
Graduate School Form

30 Updated 12/26/2015

PURDUE UNIVERSITY

GRADUATE SCHOOL

Thesis/Dissertation Acceptance

This is to certify that the thesis/dissertation prepared

By HAREESH SANDUPATLA

Entitled

USING REINFORCEMENT LEARNING TO LEARN RELEVANCE RANKING OF SEARCH QUERIES

For the degree of Master of Science

Is approved by the final examining committee:

Dr. Mohammad Al Hasan

Chair

Dr. Rajeev Raje

Dr. Snehasis Mukopadhyay

To the best of my knowledge and as understood by the student in the Thesis/Dissertation

Agreement, Publication Delay, and Certification Disclaimer (Graduate School Form 32),

this thesis/dissertation adheres to the provisions of Purdue University’s “Policy of

Integrity in Research” and the use of copyright material.

Approved by Major Professor(s):
Dr. Mohammad Al Hasan

Approved by:

Dr. Shiaofen Fang 4/13/2016

Head of the Departmental Graduate Program Date

USING REINFORCEMENT LEARNING TO LEARN RELEVANCE RANKING

OF SEARCH QUERIES

A Thesis

Submitted to the Faculty

of

Purdue University

by

Hareesh Sandupatla

In Partial Fulfillment of the

Requirements for the Degree

of

Master of Science

May 2016

Purdue University

Indianapolis, Indiana

ii

To my parents for all their support, love and providing me in the best education

possible. I am grateful to my whole family for their sacrifices. Without them, I

wouldn’t have been to this far.

iii

ACKNOWLEDGMENTS

First and foremost, I am grateful to God. Without his blessings, I feel I couldn’t gain

the knowledge and stay patient to complete this thesis. My faith in God gave me the

strength to believe in myself and wisdom to deal with difficulties. My prayers to God

have always helped me throughout my life.

I would also like to take this opportunity to thank my supervisor Dr. Mohammad

Al Hasan for not only having the trust on me but also for guiding and encouraging

me throughout the research. His suggestions and insights have helped me to gain

the comprehensive knowledge of the research topic. I greatly admire him for his

knowledge, patience, dedication and passion towards the work. In spite of a great

professor, he is also a good human being who is very kind at heart and shows empathy

to the student’s feelings.

Besides my advisor, I would like to express my profound gratitude to Dr. Rajeev

Raje and Dr. Snehasis Mukhopadhyay for graciously agreeing to be a part of my

thesis advisory committee. Their guidance helped me to take wise decisions during

my research and studies. For many years, they have been sharing a lot of knowledge

and experiences with the IUPUI students. So, I feel so privileged to present my work

in front of them.

I am also thankful to my professors Dr. Xukai Zou, Dr. Yao Liang and Arjan

Durresi whose courses have helped me to improve the knowledge of Computer Science.

I appreciate the pleasant smiles and warmth greetings that I had exchanged with

other professors at the Computer Science department and during various seminars.

A special thanks to the Computer Science staff Nicole Wittlief, Scott Orr and Nancy

Reddington. The support, knowledge and guidance you all have provided for your

students is priceless.

iv

A special thanks to my dear friends and fellow lab-mates Tanay Kumar Saha,

Mahmudur rahman, Vachik Dave, Baichuan Zhang and Manusurul Alam whose in-

valuable help, on many levels, has made my work possible. I won’t forget the kind

of support I got from them during the research especially during my struggle to gain

familiarity with Latex and Linux Operating System. I am also grateful to them for

the discussions and the pleasure we have had in the lab.

I always had a big thanks in my heart for my parents, brother and sister. I

thank them for their unlimited love and support. They always had faith in me

and encouraged me to reach my highest possibilities particularly when things got

overwhelmed. They are my source of love and support even when they are away.

v

TABLE OF CONTENTS

Page

LIST OF FIGURES . vii

ABSTRACT . ix

1 INTRODUCTION . 1

2 RELATED WORKS . 5
2.1 Traditional Content Based Models 5
2.2 Relevance Feedback Models . 7

2.2.1 Explicit Relevance Feedback Models 7
2.2.2 Implicit Relevance Feedback Models 9

3 COLOR BALL ABSTRACTION MODEL 15
3.1 Types of Market Demand Distribution 16
3.2 User Behavior Under Color Ball Abstraction Model 18

4 PRELIMINARIES . 23
4.1 Definitions . 23
4.2 Performance Evaluation Metrics . 25

5 BACKGROUND . 28
5.1 Learning Automata . 28

5.1.1 Environment . 29
5.1.2 Automaton . 30
5.1.3 Deterministic Automaton 31
5.1.4 Stochastic Automaton . 32

5.2 Behavior of Learning Automata . 33
5.3 Variable Structure Stochastic Automata 34

5.3.1 Reinforcement Schemes . 35
5.3.2 Asymptotic Behavior of Variable Structure Stochastic Automata 36
5.3.3 Bush-Mosteller Scheme . 37

6 METHODS . 39
6.1 Objective . 39
6.2 Split Model . 39
6.3 Overlapping Models . 40

6.3.1 Reinforcement Learning Model 40
6.3.2 No-regret Learning Model 41

6.4 Learning Automata Based Ranking Model 41

vi

Page

7 EXPERIMENTS AND RESULTS . 48
7.1 Experiments . 48

7.1.1 Split Model . 48
7.1.2 Overlapping Models . 50

7.1.2.1 Reinforcement Learning Model 51
7.1.2.2 No-regret Learning Model 51

7.1.3 Learning Automata Based Ranking Model 54

8 FUTURE WORKS . 65

LIST OF REFERENCES . 66

vii

LIST OF FIGURES

Figure Page

3.1 Top3Biased Distribution . 17

3.2 TwoCluster Distribution . 18

3.3 NearUniform Distribution . 18

5.1 Binary Environment (Ref: Learning Automata an Introduction) 30

5.2 Automaton (Ref: Learning Automata an Introduction) 31

6.1 Split Model Pseudocode . 43

6.2 Reinforcement Learning Model Pseudocode 44

6.3 No-Regret Learning Model Pseudocode 45

6.4 Learning Automata Based Learning Model Pseudocode 46

6.5 BushMostellerScheme Pseudocode . 47

7.1 Split vs Efficiency Plot for Top3Biased Distribution 49

7.2 Split vs Efficiency Plot for TwoCluster Distribution 50

7.3 Split vs Efficiency Plot for NearUniform Distribution 51

7.4 Top3BiasedDistribution Plot for 10,000 customers 52

7.5 Top3BiasedDistribution Plot for 100,000 customers 53

7.6 TwoCluster Distribution plot for 10,000 customers 54

7.7 TwoCluster Distribution plot for 100,000 customers 55

7.8 NearUniform Distribution plot for 10,000 customers 56

7.9 NearUniform Distribution plot for 100,000 customers 57

7.10 Top3BiasedData precision@10 and patienceIndex 0.35 57

7.11 Top3BiasedData DCG and patienceIndex 0.35 58

7.12 Top3BiasedData NDCG and patienceIndex 0.35 58

7.13 Top3BiasedData kendallTau and patienceIndex 0.35 59

7.14 TwoClusterDist precision@10 and patienceIndex 0.35 59

viii

Figure Page

7.15 TwoClusterDist DCG and patienceIndex 0.35 60

7.16 TwoClusterDist NDCG and patienceIndex 0.35 60

7.17 TwoClusterDist kendallTau and patienceIndex 0.35 61

7.18 NearUniformDistribution precision@10 and patienceIndex 0.35 61

7.19 NearUniformDistribution DCG and patienceIndex 0.35 62

7.20 NearUniformDistribution NDCG and patienceIndex 0.35 62

7.21 NearUniformDistribution kendallTau and patienceIndex 0.35 63

ix

ABSTRACT

Sandupatla, Hareesh. M.S., Purdue University, May 2016. Using Reinforcement
Learning to Learn Relevance Ranking of Search Queries. Major Professor: Mo-
hammad Al Hasan.

Web search has become a part of everyday life for hundreds of millions of users

around the world. However, the effectiveness of a user’s search depends vitally on

the quality of search result ranking. Even though enormous efforts have been made

to improve the ranking quality, there is still significant misalignment between search

engine ranking and an end user’s preference order. This is evident from the fact

that, for many search results on major search and e-commerce platforms, many users

ignore the top ranked results and click on the lower ranked results. Nevertheless,

finding a ranking that suits all the users is a difficult problem to solve as every user’s

need is different. So, an ideal ranking is the one which is preferred by the majority

of the users. This emphasizes the need for an automated approach which improves

the search engine ranking dynamically by incorporating user clicks in the ranking

algorithm. In existing search result ranking methodologies, this direction has not

been explored profoundly.

A key challenge in using user clicks in search result ranking is that the relevance

feedback that is learnt from click data is imperfect. This is due to the fact that a

user is more likely to click a top ranked result than a lower ranked result, irrespective

of the actual relevance of those results. This phenomenon is known as position bias

which poses a major difficulty in obtaining an automated method for dynamic update

of search rank orders.

In my thesis, I propose a set of methodologies which incorporate user clicks for

dynamic update of search rank orders. The updates are based on adaptive random-

x

ization of results using reinforcement learning strategy by considering the user click

activities as reinforcement signal. Beginning at any rank order of the search results,

the proposed methodologies guaranty to converge to a ranking which is close to the

ideal rank order. Besides, the usage of reinforcement learning strategy enables the

proposed methods to overcome the position bias phenomenon. To measure the effec-

tiveness of the proposed method, I perform experiments considering a simplified user

behavior model which I call color ball abstraction model. I evaluate the quality of the

proposed methodologies using standard information retrieval metrics like Precision

at n (P@n), Kendall tau rank correlation, Discounted Cumulative Gain (DCG) and

Normalized Discounted Cumulative Gain (NDCG). The experiment results clearly

demonstrate the success of the proposed methodologies.

1

1 INTRODUCTION

With tremendous growth of information in web, measuring and improving the

quality of the retrieval system has become an absolute necessary. The initial studies

of measuring retrieval systems performances has generally based on the Cranfield

methodology [1], which relies on explicit relevance judgement collected from human

experts. But unfortunately gaining explicit relevance judgement is expensive both in

terms of time and effort. Because of this limitation, the methods based on explicit

relevant judgements are difficult to apply to the commercial search engines that have

large scale search services. Moreover, in some domains like medical search [2], it is

not feasible to gather relevance judgement. Furthermore, it has been shown that the

metrics based on human judgements have no significant correlation with user-centric

performance measures [3].

Lack of effectiveness and excessive cost of explicit feedback have encouraged the

information retrieval scientists to use implicit relevance feedback for measuring the

quality of a retrieval system. Such feedback comes in the form of user’s day to

day interactions with the search interface. For all commercial search engines, these

interactions are generally captured in the web logs. The most important form of

user interaction is user clicks, also known as click-through data. Click-through data

provides non-trivial implicit feedback of the quality of search result ranking [4]. Thus,

using this feedback as relevance judgement provides access to virtually unlimited

amounts of data for assessing and optimizing the performance of information retrieval

systems.

A trivial approach of using click-through data to improve search result ranking

is to arrange the results in decreasing order of the number of clicks that a result

receives. Here, the assumption is that given an arbitrary pair of search results, the

one that has higher relevance receives more clicks. However, this assumption is not

2

necessarily true for most of the real world search engines, because user clicks on a

result also depend on the position of that result in the search result ranking. So, any

method that leverages click-through data as implicit feedback for improving search

result ranking must consider user’s click behavior into account.

Most of the users don’t click the search results randomly. Rather they deliber-

ately choose the results to click after careful examination. To understand user’s click

behavior in a search session, researchers have performed eye tracking experiments [5].

These experiments suggest that a user scans the search results from top to bottom

and clicks a result which he feels the most relevant among all the results that he has

viewed. For example, if the user clicks on the second result after ignoring the first

result, we can deduce that the relevance of the second result is greater than that of the

first result. In this way, user clicks do not provide an absolute relevance judgement,

but they accurately provide the relative judgement between different search results.

Earlier works also proved that, for a given query, for a specific result, the probability

of click on that result decays with it’s position in the rank order. In other words, the

probability of click is not only influenced by the relevance of a result but also on its

rank in the search result page. The user’s behavior of clicking a higher ranked result

more often than a lower ranked result is known as position bias .

Previously, some researchers have made efforts to build the ranking system using

click-through data [5]. They have utilized supervised or semi-supervised machine

learning techniques to implicitly construct a ranking model using a given training

data. This approach is also referred as learning to rank technique. This learning to

rank method has been effectively applied to Web search and Information Retrieval

domain.

For example, Joachims [5] has proposed a ranking method that use Support Vector

Machine (SVM). In the proposed learning to rank approach, he formulated the ranking

process as the problem of learning with relative preferences are given as input. For

example, “for the given pair of documents (di, dj), di should be ranked higher to

dj with respect to a specific query q”. These pairwise preferences can be inferred

3

from the user click patterns. This is a classic pairwise learning to rank method.

However, this is an off-line approach. This approach needs the information of user’s

past activities (click-through data) to train the ranking algorithm.

Kemp and Ramamohanrao [6] have also proposed a method of learning to rank

using the click-through data. In their method, they represented every document and

query as a vector using the vector space model. Their learning method is based

on Document Transformation. The document transformation is an idea of moving

document vector towards a query which is known to be relevant to that document.

Their experiments have suggested that document transformation improves retrieval

performance over large collections of documents. However, this is an offline method

too.

Although enormous efforts have been made to improve the ranking quality using

the user click-through data, there is still significant misalignment between search

engine ranking and an end user’s preference order. This is evident from the fact

that, for many search results on major search and e-commerce platforms, many users

ignore the top ranked results and click on the lower ranked results. Nevertheless,

finding a ranking that suits all the users is a difficult problem to solve as every user’s

need is different. So, an ideal ranking is the one which is preferred by the majority

of the users. This emphasizes the need for an automated approach which improves

the search engine ranking dynamically by incorporating user clicks in the ranking

algorithm.

In my thesis work, I address this issue of misalignment between search engine

ranking and end user ranking. My thesis work helps to improve the search engine

ranking by resolving these misalignments. I propose a set of methodologies which

incorporate user clicks for dynamic update of search rank orders. The updates are

based on adaptive randomization of results using reinforcement learning strategy by

considering the user click activities as the reinforcement signal. Beginning at any

rank order of the search results, the proposed methodologies guaranty to converge

to a ranking which is close to the ideal rank order. Besides, the usage of reinforce-

4

ment learning strategy enables the proposed methods to overcome the position bias

phenomenon. To measure the effectiveness of the proposed methods, I perform exper-

iments considering a simplified user behavior model which I call color ball abstraction

model.

5

2 RELATED WORKS

The advent of computers and development of world wide web have made it is possible

to store huge volumes of information in the internet. At the same time people are

becoming more and more dependent on Internet for their information need. But,

considering the gigantic use of Internet, it is certainly unrealistic to expect an ordinary

user to identify the required information by simply browsing the web. As a result,

it has become a compulsion to identify an easy and efficient method to retrieve the

information from the web. This lead us to a new research area called Information

Retrieval (IR).

The Ranking is a key problem for Information Retrieval (IR). The process of

ranking the results is implicitly embedded in many IR problems such as key term

extraction, definition finding, sentiment analysis, collaborative filtering, document

retrieval, web spam detection, product rating and important email routing. In my

thesis, I primarily focus on document retrieval. In the document retrieval, a set of

documents is given for ranking. The ranking system takes a query as the input and

evaluates the documents to generate a score for every document, which is a criterion

for ranking the documents. In IR literature, many heuristic ranking methods are

proposed to handle the problem of document retrieval. In order to summarize these

models, I perform a categorization of these IR models.

2.1 Traditional Content Based Models

The early IR ranking models are based on the similarity between the query terms

to the document. Examples include Vector Space Model (VSM) [7] and Latent Seman-

tic Indexing (LSI) [8]. In the VSM model, queries and documents are represented as

vectors in the Euclidean space. The vector representation of documents and queries

6

can be achieved using TF-IDF (Term Frequency and Inverse Document Frequency).

The VSM model has a limitation that it assumes independence between the query

terms which is a major drawback of this approach. This limitation has made the

model unrealistic and inefficient. A user has various ways to express a given concept

in text. The users want to retrieve the information on the basis of overall conceptual

content of query rather than the meaning of independent word. The isolated words

may provide uncertain manifestation of the concept or meaning of a document or a

query.

The LSI model has been developed to over come the flaw of the term-matching

based information retrieval by treating the unreliability of observed term-document

relationship data as a statistical problem. They took the advantage of implicit la-

tent structure in the association of terms with documents using the Singular Value

Decomposition (SVD). They took a large matrix of term-document association data

and constructed a “semantic” space wherein terms and documents that are greatly

related are placed close to one another. The SVD permits the arrangement of the

space to demonstrates the vital associative patterns in the data, and ignores the triv-

ial influences. As a result, the terms that did not actually appear in a document may

still become highly related to the document, if that is consistent across the major

patterns of association in the data. Position in the semantic space then serves as the

new source for indexing, and retrieval process continues by using the terms in a query

to identify a point in the semantic space, then the documents in its corresponding

neighborhood space are returned to the user.

Thereafter, the researches have shown greater attention towards the models based

on the probabilistic ranking principle [9] such as BM25 and language model for IR.

These models uses the technique of Probabilistic Indexing . For a give request for

information, the Probabilistic Indexing process provides a statistical inference which

allows to find a relevance of each document to a given query. This relevance value is

a measure of the probability that a document fulfils the given query. The key feature

of BM25 [10] ranking model is to rank the given documents according to log-odds of

7

their relevance score. The language model for IR is a relatively common conventional

approach with different versions. The common basic approach for using language

model in IR is based on query likelihood model. In this approach the researchers

constructed a language model from each document in the given collection. Then

they ranked the documents according to query likelihood value. The query likelihood

value is a probability generated using the terms of the query based on language model.

Thereafter, many variants of language models for IR have been proposed. Some of

them are based on content similarity [11], topic diversity [12], K-L divergence [13]

and hyperlink structure [14].

2.2 Relevance Feedback Models

I broadly categorize the studies of measuring the retrieval system performance us-

ing relevance feedback methods into following two types, namely, Explicit relevance

feedback Models and Implicit relevance feedback Models

2.2.1 Explicit Relevance Feedback Models

These models are the pioneers of relevance feedback methods. The initial studies of

measuring retrieval systems performances have commonly used Cranfield methodol-

ogy (many tasks are discussed in [1]), which is based on relevance judgements provided

manually by human experts. In this approach, each query has a label that defines

the relevance of each document as per a graded relevance scale. Given a ranking pro-

duced by a retrieval system and the corresponding query, the retrieval system quality

can be assessed by aggregating the judgement of the top ranked documents. Metrics

such as NDCG (Normalized Discounted Cumulative Gain), Mean Average Precision

and Precision@n [15] can be used to aggregate over many queries yielding the overall

performance score.

Thereafter the relevance feedback raking has been relayed on hand designed rank-

ing functions like [16]. But later hand designing of ranking functions have become

8

extremely difficult and intractable with the addition of thousands of features for

ranking. Many machine learning algorithms have been applied for optimization of

the ranking function such as [17] [18]. But, huge number of training examples with

relevance labels are required to train the ranking functions based on machine learning

algorithms. The cost of generating these examples is very expensive. Besides, for the

time sensitive queries such as “President of United States”, relevance of document is

not fixed and varies over the time.

In 1994 Bartell et al. [19] proposed an approach based on mixture-of-experts by

which the relevance estimates made by different experts could be combined to provide

the superior retrieval performance. Their method of combining different rankings is

based on the gradient-descent technique. In this approach the rankings have seen

as real valued scores and the problem of combining different rankings has modeled

as a numerical search for a collection of parameters that minimize the discrepancy

between the combined scores and the feedback of expert. However, this approach is

also based on explicit relevance judgment.

A similar method was proposed by Cohen et al. [20]. In their approach, they

constructed the preference graphs based on rankings and the problem of ranking has

modeled as a combinatorial optimization problem. The formulation is NP-complete.

Hence, they used an approximation to combine different rankings. They have demon-

strated experimentally and theoretically that their method finds a combination that

performs near to the best of basic experts.

However, explicit feedback is expensive to collect. In real world setting, most of

the users are unwilling to give such feedback as this need additional effort. This makes

the labeled dataset small, and inadequate to work. Moreover in some domains, such

as, medical search [2], it is not feasible to gather relevance judgements. Furthermore,

some metrics based on human judgements such as Mean Average Precision (MAP)

and Precision at 10 documents (P@10) have been shown to not essentially correlate

with user-centric performance measures [3]. In 2006, Turpin et al. have investigated

user performance based on two simple tasks namely precision-oriented task, recall-

9

based task. Their experimental results proves that there is no significant relationship

between system effectiveness evaluated by precision based task with user performance

evaluated by the recall based task.

2.2.2 Implicit Relevance Feedback Models

Eventually, to overcome the drawbacks of explicit feedback, many researchers have

concentrated on ranking using the data collected implicitly from the user such as

user click-through data, time spent on particular page and activities like printing

and bookmarking/annotation. A click-through is a link click event, when he see

the retrieved documents of their search endeavor. This approach is based on the

hypothesis that the documents are more likely to be relevant if the user click on it.

Click-through data embed important information about the user satisfaction. It is

possible to enhance the performance of information retrieval systems by taking and

investigating the user past activities. Every day number of people interact with web

search engine which eventually generates enormous amount of user click-through data

containing vital implicit feedback.

Even though we have ample click-through data we must take care while leverage

it as implicit feedback, since user behavior is impacted by document’s order. Clicks-

through data is biased by the presentation order of the documents. Understanding

how user access the search results is the key aspect to deduce implicit preferences

from click-through log-files. Because we can only extract valid implicit feedback for

results that user has literally observed at and assessed. So, better understanding of

a user behavior will allow us to get more factual inferences about relating implicit

feedback with relevance judgements.

The primitive research works related to learning the user behavior was based on

passively recorded user navigation actions namely hyper-links clicked and hyper-links

passed over. In [21] [22] they have used these behavior as the factors to evaluate the

user interest in a page. But in [23], Jeremy Goecks and Jude Shavlik have attempted

10

to learn the user’s interest by unobtrusively observing his actions like user mouse

scrolling actions along-with the browsing activity. They have built an agent based

on the standard neural network to find the user’s interests in the World Wide Web.

Their experiment suggests that the agent can learn to predict accurately.

In 1994, Mortia and Shinoda [24] have estimated the interrelationship between

reading time and user interest. And they inferred that user interest levels can be

found using the amount of time they have spent on reading the page. They deduct

this by experimenting on USenet news articles readers. Advocating this, in 1997 [25]

Konstan has showed that user’s interest levels could be greatly influenced by reading

time. In their GroupLens system, they showed that reading time is the strong factor

to deduct the user’s interest level.

In 1998, Douglas W. Oard and Jinmook Kim [26] have identified different sources

of implicit feedback and provided the methods to use them in recommender sys-

tems. First category is “examination” which seeks to get the ephemeral interactions

throughout a session. Second category is “retention”, this group of user behaviors

which recommend an intention for use of material in future. Third category is “refer-

ence”, which has the group of user behavior that construct explicit and implicit links

between information objects.

In 2004, Laura et al. [27] investigated how users interact with the result page

of a WWW search engine using eye-tracking. The key insight of their work is to

understand how the users browse the exhibited abstracts and how they click links

for further inspection. They performed an experiment with 36 participants. All

participants were undergraduate students of different majors at a large university

in Northeast USA. They have given 10 questions and answers. 5 among them are

homepage searches, and rest of them are informational searches [28]. The questions

have chosen from various difficulty levels and topics, namely science, movies, local

politics, college etc .

The first aspect of their eye-tracking experiment is to find how does rank influences

the fixation time. From their experiment they have inferred the following facts. For

11

the abstracts presented at rank 1 and rank 2, the mean time the users fixate on the

abstract is approximately the same. But this contradict the known fact that users

considerably more often click on the link at rank 1. The fixation rate drops down

abruptly for the abstracts after rank 2. For the abstracts at rank 6 and rank 7, the

fixation time and the number of clicks are approximately the same. For the abstracts

at rank 6 to 10, each abstract has received almost equal attention which is not the

case with rank 1 to 5. This is because of the fact that usually only the first 5-6

abstracts were appeared without scrolling down. So, once the user has scrolled down,

the document order is insignificant for user attention.

The second valuable aspect is to understand how does an user explore the list.

While leverage the user actions as implicit feedback about performance of a retrieval

system, it is essential to understand how diligently users have evaluated the exhibited

results before making any selection. To understand how the users explore the list,

they have determined how many results above and below the clicked result users scan

on average. They have identified that the number of links observed below a click is

low after rank 1, which means that users have scanned the list from top to bottom.

comprehensively, the users who clicked lower ranked results viewed proportionately

more abstracts.

In [4], the authors have attempted to build a model of query-dependent devia-

tions using implicit feedback. Their model of click-through interpretation has better

prediction accuracy over contemporary standard click-through models. In their work,

they have derived 4 different models for predicting user preferences namely Baseline

Model, Click-through Model and General User Behavior Model. The performance of

their model wasn’t the same for all queries. For example, performance was poor for

queries with multiple meanings. So this approach has given new direction of clustering

the queries and learning different predictive models for each group of queries.

Kemp et al. [6] presented an approach based on document expansion and trans-

formation for learning from a search engine. They have used click-through data for

document expansion. The documents clicked are highly relevant to the query, they

12

assumed. They expanded the document by adding the query words to the docu-

ment clicked. Their work advocates that altering the content of indexed document

in relation to the past selection behavior as a means to keep the documents much

closer to corresponding queries. Indexed term vector of document are added with the

query terms for which a document got selected. This action is similar to imperatively

weighing those terms in document. Subsequently, this directs the document to drift

towards the query terms for which it was selected before. They have shown that

document transformation can be used to reinforce retrieval performance over large

set of web pages.

In [5], Thorsten Joachims has presented an approach which takes the click-through

logs to train the search engine rankings, based on Support Vector Machines. Here,

the key aspect is that the click-through data can provide the information of relative

preferences. They have formulated the problem of learning ranking function over a

finite domain with regards to the risk minimization. They have presented a raking

SVM algorithm which leads to convex program which can provide non-linear ranking

functions. Their experiments shows that raking SVM approach can successfully learn

the most efficient learning function.

Later, many researchers have made an attempt to model user click behavior during

search. Their idea is to accurately predict the future clicks employing the past click-

through logs. Broadly, these click models can be categorized into two types, such as

the “position model” [29] [30] and the “cascade model” [29] [31]. The assumption in

position model is that a click depends on its relevance and examination as well. So if

a document is clicked means the document is examined and felt relevant by the user.

The cascade model assumes that user examines the results from top to bottom and

finishes the search once relevant document is clicked. In this model the probability

of examination depends on both rank and relevance of previous documents. Both of

them have their own pro and cons. The position model deals the different documents

in a search results page independently. So this model fails to seize the interaction

among the documents in the examination probability. The cascade model has a strong

13

assumption that there is only one click per search so it fails to explain search having

more than one clicks.

None of the above user click behavior models has distinguished the perceived

relevance and actual relevance. In 2009, Olivier Chapelle [32] has proposed a Dynamic

Bayesian Network based approach which provides the unbiased estimates from the

click-through logs. Their model is different from the previous ones in two aspects.

They assumed that click doesn’t essentially signifies that the user is satisfied with

it, so they have accounted both perceived relevance and actual relevance. They also

didn’t limit the number of clicks in a search.

In 2006 Radlinski and Joachims [33] has proposed an approach based on modi-

fication to search result presentation which gives relevance judgements that are not

impacted by the presentation bias under some rational assumptions. They have build

a model which is based on two assumptions. First assumption states that user contin-

ues his search endeavor until he finds any sufficiently relevant document. That also

means that user doesn’t skip over a result if he recognizes and finds it to be relevant.

Let me define a few terms namely Item Relevance Score and Ignored Relevance Score

before describing the second assumption. In a particular ranking, if a particular doc-

ument d1 is replaced with a less relevant document d2 while keeping remaining all

unchanged, the difference between the probability of d1 being selected and the prob-

ability that d2 being selected is the Item Relevance Score. In a particular ranking,

if a particular document d1 is replaced with the more relevant one d2 while keeping

remaining all unchanged, the difference between the probability of the user selecting

the next document (after the replaced one) and the probability without the change

is the Ignored Relevance Score. The second assumption they made is that Ignored

Relevance Score is smaller than Item Relevance Score.

They have presented an algorithm based on FairParis. The main idea of their

algorithm is to randomize part of the presentation order to remove the impact of

presentation bias with the help of minimum number of modifications to the ranking.

Their idea is to divide the ranking documents into a set of FairPairs. Then each

14

pair of results are considered independently, and flipped with 50 percent probability.

Then they take this result set and present to the user and record the clicks on each

document. The key idea in this process is that half of the documents will be presented

in the original rank, and all documents will be presented together one rank from the

original rank. Every time the lower document in a pair that has considered for flipping

is clicked means the lower ranked document will be preferred over the one above one.

They also proved that learning with data from FairPairs will converge to an ideal

ranking if the ranking exists.

15

3 COLOR BALL ABSTRACTION MODEL

In World Wide Web search scenarios, user behavior is complicated. Creating such

user behavior model in the lab to analyze search ranking is nearly impossible. This

led us to built a simplified user behavior model which I refer as color ball abstraction

model. The details of this user behavior model are given in subsequent paragraphs.

In a typical web search endeavor, for a specific query, every user’s need is different.

The result expected by one user may not necessarily match with the expectation of

other user. So, the best ranking is to order the results in such a way that number of

users who expect the top ranked result is greater than that of a lower ranked result.

This suggests the notion of distribution of users over the results. Hence, for a given

query, I assume that the user forms a probability distribution over the result set,

which I refer as market demand distribution.

The above described distribution can also be derived from another perception.

Assume that, the user prefers every search result with some extent. Then, a user’s

interest distribution over the search results can also be represented with a probability

distribution. That means every user has his own distribution based on his preference

over different search results. Then, for a given set of users in the market, I aggregate

the individual distributions of all users which produces a consensuses distribution.

This resulting distribution gives the other way of representing the market demand

distribution over the considered result set across all the users.

In a nutshell, for a given result set and pool of users, the market demand distri-

bution can be viewed as the average user interest distribution over the given result

set. In the other approach, for a given specific result, its corresponding probability

value in market demand distribution gives the number of users who prefers the result.

However, in all of the experiments, I have considered the probability values of market

demand distribution as the indication of number of users who prefers the result.

16

In a generic web search or e-commerce search platform, for an online search query,

the size of relevant results is typically limited to a small number. This is evident from

the fact that only a few users are willing to view/click the results presented after the

first page. So, the user click activities after the first page are not useful to infer the

implicit feedback. As the approach I put forward is based on the user click events

in web search, it does make sense to restrict the relevant result set to the results

in the first page. In a typical web or e-commerce search platform, the number of

results shown in the first page is between 20-25. Hence, in the proposed simplified

user behavior model, I assumed that the relevant result set has only 20 results.

3.1 Types of Market Demand Distribution

For the experimental purpose, I classify the search queries into different categories

based on corresponding market demand distribution. Following are the types of

distributions that I have considered.

Top3Biased Distribution: This distribution occurs for an easy query. For this

type of query, the majority of the users are interested in a very small set of

results. These results accommodate the substantial amount of user interest in

the market. So, the market demand distribution is skewed towards these results.

The above mentioned name “Top3Biased Distribution” refers to a distribution

in which the significant amount of user interest is held by only top 3 results.

The Figure 3.1 shows the histogram representation of a typical Top3Biased

Distribution.

Example queries: Statue of liberty and Eiffel tower.

TwoCluster Distribution: This distribution occurs for an ambiguous query. For

this type of query, the user interest can be clustered over a disjoint set of results.

Each result set illustrates a specific meaning of that query. Figure 3.2 shows the

histogram representation of a typical TwoCluster Distribution. In the figure,

the results 1-10 belong to one cluster and the results 11-20 belong to another

17

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

P
ro

b
a
b
il
it

y
 v

a
lu

e

Item Type

Top3Biased multinomial distribution

0.
01
51

0.
03
99

0.
06
05

0.
00
77

0.
03
85

0.
06
65

0.
03
75

0.
01
0

0.
03
32

0.
04
48

0.
03
5

0.
04
75

0.
13
2

0.
12
8

0.
01
73

0.
05
95

0.
03
45

0.
12
0

0.
05
7

0.
01
55

Figure 3.1.: Top3Biased Distribution

cluster.

Example queries: Java. For this query, the results 1-10 may corresponds to

the Java island which is located at South-East Asia, On the other hand, the

results 11-20 may refer to Java language which is a popular computer program-

ming language.

NearUniform Distribution: This distribution occurs for a difficult query. For this

type of query, the user interest is almost uniformly distributed over all the

results. In this distribution, the probability values are closely-packed. Figure

3.3 shows the histogram representation of a typical NearUniform Distribution.

Example queries: The query iPhone in e-commerce search platform. This

query is a difficult query since the same iPhone is available from many sellers.

In this case, the ranking is too difficult as all the results represent the same

product, and all results receive the same user interest level.

18

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

P
ro

b
a
b
il
it

y
 v

a
lu

e

Item Type

TwoClustered multinomial distribution

0.
02
3 0.

02
7

0.
02
2

0.
01
4 0.

01
7

0.
02
9

0.
02
2

0.
02
1

0.
01

0.
01
5

0.
09
2

0.
08
8

0.
08
4

0.
05
2

0.
10
8

0.
08
8

0.
05
6

0.
06
8

0.
10
4

0.
06

Figure 3.2.: TwoCluster Distribution

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

P
ro

b
a
b
il
it

y
 v

a
lu

e

Item Type

N���������� �	
�������
 ������	����

0.
03
56 0.

03
9

0.
05
76

0.
03
94

0.
05
76

0.
03
84

0.
05
76

0.
06
6

0.
06
86

0.
03
84

0.
06
58 0.

07

0.
05
64

0.
04
96

0.
05
76

0.
04
33

0.
03
77 0.

04
31

0.
03
74 0.

04
09

Figure 3.3.: NearUniform Distribution

3.2 User Behavior Under Color Ball Abstraction Model

I assume that the environment has infinite supply of balls of r distinct colors say

blue, green, red, yellow etc. I also assume that a user is interested in buying only a

19

particular colored ball. I show the different colored balls in a sequence. This sequence

is an analogy to the ranking task in an online search. If the user’s interest matches

with the color of the first ball, he buys it and stops his search endeavor. If the user is

not interested in the current ball, he continues his search endeavor with an arbitrary

but fixed probability. I refer this probability as patience index (p).

In the above Color Ball Abstraction Model, I introduce patience index to model

the impact of position bias. Position bias is the phenomenon that a user is more

likely to click a top ranked result than a lower ranked result even if the results are

equally relevant. On the other hand, patience index denotes the fraction of users who

examines the next ball if she is not interested in the current ball. Thus, patience

index has a value between 0 and 1. Thus, the number of users who examines the

next ball is lowered every time from the beginning of sequence to the end. If patience

index is 0.6, it means that out of 100 only 60 times the user will look for the next

ball. If the patience index is zero, the user will not continue his search if he does not

find ball of his interest in the first location. Whereas if the patience index is 1.0, he

will continue the search until he finds the ball of interest. I also assume that for each

user the ball of interest is available somewhere in the list.

I define, the efficiency of a model as the ratio of total number of balls sold to

the number of users visited. This gives a value between 0 and 1, which is the per-

centage of users that are satisfied with the retrieval system. The learning task that I

am investigating is to discover the distribution of user interest which maximizes the

efficiency of the model. Mathematically, the efficiency of a model can be represented

as follows.

efficiency =

∑R

i=1 sold(i)

nCustomers

20

Where

R represent total number of items considered.

sold is the vector of size R that contains the number of sales for each item.

nCustomers is the number of customers visited the model.

I first consider the obvious scenario, where no knowledge of user’s preference over

different colored balls is available. This assumption helps to find out the baseline

efficiency of color ball abstraction model. As we don’t have any prior knowledge,

this baseline value of efficiency for this model can be calculated by uniform random-

ization of the balls. Since this assumption is the worst case scenario, the uniform

randomization process gives a lower bound of the efficiency value for a general case.

Following theorem provides a mathematical formulation for computing the efficiency

value using the process of uniform randomization of balls.

Theorem 3.2.1 For a Color ball abstraction model, if r is the number of different

colors of the ball, Z = {z1, z2, z3, ..., zr} is the market demand distribution over balls

with different colors, and p is the patience index then the baseline efficiency value

(effbaseline) can be computed as 1
r(1−p)

.

As the results are uniformly randomized, for a given user, the probability of occurrence

of ball of his interest in each position is the same, which is equal to
(

1
r

)

.

The total probability of purchase for a user =

r
∑

i=1

pi−1

r

=

∑r

i=1 p
i−1

r

=
1− pr

r(1− p)

=
1

r(1− p)
(As p < 1, pr ≈ 0)

From the above expression, it is clear that for uniform random permutation, the

probability of purchase for a given user is only dependent on the patience index (p)

21

and the total number of color of balls (r). Thus, this probability of purchase is

identical for every user regardless of the color of ball he is interested in.

Hence, the expected number of customers that makes a purchase out of n customers

=
n

r(1− p)

eff =
n

r(1− p)
×

1

n
(by definition of the efficiency)

=
1

r(1− p)

At the other spectrum of the obvious scenario is total knowledge scenario, where

the market demand distribution is completely known. In that case, the maximum

efficiency can be achieved by ordering the balls in non-increasing order of their cor-

responding probability value. The following theorem proves this claim.

Theorem 3.2.2 For a Color ball abstraction model, if r is the number of differ-

ent colors of the ball, Z = {z1, z2, z3, ..., zr} is the market demand distribution over

balls with different colors, p is the patience index and Zs = {zs1, zs2, zs3, ..., zsr} is a

sorted vector according to non-increasing order of Z. The maximum efficiency can be

achieved by presenting the balls in an order Rs corresponding to Zs.

Let me take any arbitrary permutation of Z as Ra = {za1, za2, za3, ..., zar}. Then

efficiency of the system using the permutation Ra would be

effRa
= (za1) + (za2 × p) + ... + (zam × pm−1) + ...

+(zan × pn−1) + ...+ (zar × p(r−1))

Let me assume that Ra is not in non-increasing order. Then, there exist a pair of

positions m and n in Ra such that m < n and zam < zan. Now, I swap the balls at

position m and n to create a new permutation Ra
′ . Then the efficiency of the system

using the ranking Ra
′ would be

effR
a
′
= (za1) + (za2 × p) + ... + (zan × pm−1) + ...

+(zam × pn−1) + ...+ (zar × p(r−1))

22

Subtracting the efficiency of Ra from Ra
′

effR
a
′
− effRa

= (zan × pm−1) + (zam × pn−1)− (zam × pm−1)− (zan × pn−1)

= (zan × pm−1)− (zan × pn−1) + (zam × pn−1)− (zam × pm−1)

= zan × (pm−1 − pn−1)− zam × (pm−1 − pn−1)

= (pm−1 − pn−1)× (zan − zam)

As we already know 0 < p < 1 and m < n, implies (pm−1−pn−1) > 0, from the above

assumption zam < zan implies (zan − zam) > 0.

Since both the terms are positive, I can conclude that

effR
a
′
− effRa

= (pm−1 − pn−1)× (zan − zam) > 0

effR
a
′

> effRa

From the above expression, the efficiency of model can be improved by swapping the

results zam and zan. I can repeatedly apply this to all
(

r

2

)

pair of terms which in turn

converts Ra into Rs. Thus, the permutation Ra has the best efficiency. So, the best

efficiency of the model can be mathematically represented as follows.

effmax = (zs1) + (zs2 × p) + ... + (zsm × pm−1) + ...+ (zsr × p(r−1))

23

4 PRELIMINARIES

In this chapter, I introduce the definitions, notations and terminology which will be

used throughout my thesis. In the typical web search activity, a user initializes search

endeavor by submitting a query to search engine. The search engine evaluates the

query and sends back the results in a specific ranking order. Here, I use the terms

document, items, balls (in color ball abstraction model) and results interchangeably.

I also refer the users as the customers in color ball abstraction model.

4.1 Definitions

Following are the terms and their definitions, which will be used in later chapters of

my thesis.

Split position: This is the transformation point where the color ball abstraction

model moves from exploration phase to exploitation phase. At this point the

model stops the process of learning by randomizing the documents, but uses

deterministic permutation over learned probabilities to maximize the revenue.

Deterministic Permutation: This permutation over a distribution (say Z) refers

to arranging the items in non-increasing order of corresponding value in distri-

bution Z. This permutation is fixed for a given distribution unless tie situation.

Mathematically, this can be presented as follows.

Let the distribution and corresponding item set are Z = {z1, z2...zr} and E =

{e1, e2...er}. If the distribution Zsort is sorted vector according to non-increasing

order of Z. Let Zsort = {zs(1), zs(2)...zs(r)}, i.e. zs(1) >= zs(2) >= ... >=

zs(r−1) >= zs(r). The deterministic permutation over Z refers to the permutation

Edetermin = {es(1), es(2)...es(r)}.

24

Probabilistic Permutation: The probabilistic permutation over a distribution (Z)

refers to presentation order by probabilistically choosing every item from the

distribution Z.

Let the distribution and corresponding item set are Z = {z1, z2...zr} and E =

{e1, e2...er}. Then, the probabilistic permutation (Epp) over Z is as follows.

Epp = {epp(1), epp(2)...epp(r)}

The probability an item to be in the first position of permutation is

Pr(epp(1) = e1|Z) = z1

Pr(epp(1) = e2|Z) = z2

....

P r(epp(1) = er|Z) = zr

The probability an item to be in the second position of permutation can be

represented as follows.

Let epp(1) = e1 and Z ′ = {z′2, z
′
3, z

′
4...z

′
r} is the normalized distribution of Z after

taking out element corresponding to the first position of permutation (z1). i.e.

Z ′ is the distribution of size r − 1.

Pr(epp(2) = e2|epp(1) = e1, Z) = z′2

Pr(epp(2) = e3|epp(1) = e1, Z) = z′3

...

P r(epp(2) = er|epp(1) = e1, Z) = z′r

Similarly, the probability an item to be in the third position of permutation can

be represented as follows.

25

Let epp(1) = e1, epp(2) = e2 and Z ′′ = {z′′3 , z
′′
4 ...z

′′
r } is the normalized distribution

of Z after taking out elements corresponding to the first and second positions

of permutation (z1 and z2). i.e Z ′′ is the distribution of size r − 2.

Pr(epp(3) = e3|epp(1) = e1, epp(2) = e2, Z) = z′′3

Pr(epp(3) = e4|epp(1) = e1, epp(2) = e2, Z) = z′′4

...

P r(epp(3) = er|epp(1) = e1, epp(2) = e2, Z) = z′′r

As we chooses the items probabilistically, the final outcome of each try (pre-

sentation order) may not be identical with the subsequent trails. So, unlike

the deterministic permutation approach the presentation is not unique in this

approach. There is always chance for exploration in this permutation. But, be-

cause of characteristic of probabilistic selection of the items, most of the times

we can expect the outcome to be close to the deterministic permutation.

4.2 Performance Evaluation Metrics

To evaluate the performance of the proposed algorithm, I used standard metrics like

precision at n (P@n), Discounted Cumulative Gain (DCG), Normalized Discounted

Cumulative Gain (NDCG) and Kendall tau rank correlation. These metrics are

extensively used for comparing the rankings in information retrieval domain.

Precision at n (P@n) [34]: This metric denotes the relevance of first n documents

of a given query. For example, if the relevance of the first 10 documents returned

for a query are {1, 1, 0, 1, 0, 0, 1, 0, 1, 0}, where 0 denotes non-relevant and 1

denotes relevant document. Then precision at 1 to precision at 10 would be

{1

1
,
2

2
,
2

3
,
3

4
,
3

5
,
3

6
,
4

7
,
4

8
,
5

9
,
5

10

}

.

26

For a given query the precision at n (P@n) metric is defined as follows.

P@n =

∑n

i=1 r(i)

n

where r(i) denotes the relevance of ith document in ranking list.

Discount Cumulative Gain (DCG) [35]: For any given ranking list of size n, the

Discount Cumulative Gain can be calculated as follows.

DCG =

n
∑

i=1

2r(i) − 1

log(i+ 1)

where r(i) denotes the relevance of ith document of ranking list. The numerator

term 2r(i) − 1 denotes the gain for the ith document of ranking list, where the

term 2r(i)−1
log(i+1)

denotes the discounted gain. So the term
∑n

i=1
2r(i)−1
log(i+1)

gives the

cumulative gain over all n documents.

Normalized Discount Cumulative Gain (NDCG) [35]: This metric gives the

ratio of the DCG value of current ranking to the maximum DCG. The max-

imum DCG could be found for the perfect ranking. The NDCG can be cal-

culated by multiplying the DCG with constant Zn, which is a normalization

constant. This should be chosen in such a way that perfect ranking gets the

NDCG value as 1. Following is the mathematical representation of NDCG

calculation to the given ranking of the size n.

NDCG = Zn ×

n
∑

i=1

2r(i) − 1

log(i+ 1)

where r(i) denotes the relevance of ith document in ranking list.

Kendall tau Rank Correlation: [36] This metric assess the degree of association

between a pair of ranking orders. This rank correlation coefficient relies upon

27

the number of inversions of pairs of documents which would be needed to reor-

ganize an order to reach the other order. Before giving mathematical definition

of Kendall tau rank correlation, let me define terms concordant pairs and dis-

cordant pairs which will be useful in calculating this metric.

Let A = (a1, a2..., an) and B = (b1, b2, ..., bn) be any two ranking permutations.

Any pair of documents at position i and j i.e. (ai, aj) and (bi, bj) could be

considered as concordant pairs if both ranks agree with the document’s order.

That means, either ai > aj and bi > bj or ai < aj and bi < bj . Similarly,

they could be considered as discordant pairs if both ranks disagree with the

document’s order, that means, either ai > aj and bi < bj or ai < aj and bi > bj .

Mathematically, the Kendall tau rank correlation is defined as follows.

T =
CP − DP

CP +DP

Where, CP denotes the count of concordant pairs and DP denotes the count

of discordant pairs. T = 1 represents that both rankings are absolutely the

same. On the other hand, T = -1 represents that the rankings are completely

contradictory. This value vary between [−1, 1].

28

5 BACKGROUND

In this chapter, I would be introducing concept of learning automata which I have

used in my proposed algorithm.

5.1 Learning Automata

An automata can be considered as a learning agent (automaton) operating in an

abstract random environment. The automaton has choice among a finite set of allow-

able actions. We consider that these actions are performed recursively in the random

environment. In each decision making process, the automaton chooses an action from

those set of available actions. The random environment evaluates the action and gives

a response among a set of allowable outputs. These outputs are probabilistically con-

nected to the action chosen. This response from the environment will be used by the

automaton for finding future actions. The idea of learning automata is to regulate

how the selection of action at every stage should be guided according to past actions

and responses. By repeating this process the agent learns to select the action having

the best reward. Automaton uses a learning algorithm to find the next action from

responses of the past actions. The key insight here is to ensure that the decision will

be made with minimum information about the environment.

In a nutshell, the learning automaton can be considered as an automaton that

improves its performance by performing actions in an abstract random environment.

The automaton objective is to find the optimal action. The optimal action has the

highest probability of producing the favorable output. This optimal action is unknown

to the learning agent (automaton). The agent explores over all actions and uses the

response of the environment to identify the optimal action. This process of automaton

29

acting in unknown environment to improve its performance in specific fashion is

referred as learning automata (LA).

In the following sections, I provide precise description of the entities that an

learning automaton consists of.

5.1.1 Environment

The term environment can be considered as a “large class of general unknown media

in which an automaton or group of automaton can operate” [37]. Mathematically, a

binary environment (P-Model) (Figure:5.1) can be defined as the following triplet.

{

α, c, β
}

where α = {α1, α2, α3...αr} is a finite action set, β = {β1, β2} is the environment

response set and c = {c1, c2...cr} is a set of penalty probabilities, where each ci

corresponds to one action αi.

A specific action α(n) belongs to the set α is the input to the environment which

can be chosen at discrete time t = n (0, 1, 2...). The response of the environment for

the action α(n) is referred as β(n), which can take either β1 or β2 in a binary environ-

ment. For mathematical advantage, these two values are represented as 0 and 1. An

output β(n) = 1 is considered as unfavorable response or penalty or failure, whereas

β(n) = 0 is considered as favorable response or reward or success. The element ci

refers to the probability of getting unfavorable response for the specific action αi.

This value represents the behavior of environment for the action αi. Mathematically,

the element ci can be represented as follows.

Pr(β(n) = 1|α(n) = αi) = ci, where i = (0, 1, 2...r)

30

Environment

C={c1, c2,c3�cr}

Input/Actions

�={�������r�

Output/Response

β={0���

Figure 5.1.: Binary Environment (Ref: Learning Automata an Introduction)

5.1.2 Automaton

The automaton can be considered as the set of abstract systems that interact with

the random environment. Primarily, the automaton outputs the series of action by

taking the series of responses. Mathematically, an automaton (Figure:5.2) can be

represented with a quintuple.

{

φ, α, β, F (., .), G(., .)
}

.

Where the term φ denotes the internal states of the automaton. At any given instant

n the state of an automaton can be referred as φ(n), which belongs to the finite set

φ.

φ = {φ1, φ2...φs},

The output of automaton (action to be chosen) at instant n is α(n), which belongs

to the finite set α,

α = {α1, α2...αr}.

The input of automaton at instant n is β(n), which belongs to the finite set β.

β = {β1, β2} or {0, 1} for a binary environment.

The transition function F regulates the state at the current instant (n + 1) w.r.t

previous state and response of the environment.

φ(n+ 1) = F
[

φ(n), β(n)
]

,

31

The output function G identifies the output of the automaton at the instant n

w.r.t to the current state.

α(n) = G
(

φ(n)
)

.

Based on the characteristics of the transition function (F) and output function (G),

the automaton can be classified as deterministic automaton and stochastic automa-

tion.

The state

�={�1� �������r�

�nput�Response

β={0�1�

Output� ctions

!={!1� !"#!r�

Transition Function

$:% Xβ �

OutputFunction

G:% &

Figure 5.2.: Automaton (Ref: Learning Automata an Introduction)

5.1.3 Deterministic Automaton

In this type of automaton, the transition function (F) and output function (G) are

deterministic mappings. In this case, for a specific initial state and response of the

environment the actions to be chosen are predefined. That means for every instant

that we come across same combination of state and environment response the output

action is the same. In other words, if the input set (environment responses) is finite,

the transition function (F) and output function (G) can be simply represented as a

matrix or a graph.

32

5.1.4 Stochastic Automaton

In stochastic automaton, at least one of these functions F and G is stochastic. The

outcome (actions to be chosen) of the automaton varies with the instant (n) even-

though the input and state of automaton is identical.

If the transition function F is stochastic for the specific state (φi) and input

(β), the next state is not unique. Therefore, the function F gives the probability

distribution of reaching those states. F can be represented as the set of conditional

probability matrices F (β1), F (β2)..F (βm) (for binary m=2), where each matrices is

of the size s× s, whose entries fβ
ij can be represented as follows.

f
β
ij = Pr{φ(n+ 1) = φj|φ(n) = φi, β(n) = β}

i = 1, 2, 3 . . . s

j = 1, 2, 3 . . . s

β = β1, β2 . . . βm

Likewise, if G is stochastic, G can be represented by set of conditional probability

matrices of size s× r. The entries of gij can be represented as follows.

gij = Pr{α(n) = αj|φ(n) = φi}

i = 1, 2, 3 . . . s

j = 1, 2, 3 . . . r

The stochastic automaton can be further divided into fixed structure and variable

structure automata.

Fixed structure stochastic automata: In the fixed structure automaton the stochas-

tic transition functions (F and G) have a fixed probability distribution. These

functions have specific fixed distribution regardless of the time (n) and input.

33

Variable structure stochastic automata: The basic operation performed by a

Variable structure stochastic automata is the updating of action probabilities

with respect to response of the environment. Greater flexibility can be achieved

in stochastic learning automata models by modeling general stochastic system

by which the state transition probabilities can be updated with the time using

a reinforcement scheme.

5.2 Behavior of Learning Automata

The fundamental objective of learning automata is to justify the intuitive notion of

learning. Norm of behavior are the features of learning automata that are necessary

to evaluate the learning process. For a specific action probability vector, Average

penalty (M(n)) is one such feature which plays a key role for the comparison of

different automata. For example, at some point of learning process, if the action αi

is chosen with probability pi(n) then average penalty given p(n) can be calculated as

follows.

M(n) = E
[

β(n)|p(n)
]

= Pr
[

β(n) = 1|p(n)
]

=

[

r
∑

i=1

pi(n)ci

]

Expedient: Learning automata is said to be expedient when the learning automation

average penalty is less than choosing actions absolute random manner. In this

case it is only guaranteed that learning automata can only perform better than

pure random selection. Which means it may not be necessarily optimized.

lim
n→∞

E
[

M(n)
]

< M0

34

Where M0 is the average penalty for an absolute random strategy.

Optimal: To improve the performance of learning automata, it is advisable to choose

the selection of actions such a way that average penalty can be minimized. In

this case, the automata is known to be optimal. The optimality ensure that

the automata asymptotically chooses the action having the least penalty with

probability one. The optimality can be represented as follows.

lim
n→∞

E
[

M(n)
]

= c∗

Where c∗ is the minimum value of the penalty set i.e. {c1, c2...cr}

ǫ-optimal: Achieving the optimality in a real-life situation is not generally possible.

In this case sub-optimal performance ǫ-optimal might comes in handy. This

means the average penalty of learning automata gets close to the least value.

We can make it as close as we want. This behavior can be mathematically

represented as

lim
n→∞

E
[

M(n)
]

< c∗ + ǫ

Absolutely Expedient: The feature called absolutely expedient is useful in judging

the behavior of learning automaton. Learning automaton is said to be absolutely

expedient if average penalty is absolutely monotonically decreasing at every

instant (n) of iteration process.

E
[

M(n + 1)|P (n)
]

< E
[

M(n)
]

5.3 Variable Structure Stochastic Automata

As described in the previous section, the variable structure stochastic automata, mod-

ifies the action probabilities or transition probabilities. Mathematically, the variable

structure stochastic automata can be represented as follows.

35

{φ, α, β, A(., .), G(., .)},

Here, A is a general updating scheme for action probability vector (P), where

as the other symbols holds the definition given in previous section. A can also be

referred as reinforcement scheme.

5.3.1 Reinforcement Schemes

To justify the notion of learning in automata, it is necessary to update the action

probability vector (P) in every step. This learning algorithm will be referred as

Reinforcement Scheme. Because of this it is evident that reinforcement scheme has

vital role in the performance of a learning automata. Reinforcement scheme can be

commonly described as follows

p(n+ 1) = T
[

p(n), α(n), β(n)
]

where T is an operator and P (n) is the action probability vector at an instant t.

Reinforcement schemes can be classified either on the basis of behavior exhibited

by the learning automaton (optimal or expedient) or on the character of function (T)

used in scheme (non-liner, linear and mixed). Each of them have various types of

convergence of action probabilities and different rates of convergence. The detailed

discussion about the convergence of learning automaton can be found in subsequent

sections.

The key idea in the reinforcement scheme is quite straightforward. For any action

αi chosen by learning automation, if a penalty input occurs then probability of pi(n)

will be decreased and all other elements probability is increased by the same factor.

But, sometimes the transition probabilities may be unaltered even for penalty which is

known as inaction. For a non-penalty input then probability of pi(n) will be increased

and all other actions probabilities will be fairly decreased.

36

5.3.2 Asymptotic Behavior of Variable Structure Stochastic Automata

For the variable structure stochastic automata, the asymptotic behavior of learning

automata is purely dependent on the characteristics of the reinforcement model. The

convergence of ergodic schemes are completely different form the absolutely expedient

schemes.

Absolutely Expedient Schemes: For the learning automata using absolutely ex-

pedient schemes the action probability vector converges to one of the action

with probability close to 1, which are known as absorbing states or absorbing

barriers. The initial value of probability vector p(0) plays the key role in selec-

tion of the absorbing state by the learning automata. The linear reward and

inaction schemes (LR−I) are the best example for these schemes.

Since this automata chooses only a single action with probability close to 1 and

remaining all actions receives the negligible value, this model is not suitable for

ranking problems. If we can generate the relative preference among the actions

that could be ideal for solving the ranking problems.

Ergodic Schemes: The characteristics of learning automata based on ergodic schemes

are totally different with absolute expedient schemes. This model exhibits dif-

ferent mode of convergence than previous scheme. This scheme exhibits the

distance diminishing property. This is the reason for ergodic behavior of the

scheme. The action probability vector p(n) converges to random vector p∗ whose

values are independent of initial value of action probability vector p(n).

The example for these schemes are linear reward and penalty schemes (LR−P),

provided if the environment is stationary and it doesn’t have a pure optimal or

negative (ci = 0 or 1) action. For LR−P scheme the action probability vector

p(n) converges to p∗ whose values are inversely proportionate to average loses.

This scheme stabilizes p(n) at this equilibrium point.

Hence, these schemes stabilizes p(n) at the equilibrium point, it makes these

model highly suitable for solving the ranking problems. We can use the individ-

37

ual action probability values of p∗i ǫ p
∗(n) can be used as the relative preference

judgments of the corresponding action. In the simulation I have implemented

Bush-Mosteller scheme (LR−P) to solve the ranking problem.

5.3.3 Bush-Mosteller Scheme

This is one of the commonly used linear reward and penalty reinforcement scheme.

This model was proposed by the Bush and Mosteller. This scheme can be represented

in the following vector form.

p(n+ 1) = p(n) + γn ×

[

e(xn)− pn + βn

(

eR − R× e(xn)
)

(R− 1)

]

where

pi(n) > 0 (i = 1, 2 . . .R),

γn(Correction factor) ǫ (0, 1),

βnis response of the environment at time n,

eR = (1, 1, . . . 1)T Vector of R dimensions having all values as 1 ,

e(xn) = (0, . . . 0, 1, 0 . . .0)T Vector with nth component as 1 and others as 0,

p(n) = (p1(n), p2(n) . . . pR(n))
TAction probability vector at instant n.

When the average loss function corresponding to optimal action (c∗) is equal to

zero and correction factor is constant (γn = γ) then this scheme converges action

probability vector in the direction of optimal solution. In other words the action

probability value corresponding to the optimal action reaches close to 1 and remaining

action probabilities become negligible. But, this type of convergence is not useful to

solve ranking problem. In fact, the ranking problem can be solved if we can identify

the relative preferences. These relative preferences can be calculated in the other

type convergence property exhibited by Bush-Mosteller scheme.

38

If the environment doesn’t have pure optimal action (average loss of optimal action

is zero) and correction factor tends to zero, this scheme leads to different mode of

convergence. This scheme converts the probability vector to a vector whose values

are inversely proportional to the average losses of corresponding actions [38]. i.e.,

pi(n) →
K

ci

When

c∗ 6= 0,
∞
∑

t=1

γ2
n<∞

Where

p(n) is the action probability vector at time n

K is a constant

ci is average penalty of action i

c∗ is average penalty of optimal actionand

γn is correction factor at time n

The above Bush-Mosteller scheme can be represented in more elaborated form if it

operates in a binary environment. As the binary environment only generates binary

response (0 or 1), the above scheme can be represented as the following split function.

if γ = 1 (penalty)

pi(n + 1) = pi(n)− γn[pi(n)], where α(n) = αi

pi(n + 1) = pi(n) + γn

[

pi(n)−
1

R

]

, where α(n) 6= αi

if γ = 0 (reward)

pi(n + 1) = pi(n) + γn[1− pi(n)], where α(n) = αi

pi(n + 1) = pi(n)− γn[pi(n)], where α(n) 6= αi

39

6 METHODS

6.1 Objective

The objective of my thesis is to optimize the search engine by resolving the imperfect

orderings in search engine ranking. The ideal ranking is the ordering of the results

in such a way that their corresponding values in Market Demand Distribution gives

a non-increasing order. As I have already mentioned, the current model begins at

a point where we have no information about Market Demand Distribution. So, the

following models are the on-line approaches which converges the any given ordering

to the ideal ordering using user click activities.

In the beginning, the lack of knowledge of user’s interest suggests us to include

the exploration task. But later we have to leverage the knowledge gained through

this exploration task into ranking with the goal of maximizing sales, this process is

known as exploitation. So, all of the models that I am going to discuss now consists

of these two phases either implicitly or explicitly.

In this thesis, I implemented the following learning models.

1. Split Model

2. Overlapping Models

3. Learning Automata Based Ranking Model

6.2 Split Model

In this approach, the total process is divided into two phases. First part of the process

is exploration during which we would be learning the Market Demand Distribution.

40

In this phase, the items will be shown to the user in a uniformly randomized order.

Which means, every specific item has equal chance to be appeared in every posi-

tion. Later in the second phase, to maximize the revenue we use the deterministic

permutation using the information gained in exploration phase. This is the phase of

exploitation.

The figure (Ref 6.1) presents the pseudo code for split model. The split model

success is strongly based on the point where we move from exploration to exploitation.

The key aspect in this approach is to identify the best split point. We must be careful

while choosing the split position. If we choose the split position too early then the

information gained may not be true. This leads to bad ranking during the exploitation

phase. On the other hand, if we spend too much time on the exploration, we might

get substantial knowledge but we couldn’t leverage learned knowledge into our action

as the remaining exploitation phase is not long.

6.3 Overlapping Models

In these models, we overlap the exploration and exploitation throughout the pro-

cess. We further implemented these in 2 distinct approaches. The basic difference

between those two approaches is the way how exploration and exploitation phases are

integrated together.

6.3.1 Reinforcement Learning Model

In this model, we performs both exploration and exploitation phases together. The

presentation of the documents in each phase is exactly similar to the split model. i.e.

in exploration phase we use uniform randomization and in exploitation phase we use

deterministic permutation using the current knowledge.

We defined an exploration factor alpha. This refers to the amount of time we have

spent on exploration. This factor helps to choose the action between the exploration

and exploitation. Alpha value is always between 0-1. This factor provides the portion

41

of time that we spent on the exploration. The rest of the time we used exploitation.

In the simulation, I have implemented this model considering various values of alpha.

6.3.2 No-regret Learning Model

Unlike the split and reinforcement learning model, this doesn’t have any separate

exploration and exploitation phase. This model implicitly has the exploration and

exploitation.

This model differs with reinforcement learning model in two aspects. First, it

never uses deterministic permutation. It uses the probabilistic permutation based

on a specific probability vector (pV ector). There is always scope for the exploration

in the probabilistic permutation. In the beginning, as we don’t have any knowledge

about customer distribution we choose this to be vector having same value for item

types.

The second difference is the exploitation process. This process was incorporated

in this process by updating pV ector. The pV ector will be updated every-time a new

sale is occurred. The pV ector is added with the sales vector to move the pV ector

towards the sales. This process ensures pV ector slowly deviated in the direction of

the sales count and in the end this will converge in the direction of sales vector.

Every-time we normalize the pV ector to ensure the sum of all values is equals to 1.

6.4 Learning Automata Based Ranking Model

In this model, we leverage each and every action of the user into feedback. This

model overcomes the limitation of not using the negative actions of user. Similar to

no-regret learning model, the current model also has the pV ector which get updated

every-time user either purchase the current item or move to next item. If the user

purchase an item then the pV ector will be updated in such a way that the current

item’s probability value increases and correspondingly other item’s probability will be

42

decreased. This update process is based on the Bush-Mosteller scheme. This model

works for both positive (reward) and negative (penalty) scenarios.

To maintain the exploration process we choose the very first item probabilisti-

cally from the pV ector. To maintain the exploitation process active, the other items

(from second position to the last) of permutation are chosen deterministically in non-

increasing order of pV ector probability value. During the user search endeavor we

update the pV ector accordingly.

43

Split Model (Z, nCustomers, initialPermutation, splitPosition, patienceIndex)

Z: Market demand distribution

nCustomers: No of Customers to be generated

patienceIndex : Patience factor of the user

initialPermutation: The given initial permutation

1 iter = 0

2 efficiency = 0

3 nRejections = 0

4 salesV ector =< 0, 0, 0....0 >

5 while iter ≤ nCustomers

6 i = 0

7 if iter ≤ splitPosition

8 presentation = uniform random permutation of initialPermutation

9 else

10 learned probability = normalize salesV ector

11 presentation = deterministic permutation of learned probability

12 while i is not at the end of presentation

13 if customer interest == presentation(i)

14 add 1 to corresponding value of sales vector

15 break

16 else

17 randomPatience = random value between 0 and 1

18 if randomPatience ≤ patienceIndex

19 i = i+ 1

20 continue

21 else

22 nRejections = nRejections + 1

23 break

24 iter = iter + 1

25 efficiency = (nCustomers− nRejections) / nCustomers

26 return efficiency

Figure 6.1.: Split Model Pseudocode

44

Reinforcement Learning Model(Z, nCustomers, initialPermutation,

alpha, patienceIndex)

Z: Market demand distribution

nCustomers: No of Customers to be generated

initialPermutation: The given initial permutation

patienceIndex : Patience factor of the user

alpha: exploration factor

1 iter = 0

2 efficiency = 0

3 nRejections = 0

4 salesV ector =< 0, 0, 0....0 >

5 while iter ≤ nCustomers

6 i = 0

7 random = random value between 0 and 1

8 if random ≤ alpha

9 presentation = uniform random permutation of initialPermutation

10 else

11 learned probability = normalize salesV ector

12 presentation = deterministic permutation of learned probability

13 while i is not at the end of presentation

14 if customer interest == presentation(i)

15 add 1 to corresponding value of sales vector

16 break

17 else

18 randomPatience = random value between 0 and 1

19 if randomPatience ≤ patienceIndex

20 i = i+ 1

21 continue

22 else

23 nRejections = nRejections + 1

24 break

25 iter = iter + 1

26 efficiency = (nCustomers− nRejections) / nCustomers

27 return efficiency

Figure 6.2.: Reinforcement Learning Model Pseudocode

45

No-Regret Learning Model(Z, nCustomers, initialPermutation,

patienceIndex)

Z: Market demand distribution

nCustomers: No of Customers to be generated

initialPermutation: The given initial permutation

patienceIndex : Patience factor of the user

1 iter = 0

2 efficiency = 0

3 nRejections = 0

4 R = initialPermutation size

5 while iter ≤ nCustomers

6 i = 0

7 pV ector =< 1
R
, 1
R
, 1

R
>

8 presentation = probabilistic permutation of pV ector

9 while i is not at the end of presentation

10 if customer interest == presentation(i)

11 add 1 to corresponding value of sales vector

12 learned probability = normalize the salesV ector

13 pV ector = pV ector+ learned probability Vector

14 normalize the pV ector

15 break

16 else

17 randomPatience = random value between 0 and 1

18 if randomPatience ≤ patienceIndex

19 i = i+ 1

20 continue

21 else

22 nRejections = nRejections + 1

23 break

24 iter = iter + 1

25 efficiency = (nCustomers− nRejection) / nCustomers

26 return efficiency

Figure 6.3.: No-Regret Learning Model Pseudocode

46

Learning Automata Based Learning Model(Z, nCustomers,

initialPermutation, patienceIndex)

Z: Market demand distribution

nCustomers: No of Customers to be generated

initialPermutation: The given initial permutation

patienceIndex : Patience factor of the user

1 iter = 0 ; nRejections = 0

2 R = initialPermutation size

3 pV ector =< 1
R
, 1
R
, 1

R
>; salesV ector =< 0, 0, 0....0 >

4 while iter ≤ nCustomers

5 i = 0 and γ = 0

6 presentation(0) = probabilistically choose item from pV ector

7 Fill presentation(1, 2, ...R − 1) with deterministic permutation of

pV ector after removing item chosen at first position of presentation

8 while i is not at the end of presentation

9 γ = 1
iter+1

10 if customer interest == presentation(i)

11 add 1 to corresponding value of sales vector

12 β =0 (reward action)

13 pV ector = BushMosteller(pV ector,presentation(i),β,γ)

14 break

15 else

16 randomPatience = random value between 0 and 1

17 if randomPatience ≤ patienceIndex

18 β =1 (penalty action)

19 pV ector =BushMosteller(pV ector, presentation(i),β,γ)

20 i = i+ 1; continue

21 else

22 nRejections = nRejections + 1; break

23 iter = iter + 1

24 finalPermutation = deterministicPermutation of pV ector

25 idealPermutation = deterministicPermutation of Z

26 Find kendall tau correlation, Precision@10, DCG and NDCG

Figure 6.4.: Learning Automata Based Learning Model Pseudocode

47

BushMosteller(pV ector, i, β, γ)

pV ector: Probability distribution

i: Action chosen

β: Environment Reaction

γ: Update Step size

eR: (1, 1, ..1)T Vector of R dimensions having all values as 1

e(xi) : (0,0, 1, 0...0)T Vector with ith component as 1 and others as 0

1 pV ector = pV ector + γn × [e(xi)− pn + βn
(eR−R×e(xi))

(R−1)
]

2 return pV ector

Figure 6.5.: BushMostellerScheme Pseudocode

48

7 EXPERIMENTS AND RESULTS

I have implemented all models as a Java application. I ran all the experiments in a

computer having CPU @ 2.20GHz processor and 6GB RAM using the Linux operating

system.

7.1 Experiments

Here, the objective of my experiments is to identify the best ranking based on hidden

user distribution of market demand. The information gained on user distribution

could be leveraged as document ranking.

7.1.1 Split Model

The key aspect in this approach is to identify the proper point of transition (split

position) from exploration to exploitation. We must be careful while choosing this

split position. If the split position too early then the information gained may not be

true. This leads to get a bad ranking during the exploitation phase. On the other

hand, if the split position is too far, then model spent longer on exploration, we might

get substantial knowledge but we may loose customer trust because of the prolonged

exploration phase.

Experiment:

Following is the information that I have used in my split model simulation.

User Distributions considered are top3Biased distribution (Figure: 3.1), twoCluster

distribution (Figure: 3.2) and nearUniform distribution (Figure: 3.3). The patience

index considered for all these three distributions is 0.35.

49

Total number of customers generated are 5 × 103. The Figures 7.1, 7.2 and 7.3

represent plots between the split position and efficiency for the above mentioned

distributions respectively.

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

'(

c
ie

n
c
y

Split position

e)ciency

Figure 7.1.: Split vs Efficiency Plot for Top3Biased Distribution

Observations:

All of these plots exhibits similar behavior. If the split position is small the efficiency

is too low. This is because the model hasn’t spend sufficient amount of time for

learning the user distribution. The efficiency value increases till some point and then

changes its behavior and start descending. There is a change in the trend of efficiency

because as we are moving split point to the right, we will be spending extra time on

exploration and unable to leverage the gained knowledge in ranking. So it is always

better to stop the exploration process as soon as we gain sufficient knowledge of

the distribution. But unfortunately we can’t derive any mathematical equation to

relate the best split position with distribution. In this model, the exploration and

exploitation phases are strictly separated and hence the identification of ideal split

50

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

*+

c
ie

n
c
y

Split position

e-ciency

Figure 7.2.: Split vs Efficiency Plot for TwoCluster Distribution

point is a compulsion. This limitation has lead us to build the next models which

doesn’t have the strict separation point between the exploration and exploitation

process.

7.1.2 Overlapping Models

As the name suggests, the models I am going to discuss have overlapping of the explo-

ration and exploitation phase. The major difference between the models mentioned

below is the way how exploration and exploitation phases were combined together. In

reinforcement learning model we can explicitly identify the phases, but in No-regret

learning model these two processes are completely blent.

51

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0.11

 0.12

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

.0

c
ie

n
c
y

Split position

e4ciency

Figure 7.3.: Split vs Efficiency Plot for NearUniform Distribution

7.1.2.1. Reinforcement Learning Model

This model performs both exploration and exploitation together. The presentation of

documents in each process is exactly similar to the split model. i.e. during exploration

phase we use uniform randomization of balls, where as in exploitation phase we use

deterministic permutation using the current knowledge of distribution.

We have defined a factor alpha which helps to pick an action from the exploration

and exploitation. Alpha is a binary number whose value is always equals to 0 (explo-

ration) or 1 (exploitation). This value of this factor provides the portion of time that

we spent on the exploration and the rest of time is used for the exploitation. For the

experiments on this model, I have considered various values of alpha.

7.1.2.2. No-regret Learning Model

Experiment 1: For the first set of experiments on the reinforcement model and no-

52

regret learning models, I used top3Biased distribution as input. The patience index

considered is 0.35 for all runs. The alpha values considered are 0.15, 0.25, 0.50, 0.75,

0.85 and 0.1. The total number of customers generated are 1× 104 (Figure: 7.4) and

1× 105 (Figure: 7.5) respectively.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

56

c
ie

n
c
y

789;e< => ?ustome<@ BeCerated

Patience Index 0.35

7=D<eB<eg HeJ<CnCB
RenC>=<cement learCnCB Kodel wngi JLMiJ n@ Q0.15Q
RenC>=<cement learCnCB Kodel wngi JLMiJ n@ Q0.25Q
RenC>=<cement learCnCB Kodel wngi JLMiJ n@ Q0.50Q
RenC>=<cement learCnCB Kodel wngi JLMiJ n@ Q0.75Q
RenC>=<cement learCnCB Kodel wngi JLMiJ n@ Q0.85Q
RenC>=<cement learCnCB Kodel wngi JLMiJ n@ Q1.0Q

UCn>=<m random permutation(1/CR(1DM))

Figure 7.4.: Top3BiasedDistribution Plot for 10,000 customers

Experiment 2:

In the second set of experiments, I used twoCluster distribution as input. The pa-

tience index considered is 0.35 for all runs. The alpha values considered are 0.15,

0.25, 0.50, 0.75, 0.85 and 0.1. The total number of customers generated are 1 × 104

(Figure: 7.6) and 1× 105 (Figure: 7.7) respectively.

Experiment 3:

For the third set of experiments on these models, I used nearUniform distribution as

input. The patience index considered is 0.35 for all runs. The alpha values considered

are 0.15, 0.25, 0.50, 0.75, 0.85 and 0.1. The total number of customers generated are

53

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

SV

c
ie

n
c
y

WYZ[\] ^_ `ustom\]a b\cerated

datience Indef 0.35

W^j]\b]\k l\m]cocb
R\oc_^]cement learcocb podel wokq mrsqm oa t0.15t
R\oc_^]cement learcocb podel wokq mrsqm oa t0.25t
R\oc_^]cement learcocb podel wokq mrsqm oa t0.50t
R\oc_^]cement learcocb podel wokq mrsqm oa t0.75t
R\oc_^]cement learcocb podel wokq mrsqm oa t0.85t
R\oc_^]cement learcocb podel wokq mrsqm oa t1.0t

uco_^]m random permutation(1/cv(1js))

Figure 7.5.: Top3BiasedDistribution Plot for 100,000 customers

1× 104 (Figure: 7.8) and 1× 105 (Figure: 7.9) respectively.

Observations:

Reinforcement Learning Model: This model continuously performs the explo-

ration and exploitation process together according to the parameter alpha. This

means the model is spending some time on the exploration even after gaining

the sufficient knowledge. This lessens the efficiency of the system. The success

of this model depends on identifying the best alpha value. This is the limitation

of this method.

No-regret Learning Model: This model outperforms the previous model. Unlike

reinforcement learning model, this doesn’t have any specific tuning parameter

alpha. This approach is appears to be feasible solution. But, as this model

54

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

wy

c
ie

n
c
y

z{|~�� �� �ustom��� ���erated

�atience Inde� 0.35

z�������� ��������
R������cement lear���� �odel w��� ����� �� �0.15�
R������cement lear���� �odel w��� ����� �� �0.25�
R������cement lear���� �odel w��� ����� �� �0.50�
R������cement lear���� �odel w��� ����� �� �0.75�
R������cement lear���� �odel w��� ����� �� �0.85�
R������cement lear���� �odel w��� ����� �� �1.0�

������m random permutation(1/��(1��))

Figure 7.6.: TwoCluster Distribution plot for 10,000 customers

is totally dependent on probabilistic permutation, some times it is possible to

show the bad items in lower ranking positions. This again lowers the efficiency

of system. This suggests us that this model is yet to be optimized. The other

drawback of this model is the slow rate of convergence. This is because the

model is totally dependent on the positive events or sales. We can’t leverage

the negative actions of user into the feedback. If the user rejects any document

this model fails to leverage it into the ranking. If we can use these actions into

the ranking that could give us best convergence.

7.1.3 Learning Automata Based Ranking Model

To measure the correctness of the approach, I used performance metrics like P@10

, NDCG and Kendall tau rank correlation. Here, we are solving the ranking prob-

55

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

��

c
ie

n
c
y

������ �� ustom��¡ ¢�£erated

¤atience Inde¥ 0.35

��¦��¢��§ ¨�©�£ª£¢
R�ª£���cement lear£ª£¢ «odel wª§¬ ©®¬© ª¡ ¯0.15¯
R�ª£���cement lear£ª£¢ «odel wª§¬ ©®¬© ª¡ ¯0.25¯
R�ª£���cement lear£ª£¢ «odel wª§¬ ©®¬© ª¡ ¯0.50¯
R�ª£���cement lear£ª£¢ «odel wª§¬ ©®¬© ª¡ ¯0.75¯
R�ª£���cement lear£ª£¢ «odel wª§¬ ©®¬© ª¡ ¯0.85¯
R�ª£���cement lear£ª£¢ «odel wª§¬ ©®¬© ª¡ ¯1.0¯

°£ª���m random permutation(1/£±(1¦®))

Figure 7.7.: TwoCluster Distribution plot for 100,000 customers

lem, so Kendall tau correlation has less significance. But the other two metrics are

significant in identifying the correctness of results.

Experiment 1:

The first experiment we used the top3Biased distribution as the input. I ran the model

with patience index 0.35 and I generated 5000 customers in each run. I compared

the permutation to the model converged with the ideal permutation to compute the

metric. Ideal permutation is simply ordering the items in non-increasing order of the

input customer distribution.

The figures represents the plots of precision@10 (Figure:7.10), DCG (Figure:7.11),

NDCG (Figure:7.12) and Kendall tau Value (Figure:7.13).

Experiment 2:

For this experiment we used the twocluster distribution as the input. We ran the

model with same patience index 0.35 and generated 5000 customers in each run. I

56

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

²³

c
ie

n
c
y

´µ¶·¸¹ º» ¼ustom¸¹½ ¾¸¿erated

Àatience IndeÁ 0.35

´ºÂ¹¸¾¹¸Ã Ä¸Å¹¿Æ¿¾
R¸Æ¿»º¹cement lear¿Æ¿¾ Çodel wÆÃÈ ÅÉÊÈÅ Æ½ Ë0.15Ë
R¸Æ¿»º¹cement lear¿Æ¿¾ Çodel wÆÃÈ ÅÉÊÈÅ Æ½ Ë0.25Ë
R¸Æ¿»º¹cement lear¿Æ¿¾ Çodel wÆÃÈ ÅÉÊÈÅ Æ½ Ë0.50Ë
R¸Æ¿»º¹cement lear¿Æ¿¾ Çodel wÆÃÈ ÅÉÊÈÅ Æ½ Ë0.75Ë
R¸Æ¿»º¹cement lear¿Æ¿¾ Çodel wÆÃÈ ÅÉÊÈÅ Æ½ Ë0.85Ë
R¸Æ¿»º¹cement lear¿Æ¿¾ Çodel wÆÃÈ ÅÉÊÈÅ Æ½ Ë1.0Ë

Ì¿Æ»º¹m random permutation(1/¿Í(1ÂÊ))

Figure 7.8.: NearUniform Distribution plot for 10,000 customers

compared the permutation the model converged to with the ideal permutation to find

the correctness.

The figures represents the plots of precision@10 (Figure:7.14), DCG (Figure:7.15),

NDCG (Figure:7.16) and Kendall tau Value (Figure:7.17).

Experiment 3:

For this experiment we used the NearUniform distribution as the input. I ran the

model with the patience index 0.35 and generated 5000 customers. I have compared

the permutation which the model converged with the ideal permutation to find the

correctness.

The figures represents the plots of precision@10 (Figure:7.14), DCG (Figure:7.15),

NDCG (Figure:7.16) and Kendall tau Value (Figure:7.17).

Observations:

57

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

ÎÏ

c
ie

n
c
y

ÐÑÒÓÔÕ Ö× ØustomÔÕÙ ÚÔÛerated

Üatience IndeÝ 0.35

ÐÖÞÕÔÚÕÔß àÔáÕÛâÛÚ
RÔâÛ×ÖÕcement learÛâÛÚ ãodel wâßä áåæäá âÙ ç0.15ç
RÔâÛ×ÖÕcement learÛâÛÚ ãodel wâßä áåæäá âÙ ç0.25ç
RÔâÛ×ÖÕcement learÛâÛÚ ãodel wâßä áåæäá âÙ ç0.50ç
RÔâÛ×ÖÕcement learÛâÛÚ ãodel wâßä áåæäá âÙ ç0.75ç
RÔâÛ×ÖÕcement learÛâÛÚ ãodel wâßä áåæäá âÙ ç0.85ç
RÔâÛ×ÖÕcement learÛâÛÚ ãodel wâßä áåæäá âÙ ç1.0ç

èÛâ×ÖÕm random permutation(1/Ûé(1Þæ))

Figure 7.9.: NearUniform Distribution plot for 100,000 customers

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 1000 2000 3000 4000 5000

P
e
rf

o
rm

e
n
c
e
 ê

ëì
íîï

s

ðñòóer of Customôõö ÷ôøerated

precision at 10

Figure 7.10.: Top3BiasedData precision@10 and patienceIndex 0.35

58

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

P
e
rf

o
rm

e
n
c
e
 ù

úû
üýþ

s

ÿN��er of Custome�� �e�erated

D��

Figure 7.11.: Top3BiasedData DCG and patienceIndex 0.35

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

P
e
rf

o
rm

e
n
c
e
 M

�
	

��

s

���er of Custom��� ���erated

�n��

Figure 7.12.: Top3BiasedData NDCG and patienceIndex 0.35

59

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 50000 100000 150000 200000 250000

P
�

rf
o
rm

e
n
c
e
 �

�
�
�
��

s

�� !er of Custom"#$ %"&erated

Kendall'a� (alue

Figure 7.13.: Top3BiasedData kendallTau and patienceIndex 0.35

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 1000 2000 3000 4000 5000

P
e
rf

o
rm

e
n
c
e
)

*
+
,
./

s

0123er of Custom456 748erated

precision at 10

Figure 7.14.: TwoClusterDist precision@10 and patienceIndex 0.35

60

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

P
e
rf

o
rm

e
n
c
e
 9

:
;
<
=>

s

?@ABer of CustomCEF GCHerated

IJL

Figure 7.15.: TwoClusterDist DCG and patienceIndex 0.35

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

P
e
rf

o
rm

e
n
c
e
 O

Q
R
S
TU

s

VWXYer of CustomZ[\]Z^erated

^_`b

Figure 7.16.: TwoClusterDist NDCG and patienceIndex 0.35

61

c0.4

c0.2

 0

 0.2

 0.4

 0.6

 0.8

 0 20000 40000 60000 80000 100000 120000 140000 160000

d
f

rf
o
rm

e
n
c
e
 g

f
h
i
jk

s

mopqer of Customrst urverated

wendalxyzo {alue

Figure 7.17.: TwoClusterDist kendallTau and patienceIndex 0.35

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 1000 2000 3000 4000 5000

P
e
rf

o
rm

e
n
c
e
 |

}
~
�
��

s

����er of Custom��� ���erated

precision at 10

Figure 7.18.: NearUniformDistribution precision@10 and patienceIndex 0.35

62

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

P
e
rf

o
rm

e
n
c
e
 �

�
�
�
��

s

����er of Custom��� ���erated

���

Figure 7.19.: NearUniformDistribution DCG and patienceIndex 0.35

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

P
e
rf

o
rm

e
n
c
e
 �

�
�

¡¢

s

£¤¥¦er of Custom§¨© ª§«erated

«¬®

Figure 7.20.: NearUniformDistribution NDCG and patienceIndex 0.35

63

¯0.5

¯0.4

¯0.3

¯0.2

¯0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 50000 100000 150000 200000 250000

°
±

rf
o
rm

e
n
c
e
 ²

±
³
´
µ¶

s

·¸¹ºer of Custom»¼½ ¾»¿erated

ÀendalÁÂÃ¸ Äalue

Figure 7.21.: NearUniformDistribution kendallTau and patienceIndex 0.35

64

This model has the best convergence. In this model the pV ector will be gets up-

dated in all possible scenarios. The pV ector moves towards the action selected if the

response is positive and moves in other way in case of penalty. Hence, this model con-

vergences quickly compare to previously discussed models. In all of the experiments

I have generated total 5000 customers. From the above figures we can observe that

model learns distribution in the very beginning with in a very few iterations (first

1000 customers).

65

8 FUTURE WORKS

The proposed Learning Automata Based Ranking Model in this thesis is flexible to

implement in all types of environments, which means this model can be extended to

non-binary environments like Q-model (where the environment responses are finite

set of values) and S-model (where the environment responses belongs to an interval).

This flexibility makes it suitable to extend further to more complicated real world web

search usage. Especially, we can improve the model convergence rate by extending

it to different types of environments. Currently, i have rewarded the result having

user click and uniformly penalized the ignored results. But, here we can improve the

performance of this method by introducing the magnitude to the reward/penalty. We

can consider the amount of time user spent on each document as the factor to decide

the reward magnitude. We can also add the distinct penalty values to each document

based on its position in the ranking order.

The proposed model can be made more realistic by extending it to a multiple click

scenario of web search. In all my experiments I have assumed a single click search

endeavor, this model suits well for scenarios having more than one click in each search

process.

In this model, the update process of action probability vecotor (pVector) is based

on the Bush-Mosteller scheme. This scheme is an expedient scheme. The expedient

schemes produces the Markov process that are ergodic in nature. Hence, this process

don’t have any absorbing state and stabilizes the pVector to an equilibrium point

which helps to build the ranking. As this update process doesn’t create absorbing

barriers, this has the ability to adopt change. This makes the proposed method

suitable for the Non-stationary environments and periodic environments too.

LIST OF REFERENCES

66

LIST OF REFERENCES

[1] Ellen M. Voorhees and Donna K. Harman. TREC: Experiment and Evaluation
in Information Retrieval (Digital Libraries and Electronic Publishing). The MIT
Press, 2005.

[2] Yisong Yue, Rajan Patel, and Hein Roehrig. Beyond position bias: Examining
result attractiveness as a source of presentation bias in clickthrough data. In
Proceedings of the 19th International Conference on World Wide Web, WWW
’10, pages 1011–1018, New York, NY, USA, 2010. ACM.

[3] Andrew Turpin and Falk Scholer. User performance versus precision measures for
simple search tasks. In Proceedings of the 29th Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval, SIGIR ’06,
pages 11–18, New York, NY, USA, 2006. ACM.

[4] Eugene Agichtein, Eric Brill, Susan Dumais, and Robert Ragno. Learning user
interaction models for predicting web search result preferences. In Proceedings of
the 29th Annual International ACM SIGIR Conference on Research and Devel-
opment in Information Retrieval, SIGIR ’06, pages 3–10, New York, NY, USA,
2006. ACM.

[5] Thorsten Joachims. Optimizing search engines using clickthrough data. In Pro-
ceedings of the Eighth ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD ’02, pages 133–142, New York, NY, USA,
2002. ACM.

[6] Charles Kemp and Kotagiri Ramamohanarao. Long-term learning for web search
engines. In Proceedings of the 6th European Conference on Principles of Data
Mining and Knowledge Discovery, PKDD ’02, pages 263–274, London, UK, 2002.
Springer-Verlag.

[7] R. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval: The Con-
cepts and Technology Behind Search. Addison Wesley, 2011.

[8] Scott Deerwester, Susan T. Dumais, George W. Furnas, Thomas K. Landauer,
and Richard Harshman. Indexing by latent semantic analysis. Journal of the
American Society for Information Science, 41(6):391–407, 1990.

[9] M. E. Maron and J. L. Kuhns. On relevance, probabilistic indexing and infor-
mation retrieval. J. ACM, 7(3):216–244, July 1960.

[10] S. E. Robertson. Overview of the okapi projects [introduction to special issue of
journal of documentation. Journal of Documentation, 53:37, January 1997.

67

[11] Tao Tao and ChengXiang Zhai. Regularized estimation of mixture models for ro-
bust pseudo-relevance feedback. In Proceedings of the 29th Annual International
ACM SIGIR Conference on Research and Development in Information Retrieval,
SIGIR ’06, pages 162–169, New York, NY, USA, 2006. ACM.

[12] Cheng Xiang Zhai, William W. Cohen, and John Lafferty. Beyond independent
relevance: Methods and evaluation metrics for subtopic retrieval. In Proceed-
ings of the 26th Annual International ACM SIGIR Conference on Research and
Development in Informaion Retrieval, SIGIR ’03, pages 10–17, New York, NY,
USA, 2003. ACM.

[13] Chengxiang Zhai and John Lafferty. Model-based feedback in the language mod-
eling approach to information retrieval. In Proceedings of the Tenth International
Conference on Information and Knowledge Management, CIKM ’01, pages 403–
410, New York, NY, USA, 2001. ACM.

[14] Azadeh Shakery and ChengXiang Zhai. A probabilistic relevance propagation
model for hypertext retrieval. In Proceedings of the 15th ACM International
Conference on Information and Knowledge Management, CIKM ’06, pages 550–
558, New York, NY, USA, 2006. ACM.

[15] Filip Radlinski, Madhu Kurup, and Thorsten Joachims. How does clickthrough
data reflect retrieval quality? In Proceedings of the 17th ACM Conference on
Information and Knowledge Management, CIKM ’08, pages 43–52, New York,
NY, USA, 2008. ACM.

[16] S. E. Robertson and S. Walker. Some simple effective approximations to the
2-poisson model for probabilistic weighted retrieval. In Proceedings of the 17th
Annual International ACM SIGIR Conference on Research and Development in
Information Retrieval, SIGIR ’94, pages 232–241, New York, NY, USA, 1994.
Springer-Verlag New York, Inc.

[17] Chris Burges, Tal Shaked, Erin Renshaw, Ari Lazier, Matt Deeds, Nicole Hamil-
ton, and Greg Hullender. Learning to rank using gradient descent. In Proceedings
of the 22Nd International Conference on Machine Learning, ICML ’05, pages 89–
96, New York, NY, USA, 2005. ACM.

[18] Yunbo Cao, Jun Xu, Tie-Yan Liu, Hang Li, Yalou Huang, and Hsiao-Wuen
Hon. Adapting ranking svm to document retrieval. In Proceedings of the 29th
Annual International ACM SIGIR Conference on Research and Development in
Information Retrieval, SIGIR ’06, pages 186–193, New York, NY, USA, 2006.
ACM.

[19] Brian T. Bartell, Garrison W. Cottrell, and Richard K. Belew. Automatic com-
bination of multiple ranked retrieval systems. In Proceedings of the 17th An-
nual International ACM SIGIR Conference on Research and Development in
Information Retrieval, SIGIR ’94, pages 173–181, New York, NY, USA, 1994.
Springer-Verlag New York, Inc.

[20] William W. Cohen, Robert E. Schapire, and Yoram Singer. Learning to order
things. J. Artif. Int. Res., 10(1):243–270, 1999.

[21] D. Mladenic. Personal webwatcher: Implementation and design. Technical Report
IJS-DP-7472, Department for Intelligent Systems, J.Stefan Institute, 1996.

68

[22] Henry Lieberman. Letizia: An agent that assists web browsing. In INTERNA-
TIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, pages
924–929, 1995.

[23] Jeremy Goecks and Jude Shavlik. Learning users’ interests by unobtrusively
observing their normal behavior. In Proceedings of the 5th International Con-
ference on Intelligent User Interfaces, IUI ’00, pages 129–132, New York, NY,
USA, 2000. ACM.

[24] Masahiro Morita and Yoichi Shinoda. Information filtering based on user be-
havior analysis and best match text retrieval. In Proceedings of the 17th An-
nual International ACM SIGIR Conference on Research and Development in
Information Retrieval, SIGIR ’94, pages 272–281, New York, NY, USA, 1994.
Springer-Verlag New York, Inc.

[25] Joseph A. Konstan, Bradley N. Miller, David Maltz, Jonathan L. Herlocker,
Lee R. Gordon, and John Riedl. Grouplens: Applying collaborative filtering to
usenet news. Commun. ACM, 40(3):77–87, 1997.

[26] Douglas W. Oard and Jinmook Kim. Implicit feedback for recommender sys-
tem. Technical report, Massachusetts Institute of Technology, Department of
Electrical Engineering and Computer, 1998.

[27] Laura A. Granka, Thorsten Joachims, and Geri Gay. Eye-tracking analysis of
user behavior in www search. In Proceedings of the 27th Annual International
ACM SIGIR Conference on Research and Development in Information Retrieval,
SIGIR ’04, pages 478–479, New York, NY, USA, 2004. ACM.

[28] Andrei Broder. A taxonomy of web search. SIGIR Forum, 36(2):3–10, September
2002.

[29] Nick Craswell, Onno Zoeter, Michael Taylor, and Bill Ramsey. An experimental
comparison of click position-bias models. In Proceedings of the 2008 International
Conference on Web Search and Data Mining, WSDM ’08, pages 87–94, New
York, NY, USA, 2008. ACM.

[30] Georges E. Dupret and Benjamin Piwowarski. A user browsing model to pre-
dict search engine click data from past observations. In Proceedings of the 31st
Annual International ACM SIGIR Conference on Research and Development in
Information Retrieval, SIGIR ’08, pages 331–338, New York, NY, USA, 2008.
ACM.

[31] M. Richardson, E. Dominowska, and R. Ragno. Predicting clicks: Estimating the
click-through rate for new ads. In Proceedings of the 16th International World
Wide Web Conference(WWW-2007), January 2007.

[32] Olivier Chapelle and Ya Zhang. A dynamic bayesian network click model for web
search ranking. In Proceedings of the 18th International Conference on World
Wide Web, WWW ’09, pages 1–10, New York, NY, USA, 2009. ACM.

[33] Filip Radlinski and Thorsten Joachims. Minimally invasive randomization for
collecting unbiased preferences from clickthrough logs. In Proceedings of the
21st National Conference on Artificial Intelligence - Volume 2, AAAI’06, pages
1406–1412. AAAI Press, 2006.

69

[34] Ricardo A Baeza-Yates and Berthier Ribeiro-Neto. Modern information retrieval.
1999.

[35] KALERVO JARVELIN and JAANA KEKALAINEN. Cumulated gain-based
evaluation of ir techniques. ACM Trans. Inf. Syst., 20(4):422–446, October 2002.

[36] Emine Yilmaz, Javed A. Aslam, and Stephen Robertson. A new rank correlation
coefficient for information retrieval. In Proceedings of the 31st Annual Inter-
national ACM SIGIR Conference on Research and Development in Information
Retrieval, SIGIR ’08, pages 587–594, New York, NY, USA, 2008. ACM.

[37] Kumpati S. Narendra and Mandayam A. L. Thathachar. Learning Automata:
An Introduction. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1989.

[38] Kaddour Najim and Alexander S Poznyak. Learning automata: theory and ap-
plications. Elsevier, 2014.

