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PREFACE

This basis for this research originally stemmed from our idea exchanges with Dr.

Dundar. Our passion has been developing better feature representation of sentences

and paragraphs that can beat the performance of traditional methods. As the world

moves further into the digital age, generating vast amounts of text data, there will

be a greater need to create new methodologies using predefined common norms that

can break down the lack of efficiency in different application domains. Hence, the

aim of this work is to create a research community around it by providing them with

the benchmark methodologies and a new dataset.
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ABSTRACT

Gungor, Abdulmecit M.S., Purdue University, May 2018. Benchmarking Author-
ship Attribution Techniques Using Over a Thousand Books by Fifty Victorian Era
Novelists. Major Professor: Murat Dundar.

Authorship attribution (AA) is the process of identifying the author of a given

text and from the machine learning perspective, it can be seen as a classification

problem. In the literature, there are a lot of classification methods for which feature

extraction techniques are conducted. In this thesis, we explore information retrieval

techniques such as Word2Vec, paragraph2vec, and other useful feature selection and

extraction techniques for a given text with different classifiers. We have performed

experiments on novels that are extracted from GDELT database by using different

features such as bag of words, n-grams or newly developed techniques like Word2Vec.

To improve our success rate, we have combined some useful features some of which

are diversity measure of text, bag of words, bigrams, specific words that are written

differently between English and American authors. Support vector machine classifiers

with nu-SVC type is observed to give best success rates on the stacked useful feature

set.

The main purpose of this work is to lay the foundations of feature extraction

techniques in AA. These are lexical, character-level, syntactic, semantic, application

specific features. We also have aimed to offer a new data resource for the author

attribution research community and demonstrate how it can be used to extract fea-

tures as in any kind of AA problem. The dataset we have introduced consists of

works of Victorian era authors and the main feature extraction techniques are shown

with exemplary code snippets for audiences in different knowledge domains. Feature

extraction approaches and implementation with different classifiers are employed in
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simple ways such that it would also serve as a beginner step to AA. Some feature

extraction techniques introduced in this work are also meant to be employed in dif-

ferent NLP tasks such as sentiment analysis with Word2Vec or text summarization.

Using the introduced NLP tasks and feature extraction techniques one can start to

implement them on our dataset. We have also introduced several methods to imple-

ment extracted features in different methodologies such as feature stack engineering

with different classifiers, or using Word2Vec to create sentence level vectors.
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1. INTRODUCTION

In a general point of view, the authorship attribution problems refer to all the issues

that arise in the association of an author to a specific document. A common example

is that when a piece of historical text is being discovered we would like to know who

wrote it and when it was written. In addition to that, we may also ask other questions

such as the nationality of the author, the characteristic styles of the author, genre of

the text.

One of examples of authorship attribution problems could be as follows: Given

three texts below from 19th century authors Edgar Allan Poe, Mary Shelley, and

Howard Phillips Lovecraft, we want to identify the author of each sentences.

(a) “But the Raven, sitting lonely on the placid bust, spoke only that one word, as

if his soul in that one word he did outpour.”

(b) “Again there is a sound as of a human voice, but hoarser; it comes from the

cabin where the remains of Frankenstein still lie.”

(c) “Great Cthulhu is their cousin, yet can he spy them only dimly. ”

Having a closer look at the sentences would help us capture a few useful words

that would pinpoint the authors of each text. As we know Edgar Allan Poe is famous

with his poem “The Raven”, Mary Shelley is famous with her book “The Modern

Prometheus” in which she tells a story about Frankenstein, and HP Lovecraft has

an imaginary cosmic creature Cthulhu in his book “The Call of Cthulhu”. The task

of naming the author for each text is not a challenging one in this case. It will,

however, become more challenging when an author is describing a daily activity with

most commonly used English words, in which case it will require more sophisticated

approaches to complete the task.
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1.1 Forensic Linguistic

From a broader contextual perspective authorship attribution is also a part of

Forensic Linguistics Science and the history of Forensic Linguistic Science goes back

to 1968 when a professor of linguistics analyzed police statements of falsely accused

felon for the death of his wife and his infant daughter. The felon later was convicted

of these two murders and hanged. After three years from his trial, his downstairs

neighbor was found to be a serial killer who also had murdered six other women [1].

Back in those days, the authenticity of police statements was questioned due to the

specific format of statements rather than the suspect’s own words leaving out the

important details.

One of the key advantages of Forensic Linguistics in crime solving cases is that

it provides a list of suspects. A good example would be the Unabomber case, which

is an acronym derived from the combination of University and Airlines Bomber [2].

The suspect of the investigation was sending packages using USPS system targeting

the academic and technology leaders. After or before the bombings, the suspect was

sending his manifesto stating that technological improvement should be removed from

our life. It was FBI’s longest and costliest investigation in the late 20th century [3].

The suspect was active from 1978 to 1995, sending 16 bombs one of which was to an

airplane. All the evidence and writings of Unabomber collected in this time period

were used to create his profile yet it was not enough to identify the suspect. In his last

acquainted event he requested that his manifesto, “Industrial Society and Its Future”,

to be published in well-known newspapers or he would send another bomb to a plane

at the Los Angeles Airport [3]. By the Attorney Generals’ order his manifesto was

granted to be published, which later led to his brother sharing some of the suspect’s

writings with the law enforcement officers. The writings provided were from before

the suspect’s active bombings time and Linguistics analysis showed that the author

of the essay papers and the Unabomber’s manifesto was almost the same.
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Forensic linguistics has a diverse range of topics and its application varies vastly.

The authenticity of emergency calls, suicide letters, ransom demands and social media

statements analysis are a few examples of forensic linguistics. The question that is

tackled in Forensic Linguistic is mainly about “who wrote a specific document”. The

concept of linguistic fingerprinting put forward by some scholars also led to new

applications of AA in law enforcement.

1.2 Related Work

There are different types of authorship attribution studies in the literature such

as predicting the date of authorship of historical texts or text genre detection [4], [5].

Vast majority of previous works focuses on authorship identification by taking into

consideration the stylistic features of authors such as use of grammar, function words,

frequent word allocations [4], [5], [6], [7], [8], [9]. Some of the well-known problems

in authorship attribution are disputed Federalist Papers classification, Shakespearean

Authorship Dispute, Author of New Testament, and Author of The Dark Tower.

The Federalist Papers are a collection of 85 articles and essays written by Alexan-

der Hamilton, James Madison, and John Jay to persuade the citizens of New York

to ratify the U.S. Constitution. Authorship of twelve of these papers has been in

dispute. To address this problem, using linear support vector machines as classifier

and relative frequencies of words as features a study identified these papers to be

written by James Madison [10].

Another dispute in authorship attribution among scholars across the world is

whether William Shakespeare wrote the works attributed to him or not. It was argued

that Shakespeare wasn’t even educated and more than 80 authors were suggested to

be the author of the writings that were under the name of Shakespeare. Christopher

Marlowe is considered the most likely candidate to write these works under the name

of Shakespeare when he was in jail. In order to analyze the stylistic fingerprint of

Shakespeare and Marlowe and non-Shakespearean authors, namely Chapman, Jonson,
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Middleton, a corpus has been put together. By taking into account “stop words,

Part-of Speech (POS) tags, bigram probabilities” the following two questions were

analyzed:

• With these features can non-Shakespeare-authors be classified accurately?

• If these features are useful and Shakespeare is truly “Late Marlowe”, then clas-

sifying other texts by Shakespeare and Marlowe should not be easy using the

same features.

The classification results for non-Shakespearean author candidates turned out to

be highly accurate (Johnson % 100, Chapman % 92.9 and Middleton %88.9). The

results supported the hypothesis that writing styles of Marlowe and Shakespeare were

as distinguishable as other authors unless Marlowe did not show a linear change in

style over time. Meaning, Marlowe has found not to be the authors of Shakespearean

writings [11].

One major application of authorship attribution has also been identifying the

author of newly found texts and there has been substantial work done in related

areas. One of the earliest papers in this area is about newly found poem called

“Taylor Poem” and whether it is actually written by Shakespeare or not. Thisted

and Efron have suggested three tests for authorship: based upon the number of new

words observed, number of rare words observed and a slope test that uses Poisson

regression to combine data. The result of their test is that Taylor poem is found

to fit previous Shakespeare writings [12]. Thompson and Rasp have also suggested

adding “uniformity test of various p-values” that is computed directly from Poisson

probability distribution in addition to Thisted and Efron’s approaches, and then

applied to The Dark Tower which was attributed to C.S. Lewis when it was published.

Their conclusion is also consistent with the claim that Lewis is not the author of

The Dark Tower unless he had written the book in a bad day or his writing style

was changed drastically [6]. Another interesting study on the unknown texts is also

done based on word-level features, vocabulary richness and syntactic features by using
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Liblinear SVM for classification purposes [13]. Even though the classification accuracy

results are not as high as other related works features like “number of unique words”

should be noted for use in any attribution problem.

Authorship of biblical texts has also been a part of previous studies. The New

Testament of the Bible that consists of 27 books, 13 of which are contributed by

St. Paul is computationally studied by using topic modeling and affinity propagation

clustering. All Pauline letters are found to be divided into six groups which also

match with church tradition. An anonymous letter in the New Testament, the letters

to Hebrews, is also compared with Pauline letters and it was found that the book

of Hebrews was not authored by Paul [14]. More detailed analysis of “the Letters

to Hebrews” is done by considering the word recurrence interval technique, trigram

Markov method, stylometric measures such as the frequency of function words, and

multiple discriminant analysis of frequency of function words. Mahalanobis distance

is used for the comparison of text centroids. It is concluded that Hebrews is not likely

to be written by Paul, Matthew, Mark, Luke, or John yet it’s stylistically very similar

to texts written by Barnabas [15].

The performances of these various features and classification methods are also

analyzed and experiments are performed on newspaper articles. Stylometric analysis

of texts such as number of sentences, words, commas, colons, semicolons, incomplete

sentences, periods in an article, vocabulary diversity or richness measure, bag of words

representation and frequency of function words are extracted as features. During

these experiments histogram method, K-nearest method and parzen windows, Bayes

Classifier, k-means clustering, support vector machines with tf − idf approach and

combination of classifiers are applied as classifiers. Best results are observed with

Gaussian classifiers by using stylometric features and function words. Support vector

machine classifiers also perform well with bag of words feature set [8].

Usefulness of function words in authorship attribution is introduced by Mosteller

and Wallace in their work on Federalist papers [16]. Argamon and Levitan has com-

pared the characteristic features of frequent words, pairs and collocations using the
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SMO algorithm, and implemented it for two class (American or British) author na-

tionality classification problem. Their results conclude that function words are useful

as stylistic text attribution and frequent words are the best features among others.

The reason behind it is that a given same size frequent collocations has less different

words comparing to frequent words so it carries less discriminatory features [7].

In summary, there has been substantial work done in authorship attribution and

mainly people in forensic linguistic or computer scientists aim to build “stylistic fin-

gerprint of author” by using several features of a given text such as function words,

stylometry. It is a classification problem and several classifiers are used such as Näıve-

Bayes, SVM. Among them SVM is observed to fit best for these kinds of problems.
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2. ADVANCES IN NATURAL LANGUAGE PROCESSING

Natural language processing (NLP) is the machine activity of analyze, understand,

alter, or generate natural language data. One of the earliest studies was the George-

town experiment in which Russian sentences were translated into English by machine

interpretations [17].

Authorship attribution problems are also a part of NLP and the advances in NLP

proportionally affect the developments of new algorithms. In this chapter, recently

developed NLP techniques, publicly available dataset will be introduced to get the

attention of researchers in different domains.

2.1 NLP Tasks

In order to extract features from a given text and use it in computations, the

preprocessing of the text must be done. The outline of the work can be application

specific. On this regard, the most recent developed techniques will be introduced.

Stemming

Because of the grammatical reasons, in text documents words coming from same

root utilized differently based on their usage as adjectives, adverbs, nouns, tenses of

the verbs. For example, “am, is, are” come from the same root as “be”, “democracy,

democratic, democratization” are different deviation of same word “democracy”, or

“go, went, gone” are different inflicted forms of “go”.The objective of stemming is

to reduce the variation of related words to same stem. Using Porter’s algorithm in

Python [18], stemming can be accomplished as follows:
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#Use "pip install stemming" to install the package

from stemming.porter2 import stem

stem("democratization")

>>Out: 'democrat'

Lemmatization

In computational linguistics, Lemmatization is closely related to stemming. The

major difference is that stemming operates without the knowledge of the context of

the word whilst in lemmatization task it depends on identifying the meaning of word

by utilizing “part of speech”. Python’s NLTK library can be deployed for this task.

The “pos” variable in the function can be changed and same task can also be achieved

by using different libraries such as “spacy”, or “Standford NLP”.

from nltk.stem import WordNetLemmatizer

my_lemmatizer = WordNetLemmatizer()

my_list = ['good', 'better', 'best']

for word in my_list:

print(my_lemmatizer.lemmatize(word, pos="n"))

>>Out: good

better

best

Part of Speech Tagging

It is process of analyzing sequence of words and attaching a category for each

word in the sequence. It is an important task during text-to-speech processing since

the pronunciation of the word needs to be known before the speech task.



9

import nltk

nltk.download('averaged_perceptron_tagger')

from nltk import word_tokenize

my_text = word_tokenize(

"I am writing my thesis to graduate from my master degree")

nltk.pos_tag(my_text)

>>Out:

[('I', 'PRP'),

('am', 'VBP'),

('writing', 'VBG'),

('my', 'PRP$'),

('thesis', 'NN'),

('to', 'TO'),

('graduate', 'NN'),

('from', 'IN'),

('my', 'PRP$'),

('master', 'NN'),

('degree', 'NN')]

Some of the abbreviations in the result are present tense verb (VBP), noun (NN),

preposition (IN) that give information regarding the grammatical structure of the

sentence. “NLTK”, or “spacy” can both be used to perform POS tagging task.

Named Entity Recognition

It is the task of identifying entities in a given text and categorizing each of these

entities as person, organization, date, location, time, etc. It is a crucial task since the

word “apple” in “I want to eat apple” refers to the fruit but in “I want to work for

Apple” refers to the company.
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from nltk.tag import StanfordPOSTagger

from nltk import word_tokenize

jar = 'path/stanford-postagger.jar'

model = 'path/english-left3words-distsim.tagger'

pos_tagger = StanfordPOSTagger(model, jar, encoding='utf8')

sentence1 = "I want to eat apple now and "

sentence2 = "I want to work at Apple in the future."

sentence = sentence1 + sentence2

my_text = pos_tagger.tag(word_tokenize(sentence))

print(my_text)

#Or Second method

nltk.download('maxent_ne_chunker')

nltk.download('words')

from nltk import word_tokenize, pos_tag, ne_chunk

print (ne_chunk(pos_tag(word_tokenize(sentence))))

>>Out:

(S I/PRP, want/VBP, to/TO, eat/VB, apple/NN, now/RB,

and/CC, I/PRP, want/VBP, to/TO, work/VB, at/IN,

(ORGANIZATION Apple/NNP), in/IN, the/DT, future/NN, ./.)

Sentiment Analysis

It is a vast range of applications in NLP where the positivity, negativity or neu-

trality of a sentence is being investigated. The applications could be movie reviews

of “rotten tomatoes”, customer product review or determining the mood of a speaker

via voice analysis.In order to showcase an example, using Naive-Bayes Classifier a

simple model is being built. In the equation 2.1, the important task is identifying the
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number of words whether they’re positive, negative, or neutral. To achieve this goal,

we can create a simple database of our own choosing to identify the words.

Positivity =
Number of Positive Words

Number of All Words
(2.1)

Negativity =
Number of Negative Words

Number of All Words
(2.2)

There is an example case of two sentence and their sentiment analysis measurement

result using the algorithm developed here 1.

Table 2.1.: Positivity and Negativity Score of Sentences

Sentences Positivity Negativity

“Awesome movie, great actors, I liked it” 0.71 0.14

“The sound effects were bad, terrible movie” 0.27 0.43

Semantic Text Similarity

It is the task of measuring the degree of equivalence in the underlying semantics of

given text pieces. Words can also be similar in two ways: lexically and semantically.

The categorization of text similarity approaches can be put into three as: String-

based, Corpus-based and Knowledge-based similarities [19]. The work of Wael and

Aly is a good survey on introducing the available text similarity approaches [19]. You

can look up to words or compare sentence similarities using both NLTK or Gensim.

The following word snippet is simply showing you the words that are close to “book”.

from nltk.corpus import wordnet as wn

print(wn.synsets('book', 'n'))

>>Out:

1https://github.com/agungor2/Authorship_Attribution/blob/master/Sentiment_

Analysis.ipynb

https://github.com/agungor2/Authorship_Attribution/blob/master/Sentiment_Analysis.ipynb
https://github.com/agungor2/Authorship_Attribution/blob/master/Sentiment_Analysis.ipynb
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[Synset('book.n.01'), Synset('book.n.02'), Synset('record.n.05'),

Synset('script.n.01'), Synset('ledger.n.01'), Synset('book.n.06'),

Synset('book.n.07'), Synset('koran.n.01'), Synset('bible.n.01'),

Synset('book.n.10'), Synset('book.n.11')]

Text Summarization

It is the process of shortening a given long text while keeping the informative part.

The main goal of the task is to keep as much information as possible from the long text

and represent it in as short format as possible. The repository represented by Google

Brain team is an extensive work in text summarization using sequence to sequence

model and rouge score is being utilized to measure the model performance [20]. It is

also implemented in Gensim module and easy use case is being provided below.

from gensim.summarization import summarize

sentence = "User choice" #Replace it with your choice

print(summarize(sentence))

Word Embeddings

The area of word embeddings has been vastly growing since its first introduction

by Mikolov [21]. He introduced Skip-gram model which was an efficient method

for learning high quality vector representations of words from large amounts of text

data. One of the main advantages of Skip-Gram model is that it can capture different

semantics of same words such as Apple as a company or as a fruit. Secondly and most

importantly, it allows words to be represented in a vector form which would then allow

some fascinating data manipulation to be discovered. For example, the result of a

vector calculation vec(“Madrid”) - vec(“Spain”) + vec(“France”) can be calculated

with word embeddings and the resulting vector can also be searched within the vector

space to find the nearest word to it. In Mikolov’s work [21], the result has been found
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that the resulting vector is closer to vec(“Paris”) than to any other word. Some of

the fundamental data handling techniques with word embeddings are given below as

a sample.

#1. Load pre-trained models: It allows dealing with

#previously trained text data and using their word vectors.

#The vectors are more accurately represented because

#they're being trained on large corpus of text data.

#Some of the available pre-trained sets:

#Google's Word2Vec

#Glove Word2Vec(dimension of Word2Vec is from 50 to 300)

#fastText

#LexVec

#Meta-Embeddings

from gensim.models import Word2Vec

model = gensim.models.KeyedVectors.load_word2vec_format(

'GoogleNews-vectors-negative300.bin', binary=True)

#2. Extracting word vectors from the imported model

print(model['NLP'])

#3. We can do vector operation and find the closest vector

#vec(\Madrid") - vec(\Spain") + vec(\France")

#The numbers following the words show the similarity measure

print(model.most_similar(positive=['Madrid', 'France'],

negative=['Spain']))

>>Out: [('Paris', 0.75), ('Marseille', 0.61),

('French', 0.60), ('Colombes', 0.59),

('Hopital_Europeen_Georges_Pompidou', 0.58),
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('Toulouse', 0.57), ('Parisian', 0.57),

('Cergy_Pontoise', 0.56), ('Marseilles', 0.55),

('Strasbourg', 0.54)]

#4. Cluster analysis

print(model.doesnt_match("breakfast lunch dinner milk".split()))

>>Out:milk

print(model.doesnt_match("China Turkey France Italy".split()))

>>Out:China

#5. Train your own model

import pandas as pd

my_text = pd.read_csv("my_text.txt", header=["text"])

model = gensim.models.Word2Vec(my_text, min_count=1,

size=300,workers=4)

The techniques introduced here are some of the fundamental ones that can help

beginners kick start their analysis. Using these strategies one can build application

specific more sophisticated NLP toolbox of his own.

2.2 Data Availability

In every data analytics task, one of the main necessities to get a perfect result is

to have a large enough and suitable dataset that can be worked on. Thanks to the

advances in social media, optical character reader machines, and several projects that

aim to make documents available online. We are filled with large corpuses of text

data sets publicly available. In order to inspire and inform the readers the existence

of such big corpuses, they are categorized and stated as follows.



15

• Text Classification: It refers to labeling texts documents such as filtering

emails as spam or movie reviews sentiment analysis.

– Apache Software Foundation Public Mail Archives

– Stanford Collection of Amazon Reviews

– Reddit Comments

– Wesbury Lab Usenet Corpus

– Reuters Newswire Topic Classification Data

– Yelp Reviews

– IMDB Movie Review

– Stackoverflow and Twitter Sentiment analysis data

• Language Modeling: There are several application specific texts that are

used to generate models.

– Common Crawl

– Yahoo! N-Grams

– Google Books Ngram Corpus

– American National Corpus

– Wikipedia XML Data or Dbpedia

– ClueWeb09

– Personae Corpus

– Turkish National Corpus

– NTU-Multilingual Corpus

– Open Multilingual Wordnet

• Authorship Attribution: It is, as described before, the task of identifying

the author of a given text.
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– Project Gutenberg

– GDELT

– C50 (subset of RCV1) and PAN dataset

• Text Summarization: It is the task of creating short and meaningful text

after analyzing a large document.

– TAC Dataset

– Australian Legal Cases

– RTLTDS Dataset

– 17-timelines Summarization Dataset

– ArXiv Summarization Dataset

2.3 Neural Networks

A neural network is a computational nonlinear model that is inspired from the

neural structure of the human brain. It consists of three interconnected layers as

input, hidden and output layers. Every neuron has weighted inputs, an activation

function which could be a linear, step, sigmoid, or rectified linear function, and one

output.

One of earliest studies of language models using neural network techniques to

calculate the joint probability function of sequence of words was introduced more

than a decade ago by Bengio [22]. In his work, he states that one of the difficult

problems of language modeling is the curse of dimensionality when one wants to

find out the joint distribution of consecutive words because of the fact that there are

enormous amount of free parameters to consider. The cure to this problem lies within

the structure of sentences. A language model can be represented by the conditional

probability of the next word given all the previous ones in the sequence [22]. His

idea has then led to the development of several different NLP techniques that are

categorized as follows.
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Multi Layer Perceptron

It has three or more layers and helps classify data that is not linearly separable. It

is mainly utilized in speech recognition and machine translation tasks. Using MLPs

for phonetic event detection system is introduced by researchers from Microsoft in [23]

and the performance improvement of speech recognition systems on the Broadcast

News task has been achieved using Segmental Conditional Random Fields.

In order to show case the usage of multi layer perceptron on a text classification

task, a sample tutorial workload has been created 2. The main idea is to create

a sentence vector representation of a given text by utilizing Google’s pre-trained

datasets and “Gensim” to semantically analyze comments. In order to build the

model, hidden layer size has been set to 5. To train the model the following sentences

are being used as training set “I hate this movie. It is horrible.”, and “Great movie

and amazing actors.”. The negative sentence is classified as “0” and positive one as

“1”. After training the model, to test the model “Terrible and useless movie.”, and

“Fantastic. I love it.” are used to predict. Their results were found to be matching

the expected outcome.

Convolutional Neural Network

It contains one or more convolutional layers and uses a variation of multilayer

perceptrons. The layers in the network use a convolution operation to the input

passing the result to the next layer which then makes the network to be deeper with

less parameters. In [24], the author presents a model built on top of Word2Vec,

tests the model with several other benchmarks such as movie reviews, or Standford

Sentiment Treebank. With little tuning of hyperparameters, a simple CNN structure

with one layer of convolution improve the performance [24]. Building CNN model

2https://github.com/agungor2/Authorship_Attribution/blob/master/Classification_

MLP.ipynb

https://github.com/agungor2/Authorship_Attribution/blob/master/Classification_MLP.ipynb
https://github.com/agungor2/Authorship_Attribution/blob/master/Classification_MLP.ipynb


18

for a text classification task can be easily possible by Mxnet, Tensorflow, or Keras

libraries.

Recurrent Neural Network

Unlike a feed-forward neural network, connections between neurons make a di-

rected cycle which results in the output to be affected both by present inputs and

the previous step’s neuron state. In the earliest work of Mikolov, he introduced his

language model based on the RNN structure [25]. He later described his Skip-gram

and CBOW language model which outperformed better than RNN model [21]. RNN

structure can also be used to perform text classification task as in [26]. Their model

outperformed traditional methods such as SVM, LDA, or CNN on the experimented

4 datasets that are 20Newsgroups, Fudan set, ACL Anthology Network, and Stanford

Sentiment Treebak.

Long Short-Term Memory

It is also a RNN structure but it is designed to model temporal sequences and

their long-range dependencies more accurately than normal RNN. It does not have an

activation function nor the gradient vanishes during the training. It is implemented

in the units of “blocks”. It is a highly appreciated method by the researchers in

different domains and in [27] authors show the achievement of the state of-the-art

performance for large scale acoustic modeling using LSTM. Using Keras library and

IMDB movie review dataset a simple LSTM structure has been built to test out the

model. More details of the model can be found on this tutorial 3

3https://github.com/agungor2/Authorship_Attribution/blob/master/LSTM_

classification.py

https://github.com/agungor2/Authorship_Attribution/blob/master/LSTM_classification.py
https://github.com/agungor2/Authorship_Attribution/blob/master/LSTM_classification.py
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Sequence to Sequence Models

It can be imagined as an encoder-decoder architecture system where both of en-

coder and decoder is a RNN structure. It is mainly used in chat-bots and machine

translation systems. Utilizing LSTM on both side of the structure with limited data

is being implemented in [28] and the performance of the system has outperformed

traditional systems with large-scale training data. This suggests that it should do

well on many other sequence learning problems. Building a sequence to sequence

model is simple using Tensorflow. The example below shows how to create a simple

encoder and decoder structure in Tensorflow.

import tensorflow as tf

# Build RNN cell for encoder

encoder_cell = tf.nn.rnn_cell.BasicLSTMCell(num_units)

# Build RNN cell for decoder

decoder_cell = tf.nn.rnn_cell.BasicLSTMCell(num_units)

# Build Helper

helper = tf.contrib.seq2seq.TrainingHelper(

decoder_emb_inp, decoder_lengths, time_major=True)

# Build Decoder

decoder = tf.contrib.seq2seq.BasicDecoder(

decoder_cell, helper, encoder_state,

output_layer=projection_layer)

#For the optimizer, you can use AdamOptimizer as a start

2.4 Cloud Computing

Some of the applications in text mining or NLP might require more storage than

an individual computer can handle or it might need more powerful tools. To ease the

pain of overcoming such large scale operation issues, cloud services and APIS provide

solutions to researchers. Top providers of such services are Microsoft Azure, IBM



20

Bluemix, Amazon Elastic Compute Cloud (AWS), Verizon Cloud and Google Cloud

platform.

There are multiple different ways one can make effective use of such services

in text mining tasks. For example, using Amazon’s Natural Language Processing

service, also called Comprehend, one can start analyzing the datasets such as support

emails, social media posts, online comments, telephone transcriptions to understand

the positivity and negativity factors or it can be used to build a semantic search

engines rather than basic keyword one. AWS also provides Machine learning services

that anybody can build their classifiers or regression models based on the desired

task. IBM Bluemix can also be used to analyze text data to extract meta-data from

content such as concepts, entities, keywords, categories, relations and semantic roles.

Another practical use case of Bluemix is that it could be used to develop data-driven

chatbot systems. Dialogflow is also another great tool to start building a data-driven

chatbot system.

AWS, Bluemix, Dialogflow are tools that are meant for entry level NLP analysts

to build their own models. In order to further make use of Cloud computing systems

one can make use of Kaggle website or Google Apis. Kaggle has servers that can help

you analyze gigabytes of data in fast pace and build your model on the language of

your choosing. This would enable you not to worry about operating system library

installation issues, gives you large storage availability and help you run your program

faster than your own machine. Google has also provided several Apis such as text to

speech, Google Maps Api, Natural Language processing Api, Youtube Analytics Api.

In order to show case a simple use of Google Api with Python an example case is

shown below. It takes input parameter as the longitude and latitude of one person’s

starting point as well as the final destination point, then returns the time spent on

the overall trip. The workload below has been used by the author to create a parking

meter finder by the author and more can be found in the following link 4.

4https://youtu.be/H6A4cQFhHWo

https://youtu.be/H6A4cQFhHWo
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import httplib2

import json

def getdistance(x1,y1,x2,y2,mode=""):

command = "https://maps.googleapis.com/maps/api/distancematrix"

+"/json?units=imperial&origins="+ str(y1) +","+ str(x1)

+"&destinations="+ str(y2) +","+ str(x2) +"&mode=" + mode +

"&key=put_your_key_here"

#Parse the web page

http = httplib2.Http()

status, response = http.request(command)

#print response

el = json.loads(response).get("rows")[0].get("elements")[0];

if ("duration_in_traffic" in el.keys()):

return int(el.get("duration_in_traffic").get("value"))

else:

return int(el.get("duration").get("value"))

Google NLP Api can also be used to do sentiment analysis in Python. A simple

example model has been built in this tutorial to help readers take the initial step in

building Api supported tools 5.

5https://github.com/agungor2/Authorship_Attribution/blob/master/Google_NLP_api.py

https://github.com/agungor2/Authorship_Attribution/blob/master/Google_NLP_api.py


22

3. DATASET PREPARATION

From a machine learning perspective, AA is a multi-class, single-label text classifica-

tion task. However, it is a bit different from other text classification problems since

the style of writing and text content are important, too. One of the challenges here

is to identify and create a dataset without introducing any bias to the problem to be

studied. Writing style of an author can vary due to following top reasons:

• The century that the author is living and writing his works: General writing

styles may change significantly even throughout a century due to changes in

literature or word usages.

• The idea movement that the author has been inspired from: Authors are usually

being affected by movements such as romanticism, modernism, or symbolist

movement which then also affect their writing style.

• The language in which the author is writing: Every language has its own gram-

matical structures. The writing style of a multi-lingual author is different than

the mono-lingual writer. If a book is also being translated from its original

language to another one, this translation also creates linguistic differences.

• The topics that the author likes to write about such as science fiction, love,

drama: Usage of words changes across different topics, which could make it

easier to identify authors based on word usage.

In this context, there are different problems that can be studied such as the classifica-

tion of a given text based on the century it was written, classification of a given text

as translated or original, or simply choosing authors from the same century, same

idea movement, same topics, and classify text according to their authors.
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In the beginning of this thesis workload, we aimed at achieving three goals. Firstly,

we wanted to create practical features using traditional and new methods that could

help us with author classification task. Secondly, we wanted to create a translated

book identification problem by collecting books that are translated from non-English

language text domains to English. Lastly, we plan to do an exploratory analysis on the

style differences of authors from 19th century to 20th century. However, due to time

limitations we have focused only one side of the problem that is the identification of

the author of a given text. If the researchers are interested in conducting an analysis

of English translated texts from French, German, Russian, or mixed language, they

can find more details here 1 and can contact the author of this thesis for the whole raw

dataset. The list provided consists of book names translated from other languages

and the number of words each book has in it. There are totally 200 French, 200

German, 448 Russian, and 89 mixed languages translated book in the whole text

corpus.

3.1 50-Author Dataset

The GDELT Project is one of the largest publicly available digitized book database

which has more than 3.5 million books published from 1800-2015. The GDELT

Project is an open platform for research and analysis of global society and thus all

datasets released by the GDELT Project are available for unlimited and unrestricted

use for any academic, commercial, or governmental use of any kind without any

fee [29]. The whole digitized dataset is publicly available and interested researchers

can freely perform SQL queries using the Google big query platform. For example;

the book names, publication year, quotations, themes, the original text of the book

of “Mark Twain” which were written between 1890 to 1900 can be found as follows

using the Big query platform of Google.

1https://github.com/agungor2/Authorship_Attribution/blob/master/Translated_list.

txt

https://github.com/agungor2/Authorship_Attribution/blob/master/Translated_list.txt
https://github.com/agungor2/Authorship_Attribution/blob/master/Translated_list.txt


24

SELECT Themes, V2Themes, Quotations, AllNames, TranslationInfo,

BookMeta_Identifier, BookMeta_Title, BookMeta_Creator,

BookMeta_Subjects, BookMeta_Year,

FROM (TABLE_QUERY([gdelt-bq:internetarchivebooks],

'REGEXP_EXTRACT(table_id, r"(\d{4})") BETWEEN "1890" AND "1900"'))

WHERE

BookMeta_Creator CONTAINS "Mark Twain"

LIMIT 50

To decrease the bias and create a reliable dataset the following criteria have been

chosen to filter out authors: English language writing authors, authors that have

enough books available (at least 5), 19th century authors. With these criteria 50

authors have been selected and their books were queried through Big Query Gdelt

database. The next task has been cleaning the dataset due to OCR reading problems

in the original raw form. To achieve that, firstly all books have been scanned through

to get the overall number of unique words and each words frequencies. While scanning

the texts, the first 500 words and the last 500 words have been removed to take out

specific features such as the name of the author, the name of the book and other word

specific features that could make the classification task easier. After this step, we have

chosen top 10, 000 words that occurred in the whole 50 authors text data corpus. The

words that are not in top 10, 000 words were removed while keeping the rest of the

sentence structure intact2. Afterwards, the words are represented with numbers from

1 to 10, 000 reverse ordered according to their frequencies. The entire book is split

into text fragments with 1000 words each. We separately maintained author and

book identification number for each one of them in different arrays. Text segments

with less than 1000 words were filled with zeros to keep them in the dataset as well.

1000 words make approximately 2 pages of writing, which is long enough to extract

2https://github.com/agungor2/Authorship_Attribution/blob/master/Clean_data.py

https://github.com/agungor2/Authorship_Attribution/blob/master/Clean_data.py
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a variety of features from the document. The reason why we have represented top

10, 000 words with numbers is to keep the anonymity of texts and allow researchers

to run feature extraction techniques faster. Dealing with large amounts of text data

can be more challenging than numerical data for some feature extraction techniques.

Table 3.1.: Author Book Number Distribution

Author ID Author Names Book Numbers Total Words

1 Arthur Conan Doyle 16 1394980

2 Charles Darwin 10 513085

3 Charles Dickens 7 368314

4 Edith Wharton 27 2487978

5 George Eliot 22 1064661

6 Horace Greeley 9 624680

7 Jack London 16 2216225

8 James Baldwin 76 10220446

9 Jane Austen 12 1617346

10 John Muir 20 1162637

11 Joseph Conrad 8 484102

12 Mark Twain 12 988713

13 Nathaniel Hawthorne 15 815377

14 Ralph Emerson 28 3936896

15 Robert Louis Stevenson 21 1976693

16 Rudyard Kipling 10 402301

17 Sinclair Lewis 14 1051828

18 Theodore Dreiser 16 1839202

19 Thomas Hardy 22 2078753

20 Walt Whitman 10 839168

21 Washington Irving 62 3426646

Continued on next page
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Table 3.1 – continued from previous page

Author ID Author Names Book Numbers Total Words

22 William Carleton 16 696567

23 Albert Ross 16 844634

24 Anne Manning 9 827145

25 Arlo Bates 18 1531925

26 Bret Harte 64 6406984

27 Catharine Maria Sedgwick 18 453158

28 Charles Reade 20 1170720

29 Edward Eggleston 6 806316

30 Fergus Hume 20 1291603

31 Frances Hodgson Burnett 43 3464120

32 George Moore 9 1174176

33 George William Curtis 19 2180926

34 Helen Mathers 17 806600

35 Henry Rider Haggard 13 923255

36 Isabella Lucy Bird 20 1170895

37 Jacob Abbott 32 3316171

38 James Grant 30 1620580

39 James Payn 54 3667172

40 John Kendrick Bangs 12 665969

41 John Pendleton Kennedy 14 1251338

42 John Strange Winter 13 1358015

43 Lucas Malet 12 1677565

44 Marie Corelli 16 797761

45 Oliver Optic 36 3484099

46 Sarah Orne Jewett 16 1105534

47 Sarah Stickney Ellis 74 5296691

Continued on next page
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Table 3.1 – continued from previous page

Author ID Author Names Book Numbers Total Words

48 Thomas Anstey Guthrie 30 2740952

49 Thomas Nelson Page 15 1217070

50 William Black 18 1597066

In Table 3.1, author id number in the dataset, author name, total number of books,

total number of wordings after filtering out less occurred words have been listed out.

The distribution of author text pieces in the training data has been provided in Figure

3.1. In the training data, it has found that James Baldwin has the most text pieces

with 6914 whilst Rudyard Kipling has the least with 183 pieces.

Figure 3.1.: Distribution of Authors in Training Set

In order to make the AA problem more realistic, when splitting the training and

testing dataset the writings of George Eliot (5), Jack London (7), Frances Hodgson

Burnett (31), Sarah Stickney Ellis (47), Thomas Nelson Page (49) have been removed
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from the training and added to testing set. This creates a non-exhaustive training set

with 45 authors while the test set contains 50 authors. In total this leads to 53678

training data instances, 39922 testing data instances. Each of these instances consist

of 1000 words text fragment. Another important aspect we have considered while

splitting training and testing data is to keep all fragments of the same book either in

the training or testing dataset. This way we do not end up training and testing on the

same books. Without this restriction the classification task would be much simpler

and simple bag of words representation with SVM would give much higher F-1 scores.

To study the sentence structure and writing style from a different perspective, the

same steps also have been applied to create another dataset in which stop words have

been removed while keeping the word order same for the remaining words.

3.2 3-Author Dataset

The dataset we have provided consists of 50 authors, 93600 instances where each

instance is a 1000 word of text document. Due to the scale of our data, some analysis

take long time to train and test it. To address this problem, we were able to find a

smaller author identification data on Kaggle server [30].

Using CoreNLP’s MaxEnt sentence tokenizer, Kaggle has chunked the works of

Edgar Allan Poe (EAP), HP Lovecraft (HPL) and Mary Shelley (MWS) into sen-

tences. Some sentences are 2-3 words and some are up to 100 words, so every instance

in this dataset is very small comparing to our 50-author dataset. There are 19579 of

instances for training and 8392 for testing. In the 50-author data, one of the chal-

lenges is the missing author problem but for this 3-author dataset both training and

test sets have the same three authors. Another setting that matches to our earlier

criteria regarding author selection is that the works of these authors are categorized

as fiction writing and they all lived in 19th century.
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Figure 3.2.: Distribution of Authors in Training Set

The distribution of authors in the text data is shown in Figure 3.2 using seaborn

and matplotlib 3. There is a slight difference between HPL and MWS whereas EAP

is dominating the other two authors.

3https://github.com/agungor2/Authorship_Attribution/blob/master/Author_

Distribution.py

https://github.com/agungor2/Authorship_Attribution/blob/master/Author_Distribution.py
https://github.com/agungor2/Authorship_Attribution/blob/master/Author_Distribution.py
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4. PRACTICAL FEATURE EXTRACTION

In order to identify the authorship of an unknown text document using machine

learning the document needs to be quantified first. The simple and natural way

to characterize a documents is to consider it as a sequence of tokens grouped into

sentences where each token can be one of the three: word, number, punctuation mark.

To quantify the overall writing style of an author, stylometric features are defined and

studied in different domains. Mainly, computations of stylometric features can be

categorized into five groups as lexical, character, semantic, syntactic, and application

specific features. Lexical and character features mainly considers a text document

as a sequence of word tokens or characters, respectively. This makes it easier to do

computations comparing to other features. On the other hand, syntactic and semantic

features require deeper linguistic analysis and more computation time. Application

specific features are defined based on the text domains or languages. These five

features are studied and the methods to extract them are also provided for interested

readers.

4.1 Lexical Features

Lexical features relate to the words or vocabulary of a language. It is the very plain

way of representing a sentence structure that consists of words, numbers, punctuation

marks. These features are very first attempts to attribute authorship in earlier studies

[7], [11], [13], [14], [31]. The main advantage of Lexical features is that it is universal

and can be applied to any language easily. These features consist of bag of words

representation, word N-grams, vocabulary richness, number of punctuation marks,

average number of words in a sentence, and many more. Even though the number of

lexical features can vary a lot, not all of them are good for every authorship attribution
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problem. That is why, it is important to know how to extract these features and try

out different combinations on different classifiers.

Bag of Words

It is the representation of a sentence with frequency of words. It is a simple and

efficient solution but it disregards word-order information. In order to apply it on 50-

author dataset, a model has been built here 1. In the approach, for each text fragment

the number of instances of each unique word is found to create a vector representation

of word counts. Since there are uniquely 10, 000 words in the whole dataset you can

choose the range of the words you want to use in your feature vector. We have also

shown how to extract top words usage author-wise in every author’s text corpus.

As expected top words are determiners that every writer use while constructing an

English sentence. For example, for Arthur Conan Doyle top 20 words are “the, to,

of, he, a, and, i, that, in, you, was, it, she, his, her, had, as, not, with, for” but for

Charles Dickens they are “the, to, of, i, and, a, in, that, it, is, he, she, be, her, you,

was, as, not, with, for” in decreasing order. Even though the two sets are mostly the

same the orders are different for most authors.

The main assumption with authorship attribution problems is that every authors

word usage and content differs and based on these differences the work of one author

can be differentiated from the other. In order to illustrate this assumption, the content

and word usages for every book can be seen as a picture of some forms as illustrated for

two sample books in the 50-author dataset in Figure 4.1 & 4.2 for Charles Dickens’s

famous book Oliver Twist and Mark Twain’s book Horse Tale. Afterwards, stop

words (common words) are removed and using the frequency of remaining words we

have plotted it on a boy’s figure and a horse’s figure, respectively in Figure 4.1 & 4.2

using word-cloud library here2. In both figures, most frequent words are written in

bigger fonts and these words are recognized firstly when looking at the figures.

1https://github.com/agungor2/Authorship_Attribution/blob/master/BOW_50author.html
2https://github.com/agungor2/Authorship_Attribution/blob/master/oliver_horse.py

https://github.com/agungor2/Authorship_Attribution/blob/master/BOW_50author.html
https://github.com/agungor2/Authorship_Attribution/blob/master/oliver_horse.py
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Figure 4.1.: Oliver Twist, Charles Dickens

The same methodology can be applied to 3-author dataset as well. Using Vector-

izer3 a simple model is being shown on the tutorial. It simply takes the whole corpus

and vectorize it based on the frequency of each word. It is found that in the training

set, there are 25068 unique words whereas in the testing set the number of unique

words is 17546. It is also shown how to extract total number of appearance in the

whole corpus. As an example a search has been done on “Frankenstein” and it is

found to appear “6301” times. In order to apply the same methodology to 50-author

dataset a conversion algorithm has been provided for readers 4.

3https://github.com/agungor2/Authorship_Attribution/blob/master/bow_3authors.py
4https://github.com/agungor2/Authorship_Attribution/blob/master/convert_data.py

https://github.com/agungor2/Authorship_Attribution/blob/master/bow_3authors.py
https://github.com/agungor2/Authorship_Attribution/blob/master/convert_data.py
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Figure 4.2.: Horse Tale, Mark Twain

One important aspect of the authors in our dataset is that they are English lan-

guage writers. However, some of these authors like Charles Dickens or William Black

are originally from United Kingdom and some like Thomas Nelson Page are from

United States. There are slightly differences between British English and American

English. These differences also affect the usage of some of the words in the author’s

work. Words in American English such as “humor, color, honor, endeavor, theater”

are used as “humour, colour, honour, endeavour, theatre” in British English. Using

these features could improve the accuracy of the model and a simple algorithm has

been provided to use it with Word2Vec here 5.

5https://github.com/agungor2/Authorship_Attribution/blob/master/word2vec_extract_

data.py

https://github.com/agungor2/Authorship_Attribution/blob/master/word2vec_extract_data.py
https://github.com/agungor2/Authorship_Attribution/blob/master/word2vec_extract_data.py
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Word N-grams

It is a type of probabilistic language model for predicting the next item in the

form of a (n-1) order. Considering n-grams are useful since Bag of words miss out the

word order when considering a text. For example, a verb “take on” can be missed

out by Bag of words representation which considers “take” and “on” as two separate

words. N-gram also establishes the approach of “Skip-gram” language model. An

N-gram is a consecutive subsequence of length N of some sequence of sentence while

a Skip-gram is a N-length subsequence where the components occur at a distance of

at most k from each other [21].

In order to extract N-grams from a given text data a model has been built and

tested on 50-author and 3-author dataset6. Stop-words have not been considered

while constructing the N-grams. In 3-author dataset, for Edgar Allan Poe “upon,

let us, general john b, general john b c” are the most occurrent uni-gram, bi-gram,

three-gram, and four-gram respectively whilst in Mary Shelley they are “ one, lord

raymond, let us go, nearest town took post” and in HP Lovecraft they are “one, old

man, heh heh heh, oonai city lutes dancing”. Features such as “lord raymond” or

“heh heh heh” could be a good identifiers as one mentions about the specific character

in the book whilst the other one shows a preference of the author when it comes to

phrasing an emotion.

Table 4.1.: N-Grams Distribution

Author id 1-gram 2-gram 3-gram

A. Doyle would young man love gone astray

A. Doyle said sugar princess sugar princess chapter

A. Doyle one marriage bond drew long breath

W. Carleton said mr george said mr george

Continued on next page

6https://github.com/agungor2/Authorship_Attribution/blob/master/n-grams.py

https://github.com/agungor2/Authorship_Attribution/blob/master/n-grams.py
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Table 4.1 – continued from previous page

Author id 1-gram 2-gram 3-gram

W. Carleton would yes said said yes said

W. Carleton one said mr yes sir said

A. Manning mr sir john original hymns poems

A. Manning one years ago two three years

A. Manning would mr hill sir walter scott

Table 4.1 contains uni-grams, bi-grams, three-grams from authors Arthur Conan

Doyle, William Carleton, Anne Manning. It also provides characteristic features

about the persona in their books such as “sugar princess, mr george, sir john”.

Same task can be also be achieved with considering the stop-words and can be

better visualized as in Figure 4.3. In this task we have simply scanned through all

consecutive word pairs of two and saved it in a dictionary. After sorting the dictionary

based on the frequency of each bi-grams we have plotted it on a network diagram7.

Vocabulary Richness

It is also referred as vocabulary diversity. It attempts to quantify the diversity

of the vocabulary text. It is simply the ratio of V/N where V refers to the total

number of unique tokens and N refers to the total number of tokens in the considered

texts [31]. In order to apply this feature to both 50-author dataset and 3-author

dataset a model has been built here 8. For 3-author dataset due to the large number

of texts of Edgar Allan Poe, it was dominating the overall richness number but when

normalized with the overall text number for each author the value became around

0.9. As for 50-author dataset the vocabulary richness has been found the lowest

7https://github.com/agungor2/Authorship_Attribution/blob/master/n-grams2.py
8https://github.com/agungor2/Authorship_Attribution/blob/master/vocab_diversity.py

https://github.com/agungor2/Authorship_Attribution/blob/master/n-grams2.py
https://github.com/agungor2/Authorship_Attribution/blob/master/vocab_diversity.py
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Figure 4.3.: Bigram Network Diagram for Author Id:1, 22, 24

for William Carleton and the highest for Henry Haggard. Overall distribution of

vocabulary richness is plotted in Figure 4.4.

Stylometric features

These are features such as number of sentences in a text piece, number of words in a

text piece, average number of words in a sentence, average word length in a text piece,

number of periods, number of exclamation marks, number of commas, number of

colons, number of semicolons, number of incomplete sentences, number of uppercase,

title case, camel case, lower case letters. During the preprocessing of 50-author dataset

we have excluded punctuations from the dataset. Hence, calculating stylometric
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Figure 4.4.: Vocabulary Diversity for 50-Author Dataset

features are not available at the current stage for 50-author dataset. However, we

can compute these features for 3-author dataset as in here 9. Overall distribution of

some of the features introduced here are applied and the resulting density measures

are calculated for each author and shown in Table 4.2. Among these five features

introduced, number of punctuations and number of stop words usage varies the most

among the authors and hence they can be better distinguisher comparing to other

feature sets.

Power Words

These are the words that affect the readers emotionally. It could be shown under

the category of “semantic features”, too. These words give emotional excitements or

9https://github.com/agungor2/Authorship_Attribution/blob/master/stylometric_

features.py

https://github.com/agungor2/Authorship_Attribution/blob/master/stylometric_features.py
https://github.com/agungor2/Authorship_Attribution/blob/master/stylometric_features.py
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Table 4.2.: Stylometric Feature Density Distributions

Features Authors

EAP HPL MWS

Number of Punctuations 4.10 3.21 3.83

Number of Title Case 2.10 2.33 2.12

Upper Case Words 0.55 0.50 0.75

Average Words Length 4.64 4.63 4.60

Number of Stopwords 12.62 12.94 13.74

fears and serve as an emotional roller coaster. A great example could be given from

the Winston Churchill.

“We have before us an ordeal of the most grievous kind. We have before us many,

many long months of struggle and of suffering. You ask, what is our policy? I can say:

It is to wage war, by sea, land and air, with all our might and with all the strength

that God can give us; to wage war against a monstrous tyranny, never surpassed in

the dark, lamentable catalog of human crime. That is our policy. You ask, what is

our aim? I can answer in one word: It is victory, victory at all costs, victory in spite

of all terror, victory, however long and hard the road may be; for without victory,

there is no survival.”

These frequency of such words in the database can also be studied to see how the

authors are affectively using such words 10. The power words that are in 50-author

dataset is also provided and their frequency for every author has been calculated.

Then their density value which is the total number of power words divided by the

text fragments for every author has been recorded. Figure 4.5 shows the distribution

of these recordings for every author. The writings of Jane Austen has the most power

words density whilst William Carleton has the lowest usage of such words.

10https://github.com/agungor2/Authorship_Attribution/blob/master/power_words.py

https://github.com/agungor2/Authorship_Attribution/blob/master/power_words.py
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Figure 4.5.: Power Word Density for 50-Author Dataset

Function Words

Function words are the words that have little meaning on their own but they’re

necessary to construct a sentence in English language. They express grammatical

relationships among other words within a sentence, or specify the attitude or mood of

the speaker. Some of the examples of function words might be prepositions, pronouns,

auxiliary verbs, conjunctions, grammatical articles. Words that are not functions

words are called as content words and they can also be studied to further analysis

the use case in the authorship attribution problems. In order to implement the use

case of function words in our dataset a model is built 11. The list of commonly used

function words are chosen from Robert Layton’s book on data mining [32] and the

overall function word density measure is plotted on Figure 4.6. Among the authors

11https://github.com/agungor2/Authorship_Attribution/blob/master/function_word.py

https://github.com/agungor2/Authorship_Attribution/blob/master/function_word.py
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in training set, George Moore has the lowest usage of function words whereas Bret

Harte has the highest function words density.

Figure 4.6.: Function Words Density for 50-Author Dataset

Tf-Idf

It stands for term frequency-inverse document frequency. It is often used as a

weight in feature extraction techniques. The reason why Tf-Idf is a good feature

can be explained in an example. Let’s assume that a text summarization needs to

be done using few keywords. One strategy is to pick the most frequently occurring

terms meaning words that have high term frequency (tf). The problem here is that,

the most frequent word is a less useful metric since some words like ’a’, ’the’ occur

very frequently across all documents. Hence, a measure of how unique a word across

all text documents needs to be measured as well (idf). Hence, the product of tf x idf

of a word gives a measure of how frequent this word is in the document multiplied by

how unique the word is with respect to the entire corpus of documents. Words with
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a high tf-idf score are assumed to provide the most information about that specific

text [31].

TF (t) =
Number of times term t appears in a document

Total number of terms in the document

IDF (t) = loge(
Total number of documents

Number of documents with term t in it
)

Tf − Idf = TF (t) ∗ IDF (t)

(4.1)

By considering every authors texts alone within the text corpus a Tf-Idf model has

been built both for 3 and 50-author datasets. 12. In the model, not only the sin-

gle forms of word tokens but their n-grams are considered as well. As for the 3-

author dataset, “afforded means, aware fact, dungeon make, perfectly uniform wall”

are found to have highest Tf-Idf scores for Edgar Allan Poe, “fumbling mere mis-

take, occurred fumbling, mistake, fumbling” for HP Lovecraft, and “looked, beneath

speckled, cheering fair, cottages wealthier, counties spread, happy cottages wealthier,

lovely spring” for Mary Shelley. Table 4.3 provides the top 10 words and n-grams

with highest Tf-Idf scores for the 50-author dataset. Comparing between Table 4.1 &

4.3 new meaningful words have appeared that could serve as a new feature for each

author such as “row, canal, passenger” for A. Doyle, or “writer, virtue, tale” for H.

Greeley.

Table 4.3.: Highest Tf-Idf Pairs

A. Doyle C. Darwin C. Dickens E. Wharton H. Greeley

rowed mr priest george writer

canal mrs women said george virtue

time listen sir john half girl tale

boat try nut path stray neighbours

effect fine lady forest hotel expensive

Continued on next page

12https://github.com/agungor2/Authorship_Attribution/blob/master/tfidf_example.py

https://github.com/agungor2/Authorship_Attribution/blob/master/tfidf_example.py
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Table 4.3 – continued from previous page

A. Doyle C. Darwin C. Dickens E. Wharton H. Greeley

craft old mr dead miss said george tale humble

city mr says old square pump room obligation

row don know old square church drive preface

passenger lady settlement pump habits

noise dr square church coach pecuniary

4.2 Character Features

Based on these features a sentence consists of a sequence of characters. Some of

the character-level features are alphabetic characters count, digit characters count,

uppercase and lowercase character counts, letter frequencies, character n-gram fre-

quencies. This type of feature extraction techniques has been found quite useful to

quantify the writing style [33].

A more practical approach in character-level features are the extraction of n-gram

characters. This procedure of extracting such features are language independent and

requires less complex toolboxes. On the other hand, comparing to word n-grams

approach the dimensionality of these approaches are vastly increased and it has a

curse of dimensionality problem. A simple way of explaining what a character n-

grams could be with the following example: assume that a word “student” is going

to be represented by 2 character grams. So, the resulting sets of points will be “st,

tu, ud, de, en, nt”.
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Table 4.4.: Highest Character N-gram

A. Doyle C. Darwin C. Dickens E. Wharton H. Greeley

the the the the the

and and and and and

her ing ing ing her

ing her her her ing

hat you hat hat hat

that ther that that that

ould with with ther ther

ther that ould with with

with ould ther ould tion

thin said thin here ould

In order to apply the character n-gram models an algorithm has been developed

and provided here 13. Table 4.4 also shows the top five three and four character grams.

Since most common stop words have 3 or 4 letters when constructing character level

3 or 4-grams these words also appear in Table 4.4.

Another useful feature extraction method to consider is the usage of “n’t, or not”

and “is, or ’s”. Since there is no punctuation in 50-author dataset we only apply this

to the 3-author dataset. Using the moses tokenizer a model has been built for every

author and their respected usage of “n’t, not, is, ’s” 14.

Figure 4.7 also shows the distribution of the usage in the training data across

authors. It is found that Mary Shelley does not use “n’t” but Edgar Allan Poe

prefers to use “is” more often than “’s”.

13https://github.com/agungor2/Authorship_Attribution/blob/master/char_ngram.py
14https://github.com/agungor2/Authorship_Attribution/blob/master/moses_tokinezer.

py

https://github.com/agungor2/Authorship_Attribution/blob/master/char_ngram.py
https://github.com/agungor2/Authorship_Attribution/blob/master/moses_tokinezer.py
https://github.com/agungor2/Authorship_Attribution/blob/master/moses_tokinezer.py
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Figure 4.7.: Apostrophe Usage for 3-Author Dataset

4.3 Syntactic Features

For certain text grammatical and syntactic features could be more useful com-

pared to lexical or character level features. However, this kind of feature extraction

techniques requires specific usage of Part of Speech taggers. Some of these features

consider the frequency of nouns, adjectives, verbs, adverbs, prepositions, and tense

information (past tense,etc). The motivation for extracting these features is that

authors tend to use similar syntactic patterns unconsciously [31].

Some researchers are also interested in exploring different dialects of the same lan-

guage and building classifiers based on features derived from syntactic characteristic

of the text. One great example is the work that aims to discriminate between texts

written in either the Netherlandic or the Flemish variant of the Dutch language [34].

The feature set in this case consists of lexical, syntactic and word-n grams build

on different classifiers and F1-score has been recorded for each cases. Employed

syntactic features are function words ratio, descriptive words to nominal words ra-
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tio, personal pronouns ratio, question words ratio, question mark ratio, exclamation

mark ratio [34]. Some of these features can also be implemented by using 3-author

or 50-author dataset.

By making use of the part of speech tagging, a model has been built to analyze the

usage of adjectives, nouns, and verbs in every author’s training text corpus 15. The

main steps of the model consists of tokenizing text pieces author-wise and searching

through the adjective, noun, verb list among the tokens. The measure of density is

being defined as number of searched element divided by the total number of tokens

for every author. In 3-author dataset, it is found that Edgar Allan Poe’s preferred

sets of top 3 adjectives, verbs, nouns list “little, other, more, was, is, had, time man

day”, HP Lovecraft uses “old, great, many, was, had, were, man, night, time”, and

Mary Shelley’s set is “own, other, many, was, had, be, life, heart, Raymond”.

Figure 4.8.: Adjective, Verb, Noun Density for 50-Author Dataset

Same methodology has also been implemented on the 50-author dataset. Figure

4.8 shows the density measure comparison across authors who are A. Doyle, C. Dar-

15https://github.com/agungor2/Authorship_Attribution/blob/master/syntactic_

features.py

https://github.com/agungor2/Authorship_Attribution/blob/master/syntactic_features.py
https://github.com/agungor2/Authorship_Attribution/blob/master/syntactic_features.py
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win, C. Dickens, E. Wharton, H. Greeley. List of top five adjectives, verbs, and nouns

used by every author has also been recorded in Table 4.5. Noun variations across dif-

ferent authors is much significant than adjective and verb variations as expected.

Table 4.5.: Top 5 Adjectives, Nouns, Verbs Usage

A. Doyle C. Darwin C. Dickens E. Wharton H. Greeley

young good little little little

little little good other poor

other old more old new

good young much great good

more much old good old

was was is was was

had said be had is

have is was is had

is had have have have

be be had be be

time time time man jane

mr man literature time mrs

man mr way face mother

way day mrs eyes man

nothing mother man men mr
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4.4 Semantic Features

Features that we discussed so far aim at analyzing the structural concept of a text

such. Semantic feature extraction from text data is a bit challenging. That might

explain why there is limited work in this area. One example is the work of Yang who

has proposed combination of lexical and semantic features for short text classification

[35]. Their approach consists of choosing a broader domain related to target categories

and then applying topic models such as Latent Dirichlet Allocation to learn a certain

number of topics from longer documents. The most discriminative feature words

of short text are then mapped to corresponding topics in longer documents [35].

Their experimental results show significant improvements compared to other related

techniques studying short text classification.

Positivity, neutrality, and negativity index, and synonym usage preference are

good examples of semantic features. Distributed representation of words, Word2Vec,

is also an attempt to extract and represent the semantic features of a word, sentence,

and paragraph [25]. The usage of Word2Vec in authorship attribution tasks has not

yet been studied explicitly. Due to the application domain dependency of Word2Vec

features their usage will be introduced when discussing application specific feature

sets.

Positivity and Negativity Index

In order to understand the general mood and the preference of positive and nega-

tive sentence structure in each author’s work, a positivity and negativity score model

has been built 16. In the algorithm, the sentences that have positive polarity score

have been labeled as positive and the negative polarity scored ones are labeled as

negative. In 3-author dataset, the most negative person has been found to be HP

Lovecraft whereas the most positive one is Mary Shelley.

16https://github.com/agungor2/Authorship_Attribution/blob/master/P_N_index.py

https://github.com/agungor2/Authorship_Attribution/blob/master/P_N_index.py
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Figure 4.9.: Positivity and Negativity Comparison

In the 50-author training set, again the works of the authors A. Doyle, C. Darwin,

C. Dickens, E. Wharton, H. Greeley have been chosen and their polarity scores have

been calculated. Figure 4.9 shows the calculated positivity and negativity index for

the chosen authors. Among these five authors the most negative one is found to be

E. Wharton and the most positive one is C. Darwin.

Synonym Usage

The preference to use synonyms and antonyms in different text structure could

be an identifiable feature in different tasks as well. However, extracting such features

and modeling it could not be an easy task. The simple approach could be creating

a domain knowledge where the pairs of synonyms and antonyms are paired. Then, a

simple brute force approach can be used to find such words within a specific window

size of sentences. Another approach is to employ the word vectors and represent
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a sentence with the average of all word vectors in the sentence. Using these two

approaches an example model has been created 17. In the example model, given

a synonym. its antonym set can be retrieved using NLTK wordnet library. Also, a

similarity score can be calculated comparing the average vector forms of two sentences.

Synonym and antonym word usage in 3 and 50-author dataset has not yet been studied

and applied. Interested researchers can use the example model to further explore their

affect in the authorship attribution problems.

4.5 Application Specific Features

When the application domain of the authorship attribution problems are different

such as email messages or online forum messages, author style can be better char-

acterized using structural, content specific, and language specific features. In such

domains, the use of greetings and farewells, types of signatures, use of indentation,

paragraph lengths, font color, font size could be good features [31]. Word2Vec can

still be implemented in such domains as well as in 3 and 50-author dataset, but the

way to use such vector forms depend on the creativity of one’s approach.

Vector embeddings of words (Word2Vec)

It gives the ability to represent a word in a vector dimension of your choosing.

The ways to make use of Word2Vec in 3-author and 50-author dataset is various.

For example, a Word2Vec model can either be built by considering every authors

text data separately, or can be imported using previously trained word vectors on

other large text corpus. It can, then, be plotted into two dimensional vector space

by using dimensionality reduction techniques. We built a model based on profile

based Word2Vec training and using TSNE to decrease it to two dimensions18. In the

17https://github.com/agungor2/Authorship_Attribution/blob/master/synonym_example.

py
18https://github.com/agungor2/Authorship_Attribution/blob/master/word2vec_tsne.py

https://github.com/agungor2/Authorship_Attribution/blob/master/synonym_example.py
https://github.com/agungor2/Authorship_Attribution/blob/master/synonym_example.py
https://github.com/agungor2/Authorship_Attribution/blob/master/word2vec_tsne.py
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model, our baseline approach is to extract A. Doyle and E. Wharton’s text data and

train Word2Vec on both of these authors text sets separately. Then, we have checked

the word closeness for “listen” in both of these authors using 300 dimensional word

vectors. Figure 4.10 shows the closest words in 2 dimensions for E. Wharton. The

same comparison can also be done between pre-trained word vectors of Google or

Glove to see the difference of usages in such words between an author and a pre-

trained word vector.

Figure 4.10.: Word2Vec 2-D Closest Words for ’listen’

Moving with the idea of training Word2Vec per author, one can also do a cosine

distance measure for the same word or same sentence. The measured cosine distance

for A. Doyle and E. Wharton regarding the usage of “listen” is 0.094. In order to

apply this strategy on sentence level, we can have a few ways to do so. One way is by

simply taking the scaled average of Word2Vec vectors in the sentence. Another one is

to employ Tf-Idf score of each word as a gain when calculating a sentence vector. We
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then take the scaled average of all word vectors in the text piece. For the simplicity,

we only consider taking the average vector without Tf-Idf gain for now. In this case,

“her lips were parted” has been compared for both A. Doyle and E. Wharton. The

cosine distance has been recorded as 0.258 which is much larger than the distance for

the word “listen”. The reason is that “her lips were parted” is an exact phrase that

is extracted from A. Doyle whereas “listen” is a common verb for both authors. The

same comparison can also be done by considering the Google’s pretrained Word2Vec.

The cosine distance for “listen” between A. Doyle and pretrained set is found as 0.015

whereas for E. Wharton, it is 0.012. As for “her lips were parted”, the cosine difference

for A. Doyle and pretrained set is -0.009, and for E. Wharton, it is 0.012. This implies

that E. Wharton uses “listen” close to the pretrained set which was trained on large

corpus of text data. As for sentence comparison, the sentence average vector is closer

to A. Doyle stating that this sentence is more likely to be written by A. Doyle then

E. Wharton. The way to achieve this comparison criteria has been provided here for

readers to move forward with this methodology19.

19https://github.com/agungor2/Authorship_Attribution/blob/master/word2vec_cos_

distance.py

https://github.com/agungor2/Authorship_Attribution/blob/master/word2vec_cos_distance.py
https://github.com/agungor2/Authorship_Attribution/blob/master/word2vec_cos_distance.py
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5. CLASSIFICATION METHODS IN AUTHORSHIP

ATTRIBUTION

In authorship attribution problems, there is a set of candidate authors and a set of

text samples in the training set covering some of the works of the authors. In the

test dataset, there are sample of texts and each of them needs to be attributed to

a candidate author. Considering 50-author dataset, we make the task of attributing

the author for a given test text sample by placing only 45 authors in the training set,

and by distributing the different books across training and testing set. However, for

the simplicity purposes 3-author dataset does not have unknown author in the testing

set.

In our approaches, we will distinguish the authorship attribution techniques based

on treating each training text individually or cumulatively (per author). By treating

every text pieces individually we mean by extracting features by not considering

the other available text samples in the training. In author-wise or profile based

approaches, we will keep all available texts per author in one file and try to extract

relevant features.

In order to compare results, one can follow different measures as shown in the

equation 5.1. In order to test out our training model, we can either create a validation

set and compare the performance of each model or since we have the correct labels

for both 3 and 50-author test dataset, we can simply try the model on the test data.



53

There will be a difference in both cases. That is why, we will only consider the

performance of the model in the test data with F1 score.

Logloss = − 1

N

N∑
i=1

[yi log pi + (1− yi) log (1− pi)]

F1 = 2× Precision× Recall

Precision + Recall

MeanAccuracy =

∑N
i=1 Accuracy for each class

Total Class Number

(5.1)

5.1 Working on Dataset Without Stop Words

At the early stage of our work, we have considered taking out all the stop words

from the raw text data and keep the order of the rest of words. By doing so, we have

eliminated %76 of the whole word corpus and the size of training set has become

17153 and as for test data it has 12728 instances. Each text pieces again consist of

1000 words.

Feature Extraction

There are several features that are deployed to analyze their usefulness for this

dataset. In this application not only the content is important but also stylometry and

other features are useful. The features that are extracted to perform classification

are as follows:

• Vocabulary diversity

• Bag of words

• N-gram models: 2,3,4 gram models are built. However, it’s found that for 3-

gram model there are nearly 3500 texts and for the 4-gram model there are 700

texts that contain these features. When introduced three grams and four grams

into our SVM model, they are observed to serve as a noise in our model.
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• Word2Vec: Build Word2Vec author wise (profile-based) or use pretrained Word2Vec

of Google directly.

• Paragrapvec: Use 8 as the window baseline and divide the text into 8 different

segments. Average the Word2Vec of each word with their Tf-Idf score multipli-

cation in the 1000 words text fragment.

• Nonoccurence words list: We can define a set of union features that contains

the union of all nonoccurence words for each author.

While running Word2Vec one observation is that there are some words that can’t

be found at Google’s pretrained Word2Vec model. Some of these are “theatre”, or

“centre”. The reason is because of the minor difference of writings between American

and British English. This also gave me an idea about the existence of English and

American authors in the dataset and how I can make use of these features.

To compare the usage of every unique words for each author we created a window

size of 10 and evaluated the weights by adding 1
|n|+1

where n ranges from -4 to 4.

Next, we added 1 to word itself. With this method, we can create a similarity matrix

for every word and compare their usage in different authors. It can be useful while

building one versus all classifier to identify unknown authors in our list.

Building Classifiers

Various classifiers can be applied to our specific task. The followings are used for

comparison reason to find a best fitting classifier for our dataset.

• Näıve Bayes Classifier: It’s the first classifier that was applied to our dataset.

Due to better performance with SVM, we didn’t continue to further explore

this classifier. However, a better performance comparing to what we have tried

could be achieved by defining prior probabilities as the class percentage for each

author in the training set.
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• Support Vector Machines: They are always advised to be useful in text clas-

sification and authorship attribution problems [1], [6], [7], [8], [9]. One very

important characteristic of SVM is the training datasets normalization tech-

niques before feeding it into SVM model. The boundaries of SVM are strictly

affected by the feature dataset. After finding the proper normalization tech-

nique (min-max normalization) we also need to tune “C” parameters which

would also fit best to our feature sets.

• Ensemble Methods: RUSBoost, random forest, Adaboost are used to build our

classifiers. In order to decrease computation time, PCA and data whitening

technique is applied but due to low cross validation scores we didn’t continue

on building our analyses based on them. The reason why we choose RUSBoost

is that it’s suggested to perform better for imbalanced dataset.

• K-means clustering is used to find out the nearest words by taking their cosine

differences. It’s also made useful in unknown author classification task.

• Image Classification: We also think of paragraph vectors or averaged sum of Tf-

Idf multiplied Word2Vec as pixels of an image and try to apply spatial descriptor

which makes use of estimation and spectral and coarsely localized relationship

of pixels [36].

• Convolutional Neural Networks: Using Google’s pretrained Word2Vec with one

convolution layer Kim Yoon’s CNN-nonstatic model is modified to multi class

classification problem and CV score of a 0.49 is achieved with considering the

book id distribution in classes. It’s not a bad result comparing to other clas-

sifiers. However, we still proceed with SVM classifiers due to their faster and

higher performance results [24].
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Experimentation

We have identified two significant problems for our dataset. One of them is the

imbalanced data and another one is the unknown authors in our test set. In order

to address imbalanced class distribution, we have followed two different approaches.

Firstly, the training sets are provided with book ids that are identical for each text

and the order of these texts are not being modified. This means that we can combine

the texts that share the same book id and reproduce training texts that are from these

books again. Alternatively, we can randomly increase the number of minority classes

by using randsample of Matlab or using SMOTE which is observed not to perform well

on this dataset. To identify the weight of each class in overall f1 score performance we

have dropped out each class one by one and used 5 folds cross validation to capture

mean F1 scores with bag of words representation. Maximum captured mean F1 score

is 0.81 with Albert Ross’s work and the minimum one is 0.75 for Lucas Malet. Second

problem is to identify right cross validation technique 1. One way to solve is that while

taking the instances for cross validation we can take the same book id as a reference

for the books of all authors which would make it closer to final test score.

• Stylometric Features with SVM: Bag of words representation, diversity of a text

which is defined as the unique number of words over total number of words,

2,3,4 grams, British & American writing differences of some specific words are

extracted. To find out best classifier we’ve used only bag of words representation

with the top 3000 most occurred words. Naive Bayes, Random Forest and

Ensemble techniques perform 0.56, 0.52 and 0.49 with unknown book id cross

validation technique. SVM outperforms them all with a score of 0.61.

To further improve the performance of SVM we have tried different normaliza-

tion technique as log of nonzero elements, row and column wise normalization

with different number of bag of word selection. The best normalization tech-

nique is min max normalization for our dataset. When taking min-max normal-

1https://github.com/agungor2/Authorship_Attribution/blob/master/check_

oversampling.m

https://github.com/agungor2/Authorship_Attribution/blob/master/check_oversampling.m
https://github.com/agungor2/Authorship_Attribution/blob/master/check_oversampling.m
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ization we have considered training and testing together. After normalization,

we split them again. We also have chosen the words that are labeled from 7000

to 10000 and compared with the all bag of words representation feature set. All

words representation feature set has proven a better result with 0.84 on known

book id cross validation calculation whilst the other one performs 0.78.

Table 5.1.: Mean F1 Scores for Known and Unknown

Book Id

Features Known Unknown

Bow 3000 0.78 0.68

Bow all 0.84 0.71

Bow all, & bigrams 0.87 0.73

Bow all, 2&3 grams 0.86 0.72

Bow all, &2,3,4 grams 0.83 0.69

All useful features 0.87 0.73

As summarized in Table 5.1 the best scores are achieved with concatenating all

bag of words representation, bigrams, 74 different used words between English

and American author, and vocabulary diversity measure. During the exper-

imentation C parameters are also tuned and the best score is achieved with

C=3. During the experimentations, the cross-validation indexes are kept same

for each experiment since different configuration of cross validation value may

vary minor differences. Since these results are cross validation results, F1 scores

on the test data will be closer to unknown book id settings but it will be lower

than them.

• Word2Vec: Using pretrained words, taking their averages for all 1000 words in

a text segment, and averaging with Tf-Idf for each text gives a cross validation
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score of 0.57 with known book ids. The same experiment is also done with

Tf-Idf divided feature set and performed 0.54. Using a window size of 8 with

the suggestion of Mikolov’s work [25], we have defined paragraph vectors of 125

words of text piece. However, we didn’t further proceed with this idea due to

low results in the first Word2Vec approaches.

Even though Word2Vec or CNN’s are well defined techniques in semantic feature

selection they are not as useful as other simple techniques such as bag of words or

n-grams in our dataset that is removed stop words. The reason is that their funda-

mental working principle bases on sequential order of words in each text whereas in

our dataset we have lost this information. However, dealing with them have helped

us found out about the existence of American and British authors in our dataset.

Simple bag of words with n-grams and vocabulary diversity is good features for this

classification problem. The way to improve this technique is done by trying out dif-

ferent normalization as SVM boundaries depend on them. The increase was observed

with 0.05 on mean F1 score with just pursuing a different normalization technique

which wasn’t observed even with Word2Vec or CNN.

5.2 Feature Engineering with Different Classifiers

In order to work on the semantic and syntactic features of text we have put back

the stop words in the dataset. In this setting, again there are 1000 word pieces of

texts and the total number of unique words in the whole corpus is set to be 10,000.

Total number of training set 53678 whilst total number of test set is 38809. In the

training set, there are 45 authors and in the test set there are 50 authors. G. Eliot,

J. London, F. H. Burnett, S. Ellis, T. Page are the missing authors in the training

set which consists of %34 of all testing data.
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Table 5.2.: Mean F1 Scores for Different Experimentation

Settings

Dataset Features Classifier F1 Score

3-author Tf-Idf train, test separate Logistic R. 0.806

3-author Tf-Idf train, test together Logistic R. 0.808

3-author Countvectorizer train, test separate Logistic R. 0.801

3-author Countvectorizer train, test together Logistic R. 0.801

50-author Tf-Idf train, test separate Logistic R. 0.46

50-author Tf-Idf train, test together Logistic R. 0.47

50-author Tf-Idf train, test together svd 120 SVM 0.52

50-author Tf-Idf train, test together svd 120 Xgboost 0.496

50-author Tf-Idf train, test together scaled svd 120 Xgboost 0.495

50-author BOW words 9501:10000 SVM 0.5416

50-author BOW words 7000:10000 SVM 0.5958

50-author BOW words 5000:10000 SVM 0.6110

50-author BOW words 3000:10000 SVM 0.6172

50-author BOW words 7000:10000 Xgboost 0.516

50-author combined features only SVM 0.017

50-author Combined, BOW words 7000:10000 SVM 0.6104

50-author Combined, BOW words 3000:10000 SVM 0.6361

50-author BOW words 1:10000 SVM 0.6410

50-author Combined, BOW words 1:10000 SVM 0.6425

In most of NLP tasks, Tf-Idf and bag of words representations are the first features

to implement into a classifier of choice. To test out the performance of these two

modules, we have implemented on 3-author dataset using Tf-Idf vectorizer and Count

vectorizer. In both of these two settings, we consider the number of unique words,
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bi-grams and tree grams. To test out their performance we can do two adjustments.

Before feeding the text into Tf-Idf or Count vectorizer, it is possible to combine all

training and test set together to feed in or get these vectors by separately considering

training and test texts. To take the measure of F1 scores for both of these two settings,

we have implemented it on Logistic Regression classifier by keeping the C=1. The

result for Tf-Idf vectors which are considered separately for the training and test

set is 0.806 whilst when considered together it is 0.808. When we tested the same

experiment on Count vectors, F1 scores are 0.801 in both settings.

We observed not much of a difference for using Tf-Idf or Count vectors as a

feature, so we picked one of them, Tf-Idf, and implemented for 50-author dataset

using Logistic Regression Classifier. We had two settings as before when building Tf-

Idf vectors. The advantage of combining training and testing set for feature selection

is that it serves as a semi-supervised learning. We saw better performance for semi-

supervised learning case with 0.47 mean F1 score comparing to separated training

and testing set. By considering the performance of semi-supervised learning setting,

we have applied it on SVM and Xgboost Classifiers as well. Since the dimension of

Tf-Idf vectorizer is huge and it is sparse matrix, we have implemented Singular value

decomposition (svd) and selected 120 components for both training and testing set.

From our experimentation we record that a good range of svd component choosing for

this problem is between 120 to 200. For SVM we choose C=1 and for Xgboost max

depth is 7, number of estimators are 200, and learning rate is chosen as 0.1. With svd

120 components, SVM and Xgboost performed 0.52 and 0.496 respectively. We scaled

and standardized 120 svd features by removing the mean and scaling to unit variance.

The scaled dataset has then been implemented to Xgboost with same settings and

has not been observed a performance improvement. We chose 120 components from

svd but it could go up to 200 components for better results. The models that have

been implemented so far are provided here 2.

2https://github.com/agungor2/Authorship_Attribution/blob/master/feature_

engineering.py

https://github.com/agungor2/Authorship_Attribution/blob/master/feature_engineering.py
https://github.com/agungor2/Authorship_Attribution/blob/master/feature_engineering.py
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Comparing the result of SVM and Xgboost classifier, Xgboost did not perform

good enough. There is a way to increase the performance by hyper-parameter tuning

or so called Grid search. The parameters we choose can be optimized by testing

out different settings one by one with each other and creating a stop condition to

see if there is a change up to 50 rounds of iteration. Hashing vectorizer can also

be used instead of count vectorizer or Tf-Idf vectorizer. The difference is that with

hashing vectorizer it uses the hashing trick to find the token string name to feature

integer index mapping. It is very low memory scalable to large datasets as there is no

need to store a vocabulary dictionary in memory. We can also choose the number of

components we want to store with this technique which allows smaller size of sparse

matrix. Another major task to improve the score is to create probability of the text

per author and feed this as a feature to classifier of choice.

As mentioned, using count vectorizer is fast for 3-author dataset but is challeng-

ing for 50-author dataset due to size of 50-author dataset. In order to implement

feature extraction techniques simply, we have built the dataset by representing each

word with a unique number and storing it in array. To apply the bag of words rep-

resentation a simple model is built here 3. In this model we can select the word of

our choice as a feature and measure the frequency of these words per text. Since

the boundaries of SVM heavily relies on the feature data, we have also implemented

min-max normalization before feeding the data into SVM. Even by only checking the

most occurring 500 words, SVM performs a lot more than previous settings with a

score of 0.5416. We see a performance improvement as we increase the number of

features to 3000, 5000, and 7000 and the measured scores follow as 0.5958, 0.6110,

and 0.6172 respectively.

We also checked the performance of top 3000 frequencies with Xgboost by con-

sidering the same parameters as in previous cases. We measured 0.516 F1 score and

Figure 5.1 shows the importance of the top 20 words on the F1 score measure. Us-

3https://github.com/agungor2/Authorship_Attribution/blob/master/stylometric_

feature_svm.html

https://github.com/agungor2/Authorship_Attribution/blob/master/stylometric_feature_svm.html
https://github.com/agungor2/Authorship_Attribution/blob/master/stylometric_feature_svm.html
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Figure 5.1.: Xgboost Feature Distribution

ing the word ids provided here one can decrease the number of features and retrain

the Xgboost. Another comparison was also done by choosing the top 500 important

words and implementing it in both of Xgboost and SVM. After experimentation, we

have not observed any difference.

To increase the F1 score we can understand that we can not keep increasing the

number of bag of words feature as it contributes less when increased. One way to

address this issue is to go through the model weight of each word features and take

out the ones that has less weight. Another way is to introduce more features as

a distinguisher. We have listed out several lexical, syntactic, and character level

difference. In order to implement some of them to 50-author dataset a model has
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been built 4. These features are number of unique words, characters, stop words,

adjectives, nouns, verbs, and polarity & subjectivity measures (sentiment scoring).

We have implemented only these features to see the affect in overall mean F1 score

with SVM. It gives a score of 0.017. When implemented these feature with top

3000 bag of words we see an increase in the score from 0.5958 to 0.6104. As you

can see the difference between the results are almost same as unique contribution of

the stylometric features. We have also implemented it with top 7000 bag of words

representation and have recorded better measure of 0.6361. Figure 5.2 shows the

confusion matrix of this experiment and we can see the misclassified areas near by

the authors G. Eliot, J. London, F. H. Burnett, S. Ellis, T. Page because they are

the missing classes in the test data. We also observe some misclassification for R.

Kipling and A. Manning. There are 13173 texts misclassified that are written by

G. Eliot, J. London, F. H. Burnett, S. Ellis, T. Page in the test data. 23464 are

labeled to true classes and 2172 are misclassified that are member of 45 authors.

The misclassified cases that are part of 45 authors consist of %5.6 of the test data.

This is the room to improve the performance of our approach for further studies. It

could be possible by hyper parameter tuning with Grid search approach and adding

additional discriminative features. In the final stage, we also have implemented using

the frequency of all words in data set and we have achieved 0.6410 F1 score. All bag

of words features are also combined with the other useful features and have recorded

a performance of 0.6425.

We have not implemented syntactic n-grams (sn-grams) that are defined in this

paper [37]. Sn-grams are combination of Part of Speech tagging and n-grams in which

the advantage of sn-grams is that they are based on syntactic relations of words and,

thus, each word is bound to its real neighbors. This allows ignoring the arbitrariness

that is introduced by the surface structure [37]. Sn-grams are expected to bring

4https://github.com/agungor2/Authorship_Attribution/blob/master/feature_

engineering4.py

https://github.com/agungor2/Authorship_Attribution/blob/master/feature_engineering4.py
https://github.com/agungor2/Authorship_Attribution/blob/master/feature_engineering4.py
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Figure 5.2.: Confusion Matrix for SVM Combined Features

grammatical perspective of the text that could serve as a good discriminative feature

set.

5.3 Sentence and Paragraph Generating Model

The methods we have introduced so far have been made use of frequency of words,

characters and other stylometric distinguisher as a feature to stack them together and

implement with different classifiers. Another possible usage of such information can
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be to create character or sentence based language models using very simple conditional

probability distributions.

P (Word) = P (c1, c2, c3, ..., cn)

P (c1, c2, c3, ..., cn) =
n∏

i=1

P (ci)

P (Paragraph) = P (w1, w2, w3, ..., wn)

P (w1, w2, w3, ..., wn) =
n∏

i=1

P (wi)

(5.2)

The probability of a word can be simply written as the multiplication of all char-

acters probability in the word and same description can be defined for a sentence or

a paragraph, too. As for paragraph or sentence we can also think of combination of

words and their probability can also be redefined.

P (word) = P (c1, c2, c3, ..., cn)

P (word|Author) =
P (Author|word) ∗ P (Author)

P (word)

P (Paragraph) = P (w1, w2, w3, ..., wn)

P (Paragraph|Author) =
P (Author|Paragraph) ∗ P (Author)

P (Paragraph)

(5.3)

We can then simply define the probability of a word being written by one of the

authors as the conditional probability. The same settings can be applied for paragraph

level creation considering from the word base. Here we can think of P (Author|word)

as the normalized frequency of each word in training set and P (Author|Paragraph)

can be considered as the normalized distribution of the text pieces per author in the

training set.

Predicted Author = argmax {P (c1, c2, c3, ..., cn|Author)P (Author)}

Predicted Author = argmax {P (w1, w2, w3, ..., wn|Author)P (Author)}
(5.4)

We can then simply choose the author by picking the maximum probability for

each word or character cases as shown in the equation 5.4. It is also possible to define
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a Markov Chain model by storing the probabilities of characters or words in different

Markov Chain steps as described in equation 5.5 and 5.6 respectively.

P (c1, c2, c3, ..., cn) = P (c1)
n∏

i=2

P (ci|ci−1, ci−2)

P (c1, c2, c3, ..., cn) = P (c1)P (c2|c1)
n∏

i=3

P (ci|ci−1, ci−2)
(5.5)

P (w1, w2, w3, ..., wn) = P (w1)
n∏

i=2

P (wi|wi−1, wi−2)

P (w1, w2, w3, ..., wn) = P (w1)P (w2|w1)
n∏

i=3

P (wi|wi−1, wi−2)

(5.6)

In equation 5.5 and 5.6 steps we need to store the probability so that when defining

conditional probability we can use them again. However, when considering the size

of the corpus the character level Markov Model is computationally less expensive to

implement comparing to word level. Hence it is the reason why, for our computations

we have not considered storing prior probabilities. For the simplicity, we will consider

4 settings. In the first two settings, we have defined a text piece as a combination

of words and the conditional probability of that text piece being written by one of

the authors is defined as in equation 5.3. In order to consider to the probability of

authors we have taken two options. First one is to take them as equal, and second

one is to consider them as their normalized text pieces number in the training set 5.

In the second setting, we have considered the 1000 words text piece as a combination

of characters and calculated their conditional probabilities 6.

Figure 5.3 shows the difference of each characters in the entire training corpus

for Arthur Doyle, Charles Dickens, and James Baldwin. We can see the dissimilar-

ities among them for different characters. The same steps can also be done when

considering the usage of punctuation to extract more features.

5https://github.com/agungor2/Authorship_Attribution/blob/master/word_freq_guess.py
6https://github.com/agungor2/Authorship_Attribution/blob/master/Character_level_

distribution.py

https://github.com/agungor2/Authorship_Attribution/blob/master/word_freq_guess.py
https://github.com/agungor2/Authorship_Attribution/blob/master/Character_level_distribution.py
https://github.com/agungor2/Authorship_Attribution/blob/master/Character_level_distribution.py
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Figure 5.3.: Character Frequency for A. Doyle, C. Dickens, J. Baldwin

Another method using the Character distribution knowledge is to create a char-

acter level Bag of characters considering the 27 unique characters in the dataset and

their bi-grams, tri-grams, and four-grams to feed it into any classifier as we have

shown in the previous experiments. We have not implemented this methodology but

interested readers could pursue this part or deploying the next steps of Markov Chain

Model as described before.

When doing the experimentation of (a), (b), (c), (d) we have firstly calculated the

character level and word level distribution per author and then used this knowledge to

calculate the conditional probability per author for each text. The scored measures

are comparably a lot lower than simple bag of words approach. The reason why

the measured scores low is because of large number of words in a given text piece.

However, intended goal with this methodology is to lay the foundation of the model

and help researchers implement such models. In order to improve scores, Markov

Model steps are needed to get correlated relationship between characters and words.
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Another method to improve scores is to use Markov Models and the conditional

probabilities we use as a feature to train classifiers with other useful features to

follow the steps of feature stacking methodologies.

(a) In the first experiment, we have considered the character level distribution to

create the whole text pieces and the prior probability of each author is taken

equal.

(b) In the second one, we have considered the same setting as in (a) but changed

the prior probabilities with author normalized distribution in the training set.

(c) Instead of considering characters, we took the word distribution as the proba-

bility per author and experimented when considering same probability for each

author.

(d) In the last experiment, we look at the performance of (c) when considered the

normalized distribution of authors in the training set as prior probabilities.

5.4 Ensemble Methods

As shown in Table 5.2, every model has a different performance on the same set of

feature. We have introduced grid search strategy to improve the overall performance

for each classifier. We have also introduced feature engineering strategies in which

adding and concatenating extra discriminative features could help build better clas-

sifiers (feature ensemble). In the feature ensemble models, we have not introduced

weight per feature which could also be a way to improve the performance.

There is also an aspect of ensemble methods in which multiple different models

can be built and calibrated to get better performance. By using multinomial Naive

Bayes, SVM, Multivariate Bernoulli model, and Logistic Regression, an ensemble

example case is built 7. We have also used classifier calibration which makes use of

7https://github.com/agungor2/Authorship_Attribution/blob/master/ensembling_

methods.py

https://github.com/agungor2/Authorship_Attribution/blob/master/ensembling_methods.py
https://github.com/agungor2/Authorship_Attribution/blob/master/ensembling_methods.py
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a cross-validation generator and estimates for each split the model parameter on the

train samples and the calibration of the test samples. The probabilities predicted

for the folds are then averaged. In this setting, we can also define gains per model

to try out different experimentation. The experimentation of 50-author dataset has

decreased on Tf-Idf feature set to 0.432. However, it is expected to improve score when

choosing with the well fitted weights and best parameters for each classifiers.The same

methodology can be implemented on the ensembled feature set to see the performance

change in further studies.

5.5 Defining Sentence Vectors

We have introduced five possible usage cases of word embeddings in different

NLP tasks. Despite the vast implementation growth in word embeddings, it is still

a research topic on how these word vectors can be used to represent a sentence or a

paragraph [38]. For constructing sentence embeddings, naively using averaged word

vectors was recently shown to outperform LSTMs [39], and using CBOW Word2Vec

training objective to train sentence instead of word embeddings have also recently

being studied [38]. In our approaches, we will introduce three ways to represent a

sentence vector.

Paragraph Vector

The idea of paragraph vectors are firstly introduced by Lee and Mikolov [40] as

a continuation of their model of CBOW on Word2Vec. The idea is straightforward:

act as if a paragraph (or document) is just another vector like a word vector, but we

will call it a paragraph vector. This idea has then been implemented with gensim

and sent2vec that is built on top of fasttext [38].

When it comes to applying this methodology to 50-author dataset, due to the size

of our dataset it is computational expensive unless the C library implementation of

Word2Vec has been built and CPU core computation has been allowed. In order to
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create paragraph vectors we can train the training and testing part of our dataset

separately or train them together. Since every text piece has 1000 words defining

paragraph can be possible by dividing the text into small paragraph pieces. For sim-

plicity in our implementation we have defined very 1000 text piece as a paragraph and

trained testing and training separately 8. During the training process of paragraph

vectors it is also possible to manually set the learning rate at each iteration and train

a better model.

Average of Word Embeddings

A sentence vector can also be simply defined as the average of all word vectors in

the sentence. There are also two methods to define a word vector here. One way is

training a Word2Vec model on every 1000 text pieces and recording the word vectors,

then taking the average. This method is a bit controversial since the order of the

words in different sentences vary and it is questionable that the trained word vectors

are good representation of them in vector space. This problem could be addressed

by feeding the pretrained word vectors of Google’s or Glove’s as an embedding to

the neural network. Second method is simply using a pretrained Word2Vec model to

extract each word vectors and use them to define a sentence vector. In our approach

we deployed Glove’s 300 dimensional pretrained model and scaled the Word2Vec when

defining the sentence vectors by dividing them with the squared root sum of all vectors

square 9.

Average of Word2Vec with Tf-Idf

The main difference with the previous case is that we have deployed every Tf-Idf

words measure as a weight before defining the paragraph vectors. Each Word2Vec is

multiplied with their Tf-Idf scores and then scaled the sum of all word vectors. In this

8https://github.com/agungor2/Authorship_Attribution/blob/master/doc2vec_example.py
9https://github.com/agungor2/Authorship_Attribution/blob/master/word2vec_xgb.py

https://github.com/agungor2/Authorship_Attribution/blob/master/doc2vec_example.py
https://github.com/agungor2/Authorship_Attribution/blob/master/word2vec_xgb.py
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approach it gives more gains to the words that are more meaningful in the sentence

vector calculation.

Table 5.3.: Mean F1 Scores for Sentence Vectors

Dataset Setting Classifier F1 Score

50-author Doc2Vec Logistic R. 0.085

50-author Doc2Vec Simple XGB 0.140

50-author Doc2Vec XGB Paramter Tuning 0.150

50-author Doc2Vec SVM 0.090

50-author Average Word2Vec Logistic R. 0.284

50-author Average Word2Vec Simple XGB 0.367

50-author Average Word2Vec XGB Paramter Tuning 0.434

50-author Average Word2Vec SVM 0.371

50-author Average Word2Vec with Tf-Idf Logistic R. 0.302

50-author Average Word2Vec with Tf-Idf Simple XGB 0.384

50-author Average Word2Vec with Tf-Idf XGB Parameter Tuning 0.445

50-author Average Word2Vec with Tf-Idf SVM 0.397

During the experimentation of defined sentence vectors, we have used 300 di-

mensional representation of Word2Vec to represent a feature of a given text. The

experimented results are summarized in Table 5.3. Doc2vec has not performed well

despite of the different adjustments. One of the reasons is that every text piece has

1000 words which makes it a challenging job to represent as a vector. One way to

address this issue could be by splitting every 1000 text piece by 10 fragments and each

fragment is a combination of 100 words which could be a good number to represent

a paragraph. It is possible to take the scaled average of 10 fragments to represent for

each vector. Average Word2Vec has performed better when representing a text piece.
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We can also see a performance boot with parameter tuning for Xgboost from 0.367 to

0.434. By introducing Tf-Idf gains when defining a sentence vector outperformed the

other approaches and it increased mean F1 scores slightly for each case. The way to

improve the scores for defining a sentence vector in average Word2Vec approach could

again be done by dividing the text pieces into small text fragments. Each fragment

can then be concatenated to create a feature set. Another approach to check is to

try out point-wise multiplication or convolution technique with Word2Vec to see if it

improves the overall scoring when defining a paragraph vector.

5.6 Specific Word Usage Score

The common use case of word vectors have been so far aimed at defining a sentence

vector from the pre-trained or newly trained word vectors. In this approach, we

would like to see the usage of some specific words for every author. As described

before, authors prefer to use some specific words such as power words, stop words,

flagging sentiment words like surprise, fear, jovial feelings at a different frequency.

By considering these unique word usage we aim at defining a specific word score. It

is also possible to select random words to analyze. However, for experimentation we

have used power words and stop words.

Figure 5.4.: Word Scoring Model

W2 score =
|d(w1, w3)|

|d(w1, w2)|+ |d(w2, w3)|
(5.7)
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Let’s take a sentence of five words shown in Figure 5.4 and assume w2 is the word

we are trying to give a score measure. We have defined the scoring for window of

3 words by taking the ratio of the distance of words that are surrounding w2 with

distance of w2 to w1 and w3 as in equation 5.7. It is also possible to extend the

word numbers within this range to your choosing. For example, with 5 words window

scoring measure can be defined for w3 as in equation 5.8. The distance measure

between vectors here is cosine distance.

W3 score =
|d(w1, w3)|+ |d(w3, w5)|

|d(w1, w2)|+ |d(w2, w3)|+ |d(w3, w4)|+ |d(w4, w5)|
(5.8)

After defining the word score, we can check distribution of this scoring across all

the text documents in the training set for every author. The t test would tell us how

significant the differences are in these distributions. T test can be done by considering

two settings: one vs one, and one vs all fashion. In one vs one setting, we can compare

the t test result by taking one author from the training set and comparing it with the

rest of the authors one by one. In the second method, we can compare each author

with the remaining all author’s distribution. In each t test we record the p values for

every experimentation. In order to see if this approach is promising we need to do t

test to see how authors use these words different than the others. Figure 5.5 shows

the p values that are smaller than 0.05 for top 20 words. The words that are shown

in white squares are used differently comparing the other authors. These t test have

been implemented on the most common words from word id 9981 to 10000 choosing

20 of them, but one can choose to it on power words or flagging words to see the

usage difference 10.

Now that we know there is a difference of usage in choosing some of the top

common words for each author, we also would like to apply Bhattacharyya distance

to define the author usage. Bhattacharyya distance calculation is provided in equation

5.9. In the equation, p, q are two different distributions, µp is the mean of the p-th

distribution, and σ2
p is the variance of the p-th distribution.

10https://github.com/agungor2/Authorship_Attribution/blob/master/ttest_one_all.m

https://github.com/agungor2/Authorship_Attribution/blob/master/ttest_one_all.m
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Figure 5.5.: One vs Others Most Common 20 Words
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The reason why we do these two tests is to identify the different word choosing

of authors and how these authors have used them. We choose the words in t test

that have p values less than 0.05 or for Bhattacharyya distance we take the indexes

that are greater than the mean value of the Bhattacharyya distance distribution for

authors.

After identifying the words of choosing we calculate the mean and variance of

each words for every author in the training set. When identifying the author for a

text piece in the test data, we find the distribution of word scorings measure for the

words we identify after analyzing with Bhattacharyya distance and t test measure. In

the final stage, we calculate the joint likelihood for every author given the calculated

mean and variance values for every word in the training set. The maximum of the

calculated joint likelihood is being labeled as the author in the testing set. The

testing algorithm for this whole process has been implemented here 11. Pseudo code

11https://github.com/agungor2/Authorship_Attribution/blob/master/Bhat_5word_

distance.m

https://github.com/agungor2/Authorship_Attribution/blob/master/Bhat_5word_distance.m
https://github.com/agungor2/Authorship_Attribution/blob/master/Bhat_5word_distance.m
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of algorithm steps are also provided below for future developments. In order to test

Algorithm 1 Word Scoring Joint Likelihood Algorithm (WSJL)

1: procedure WSJL part1(words, authors)

2: for range(length(words)) do

3: for range(length(authors)) do

4: Calculate word scoring

5: Bhattacharyya distance . Or do t test

6: return Bhattacharyya distance

7: Choose words that are worth investigating

8: procedure WSJL part2(worthy words) . In training set

9: for range(length(authors)) do

10: for range(length(worthy words)) do

11: Calculate word scoring

12: Calculate mean and variance

13: return mean and variance

14: procedure WSJL part3(mean and variance) . In testing set

15: for range(length(testing set)) do

16: for range(length(authors)) do

17: for range(length(worthy words)) do

18: Calculate word scoring

19: Calculate likelihood

20: Label authors with index of maximum joint likelihood

out the performance of this algorithm 50 author dataset has been modified and only

5 author are chosen for this task. These authors are W. Irving, F. H. Burnett, J.

Abbott, J. Payn, O. Optic. The reason why these authors are chosen is because of

their number of text pieces close to each other. In the testing set, there was no class

imbalance or unknown authors.



76

Table 5.4.: Mean F1 Scores for WSJL Algorithm

id Text Number 100 words 200 words 1000 words

J. Payn 3694 0.34 0.28 0.41

o. Optic 3504 0.15 0.28 0.26

F. H. Burnett 3487 0.12 0.10 0.17

W. Irving 3455 0.27 0.26 0.21

J. Abbott 3332 0.06 0.29 0.37

Table 5.4 summarizes the experimentation on this algorithm performance. In the

settings we have tested out for 100, 200, 1000 words. At each setting these words

are chosen from the most common word lists. However, one important note is that

the number of word decreases when selecting worthy words. For example, in the 100

words setting number of worthy words is 40 and in the 200 words it is 132. After

identifying the worthy words among the selected words, we have implemented joint

likelihood. We can see the overall F1 score increase when increased the number of

words that we have selected when defining word scores.

5.7 Unsupervised Feature Learning

There are publicly many algorithms available to learn features from the unla-

beled dataset. However, training such algorithms can be tricky and difficult for some

datasets. It has been found that K-means clustering can be used as a fast alternative

training method [41]. The resulting features performs effective for learning large-scale

representations of images.

In this approach, windows and strides are defined. Windows represent the number

of words chosen for the calculation and strides are the sliding window that next words

are chosen in the given text pieces. Then, we combine all training and testing data
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Algorithm 2 Unsupervised Feature Learning (UFL)

1: procedure UFL part1(window, stride)

2: Combine Training and Testing Set

3: for range(1000/s*length(combined data))-1 do . Divide text piece

4: Calculate sent2vec and create new data . Could use Tf-Idf

5: return new data

6: Normalize new data

7: Find K cluster center points

8: Normalize cluster center points

9: procedure UFL part2(cluster center points) . Both train & test data

10: for range(length(train or test)) do

11: Create new data as in part 1 using w and s

12: for range(length(new data)) do

13: for range(length(K Cluster)) do

14: Calculate distance

15: Set the distance greater than mean to zero

16: Create feature set from the distance and normalize it

17: return feature set

18: Future Set can be normalized again

19: Apply classifier
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together. For every 1000 words text piece, the window is chosen to create a sentence

vector by averaging the Word2Vec of all words in the window. During the calculation

of sentence vectors one can also implement it with using Tf-Idf average. By sliding

through stride numbers a new data is being created. For example, for a 1000 words

text piece by choosing window as 10 and stride as 5 we create 201 new sentence

vectors. This process is done for all 1000 text pieces. Overall number of new data

points with window size 10 and stride size 5 then becomes 18813600. After creating

the new data, we take the row wise normalization of it. By using the vlfeat K-means

clustering algorithm we find the K number of cluster center points. Identified K

cluster center points are then used in training and testing data to find the cluster

distance to the chosen window and stride points. For each data point, the distances

that are greater than the mean distance set to zero. These distances are then used

to train classifiers like SVM.

Using Word2Vec and Google pre-trained word vectors we take w=10 (imagine 10

words make a sentence) and s=5 (strides). Then we create new dataset with all the

points, run vl-kmeans and find out 1000 points, see them as our topics. Then we

check the likelihood of each sentence to be written by these authors.

We have shown the useful representation of sentence vectors from Word2Vec,

especially using with Tf-Idf averaging. In this approach, we can think of dividing

the whole data points into small sentence pieces and identifying clusters (think of

each cluster as a document topic) among these sentence pieces. To implement this

algorithm we have used pre-trained Google vectors to calculate sentence vectors. In

order to see the performance of this algorithm, text pieces are chosen from the works

of W. Irving, F. H. Burnett, J. Abbott, J. Payn, O. Optic and there is no unknown

author in the test data. In this setting, our implementation of Unsupervised feature

learning has performed %92 accuracy by choosing window size as 8 and stride size as 4.

When we also implement window size as 10, stride size as 5, and concatenating these

two features have performed %97 accuracy. In the same experimentation setting, the
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bag of words accuracy has been recorded as %99 12. One of the main reasons why bag

of words and unsupervised feature learning have performed well on the test data is

because of the test and train data split. As noted before, when splitting train and test

data if the book ids are not uniquely distributed then the classification task becomes

an easy job.

Table 5.5.: UFL F1 Score on 50-Author Dataset

Setting K=100 K=1000

W=10, s=5 0.16 0.37

W=20, s=10 0.14 0.31

W=50, s=25 0.12 0.27

Concatenated 0.23 0.38

To further investigate this approach due to its good performance we have imple-

mented on 50-author dataset with keeping the same settings as 45 authors in the

training and 50-author in the testing. In our test set, we have experimented on win-

dow size of 10, 20, 50 with 5, 10, 25 stride numbers. After extracting the features,

we also have concatenated all distances into one feature set and implemented SVM

classifier. Table 5.5 shows the performance of each case scenario. We have concluded

that the small window sizes are good at identifying the number of good features.

Increasing the number of clusters also increase the overall F1 score. However, com-

putational time complexity and overall performance of unsupervised feature learning

is not as good as bag of words.

12https://github.com/agungor2/Authorship_Attribution/blob/master/Unsupervised_

feature_learning.m

https://github.com/agungor2/Authorship_Attribution/blob/master/Unsupervised_feature_learning.m
https://github.com/agungor2/Authorship_Attribution/blob/master/Unsupervised_feature_learning.m
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5.8 Inversion with Word Embeddings

Distributed language models that map words to vector space are rich in informa-

tion about word choice and composition. Using the Bayes rule, a distributed language

model can be turned into a probability model. The application of this approach has

been studied on Yelp review dataset to do text classification [42]. The dataset consists

of reviews that are rated from 1 to 5 and there are over 2 million sentences. Inversion

method has been noted to perform as well as or better than complex purpose-built

algorithms [42].

The steps of the algorithm consist of training profile based Word2Vec model for

every author in the training set and creating a probability score for text pieces in

the testing set per author. Then, by choosing the maximum likelihood we iden-

tify the author of the given text. To apply Bayes rule to go from P (text|authors)

to P (authors|text) we make use of gensim score model. In the implementation of

Word2Vec score model, a binary Huffman tree is employed to calculate each word

probability [42]. The measurement steps are provided below.

Algorithm 3 Inversion Word2vec (IW)

1: procedure IW

2: for range(Unique(Authors)) do . Author wise Train

3: Calculate Word2Vec on training set

4: for range(test data) do

5: Measure P (authors|text)

6: return P (authors|text)

7: P (authors|text) to 0-1 range

8: Pick the highest likelihood

There is one thing about the size of our data that might cause a problem when

calculating P (authors|text). Since each text piece consists of 1000 words, overall

probability of an author having to write that sentence would go down drastically.
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One way to address this problem is again by using window and stride methodology.

By defining different length of window and strides we can obtain probability for each

window and by summing log of all the probabilities in the divided text piece we can

redefine a probability measure for all authors.It is also possible to train document

vectors for every author and get a probability score for every author, too [40].

We have implemented this methodology on 50-author dataset 13. In the experi-

mentation, we have defined window=1000, stride=500, and window=500, stride=250.

In the first experimentation measured F1 score is recorded as 0.13 and in the second

is 0.12 respectively. The simplicity of the approach makes it easier to apply to our

dataset but the scale of our text piece is big enough to introduce noises when doing

experimentation hence the reason why it performs low.

Another simple way to test out document vectors for identifying the author of a

text in the testing data can be done by employing the document vectors that are being

trained in 5.5 and creating cluster center points by simply choosing the average of

paragraph vectors in the training data per author and looking up the cosine distance

of each instance in the testing set to every author. In the final stage, we can label

the text piece to the closest author. This simple approach gives a good starting

accuracy measure on 50-author dataset based on our experimentation. In order to

further improve this methodology, one way is to create multiple center points in every

authors and do the same distance measure among all authors.

13https://github.com/agungor2/Authorship_Attribution/blob/master/inversion_

word2vec.py

https://github.com/agungor2/Authorship_Attribution/blob/master/inversion_word2vec.py
https://github.com/agungor2/Authorship_Attribution/blob/master/inversion_word2vec.py
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6. SUMMARY

From the traditional NLP methods to sophisticated ones using Word2Vec in author-

ship attribution problems have been introduced. In the first chapter, an extended

literature review with previously studied methodologies are introduced. In the sec-

ond chapter, to create a knowledge base and inspire new ideas to rise, NLP tasks with

available NLP toolboxes are introduced by providing multiple examples. These NLP

tasks are crucial steps to start analyzing a text document. In the third chapter, a

detailed information regarding the used datasets is given. In the next chapter, feature

extractions strategies that are categorized as lexical, character, syntactic, semantic

and application specific have been explicitly implemented on both of the datasets and

the source code is available for future development. The fifth chapter analyzes these

features on different classification experiment settings. Some novel approaches using

Word2Vec is also introduced to lay the groundwork on this set of problems.

One of the main objects in this work was to create author signature using the

common used words with publicly available pretrained word vectors. The several

attempts we have tried by word vector averaging, paragraph vector creating, specific

word usage score, unsupervised feature learning from word vectors, word2vec inversion

have been around this objective. These new techniques in authorship attribution have

not outperformed the usage of traditional methods such as bag of words, n-grams,

or other author specific features. The strong power of SVM and simple bag of words

with stacked features out performed all other experimentations leading the highest

score. However, there is still room for further development on the methodologies

introduced. Hence it is the reason why, feature extraction methods and analyzing

them have been made publicly available to allow new researchers to pick up where

we have left off.
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The methodologies introduced in this work have also been around the idea of

creating the largest available Authorship Attribution data set for researchers and

testing out the various methodologies to create a benchmarking strategies. Feature

extraction techniques and author signature models introduced here can be applied in

different datasets and text mining domains as well.
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7. RECOMMENDATIONS

We have introduced several methods to tackle authorship attribution problems. How-

ever, there are several other techniques that still wait to implement on 50-author

dataset or other available ones. One of the possible future directions of this workload

is the applications of neural network on our dataset. CNN has been simply imple-

mented on dataset without stop words, but due to the computation time we have

not further investigated. To proceed with Deep Learning methods, useful features

introduced in this work can be easily implemented by stacking them and decreasing

the feature dimensionality to give as an input to simple convolutional neural net-

work or an LSTM. The way to implement such neural network algorithms are also

introduced. Another take off point of this dataset is to implement Markov Models

on word and character level. We have introduced the simple Markov model imple-

mentation on our dataset but to further improve the performance of this method,

conditional distributions of characters and words need to be stored and redone the

experimentation.

One major advantage of our dataset is the large number of books that are available

to reproduce. The text pieces given can be used to recombine the books together to

apply in different domains such as topic modeling or sentiment analysis per author.

It is also possible to create one’s own dataset using the provided resources depending

on the application. Some of the suggested tasks are twitter author classification,

Bitcoin founder identification, and applications of authorship attribution in Forensic

science. The problems with Bitcoin founder is that it is still anonymous and there

are possible candidates in the web. These are Nick Szabo, Hal Finney, Adam Back,

Wei Dai, Craig Wright. These are real personalities and have available large texts

on their own forums. By scrapping the writings of these suspects one can create a

dataset to follow up the steps we introduced and compare their writing styles with
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the unknown founder of Bitcoin. There are also publicly unsolved cases that can be

turned into a authorship attribution problems. The robust and fast methodologies

can be implemented in suspect detection for law officers.

Last but not least, one problem we introduce in our dataset is the unknown

authors that makes % 34 of testing set. Non-exhaustive learning techniques have

not yet been studied on this dataset and using the best features we defined one can

further investigate into Bayesian non-exhaustive learning methods as in [43].
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