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ABSTRACT

Rangwala, Mohammed M. M.S., Purdue University, May 2014. Secure Digital Prove-
nance: Challenges and a New Design. Major Professor: Xukai Zou.

Derived from the field of art curation, digital provenance is an unforgeable record

of a digital object’s chain of successive custody and sequence of operations performed

on the object. It plays an important role in accessing the trustworthiness of the object,

verifying its reliability and conducting audit trails of its lineage. Digital provenance

forms an immutable directed acyclic graph (DAG) structure. Since history of an

object cannot be changed, once a provenance chain has been created it must be

protected in order to guarantee its reliability. Provenance can face attacks against

the integrity of records and the confidentiality of user information, making security an

important trait required for digital provenance. The digital object and its associated

provenance can have different security requirements, and this makes the security of

provenance different from that of traditional data.

Research on digital provenance has primarily focused on provenance generation,

storage and management frameworks in different fields. Security of digital provenance

has also gained attention in recent years, particularly as more and more data is mi-

grated in cloud environments which are distributed and are not under the complete

control of data owners. However, there still lacks a viable secure digital provenance

scheme which can provide comprehensive security for digital provenance, particu-

larly for generic and dynamic ones. In this work, we address two important aspects

of secure digital provenance that have not been investigated thoroughly in existing

works: 1) capturing the DAG structure of provenance and 2) supporting dynamic

information sharing. We propose a scheme that uses signature-based mutual agree-

ments between successive users to clearly delineate the transition of responsibility of
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the digital object as it is passed along the chain of users. In addition to preserving the

properties of confidentiality, immutability and availability for a digital provenance

chain, it supports the representation of DAG structures of provenance. Our scheme

supports dynamic information sharing scenarios where the sequence of users who have

custody of the document is not predetermined. Security analysis and empirical re-

sults indicate that our scheme improves the security of the typical secure provenance

schemes with comparable performance.
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1 INTRODUCTION

In this chapter, we give a brief introduction about digital provenance and our work

in this thesis.

1.1 What is Digital Provenance?

Provenance refers to the origin or earliest known history information of an object.

The concept of provenance originates from the field of art and archiving, where it

refers to information about the artifact’s creation, the chain of custody and modifi-

cations performed on it. It has been an important concept in many fields other than

art, like science and computing where it is used to trace an object to its origin. It is

used in work-flow management systems and processes in physics, astronomy, biology,

chemical sciences, earth sciences for maintaining context information, auditing and

data replication [1]. It finds applications for intelligent re-use of experiments, fault

detection, protection against illegitimate intellectual property claims, detecting pla-

giarism and identity fraud, and assessments of data quality [2]. Depending on the

application domain, different properties of the object can be tracked such as owner

information, purpose of its creation, processes undergone, state of the object or ma-

terial at each stage, etc. Since provenance maintains information about the present

and past of an object, it is suitable to assess the object’s trustworthiness [3].

Digital provenance is the provenance associated with digital objects which can be

resources in hardware, software, documents, databases and other entities. It main-

tains information about the chain of successive custody of the object with different

users and the sequence of operations performed on it. It can store functional data such

as the process results as well as non-functional data such as the performance of each
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step. Most computer systems track information for error correction and debugging,

as discussed in [4], such as:

i) Operating systems store logs of important system events which help in system

administration and intrusion detection.

ii) File systems store information about file creation, modifications performed, per-

missions to the file, etc.

iii) Version Control Systems record information about the modifications made to

different objects.

iv) Web browsers store history information about the web pages visited and when.

These can be considered as different forms of provenance information, which are

application specific. However, each of these systems does not provide a definition for

provenance.

Digital Provenance finds applications in a number of areas [5]. Some of them are:

i) Verification of scientific data and experiments [6–14];

ii) Supporting or facilitating data sharing [15–18];

iii) Copyright clearance [19];

iv) Legal proceedings involving data [20];

v) Tracking operations on data in cloud environments [21–23];

vi) Recently in facilitating data mining [24]; tracing system activities in Android

devices [25]; stream management [26,27];

Provenance systems are specially designed application-specific frameworks used

to collect, analyze and store all metadata information of an object. They can then be

queried to obtain the history information, perform audits and validation checks and

detect faults. Research in provenance has focused on developing such frameworks for
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a variety of systems like work-flow management, grid computing, file systems, cloud

systems. We mention some of these in Chapter 3.

Digital provenance introduces some challenges with respect to its definition, man-

agement and security [4]. Some of these challenges are:

i) Completeness: Since provenance contains history information, it is necessary to

define how much recorded information is considered to be enough. Depending

on the application, it maybe necessary to record the output of each individual

operation performed on the object. This is important because completeness of

the provenance will define the complexity of a provenance system.

ii) Reliability: Provenance must be reliable since it finds applications in fault detec-

tion, identity theft and plagiarism detection, etc. It is necessary for the prove-

nance to be secure against any kind of tampering after it has been created.

iii) Heterogeneity: A digital object can undergo several operations that may pro-

duce different meta-data information. It may also be recorded at different levels

of granularity. Thus, provenance can contain heterogeneous information which

introduces the challenge of uniform consistent representation.

iv) Portability: Since provenance is associated with a digital object, it must be

bound to it. As the object moves in the system, its provenance must move along

with it. This requires the provenance to support portability in the system.

v) Dynamic nature: Different users may operate on the digital object at different

points in its lifetime. In a distributed information network or wireless sensor

network, the sequence of nodes through which the object passes is predetermined

(to a certain extent). But in different scenarios, it may be possible that the

sequence is dynamic. The structure of the provenance and the provenance system

itself must be able to support this.

Provenance can be represented as a causality graph that connects different objects

with edges that describe the process by which the object transformation took place
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[28]. This forms an immutable directed acyclic graph (DAG) structure. Although an

object keeps changing with operations performed on it, its history information does

not and so, provenance is immutable. The DAG structure is justified since an object

can be copied to multiple instances (or provided as input to multiple processes) and it

can be created from a combination of objects (or from outputs of multiple processes).

In a graph, these cases represent a node having multiple children or multiple parents

respectively. Since history inforamtion does not repeat, the graph does not have any

cycles. There is no established standard for representing provenance information,

but XML is most popularly used [1]. The existing limited security mechanisms for

provenance do not appropriately apply to DAG structures.

Depending on the application domain, provenance can be more or less sensitive

than the data object itself. For e.g., in an employee review system, the sequence

of managers who have added to the review must not be disclosed to the employee.

Thus, the ownership information in the provenance chain in such a scenario must

be kept confidential. Here, the provenance is more sensitive than the document it

is associated with. Consider another example of a professor’s recommendation for a

student’s university application. The recommendation document itself needs to be

kept confidential from the student, but the provenance containing the information of

the professor(s) can be disclosed. In such a scenario, the document is more sensitive

than its provenance. Apart from this, like other information security subjects, digital

provenance requires integrity and availability, along with suitable and efficient repre-

sentation. In this respect, the security requirements of provenance differ from those of

traditional data [28]. Thus, a general scheme for secure provenance is needed, which

can be modified depending on the application scenario.

Recent research in provenance has focused on developing provenance generation,

storage and management frameworks in different fields but limited work has focused

on the security and privacy issues related to it. We recognize that two aspects have

not gained enough attention: 1) capturing the DAG structure of provenance and 2)

supporting dynamic information sharing. In this work, we propose a scheme that uses
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signature-based mutual agreements between successive users to secure the provenance

chain. It is an interactive protocol that clearly delineates the transition of responsibil-

ity of the digital object as it is passed along the chain of users. A related provenance

scheme was proposed by Hasan et. al. [29]. This scheme is referred to by Wang et.

al. [30] as the Onion scheme due to its layered provenance format. They showed that

the Onion scheme has certain weaknesses and proposed a linked chain structure of

provenance using public keys. This scheme is referred to as the Public-Key Linked

Chain (PKLC ) scheme [30]. The PKLC scheme works well for distributed informa-

tion systems but cannot handle all the properties required in other digital systems.

Our solution extends their work and solves the problems associated with it.

1.2 Main Contributions of this thesis

The contributions of our work can be summarized as:

• A signature-based mutual agreement scheme is proposed to form links between

provenance records. Our scheme provides better security than the Onion scheme

[29], and, is an extension and improvement over the PKLC [30] scheme to

provide secure provenance in digital systems other than distributed information

networks.

• Our scheme can adequately support the representation of DAG structures of

provenance.

• It can also support dynamic information sharing scenarios where the next user

to whom the data will be passed is not predetermined. A summary of the

advantages of our scheme is provided in Table 4.1.

• An analysis of the security of our scheme is provided to show that it satisfies

the security requirements of a provenance scheme.

• Experimental evaluations are provided for the overhead of our scheme. The

overhead of our scheme for provenance record creation is a little more than the
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other schemes but we argue that it can be outweighed by the security provided

by our scheme. The results show that it performs better than the Onion scheme

for provenance chain verification.

1.3 Organization of this thesis

The rest of this thesis is organized as follows. In Chapter 2, we discuss the

fundamental concepts involved in a provenance scheme, the important properties

required for its security and an attack model that must be considered. We highlight

the previous proposed mechanisms in Chapter 3. Chapter 4 describes our mutual

agreement signature scheme, along with an example and discusses its properties. We

analyze the security of our scheme with respect to the attack model in Chapter 5.

Performance evaluation and comparison with existing schemes is provided in Chapter

6. Chapter 7 talks about future work and concludes the thesis.
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2 PRELIMINARIES FOR A SECURE PROVENANCE SCHEME

In this chapter we describe and provide definitions for some fundamental concepts

related to digital provenance. We discuss the different entities involved in a secure

provenance scheme; the security properties required from it; and a general attack

model for building a secure provenance scheme.

2.1 Entities involved

A document D is a data item such as a file, database tuple or network packet for

which provenance is to be generated and maintained. In this work we use the term

document abstractly; its exact form is domain and application-specific.

Provenance of a digital document is an account of all the actions performed on it

right from the point of creation. Each access to the document can create a provenance

record Pr ; multiple such records are maintained in order as a provenance chain

Pr1|Pr2|. . . |Prn. Provenance of a document forms a directed acyclic graph (DAG)

structure [28]. We refer to the provenance of the document as a ‘chain’ in this work

because records are arranged sequentially, but they may not be linearly linked to each

other. A provenance record stores in it an account of the operations performed by a

user on the document, and relevant information that help maintain links between the

different records that are part of the chain.

Users are the entities who have or have had custody of the document. They may

perform operations on the documents, e.g. create, rename, read, write, delete in the

case of a file system. The user who first creates the document and is associated with

the first record of the provenance chain is referred to as the owner of the provenance.

This is different from the current owner of the document. In this work we refer to

owner as the owner of the provenance chain.
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An auditor is an entity who can check all provenance information to verify the

lineage of a document. An auditor performs an auditing activity, which involves

traversing the provenance records in the chain and checking their fields to ensure that

the chain has not been tampered with. Different users may trust different auditors

with sensitive information, thus, a document has a set of auditors who can access

different sensitive fields in the records.

Outsiders are entities who do not have access to the documents, and subsequently

should not have access to any part of its provenance.

An adversary has access to the provenance and wants to alter it in some way

for malicious intents but remain undetected. An adversary may be a user who has

already contributed to the provenance chain or an outsider.

2.2 Properties of a provenance scheme

After discussing the fundamental entities, we discuss the properties that a scheme

must provide for the provenance data. Groth et. al. [31] identified a set of properties

that any provenance system must provide. We list them here:

i) Verifiability: The provenance scheme must be able to verify a process with respect

to the users involved, operations performed and results obtained.

ii) Accountability: The scheme must hold the user accountable for his/her actions,

i.e. a user should not be able to repudiate any actions.

iii) Reproducibility: The provenance should contain enough information for it to be

possible to reproduce the same results if the sequence of operations recorded is

re-executed.

iv) Preservation: Since provenance contains history information, it must be main-

tained for a sufficiently long period of time.

v) Scalability: For large scale applications, a large amount of provenance data may

be generated which requires the scheme to be scalable.
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vi) Generality: It is possible for a wide variety of meta-data to be generated from

an application and the provenance scheme should be general enough to be able

to capture them.

vii) Customizability: The scheme must allow customization to be able to record any

application-specific details at different levels of granularity.

viii) Portability: Provenance is associated with a digital object, and there must be a

mechanism to ensure that they cannot be separated. Along with this, the scheme

must allow the provenance to move in the system when the data moves.

We now discuss the properties that a scheme must provide for securing the prove-

nance chain which are more related to our work. These are extended from the fun-

damental general properties of data security. We mention the properties here to get

an understanding of the security required for a provenance chain and discuss how our

scheme achieves them in Section 4.3.

Confidentiality: A provenance record may contain sensitive information regard-

ing the operations performed on the document as well as its ownership history that

should not be revealed to unauthorized entities. The sensitivity of these fields is do-

main and application-specific. For e.g., in an employee review system, the sequence

of managers who have added to the review must not be disclosed to the employee.

Thus, the ownership information in the provenance chain in such a scenario must be

kept confidential. This is different from the confidentiality of the document itself.

Thus, provenance and the document may have different confidentiality requirements.

The properties that are required are:

i) An auditor should be able to verify the complete lineage of the document, without

access to the sensitive information in the records.

ii) Since different users may trust different auditors, the sensitive information may

not be revealed to all auditors.
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Integrity: Since provenance contains history information which is immutable,

integrity of the provenance is the most important property that a scheme must satisfy.

There are three types of integrity associated with provenance [30]:

i) Immutability (Chain Integrity): The provenance chain once formed should not

be modifiable, i.e. the order of the records cannot be changed.

ii) Data Integrity: The information in the individual provenance records should not

be tampered with.

iii) Non-repudiation (Origin Integrity): A user’s action in the chain cannot be un-

done, i.e. the user cannot repudiate his actions.

Availability: Provenance is associated with a document and when it is passed

between users, the provenance chain is passed along with it. The scheme must ensure

that when the document is passed between users, the chain remains intact and is not

modified without being detected in the auditing activity.

Efficiency: Depending on the application domain, the provenance generation

process and scheme participates either when operations are being performed on the

document (when outputs of individual operations must be recorded) or after all op-

erations have been performed. In both cases, the provenance scheme adds a compu-

tational overhead on the application. The scheme must be designed such that the

overhead is not significant.

As seen in this discussion, the representation and properties of provenance can

be different can be different from those of the document it is associated with. Each

individual provenance record can have different confidentiality requirements, whereas

the integrity and availability of all records in the chain must be protected as the

chain grows. This introduces new challenges in the security of provenance, making it

different from the security of traditional data.
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2.3 Attack Model

Here we briefly discuss some of the goals of the adversary in a digital provenance

scheme similar to discussions in [29, 30]. A detailed analysis of attacks and their

prevention in our scheme is discussed in Chapter 5. A provenance scheme must

consider an adversary with the intentions of,

i) obtaining confidential information from the provenance records about the oper-

ations performed on the document;

ii) obtaining information about the ownership history of the document;

iii) using fake or stolen key-pairs to make their own provenance records un-verifiable;

iv) modifying existing records (tampering or changing order of records) or adding

forged information to the existing provenance chain;

v) selectively removing a certain part of the preceding provenance chain.

Our scheme should be designed such that these goals are either prevented or made

detectable to an auditor in the auditing activity.

These preliminaries lay the foundation for understanding the existing work done

in secure digital provenance (Chapter 3) as well as our scheme (Chapter 4).
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3 BACKGROUND & RELATED WORKS

Before discussing our scheme in detail, we discuss some of the research that has been

conducted with respect to the security of digital provenance and give an insight into

the motivation for our work.

Research has been done to develop conceptual frameworks and models for prove-

nance management [11, 13, 14, 31–42]; to identify the security requirements of prove-

nance systems [4, 5, 43] and provenance management and data forensics in cloud en-

vironments [21–23,44–47].

Hasan et. al. [20] were among the first to propose the concept of secure provenance.

Although provenance had been studied in many applications and fields, they identified

that the security issues had not been considered. They defined the properties required

from a secure provenance scheme along with a threat model and challenges. Braun

et. al. [28, 48] discussed some of the essential characteristics of provenance and how

it is different from other data in terms of security. They were among the first to

recognize that the provenance graph is a directed acyclic graph (DAG) structure to

which traditional security measures cannot be directly applied.

Kairos [2] is an architecture for securing the data authorship and temporal in-

formation in provenance records suited for work-flow-based grid computing environ-

ments. It uses techniques from public key infrastructure (PKI) such as certificate

authorities, digital signatures and time stamping protocols to protect provenance

records. Kairos has a centralized architecture involving a certificate authority and a

time stamp authority, which in combination are responsible for time stamping and

signing a provenance record for user of the grid application. The architecture aims

at protecting the provenance record but does not give details about the structure of

the record itself.
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Sultana et. al. [49, 50] proposed a lightweight method for detecting provenance

forgery in wireless sensor networks. Since such systems are power and memory con-

strained it is necessary for the provenance management to be efficient in storage

and transmission and not be computation intensive. In this scheme, they use bloom

filters to encode provenance information to be able to detect packet drop attacks.

Sultana et. al. also proposed a method to securely transmit provenance information

in streaming media [27]. Though these works are not directly related, they consider

some of the characteristics of confidentiality and integrity preservation required by

our scheme.

Alharbi et. al. [51] proposed a privacy-preserving data provenance scheme to

ensure the security of provenance for documents on remote servers. The main focus

of the scheme is to preserve the privacy of the users through the use of hash chains and

group signature techniques, and employs the use of a trusted authority and trusted

servers. Our scheme makes use of only a trusted auditor but is not focused at remote

document operations.

3.1 The Onion scheme

The Onion scheme [29, 52] is closely related to our work. In this section, we give

a brief overview of this scheme and discuss its shortcomings.

3.1.1 Overview of the scheme

The Onion scheme was the first to define a concrete structure of a provenance

record. Each individual provenance record in a chain of records has the following

structure:

Pri = < Ui, Oi, h(Di), Ci, publici, Ii >

We limit our discussion of the fields of the records in this chapter, since they will be

elaborated in Chapter 4 when we discuss our scheme. Here, U contains the user’s
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information, O is a representation of the operations performed on the document, h(D)

is the hash of the document, C is the checksum of the record, public stores a public

key certificate of the user and I contains keying material. Multiple such records

arranged sequentially form the provenance chain. The checksum field also contains

the checksum of the previous record in the chain and this makes it an incremental

chained signature mechanism. Each record uses the checksum signature over the

previous record’s signature to preserve the integrity of the complete chain. Since

the checksum field is layered, it gives the chain an onion-like structure [30]. The U

and O fields may contain sensitive information. They can be kept confidential using

symmetric keys with auditors, which are stored in I.

3.1.2 Problems with the scheme

The Onion scheme has certain weaknesses [30]. First, it cannot protect the out-

ermost layers of the provenance chain, i.e. the newest records. An insider attacker

can easily extract a prefix of the complete chain, sign over the signature of the last

record in the extracted chain and insert a new record. The flaw comes from the fact

that this scheme is not based on a hand-off mechanism when the document is passed

between users. Consecutive records in the chain are loosely linked to each other.

Second, the scheme requires the trusted auditor(s) to maintain user-key relation-

ship which violates the confidentiality of the users. Our scheme involves a ChainInfo

field in the provenance record, which sequentially stores the public keys of all users

involved in the preceding chain. This field provides the keys necessary to perform the

operations with the records, but does not reveal any identity information of the users

even to the trusted auditor(s).

Also, the scheme cannot support the DAG structure of provenance. It is restricted

to the scenario of a single document being passed along a chain of users. Our scheme

overcomes these weaknesses by introducing a mutual agreement mechanism, when the

document is passed between users, which creates strong links between their prove-
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nance records. It also uses multiple fields for signatures to handle the case of multiple

parents or children in a DAG structure.

3.1.3 Scheme related to the Onion scheme

Syalim et. al. [53] proposed a scheme based on the Onion scheme. In this scheme,

every document and its provenance passed between users is signed by the previous

user as well as the owner of the provenance to preserve the integrity of the chain.

They define a path-based policy as well as a compartment policy for providing access

control on the provenance graph structure. The provenance records are encrypted

using multiple keys that are handled by the provenance owner.

The shortcoming of this scheme is that it makes use of the involvement of the

provenance owner to satisfy the properties of the system. This heavy involvement

of the owner at each step of the provenance scheme is undesirable. This is avoided

in our scheme, through a mutual agreement mechanism between only the users who

are involved in passing the document at a particular time. Also, a large number of

encryption and signature operations are performed which make the scheme inefficient.

3.2 The PKLC Scheme

The Public-Key Linked Chain (PKLC) scheme [30] is most closely related to our

work. We give a brief discussion of this scheme.

3.2.1 Overview of the scheme

The PKLC scheme [30] is based on advancements to the Onion scheme applied

to a distributed information network. It uses a record format similar to that of the

Onion scheme, and has the following structure:

Pri = < Ui, Oi, h(Di), Si, PubKeyi, Ci >
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Though the fields of the PKLC scheme are originally named differently, here we use

the same notations as those of the Onion scheme for convenience. The structure is

suited for distributed information networks or wireless sensor networks. U is similar

to that of the Onion scheme where it stores information about the node performing

operation on the document. O contains information of every individual operation that

is performed on the document by the same node. h(D) is the hash of the document and

S, similar to the I field stores symmetric keys used to encrypt sensitive information.

C contains the signature of the node over the complete record. The scheme differs in

the manner in which it links records of the chain. A record can contain the previous

and next user’s public keys in the PubKey field to link the records.

3.2.2 Problems with the scheme

The links between the records are weak since they are formed with only the public

keys of the users. This scheme is suitable for distributed information or wireless sensor

networks where each user initially knows the identity of the next user to which the

document passes. In such a scenario, the weak links are enough to preserve the

integrity of the chain. The auditors know the path of information flow among users

and can thus verify the chain of records. But this cannot be applied directly to

dynamic information sharing scenarios where the next user is not predetermined.

Our scheme builds on this drawback of the PKLC scheme. It does not require the

identity of the next user to be known, but ensures the integrity by having the users

engage in a mutual agreement scheme at the moment when the document is passed

between them.

To denote the owner of the provenance chain, the first record contains the public

key of the owner in the previous field as well. If applied to a general scenario, it is

susceptible to an owner forgery attack. An adversary can remove the records of the

chain and claim to be the owner by creating a record with his/her own public key

in the previous field. Thus, a stronger mechanism is required for representing and
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distinguishing the owner of the provenance from other users. Our scheme handles

this by involving the auditor.

We have now laid the foundation for a secure provenance scheme and discussed

previously proposed provenance schemes along with their shortcomings. We now

discuss our proposed design in the next chapter.
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4 MUTUAL AGREEMENT SIGNATURE SCHEME

In this section we present our scheme for secure digital provenance.

4.1 Assumptions of our scheme

Before we discuss our scheme in detail, we mention our assumptions.

i) Our scheme considers only the format of the provenance records and chain. It

does not focus on the storage and maintenance of the chain. Storage systems

such as PASS [33], Flogger [35] can be used for this purpose.

ii) The provenance generation and storing mechanism is not compromised. Our

scheme focuses on securing the provenance from attacks after it has been created

and stored securely.

iii) The keys used for signatures and encrypting the fields are never compromised or

revoked.

iv) The document and its provenance are inseparable, i.e. when a document is

passed, the provenance chain is also passed with it. This must be maintained by

the provenance storing mechanism.

v) Our scheme relies on transitive trust defined in [30]. That is, pairs of users

involved in the document passing trust each other. Thus, we assume that con-

secutive pairs of users do not collude.

4.2 Structure of provenance record and chain

The provenance chain is composed of a sequence of individual provenance records.

Each record stores fields that contain information about the user, operations per-
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formed, chain of custody of the document thus far, and a representation of the pre-

vious and next users in the chain. It has the following structure:

Pri = <Ui, Oi, h(Di), ChainInfoi, S∗i , Ci, P+
i , N∗i>

Figure 4.1 gives a representation of the structure of the the provenance chain and

each individual provenance record for the scheme. Each of the fields of a record is

explained as follows.

Ui contains identity information about the user i who creates this provenance record.

This information is specific to an application domain. For a file system prove-

nance record, Ui includes user ID, process ID, ipaddress, port, host, time, and

so on.

Oi gives a representation of the sequence of operations or modifications performed on

the document by user i. This is also dependent on the application domain. For

the file system provenance record, Oi includes a file diff, log of changes or oper-

ations, or any other reversible representation [29]. It can also contain subfields

for representing the operations performed by different processes under the same

user as in [30]. Oi contains a reversible representation of the operations if the

application domain supports it. By reversible we mean that given document Di

and Oi, it is possible to obtain Di−1.

Ui and Oi contain information about the identity of the user and the operations

performed, which may be sensitive to the application. They may be encrypted, in

which case the Si is used.

h(Di) is the cryptographic hash of the contents of the document Di after user i

performs all operations. A hash function is a one way function that is almost

always unique for different documents. As the document is modified along the

chain, a hash in each record uniquely represents the state of the document at

that instant.
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ChainInfoi is a representation of the chain of custody of the document tracked

from its origin. It is a sequence of the public keys of all users involved with this

document from the owner of the document U1 to the current user Ui represented

as KAud|K1|K2|. . . |Ki. KAud is the public key of the auditor, who must begin

the provenance chain. The purpose of KAud will become clear in the further

discussion.

S∗i stores symmetric keys that may be used to encrypt the sensitive Ui and Oi fields.

We adopt the broadcast encryption scheme of [29] to regulate the access for

different auditors. Instead of creating multiple encrypted versions of the sen-

sitive fields for each auditor, user i encrypts them with a symmetric key Ks,

and then stores copies of Ks encrypted with the keys KAudj of the respective

auditors. The ∗ indicates there may be zero or more symmetric keys depending

on whether encryption is required and the number of auditors user i trusts.

Ci is the digital signature over the fields of the same record i signed by the user Ui

with key K−i , represented as:

Ci = signi(Ui, Oi, h(Di), Si)

Since the private key is confidential to a user, assuming it is not stolen, it

is not possible to forge the signature of user i. The signature over the fields

< Ui, Oi, h(Di), Si > ensures the integrity of the record.

P+
i is the previous digital signature field which is a representation of the previous

provenance record in the chain. The + indicates there may be more than one

previous provenance record from different provenance chains. For the first user

U1 in the provenance chain, this field is signed by the auditor with key K−Aud.

N∗i is the next digital signature field which is a representation of the subsequent

provenance record in the chain. The ∗ indicates there may be zero or more

subsequent provenance record for a split into different provenance chains.
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Ui Oi h(Di) Si NiPiCiChainInfoi

Provenance Record

user ID
process ID
IPaddress

Port
Host
Time

KAud | K1 | K2 | … | Ki

Pr1 Pr2

U1 U2 Ui Un-1 Un

Provenance Chain

Prn-1 PrnPri

Figure 4.1. An illustration of the structure of provenance

The P+ and N∗ fields are crucial for linking the different provenance records into

a chain and for easing the verification process. They form the basis for the mutual

agreement scheme. These fields are explained as:

For record i :

Pi = signi−1(h(Di−1), ChainInfoi−1|Ki, Ci−1)

Ni = signi+1(h(Di), ChainInfoi|Ki+1, Ci)

For record i+1 :

Pi+1 = signi(h(Di), ChainInfoi|Ki+1, Ci)

Ni+1 = signi+2(h(Di+1), ChainInfoi+1|Ki+2, Ci+1)

It can be seen that the N field of record i is signed by user Ui+1. The P field

of record i+1 is signed by user Ui. User Ui after creating provenance record Pri

passes the document to the user Ui+1 who can then create the record Pri+1. An



22

Algorithm 1 Provenance record creation steps

1: User i creates record Pri:

2: Pri =< Ui, Oi, h(Di), ChainInfoi, S
∗
i , Ci, P

+
i , N

∗
i >

3: if i = 1 then . User 1 is the creator of the document

4: U1 ← eS1(User 1 Information)

5: O1 ← φ . U1 is the creator of the document

6: h(D1)← Hash of document created D1

7: ChainInfo1 ← KAud|K1

8: S1 ← eAud(KS1) . Multiple for different auditors

9: P1 ← signAud(IV,KAud|K1, C1) . Auditor creates unique IV for this

document

10: N1 ← φ

11: C1 ← sign1(U1, O1, h(D1), S1)

12: else . User i gets the document from user i-1

13: ChainInfoi ← ChainInfoi−1|Ki

14: Pi ← signi−1(h(Di−1), ChainInfoi, Ci−1)

15: Ni−1 ← signi(h(Di−1), ChainInfoi, Ci−1)

16: User i modifies document Di−1 to Di

17: Ui ← eSi
(User i Information)

18: Oi ← eSi
(Operations performed)

19: h(Di)← Hash of modified document Di

20: Si ← eAud(KSi
) . Multiple for different auditors

21: Ni ← φ

22: Ci ← signi(Ui, Oi, h(Di), Si)

23: end if
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Figure 4.2. Flowchart of a user’s actions for creating a provenance record

agreement is signed by both users, such that the record Pri contains the signature of

Ui+1 and Pri+1 contains the signature of Ui. As can be seen, the fields Ni and Pi+1

hold signatures over the same data which is the agreement between the users. The

agreement between users Ui and Ui+1 consists of the fields:

<h(Di), ChainInfoi|Ki+1, Ci>
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It indicates that the user Ui passes a document having hash h(Di) to Ui+1, the

sequence of users in the history of the document including Ui+1 is ChainInfoi|Ki+1,

and Ci is the representation of the actions performed by h(Di). The agreement is

an interactive hand-off mechanism where user Ui passes the document to user Ui+1

and claims to have passed the provenance intact. It delineates the transition of

responsibility of the document from user Ui to Ui+1.

The previous field for the first user in the provenance chain is signed by the auditor

with key KAud and contains an initialization vector IV in the hash field which is known

to the auditor. This IV is unique for each provenance chain. The purpose of IV and

the P1 field signed by the auditor is to prevent an owner forgery attack which is

discussed in detail in Chapter 5. IV is a place filler for the hash field, but is not

required.

The steps followed by a user for creating a provenance record are described in

Algorithm 1. It can be seen that the provenance record is constructed incrementally,

the fields are created at each step when the user obtains the document, performs

operations and passes it to the next user. Figure 4.2 shows a flowchart of the steps

followed by a user for creating a provenance record. The user follows different courses

of actions depending on whether he/she is creating the document, or is obtaining the

document from another user. As can be seen, in both cases a mutual agreement takes

place either with the auditor (if the user creates the document) or with the previous

user (when the user receives the document).

4.3 Properties satisfied by our scheme

We briefly analyze our scheme for the properties discussed in Section 2.2.

Confidentiality: The information contained in the provenance records may be

required to be kept confidential, for e.g., proprietary algorithms, identity of the user,

etc. which are stored in the U and O fields. These fields need to be kept acces-

sible only to the trusted auditor or group of trusted auditors. One approach is to
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encrypt multiple of copies of U and O with different keys for each trusted auditors.

However, this leads to a large number of copies of the data. Instead, we achieve the

confidentiality by using the broadcast encryption scheme of [29]. The U and O fields

are encrypted using a unique symmetric key Ks generated for the record. Multiple

copies of this key are then encrypted each with the key of a different trusted auditor.

The S field in the provenance record stores encrypted versions of the symmetric keys.

This scheme reduces the number of encrypted copies of the data to be maintained,

by maintaining multiple copies of the key instead. This encryption ensures that the

information in the U and O fields is only accessible to the owner of the provenance

record and the auditor(s) he/she trusts. No other entity should be able to access

them.

Integrity: It is required that any attacks on the provenance chain, such as tam-

pering of the content of the records, addition or removal of records from the chain

should be detected by an auditor while performing the auditing activity. In order to

facilitate this, our scheme uses hashes and signature fields to hold users accountable

for their actions. Our scheme has the following mechanisms to provide the three types

of integrity we have discussed:

i) The current signature C is a representation of the actions performed by the user

on the document. It protects the fields of the same record providing the property

of data integrity.

ii) The previous P and next N signature fields form the mutual agreement between

users that links the provenance records of the chain when a document is passed.

This provides chain integrity.

iii) Since each record contains the N field, a user’s actions in the agreement are

signed by the next user as well. This provides origin integrity i.e. a user cannot

repudiate his/her actions.

iv) The previous field of the first record is signed by the auditor and the agree-

ment contains a unique initialization vector. This is done to protect the chain
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against an owner forgery attack where another user claims to be the owner of

the provenance chain.

Availability: A provenance chain must remain intact when it is passed between

users along with the document. Through the use of mutual agreements and current

signature fields, the scheme ensures that the provenance chain remains intact and

any modifications or malicious activity can be detected in the auditing process. The

mechanisms for providing confidentiality and integrity indirectly also provide the

property of availability. An auditor can perform auditing as per the steps in Algorithm

2, which is discussed in Section 4.5.

Our scheme relies on transitive trust among users. That is, it relies on the as-

sumption that when a document is passed between two users, the users trust each

other and do not collude. Our scheme can prevent collusion between users as long as

they are not consecutive in the chain. However, if consecutive users collude to modify

their provenance records, it is possible for the records to have appropriate signatures

for the agreement signature fields. This change can go undetected in the auditing

process. Consider the following scenario: Users A, B, C and D are successive users in

the provenance chain of a document. After B has created the record, it is passed to C.

Assume B and C collude to change the operations B performed on the document. In

such a case, B can change the representation of OB, h(DB) and the current signature

CB. The mutual agreement between B and C contains C ’s signature over NB. Since

they collude, it is possible for them to change the mutual agreement to reflect their

malicious changes and sign over them. This change will go undetected in the auditing

activity. Our scheme does not prevent this scenario of successive users colluding.

A thorough security analysis of our scheme with respect to the attack model is

provided in Chapter 5. As shall be seen, maintenance of these properties helps prevent

different attacks on the provenance records and chain.
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4.4 Example scenario

The mutual agreement signature scheme is better explained referring to a scenario

as shown in Figure 4.3. Each user along the chain follows the provenance record

creation steps discussed in Algorithm 1. The important events in the scheme are

highlighted.

D1

D2

D3 D4

D5

D6

A

B

C

E

F

D

Figure 4.3. An example of document passing

The user A first creates the document D1.

A is the creator of this document and the owner of its corresponding provenance

chain. The provenance record PrA generated is:

PrA = <UA,OA,h(D1),ChainInfoA,S∗A,CA,P+
A,N∗A>

ChainInfoA = KAud|KA;
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CA = signA(UA,OA,h(D1),SA);

PA = signAud(IV,KAud|KA,CA)

The operations field OA is empty, because A is the owner and creator of the document

D1. The next field NA is currently empty, because A has not yet passed the document

to another user. The field UA can be encrypted using symmetric key KSA
, and KSA

can then be encrypted using KAud and stored in SA. This preserves A’s confidentiality.

The previous field PA is signed by the auditor and contains a unique initialization

vector (IV) in the hash field known only to the auditor.

A passes the document D1 to user B .

A new provenance record PrB is generated:

PrB = <UB,OB,h(D2),ChainInfoB,S∗B,CB,P+
B,N∗B>

It contains only the previous field PB and ChainInfoB field at the beginning:

PB = signA(h(D1),KAud|KA|KB,CA)

ChainInfoB = KAud|KA|KB

The next field NA of PrA is also created as:

NA = signB(h(D1),KAud|KA|KB,CA)

As can be seen from these two fields, the signatures use the same data fields as

agreement. It delineates the transition of responsibility of D1 from A to B.

B now modifies the document D1 to D2.

B preforms operations OB to modify the document. UB and OB can be encrypted

using symmetric key KSB
, and KSB

can then be encrypted using KAud and stored in

SB. We ignore the encryption further in the example, since it remains the same for

each record. The remaining fields in PrB are now updated. The current signature is

of the form:

CB = signB(UB,OB,h(D2),SB)
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The next field NB remains empty, because B has not yet passed the document to

another user.

B passes the document D2 to C .

Similar to the previous step, record PrC and the fields PC , ChainInfoC and NB are

created:

PrC = <UC,OC,h(D3),ChainInfoC,S∗C,CC,P+
C,N∗C>

PC = signB(h(D2),KAud|KA|KB|KC,CB)

ChainInfoC = KAud|KA|KB|KC

NB = signC(h(D2),KAud|KA|KB|KC,CB)

B passes document D2 to user D .

Again, the record PrD is created with the fields PD and ChainInfoD:

PrD = <UD,OD,h(D4),ChainInfoD,S∗D,CD,P+
D,N∗D>

PD = signB(h(D2),KAud|KA|KB|KD,CB)

ChainInfoD = KAud|KA|KB|KD

The next field NB of PrB is now updated to include two subfields, to show the two

separate provenance chains:

NB = signC(h(D2),KAud|KA|KB|KC,CB);

signD(h(D2),KAud|KA|KB|KD,CB)

As can be seen, the data in the signatures is identical to that of the previous fields

PC and PD which shows the separate agreements for the two chains.

Consider that C modifies document D2 to D3, and passes it to user E. The fields

of record PrC are updated and PrE is created as:

CC = signC(UC,OC,h(D3),SC)

NC = signE(h(D3),KAud|KA|KB|KC |KE,CC)

PrE = <UE,OE,h(D5),ChainInfoE,S∗E,CE,P+
E,N∗E>

PE = signC(h(D3),KAud|KA|KB|KC |KE,CC)
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D modifies D2 to D4 and creates the fields of the record PrD and the current signature:

CD = signD(UD,OD,h(D4),SD)

E modifies document D3 obtained from C to D5 and creates the fields of the record

PrE and the current signature:

CE = signE(UE,OE,h(D5),SE)

F obtains documents D5 from E and D4 from D .

In this case, the record PrF is created such that the previous field PF has two subfields

to indicate the two separate provenance chains. The next fields of the two users ND

and NE are also updated:

PrF = <UF ,OF ,h(D6),ChainInfoF ,S∗F ,CF ,P+
F ,N∗F>

ChainInfoF = KAud|KA|KB||KB–KC–KE–KF |KB–KD–KF ||

PF = signD(h(D4),KAud|KA|KB|KD|KF ,CD);

signE(h(D5),KAud|KA|KB|KC |KE|KF ,CE)

ND = signF (h(D4),KAud|KA|KB|KD|KF ,CD)

NE = signF (h(D5),KAud|KA|KB|KC |KE|KF ,CE)

Again, it can be seen that the data used in the signatures for the subfields of PF and

the fields ND and NE are the same, indicating the separate agreements for the two

chains. In the field ChainInfoF , the sequences of public keys from the two branches

is concatenated and the order is indicated by the – and || symbols. The order is also

preserved in the two previous signature fields.

4.5 Auditing activity

An auditor performs auditing on the provenance chain to verify that the chain

has not been tampered with. The steps followed by an auditor to verify the integrity

of the provenance chain are discussed in Algorithm 2. Auditing takes place in reverse



31

Algorithm 2 Provenance chain auditing steps

1: Auditor ← Pr1|Pr2| . . . |Prn;Dn . Auditor receives the provenance chain and

document Dn

2: H ← h(Dn) . Auditor constructs hash of Dn

3: Verify: Prn[h(Dn)] = H

4: for all Pri ∈ Prn|Prn−1| . . . |Pr1 do

5: W ← DecryptKi
(Ci) . Verifying the current signature field

6: X ← h(Ui, Oi, h(Di), Si)

7: Verify: W = X

8: if Pi = P1 then . Previous field of record Pr1 involves the auditor

9: Y ← DecryptKAud
(Pri[Pi])

10: Z ← h(IV,KAud|K1, C1)

11: Verify: Y = Z

12: end if

13: for all Pr′j ∈ Pri[Pi] do . For each previous field

14: Y ← DecryptKj
(Pri[P

j
i ]) . Decrypting previous signature field of Pri

corresponding to Pr′j

15: Z ← DecryptKi
(Pr′j[N

i
j ]) . Decrypting next signature field of Pr′j

corresponding to Pri

16: Verify: Y = Z

17: end for

18: end for

order starting from record Prn up till the first record Pr1. This is different from the

verification in the Onion and PKLC schemes. The reverse order is used to be able to

verify DAG structures where multiple individual chains may exist.

The auditor first checks if the hash of the current document matches the hash

stored in the record Prn. If this verification fails, either the document or the record

Prn has been tampered with. For each record along the chain, the auditor must
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Figure 4.4. Flowchart of a auditor’s actions for auditing a provenance
chain

check if the current record is intact and that the agreements with the previous and

next users are intact. For checking the current record, the auditor computes the
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hash of the fields < Ui, Oi, h(Di), Si > in the record. Then he checks this hash with

the current signature Ci of the record. The agreements between pairs of records are

checked by verifying the previous and next signature fields along the chain. To do

this, the previous field Pi of every record is checked with the next field Ni−1 of the

previous record. The verification is done by computing the agreement i.e. the hash of

the fields < h(Di−1), ChainInfoi, Ci−1 > and checking it with the stored signatures

in the fields Pi and Ni−1.

If the current field verification fails for record Prj, there can be two cases:

i) if the agreement between Prj and Prj−1 is intact, the record Prj has been

tampered with, or,

ii) if this agreement is not intact, then the current fields and agreements of previ-

ous records must be checked till a record Prk is found where the current field

verification fails, but agreement is intact. In such a case that record has been

tampered with.

Similarly, if the agreement verification between records Prj and Prj−1 fails, the

auditor must check the current fields and agreements of previous records till a record

Prk is found where the current field verification fails, but agreement is intact. In such

a case that record has been tampered with.

If there is a verification failure at any stage, the auditor (or set of auditors with

appropriate symmetric keys of the records) can decrypt the operations fields Oi of

the records to reconstruct the document backwards to its original form. This is

possible since Oi contains a reversible representation of the operations performed on

the document. With this, each of the verifications can be performed again, to identify

the exact instance in the history when the document or its record was tampered with.

Any user who can verify the initialization vector used in the previous signature field of

the first record can successfully perform auditing of the complete chain. Other users

can verify the integrity of the chain beginning from the second record. However, only
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an auditor can decrypt the symmetric keys stored in the record to further decrypt

the U and O fields.

Figure 4.4 shows a flowchart of the steps followed by the auditor for auditing the

provenance chain. The steps are similar to our discussion here. However, for the sake

of simplicity of the flowchart, when any verification fails, the auditor enters the state

’Verify previous records’ in which the verification of the remaining records up along

the chain is performed to identify the cause of the verification failure.

In our scheme, each record is related only to its previous and next records. Unlike

the Onion scheme, where every record contains the checksum information of the

complete preceding chain, our scheme involves agreements with only pairs of records.

Although Algorithm 2 involves checking the nodes sequentially from the last to the

first, the verification can be conducted concurrently for pairs of records along the chain

similar to the PKLC scheme. If all records are intact, this improves the verification

process. If the verification fails for a particular pair of records, the preceding chain

can then be investigated following the process described.

4.6 Advantages of our scheme

We can see that the provenance records in our scheme are linked together into a

chain (actually DAG) structure through the previous and next signature fields which

serve as the mutual agreements between records. The scheme is simple to implement

and has many advantages over the schemes discussed in Chapter 3. A summary of

these advantages is given in Table 4.1.

First, it provides better protection than the Onion scheme against selective re-

moval of provenance records from the chain. In the Onion scheme, records are loosely

linked only in the forward direction, and a record does not contain any information

about who the next or previous user(s) is. So, if an adversary receives a chain of

records Pr1|Pr2|. . . |Prn, he/she can selectively remove part of the chain Pri|. . . |Prn,

append a new record Pri with the signature over the signature of record Pri−1 and
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remain undetected. Our scheme overcomes this drawback by introducing next and

previous signature fields which cannot be forged. A record Pri contains the signatures

of users Ui−1 and Ui+1, thus selectively removing a part of the chain as in the case

of the Onion scheme will cause the record Pri−1 to still contain the signature of the

original user Ui. Every user has proof of his/her actions, as well as the actions of the

previous user, and contains information about the next user who the document gets

passed to. This case is further explained in Chapter 5.

Second, our scheme does not require a trusted auditor(s) to know the user-key

relationship as in the Onion scheme. This maintains the confidentiality of the users,

and also makes the auditor a simpler entity. In fact, any user who can verify the

initialization vector used in the previous signature field of the first record can suc-

cessfully perform auditing of the complete chain. Other users can verify the integrity

of the chain beginning from the second record. However, only an auditor can decrypt

the symmetric keys stored in the record to further decrypt the U and O fields.

Third, our scheme can also support the DAG structure of provenance. As seen

in the provenance record structure, each record contains previous P+ and next N∗

signature fields. Multiple fields signed by different users can be incorporated in these

as indicated by the + and ∗ symbols. Thus, our scheme can support DAG structures

as part of the record structure itself. While provenance storage is not our concern in

this work, we mention that storing a DAG structured provenance as a linear sequence

of records (not linearly linked) would require a topological sorting mechanism [54].

The PKLC scheme requires auditors to know the sequence of users in the infor-

mation flow. Every node also knows the next node to which the data must be passed.

This allows the scheme to link the records only using the public keys of the users

in the chain. But it also restricts the scheme to the scenario where the sequence

of nodes is predetermined. If the sequence of nodes is dynamic, the auditor in the

PKLC scheme cannot verify the integrity of the chain. Also, if the PKLC scheme

is applied directly to a dynamic scenario, it is susceptible to successful tampering of

records without detection. Unlike the PKLC scheme, our scheme can be applied to
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a dynamic information sharing scenario. This is made possible by the mutual agree-

ments between users which contains enough information for an auditor to verify the

sequence of users and integrity of the chain without knowing the sequence beforehand.

In the PKLC scheme, the first record contains the public key of the creator of the

document in the previous field. If applied to a general scenario, this weak scheme is

susceptible to an owner forgery attack, where an adversary can remove the records

and claim to be the creator of the document by making a record with his/her own

public key in the previous field. Our scheme prevents this by having the auditor sign

the previous field of the first record. It also involves using a unique initialization

vector IV that only the auditor knows. This ensures that an adversary cannot claim

to be the owner of a document without having the auditor’s signature and using a

fake IV.

In the Onion scheme and the PKLC scheme, the corresponding current signature

field signs over all the fields of the record. In our scheme, however, the current

signature field only involves the fields < Ui, Oi, h(Di), Si >. It does not sign over

ChainInfo. This is because ChainInfo is protected by the P and N fields. The mutual

agreements protect the information about the sequence of users. This reduces the

overhead of signing over all fields of the record. The current field is, thus, concerned

only with the fields specific to that particular record.

We conclude this chapter by briefly summarizing the discussion. The mutual

agreement signature scheme is an interactive protocol between users along the chain

of custody of the document. We discussed the structure of the provenance chain and

record, illustrated it with an example, described the auditing activity and mentioned

the advantages of our scheme over existing works. We shall now analyze the security

provided by our scheme in the next chapter.
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5 SECURITY ANALYSIS

In this Chapter, we discuss how our scheme prevents the attacks from adversaries

discussed in Section 2.3. We discuss propositions of attacks from an adversary and

give a discussion about how our scheme prevents them.

The following proposition considers the attack on the confidentiality of the

provenance:

Proposition 1. An auditor can verify the integrity and availability of the chain but

not access any of the confidential information in the records.

An auditor only requires access to the <h(Di),ChainInfoi,Ci,P
+
i ,N∗i> fields of every

record in the chain to perform the auditing. The user information U and operations

O fields are encrypted using a unique symmetric key Ks generated for the record.

Multiple copies of this key are then encrypted each with the key of a different trusted

auditor. The S field in the provenance record stores the encrypted versions of the

symmetric keys. This encryption ensures that the information in the U and O fields

is only accessible to the owner of the provenance record and the auditor(s) he/she

trusts. No other entity should be able to access them.

The following propositions consider the attacks on the integrity of the provenance

records and chain:

Proposition 2. An adversary cannot claim that a valid provenance chain belongs

to another document having different contents.

Each record Pri contains a field h(Di) that stores the cryptographic hash of the

document corresponding to that record. Also, the user Ui signs h(Di) along with

other fields in the current Ci signature field, giving an account of his/her actions.

Suppose an adversary Ui takes the provenance chain of document D1, attaches it to

another document D2 and passes it to user Uj, there can be three scenarios:



39

i) Uj will verify that the h(D2) 6= h(D1) from the last record in the chain. Thus,

Uj will know that the provenance chain does not belong to D2.

ii) If Ui changes h(D1) in the last record to correspond to h(D2), but the record

does not belong to Ui, it is not possible for Ui to forge the current signature field

C of the last record. This will be detected by Uj.

iii) If the last record does belong to Ui, and Ui can change the hash and current

signature fields of the last record to correspond to document D2, it will not be

possible for Ui to forge the records in the preceding chain. This will be detected

in the auditing activity.

Thus, it is not possible for an adversary to associate a provenance chain with another

document.

Proposition 3. An adversary cannot alter the fields of records from the preceding

chain without being detected.

Every record Pri in the chain contains a field for the current signature Ci which

establishes that the signer Ui with private key K−i is the creator of that record. This

signature cannot be forged by another user. Thus, even if an adversary alters the

fields of a record Pri, the signature of the fields <Ui,Oi,h(Di)> will not match Ci

when auditing is performed. Thus, any alteration of the fields in the preceding chain

can be caught in the auditing activity.

Proposition 4. An adversary cannot add fake records into the beginning or middle

of the chain without being detected.

Each record in the provenance chain has previous Pi and next Ni signature fields.

These, along with the ChainInfo field, represent the chain of successive custody of

the document.

The first record of the owner of the document has the previous field signed by

the auditor using the key K−Aud. Since this signature cannot be forged, an adversary
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cannot add fake records into the beginning of the chain since the signature will not

be that of the auditor. If the adversary attaches the first record of another chain to

the beginning of this chain, the case is similar to Proposition 2.

If fake records are added to the middle of the chain, the previous and next fields

must by signed by the appropriate users of the chain to maintain the order of the

mutual agreements. Consider the chain contains consecutive records Pri and Prj.

Then Ni is signed by user Uj and Pj is signed by user Ui. If an adversary wants to

add a record Prk between Pri and Prj, Ni must be signed by Uk and Pk signed by Ui.

Similarly, Nj must be signed by Uk and Pj signed by Uk. This is not possible since

the signatures of Ui and Uj cannot be forged.

Proposition 5. An adversary cannot remove records from the beginning or middle

of the chain without being detected.

Arguments similar to those in Proposition 4 hold for the case when records are re-

moved from the beginning or middle of the chain. If the first record is removed, the

new first record must have the previous field signed by the auditor. Since signatures

cannot be forged, it is not possible for the new first record to have the signature of

the auditor. Suppose we have the records Pri, Prj and Prk as consecutive records in

the chain. If an adversary removes the record Prj, in the new chain Ni must be signed

by user Uk and Pk signed by Ui. Similarly, Nj must be signed by Uk and Pj signed

by Uk. This is again not possible since signatures cannot be forged. Thus, it is not

possible for the adversary to remove records without being detected in the auditing.

Proposition 6. An adversary cannot alter the order of records from the preceding

chain without being detected.

This argument is a combination of Propositions 4 and 5. Altering the order of records

can be thought of as multiple operations of removal and addition of records into the

provenance chain. The P and N signature fields of the altered records will not have

the appropriate signatures according to the sequence of users in the chain.
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Proposition 7. An adversary cannot remove all the records of the chain and claim

he/she is the owner of the document by creating a new chain.

The first record of the owner of the document has the previous field signed by the

auditor using the key K−Aud. Since this signature cannot be forged, an adversary

cannot remove all preceding provenance records and claim to be the owner of the

document.

Proposition 8. Two colluding adversaries already having records in the chain can-

not add or remove records of other users between their records.

Consider a provenance chain Pr1|. . . |Pri|. . . |Prj|. . . |Prn. Two colluding adversaries

Ui and Uj may want to remove records between their records in the chain, such

that the resulting chain is Pr1|. . . |Pri|Prj|. . . |Prn. To be successful, the records Pri

and Prj must have appropriate signatures in the previous and next fields, which is

possible in the case of collusion. However, the records must also be updated such

that the hashes of the documents at each stage and the operations fields Oi satisfy

the reversibility criteria. If Oi is encrypted, this will become difficult to achieve. The

case is more difficult when adversaries want to add records of other users between

their records. In such a case, the signatures in all the fields must align, which can

again be difficult to achieve.

Proposition 9. An adversary cannot repudiate any records in the provenance chain.

Each user Ui in the chain must use his/her private key K−i to sign the current field Ci

of the provenance record Pri. This field serves as the digital signature that no other

user can forge. The signature is on the data fields Ui, Oi and h(Di) which essentially

represent the actions performed and results obtained by the user. If the record Pri is

not the last record, the user Ui must use the same key K−i to sign the previous field

Pi+1 of the next record Pri+1. If the user Ui is not the owner of the chain, the next

field Ni−1 of the record Ui−1 must also be signed in this way. The involvement of user

Ui in the chain is captured not only in the record Pri, but also in the previous and
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next records Pri−1 and Pri+1 respectively. Thus, after user Ui has created record Pri,

he/she cannot repudiate the record.

The following proposition considers the attack on the availability of the prove-

nance records and chain:

Proposition 10. An adversary cannot modify the document without adding the ap-

propriate provenance record in the chain and not being detected.

The mutual agreement procedure is followed when the document is passed from user

Ui to Ui+1. Thus, if the user Ui+1 modifies the document without appending the

appropriate record in the chain, the record Pri still contains the signature of user

Ui+1. Thus the involvement of Ui+1 cannot be repudiated.

Also, every provenance record Pri stores the operations Oi performed by the user.

This contains a reversible representation of the operations, such that if document Di−1

is modified to Di, Di−1 can be obtained from Di using Oi. Also, record Pri−1 stores

the hash h(Di−1). If an adversary performs operations on Di that are not recorded in

Oi or modifies Di and does not add an appropriate record to the chain, the previous

document Di−1 cannot be recovered such that its hash is the same as h(Di−1) stored

in record Pri−1. Simple auditing would not require the document to be reconstructed

in reverse; however it can be done to resolve discrepancies.
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6 IMPLEMENTATION & EVALUATION

Provenance generation results in an overhead in time as well as space that must be

considered apart from the security it provides. In this Chapter, we give an evaluation

of the overhead of our scheme and compare it with the Onion and PKLC schemes.

We implemented the three schemes with Java JDK 1.7 to measure and compare

their performances. The programs were executed using NetBeans IDE 7.4 on a Win-

dows 7 machine with Intel Core 2 Duo E6550 2.33GHz processor and 4.0 GB main

memory. Since the provenance transmission and storing are not our concern in this

work, we simulate the users on the same machine and simulate their activities by

modifying the document each time it is passed between users. Since our focus is to

measure the performance of the provenance generation process and not have it af-

fected by file I/O, we store the provenance records as nodes in a linked list in memory

instead of generating an XML document. We use 1024 bit RSA for digital signatures

and well as asymmetric encryptions, 128 bit AES for symmetric encryptions, and

SHA-1 as our hashing function. We choose four different files 5Kb (text document),

50Kb (text document), 500Kb (JPEG image) and 5Mb (JPEG image) to compare

the performance against varying file sizes.

The overhead for creating and auditing the provenance chain can vary depending

on the data included in each of the provenance records. We run our experiment under

the following settings:

i) Each user appends a small amount of information to the file as an operation on

it. This ensures that the file size does not change significantly while its hash

value does. Since the actual operations performed on the document are not our

concern, this suffices for our experiment.
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ii) Each user trusts the same auditor, and thus the symmetric key used to encrypt

the U and O fields, is encrypted using the public key of only one auditor.

iii) For the purpose of the experiments, every user operates on the data only once,

however, our scheme allows a user to be repeated in the provenance chain.

6.1 Provenance Record Construction

In the first experiment, we compare the performance of the three schemes for the

process of creation of a provenance record. We consider two aspects of the record

construction: the overall time required to construct a record and, the overhead of

individual operations involved in each scheme.

6.1.1 Time to create a record and overhead over other schemes

We measure the time required by each of the schemes to create a single provenance

record. We run this experiment 50 times for each of the varying file sizes and report

the average computation time. Figure 6.1 shows the results of the experiment. As

expected from the experiments in [30], the PKLC scheme performs better than the

Onion scheme. Our Mutual Agreement signature scheme takes longer to construct a

record.

The Onion and PKLC schemes each uses two hash operations (one for the file and

the other for the current signature field). Our scheme on the other hand uses four

hash operations (two additional for the previous and next fields). It also uses RSA

signatures for each of the agreements. As a result, our scheme has a comparatively

larger overhead of 97% over the PKLC scheme and 74% over the Onion scheme.

However, as the file size increases, we observe that the overhead reduces and becomes

comparable to the performance of the PKLC (7.18% overhead) and Onion schemes

(3.22% overhead). Figure 6.2 shows the percentage overhead of our scheme over the

Onion and PKLC schemes.
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6.1.2 Overhead of individual operations of the schemes

We observe that the overhead of our scheme reduces as the file size increases and

becomes comparable to the performance of the Onion and PKLC schemes. The time

required by each individual operation performed in record creation we measured to

understand this. Each of the scheme uses the following operations in record creation:

i) RSA signature: The C, P and N fields each use RSA signatures.

ii) AES encryption: The U and O fields are encrypted with AES using a symmetric

key.

iii) RSA encryption: The symmetric key is then encrypted using RSA with the key

of the auditor.

iv) File Hash: This is the SHA-1 hash of the document.

v) Field Hash: This is the SHA-1 hash used before the signature can be applied to

the C, P and N fields.

vi) Self Time: The process of record creation also involves minor operations other

than the cryptographic operations. They are accounted for as self time of the

record generation process.

We find that the performances become comparable because, as the file size in-

creases, the overhead of the file hash operation alone dominates over the overhead

of the other operations. This is illustrated by the Figures 6.3, 6.4 and 6.5 which

indicate the time required by each individual operation for different file size for the

three schemes.

From the figures, it is also seen that the RSA signature takes a larger percentage

of the total time in our scheme. This is because our scheme uses RSA signatures for

the mutual agreements. This operation is not present in the other schemes.

We argue that the security provided by our scheme and support for dynamic

information sharing outweighs the overhead of our scheme.
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6.2 Provenance Chain Auditing

In the next experiment, we measured the time required for an auditor to audit an

entire provenance chain. We run this experiment for files of size 50Kb and 5Mb, each

for varying number of records in the chain. Each complete chain verification process is

run 10 times and we report the average computation time required. We first generate

a linear chain of provenance records by using the same process as in the previous

experiment and then perform verification. Since the Onion scheme does not support

DAG structures, we experiment with a linear chain to compare the performances of

the three schemes.

6.2.1 Concurrent auditing over the chain

In the Onion scheme every record contains the checksum information of the com-

plete preceding chain and the verification must take place sequentially along the chain.
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In the Mutual Agreement Signature scheme and the PKLC scheme, each record is

related only to its previous and next records. Our scheme involves agreements with

only pairs of records. Since it does not require an auditor to go sequentially over the

complete chain from the start, the verification can take place concurrently for pairs

of records along the chain. We use mutliple auditor threads to verify pairs of records

along the chain for our scheme and the PKLC scheme.

Figure 6.6 shows the results of auditing the provenance chain for a file of size

50Kb run on chains with increasing numbers of records. Our scheme takes longer to

verify than the PKLC scheme since it employs two more hashes. However, it performs

better than the Onion scheme, since we do not need to go sequentially over the chain.

For the 50Kb file, the improvement in performance over the Onion scheme becomes

significant as the length of the chain increases. The difference grows slower for the

5Mb file as seen in Figure 6.7. This is because the hash of the file again dominates over

the time required by other operations. Since the verification for our scheme and the

PKLC scheme happens concurrently over different records, it would be expected that

the time required remains fairly constant despite the length of the chain. However,

we see an increase in the time in both experiments. We attribute this to the overhead

of creating and managing threads in Java.

6.2.2 Sequential auditing over the chain

In the previous experiment, we performed the auditing concurrently for pairs of

records along the chain for the PKLC scheme and our scheme. In order to compare the

performances of the three schemes in the same setting, we run a similar experiment

performing auditing sequentially over the chain with only one auditor thread.

Figure 6.8 shows the result of auditing the provenance chain for a file of size 50Kb

run sequentially on the chains with increasing number of records. Our scheme takes

longer to verify than the Onion and PKLC schemes. This is expected, since our

scheme employs two hashes more than the other schemes. This operation dominates
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sizes 5Mb (using concurrent verification)
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Figure 6.8. Provenance chain verification time in all three schemes for file
size 50Kb (using sequential verification)
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Figure 6.9. Provenance chain verification time in all three schemes for file
sizes 5Mb (using sequential verification)
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over the other operations while performing auditing. In the previous experiment, the

overhead of the extra hash operations is reduced since they are performed concur-

rently. We also observe that the PKLC scheme also takes longer than the Onion

scheme in the similar setting. This is because the PKLC scheme needs to verify the

public keys stored in the records in addition to the signature field. In the sequential

auditing, this operation introduces the overhead which is not present in the Onion

scheme. The difference in the times grows larger as the number of records increases.

This is expected since two hash operations per pair of records increases. Figure 6.9

shows the same experiment run for a file of size 5Mb. The different in time grows

slower, since the hash of the file again dominates over the time required by the other

operations. However, we see an increase in the time in both experiments.

6.3 Argument of security over performance

It can be seen from the experiments and our evaluation that our scheme com-

promises on the performance as compared to the Onion and PKLC schemes. As the

file size increases, the performance for provenance record generation becomes com-

parable to that of the other schemes. For provenance verification, the performance

is better than that of the Onion scheme. The difference in performance is due to

the operations performed for creating the previous and next signature fields. These

fields are the basis of the mutual agreement scheme. As discussed in Section 4.6, they

overcome the shortcomings of the other schemes and provide better security to the

provenance chain. We thus argue that the advantages of our scheme i.e. providing a

representation for DAG structures of provenance, better security and supporting dy-

namic information sharing between users, outweighs the performance overhead seen

in Figures 6.1 and 6.2 for record construction, and in Figures 6.8 and 6.9 for sequential

provenance chain auditing.

We conclude this chapter by briefly summarizing the discussion on the experimen-

tation. The performance of our scheme against that of the Onion and PKLC schemes
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was evaluated, for the cases of provenance record construction and chain auditing.

Our scheme performs better that the Onion scheme for the case of concurrent chain

auditing. We observe an expected performance overhead for record construction and

linear chain auditing due to the additional operations involved in our scheme, but

argue that the security provided outweighs this overhead.
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7 CONCLUSION & FUTURE WORK

Provenance is meta-data that stores the history of an object and it has unique security

requirements. Since history of an object cannot be changed, once its provenance is

created, the integrity and availability of the provenance records and the confidentiality

of user information contained in them must be protected. In this work, we proposed

a signature-based mutual agreement scheme that delineates the transition of respon-

sibility of a document when it is passed from one user to the other. We investigated

dynamic information sharing and representation of DAG structures of provenance,

which are two aspects not thoroughly looked at in recent research. The provenance

format and verification process in our scheme was discussed and an analysis of its

security assurance was provided. We gave experimental results of the overhead of

our scheme for provenance creation and verification. The overhead for provenance

creation is a little more than that of the PKLC and Onion schemes, but it provides

better security, whereas our scheme performs better than the Onion scheme for chain

verification. Section 7.1 briefly discusses some application scenarios for our scheme

and Section 7.2 talks about some of the future work related to this research.

7.1 Applications scenarios for our scheme

The mutual agreement signature scheme proposes a structure for the provenance

record and chain for a digital object. We use generality while defining the fields

in the record in order to support different types of applications. As discussed be-

fore, user information and operations on the object are application specific and they

may have different representations depending on the domain. However, our scheme

can support these since the fields are generally defined to work for any kind of rep-

resentation. Also, our scheme captures the properties, such as DAG representation,
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integrity of individual records and the complete chain, which are common to all forms

of provenance. We discuss some of the application scenarios here.

The scheme can be applied to employee review and recommendation systems. A

document is passed between different employees, managers, teachers, etc. at differ-

ent security levels and hierarchy. The document and provenance may have different

sensitivity depending on the application and our scheme can support these scenarios.

We club all such application scenarios as academic information sharing. Another sce-

nario is a distributed application running instances on multiple nodes such that they

incrementally process the data moving towards a sink. This is similar to a wireless

sensor network, but encompasses a wider range of applications that can also include

industrial pipelined processes. Our scheme can be applied for provenance generation

in work-flows of industrial processes and grid based computing applications. In such

scenarios, users maybe computer processes, sensor nodes or even industrial mecha-

nized processes, which can have different representations in the provenance records.

Wireless sensor networks are typically resource constrained and since our scheme em-

ploys computationally expensive operations, it may not be best suited for wireless

sensor networks.

7.2 Future Work

Typical provenance schemes similar to our work in this thesis depend on transitive

trust among users. A challenge that they face is the detection of collusion of users

that are successive in the chain. In our future work we will look into a solution for

detecting collusion of successive users. Another aspect is that our scheme requires a

trusted auditor to prevent owner forgery cases and to access confidential information

of provenance records. One direction of research is to reduce/remove the involvement

of the trusted auditor and develop the scheme such that the users are the only entities

involved. One possible way is to use Hierarchical Access Control (HAC) schemes such

as [55] for efficient key management. In such a scheme, the creator of the document
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is at the top of the hierarchy. This can remove the Public Key Infrastructure (PKI)

required by most existing provenance schemes. However, it also introduces challenges

of maintaining the desired security properties for the records and the chain. We will

also work towards reducing the overhead of our scheme even further, by either em-

ploying faster algorithms, or by changing the procedure for mutual agreements. In

addition, we will implement our scheme in a real world information sharing applica-

tion, similar to ones discussed in the previous section and carry out a more thorough

security and performance analysis.
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