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ABSTRACT 

Hudson, Scott R. M.S., Purdue University, August 2011.  Meckelin 3 is Necessary for 
Photoreceptor Outer Segment Development.  Major Professor:  Teri L. Belecky-Adams. 

Ciliopathies with multiorgan pathology include renal cysts and eye pathology.  

Retinal photoreceptors have connecting cilia joining the inner and outer segment that are 

responsible for transport of molecules to develop and maintain the outer segment process.  

The present study evaluated meckelin expression during normal postnatal retinal 

development and the consequences of mutant meckelin on photoreceptor development 

and survival in Wistar polycystic kidney disease Wpk/Wpk rat using 

immunohistochemistry, analysis of cell death and electron microscopy.    

 Meckelin was co-expressed in the inner and outer segments of photoreceptor rods 

and cones, amacrine, Muller glia and ganglion cells in postnatal day 10 (P10), P21 and 

mature rat retinae.  By P10, both the wild type and homozygous Wpk mutant retina had 

all retinal cell types.  In contrast, by P21, cells expressing photoreceptor-specific markers 

were fewer in rhodopsin, long/medium-wave opsin, and short-wave opsin proteins and 

appeared to be abnormally localized to the cell body.  Cell death analyses were consistent 

with the disappearance of photoreceptor-specific markers and showed that the cells were 

undergoing caspase-dependent cell death.  By electron microscopy, mutant 

photoreceptors did not develop an outer segment process beyond a connecting cilium and 



 

 

xi 

rudimentary outer segment.  We conclude that MKS3 is not important for formation of 

connecting cilium and rudimentary outer segments (the inner stripe), but is critical for the 

development of mature outer segment processes.  The meckelin mutants showed 

similarities to human patients suffering from Leber’s congenital amaurosis.  We propose 

this may be a useful model system for studying early photoreceptor degeneration diseases 

such as Leber’s congenital amourosis. 
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CHAPTER 1. INTRODUCTION 

Early mammalian embryos go through a process called gastrulation that will 

produce three germ layers (mesoderm, endoderm and ectoderm) [1].  On the dorsal side 

of the embryo, neurulation starts with the formation of the neural plate from ectoderm 

(Figure 1.1).  The neural plate folds up and undergoes closure to form the neural plate 

[2].  During early embryonic stages, the first overt sign of eye development is the 

formation of the optic pits in the diencephalic region of the forebrain.  Upon completion 

of neural tube closure, the optic pits enlarge and continue to evaginate to become optic 

vesicles.  The optic vesicles are located close to the non-neuronal surface ectoderm and it 

has clearly been shown that inductive signaling occurs between the two [3].  This 

signaling gives rise to the lens placode.  Together, the optic vesicles and lens placode 

invaginate to form the optic cup and lens vesicle, respectively (Figure 1.1).  The inner 

part of the optic cup will give rise to the multi-layered neural retina and the outer part 

will make up the single layered retinal pigmented epithelium (RPE) [4]. 

Eye Development 

In early retina morphogenesis, there are many different transcription and secreted 

factors that play significant roles.  The formation of the optic vesicle relies upon specific 

molecular mechanisms that start prior to the formation of the optic pits.  The anterior 

neural plate cells express Pax6, Pax2, and Rx, denoting what is referred to as the eye field 
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[4].  The eye field is localized in the center of the diencephalic region of the neural tube.  

For the development of two vertebrate eyes, the eye field must be split into two regions.  

This is accomplished through the establishment of the floorplate in the midline of the eye 

field.  The floorplate arises through the induction of a nearby structure, known as the 

prechordal plate, which expresses a molecule known as sonic hedgehog (SHH).  As this 

factor interacts with the neural plate, it up-regulates molecules necessary for eye field 

formation [5].  This inductive event causes what was one eye field to become two.  These 

two regions then move laterally and form the optic pits as discussed above.  Once the eye 

field splits and neural tube undergoes closure, the optic vesicles will form.  Mitf, 

microphthalmia-associated transcription factor, is initially expressed throughout the optic 

vesicle, but its expression becomes restricted to the proximal region of the optic vesicle 

responsible for the retinal pigmented epithelium (RPE) [6].  Chx10, a paired-like 

homeobox gene, is necessary for the differentiation of the retina and is induced as the 

optic vesicle comes in close contact with the head ectoderm.  The head ectoderm 

expresses FGF2 which is necessary and sufficient to induce expression of CHX10.  

CHX10 is initially expressed throughout the neural retina and plays a role in proliferation 

in the early neural retina [7].  Later in development, the expression of CHX10 is reduced 

to inner nuclear layer (INL) and is responsible for the differentiation of bipolar cells [8]. 

 

The vertebrate retina is a multi-layered tissue consisting of cell bodies in the 

retinal pigmented epithelium (RPE), outer, inner, and ganglion cell layers (Figure 1.2).  

The retina also has outer and inner plexiform layers where cells from different layers can 

Mature Retinal Anatomy and Physiology 
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form synapses.  The outer nuclear layer (ONL) contains the cell bodies of 2 type of 

photoreceptors; rods and cones.  The inner nuclear layer contains the cell bodies of 

horizontal, bipolar, Muller glial and amacrine cells (Figure 1.2).  The ganglion cell layer 

contains ganglion cells and a subset of amacrine cells.  Retinal cell types come from 

progenitor cells that can differentiate into all retinal cell types [9].  Retinal cell genesis 

was previously studied in the rat to obtain a better understanding of precisely when each 

retinal cell type is first generated [10].  The following is the order from earliest to latest 

of each generated retinal cell type: ganglion, horizontal, photoreceptor cone, amacrine, 

photoreceptor rod, Muller glial and bipolar [11].  All cell types start to form during the 

embryonic stages with ganglion cells starting the earliest at embryonic day 9 (E9) [12].  

The ganglion, horizontal and photoreceptor cone cells finish developing during 

embryonic stages; however, the amacrine, photoreceptor rod, Muller glia and bipolar 

cells conclude their cell genesis shortly after birth [10].  

The main function of the retina is to turn absorbed light into a biological signal 

through a process known as phototransduction [13].  This biological signal is in the form 

of an electrical hyper-polarization of the cell membrane and controls the rate at which 

glutamate, a neurotransmitter, is released from the photoreceptor synaptic terminal.  

Photoreceptor outer segments have cyclic GMP (cGMP)-gated ion channels on the 

plasma membrane that open and close depending on whether it is dark or light out 

(Figure 1.3).  During darkness, the cGMP-gated ion channels are open and allow Na+ and 

Ca2+ to enter the outer segment[14].  Entrance of Na+ and Ca2+ will depolarize the cell, 

activating the voltage-gated Ca2+ channels near the synaptic terminals of the 

photoreceptors, and will drive the release of glutamate from the synaptic terminal.  In the 
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presence of light, visual pigment in stacked discs in the outer segment will absorb light 

(Figure 1.3 [15]).  The absorbed light will cause retinal, a derivative of Vitamin A, to 

undergo a conformational change to opsin and all-trans-retinal [16].  Opsin will proceed 

to activate the trimeric G-protein transducin, causing the α subunit to be released from the 

β and γ subunits and exchange GDP for GTP.  This GTP complex will activate 

phosphodiesterase, which subsequently breaks down cGMP to 5’-GMP [13].  This 

breakdown will lower cGMP concentration, which in turn closes the cGMP-gated ionic 

channels.  Closure of sodium channels will cause the cell to hyperpolarize and the 

voltage-gated Ca2+ channels to close.  This will result in a decrease in the amount of 

glutamate released from the synaptic region of photoreceptors [13,14,16]. 

Photoreceptors make synapses with both bipolar and horizontal cells in the outer 

plexiform layer of the retina.  Photoreceptor can have synapses with bipolar cells that can 

either be considered on- or off-center (Figure 1.4).  An on-center bipolar cell is 

stimulated when the center of its receptive field is exposed to light and inhibited when 

light hits the surrounding area.  The off-center bipolar cells have an opposite reaction of 

being inhibited with direct light to the center and excited when light is exposed in the 

surrounding area of the receptor field [17].  When light is present, photoreceptors 

hyperpolarize and on-center cells depolarize.  Horizontal cells link photoreceptors to each 

other and are responsible for lateral inhibition of photoreceptors [18].  Photoreceptors 

will then depolarize horizontal cells in order for them to depolarize photoreceptors that 

are not in the region of excitation, resulting in lateral inhibition [19].  The overall result 

of this lateral inhibition is to increase the signal in relation to the background activity 

present in the nervous system.  Ganglion cells will then receive input from bipolar and 
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amacrine cells from synapses formed in the inner plexiform layer (IPL).  Ganglion cells 

also have on- and off-center cells that function in a similar fashion as bipolar cells [20].  

Amacrine cells function in a similar manner as horizontal cells in that they also appear to 

be necessary for lateral inhibition.  They differ from horizontal cells in that they relay 

information from bipolar cells to ganglion cells.  Ganglion cells project their axons to the 

optic nerve head, where the axons are bundled together to form the optic nerve [21].  

Neuronal signals travel out of eyes and goes to one of three places; 1) the pretectum, 

where light signals maintain the pupillary light reflex, 2) the superior colliculus (aka 

tectum), which is involved in reflexive eye and head movements in response to visual 

stimuli, and 3) the lateral geniculate nucleus of the thalamus, which acts as a relay station 

for information that will be sent on to the cortex [22] (Figure 1.5 [23]).   

 

Photoreceptors can be broken down into two different cell types; rods and cones. 

Photoreceptors develop from a pool of dividing progenitor cells in the vertebrate retina.  

There are several known transcription factors that previous studies have found important 

for photoreceptor development.  Otx2, an Otx-like homeobox gene, has been found to be 

essential for cell fate determination for photoreceptor cell types.  In a previous studies, a 

switch from photoreceptor precursor cells to amacrine cells were observed in otx2 

knockout mice [24,25].  Crx, a cone-rod homeobox gene, has been found essential for 

terminal differentiation of rods and cones by regulating genes encoding 

phototransduction, photoreceptor metabolism, and outer segment formation [25,26,27].  

Nrl, neural retina leucine zipper gene, is a transcription factor mainly found in rods and 

Vertebrate Photoreceptor Development 
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promotes rod development by directly activating rod-specific genes while also 

suppressing S-cone related genes.  S-cone related genes can be suppressed through the 

activation of transcriptional repressor nuclear receptor subfamily 2 group E member 3 

(Nr2e3) [25,28].  Finally, neuroD, a member of the family of proneural basic helix-loop-

helix genes, is found first in proliferating cells that give rise to rod and cone 

photoreceptors and is subsequently restricted to post mitotic cells of nascent cone 

photoreceptors [29,30].  

 As photoreceptors differentiate, they form 4 specialized compartments (Figure 

1.6); 1) the outer segment, specialized for transduction of photons, 2) the inner segment 

containing machinery for producing proteins, lipids, and energy, 3) the nuclear region, 

and 4) the synaptic region, necessary for communicating with horizontal and bipolar cells 

within the retina [31].  Because of this compartmentalization, the sorting of proteins and 

other components to the right compartment is a highly regulated process in 

photoreceptors [32]. 

While photoreceptor rod and cone cells are similar in structure, they have 

differences in function.  Rod cells outnumber cone cells by far in humans (approximately 

120 million to 6 million) and are more common in the peripheral retina, while cones are 

more common in the center.  Rod cells are highly sensitive to light and are specialized for 

night vision.  Rod cells only have one visual pigment, rhodopsin.  Cone cells are less 

sensitive to light and are more specialized for day time vision [33].  Also, cone cells are 

responsible for the fine detail and color vision.  Cone cells also come in three different 

types: long (red), medium (green), and short (blue) wavelengths.  Having three different 

cone cell types allows the brain to perceive a broad spectrum of colors. 
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The inner and outer segments of photoreceptor cells are joined by a modified non-

motile connecting cilium through which essential elements are transported for outer 

segment morphogenesis (Figure 1.7).  The connecting cilia in the photoreceptor is a 

“9+0” primary cilia that has nine microtubule doublets without a central pair [14].  The 

central core of the cilium is held in place by this microtubule backbone called an 

axoneme.  This axoneme is anchored in the inner segment of the photoreceptor to a basal 

body.  The primary function of the basal body is to act as the organizing center for the 

cilia [34].  The connecting cilium uses a specialized system called intraflagellar transport 

(IFT) as a pathway for the transport of proteins to and from the outer segment (Figure 

1.8).  In this transport process, the cilia uses the motor protein kinesin to move cargo 

from inner to outer segment and the motor protein dynein to move components back to 

the cell body [35].  While much information has been accumulated about the 

photoreceptors, there still remain many questions about the mechanisms of outer segment 

formation, protein transport through the connecting cilium, and the implications of 

alterations in protein trafficking to diseases affecting outer segment development and/or 

maintenance. 

 

Photoreceptor cell genesis has been well studied; however, the formation of outer 

segment discs is still not well understood.  The first proposed theory suggests that the 

plasma membrane invaginates to form disc-like structures [36].  As the connecting cilium 

extends, the plasma membrane forms a balloon-like structure around the connecting 

cilium, followed by the invagination of the plasma membrane to form discs (Figure 1.9).  

Outer Segment Development 
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The second theory proposes that disc formation is due to pinocytosis of smaller vesicles 

that then fuse together to form a full disc that connects at the base of the outer segment, 

compressed by unknown mechanisms and then stacked together (Figure 1.10) [37].  Disc 

formation is not limited to initial outer segment development, as it is continued all the 

through adulthood (Figure 1.11 [36]).  Each day, the photoreceptor will shed 1/10th of its 

total discs on the distal most tip and that will get phagocytized by the retinal pigmented 

epithelium.  With either theory, the newly formed discs receive visual pigment that was 

made in the inner segment and transported to the outer segment through IFT.  

Photoreceptors with mature outer segments can now take part in their main function of 

phototransduction. 

 

 Nearly all vertebrate cells contain microtubule-based structures known as cilia.  

Cilia are anchored into the cell by the basal body and have microtubule doublets 

extending away from the cell surface.  The function of the cilia depends on its structure.  

Motile cilia have nine microtubule doublets in a circular pattern with an extra pair in the 

center (9 + 2) and serve the function of movement.  Non-motile, or primary cilia, have 

only the nine microtubule doublets without the center pair (9 + 0) and their main function 

is to be a sensory organelle [38].  While the full range of sensory organelle functions are 

not well understood, they participate in transforming extracellular signals to intracellular 

changes [39].  Cilia are located throughout the entire body and have important functions 

for many different organs.  Previous studies have investigated several diseases associated 

with abnormal cilia structure and/or function and are now known as ciliopathies.  

Ciliopathies of the Retina 
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Ciliopathies are caused by genetic mutations containing defective proteins.  To date, over 

40 genes have been identified with ciliopathic diseases [40].  Ciliopathies have been 

identified in multiple organs including kidneys, thyroid gland, liver, pancreas and eye, as 

well as multiple cell types including endothelial cells, the myocardium, odontoblasts, 

photoreceptors, and cortical and hypothalamic neurons [41].  Phenotypes tend to overlap 

within the different syndromes classified as ciliopathies and a list phenotypes from well 

studied ciliopathies are found in Table 2 [40].  The vertebrate eye contains primary cilia 

in photoreceptor cell types that are involved in the outer segment development and 

maintenance.  Proper outer segment formation is crucial for photoreceptors to participate 

in phototransduction in order to allow for vision.  Eye diseases that are caused by 

irregular primary cilia in photoreceptors are known as retinal ciliopathies. 

 Retinal ciliopathies include several photoreceptor degenerative diseases 

that involve certain genes that play an important role in ciliogenisis and/or protein 

transport to the cilium [42].  For phototransduction to occur properly, visual pigment 

made in the inner segment of photoreceptors has to be transported to the outer segment. 

Failure to do so results in an accumulation of visual pigment in the inner segment and 

ultimately leads to photoreceptor cell death.  Retinal ciliopathies have several known 

genes that are associated with ciliary function that include: Retinitis Pigmentosa-1 (RP-

1), Retinitis Pigmentosa GTPase Regulator (RPGR), Retinitis Pigmentosa GTPase 

Regulator Interacting Protein (RPGR-IP), Usher (USH), Nephronophthisis (NPHP) and 

Bardet-Biedl (BBS) [34].  Ciliopathies in general can be single organ disorders or 

multisystemic disorders affecting multiple organs in the body.  For example, the RPGR 

gene is known to located in the photoreceptor connecting cilium and be involved with 
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protein transport and morphogenesis.  Some mutations in RPGR lead to the eye disease 

retinitis pigmentosa, however, some mutations with RPGR lead to systemic 

malformations like primary cilia dyskinesia [42].  Primary cilia dyskinesia is a genetic 

disorder affecting the motility of cilia that causes chronic destruction in the respiratory 

system, randomization of left-right body asymmetry and reproduction system defects 

[43]. 

 

Ciliopathies are a group of genetic disorders characterized by mutations in 

proteins found in the primary cilia [44].  Included in this category are syndromes such as; 

polycystic kidney disease (PKD), Bardet-Biedl (BBS), nephronophthisis (NPHP), 

Alstrom, and Meckel-Gruber Syndrome (MKS).  MKS is a rare, autosomal recessive, 

lethal, ciliopathic, genetic disorder characterized by renal cystic dysplasia, and central 

nervous system malformations, but can also be associated with situs inversus, 

polydactyly and hepatic developmental defects [45].  MKS has a worldwide incidence 

that varies from 1/13,250 to 1/140,000 live births with males and females affected 

equally [46].  This deadly disease can be diagnosed prenatally during ultrasonographic 

screening for fetal chromosomal abnormalities.  Depending on the gestational age, the 

sonograph findings for MKS could include occipital encephalocele, postaxial polydactyly 

and cystic kidneys [47].  Once MKS is diagnosed, the mortality is 100%.  Infants with 

MKS will either be stillborn or die a few hours after birth [45]. 

Meckel-Gruber Syndrome and Models of Meckel-Gruber 

MKS or Meckel-like syndrome has been linked to ten genes that include:  

MKS1/BBS13 [48], MKS2/TMEM216/JBTS2 [49,50], MKS3/TMEM67/JBTS6 [51], 
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MKS4/CEP290/NPHP6/JBTS5/BBS14 [52], MKS5/RPGRIP1L/CORS3/NPHP8/JBTS7 

[53] and MKS6/CC2D2A [54].  In addition, other proteins unrelated to the Meckelin 

family of proteins have also been associate with a Meckel-like syndrome, including 

NPHP3, BBS2, BBS4 and BBS6 [55,56].  These proteins are all associated with either the 

basal body or the cilium.  The MKS3 gene for meckelin is one of the first to be associated 

with the Meckel-Gruber syndrome and is widely expressed in all tested human tissue 

[57].  Previous work has suggested that this gene may be critical to cilia function in 

kidney, liver, and retina. [58].   

 

Meckelin, the MKS3 gene protein product, comprises of 995 amino acids in 

human and mouse and 997 amino acids in rat.  Previous studies have shown that human 

and rat meckelin are 84% identical and 91% similar [57].  The predicted structure of 

meckelin consists of a seven transmembrane region and a short cytoplasmic tail [59].  

This protein structure is similar to those of the Frizzled (FZD) family of receptor 

proteins, suggesting that meckelin could play a role as a receptor.  Also, it is known that 

the MKS3 promoter sequence has an X-box motif that has previously been found to take 

part in the regulation of primary ciliary genes in C. elegans [57,59].  With the acquired 

knowledge of the meckelin’s structure, the role of similarly structured proteins, and the 

phenotype of humans and animals carrying mutations, we postulate that meckelin plays 

an important role in primary cilia function. 

Meckelin and Related Proteins 

In this study, the expression patterns of meckelin have been studied using 

immunohistochemistry in the developing and mature rat retina.  Using the Wistar-Wpk 
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rat with a spontaneous mutation in the rMks3 gene [57], we previously showed that the 

formation of the photoreceptor outer segment development was dramatically impaired 

leading to loss of the photoreceptors [58].  Herein, we found that the photoreceptors 

underwent rapid degeneration around three weeks of life following a brief period when 

many transduction proteins appear to be mislocalized to the inner segment, nuclear and 

synaptic regions.  Since a connecting cilium was present, we hypothesize that meckelin 

may not be important for connecting cilium formation and rudimentary outer segment 

formation, but may be critical for the maturation and maintenance of the outer segment 

process.
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CHAPTER 2. EXPERIMENTAL PROCEDURES 

Dr. Jeroen Nauta (Erasmus Medical Center Rotterdam, Rotterdam, Netherlands) 

provided heterozygous Wistar WPK breeders with Autosomal Recessive Polycystic 

Kidney Disease (ARPKD).  A subcolony was established at the IU School of Medicine 

and all studies were performed with approval of the IU School of Medicine IACUC 

Approval (MD-3119).  Animals were housed at the Indiana University School of 

Medicine Laboratory Animal Resource Center, and the initial litters were delivered via 

cesarean section in order to ensure that the line was pathogen-free [60].  Litters from the 

heterozygous WPK/+ crosses were sacrificed at 10 day and three weeks.  Rats were 

anesthetized with sodium pentobarbital (100mg/kg administered i.p.), and then perfusion 

fixed with 4% paraformaldehyde in 0.1 M phosphate buffer (pH 7.4).  Eyes were 

dissected free, rinsed twice in 1X phosphate buffered saline (PBS; potassium chloride 

200 mg/L, potassium phosphate 200 mg/L, sodium chloride 8000 mg/L, and sodium 

phosphate 1150 mg/L), pH 7.5 and placed in 20% sucrose made in 0.1 M phosphate 

buffer overnight.  Eyes were frozen in a 3:1 ratio of 20% sucrose in 0.1M phosphate 

buffer to Optimal Cutting Temperature (OCT) solution and stored at -80oC. 

WPK Rat Model 
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Molecular and Cellular Techniques 

Immunohistochemistry 

Ten micron sections were cut with a Leica CM3050 S cryostat placed on 

Superfrost Plus slides (Fisher Scientific, Pittsburgh, PA) and stored at -80oC until used 

for immunohistochemistry.  Immunohistochemistry was performed as described 

previously [61].  Briefly, slides with tissues samples were removed from freezer and 

allowed to warm to room temperature for 10-15 minutes.  Slides were then washed with 

1X PBS twice for 10 minutes.  Sections were circled using a PAP pen (Electron 

Mircroscopy Sciences, Hatfield, PA) followed by incubation for one hour at room 

temperature in 10% serum diluted in 1X PBS with 0.25% triton X-100.  After removing 

blocking solution, sections were incubated overnight at 4oC with the primary antibody 

diluted in PBS containing 2% serum (same serum as used in blocking) in PBS containing 

0.025% triton X-100.  Dilutions and sources of each antibody can be found in Table I.  

Then slides were warmed to room temperature for 10-15 minutes, followed by removal of 

primary antibody and washing with 1X PBS  twice at room temperature for 10 minutes.  

Sections were then incubated for one hour at room temperature with alexa-fluora 

(Invitrogen, Eugene, OR) or DyLight (Jackson ImmunoResearch, West Grove, PA) 

conjugated secondary antibodies diluted to 1:800 in 1X PBS.  Following secondary 

antibody, slides were washed twice in 1X PBS at room temperature for 10 minutes each 

rinse.  Slides were then incubated for 2 minutes at room temperature with 0.9 M Hoechst 

dye (H6024, Sigma-Aldrich, St. Louis, MO), then rinsed briefly with 1X PBS at room 

temperature, and mounted using  aqua poly/mount (Polysciences, Warrington, PA).  



15 

 

 

Slides were stored protected from light until analysis using a Nikon Eclipse E800 

epifluorescence microscope equipped with a Nikon Digital Camera DXM 1200 or an 

Olympus Fluoview FV 1000 confocal. 

 

TUNEL Labeling 

Frozen tissues samples were allowed to warm to room temperature for 10-15 

minutes and subjected to TUNEL labeling using an In situ cell death detection kit 

(Roche, Indianapolis, IN) as per manufacturer’s instructions. Briefly, tissue sections were 

post-fixed with 4% paraformaldehyde, washed with 1X PBS for 30 minutes at room 

temperature and permeabilized with 0.1% Triton X-100, 0.1% sodium citrate in 1X PBS 

for 2 minutes on ice. Sections were then rinsed with 1X PBS, followed by incubation 

with TUNEL reaction mixture for 60 minutes at 37oC in a humidified atmosphere in the 

dark. Slides were then rinsed 3 times with 1X PBS and mounted using an antifade agent 

(Prolong Gold, Invitrogen, Carlsbad, CA). Samples were analyzed using an Olympus 

confocal laser scanning microscope using an excitation wavelength of 488 nM. A 

negative control without addition of label solution and a positive control incubated with 

3000 U/ml of DNAase I recombinant were also subjected to similar conditions and 

analyzed. 

 

H&E Staining 

Frozen tissues samples were allowed to warm to room temperature for 10-15 

minutes and rinsed 2 times with 1X PBS.  Sections were then stained with Harris 

hematoxylin solution (1x) for 8 minutes.  Next, wash slides in running tap water for 5-10 
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minutes.  Sections were then stained with eosin Y solution for 1 minute and dipped in 

water until the liquid runoff changed from color to clear.  Slides were then dipped 10 

times in 50, 70, 90 and 95% ethanol, respectively.  Slides were dipped 5 times in xylene 

and mounted with Cytoseal-XYL, a xylene based mounting medium. 

 

Transmission Electron Microscopy 

Wpk rats were perfused through the left ventricle with 4% paraformaldehyde in 

0.1 M phosphate buffer.  Tissue sections used for electron microscopy were placed in 2% 

paraformaldehyde, 2% glutaraldehyde in phosphate buffer.  Tissue was processed from 

TEM by the Electron Microscopy Center at the Indiana School of Medicine, Indianapolis 

using standard methods (http://anatomy.iupui.edu/core-facilities/electron-microscopy-

center/).  Briefly, tissue was cut into 1 x 2 mm segments, post-fixed in osmium tetroxide, 

dehydrated in a graded series of ethanol, infiltrated and embedded in Embed 812 

(Electron Microscopy Sciences).  Sections were cut with a diamond knife on a Leica 

UCT Ultramicrotome (Leica), stained with uranyl acetate and examined using a Tecnai 

G2 12 Bio Twin (FEI) [60]. 

 

Tissue Analysis and Statistics 

Digital images for cell death (TUNEL and caspase 3), retinal cell layer thickness 

measurements (H+E stain) and retinal cell counts were taken by an Olympus Fluoview 

FV1000 confocal microscope.  For cell death and retinal cell counts, positively labeled 

cells were counted over a 100µm area that was 200µm dorsal and ventral from the optic 

nerve.  Similar to cell death and cell count assays, we measured retinal cell layer 
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thicknesses 200µm dorsal and ventral of the optic nerve using the FV10-ASW 2.1 

Viewer software of the Olympus Fluoview FV1000 confocal microscope.  To determine 

the significance of our data, we used an unpaired t-test that compared age-matched 

littermates of wild type (WT) and mutant rats (Graphpad Software, 

http://www.graphpad.com/quickcalcs/ttest1.cfm). 
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CHAPTER 3. RESULTS 

To initially determine if MKS3 might be important for photoreceptor outer 

segment formation and/or maintenance, the localization of MKS3 in the developing rat 

retina was examined.  Cryosections through postnatal day 10 (P10), P21, and mature 

retinae were probed with an MKS3-specific antibody (See Figure 3.1).  In the developing 

retina, expression of MKS3 was fairly widespread.  At both P10 (Fig 3.1A-B) and P21 

(Figure 3.1C-D) signal was detected in the outer nuclear layer, a subset of cells in the 

inner nuclear layer (INL) and the ganglion cell layer (GCL).  In the mature retina, 

labeling was still apparent in the photoreceptor outer/inner segments as well as in the 

GCL (Figure 3.1E, F).  Staining was no longer detectable in the INL.     

Meckelin 3 is Found in the Developing and Mature Rat Retina 

MKS3 is known to interact with ciliary proteins in other cell types [62].  To 

examine the localization of meckelin in photoreceptors, we double-labeled cryosections 

through mature retina with antibodies against proteins known to be present in the 

axoneme of the photoreceptor outer segment.  Acetylated microtubules are enriched in 

the photoreceptor axoneme [63] and appeared to co-localize with MKS3 in the mature 

outer segment (Figure 3.1G-I). 

To further characterize expression patterns and determine which cell types 

expressed MKS3 in the mature retina, we performed double-label immunohistochemistry 
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using antibodies against specific retinal cell markers at P21.  The expression of meckelin 

in rods and cones was first determined (Figure 3.2).  MKS3 was clearly detected in both 

photoreceptor cell types labeled as seen in overlays of sections co-labeled for rhodopsin 

and meckelin (Figure 3.2F) or L/M opsin and meckelin (Figure 3.2L).  MKS3 expression 

was also compared to other cells type-specific markers found in the inner and GCL, 

including calbindin (horizontal cells), Chx10 (bipolar cells), Sox2 (Muller glia and 

astrocytes), parvalbumin (amacrine cells), and Brn3a (ganglion cells).  We detected no 

co-expression in cells that were positive for calbindin (Figure 3.3A-D) or Chx10 (Figure 

3.3E-H).  However, MKS3 was co-expressed in cells that were positive for Sox2 (Figure 

3.3I-L) parvalbumin (Figure 3.3M-P) and Brn3a (Figure 3.3Q-T). 

 

To further test the hypothesis that MKS3 is critical for the formation of 

photoreceptor outer segments, we utilized a rat with a spontaneous autosomal recessive 

mutation of the Mks3 gene, referred to as the rat Wistar polycystic kidney disease model 

(WPK; [64]).  The progression of the polycystic kidney disease (PKD) has been well 

characterized in this strain of rats and culminates in a majority of the rats dying between 

3 and 6 weeks of age [64,65], therefore we restricted our analysis of the WPK retinae to 

the early postnatal stages prior to stages when rats were extremely ill and/or dying.  

Previous work has shown that there were fewer photoreceptors in the rat WPK model 

than their wild type (WT) counterparts, however the cellular changes in photoreceptors 

during retinal development has not been fully characterized [58].  A histological analysis 

of retinal sections at postnatal days 10 and 21 was performed to determine the rate of 

Histological Analysis of Retinae Isolated from Rat Mutant for Meckelin 3 
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photoreceptor development in the WT and WPK littermates.  Sections through the central 

retina of WT and mutant were stained with hematoxylin and eosin and the thickness of 

the outer (ONL), inner (INL), and ganglion cell (GCL) layers measured on digital images 

of the sections in regions dorsal and ventral to the optic nerve (see Materials and Methods 

for full description).  Since there were no significant differences between dorsal and 

ventral measurements, the data from both were pooled together to obtain the histograms 

in Figure 3.4.  At P10, there was no change in the thickness of the INL and GCL in WT 

and mutant retinae; however there appeared to be a change in thickness of the ONL in 

comparison to the WT counterparts (Figure 3.4A, B, E). There was a tendency for the 

ONL to be thinner in P10 mutant rats; but the difference was not statically significant.  At 

P21, no statistically significant changes were noted in the mutant INL and GCL in 

comparison to the WT.  In contrast, the ONL still showed significant reduction in the 

thickness of the mutant ONL in comparison to the WT (Figure 3.4C, D, F). 

 

 

In the results above, MKS3 was clearly detected in photoreceptors and cells of the 

INL and GCL, and there appeared to be a loss of cells in the ONL layers.  To further 

determine whether both rods and cones are lost in the WPK rat and whether other cells 

types in the INL and GCL were also affected by the MKS3 mutations, cryosections 

through control WT and mutant P21 eyes were analyzed using cell type-specific 

antibodies.  Using antibodies against rhodopsin (rods), L/M opsin (cones), and S opsin 

(cones), it was apparent that both rods and cones were severely affected by the MKS3 

Cell Loss in the WPK Mutant Retinae 
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mutation (Figure 3.4).  In comparison to age-matched WT littermates, there appeared to 

be a significant reduction in the number of labeled rods at P21 (Figure 3.4G-J).  Further, 

immunolabeling for the L/M opsin in mutant retinae revealed mislocalization of the 

opsins to cell bodies in comparison to the WT control which showed labeling in the inner 

and outer segment (Figure 3.4K-N).  Very few cells were S opsin-positive in the WT 

retina (Figure 3.4O-P) and none could be found in the WPK mutant (Figure 3.4Q-R).  

To detect cells in the INL and GCL, we immunolabeled P10 and P21 cryosections 

with calbindin for horizontal cells, Chx10 for bipolar cells, Sox2 for Muller glia and 

astrocytes, parvalbumin for amacrine cells and Brn3a for ganglion cells.  At P10, 

expression patterns of calbindin, Chx10, Sox2, parvalbumin, and Brn3a all appeared 

similar in WT and mutant retinae.  At P21, expression patterns of calbindin (Figure 3.5A-

D), Chx10 (Figure 3.5E-H), and Sox2 cells (Figure 3.5I-L) were similar in WT and WPK 

mutant retinae.  Parvalbumin expression was found similarly within the INL of both the 

WT and WPK mutant retina (Figure 3.5M-P).  However, a significant amount of 

parvalbumin expression was found in the GCL of WPK mutants in comparison to their 

WT counterparts (Figure 3.5M-P).  Brn3a expression appeared similar in the WT and 

mutant retinae (Figure 3.5Q-T).  At P21, we also immunolabeled WT and mutant retinal 

sections with glial fibrillary acidic protein (GFAP) to detect reactive glia present in 

degenerating retinae.  A small amount of GFAP expression was localized to the endfeet 

in WT retinae (Figure 3.5U-V); however, a significant increase of GFAP occurred 

throughout the cell body of Muller glia in the mutant (Figure 3.5W-X). 

To confirm that there was only a loss of rods and cones in the mutant retinae, it 

was necessary to perform cell counts for each retinal cell type at P10 and P21.  At P10, 
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cell counts comparing WT to mutant for all retinal cell types were all similar in number 

with no significant differences, including photoreceptor cell types (Figure 3.8A).  This is 

consistent with our previous immunostaining and suggests that all retinal cell types are 

initially present in the Wpk mutant rat.  Analyses of P21 retinal cell counts confirmed 

that both photoreceptor rod and cone cell types were the only retinal cell types to be 

significantly reduced (Figure 3.8B).  These results confirm that the Wpk mutant rat 

undergoes photoreceptor degeneration between P10 and P21.  

To further analyze the apparent decrease in photoreceptors in the WPK mutants, 

we labeled sections through central retina with the terminal deoxynucleotidyl transferase 

mediated dUTP nick-end-labeling (TUNEL) assay or with an antibody against caspase 3 

to detect cells undergoing apoptosis.  At P10, there were very few cells labeled with 

TUNEL or caspase 3 in the INL and GCL of the WT or mutant retinae (Figure 3.6I, J).  

Similarly, at P21 there were also very few positive cells in the INL and GCL of both the 

WT and mutant retinae. Consistent with the measurement data, however, at P10 there was 

a small but statistically significant increase in caspase 3- labeled cells in the mutant ONL 

in comparison to the WT (Figure 3.6J).  However, WT and mutant ONL at P21 were 

strikingly different.  While the P21 ONL of WT retinae had virtually no cells labeled for 

TUNEL or caspase 3, the mutant rats had an abundance of TUNEL- and caspase 3- 

labeled cells (Figure 3.6I, J). 
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Rudimentary Outer Segments are Initiated Prior to Photoreceptor Degeneration in the 

WPK Mutant 

In the WT rat model, photoreceptors begin to develop before birth and fully 

mature by 3 weeks [10].  To determine if photoreceptor outer segments initially form in 

the WPK rat, transmission electron microscopy (TEM) images were compared in the 

control WT retina and the WPK rat retina.  High resolution TEM images show inner and 

outer segment formation at P10 and P21 in WT and WPK rats (Figure 3.7).  At P10, rods 

in the WT retinae were just beginning to form outer segments accompanied by laminated 

discs (Figure 3.7A inset).  However, the WPK mutant photoreceptor cilia form bulbus 

terminae without the formation of discs (Figure 3.7B with inset).  By P21, the WT retinae 

have completed outer segment formation with numerous laminated discs (Figure 3.7C 

with inset).  However, in the retinae of mutant rats lack outer segments with the cilia 

projecting into a loosely organized area without evidence of laminated discs (Figure 3.7D 

with inset). 
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CHAPTER 4. CONCLUSION 

Summary of Findings 

In this study, we have investigated the normal expression patterns of the MKS3 

protein in the developing rat retina and tested its role in outer segment formation.  The 

following summarizes our findings: 1) MKS3 was found in photoreceptors as well as 

amacrine, Muller glial, and ganglion cells in the developing rat retina, 2) MKS3 was 

restricted to the ONL and GCL of the mature rat retina, 3) rats with a naturally occurring 

point mutation in the Mks3 gene showed a loss in the thickness of the ONL as well as an 

apparent loss in the number of cells labeled with rod and cone-specific markers in the 

WPK mutant rat in comparison to the WT, 4) the loss of outer segments in photoreceptors 

was linked to an increase in apoptosis, and 5) EM data showed that WT and WPK 

photoreceptors developed an axoneme on the same time scale; however Mks3 mutant rats 

were only able to produce rudimentary outer  segment.  We conclude from these studies 

that the MKS3 protein product is essential for the development of the outer segment in 

both rods and cones and the absence of the outer segment process leads to apoptosis of 

the developing rods and cones. 
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Photoreceptor Outer Segment Development and Meckelin 3 

The outer segment of the photoreceptor is initially developed as an extension of 

the connecting cilium.  The basal side of the connecting cilium is anchored in the inner 

segment by the basal body and its apical side elongates to form the start of the outer 

segment.  The stacked discs of the outer segment that house the visual pigments 

necessary for phototransduction are formed through a process that is still somewhat 

controversial.  The discs arise from either the evagination of the plasma membrane from 

the base of the connecting cilia or the fusion and compression of pinocytic vesicles that 

arise from the plasma membrane [36,37,66,67,68].  In vertebrate rod cells, these disk 

membranes pinch off and separate, while in cone cells they are continuous with the 

plasma membrane.  This outer segment disk formation is continued throughout adulthood 

due to the daily shedding of the discs from the most apical end of the OS [42].  In the 

studies presented here, rudimentary rod photoreceptor outer segments consisting of the 

connecting cilium and plasma membrane were present.  However, no further outer 

segment development was noted. 

 

Cell Death in Mks3 Mutants 

There was substantial cell death associated with photoreceptors in the MKS3 

mutant rat by postnatal day 21.  Photoreceptor death appears to be a consistent theme in 

animal studies as well as in human diseases involving retinal disease [69,70,71,72].  

Photoreceptors appear to preferentially use the caspase-dependent apoptotic pathway 

during degeneration [73].  We initially tested for cell death using the TUNEL assay, 

which is a non-specific marker of cell death occurring by apoptotic as well as necrotic 
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and autolytic pathways [74,75].  We subsequently showed using the localization of a 

member of the apoptotic pathway, caspase 3, that the photoreceptors in the mutant rat 

were using the caspase-dependent pathway [76,77].  There are a number of hypotheses 

proposed which may give us clues as to why these photoreceptors undergo apoptosis 

[73].  One hypothesis attributes photoreceptor death in other model systems to hyperoxic 

conditions that arise as a result of a decrease in phototransduction that would occur if 

outer segments do not form and therefore transduction of light does not take place.  The 

process of phototransduction relies on high levels of oxygen consumption, and the lack of 

phototransduction leads to high levels of local oxygen concentrations that are only 

partially compensated for by the retinal vasculature [73,78]. This might then lead to the 

production of reactive oxygen species that have been shown to be damaging to cell 

survival.  Other plausible explanations as to why the photoreceptors undergo apoptosis 

include metabolic stress created by the production of a large bolus of protein that is not 

properly trafficked in the cell body [42,73], or an inflammatory response of Muller glial 

cells undergoing reactive gliosis [79,80,81,82,83].  Finally, it is also possible that because 

the systemic problems resulting from Mks3 mutation that arise may have some bearing on 

the degeneration of photoreceptors.  We find the last to be an unlikely scenario, given 

that the mutation on a different genetic background leads to a less severe phenotype in 

kidney, but the photoreceptors still undergo a similar time course of degeneration 

(Gattone, unpublished data).  

 Just as interesting as the presence of photoreceptor degeneration is the 

apparent absence of degeneration in other cell types in the mutant retina.  In addition to 

the inner and outer segment of WT retinae, MKS3 was also localized to Muller, 
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amacrine, and ganglion cells of the developing retina.  While these cells express the 

MKS3, they appear not to undergo degeneration, at least during the period examined in 

the studies presented here.  Barring the possibility that the cells degenerate later in 

development, perhaps the most logical reason these cells do not degenerate is that the 

cilia may be a vestigial apparatus in many cells [84].  Cilia are present in almost all cells, 

but they appear to have a function only in a subset of those cells [85].  Alternatively, cilia 

in these other cells may have an as yet undescribed function, but the cells are not as 

reliant upon this particular function for their survival [86].  Further study is needed to 

clarify the potential contribution(s) of MKS3 in other retinal cell types. 

 

Ciliopathies and Retinal Degenerations 

Many of the ciliopathies that affect the retinae also can cause pathological 

changes in other organs as well such as the kidney.  Since Meckel Gruber Syndrome is 

probably the most severe of the renal ciliopathies, causing cysts to form in kidney, it 

would also likely cause a retinal phenotype as well.  While six to ten different genes have 

been associated to MKS, it is unclear whether all will actually lead to a condition that 

resembles Leber’s Congenital Amaurosis in humans.  Leber’s Amaurosis has been 

associated with a number of genes [87].  One of the genes that has previously been 

associated with Leber’s amaurosis in both cats and humans, CEP290, can also cause 

Meckels Syndrome (aka MKS4) [88,89].  While truncation and gene deletion mutations 

of CEP290 can cause a full-blown Meckel Syndrome, other less severe mutations can 

cause a less severe phenotype that also includes Leber’s Congenital Amaurosis.  

Interestingly, replacement of the N-terminal of CEP290 can restore the retina, at least in 
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zebrafish [90].  Thus far, MKS3 (or TMEM67) mutations have not been described as 

causing a Leber’s Congenital Amaurosis in humans, only in the Wpk rat [58].  However, 

the disease in the Wpk rat involves many organs, including lethal renal cystic and brain 

pathology.  A similar multiorgan phenotype has been identified with other types of 

congenital renal ciliopathies such as Bardt Beidl syndrome (BBS1, [91] : BBS4, [92,93]).  

However, Bardt Beidl Syndrome carriers of a BBS mutation also have a retinal 

phenotype [94].  

 After a number of animal model studies, gene therapy has now been used to 

ameliorate the visual deficit in RPE65 gene mutations in affected humans suggesting that 

this condition is amenable to treatment and correction [95,96]-[97,98].  However, in the 

retinal degeneration seen in the WPK rat herein, after the loss of rod cells, recovery 

would only be possible if treatment were started early.  Since there were minimal changes 

prior to time outer segment normally develops, any such rescue in Mks3-induced disease 

would require the treatment of suckling rats.  However, it is unclear how effective 

treatment would be in such a rapidly developing disease.  

The Meckel Syndrome associated with an MKS3 mutation exhibits a severe 

retinal phenotype that resembles Leber’s Congenital Amaurosis with the eventual loss of 

photoreceptor cells through apoptosis and an increase in glial scarring.  While the 

remainder of the retinal cell types are largely preserved, any attempt at rescuing this 

rapidly developing degeneration of photoreceptors remains questionable.  It is likely that 

other forms of Meckel Syndrome may also have a retinal phenotype; however, the 

severity of the pathology in other organs has limited the evaluation of the retina in 

affected humans. 
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Future Directions 

There are several different directions to move to understand not only the affect of 

Meckel-Gruber syndrome on the retina, but also in trying to comprehend the mechanism 

of how the photoreceptors degenerate.  First, the intraflagellar transport (IFT) process that 

the connecting cilium uses to transport important cargo for outer segment development 

should be better characterized.  Meckelin has been localized to the basal body and 

axoneme of the primary cilia, however, which of the many proteins localized to these 

regions interact with meckelin is not clear.  There are several known proteins that have 

been identified in participating in the IFT process [99].  Double-immunohistochemistry 

can be performed with meckelin and known IFT participating proteins to see which co-

localize with meckelin.  Next, co-immunoprecipitation using antibodies to those proteins 

that appear to co-localize with meckelin can be used to analyze the potential protein-

protein interactions.  The IFT motor proteins, kinesin and dynein, are a great place to start 

with because they are responsible for the transportation of cargo to the outer segment and 

back to the base of the cilium, respectfully.  IFT20 is an IFT particle protein that previous 

studies have found to play a role in the transport of rhodopsin from the golgi complex to 

the base of the connecting cilium and has been found to localize to the inner segment, 

basal body and transition zone of primary cilia [100].  IFT88 and CEP290 are also 

localized to the basal body and axoneme of cilia and a loss of either leads to a lack of 

outer segment development [101,102].  Understanding what if any connection exists 

between these proteins and meckelin will be critical in our understanding of the 

mechanism of outer segment formation and maintenance. 
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 In this study, we have been able to show through immunostaining and cell death 

assays that the Wpk mutant rat undergoes rapid photoreceptor degeneration between P10 

and P21.  One necessary aspect of the degeneration will be to confirm to when exactly 

the photoreceptor cells start to undergo apoptosis.  This can be done by taking different 

aged rats between P10 and P21 and performing cell death assays to see the initial time 

point the photoreceptor cells start apoptosis.  At P10, we found that all retinal cell types 

were present and similar in number when comparing the WT and mutant; however, it 

would be interesting to know if the photoreceptor cells are already programmed for cell 

death by P10.  To perform this study, the use of annexin V could be used as an early cell 

death marker.  Phosphatidylserine is a cell membrane phospholipid component and is 

confined to the inner leaflet of the plasma membrane.  Once a cell initiates apoptosis, 

phosphatidylserine gets rapidly exposed on the cell’s outer surface and can be detected 

through the use of an antibody specific for annexin V [103]. 

 In addition to understanding the mechanisms of Meckel-Gruber syndrome within 

the retina, ways to recover or stop the degeneration of photoreceptor cells are also very 

important.  One possible way to help the retina development a proper photoreceptor outer 

segment in the Wpk mutant rats is to introduce the absent meckelin protein through the 

uptake of nanoparticles.  Nanoparticles can be made with proteins that are endocytosed 

by the developing photoreceptors, enabling replacement of missing mutated proteins.  For 

this study, nanoparticles with meckelin could be made to target known receptors on the 

retina to see if the uptake of meckelin could regenerate photoreceptor outer segments or 

prevent the photoreceptors from undergoing apoptosis. 
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 This study evaluated meckelin (MKS3 protein product) expression during normal 

postnatal retinal development and the consequences of mutant meckelin on photoreceptor 

development and survival in Wistar polycystic kidney disease Wpk/Wpk rat using 

immunohistochemistry, analysis of cell death and electron microscopy.  Results showed 

that P21 mutant rats undergo rapid photoreceptor degeneration with no loss of other cell 

types.  Meckelin is known to be localized to the connecting cilium and there are many 

known proteins have a role in the connecting cilium and IFT process.  Hopefully with a 

better understanding of what meckelin is interacting with will help identify the source of 

the problem.  Better understanding meckelin interactions would not only help with this 

current model, but with other known ciliopathies. 
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Table 1.1 Ciliopathies with Overlapping Phenotypes.  Table includes well know 
ciliopathies and the phenotypes associated with each syndrome.  This table shows the 
overlap in phenotypes between the diseases. 
 

 

Phenotype 

Ciliopathies 

LCA SLS NPHP MKS BBS JBTS 

Cerebellar   √  √ √ 

Hypoplasia       

Encephalocele    √   

Hepatic disease  √ √ √ √ √ 

Renal disease  √ √ √ √ √ 

Mental 

Retardation 

√  √  √ √ 

Obesity     √ √ 

Polydactyly    √ √ √ 

Retinopathy √ √ √ √ √ √ 

Situs inversus  √ √ √ √ √ 

Skeletal dysplasia    √   

Cleft palate    √   

LCA – Leber’s congenital amaurosis; SLS – Senior-Loken syndrome; NPHP – 
nephronophthisis; MKS – Meckel-Gruber syndrome; BBS – Bardet-Biedl syndrome; JBS 
– Joubert syndrome; [37] 
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Table 2.1 Primary Antibodies Used for Immunohistochemistry. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Antibodies 

Antibody Name Supplier Catalog 
Number 

Dilution 

Tubulin Sigma-Aldrich (St. Louis, MO) T 6793 1:4,000 

Calbindin-D-28k Sigma-Aldrich (St. Louis, MO) CB-955 1:200 

Sox2 Santa Cruz (Santa Cruz, CA) sc-17320 1:250 

Opsin Blue Millipore (Temecula, CA) AB5407 1:200 

Opsin Red/Green Millipore (Temecula, CA) AB5405 1:200 

OPN1MW/MW2/LW Santa Cruz (Santa Cruz, CA) sc-22117 1:250 

Rhodopsin Millipore (Temecula, CA) MAB5356 1:250 

Meckelin Novus (Littleton, CO) NBP1-
06590 

1:200 

Parvalbumin 
(Rabbit polyclonal) 

Abcam (Cambridge, MA) ab11427 1:2,000 

Parvalbumin 

(Mouse monoclonal) 

Sigma-Aldrich (St. Louis, MO) P3088 1:2,000 

GFAP  Dako (Carpinteria, CA) Z0334 1:500 

Brn3a Millipore (Temecula, CA) MAB1585 1:100 

Chx10  Exalpha (Shirley, MA) X1180P 1:500 

Caspase 3 Cell Signaling (Danvers, MA) Asp175 1:12,000 
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Figure 1.1 Eye Formation During Embryonic Development.  The neural plate, 
in light blue (a), is induced from ectoderm by underlying pre-chordal mesoderm.  At the 
beginning of eye formation, the neural plate folds inward to form a neural tube (a-d).  As 
this is occurring, two small pits appear at either side of the neural plate, known as optic 
grooves, which herald the first visible sign of eye development.  As the neural plate is 
undergoing closure, the optic grooves evaginate and enlarge to form the optic vesicles 
(e).  The optic vesicles communicate with the surface ectoderm to form the lens placode 
(f).  Simultaneously, the optic vesicle and lens placode invaginate to form the optic cup 
and lens vesicle, respectively (g).  The inner part of the optic cup will become the multi-
layered neural retina and the outer part will become the single layered retinal pigmented 
epithelium [104]. 
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Figure 1.2 The Vertebrate Retina.  The vertebrate retina is a multi-layered 
tissue consisting of cell bodies in the retinal pigmented epithelium, outer, inner, and 
ganglion cell layers.  The outer nuclear layer (ONL) contains 2 type of photoreceptors; 
rods and cones.  The inner nuclear layer contains horizontal, bipolar, Muller glia and 
amacrine cells.  The ganglion cell layer contains ganglion cells and a subset of 
“displaced” amacrine and cells.  Light enters at the ganglion cell layer and make its way 
to the outer segments of the photoreceptors.  Photoreceptors then transform the light into 
biological signals through a process called phototransduction [105]. 
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Figure 1.3 Phototransduction in Photoreceptor Outer Segment.  The main 
function of the retina is to turn light into a biological signal through phototransduction.  
In the presence of light, visual pigment in stacked discs of the outer segment will absorb 
light.  The visual pigment is comprised of the vitamin A derivative, retinal, and a protein 
known as an opsin.  When bound to the opsin, retinal is in the conformation referred to as 
N-cis retinal.  Once light is absorbed by the N-cis retinal, it causes a conformational 
change that leads to the formation of the all-trans isomer of retinal.  The opsin/all-trans 
retinal then activates the trimeric G-protein transducin, causing the α subunit of 
transducin to exchange GDP for GTP.  This GTP complex will activate 
phosphodiesterase and will lead to the breakdown of cGMP to 5’-GMP.  This breakdown 
will lower cGMP concentration and close the cation channels.  Closure of the cation 
channels will cause the cell to hyperpolarize.  This will result in a decrease the amount of 
glutamate released from the synaptic region of photoreceptors [14]. 
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Figure 1.4 Light Pathway in the Retina.  Photoreceptors make synapses with 
both bipolar and horizontal cells in the outer plexiform later of the retina.  Photoreceptors 
have synapses with bipolar cells that are on- or off-center.  An on-center bipolar cell is 
stimulated when the center of its receptive field is exposed to light and inhibited when 
light hits the surrounding area.  The off-center bipolar cells have an opposite reaction of 
being inhibited with direct light to the center and excited when light is exposed in the 
surrounding area. Ganglion cells also have on- and off-center cells that function in the 
same way as bipolar cells.  Ganglion cells project their axons to the optic nerve head, 
where they bundle axons together to form the optic nerve [106]. 
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Figure 1.5 The Pathway of the Visual System.  As the light signal that starts at 
the photoreceptors is transferred to the ganglion cells, the ganglion cells then project their 
axons to the optic nerve head, the axons are bundled together to form the optic nerve.  
Ganglion cell axons project toward the midline of the CNS, at a region known as the 
optic chiasm.  In humans, information from the temporal retina remains ipsilateral (e.g. 
information from right temporal retina goes to right hemisphere of brain).  The opposite 
happens with the nasal retina, as the information received will project contralaterally (e.g. 
information from the right nasal side will cross over and go to the left hemisphere of the 
brain).  From the optic chiasm, axons project to the pretectum, superior colliculus or 
lateral geniculate nucleus (LGN).  The cells of the LGN then project to the visual cortex, 
where information transduced in the retina is perceived [23]. 
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Figure 1.6 Structures of Photoreceptor Rods and Cones.  Photoreceptor rods 
and cones have many similarities. Rods and cones have synaptic terminals (ST) 
containing the neurotransmitter glutamate that is released at the synaptic ending to 
interact with bipolar and horizontal cells.  They have an inner segment (IS) where the 
visual pigment is made.  They each have a cell nucleus (N) and a connecting cilium (CC) 
that is used to transport important cargo for outer segment formation and function.  
Lastly, rods and cones have an outer segment (OS) full of discs that contain visual 
pigment for phototransduction.  In rods, the disks pinch off from the plasma membrane, 
while the cone cells have discs that are continuous with the plasma membrane.  
Photoreceptor cone cells are smaller and fewer in number when compared to 
photoreceptor rod cells [31]. 
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Figure 1.7 Photoreceptor Connecting Cilium.  A) Photoreceptors can be 
divided into outer segments (OS), inner segment (IS), nucleus (N), and synaptic terminal 
(ST).  B) Photoreceptor has a connecting cilium (CC) that connects the inner segment to 
the outer.  The CC is a primary non-motile cilia that has nine-microtubule doublets with 
no center pair.  The photoreceptor CC plays an essential role in the 
development/maintenance of the outer segment and transport important cargo, like visual 
pigment, necessary for phototransduction.  C) The cilia is composed of nine microtubule-
doublets without a center pair, making it a non-motile and function as a sensory organelle 
[107].  (AX- axoneme; BB- basal body; CR- ciliary rootlet; C- centriole) 
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Figure 1.8 Intraflagellar Transport in Photoreceptor Connecting Cilium.  
The main function of the photoreceptor connecting cilium is to transport cargo from the 
inner segment (IS) to the outer segment (OS).  To accomplish this function, the 
connecting cilium (CC) uses a process called intraflagellar transport.  Cargo at the base of 
the CC will use the motor protein kinesin to be transported from the inner segment to the 
outer segment. This is referred to as anterograde transport.  Cargo being taken back to the 
inner segment from the outer segment will use the motor protein called dynein.  This is 
referred to as retrograde transport.  The function the CC uses IFT for is disc formation 
(DF) [42]. 
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Figure 1.9 Outer Segment Formation by Invagination of Plasma Membrane.  
The Corless-Fetter model photoreceptor outer segment (POS) disc formation proposes 
that discs are formed through invagination of the plasma membrane (PL).  After a cell has 
started to differentiate as a photoreceptor, a primary cilia will form and elongate on the 
apical end of the cell.  As the connecting cilium (CC) extends out of the photoreceptor 
inner segment (PIS), the plasma membrane forms a balloon-like structure around the 
connecting cilium.  Next, the growing plasma membrane invaginates to form discs.  The 
extracellular margin templates (MT) become aligned and assemble to form terminal loop 
complexes, which are thought to represent the primary morphogen of the disc rims.  In 
the bottom picture, disc rim formation is completed and pinches off from the plasma 
membrane [108]. 
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Figure 1.10 Outer Segment Formation by Pinocytosis.  Another proposed theory 
of photoreceptor outer segments disc (D) formation is the pinocytic model.  As the 
photoreceptor begins to differentiate, a primary cilia (CC) forms and elongates on the 
apical end of the cell.  As the connecting cilium extends, the plasma membrane forms a 
balloon-like structure around the connecting cilium.  At the base of the outer segment, 
pinocytic vesicles (PV) are fused, compressed by unknown mechanisms and then stacked 
together [37]. 
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Figure 1.11 Development of Rod Photoreceptor.  A) Photoreceptors develop 
from a pool of dividing progenitor cells in the vertebrate retina.  Nuclear region (N) is 
shown in green.  B) The connecting cilia (CC) extends from the apical side of the 
photoreceptor and is anchored by the basal body.  C) The plasma membrane creates a 
balloon-like structure that surrounds the connecting cilium.  D) The plasma membrane 
grows and forms an invagination.  E-F) Invaginations continue and form disc like 
structures.  The discs (D) are then pinched off, compressed, and stacked [35]. (ST- 
synaptic terminal) 
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Figure 3.1 Meckelin 3 in the Developing Rat Retina.  Immunohistological 
staining of MKS3 was observed in the outer, inner, and ganglion cell layers of retinae 
obtained from WT P10 (A), P21 (C), and mature (E) rats.  Nomarski optics of the same 
sections are shown in B, D and F. Tissue sections were double labeled with MKS3 (G) 
and tubulin (H) to highlight the axoneme of the outer segment.  An overlay of MKS3- 
and tubulin-label showed clear co-localization of the two proteins at the axoneme (I).  
GCL, ganglion cell layer; INL, inner nuclear layer; ONL, outer nuclear layer; OS, outer 
segment.  Scale bar: (A) 50µm; (G) 50µm. 
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Figure 3.2 MKS3 is Found in Rods and Cones.  Double-label 
immunohistochemistry was performed on sections through P21 WT retina using an 
antibody specific for MKS3 (A, D, G and J) and rhodopsin (B, E) or long/medium 
wavelength opsin (H, K).  Images were then merged into a single image (F, L) to show 
the co-expression of MKS3 and photoreceptors in the outer segment.  Nomarski optics is 
shown for each section (C, I).  GCL, ganglion cell layer; INL, inner nuclear layer; ONL, 
outer nuclear layer; OS, outer segment. Scale bar: (A) 50µm. 
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Figure 3.3 MKS3 is Widely Expressed in the Rat Retina.  Double-label 
immunohistochemistry was performed in P21 retina with MKS3 (A, E, I, M and Q) and 
calbindin (horizontal cells) (B), Chx10 (bipolar cells) (F), Sox2 (Muller glia) (J), 
parvalbumin (amacrine cells) (N) or Brn3a (ganglion cells) (R).  Co-expression of 
meckelin with these markers can be seen in C, G, K, O, and S.  MKS3 appeared to be co-
expressed in cells that were positive for Sox2, parvalbumin and Brn3a (arrows indicate 
co-expression).  No co-expression appeared to be present in cells positive for calbindin 
and Chx10.  Nomarski optics is shown for each section in D, H, L, P and T.  GCL, 
ganglion cell layer; INL, inner nuclear layer; ONL, outer nuclear layer.  Scale bar: (A) 
50µm. 
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Figure 3.4 Retinal Cell Layer Thickness and Photoreceptors in Mks3 
Mutants.  Retinal cell layer thickness was measured in sections through the central 
retinae 200µm dorsal and ventral to the optic nerve in WT at P10 (A) and P21 (C) and 
mutant P10 (B) and P21 (D).  Graphs were made for P10 (E) and P21 (F) to compare the 
average thickness per sample of each retinal cell layer in WT and mutant retinae.  At P10, 
no statistically significant changes in thickness occurred in any layer; however, there was 
already a decrease in the thickness of the outer nuclear layer (E).  At P21, there were no 
significant changes in the inner and ganglion cell layers (F).  However, there was a 
statistically significant change in the outer nuclear layer (**p<.001 two-tailed t-test).  To 
determine the effect of Mks3 mutation in photoreceptors at P21, sections were 
immunolabeled for rhodopsin (G, I), L/M opsin (K, M) and S opsin (O, Q).  In WT 
retina, all opsins were localized to the photoreceptor outer segment, while in WPK 
mutant retina, expression of opsin expression was mislocalized to the photoreceptor cell 
body and synaptic regions.  Nomarski optics is shown for each section (H, J, L, N, P and 
R).  GCL, ganglion cell layer; INL, inner nuclear layer; ONL, outer nuclear layer; OS, 
outer segment.  Scale bar: (A, G) 50µm. 
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Figure 3.5 Cell-Type Specific Immunolabeling in the MKS3 Mutant Retina.  
Cell type-specific immunolabeling was performed using sections from both WT (A, E, I, 
M, Q, U) and Mks3 mutant (C, G, K, O, S, W): horizontal cells were labeled with 
calbindin (A, C), bipolar cells with Chx10 (E, G), Muller glia cells with Sox2 (I, K), 
amacrine cells with parvalbumin (M, O), and ganglion cells with Brn3a (Q, S).  
Calbindin, Chx10, Sox2 and Brn3a positive cells were fairly similar in number in WT 
and mutant retinae.  A similar number of parvalbumin + cells were found in both the WT 
and mutant retinae, but with a greater amount of those in the mutant were found in the 
GCL rather than the INL.  Sections through WT (U) and mutant (W) retinae were labeled 
with glial fibrillary acidic protein to detect reactive glia present in degenerating retinae.  
There was little expression in the WT (U) at P21; however, there was a significant 
increase in the mutant (W).  Nomarski optics for each section is shown in B, D, F, H, J, 
L, N, P, R, T, V and X.  GCL, ganglion cell layer; INL, inner nuclear layer; ONL, outer 
nuclear layer.  Scale bar: (A) 50µm. 
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Figure 3.6 Retinal Cell Counts.  Retinal cell counts were performed to compare 
the WT and mutant retinal cell counts at P10 and P21.  At P10 (A), all retinal cell types 
present seem to be similar in both the WT and mutant rat retina.  Photoreceptor cell types 
were significantly fewer in number in the mutant at P21 (B) when compared to the WT.  
All other cell types were similar. 
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Figure 3.7 Cell Death of MKS3 Mutant Photoreceptors.  The amount of cell 
death was observed by TUNEL and caspase labeled of the P21 WT (A, E) and P21 
mutant (C, G) retinae.  Hoechst staining is shown for each section in B, D, F and H.  Both 
TUNEL and caspase 3 labels showed an abundance of cell death expression in the outer 
nuclear layer of the P21 mutant rat retinae in comparison to the WT.  Graphs depict 
counts of cells positive for TUNEL (I) and caspase 3 (J) label in each of the retinal cell 
layers (n=3 retinae for each sample).  There were no significant differences in the number 
of TUNEL (+) cells at P10; however, there was a large statistically significant increase in 
the number of TUNEL (+) cells at P21 (p< 0.005).  No significant differences were noted 
in the WT and mutant INL and GCL at P10 and P21 using caspase 3.  However, 
statistically significant increases in caspase 3-labeled cells were found in the ONL of the 
Mks3 mutant in comparison to WT at both P10 and P21. (*p< 0.01 and **p< 0.001 
respectively). GCL, ganglion cell layer; INL, inner nuclear layer; ONL, outer nuclear 
layer; OS, outer segment.  Scale bar: (A) 50µm. 
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Figure 3.8 Electron Microscopy of Photoreceptor Outer Segments.  Electron 
microscopy images were compared at P10 and P21 in WT (A & C) and mutant (B & D) 
retinae.  The inner segment (IS) is connected to the outer segment (OS) by a connecting 
cilium (arrows) in both WT and mutant retinae.  At P10, the beginning outer segment 
discs can be found (A inset, arrowhead) while in the mutant (B) cilia associated with a 
bulbous expansion without any discs were observed (B inset).  At P21, the WT retina has 
a well developed OS with discs (C), while the mutant (D) demonstrates cilia extending 
into the OS space with some loosely associated membranous material, but no discs were 
observed. 
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