-treated 

animals was not apparent 4 hours after treatment for either 4BB or 4aE (data not shown). 
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Decoy peptides 4R1, 4R3 and 4R9 failed to produce changes in paw withdrawal threshold 

in M3G-treated animals at either dosage (Figure 3-3C-D).  
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Discussion 

This study explored the functional basis of nociceptive neuronal TLR4 signaling 

associated with the bacterial cell product, LPS and the morphine metabolite, M3G. 

Activation of TLR4 present on nociceptive neurons produces rapid changes in intracellular 

calcium, action potential discharge, potentiation of voltage-gated sodium currents and 

activity dependent release of neuropeptides (Hou and Wang, 2001, Due et al., 2012b). 

More importantly, the known TLR4 agonist, M3G, elicits increased neuronal excitation 

and behavioral hyperalgesia (Due et al., 2012b). Though several mechanisms may be 

involved with the neuronal TLR4-mediated events, we demonstrate for the first time that 

interruption of the TIR-dependent recruitment of the cytoplasmic adaptor protein MyD88 

using the decoy peptide 4BB is instrumental for eliminating both M3G-mediated 

excitation in disassociated nociceptive neurons and behavioral hyperalgesia. Similar 

observations were appar  

MyD88 is a necessary signaling adapter protein for all members of the IL-1R family 

and all TLRs with the exception of TLR3 (Andreakos et al., 2004, Nagpal et al., 2009). 

Previous observations found that when cell-permeating decoy peptides bound to various 

surface-exposed segments of the MyD88 both early cytokine mRNA expression and MAPK 

activation could be inhibited in LPS-stimulated murine macrophages (Toshchakov et al., 

2011). Similar evidence using TIR mimetics was observed in IL-

hypothalamic neurons (Davis et al., 2006). Herein, we observed that co-exposure of the 

five decoy peptides known to inhibit protein function in stimulated macrophages 

diminished LPS-mediated calcium fluxes in a rank order of 4BB > 4aE > 4R9 > 4R1 > 4R3. 
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In particular, the degree to which the decoy peptide 4BB affected both neuronal 

excitation and opioid metabolite-induced behavioral hyperalgesia appears to provide 

strong evidence that neuronal TLR4 TIR dimerization is extremely important for excitation 

in nociceptive sensory neurons. 

Induction of the TLR4 signaling cascade occurs via two pathways which both 

contribute to the synthesis and release of pro-inflammatory cytokines. Immune cell 

MyD88-d

infection while MyD88-independent signaling is dependent on TIR domain–containing 

adaptor–inducing IFN- (Yamamoto et 

al., 2002, Mansell et al., 2004). Transcriptional changes due to LPS or M3G results in the 

induction of cytokines in the CNS through receptor-mediated assembly of the signaling 

adapter proteins, TIR and MyD88 (Lewis et al., 2010, Grace et al., 2014). Though the 

cytokines associated with TLR4 activation in DRG neurons also elicit an increase in TNFα, 

and COX2 through activation of NF-

are TRIF dependent (Tse et al., 2014). 

Although peripheral nociceptor activation by TLR4-mediated mechanisms likely 

underlies behavioral sensitivity to noxious stimuli following nerve injury or drug-induced 

changes, little is known regarding the mechanism. Our data support a role for MyD88 in 

regulating the off-target behavioral effects of morphine. However, the balance of 

nociceptor activation by nerve injury or inflammation may take other forms of the TLR4-

associated signaling adapter proteins. For example, MyD88/TRIF signaling-deficient or 

MyD88-deficient mice fail to exhibit tactile allodynia following spinal nerve ligation 
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(Stokes et al., 2013). Similar loss of allodynia is present in genetically modified rodents 

subjected to intrathecal LPS or drugs associated with chemotherapy-induced peripheral 

neuropathy (Stokes et al., 2011, Park et al., 2013, Li et al., 2014, Woller et al., 2015) 

including mice deficient for a signaling adapter downstream to both TLR2 and TLR4, TIR 

domain-containing adaptor protein (TIRAP; also known as Mal) (Stokes et al., 2013). 

The ability of LPS administration to elicit intracellular calcium mobilization in both 

capsaicin- and non-capsaicin-sensitive neurons predicts that these sensitized cells may 

convey thermal or mechanical modalities independent of inflammation states (Drew et 

al., 2002). Though not distinguished herein, these LPS sensitive cell subpopulations are 

divided into peptidergic, TRPV1-positive and non-peptidergic, IB4-positive neurons (Due 

et al., 2012). Moreover, transactivation of the TRPV1 channel through TLR4 stimulation 

has been shown a potential mechanism of nociceptive response (Diogenes et al., 2011b) 

and these TRPV1-bearing cells may not be only capable of sensing thermal changes as a 

number of these neurons coexpress TRPA1 (Story et al., 2003, Vilceanu and Stucky, 2010), 

but also may be cross-sensitized by the presence of TRPA1 agonists (Spahn et al., 2014). 

Interestingly, the presence of supraphysiological concentrations of LPS activates TRPA1 

sensitive neurons independent of TLR4 (Meseguer et al., 2014). Similar TLR-independent 

actions have also been described for bacterial N-formylated peptides and the pore-

forming toxin α-haemolysin (Chiu et al., 2013). The degree to which the TLR4 agonist, 

M3G, preferentially activates capsaicin- and non-capsaicin-sensitive neurons is unknown.  

Other ion channels which may be associated with TLR4 activation include voltage-

gated sodium channels. It is known that the M3G elicits a substantial increase in the 
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current density for voltage-gated sodium channels (NaV), NaV1.6, NaV1.7 and NaV1.9, 

but not NaV1.8 (Due et al., 2012b), which can be pharmacologically inhibited by the state-

dependent sodium channel blocker, carbamazepine (Due et al., 2014).  Some of these 

same Na+ currents may also influence other TLR4-sensitive cell types such as macrophages 

and microglia (Black et al., 2009) and may also contribute systemic inflammatory 

conditions (Schaper et al., 2013).  Together the pharmacological targeting of TLR4 

signaling adapter proteins may provide insight into opioid-sparing therapies and 

neuropathic pain disorders. 
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Conclusion 

Given the importance of the immune system, it is impractical to suggest that TLR4 

receptor blockade can provide complete elimination of OIH. However, targets such as 

MyD88 and TIRAP could have a greater effect on the off-target effects of opioids and elicit 

opioid-sparing in the clinical population (Fekonja et al., 2012). This study also has a larger 

range of application when considering that TLR4 shares its adaptor protein complex with 

another receptor known for neuronal excitation and activity, and innate immune 

functionality, RAGE (Sakaguchi et al., 2011). RAGE shares both the TIR domain and TIRAP 

and MyD88 adaptor proteins with TLR4, which suggests that is in fact susceptible to the 

same methods of inhibition via decoy peptide administration (Ibrahim et al., 2013). In 

addition, pharmacological techniques allow for changes in concentrations and dosing, 

meaning that total inhibition should not be the goal (Bevan et al., 2010). Mitigation of the 

ability of TLR4 to recruit its adaptor proteins and initiate downstream signaling may prove 

more successful at preventing pathological development, while maintaining the immune 

functionality of the receptor.  
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Figure Legend 

Figure 3-1: Representative calcium imaging trace of decoy peptide assessment. Acutely 

dissociated neurons were assayed for activity via calcium imaging (FURA-2AM) in the 

presence of TLR4 agonists (LPS), decoy peptides for the MyD88 adaptor protein, and 

capsaicin. Administration of decoy peptide alone did not result in neuronal activation. 

Cells were first assessed for LPS sensitivity followed by application of the decoy peptide. 

A second dose of LPS was given to observe the effects of the peptide, and capsaicin was 

used to further characterize the neuronal population. 

Figure 3-2: Representative current clamp trace. Current clamp recordings were 

performed on small-to-medium (>30 μm – >40 μm) diameter lumbar 4–5 DRG neurons 

from naive rats. Firing of 1–2 action potentials was elicited by a 1 second depolarizing 

current injection (ranging from 0.1 to 2.0 nA depending on the cell) every 30 seconds 

(Tesana et al., 2012). Representative recordings demonstrating that application of LPS 

and the subsequent increase in elicited action potentials in DRG sensory neurons can be 

reversed by administration of MyD88 decoy peptides. 

Figure 3-3: Changes in opioid-induced hyperalgesia following intraperitoneal injection 

of MyD88 decoy peptide. Paw withdrawal threshold (PWT) of rodents demonstrated a 

significant decrease following the administration of M3G and subsequent induction of 

opioid-induced hyperalgesia. Administration of decoy peptides targeting the MyD88 

adaptor protein proved efficacious to varying degrees in returning PWT to baseline 

levels when introduced intraperitoneally. Peptides were administered at doses of 
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1mg/kg and 10mg/kg. Administration of peptides alone at either dose failed to alter 

baseline baseline PWT. The peptides 4BB (A), 4aE (B), 4R1 (C), 4R9 (D), and 4R3 (E) were 

assayed.   
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Figure 3-1 
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Figure 3-2 
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Figure 3-3 
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Table 1: 

 

 

Differential mitigation of neuronal calcium flux as a result of decoy peptide administration 

and capsaicin-sensitivity. 
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Chapter 4: Project Discussion 

Inflammation as a process is exceedingly complex, with multiple moving parts. 

Successful inflammation results in the resolution of disease or injury through coordinated 

activity between the injured tissue, immune cells, and the molecular ligands and 

receptors used for communication. However, inflammation can quickly develop into a 

maladaptive process as a result of imbalance in any of the aforementioned aspects. One 

such example can be seen with reactive oxygen species (ROS), which play a crucial role in 

the propagation of maladaptive inflammatory signaling. In the presence of microbial 

threats, ROS are important for the immune response (Azad et al., 2008). ROS also serve 

as the byproducts of cellular function, as seen with aerobic metabolism, and can also be 

produced through the activity of pro-inflammatory molecular signals (Brune et al., 2013). 

Low levels of ROS can in fact serve in a protective fashion to the sequelae of cellular aging 

(Kammeyer and Luiten, 2015). 

Increases in ROS production can often contribute to pathological damage to DNA, 

RNA, and proteins (Chen and Nunez, 2010). This process contributes not only to cell 

dysfunction and necrosis, but in changing the oxidative nature of the extracellular space. 

As described earlier, HMGB1 is susceptible to reversible change due to extracellular 

conditions (Rubartelli and Lotze, 2007, Sahu et al., 2008, Venereau et al., 2012a). HMGB1 

can experimentally be shifted from one state to another through the use of reducing and 

oxidizing agents (Hoppe et al., 2006). These conformational changes of HMGB1 have been 

observed to occur as a result of ROS activity, further propagating the development of 

chronic inflammation (Tang et al., 2012a). This ROS-induced conformation change can 
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lead to TLR4 signaling instead of RAGE, or inert HMGB1 and promotion of tolerance and 

inactivity from the affected tissue (Kazama et al., 2008, Lotfi et al., 2009).  

If the extracellular environment can indeed have an effect upon HMGB1 

conformation ability, this may suggest a method of localization for the DAMP and 

associated receptors as well. The immediate area of injury would be rife with 

inflammatory products and HMGB1 in both states (all-thiol and disulfide), leading to 

further release of these products and HMGB1. However, the time constraints associated 

with HMGB1’s all-thiol form could possibly limit its effects in non-affected tissues 

(Zandarashvili et al., 2013). Combined with the fact that in the case of all-thiol HMGB1 

and RAGE, splice variants of RAGE are present on several tissues, acting as ‘heat sinks’ 

and as another mechanism of signal control to prevent possible ‘off-target’ effects of 

HMGB1 (Jules et al., 2013). Soluble RAGE (sRAGE) is known to circulate the vascular 

system in certain conditions, and could act in the case of inflammation to limit HMGB1 

effects outside of the insulted area (Mangalmurti et al., 2012).  

Oxidation of HMGB1 would lead to a change in state to the TLR4-affiliated ligand 

disulfide HMGB1 and upon TLR4 binding, would result in the production of inflammation 

cytokines. The production of these inflammatory products would only serve to further 

aggravate the extracellular environment, as well as possibly continue the possible positive 

feedback relationship of ROS and disulfide HMGB1. Even in the absence of ROS, HMGB1 

has been observed to evoke a positive feedback mechanism with not only further HMGB1 

release, but the upregulation of the RAGE receptor as well (Sorci et al., 2012). 
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Furthermore, ROS can have a deleterious effect upon DNA, resulting in genetic 

damage and potentially facilitating HMGB1 binding to the newly-formed alternative DNA 

structure (Cooke et al., 2003). Still unknown about the aforementioned feed-forward 

mechanism of HMGB1 is the potential role the molecule plays in gene transcription. As 

HMGB1 binds to DNA, it not only can act as a transcription factor, it introduces a severe 

bend in the DNA segment by introducing a hydrophobic domain into the minor groove 

(Thomas and Travers, 2001). The additional distortion of the genetic structure beyond the 

HMGB1/DNA construct has been theorized to enhance gene transcription by allowing 

once distant transcription factors to interact in close proximity (Jayaraman et al., 1998). 

This change in transcriptional activity and protein production may have either a positive 

or negative impact upon inflammatory resolution. Regardless, considering that 

inflammation is a result of multiple moving parts and systems functioning in concert, it is 

well worth thorough investigation as a possible contributor to HMGB1-mediated 

pathology.  

The effects of HMGB1 on neuronal signaling 

Peptide inhibition of the MyD88 and TIRAP adaptor proteins proved efficacious 

for inhibition of both RAGE and TLR4 signaling as a result of HMGB1 binding in the sensory 

neuron. Not only does this provide a new target for mitigation of neuronal hyperactivity, 

it describes a level of importance that can be assigned to inflammation as it directly 

affects the neuron. The fact that were are able to see decreased pain behavior while only 

a subset of the neuronal cultures demonstrated signal inhibition with the peptide is 

encouraging. 
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Given the importance of the immune system, it would be most beneficial to not 

completely suppress its function. Rather, identifying methods to contain excess 

inflammation provide much more appealing targets. This idea of inflammatory signal 

mitigation has been demonstrated in other pathologies stemming from chronic 

inflammation. Arthritis (in several manifestations) has seen significant benefits of 

prohibiting the inflammatory cascade, including the administration of sRAGE or the 

chemotherapeutic drug oxaliplatin to reduce HMGB1 signaling (Hofmann et al., 2002, 

Ostberg et al., 2008). 

Through this investigation of the adaptor proteins MyD88 and TIRAP, an aspect of 

nociceptive characterization was revealed. The transient receptor vanilloid 1 (TRPV1) is 

an important thermoreceptor, and known as a ‘pathological receptor’ due to its 

responsivity to inflammatory mediators and noxious stimuli (Devesa et al., 2011). TRV1 is 

not a true receptor; it is a cation channel by structure, and important in both pain 

signaling and modulation as they relate to both chronic and mechanical pain (Caterina et 

al., 1997, Chien et al., 2007, Ferrari et al., 2010). Through experimentation, it was revealed 

that the sensory neurons responsive to TLR4-induced hyperactivity did not correlate 

perfectly with capsaicin activated TRPV1 response.  

This neuronal TLR4-induced hyperactivity suggests that nociceptive neurons are 

not equal, and that a diverse population with specific functions may be necessary for pain 

signaling. This can be seen with the example of the morphine metabolite, M3G. In an 

animal model M3G administration resulted in pain behavior (Due et al., 2012a, Due et al., 

2014). However, this pain behavior was found to be mechanically-derived; thermal 
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hypersensitivity was not found in the tested animals (Due et al., 2012a). Given that M3G 

acts through the TLR4 receptor on neurons that can also possess functional TRPV1 

channels, these data suggest that nociception functions in a similar manner to 

inflammation, with multiple moving parts maintained in balance. 

Furthermore, TRPV1 can be greatly affected by the expression of inflammatory 

mediators in the peripheral nervous system (Devesa et al., 2011). Nerve Growth Factor 

(NGF) and TNFα are among several of the inflammatory mediators shown to significantly 

increase the expression of TRPV1 channels on the membrane (Zhang et al., 2005, 

Hensellek et al., 2007). As a result, this can lead to both hypersensitivity and hyperalgesia. 

Given the role of TRPV1 and the products of inflammation, another possible feed-forward 

mechanism can be identified. In the case of HMGB1, continued production of the ligand 

would lead to inflammatory cytokine production, in turn leading to an upregulation in 

TRPV1 activation. This increased TRPV1 activity could result in exacerbating existing pain 

behavior, resulting in the perpetuation of the cycle through the release of more HMGB1 

or other proinflammatory mediators. This hypothesis becomes more grounded in fact as 

pathways linking ion channels to inflammation and immunity continue to be discovered 

and elucidated (Han and Yi, 2014).  

Summary and Conclusions 

The shared adaptor protein aspect between RAGE and TLR4 suggests possible 

crosstalk between receptors. There are indeed several similarities and redundancies 

present when comparing the functions of both RAGE and TLR4 (Sakaguchi et al., 2011, 
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Ibrahim et al., 2013). There is also the likely scenario of synergy between RAGE and TLR4, 

since the receptors initiate cellular chemotaxis and cytokine production respectively 

(Sorci et al., 2012, Lucas and Maes, 2013). This may further explain their separate but 

related roles in the mitigation of neuropathic pain. Upon initial release of HMGB1 in the 

all-thiol form, it binds to RAGE, and signals the need for immune cell migration. As these 

cells potentially arrive, the free HMGB1 could convert to disulfide HMGB1, binding with 

TLR4 and producing cytokines, possibly having an even further effect upon TRPV1 and 

other ion channels.  

Although both receptors are integral to processes outside of inflammation as it 

relates to neuropathic pain, metered use of the inhibition of these pathways may mesh 

well with the current standard of treatment, opioid analgesics. Although opioids are the 

most effective clinical treatment for neuropathic pain, they are hampered by adverse 

effects including opioid-induced hyperalgesia and the development of opioid tolerance 

within the patient (Li, 2012). A combination approach to treatment allows for the two 

different targets to shoulder less of the respective burden of neuropathic pain treatment, 

lowering dosages, adverse effects, all the while increasing efficacy and range of the target 

population. In the case of opioids, combination approaches with anti-epileptics such as 

carbamazepine have shown great potential in animal models of neuropathic pain to 

potentiate the effectiveness of morphine as well as result in opioid sparing (Kozer et al., 

2008, Due et al., 2014). 

Inflammation is not a simplified process of a few targeted ligands and their 

respective receptors; it is a complicated and organized response system that involved 
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communication of multiple cell types from both the immune and nervous systems 

(Sankowski et al., 2015). Chronic inflammation occurs from imbalance within the 

inflammatory process. Thusly, therapeutic development for these pathologies needs to 

focus on re-establishing balance and not the complete blockade of a specific junction in 

the pathway. Traditional approaches to the therapeutic design for inflammatory 

pathology has revolved around neutralization of the ‘offending’ molecular signaling via 

inhibition of immune cell recruitment and activation, and the blockade of pro-

inflammatory ligands (Alessandri et al., 2013). Unfortunately, this approach may be short-

sighted in nature. Inflammatory pathology is not the result of nascent inflammation 

processes, but rather continued signaling resulting in progressive and maladaptive 

chronic inflammation. Thusly, the focus of therapeutic design needs to be sharply focused 

on the resolution of inflammation, making it effective for not only specific maladies, but 

a variety of inflammation-derived diseases (Rossi et al., 2007, Serhan, 2008). 

This can be seen by the aforementioned study utilizing decoy peptides in an effort 

to assert a level of control upon HMGB1-derived inflammatory expression. The resolution 

of chronic inflammation is not the only benefit of studying pharmacological targeting of 

the HMGB1 signaling pathways. Many of the pathologies that associated with HMGB1 do 

not provide clinicians with phenotypic events indicative of severity or development, 

exemplified by the study of intestinal inflammation, as manifested in Chron’s disease and 

ulcerative colitis. Diagnosis and continued observation is mediated through invasive 

endoscopic procedures or through imaging studies. Both approaches can result in higher 

cost of care and risk due to the procedure. However, several groups have demonstrated 
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that HMGB1 can be utilized as a novel biomarker for intestinal inflammation as it relates 

to disease (Vitali et al., 2011, Palone et al., 2014).  

Using HMGB1 as a biomarker was indicative of not only the presence of 

inflammatory disease, but also its severity. Samples for testing for HMGB1 levels were 

from the patients’ stool, demonstrating not only a novel diagnostic method, but allowing 

for development of novel therapeutic modalities. Sepharose beads with bound DNA 

fragments were shown to both bin and sequester HMGB1 when administered orally to 

the gastrointestinal tract (Ju et al., 2014). Animal studies revealed improvement in body 

weight, colonic injury, and a decrease in cytokine circulation, as a result of decreasing the 

reach of HMGB1 activation (Ju et al., 2014). This further supports that relief of 

inflammatory pathology is not necessarily brought about by blockade, but rather through 

careful mitigation in order to restore balance to the inflammatory process. 

What may be the most fascinating aspect of HMGB1-mediated inflammation is the 

effect the molecule has prior to vesicular release into the extracellular milieu. HMGB1 

within the cell without insult or injurious stimuli acts to bind alternative DNA structures. 

However, this behavior goes much further than mimicry of histone functionality. DNA 

repair is highly important to successful growth and maintenance of an organism. HMGB1-

bound genetic adducts have been found to both shield the broken DNA construct from 

repair and enhance the activation of repair pathways, such as the nucleotide excision 

repair, mismatch, and base excision repair pathways (Lange and Vasquez, 2009). One of 

the first studies of HMGB1/DNA interactions demonstrated that adding HMGB1 the cell 

extracts resulted in repair inhibition of one of two specific cisplatin-derived lesion of DNA 
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(Huang et al., 1994). In turn, the disulfide form of HMGB1 has also demonstrated a lower 

level of affinity for cisplatin-modified DNA structures , which suggests further importance 

of oxidative environment as it pertains to HMGB1 function (Wang et al., 2013). 

Although there is no definitive finding, what becomes apparent is the limitation of 

in vivo study of in vitro processes. In the case of inflammation, and specifically HMGB1, 

numerous factors play a role in the function of a signal cascade. Constantly operating out 

of an in vivo culture severely limits the study from eventual translation to any clinical 

application. This necessitates the approach of simultaneous or coordinated investigation 

of inflammatory function in order to properly elucidate the signaling pathways at work. 

The importance of the enclosed studies can be observed in its efforts to approach 

disease from both the in vivo and in vitro system. A large subset of the literature focuses 

upon the role of HMGB1 as it pertains to a particular receptor or cell-mediated function. 

However the molecule presents as much more than a metaphorical key; it provides a 

powerful example for the level of redundancy and efficiency needed for survival. HMGB1 

is able to maintain naïve functions in DNA repair, be modified to continue nuclear work 

or secreted to the cytoplasm or extracellular system, tailored in a time and environment 

dependent manner to particular receptors. This tailoring allows for signal localization, 

specific inflammatory mediator production, and is dependent upon synchronization with 

its different receptors. RAGE and TLR4 employ deception via decoy receptors and signal 

‘heat sinks’, and provide multiple pathways for HMGB1 signal transduction, as seen with 

the TLR4-mediated TRIF/TRAM and TIRAP/MyD88 cascades.  
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Chapter 5: Future Directions and Studies 

The one guarantee of scientific investigation and pursuit is that there is never an 

end to the discovery. The enclosed studies raise further questions in several interesting 

areas, and allow for elucidation of the roles of HMGB1, TLR4, and RAGE both within and 

outside of the nervous system. 

The relationship between sodium channels and innate immune signaling 

Ion channels are integral to neuronal activity, specifically in the process of 

generating and firing action potentials. As a result, any neuronal excitation or episodes of 

hyperactivity will most likely exhibit a direct link to the actions of ion channels. However, 

in order for signal propagation to result in neuronal firing via an ion channel, a portion of 

the signal cascade must be therefore dedicated to ion channel recruitment and priming. 

This has been investigated to a degree with TIRAP and its relationship to the protein 

phosphatidylinositol 4,5-bisphosphonate (PIP2) (Liu et al., 2010). PIP2 is thought to be 

important to not only recruitment of TIRAP to the cell membrane, but also in the control 

of multiple channel proteins (Santos-Sierra et al., 2009). Succinctly, TIRAP and potentially 

MyD88 may play a larger role in the signal cascades of both RAGE and TLR4, as they may 

be important to relaying ligand-binding of these receptors to the appropriate channel 

proteins as well as activating NF-κB response or another downstream signaling event. 

The sodium channels expressed on peripheral neurons became an interest in pain 

signaling after several clinical studies revealed the efficacy of a general sodium channel 

blocker, lidocaine, to reduce pain symptomology in patients. These findings were without 
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severe adverse effects, and purported investigation of not only combinatorial 

therapeutics, but also deciphering of the signaling pathway responsible (Hutson et al., 

2014, Stavropoulou et al., 2014). 

Literature evidence demonstrates the connection between TLR function and 

TRPV1 activation (Diogenes et al., 2011a). However the enclosed studies suggest that the 

reach of TLR4 signaling in particular may involve more diversity that just the cation 

channels of the TRP family. Nociceptive activity in the PNS demonstrates a strong 

correlation to the function of sodium channels (Cummins et al., 2007).  Thusly, the 

pharmacologic targeting of these suspecting sodium channels in the peripheral neuronal 

system, may be a beneficial method of TLR4 signal mitigation (Due et al., 2012a). A striking 

example can be found with the anti-epileptic drug (AED) carbamazepine, one of several 

AEDs that possess a mechanism of action involving blocking the function of sodium 

channels, including NaV1.7, as it relates to the LPS-TLR4 signaling mechanism (Due et al., 

2014). It would particularly interesting to investigate the possible relationship of the same 

HMGB1-RAGE axis to ion channel functionality, as this presents another method of 

pharmacological pursuit similar to TLR4. 

RAGE in traumatic brain injury  

RAGE is not a protein expressed at high levels outside of pathology, with the 

exception to this rule being the lung, where RAGE is expressed at significantly higher 

levels than any other tissue (Lopez-Diez et al., 2013). Only one splice variant is 

predominately found in the lung besides the full-length RAGE, which lacks the 



105 
 

transmembrane domain coding and results in the production of soluble RAGE. This 

suggests that there is a significant reason for the presence of the RAGE protein in the 

naïve lung, possibly to act as a PRR or to detect endogenous danger ligands, such as 

HMGB1. In the pathological event of TBI, RAGE expression was showed to increase in the 

brain, with HMGB1 expression fluctuating in a pattern mimicking a trend of signal 

transduction (Gao et al., 2012). 

This research topic was investigated by the White laboratory to a high level of 

success; through collaboration has identified a successful model of traumatic brain injury 

(TBI) through a controlled cortical impact directly to cortical tissue after craniotomy 

(Weber et al., 2014). This TBI model allowed for experimentation that allowed for the 

conclusion that the HMGB1-RAGE axis plays a role in the lung dysfunction initiated by TBI, 

and that interference with this pathway could possibly result in clinical translation in order 

to better organ recipient outcomes. Another group has demonstrated the importance of 

HMGB1-RAGE interaction to the facilitation of TBI, through impeding the binding of 

HMGB1 to RAGE via the administration of glycyrrhizin (Okuma et al., 2014). 

To further this work, efforts would continue to identify the working relationship 

of HMGB1 and RAGE as the pair relate to acute lung injury pathology as a result of TBI. 

Through co-immunoprecipitation techniques, as well as other biochemical assays, the 

relationship between RAGE and the adaptor proteins MyD88 and TIRAP could be 

investigated within lung tissue, to better understand the signal cascade that results in the 

TBI-lung injury axis of pathology described within the literature (Weber et al., 2014). 
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Other adaptor proteins of RAGE could also be studied such as the aforementioned Dia-1, 

as well as different ligands of RAGE signaling like the S100 family of proteins.  

The role of gender in the study of pain and TLR4 

The topic of pain and gender is interesting to say the least. Studies have 

demonstrated that gender can play a role in the development and manifestation of pain 

behavior in animals. These studies have been bolstered by findings within clinical patient 

populations regarding differences in disease pathology and overall outcomes as a result 

of hormonal production and signaling. Bias may be included in more studies than first 

realized, given that a substantial amount of cell and tissue cultures utilize the phenol red, 

a compound that can partially mimic estrogenic stimulation; when compared to media 

free of phenol red, proliferation and progesterone receptor content both increased in 

cells grown in the presence of phenol red (Berthois et al., 1986). This effect may be 

minimal upon experimental design; however it represents how the aspect of gender can 

be subtly overlooked in data interpretation. 

Further evidence of gender’s role in pathology includes the absence of multiple 

sclerosis (MS) relapses in patients during pregnancy, thought to be due to manipulated 

levels of circulating sex steroids (Garay et al., 2007). In the animal model of MS 

(autoimmune encephalomyelitis mice (EAE)) it was shown that the TLR4 receptor levels 

were increased, and that TLR4 was down-regulated upon progesterone administration 

(Garay et al., 2012). This progesterone administration may prevent the activation of pro-

inflammatory genes and cytokines (such as IL-2, IL-17, and TNFα) downstream of TLR4 
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signaling as well as oligodendrocyte death and axonal demyelination in EAE mice (De 

Nicola et al., 2013). 

With regards to chronic pain manifestation clinically, female patients have shown 

to be more likely to experience chronic pain when compared to male patients, as well as 

experience pain of greater severity and duration (Gintzler and Liu, 2012). It has also been 

observed that female patients often report lower thresholds to experimental stimuli as 

compared with men in pain studies (Lacroix-Fralish et al., 2006). Intriguingly, women have 

been reported to consume significantly less morphine in situations of patient-controlled 

analgesia three days post-operation compared to men, making gender one of the 

strongest predictors of post-operative morphine requirements (Chia et al., 2002). An 

animal model of long-term ovariectomy in adult female rats demonstrates induction of 

thermal and mechanical hyperalgesia that can reversed by estradiol replacement. In 

addition to the finding of functional estrogen receptors in the murine dorsal root ganglia, 

altogether this portrays a potentially impactful role for gender in both inflammatory-

derived pathology (Gintzler and Liu, 2012). Significant differences have been found 

between the genders in rats, specifically relating to their expression of TLR4 (Sorge et al., 

2011). 

Our model of neuropathic pain via tibial nerve ligation could serve as an 

interesting model for gender pain studies. Combining the TNI with gonadectomy, along 

with the variables of hormone treatments and the decoy peptides used successfully in the 

aforementioned experiments, could provide valuable insight to the role of gender in 

inflammatory signaling and pain behavior. 
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HMGB1 and RAGE in cellular repair, proliferation and cancer 

It is important to continue to define the role of HMGB1 in pathology due to its 

overexpression in cancerous tissue. This HMGB1 overexpression has been observed in 

both breast and colon cancer, which have a clinical footprint of over 300,000 new cases 

annually (ACS, 2015). The aforementioned ability of HMGB1 to interact with TFs and 

enhance their activation is of particular interest, given that several of these factors are 

well known for their functions in cancer biology.  

The binding of all-thiol HMGB1 to the RAGE receptor has been linked to 

oncological events, including tumor growth and metastasis (Ellerman et al., 2007). These 

events are often observed in correlation with both HMGB1 and RAGE overexpression, 

which suggests a large role of HMGB1/RAGE signaling within cancer biology and signaling 

(Fahmueller et al., 2012). THE RAGE protein has been demonstrated to increase resistance 

to chemotherapeutic modalities and to improve survival and inhibit apoptosis by limiting 

the ability of p53 (which acts as a tumor suppressor) to translocate to the mitochondria 

(Kang et al., 2010). Under genetic knockdown (KO) of expression, the absence of RAGE 

has been shown to be responsible for a 40 to 70% decline in anti-apoptotic activity via 

such proteins as Bcl-2 and Bcl-XL (Kang et al., 2010). These RAGE KO animals were overall 

less susceptible to both acute inflammatory damage and carcinogen-derived tumor 

development (Kang et al., 2010). Another study concluded that autophagy induced by 

RAGE activation is potentially integral to early metastasis of disease in a model of 

pancreatic cancer (Xie et al., 2013).  
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The release of HMGB1 (with a higher level of RAGE affinity immediately following 

release) has been observed to be constitutive in mesothelioma and other cancerous cells 

(Venereau et al., 2012a). High levels of HMGB1 were also observed the in the serum of 

patients with colorectal cancer (Fahmueller et al., 2012).  The nascent role of HMGB1 in 

the binding of alternative DNA structures is also relevant. HMGB1 has a significantly 

higher binding affinity to cisplatin damaged DNA over other varieties of DNA bends and 

breaks. Platinum-based chemotherapeutic drugs typically produce two DNA adducts, 

both of which are repairable through the NER system (Huang et al., 1994). However, 

HMGB1 binding of these adducts has been demonstrated to be one of the proponents of 

the aforementioned ‘repair shielding’ theory, and possible cellular resistance to 

chemotherapy (Nagatani et al., 2001, Mitkova et al., 2005). 

It would be interesting to see if the same mechanisms that appear to play a 

significant role in HMGB1/RAGE signaling in chronic pain and neuroinflammation affect 

cancer biology and signaling. The decoy peptides used to mediate pain behavior in the 

animal pain model and neuronal hyperactivity in vitro may reveal new targets for 

chemotherapy, as well as provide a better understanding in the oncologic pathway of 

HMGB1 and RAGE.  
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University of Maryland Baltimore County, Undergraduate Studies – Dr. Rachel 
Brewster 
Investigation of Migrating Neural Cells in Zebrafish   2008 – 2010 
The goal of the project was to determine whether the 
transmembrane protein Neogenin mediates polarized 
cell migration during neurulation, in order to increase 
understanding of the molecular mechanisms that 
regulate neurulation, and provide putative candidate 
genes implicated in the etiology of human neural tube 
birth defects. 
 
University of Miami: Miller School of Medicine, Undergraduate Studies – Dr. Kent Lai 
Identification of Novel Antimicrobials    2008 
The project centered on finding new defenses against 
microbial pathogens has become increasingly important 
due to the growing issue of new antibiotic resistant 



 
 

strains. This was done via the manipulation of the non-
mevalonate pathway of isoprenoid biosynthesis using 
gene knockdown and small molecule inhibitors. 
 
Johns Hopkins University / National Institutes of Health – Dr. Joan Bailey-Wilson 
GWAS Studies of Cleft/Lip Palate  2007 
The research focused around computational analysis of 
genetic samples obtained from various pedigrees 
expressing cleft lip and palate in order to identify new 
targets for bench study, and to increase the translation 
rate of the data from bench to bedside. 

 
PUBLICATIONS AND PAPERS 

 
The HMGB1-RAGE Inflammatory Pathway: Implications for Brain Injury Induced 
Pulmonary Dysfunction.  
Weber DJ, Allette YM, Wilkes DS, White FA. Antioxidants and Redox Signaling. 2015 
(In press) 
 
Identification of a functional interaction of HMGB1 with Receptor for Advanced 
Glycation End-Products in a model of neuropathic pain.  
Allette YM, Due MR, Wilson SM, Feldman P, Ripsch MS, Khanna R, White FA. Brain 
Behav Immun. 2014 Nov;42:169-77. 
 
Carbamazepine potentiates the effectiveness of morphine in a rodent model of 
neuropathic pain.  
Due MR, Xang XF, Allette YM, Randolph AL, Ripsch MS, Wilson SM, Dustrude ET, 
Khanna R, White FA. PLoS One. 2014 Sep 15;9(9):e107399.  
 
The HMGB1-RAGE axis mediates traumatic brain injury-induced pulmonary 
dysfunction in lung transplantation.  
Weber DJ, Gracon AS, Ripsch MS, Fisher AJ, Cheon BM, Pandya PH, Wittal R, Capitano 
ML, Kim Y, Allette YM, Riley AA, McCarthy BP, Territo PR, Hutchins GD, Broxmeyer 
HE, Sandusky GE, White FA, Wilkes DS. Sci TRansl Med. 2014 Sep 3;6(252):252ra124. 
 
Acrolein involvement in sensory and behavioral hypersensitivity following spinal 
cord injury in the rat. 
Due MR, Park J, Zheng L, Walls M, Allette YM, White FA, Shi R. J Neurochem. 2013 
Oct 21.  
 
The Role of the Neuronal Toll-like Receptor 4 in Neuropathic Pain and Opioid-
induced Hyperalgesia 
Due MR, Allette YM, White FA.  (2013) In: Toth C, Moulin D (eds.), Neuropathic Pain: 
Causes, Management and Understanding.  



 
 

 
Suppression of pain-related behavior in two distinct rodent models of peripheral 
neuropathy by a homopolyarginine-conjugated CRMP2 peptide. 
Ju W, Li Q, Allette YM, Ripsch MS, White FA, Khanna R. 
J Neurochem. 2012 Oct 26. 
  
Identification of novel small molecule inhibitors of 4-diphosphocytidyl-2-C-methyl-
D-erythritol (CDP-ME) kinase of Gram-negative bacteria. 
Tang M, Odejinmi SI, Allette YM, Vankayalapati H, Lai K.  
Bioorg Med Chem. 2011 Oct 1;19(19):5886 95.    

 
ACADEMIC CONFERENCES & MEETINGS 

 2014 Gill Neuroscience Symposium, Bloomington, IN – September 2014 
o Poster Presentation 

 Indiana CTSI 2014 Annual Meeting, Indianapolis IN – September 2014 
o Poster Presentation 

 10th APSA (American Physician Scientists Association) Meeting, Chicago, IL – 
April 2014 

o Travel Grant Recipient 
o Poster Presentation 

 4th International Congress on Neuropathic Pain (NeuPSIG), Toronto, Ontario – 
May 2013 

o Poster Presentation 

 Ronald E. McNair Texas National Conference, Denton, TX – February 2009 
o Oral Presentation 

 Annual Biomedical Research Conference for Minority Students (ABRCMS), 
Orlando, FL – November 2008 

o Poster Presentation 

 The Leadership Alliance Summer Conference, Hartford, CT – August 2008 
o Poster Presentation 

 
MEMBERSHIPS 

American Physician Scientists Association (APSA) Member 
International Association for the Study of Pain (IASP) Member 
Golden Key Honour Society Graduate Member 
MARC U*Star Scholar 

 


