
ENSEMBLE METHODS FOR TOP-N RECOMMENDATION

A Thesis

Submitted to the Faculty

of

Purdue University

by

Ziwei Fan

In Partial Fulfillment of the

Requirements for the Degree

of

Master of Science

May 2018

Purdue University

Indianapolis, Indiana

ii

THE PURDUE UNIVERSITY GRADUATE SCHOOL

STATEMENT OF COMMITTEE APPROVAL

Dr. Xia Ning, Chair

Department of Computer and Information Science

Dr. Mohammad Al Hasan

Department of Computer and Information Science

Dr. Murat Dundar

Department of Computer and Information Science

Approved by:

Dr. Shiaofen Fang

Head of the Graduate Program

iii

To my parents

iv

ACKNOWLEDGMENTS

I want to express my sincere gratitude to my advisor Dr. Xia Ning for her con-

tinuous support in my master studies. Her guidance helped me in all the time of

research and writing of this thesis. I could not have imagined having a better advisor

and mentor for my master studies. I also want to thank my thesis committee, Dr.

Mohammad Al Hasan and Dr. Murat Dundar for their help in finishing my thesis.

Next, I want to thank all labmates, Wen-hao Chiang, Junfeng Liu, Evan Burgen

and Bo Peng for the interesting discussions, for the continuous support , and for the

fun we have had in the last two years.

I also want to thank the support and resources provided by IUPUI. I want to

thank Nicole Wittlief as well for her support and patience.

Last but not least, I want to thank my parents sincerely for their financial and

emotional support. Without their support, I would have never been able to study in

IUPUI and finish the thesis.

v

TABLE OF CONTENTS

Page

LIST OF TABLES . viii

LIST OF FIGURES . ix

ABSTRACT . x

1 INTRODUCTION . 1

1.1 Thesis Outline . 2

2 BACKGROUND OF RECOMMENDER SYSTEMS 3

2.1 Formulations of Recommendation Problems 3

2.1.1 Rating Prediction . 4

2.1.2 Top-N Recommendation . 4

2.2 Collaborative Filtering Models . 4

2.2.1 Neighborhood-Based Collaborative Filtering 5

2.2.2 Model-Based Methods . 7

2.3 Related Work of Top-N Recommendation 7

2.3.1 Sparse Linear method (SLIM) 8

2.3.2 Bayesian Personalized Ranking 8

2.3.3 CLiMF: Collaborative Less-is-More Filtering 9

3 IMPROVING INFORMATION RETRIEVAL FROMELECTRONIC HEALTH
RECORDS USING DYNAMIC ANDMULTI-COLLABORATIVE FILTER-
ING . 11

3.1 Introduction . 11

3.2 Literature Review . 12

3.3 Terminologies, Definitions and Notations 13

3.4 Overview of the Dynamic and Multi-Collaborative Filtering Method –
DmCF . 14

3.5 Markov Chain-based Scoring . 16

vi

Page

3.5.1 Background on Markov Chains 16

3.5.2 First-Order Markov Chain-based Scoring – foMC 16

3.6 Multi-Collaborative Filtering-based Scoring 17

3.6.1 Background on Collaborative Filtering 17

3.6.2 Physician-Patient-Similarity-based CF Scoring – ypCF 18

3.6.3 Transition-Involved Patient-Term-Similarity-based CF Scoring
– TptCF . 20

3.7 Similarity Calculation . 21

3.8 Materials . 23

3.8.1 Data . 23

3.8.2 Experimental Protocols and Evaluation Metric 24

3.9 Experimental Results and Discussions 26

3.9.1 Overall Performance . 26

3.9.2 Similarity Analysis . 36

3.10 Conclusions . 38

4 LOCAL SPARSE LINEAR MODEL ENSEMBLE FOR TOP-N RECOM-
MENDATION . 39

4.1 Introduction . 39

4.2 Related Work . 40

4.2.1 Sparse Linear Method for top-N Recommendation 40

4.2.2 Local Low-Rank Matrix Approximation 40

4.2.3 Combining Local Models for Recommendation 41

4.3 Methods . 42

4.3.1 Anchor Pair Selection . 42

4.3.2 Training Data Selection for Local Models 42

4.3.3 Model Combination and Recommendation Generation 44

4.4 Materials . 45

4.4.1 Datasets . 45

4.4.2 Evaluation Methodology and Metrics 46

vii

Page

4.5 Experimental Results . 47

4.5.1 Overall Performance . 47

4.6 Discussions and Conclusions . 49

4.6.1 Computational Consideration 49

4.6.2 Parameter Selection . 49

4.6.3 Conclusions . 49

5 SUMMARY . 51

REFERENCES . 54

viii

LIST OF TABLES

Table Page

3.1 Notations . 13

3.2 Methods . 15

3.3 Statistics of INPC Dataset . 23

3.4 Overall Performance Comparison with CUTOFF (08/15/2013) 27

3.5 Overall Performance Comparison with CUTOFF (06/26/2013) 28

3.6 Overall Performance Comparison with CUTOFF (07/18/2013) 29

3.7 Overall Performance Comparison with CUTOFF (09/03/2013) 30

4.1 Datasets Used in Evaluation . 46

4.2 Performance Comparison . 48

4.3 Running Time SLIM and LSM . 50

ix

LIST OF FIGURES

Figure Page

3.1 Distribution of INPC sequence length . 24

3.2 Distribution of INPC # unique terms per patient 24

3.3 CUTOFF experimental protocol . 25

3.4 HR@1 over α values . 33

3.5 HR@2 over α values . 33

3.6 HR@3 over α values . 34

3.7 HR@4 over α values . 34

3.8 HR@5 over α values . 35

3.9 Physician-physician similarity distribution 36

3.10 Patient-patient similarity distribution . 37

3.11 Term-term similarity distribution . 37

x

ABSTRACT

Fan Ziwei M.S., Purdue University, May 2018. Ensemble Methods for Top-N Recom-
mendation. Major Professor: Xia Ning.

As the amount of information grows, the desire to efficiently filter out unneces-

sary information and retain relevant or interested information for people is increasing.

To extract the information that will be of interest to people efficiently, we can uti-

lize recommender systems. Recommender systems are information filtering systems

that predict the preference of a user to an item. Based on historical data of users,

recommender systems are able to make relevant recommendations to users. Due to

its usefulness, Recommender systems have been widely used in many applications,

including e-commerce and healthcare information systems. However, existing rec-

ommender systems suffer from several issues, including data sparsity and user/item

heterogeneity.

In this thesis, a hybrid dynamic and multi-collaborative filtering based recommen-

dation technique has been developed to recommend search terms for physicians when

physicians review a large number of patients’ information. Besides, a local sparse

linear method ensemble has been developed to tackle the issues of data sparsity and

user/item heterogeneity.

In health information technology systems, most physicians suffer from information

overload when they review patient information. A novel hybrid dynamic and multi-

collaborative filtering method has been developed to improve information retrieval

from electronic health records. We tackle the problem of recommending the next

search term to a physician while the physician is searching for information about

a patient. In this method, I have combined first-order Markov Chain and multi-

collaborative filtering methods. For multi-collaborative filtering methods, I have de-

xi

veloped the physician-patient collaborative filtering and transition-involved collab-

orative filtering methods. The developed method is tested using electronic health

record data from the Indiana Network for Patient Care. The experimental results

demonstrate that for 46.7% of test cases, this new method is able to correctly pri-

oritize relevant information among top-5 recommendations that physicians are truly

interested in.

The local sparse linear model ensemble has been developed to tackle both the data

sparsity and the user/item heterogeneity issues for the top-n recommendation. Mul-

tiple local sparse linear models are learned for all the users and items in the system.

I have developed similarity-based and popularity-based methods to determine the lo-

cal training data for each local model. Each local model is trained on Sparse Linear

Method (SLIM) which is a powerful recommendation technique for top-n recommen-

dation. These learned models are then combined in various ways to produce top-N

recommendations. I have developed model results combination and model combina-

tion methods to combine all learned local models. The developed methods are tested

on a benchmark dataset and its sparsified datasets. The experiments demonstrate

18.4% improvement from such ensemble models, particularly on sparse datasets.

1

1. INTRODUCTION

As the amount of information grows, the desire to extract the information that will

be of interests to users is increasing. One of the important techniques to discover

what users like or dislike is recommender system. For example, in Amazon online

shopping website, there are tens of millions items for users to select. It is impossible

for users to find interesting items by clicking all items one by one. Recommender

systems can help users efficiently discover what they need or like by utilizing their

browsing or rating history. Users can easily discover the interesting items in the

provided recommendations. However, there are still some challenges in recommender

systems, which we discuss below.

One of the challenges of recommender systems is data sparsity. Users can only

provide feedbacks for a small set of items compared to a large pool of items. For most

of the users, ratings on the majority of items are missing. Without having enough

data, it is difficult to accruately project the interests of a user. For example, when

we utilize the idea of collaborative filtering to make recommendation for users, the

recommendation is less reliable when the data sparsity problem is severe. The basic

idea of collaborative filtering is "similar users like similar items". We calculate the

similarity between users based on common rated items between users. The higher the

data sparsity is, the lower reliability of these calculated similarities are. If the data is

highly sparse, we are unable to extract reliable neighborhoods. Another challenge of

recommender systems is user/item heterogeneity. When we train a global model for

all users and items, such as the popular matrix factorization model, the recommender

systems fail for certain users/items. Users may have diverse interests and items may

belong to so many different branches. When we train all users and items in a single

global model, it is hard for the global model to accurately make recommendations for

specific users/items.

2

Recommender systems techniques have been widely applied to E-commerce plat-

forms and healthcare systems. In healthcare systems, most physicians suffer from in-

formation overload when they review patient information. Recommender systems are

able to efficiently prioritize relevant information for physicians. In E-commerce, only

users’ similarities and items’ similarities will be considered. However, in healthcare

systems, more similarities should be considered when we apply collaborative filtering

technique to healthcare systems, for example, physicians’ similarities, patients’ simi-

larities and search terms’ similarities. To make more accurate recommendations for

physicians, we should also consider the dynamics of physicians’ searching history.

This dissertation focuses on improving information retrieval from electronic health

records by using dynamic and multi-collaborative filtering. It also covers the work

of local sparse linear method ensemble which tackles the issues of data sparsity and

user/item heterogeneity. I have developed a new dynamic and multi-collaborative

filtering approach by using electronic health record data from the Indiana Network

for Patient Care. This new method is able to correctly rank relevant information

among the top-5 recommendations that physicians are truly interested in. I also tested

the local sparse linear method ensemble on a benchmard dataset. The experiments

demonstated a great improvement from such ensemble methods particularly on sparse

datasets.

1.1 Thesis Outline

The remaining of the thesis is organized as follows. In Chapter 2, I will introduce

some necessary background of recommender systems. In Chapter 3, I will describe the

work of improving information retrival from electronic health records using dynamic

and multi-collaborative filtering in detail. In Chapter 4, I will describe the work of

local sparse linear method ensemble for top-n recommendation in detail. Finally, I

will summarize the dissertation in Chapter 5.

3

2. BACKGROUND OF RECOMMENDER SYSTEMS

Recommender systems are personalized information filtering techniques [1]. Recom-

mender systems predict users’ preference based on users’ historical interactions with

items. Recommender systems have been widely used in many applications. For ex-

ample, in health information technology system, recommendation techniques have

been applied to physicians recommendation problem [2, 3], drugs recommendation

problem [4] and nursing care plan recommendation [5], etc.

2.1 Formulations of Recommendation Problems

Based on different inputs and outputs of recommender systems, there are two

main problems in recommender systems [6]. The first problem is rating prediction

problem. The input of this problem is typically rating data (explicit feedback). For

example, in the Douban website, users can rate movies and books by giving ratings

in the range of [1, 5]. The input of this problem is usually expressed as a user-

item rating matrix. Each element in the rating matrix is the rating given by a user

for an item. One important characteristics of this rating matrix is that the rating

matrix is very sparse. In the rating matrix, only very few elements are known while

most of them are unknown. The goal of rating prediction problem is to fill out

the rating matrix by using existing known ratings. The second problem is top-n

recommendation problem. Different from rating prediction problem, the prediction

values of top-n recommendation are not important. In practice, the input of this

problem is typically binary data (implicit feedback). For example, if a user has

purchased an item or watched a movie, the implicit feedback of this user to this item

is 1, otherwise, it will be unknown or 0. The goal of top-n recommendation problem

is to generate an ordered list of N items which will be of interest to the user.

4

2.1.1 Rating Prediction

This problem is to predict the numerical rating value of a particular item given

by a certain user. The training data for this problem is typically rating data which

indicates the user preferences for items. For m users and n items, the training data is

an incomplete user-item rating matrix of sizem×n. In the rating matrix, every known

element indicates the known preference given by a user to an item. The missing (or

unknown) values are predicted. The popular technique to solve this rating prediction

problem is matrix factorization, which will be discussed in Section 2.2.2.

2.1.2 Top-N Recommendation

Different from rating prediction, top-n recommendation problem tries to generate

a ranking list of items that will be of interest to a certain user instead of accurately

predicting the user preferences for items. In most of scenarios, the recommendations

are typically shown as a list of items to users instead of displaying the recommended

ratings to users. It is also difficult to collect ratings (explicit feedback) compared with

implicit feedback. For example, it is much easier for users to just click on the link

instead of providing an exact value of preference. Moreover, the standards of rating

items are different for different users. The input for this problem is typically binary

feedback. The feedback can be any form of users’ behaviors, such as browsing, pur-

chasing and deleting (negative feedback). One classical work of solving this problem

is Bayesian Personalize Ranking [7], which applied pair-wise idea to solve the top-n

recommendation problem.

2.2 Collaborative Filtering Models

The basic idea of Collaborative Filtering models is utilizing collective power from

similar users or similar items to make recommendations. We can first calculate the

similarities between users by using their item rating profiles. For example, if two

5

users have similar ratings on two movies, their similarity will be high. By using the

similarities, we are able to make inference about the unobserved feedbacks. One of the

challenges in collaborative filtering models is data sparsity, which means the training

rating matrices are highly sparse. Most of the ratings are unobserved. There are

typically two types of collaborative filtering methods [8], including the neighborhood-

based collaborative filtering and model-based methods [9].

2.2.1 Neighborhood-Based Collaborative Filtering

Neighborhood-based collaborative filtering methods are the earliest collaborative

filtering methods. The unobserved ratings are predicted based on users’ neighbor-

hoods or items’ neighborhoods or both of them. Based on different ways to define

the neighborhoods, neighborhood-based methods can be classified into two categories,

user-based collaborative filtering and item-based collaborative filtering.

User-Based Collaborative Filtering

In this method, we utilize the ratings of similar users to the target user A to make

the recommendations for target user A [6]. The basic idea of this method is first to

identify a set of users who share similar taste with the target user, then compute the

weighted average of the ratings from that the set of similar users to make prediction

as follows,

r̂u,i = µu +
∑
v∈S(u)

sim(u, v)× (rv,i − µv), (2.1)

where r̂u,i is the estimated rating of item i by user u, µu is the average rating of user

u, sim(u, v) is the user-user similarity between user u and user v and S(u) is the set

of top-k similar users to user u. The similarity can be measured by using users’ rating

profile on items and be of different forms, such as cosine similarity. Given a user-item

6

rating matrix R of size m × n, the cosine similarity between user u1 and user u2 is

calculated as follows,

sim(u1, u2) =
R(u1, :)R(u2, :)

T

‖R(u1, :)‖‖R(u2, :)‖
, (2.2)

where m is the number of users and n is the number of items and R(u1, :) is the u1-th

row of the rating matrix R.

Item-Based Collaborative Filtering

Similar to the user-based collaborative filtering, item-based collaborative filtering

utilizes the ratings of similar items to the target item to predict the rating of the

target item by the target user [1]. First, we identify the set of similar items to the

target item. Then the ratings from the set of similar items, which has been rated

by the target user, will be used to predict if the target user likes the target item as

follows,

r̂u,i = µi +
∑
k∈S(i)

sim(i, k)× (ru,k − µk), (2.3)

where r̂u,i is the estimated rating of item i by user u, µi is the average rating of item

i, sim(i, k) is the item-item similarity between item i and item k and S(i) is the set of

top-k similar users to user u. The similarity can be measured by using items’ rating

profile by users. Given a user-item rating matrix R of size m×n, the cosine similarity

between user i1 and user i2 is calculated as follows,

sim(i1, i2) =
R(:, i1)

TR(:, i2)

‖R(:, i1)‖‖R(:, i2)‖
, (2.4)

where m is the number of users and n is the number of items.

7

2.2.2 Model-Based Methods

Model-based methods have been widely used and studied in recommender sys-

tem [10]. Among the model-based methods, latent factor models are considered to

be the state-of-the-art models in recommender system.

Matrix Factorization

Matrix factorization is proposed by Koren et al [10]. Matrix factorization has

become popular in solving rating prediction problem. The basic idea of matrix fac-

torization is that the user’s preference on the item is calculated as the inner product

of the user’s latent vector and item’s latent vector shown as equation 2.5. The latent

vectors of users and items are learned from training data.

r̃u,i = qTi pu, (2.5)

where qi is the item i’s latent vector whose dimensionality is d and pu is the user u’s

latent vector whose dimensionality is d. To learn the qi and pu, the following problem

is optimized by using stochastic gradient descent,

min
p,q

∑
(u,i)∈K

(rui − qTi pu) + λ(‖qi‖2 + ‖pu‖2), (2.6)

where K is the set of the (u, i) pairs whose ratings are observed.

2.3 Related Work of Top-N Recommendation

In this section, I will introduce some related work of top-n recommendation. The

work of top-n recommendation can be categorized to three types, including point-wise

top-n recommendation, pair-wise top-n recommendation and list-wise top-n recom-

mendation.

8

2.3.1 Sparse Linear method (SLIM)

Ning and Karypis [11] proposed the sparse linear method (SLIM) for top-n rec-

ommendation. The basic idea of SLIM is that the user’s preference over an item is

modeled as linear aggregation over the items that the user purchased before. The SLIM

model learns the item-item coefficient matrix by incorporating the L1 regularization,

which introduces sparsity. The predicting score is formulated as follows,

r̃u,i = R(u, :)W (:, i), (2.7)

where we have m users and n items, r̃u,i is the estimated user preference of user u on

item i, R is the user-item rating matrix of size m × n, R(u, :) is the u-th row of the

binary user-item purchase matrix, W is the item-item coefficient matrix of size n×n

and W (:, i) is the i-th column of the coefficient matrix W . To learn the coefficient

matrix W , the following problem is solved,

min
W

1

2
‖R−RW‖2F +

β

2
‖W‖2F + λ‖W‖`1

s.t. W ≥ 0, diag(W) = 0.

(2.8)

where the constaint diag(W) = 0 is applied to avoid the useless solution. When there

is no constraint diag(W) = 0, the optimal solution of W will be identical matrix,

which means for an item will only recommend itself so as to minimize the loss.

2.3.2 Bayesian Personalized Ranking

Rendle et al [7] proposed Bayesian Personalized Ranking (BPR) to solve top-

n recommendation by using the idea of pair-wise ranking. Different from previous

methods, BPR directly optimized the ranking. BPR optimized the ranking statistics

AUC (area under the ROC curve). Rendle et al [7] proposed to use stochastic gradient

descent for learning the parameters of BPR. The idea of pair-wise ranking was applied

9

to BPR in the following way. The probability of user u preferring item i to item j is

expressed as:

p(i >u j, |Θ) =
1

1 + ex̂u,i−x̂u,j
, (2.9)

where x̂u,i = U(u, :)V (:, i), U is the latent matrix of all users and V is the latent matrix

of all items, Θ is denoted as the set of parameters. The probability is calculated by

using the difference between prediction scores of the user to two items.

The definition of AUC of user u is written as:

AUCu =
1

|I+u ||I \ I+u |
∑
i∈I+u

∑
j∈I\I+u

I(xu,i > xu,j), (2.10)

where I is the entire item set, I+u is the set of items which user u has provided possitive

feedbacks to, I \ I+u is the set of item which users do not provide any feedback to.

The AUC cannot be directly optimized, so Rendle et al [7] smooths the AUC by using

the differentiable loss I(xu,i > xu,j) = ln 1

1+ex̂u,i−x̂u,j
. The objective function of BPR

becomes:
1

|I+u ||I \ I+u |
∑
i∈I+u

∑
j∈I\I+u

ln
1

1 + ex̂u,i−x̂u,j
. (2.11)

The parameters are learned by using stochastic gradient descend. At each iteration,

a user-item-item triplet < u, i, j > is randomly selected.

2.3.3 CLiMF: Collaborative Less-is-More Filtering

Shi et al [12] proposed CLiMF to solve top-n recommendation by applying the idea

of list-wise ranking. Different from BPR, CLiMF directly optimized another ranking

statistics Mean Reciprocal Rank (MRR) instead of AUC as BRP [7] suggested. The

difference between MRR and AUC is that MRR cares more about the positions of

recommendations in the ranking list. MRR measures how highly ranked is the first

relevant recommendation item. CLiMF utilized the idea of list-wise ranking while

10

BPR used the idea of pair-wise ranking. To evaluate the ranking list, Reciprocal

Rank (RR) of user u is measured as follows,

RRu =
N∑
i=1

Yu,i
Ru,i

N∏
j=1

(1− Yu,jI(Ru,i < Ru,j)), (2.12)

where N is the number of items, Yu,i = 1 if user u prefers item i, Ru,i refers to the

ranking position of item i in the recommendation list of user u and I() = 1 when

Ru,i < Ru,j. However, RRu is not differentiable. Shi et al [12] approximated the

I(Ru,i < Ru,j) by using I(Ru,i < Ru,j) = 1

1+exu,i−xu,j
, where xu,i = U(u, :)V (:, i), U

is the latent matrix of all users and V is the latent matrix of all items. The lower

bound of MRR is found by using Jensen’s inequality and the concavity of logarithm

funciton. The objective function of CLiMF will become as follows,

N∑
i=1

[ln
1

1 + exu,i
+

N∑
j=1

ln(1− Yu,j
1

1 + exu,i−xu,j
)]. (2.13)

The parameters are learned by using gradient descent.

11

3. IMPROVING INFORMATION RETRIEVAL FROM
ELECTRONIC HEALTH RECORDS USING DYNAMIC

AND MULTI-COLLABORATIVE FILTERING

3.1 Introduction

When we consider buying a book on Amazon’s Website, we often benefit from

items listed in a section called “Recommended for you.” These recommendations,

generated by a method called Collaborative Filtering (CF) [8], suggest items of pos-

sible interest based on what other customers have viewed and purchased. Often,

these suggestions are very useful and lead to additional purchases. However, when

physicians search the electronic health records (EHRs) with regard to a particular pa-

tient problem, the EHRs do not make suggestions for potentially useful information.

Instead, it requires physicians to go through the same manual, cumbersome and labo-

rious process of searching for and retrieving information for similar patients/problems

every single time.

In this chapter, we presentDmCF , a novel hybridDynamic andmulti-Collaborative

F iltering method, for information recommendation when physicians search for infor-

mation from patient EHRs. DmCF integrates the following two key ideas:

• collaborative filtering, which prioritizes information items based on what similar

physicians have searched for on similar patients; and

• dynamic modeling, which foresees future information items of interest based on

how physicians search for information items over time.

Here, dynamics refers to the information retrieval patterns over time (e.g., in which

order different information items are searched for; which information item will be

typically searched for after a certain information item has been retrieved). Multi-

collaborative filtering (mCF) refers to that multiple types of similarities (e.g., physi-

12

cian similarities, patient similarities and information similarities) are integrated to

score information items of possible interest. DmCF models information retrieval

dynamics by a first-order Markov Chain (MC), and combines MC transition proba-

bilities (discussed in Section 3.5) with mCF scores to produce final recommendation

scores for future interested information items. DmCF recommends the information

items with the highest scores to physicians. We tested DmCF on a real dataset from

the Indiana Network for Patient Care (INPC). Our experimental results demonstrate

22.3% improvement from DmCF over MC models on top-1 recommendation (i.e.,

only the top recommended information item is considered), and for 46.7% of all the

test cases, DmCF is able to include information items that are truly interesting to

the physicians among its top-5 recommendations.

3.2 Literature Review

The most relevant research to our work is from Recommender Systems, a re-

search area that originated in computer science. In particular, top-N recommender

systems, which recommend the top-N items that are most likely to be preferred or

purchased by users, have been used in a variety of applications in e-commerce. There

are typically two categories of collaborative filtering methods [8]. The first category

is neighborhood-based collaborative filtering methods [9], which leverage information

from similar users and/or similar items to generate recommendations. The second

category is model-based methods, particularly latent factor models which learn user

and item latent factors and determine user preference over items using the factors.

Recent recommendation methods also include deep learning based approaches [13], in

which user preferences, item characteristics and user-item interactions can be learned

in deep architectures.

Dynamic recommender systems have been developed to recommend information of

interest over time. Popular techniques include latent factor transition approaches [14],

and Markov models [15] that model the transitions among latent factors capturing

13

information preference; state space approaches [16, 17] that model the transitions

across different states over time; point processes [18] and other statistical models

[19] that learn probabilities of future events.

Recommendation methods have been recently used to recommend and prioritize

healthcare information, due to the rapid growth of information available about indi-

vidual patients and the tremendous need for personalized healthcare [20]. Current

applications of recommender systems in healthcare include recommending physicians

to patients on specific diseases [2,3]; recommending drugs [4], medicine [21] and ther-

apies [22]; and recommending nursing care plans [5], etc.

3.3 Terminologies, Definitions and Notations

Table 3.1.: Notations
notation description
y/p/t/v a physician/patient/term/visit
~T (y, p, v) a search term sequence of y on p in visit v
Sy(y) a set of physicians similar to y
Sp(p) a set of patients similar to p
St(t) a set of terms similar to t

In EHR systems, there is no measurement similar to numerical rating values in

Amazon that can be used to quantitatively assess how much a physician is interested

in a certain information item. In this case, we take a type of implicit feedback

as a qualitative measurement. That is, if a physician searches for an information

item from a patient’s EHR data, the physician is considered as interested in that

information item during the diagnostic process of the patient, and that information

item is useful for/relevant to the diagnosis of the patient. Thus, to evaluate whether a

physician is interested in an information item on a patient, we can check whether the

physician searches for the information item from the patient’s EHR data. Since search

is typically done through submitting a search term, we use the two terms “search term”

14

and “information item” exchangeably, and the problem becomes to recommend the

next search term that a physician is interested in on a certain patient.

In this chapter, a physician is denoted as y, a patient is denoted as p, and a search

term is denoted as t. A sequence of search terms that a physician y searches for on a

certain patient p during a certain patient visit v is represented as

~T (y, p, v) = {tv1 → tv2 → · · · → tvk |y, p}, (3.1)

where tvk is the k-th search term during visit v. Note that a physician may have

multiple search sequences on a single patient during different visits. The physician

to who, we recommend the next search term on a patient is referred to as the target

physician, and the corresponding patient is referred to as the target patient. A set of

physicians/patients similar to the target physician y/target patient p is denoted as

Sy(y)/Sp(p), respectively. A set of search terms similar to a particular search term

t is denoted as St(t). The size of a set S is denoted as |S|. Additional notations

will be introduced when they are used (e.g., in Section 3.7). Table 3.1 presents the

important notations that we use in this chapter.

3.4 Overview of the Dynamic and Multi-Collaborative Filtering Method

– DmCF

In this research work, we tackle the problem of recommending the next search

term to a physician while the physician is searching for information about a patient.

The key idea is to analyze search patterns in order to make recommendations for

potentially useful, other information to the physician. To do so, we score and prioritize

possible recommendations based on the following two criteria combinatorially:

• which terms the physician has searched for on the patient already and

• which terms similar physicians have searched for on similar patients.

The first criterion considers the search dynamics under the assumption that the past

behavior of physicians is a reasonable approximation for the standard of care [23,24],

15

and their future behavior follows a same standard of care. Thus, future search terms

can be inferred from previously searched terms and their orders. The second criterion

considers patient similarities and physician similarities. The underlying intuition is

that patients share commonalities and similar patients stimulate similar information

retrieval patterns by physicians. Likewise, physicians share commonalities which

result in similar search patterns on patients.

We propose a hybrid method which we call DmCF that considers search dynamics

and multiple similarities for the next search term recommendation. DmCF consists of

two scoring components. The first component is designed to address search dynamics

through a first-order Markov Chain [25]. The score of a possible search term from this

dynamics-based scoring component is denoted as ScoreDYN. The second component is

to score search terms based on similarities via multi-collaborative filtering. The score

of a possible search term from this similarity-based scoring component is denoted as

ScoreCF. Thus, DmCF scores a next possible search term t for a physician y on a

patient p after a sequence of searches ~T (y, p, v) (Equation 3.1) as a linear combination

of ScoreDYN and ScoreCF, that is,

Score(t|~T (y, p, v)) = (1− α) · ScoreDYN(t|~T (y, p, v)) + α · ScoreCF(t|~T (y, p, v)), (3.2)

where α ∈ [0, 1] is a weighting parameter.

Table 3.2.: Methods
notation method description

DmCF dynamic and multi-collaborative filtering method (Section 4.3)
foMC first-order markov chain-based scoring method (Section 3.5.2)
ypCF physician-patient-similarity-based CF scoring method (Section 3.6.2)
TptCF transition-involved patient-term-similarity-based CF scoring method

(Section 3.6.3)
simP2Y patient-first similarity identification (Section 3.6.2)
simY2P physician-first similarity identification (Section 3.6.2)

In this work, if a score is generated from a certain method X, a superscript X will

be included on the score notation (e.g., ScoreX , ScoreXDYN or ScoreXCF). In general, a

16

superscript X indicates an associated method X. All possible terms are first scored

using the scoring function in Equation 3.2. The top-scored terms are recommended

as the next possible search terms. The first-order Markov Chain-based scoring and

the multi-collaborative filtering-based scoring will be discussed in Section 3.5 and

Section 3.6, respectively. Table 3.2 lists all the methods in this work.

3.5 Markov Chain-based Scoring

3.5.1 Background on Markov Chains

Markov Chain (MC) [25] represents a very fundamental dynamic modeling scheme

based on the Markovian assumption. The Markovian assumption states that in a

sequence of events (e0, e1, e2, · · · , et−1, et), each event only depends on a small set of

previous consecutive events but independent of any earlier events. An MC models

a sequence of events so that each of the events follows the Markovian assumption.

The Markovian assumption is statistically represented as P (et|e0, e1, e2, · · · , et−1) =

P (et|et−k, · · · , et−2, et−1), where P (et|E) is the probability of observing event et given

the previous event sequence E. The number of previous events that et depends on

(i.e., k in P (et|et−k, · · · , et−2, et−1)) defines the order of the MC . A special MC is

first-order MC , in which each event only depends on its immediate precursor. MC

has been demonstrated to be very effective in modeling, approximating and analyzing

real-life sequence data [25].

3.5.2 First-Order Markov Chain-based Scoring – foMC

We use a first-order MC as the dynamic model to simulate the sequence of terms

that a physician y searches for on a patient p during a visit. This method is referred

to as f irst-order M arkov Chain, denoted as foMC . For a sequence ~T (y, p, v) =

17

{tv1 , tv2 , · · · , tvk |y, p}, foMC calculates a dynamics-based score ScorefoMC
DYN of a next

possible search term t after tvk as the transition probability from tvk to t, that is,

ScorefoMC
DYN (t|~T (y, p, v)) = P (t|tvk), (3.3)

where P (t|tvk) is the transition probability from tvk to t in a first-order MC . The

transition probability P (tj|ti) from a term ti to another term tj in a first-order MC

is calculated as the ratio of the total frequency of transitions from ti to tj over the

total frequency of all transitions from ti to any terms, that is,

P (tj|ti) =

[∑
~T (y,p,v)

h(ti → tj|~T (y, p, v))

]/[∑
~T (y,p,v)

∑
(ti→tk)∈~T (y,p,v)

h(ti → tk|~T (y, p, v))

]
,

(3.4)

where (ti → tk) ∈ ~T (y, p, v) represents that (ti → tk) is in ~T (y, p, v), h(ti →

tj|~T (y, p, v)) is the frequency of the transitions from ti to tj in ~T (y, p, v). Thus,

ScorefoMC
DYN as in Equation 3.3 is not specific to a particular physician or patient, but

corresponds to clinical practices that are summarized from all available physicians

and patients.

3.6 Multi-Collaborative Filtering-based Scoring

3.6.1 Background on Collaborative Filtering

Collaborative Filtering (CF) is a popular technique in Recommender Systems [8]

for recommending items to a target user. The fundamental idea of CF is that “similar

users like similar items”. User-based CF methods first identify similar users to the

target user, and then recommend to the target user the items that are preferred by

similar users. Item-based CF methods first identify items similar to the target user’s

preferred items, and then recommend to the target user such similar items. Thus, CF

methods heavily depend on the calculation of user similarity and item similarity. A

typical way to calculate user similarity is to represent each user using her preference

18

profile over items, and calculate user similarity as the item preference profile similarity.

Likewise, a typical way to calculate item similarity is to represent each item using its

preference profiles across users, and calculate item similarity as the user preference

profile similarity. The user similarity function and item similarity function in CF are

often pre-defined, and thus the recommendations based on similarities can be easily

interpreted. CF is particularly powerful when user and item data are sparse, which

is often the case in real-life applications. CF is also well-known for its scalability on

large-scale problems, particularly when the user similarity and item similarity can be

calculated in parallel trivially.

3.6.2 Physician-Patient-Similarity-based CF Scoring – ypCF

We developed a CF method that generates search term recommendations from

similar physicians and patients. This method first identifies similar physicians and

similar patients (discussed in Section 3.6.2) and then scores terms searched by similar

physicians on similar patients (discussed in Section 3.6.2). This method is referred to

as physician-patient-similarity-based Collaborative F iltering, and denoted as ypCF .

Identifying similar physicians and similar patients

We developed two approaches to identify the set of similar physicians and the set

of similar patients, depending on which set is identified first.

Patient-First Similarity Identification – simP2Y In the first approach, a

set of patients similar to the target patient p is first identified, and then based on the

similar patients, a set of physicians similar to the target physician y is then selected.

This approach is denoted as simP2Y (i.e., from Patients to phY sicians). In simP2Y ,

the set of patients similar to the target patient p is represented as

SP2Yp (p) = {p1, · · · , pkp |p}, (3.5)

19

and is composed of the top-kp most similar patients to the target patient p (patient-

patient similarity will be discussed later in Section 3.7). Given SP2Yp (p), a set of

physicians similar to the target physician y is represented as

SP2Yy (y|p) = {y1, · · · , yky |SP2Yp (p)}, (3.6)

and selected as follows: first, physicians who have ever searched for same terms on

p and on one or more patients in SP2Yp (p) are identified. From such physicians, the

top-ky most similar physicians to y are selected into SP2Yy (y|p) (physician-physician

similarity will be discussed later in Section 3.7).

Physician-First Similarity Identification – simY2P The second approach

is to first identify a set of physicians similar to the target physician y, and then

based on the similar physicians, to identify a set of similar patients. This approach

is denoted as simY2P (i.e., from phY sicians to Patients). In simY2P , the set of

similar physicians is represented as

SY2Py (y) = {y1, · · · , yky |y}, (3.7)

and has the top-ky most similar physicians to y. Based on SY2Py (y), a set of patients

similar to the target patient p, denoted as

SY2Pp (p|y) = {p1, · · · , pkp |SY2Py (y)}, (3.8)

is identified as patient p’s top-kp most similar patients on whom physicians in SY2Py (y)

have ever searched for same terms as on p.

Collaborative Filtering in ypCF

From Sy(y) and Sp(p) (either SP2Yp (p) and SP2Yy (y|p), or SY2Py (y) and SY2Pp (p|y)), a

set of physician-patient-term triplets, denoted as SypCF
ypt (Sy(y),Sp(p)) =

{
〈yi, pj, tk〉|yi ∈

20

Sy(y), pj ∈ Sp(p), tk ∈ ~T (yi, pj, vl),∀vl
}
, is constructed. That is, SypCF

ypt (Sy(y),Sp(p))

has all the 〈yi, pj, tk〉 triplets such that physician yi ∈ Sy(y) has searched for term tk

for patient pj ∈ Sp(p). Thus, for a sequence ~T (y, p, v) = {tv1 , tv2 , · · · , tvk |y, p}, the

score ScoreypCF
CF of a next possible search term t is calculated as follows:

ScoreypCF
CF (t|~T (y, p, v)) = f̄(〈y, p, ·〉) +

∑
〈y′,p′,t〉∈SypCF

ypt

f̂(y′, p′, t) · simy(y, y′) · simp(p, p′)

∑
y′,p′:∃〈y′,p′,t〉∈SypCF

ypt

simy(y, y′) · simp(p, p′)
,

(3.9)
where f̄(〈y, p, ·〉) =

∑
t:〈y,p,t〉∈SypCF

ypt
f(〈y, p, t〉)

/ ∑
t:〈y,p,t〉∈SypCF

ypt
1, and f̂(〈y′, p′, t〉) =

f(〈y′, p′, t〉)−f̄(〈y′, p′, ·〉), f(〈y′, p′, t〉) is the frequency of the triplet 〈y′, p′, t〉 (i.e., how

many times y′ searches for t on p′ in total); f̄(〈y, p, ·〉) is the average frequency of all

possible terms that y searches for on p; f̂(〈y, p, ·〉) is the centered frequency for 〈y, p, ·〉

(i.e., shifted by f̄(〈y, p, ·〉)) in order to reduce the bias from searches with different

frequencies; and simy(y, y′) and simp(p, p′) are the similarity between y and y′, and

the similarity between p and p′, respectively (discussed in Section 3.7). The intuition

behind the scoring scheme in Equation 3.9 is that the possibility that y searches for

t on p after a sequence of searches is the aggregation of 1). the average possibility of

y searching for arbitrary search terms (i.e., the first term in Equation 3.9), and 2).

the possibility that similar physicians search for t on similar patients (i.e., the second

term in Equation 3.9).

3.6.3 Transition-Involved Patient-Term-Similarity-based CF Scoring – TptCF

The order in which a physician searches for different terms could indicate a diag-

nosis process, and therefore the search order deserves additional consideration. We

developed a new patient-term-similarity-based CF scoring method that involves the

transitions among search terms. Patient similarities and term similarities are consid-

ered in this method, which is different from those in ypCF (i.e., physician similarities

21

and patient similarities in ypCF). This method is referred to as T ransition-involved

patient-term-similarity-based Collaborative F iltering, denoted as TptCF .

TptCF aggregates from all similar patients the transitions from the last search

term in a sequence ~T (y, p, v) (Equation 3.1) to another search term. Specifically,

TptCF identifies a set of patients Sp(p) similar to the target patient p and a set of

terms St(tvk) similar to the last search term tvk in ~T (y, p, v). The set St(tvk) contains

the terms with term-term similarity (discussed in Section 3.7) to tvk above a threshold

β. Then TptCF looks into what physicians search for on patients in Sp(p) after they

searched for a similar term in St(tvk). The underlying assumption is that similar

patients stimulate similar patterns of search sequences. Thus, the score ScoreTptCF
CF of

a next possible search term t is calculated as follows:

ScoreTptCF
CF (t|~T (y, p, v)) =

∑
p′∈Sp(p)

{ simp(p, p′)∑
p′′∈Sp(p)

simp(p, p′′)

×
∑

t′∈St(tvk)

g(t′ → t|p′)simt(tvk , t
′)∑

t′′∈St(tvk)
g(t′′ → t|p′)

}
,

(3.10)

where g(t′ → t|p′) is the frequency of transitions from term t′ to term t for patient p′

from all possible searches on p′, simt(tvk , t
′) is the term-term similarity between tvk

and t′ (discussed in Section 3.7).

3.7 Similarity Calculation

Physician-Physician Similarities – simy We first represent each physician

y using a vector of search term frequencies, denoted as v. Each dimension of v

corresponds to a term, and the value in each dimension of v is the total frequency

that the corresponding term has been searched by y. Note that the frequency is

aggregated from all the patients that y searches on. This representation scheme

is very similar to the bag-of-word representation in text mining [26]. Given the

22

representation, the similarity between two physicians y and y′ is calculated as the

cosine similarity between vy and vy′ , that is,

simy(y, y′) = cos(vy,vy′). (3.11)

The intuition is that the search term distribution indicates physician specialties and

expertise, and physicians of similar specialties and expertise are considered similar.

Patient-Patient Similarities – simp Similarly as for physicians, each patient is

also represented using a vector of term frequencies, denoted as u. Each dimension of

u corresponds to a term, and the value in each dimension of u is the total frequency

of the corresponding term searched for by all physicians. The term distribution repre-

sents the health histories of the patient, and thus a reasonable patient representation.

Given the representation, the similarity between two patients p and p′ is calculated

as the cosine similarity between up and up′ , that is,

simp(p, p′) = cos(up,up′). (3.12)

Term-Term Similarities – simt Each term t is represented using a vector of

patient frequencies, denoted as w. Each dimension in w corresponds to a patient,

and the value in each dimension of w is the total frequency that term t is searched

for by all physicians. The term-term similarity between terms t and t′ is calculated

as the cosine similarity between wt and wt′ , that is,

simt(t, t
′) = cos(wt,wt′). (3.13)

The underlying assumption is that if two terms are frequently searched for on the same

patient, they are considered as similar in their medical meanings and relatedness.

23

3.8 Materials

3.8.1 Data

Table 3.3.: Statistics of INPC Dataset

statistics INPC
CUTOFF CUTOFF CUTOFF CUTOFF

(06/26/2013) (07/18/2013) (08/15/2013) (09/03/2013)
train test train test train test train test

#p 13,819 6,669 587 8,471 624 10,852 472 12,014 372
#y 2,121 1,267 126 1,542 147 1,818 126 1,948 105
#t 9,781 5,334 665 6,550 654 7,952 532 8,657 461
#~T 24,183 10,385 648 13,677 692 18,166 535 20,492 414
len(~T) 69,770 28,789 2,568 38,553 2,506 51,272 1,831 58,146 1,482
len(~T)/#p 5.049 4.317 4.375 4.551 4.016 4.725 3.879 4.840 3.984
len(~T)/#~T 2.885 2.772 3.963 2.819 3.621 2.822 3.422 2.837 3.580

In this table, #p is the number of patients; #y is the number of physicians; #t is the number of
terms; #~T is the number of sequences; len(~T) is total length of sequences; len(~T)/#p is average
length of sequences per patient and len(~T)/#~T is average length of sequences.

The data we use for experiments come from the Indiana Network for Patient

Care (INPC) 1. The INPC is Indiana’s major health information exchange, and offers

physicians access to the most complete, cross-facility virtual electronic patient records

in the nation. Implemented in the 1990s, the INPC collects data from over 140 Indiana

hospitals, laboratories, long-term care facilities and imaging centers. We extracted the

INPC search logs that were generated between 01/24/2013 to 09/24/2013. Table 3.8.1

presents the statistics of the INPC dataset. Figure 3.1 presents the distribution of

sequence length in the dataset. It is notable that search sequences are typically very

short (on average 2.89 search terms per each sequence). Figure 3.2 presents the

distribution of the number of unique terms for each patient. On average, each patient

has 3.85 unique search terms. The short sequences and small number of unique search

terms per patient make the recommendation problem difficult, because the available

data are very sparse.
1IRB Protocol # 1612682149 “Supporting information retrieval in the ED through collaborative
filtering”.

24

100

101

102

103

104

1 2 3 4 5 10 20 50 100

fr
eq
ue
nc
y
(l

og
)

sequence length (log)

Fig. 3.1.: Distribution of INPC sequence length

100

101

102

103

1 2 3 4 5 10 20 50 100

fr
eq
ue
nc
y
(l

og
)

unique terms (log)

Fig. 3.2.: Distribution of INPC # unique terms per patient

3.8.2 Experimental Protocols and Evaluation Metric

We use the following experimental protocol to evaluate our methods on the INPC

dataset: all the search sequences are split by the same cut-off time. Any searches

25

cut-off timetime

training portion of a sequence
testing portion of a sequence

training term
testing term

Fig. 3.3.: CUTOFF experimental protocol

before the cut-off time are in the training set, and any searches after the cut-off time

are in the test set. The models are trained using only training set, for example,

the transition probabilities (Equation 3.4) are constructed only using the search se-

quences and terms in training set, and the various similarities (Equation 3.11, 3.12

and 3.13) are calculated only from the training set. This protocol is referred to as

cut-off cross validation, denoted as CUTOFF. Figure 3.3 demonstrates the CUTOFF

experimental protocol. We use the cut-off time 08/15/2013. This cut-off time is

selected because sufficient search terms from a majority of the search sequences are

retained in training set before the cut-off time and meanwhile sufficient search se-

quences have testing terms after the cut-off time. We also try other different cut-off

times, including 06/26/2013, 07/18/2013 and 09/03/2013. After the split, the statis-

tics for the training and test data are presented in Table 3.8.1 (in “CUTOFF” rows).

This CUTOFF setting is close to the realistic scenario, that is, all the data before a

certain time should be used to predict information after that time. However, a short-

coming of CUTOFF is that many early search sequences may not have test terms,

and many late search sequences will not have anything in the training set. Sequences

that do not have test terms are still used to train models. Sequences that do not have

26

training terms are not used. For those sequences which have terms after the cut-off

time, only the first one of the terms after the cut-off time will be used for evaluation.

The model performance is measured using Hit-Rate at N (HR@N). For a se-

quence, a hit is defined as a recommended term that is truly the next search term.

HR@N is the percentage of testing sequences that have a hit and the hit appears

among the top-N recommended terms. Higher HR@N values indicate better perfor-

mance.

3.9 Experimental Results and Discussions

3.9.1 Overall Performance

We compare foMC , ypCF , TptCF and DmCF , as well as their variations, in

our experiments. Table 3.4 presents the best performance of each method. Overall,

DmCF -ypCF with simP2Y is the best method because 4 out of 5 results of DmCF -

ypCF with simP2Y are the best among all the methods. With parameters α=0.2,

|Sp|=1 (i.e., 1 similar patient) and |Sy|=1 (i.e., 1 similar physician), DmCF -ypCF

with simP2Y outperforms the simple foMC at 22.3%, 20.2%, 26.0%, 16.7% and 18.1%

on HR@1, HR@2, HR@3, HR@4 and HR@5, respectively. The second best method

is ypCF with simP2Y because it has better results overall than the rest methods.

With parameters |Sp|=1 and |Sy|=1, ypCF with simP2Y outperforms the simple

foMC at 23.3%, 19.5%, 20.1%, 10.3% and 8.9% on HR@1, HR@2, HR@3, HR@4 and

HR@5, respectively. It is notable that although ypCF is significantly better than

foMC , the best DmCF -ypCF with simP2Y has a weight α=0.2 on the ypCF scoring

component, but a weight 1-α=0.8 on the foMC scoring component. This indicates

the importance of search dynamics in recommending the next search terms. It is also

notable that the optimal DmCF -ypCF with simP2Y corresponds to a very small

number of similar patients (Sp=1) and physicians (Sy=1). This demonstrates the

effectiveness of DmCF -ypCF in identifying most relevant information and leveraging

such information for term recommendation.

27

Table 3.4.: Overall Performance Comparison with CUTOFF (08/15/2013)
method sim α |Sp| |Sy| β HR@1 HR@2 HR@3 HR@4 HR@5

foMC - - - - - 0.202 0.297 0.338 0.378 0.393

ypCF

simP2Y
- 1 1 - 0.249 0.355 0.406 0.417 0.428
- 50 2 - 0.215 0.336 0.393 0.424 0.441
- 100 2 - 0.222 0.342 0.393 0.422 0.443

simY2P

- 1 1 - 0.262 0.292 0.305 0.310 0.320
- 1 10 - 0.254 0.329 0.350 0.368 0.378
- 2 5 - 0.237 0.312 0.357 0.372 0.381
- 3 20 - 0.230 0.312 0.355 0.381 0.393
- 10 1 - 0.211 0.273 0.336 0.374 0.398

TptCF

- - 160 - 0.1 0.213 0.279 0.303 0.322 0.331
- - 480 - 0.9 0.189 0.290 0.320 0.340 0.355
- - 480 - 0.1 0.200 0.284 0.329 0.355 0.378
- - 500 - 0.1 0.200 0.282 0.327 0.357 0.379

DmCF -ypCF

simP2Y
0.2 1 1 - 0.247 0.357 0.426 0.441 0.464
0.5 1 1 - 0.245 0.363 0.422 0.439 0.464
0.2 100 2 - 0.226 0.351 0.404 0.430 0.467

simY2P

0.5 3 5 - 0.254 0.329 0.353 0.379 0.426
0.1 3 2 - 0.230 0.346 0.366 0.402 0.432
0.1 1 20 - 0.230 0.331 0.391 0.424 0.447
0.1 1 1 - 0.222 0.331 0.383 0.430 0.447
0.2 1 1 - 0.222 0.323 0.378 0.426 0.449

DmCF -TptCF

- 0.8 60 - 0.4 0.228 0.307 0.335 0.359 0.379
- 0.7 40 - 0.1 0.213 0.312 0.348 0.376 0.398
- 0.8 200 - 0.1 0.213 0.303 0.353 0.376 0.400
- 0.6 5 - 0.1 0.209 0.297 0.344 0.383 0.406
- 0.1 1 - 0.1 0.200 0.310 0.346 0.381 0.413

In this table, the column “sim” corresponds to similarity identification methods; α is the weight on CF component
in DmCF ; |Sp| is the number of similar patients; |Sy | is the number of similar physicians; β is the similarity thresh-
old to identify similar terms. The best performance of each method under each metric is bold. The best overall
performance of all methods under each metric is underlined.

The DmCF -TptCF method is also slightly better than foMC . With parameters

α=0.1, |Sp|=1 and β=0.1, DmCF -TptCF outperforms foMC at -1.0%, 4.4%, 2.4%,

0.8% and 5.1% on HR@1, HR@2, HR@3, HR@4 and HR@5, respectively. However,

DmCF -TptCF is significantly worse than DmCF -ypCF with simP2Y . The difference

between DmCF -TptCF and DmCF -ypCF is that in DmCF -ypCF , the similarity-

based scoring component (i.e., ypCF) does not consider search dynamics and only

28

Table 3.5.: Overall Performance Comparison with CUTOFF (06/26/2013)
method sim α |Sp| |Sy| β HR@1 HR@2 HR@3 HR@4 HR@5

foMC - - - - - 0.205 0.313 0.341 0.369 0.381

ypCF

simP2Y
- 4 1 - 0.261 0.366 0.380 0.383 0.383
- 50 1 - 0.259 0.377 0.398 0.414 0.418
- 100 1 - 0.250 0.373 0.403 0.418 0.431

simY2P

- 2 3 - 0.302 0.350 0.364 0.369 0.372
- 3 1 - 0.287 0.370 0.397 0.414 0.421
- 5 1 - 0.279 0.360 0.401 0.423 0.437
- 10 1 - 0.262 0.349 0.397 0.421 0.444

TptCF

- - 200 - 0.1 0.207 0.312 0.335 0.347 0.349
- - 220 - 0.1 0.204 0.313 0.343 0.350 0.353
- - 320 - 0.1 0.199 0.313 0.347 0.361 0.370
- - 380 - 0.1 0.194 0.312 0.346 0.356 0.372

DmCF -ypCF

simP2Y
0.3 4 1 - 0.262 0.387 0.415 0.437 0.449
0.1 20 1 - 0.253 0.377 0.420 0.449 0.458
0.2 20 1 - 0.258 0.381 0.420 0.449 0.460

simY2P

0.6 3 10 - 0.262 0.370 0.407 0.438 0.455
0.4 3 1 - 0.219 0.380 0.409 0.440 0.469
0.2 3 4 - 0.227 0.375 0.417 0.441 0.463
0.2 2 3 - 0.216 0.363 0.412 0.451 0.463
0.1 5 1 - 0.228 0.373 0.417 0.443 0.475

DmCF -TptCF

- 0.7 5 - 0.1 0.215 0.310 0.352 0.381 0.392
- 0.9 220 - 0.1 0.207 0.324 0.356 0.373 0.383
- 0.8 10 - 0.1 0.208 0.312 0.360 0.384 0.394
- 0.6 10 - 0.1 0.211 0.321 0.355 0.386 0.395
- 0.5 10 - 0.1 0.208 0.318 0.353 0.381 0.397

In this table, the column “sim” corresponds to similarity identification methods; α is the weight on CF component
in DmCF ; |Sp| is the number of similar patients; |Sy | is the number of similar physicians; β is the similarity thresh-
old to identify similar terms. The best performance of each method under each metric is bold. The best overall
performance of all methods under each metric is underlined.

looks at the search terms that have ever been searched by similar physicians on similar

patients, regardless of how such search terms transit to the search term of interest,

while TptCF considers such transitions. The performance difference between DmCF -

TptCF and DmCF -ypCF may indicate that the transition information captured in

TptCF might overlap with that captured in foMC and thus combining them together

will not lead to substantial gains. On the other hand, the information captured by

29

Table 3.6.: Overall Performance Comparison with CUTOFF (07/18/2013)
method sim α |Sp| |Sy| β HR@1 HR@2 HR@3 HR@4 HR@5

foMC - - - - - 0.210 0.292 0.325 0.341 0.348

ypCF

simP2Y

- 5 1 - 0.267 0.347 0.358 0.364 0.366
- 50 1 - 0.262 0.358 0.379 0.395 0.400
- 100 1 - 0.257 0.358 0.384 0.402 0.412
- 100 2 - 0.237 0.342 0.380 0.396 0.413

simY2P
- 2 3 - 0.289 0.337 0.353 0.357 0.358
- 1 100 - 0.283 0.345 0.353 0.357 0.358
- 10 1 - 0.240 0.325 0.379 0.410 0.426

TptCF

- - 260 - 0.1 0.210 0.286 0.301 0.312 0.329
- - 300 - 0.1 0.207 0.289 0.305 0.318 0.329
- - 380 - 0.1 0.208 0.288 0.309 0.324 0.341
- - 420 - 0.1 0.208 0.288 0.308 0.325 0.340

DmCF -ypCF

simP2Y
0.2 5 1 - 0.267 0.364 0.393 0.403 0.426
0.1 50 1 - 0.256 0.355 0.396 0.415 0.428
0.2 100 1 - 0.253 0.360 0.396 0.413 0.431

simY2P

0.5 2 3 - 0.251 0.347 0.387 0.408 0.426
0.4 2 4 - 0.250 0.351 0.392 0.413 0.431
0.5 5 4 - 0.228 0.341 0.397 0.419 0.441
0.2 5 1 - 0.228 0.335 0.389 0.423 0.436
0.5 10 4 - 0.212 0.315 0.384 0.412 0.447

DmCF -TptCF

- 0.8 5 - 0.1 0.218 0.292 0.332 0.351 0.367
- 0.8 300 - 0.1 0.215 0.305 0.328 0.345 0.351
- 0.6 5 - 0.1 0.217 0.302 0.340 0.355 0.364
- 0.5 5 - 0.1 0.215 0.302 0.338 0.357 0.364
- 0.3 1 - 0.1 0.208 0.292 0.331 0.354 0.367

In this table, the column “sim” corresponds to similarity identification methods; α is the weight on CF component
in DmCF ; |Sp| is the number of similar patients; |Sy | is the number of similar physicians; β is the similarity thresh-
old to identify similar terms. The best performance of each method under each metric is bold. The best overall
performance of all methods under each metric is underlined.

ypCF methods could be complementary to that in foMC and thus integration of

ypCF and foMC results in significant performance improvement.

In DmCF -ypCF , simP2Y is slightly better than simY2P . The simP2Y method

first identifies patients similar to the target patient, and based on the identified simi-

lar patients identifies physicians similar to the target physician. The simY2P method

identifies similar patients and similar physicians in the reversed order as in simP2Y .

30

Table 3.7.: Overall Performance Comparison with CUTOFF (09/03/2013)
method sim α |Sp| |Sy| β HR@1 HR@2 HR@3 HR@4 HR@5

foMC - - - - - 0.193 0.271 0.304 0.331 0.365

ypCF

simP2Y
- 10 1 - 0.261 0.326 0.345 0.355 0.355
- 20 1 - 0.261 0.329 0.353 0.365 0.367
- 100 1 - 0.246 0.324 0.374 0.399 0.406

simY2P

- 1 1 - 0.278 0.329 0.350 0.365 0.365
- 2 3 - 0.271 0.336 0.360 0.379 0.384
- 10 1 - 0.234 0.304 0.372 0.391 0.406
- 5 1 - 0.242 0.331 0.362 0.396 0.408
- 10 20 - 0.222 0.300 0.360 0.389 0.413

TptCF
- - 180 - 0.1 0.184 0.246 0.271 0.290 0.304
- - 320 - 0.1 0.179 0.266 0.295 0.309 0.326
- - 500 - 0.1 0.174 0.261 0.312 0.338 0.353

DmCF -ypCF

simP2Y

0.2 10 1 - 0.263 0.336 0.377 0.389 0.411
0.1 10 1 - 0.261 0.338 0.377 0.389 0.411
0.1 100 1 - 0.234 0.331 0.382 0.411 0.425
0.2 100 1 - 0.246 0.331 0.382 0.408 0.428

simY2P

0.4 3 2 - 0.242 0.319 0.355 0.386 0.423
0.4 2 1 - 0.234 0.343 0.384 0.391 0.418
0.3 3 2 - 0.234 0.336 0.389 0.396 0.423
0.2 4 5 - 0.220 0.333 0.374 0.403 0.425
0.1 2 2 - 0.208 0.312 0.362 0.391 0.435

DmCF -TptCF

- 0.8 40 - 0.1 0.208 0.292 0.326 0.348 0.374
- 0.8 20 - 0.1 0.198 0.292 0.321 0.345 0.379
- 0.9 460 - 0.1 0.181 0.271 0.338 0.365 0.382
- 0.9 480 - 0.1 0.184 0.271 0.333 0.367 0.382
- 0.1 5 - 0.1 0.198 0.278 0.319 0.350 0.389

In this table, the column “sim” corresponds to similarity identification methods; α is the weight on CF component
in DmCF ; |Sp| is the number of similar patients; |Sy | is the number of similar physicians; β is the similarity thresh-
old to identify similar terms. The best performance of each method under each metric is bold. The best overall
performance of all methods under each metric is underlined.

The better performance of simP2Y over simY2P in DmCF -ypCF demonstrates that

when physician search dynamics has been considered via MC , similar patients should

be identified first and then based on identified similar patients, similar physicians

should be identified. This may be because that when MC already considers all pa-

tients and all physicians (Equation 3.4), a more focused and more homogeneous group

of patients similar to the target patient is more critical in order to complement to the

31

MC information. Since physicians may see many patients with different diseases, high

physician similarity may be due to patients who are different from the target patient.

If such physicians are first selected (e.g., in simY2P), similar patients identified from

these physicians might be very different from the target patient. However, when no

information about all the patients and all the physicians is considered like in ypCF ,

a diverse set of physicians and patients might be beneficial, and that could explain

why in ypCF , simY2P actually outperforms simP2Y slightly.

Table 3.5, Table 3.6 and Table 3.7 present the best performance of all the meth-

ods for cut-off times 06/26/2013, 07/18/2013 and 09/03/2013, respectively. Overall,

DmCF -ypCF achieves the best performance over the other methods on the different

cut-off times. The trends among different methods as identified from cut-off time

08/15/2013 remain very similar for the other cut-off times. Note that as using later

cut-off times, training data become more as shown in Table 3.8.1, and the performance

of each method over different cut-off times tends to become worse. For example, the

performance of foMC model decreases in general over different cut-off times. This

may be due to the increasing heterogeneity among patients as more patients in the

system. Table 3.5 presents the best performance of all the methods for cut-off time

06/26/2013. Overall, DmCF -ypCF with simP2Y and simY2P are the best methods

because 4 out of 5 results of DmCF -ypCF with simP2Y and simY2P are the best

among all the methods. The best HR@1 is achieved with the parameters |Sp|=2

(i.e., 2 similar patients) and |Sy|=3 (i.e., 3 similar physicians) of ypCF with simY2P

method. The best HR@2, HR@3, HR@4 and HR@5 are achieved by the DmCF -ypCF

with simP2Y and simY2P methods. The best HR@2, HR@3, HR@4 and HR@5 are

better than the performance of foMC with the improvements of 23.6%, 23.2%, 22.2%

and 24.7%. Table 3.6 presents the best performance of all the methods for cut-off

time 07/18/2013. Overall, DmCF -ypCF with simP2Y and simY2P are the best

methods because 4 out of 5 results of DmCF -ypCF with simP2Y and simY2P are

the best among all the methods. The best HR@1 is achieved with the parameters

|Sp|=2 (i.e., 2 similar patients) and |Sy|=3 (i.e., 3 similar physicians) of ypCF with

32

simY2P method. The best HR@2, HR@3, HR@4 and HR@5 are achieved by the

DmCF -ypCF with simP2Y and simY2P methods. The best HR@2, HR@3, HR@4

and HR@5 are better than the performance of foMC with the improvements of 24.7%,

22.2%, 24.0% and 28.4%. Table 3.7 presents the best performance of all the meth-

ods for cut-off time 09/03/2013. Overall, DmCF -ypCF with simP2Y and simY2P

are the best methods because 4 out of 5 results of DmCF -ypCF with simP2Y and

simY2P are the best among all the methods. The best HR@1 is achieved with the

parameters |Sp|=1 (i.e., 1 similar patient) and |Sy|=1 (i.e., 1 similar physician) of

ypCF with simY2P method. The best HR@2, HR@3, HR@4 and HR@5 are achieved

by the DmCF -ypCF with simP2Y and simY2P methods. The best HR@2, HR@3,

HR@4 and HR@5 are better than the performance of foMC with the improvements

of 26.6%, 28.0%, 24.2% and 19.2%. Overall, the best performance is achieved by the

method DmCF -ypCF . The trends are also similar for different cut-off times.

Comparing ypCF and TptCF , it is notable that ypCF is significantly better than

TptCF , even though in TptCF more patients similar to the target patient are used

to achieve its optimal performance. In TptCF , only terms from similar physicians

and patients that are similar to the term of interest are considered in calculating the

scores (Equation 3.10). However, in ypCF , all the terms from similar physicians and

patients are used. The improved performance of ypCF compared to that of TptCF

may indicate that using more possible terms could benefit recommendation. On the

other hand, both foMC and TptCF consider term transitions, while TptCF considers

term transitions only among similar terms on similar patients. The experimental

results show that TptCF performs worse than foMC . This may indicate that if term

transition is a major factor in determining next search term, transitions from more

diverse patients should be integrated.

Figure 3.4, 3.5, 3.6, 3.7 and 3.8 present HR@1, HR@2, HR@3, HR@4 and HR@5

of DmCF -ypCF with simP2Y over different α values (Equation 3.2) when |Sy| =

1 and |Sp| = 1. As the weight α increases from 0, that is, as the CF takes place

in the term scoring (Equation 3.2), the performance of DmCF in terms of HR@1,

33

0.230

0.234

0.238

0.242

0.246

0.250

0.01 0.02 0.03 0.05 0.10 0.20 0.30 0.50 1.00

H
R
@
1

α(log)
Fig. 3.4.: HR@1 over α values

0.346

0.350

0.354

0.358

0.362

0.01 0.02 0.03 0.05 0.10 0.20 0.30 0.50 1.00

H
R
@
2

α(log)
Fig. 3.5.: HR@2 over α values

34

0.404

0.408

0.412

0.416

0.420

0.424

0.428

0.01 0.02 0.03 0.05 0.10 0.20 0.30 0.50 1.00

H
R
@
3

α(log)

Fig. 3.6.: HR@3 over α values

0.416

0.420

0.424

0.428

0.432

0.436

0.440

0.444

0.01 0.02 0.03 0.05 0.10 0.20 0.30 0.50 1.00

H
R
@
4

α(log)

Fig. 3.7.: HR@4 over α values

35

0.426

0.436

0.446

0.456

0.466

0.01 0.02 0.03 0.05 0.10 0.20 0.30 0.50 1.00

H
R
@
5

α(log)
Fig. 3.8.: HR@5 over α values

36

HR@2 and HR@3 generally increases. For the performance of HR@4 and HR@5, as

the weight α increases from 0, the performance slightly decreases, then increases and

becomes stable (except when α=1 which means only the CF scoring component is

considered.). This demonstrates the effect from CF scoring component in DmCF .

As α further increases, the performance in general first gets better and then worse

(except that the HR@1 performance reaches its best at α=1). This indicates that the

dynamic scoring component and CF scoring component in DmCF play complemen-

tary roles for recommending terms, and thus considering their combination enables

better recommendation performance than each of the two methods alone.

3.9.2 Similarity Analysis

0.01%

0.1%

1%

10%

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

nn
z
%

(l
og

)

simy

Fig. 3.9.: Physician-physician similarity distribution

Figure 3.9 and 3.10 present the distribution of non-zero physician-physician simi-

larities (simy) and patient-patient similarities (simp), respectively. Figure 3.11 presents

the distribution of non-zero term-term similarities (simt). For simy, 5.65% of physician-

37

0.001%

0.01%

0.1%

1%

10%

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

nn
z
%

(l
og

)

simp

Fig. 3.10.: Patient-patient similarity distribution

0.01%

0.01%

0.1%

1%

10%

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

no
n-
ze
ro

pe
rc
en
ta
ge

(l
og

)

simt

Fig. 3.11.: Term-term similarity distribution

38

physician similarities are non-zero, and 80.98% of the non-zero similarities are less

than or equal to 0.2. For simp, 2.65% of the patient-patient similarities are non-zero,

and 77.05% of the non-zero similarities are less than or equal to 0.5. For simt, only

0.28% of term-term similarities are non-zero, and 78.36% of the non-zero similarities

are less than or equal to 0.3. Specially, there are some patients whose similarities with

one another are relatively high (i.e., the peaks in Figure 3.10 on larger simp values).

This also explains the advantages of simP2Y over simY2P and their performance in

Table 3.4, because more patients with higher simp to the target patient provide better

opportunities for DmCF to identify relevant information from such similar patients.

3.10 Conclusions

In this chapter, we presented our new dynamic and multi-collaborative filtering

method DmCF to recommend search terms relevant to patients for physicians. DmCF

combines a dynamic first-order Markov chain model and a multi-collaborative filter-

ing model in order to score and prioritize search terms. The collaborative filtering

model leverages the key idea originating from Recommender Systems research, and

uses patient similarities, physician similarities and term similarities to score potential

search terms. The linear combination of the dynamic-based scoring and the multi-

collaborative filtering-based scoring is able to produce high quality recommendations

that are most relevant to the patients and that are most interested to physicians.

39

4. LOCAL SPARSE LINEAR MODEL ENSEMBLE FOR
TOP-N RECOMMENDATION

4.1 Introduction

Top-N Recommender Systems (RS) have been widely used in E-commerce appli-

cations. However, two typical issues still challenge the current top-N RS development:

1). data sparsity, when there are not sufficient data to train a good RS model, and 2).

user/item heterogeneity, when a global model (e.g., the popular matrix factorization

models) trained from all the users/items fail for certain users/items. Existing meth-

ods that tackle the first issue include factorized models [27] and implicit feedback

based models [28], etc. Emerging methods dealing with the second issue include the

most recent local model based approaches [29,30].

In this paper, we develop local sparse linear model ensemble to tackle both the

data sparsity and the user/item heterogeneity issues. We learn multiple local Sparse

LInear Models (SLIM) [11] for all the users and items in the system. These models are

then combined in various ways to produce top-N recommendations. SLIM is strong in

learning relations among items, while localizing SLIM with respective to certain users

and items better reveal localized item relations among a certain group of users. By

combining multiple SLIM models, signals from multiple models are aggregated so as

to enable better results for sparse data. Our experiments over datasets of different

sparsity levels demonstrate the superior performance of the model ensemble method.

40

4.2 Related Work

4.2.1 Sparse Linear Method for top-N Recommendation

Ning and Karypis proposed a state-of-the-art Sparse LInear Method (SLIM) for

top-N recommendation [11]. In SLIM, the user u’s preference over an item i is modeled

as a linear aggregation over the items that the user purchased before, that is,

r̃u,i = R(u, ·)W (·, i), (4.1)

where r̃u,i is the estimated user preference of user u on item i, R(u, ·) is the user

preference over other items, and W (·, i) is coefficient with respect to item i. To solve

for W , SLIM solves the following optimization problem,

min
W

1

2
‖R−RW‖2F +

β

2
‖W‖2F + λ‖W‖`1

s.t. W ≥ 0, diag(W) = 0.

(4.2)

where ‖ · ‖F is the Frobenious norm of a matrix; ‖ · ‖`1 is the `1 norm of a matrix;

the first term ‖R − RW‖2F measures the error of re-constructing R using the linear

model; the ‖W‖2F term regularizes W so that values in W will not become too large;

the ‖W‖`1 term introduces sparsity in the solution; the non-negativity constraint

over W enforces only non-negativity relations; the zero diagonal constraint over W

excludes the cases in which items are used to generate preferences over themselves.

4.2.2 Local Low-Rank Matrix Approximation

Lee et al. [29] developed a Local Low-Rank Matrix Approximation (LLORMA)

method. LLORMA first randomly selects a set of K anchor pairs {(u∗k, i∗k)} (k =

1, · · · , K). With respect to each anchor pair (u∗k, i
∗
k), a local model is learned us-

41

ing the training data {(u, i)} that are selected based on user-item kernel values

K((u, i), (u∗k, i
∗
k)). The local models are low-rank matrix factorization models, that is,

r̃ku,i = uku
T
vki , (4.3)

where uku and vki are the latent factors for user u and item i from the k-th model,

respectively. The global model prediction ˜̃ru,i of user u’s preference over item i is a

weighted combination of the predictions from multiple local models as follows:

˜̃ru,i =
K∑
k=1

K((u, i), (u∗k, i
∗
k))∑K

k′=1K((u, i), (u∗k′ , i
∗
k′))

r̃ku,i (4.4)

4.2.3 Combining Local Models for Recommendation

The idea of combining local models for recommendation has attracted increasing

attention recently. For example, Xu et al. [31] proposed a co-clustering method which

is based on graph cut. The user-item matrix is viewed as a bipartite graph. And it is

assumed that when one user and one item belong to one or more co-clusters together,

this item will be given a high rating by this user. This method also allows for soft

memberships which means user or item doesn’t have to belong to one cluster. The

prediction comes from the largest interest group shared by user and item.

Beutel et al. [32] has adopted a different method to approximate matrix first

cluster users and items, respectively. Then they fit models on the user-item clusters

using some mean values. Every co-clustering model aims at fitting the residual of

previous co-clustering models. The residuals from this clustering-mean fitting process

are forwarded to the next iteration of same processes. For each co-clustering model,

a simple K-means like method is used to find local structures. The prediction of each

local structure is based on the average rating in that local structure.

Christakopoulou and Karypis [30] combine local models and a global model. First,

an initial user clustering is made, and during the learning process, the cluster of user

is reassgined and weights of each local model is updated so as to optimize the loss

42

function. For each local model and global model, SLIM is used to model the item-

item relationship in local and global structures. The prediction is made by summing

over the local predictions and global prediction.

4.3 Methods

We developed a model ensemble over local sparse linear models for top-N recom-

mendation. Following the idea from Lee [29], a set of anchor pairs is first selected.

With respect to each of the anchor pairs, a local SLIM model is trained. The lo-

cal models are then ensembled via combining their results or combining the models

directly.

4.3.1 Anchor Pair Selection

We first randomly select a user u∗ out of m users as the anchor user. Then from

u∗, we randomly select an item i∗ that u∗ has purchased. This item will be the anchor

item. The user-item pair (u∗, i∗) will be the anchor pair with respect to which each

local model will be built.

4.3.2 Training Data Selection for Local Models

Training data for each local model with respect to each anchor pair (u∗, i∗) are

selected according to: 1). user and item similarities, and 2). user and item populari-

ties.

Similarity-based Training Data Selection

In this method, we use a radial basis function (RBF) kernel to measure the sim-

ilarity between a user-item pair (u′, i′) and the anchor pair (u∗, i∗), and apply two

43

different similarity-based schemes to select training data. The RBF kernel over the

two pairs is defined as follows [29]:

Kui((u′, i′), (u∗, i∗)) = Ku(u′, u∗)×Ki(i′, i∗) (4.5)

where both Ku and Ki are RBF kernels:

Ku(u′, u∗) = exp(−γ‖R(u′, ·)−R(u∗, ·)‖2), (4.6)

Ki(i′, i∗) = exp(−γ‖R(·, i′)−R(·, i∗)‖2). (4.7)

In Equation 4.6 and Equation 4.7, R(u, ·) (R(·, i)) is purchase profile of by user

u (of item i). Since both Ku and Ki are valid kernels, Kui is also a valid kernel.

The definition in Equation 4.6 and Equation 4.7 follow the idea in user-based and

item-based Collaborative Filtering (CF), respectively, that calculates user and item

similarities directly from user-item matrix R. This is different from the idea in Lee et.

al. [29], where the user and item similarities are calculated from their latent factors

that are obtained via Matrix Factorization (MF) over R. By doing the CF-based

user and item similarities, we can avoid unnecessary complications related to the

non-convex properties of typical MF approaches and their high computational costs.

Given the similarities, all the user-item pairs are weighted by their similarities

with the anchor pair (u∗, i∗) as follows, Each local model is trained using the selected

data RKui
u∗,i∗(u

′, i′) defined as follows,

RKui
u∗,i∗(u

′, i′) = Kui((u′, i′), (u∗, i∗))R(u′, i′), (4.8)

where RKui
u∗,i∗ has values in [0, 1] (i.e., any floating values between 0 and 1), and will

be used for local model training. This data selection method is referred to as SKui
.

44

Popularity-based Training Data Selection

In this method, we select the user-item pairs such that the selected users/items

have similar popularities as the anchor user/item. The user popularity is defined as

the number of items that the user has purchased, and the item popularity is defined

as the number of users who have purchased the item. For each anchor pair (u∗, i∗),

we first select α% of all the users who have the closest but lower or higher popularity

than u∗, respectively. From the selected users, we select α% of all the items that

have the closest but lower or higher popularity than i∗, respectively. The interactions

between the selected users and items will be used as training data. This training data

selection method is referred to as SPui
.

4.3.3 Model Combination and Recommendation Generation

After training a SLIM model on each of K selected training datasets with respect

to K anchor pairs, we ensemble the model results or the models themselves in order

to produce recommendations.

Model Result Aggregation

Each local model first produces a recommendation list. Each of the items that

has ever appeared in any of the K recommendation lists is then scored. These items

are re-ranked using the scores into a new ranked list and the top-N items in the new

list will be recommended. This result-aggregation based method is referred to as MRA.

To score the items, we use the following two approaches. The first one is the

Borda [33] approach, which scores each item using the sum of their ranking positions

from all the recommendation lists. The Borda scoring approach is denoted as Cr.

The second scoring approach is to use the weighted sum of recommendation scores

from all the recommendation lists. In specific, the score of a user u on an item i,

45

denoted as ˜̃ru,i, is calculated using Equation 4.4 as in LLORMA. This scoring approach

is denoted as Cs.

Linear SLIM Model Ensemble

Instead of combining recommendation results from local models, we can also com-

bine models directly. In the case of SLIM, the coefficient matrices from local models

are linearly combined as follows:

W e
i,j =

1

|{k|W k
i,j 6= 0, k = 1, · · · , K}|

K∑
k=1

W k
i,j, (4.9)

where W k is the k-th model (coefficient matrix) with respect to the k-th anchor pair,

{Wi,j|W k
i,j 6= 0, k = 1, · · · , K} is the set of coefficients in which W k

i,j 6= 0, | · | is the

cardinality of a set , and W e is the ensembled model (coefficient matrix). We use W e

to produce recommendations as in Equation 4.1.

Note that only a certain portion of W k that corresponds to the selected training

items can have non-zero values. Thus, the linear combination of multipleW k’s resem-

bles using multiple small plates to approximate a manifold. Thus, it may represent

non-linear relations among items. This method is referred to as LSME.

4.4 Materials

4.4.1 Datasets

We evaluated different methods on a benchmark dataset ML100K1, and its spar-

sified versions. From the original dataset (referred to as ML100K-1), we generated

three sparsified datasets (referred to as ML100K-2, ML100K-3 and ML100K-4, re-

spectively). The first sparsified dataset MK100K-2 is generated by randomly select-

ing 50% of purchases from ML100K-1, The second/third sparsified dataset ML100K-
1https://grouplens.org/datasets/movielens/

46

3/ML100K-4 is generated by randomly selecting 50% of purchases from ML100K-

2/ML100K-3. Table 4.1 represents the dataset summaries.

Table 4.1.: Datasets Used in Evaluation
dataset #users #items #ratings rsize csize density
ML100K-1 943 1,682 100,000 106.05 59.45 6.30%
ML100K-2 943 1,682 49,760 52.77 29.58 3.14%
ML100K-3 943 1,682 24,647 26.14 14.65 1.55%
ML100K-4 943 1,682 12,086 12.82 7.19 0.76%

Columns of “#users”, “#items” and “#ratings” represent the number of users, items
and ratings in the datasets, respectively. Columns of “rsize” and “csize” represent
the average number of ratings for each user and each item, respectively. Column of
“density” represents the density of each dataset (i.e., density = #ratings/(#users
× #items)).

4.4.2 Evaluation Methodology and Metrics

We applied 5-time Leave-One-Out cross validation (LOOCV) to evaluate the per-

formance of different methods. In each run, one of the purchases of each user is

randomly selected into the testing set, and the remaining purchases are used in

the training set. For SLIM, we search the parameters in the following ranges. For

ML100K-1, the range of λ is {0.00001,0.0001,0.001,0.01,0.1,1,2,5}, the range of β is

{0.1,1,2,5,10,15}. For ML100K-2, the range of λ is {0.001,0.01,0.1,1,2,5}, the range

of β is {5,10,15,20,25}. For ML100K-3, the range of λ is {0.001,0.01,0.1,1,2,5}, the

range of β is {5,10,15,20,25}. For Local SLIM with combined Models(LSM) based on

popularity, we find the best performance in the following parameters. For ML100K-1,

the range of λ is {2,5,10}, the range of β is {0.01,0.1,1}, the range of n (number of lo-

cal models) is {10,20,50,60}, the range of bandwidth is {0.3,0.4}. For ML100K-2, the

range of λ is {0.0001,0.001,0.01,0.1,1,2,5}, the range of β is {5,10,15,20}, the range

of n (number of local models) is {50,60,70}, the range of bandwidth is {0.3,0.4}. ‘For

ML100K-3, the range of λ is {0.0001,0.001,0.01,0.1,1}, the range of β is {2,5,10,15},

the range of n (number of local models) is {50,60,70}, the range of bandwidth is

{0.3,0.4}. The performance of LSM based on popularity and LSIM on the above

datasets is shown in Table 4.2. For each user, a size-N (N = 10 by default) ranked

47

list of items is recommended from the ensemble model trained using the training set.

The evaluation is performed by comparing the recommendations for each user and the

left-out item of that user in the testing set. We use Hit Rate (HR) and the Average

Reciprocal Hit-Rank (ARHR) [11] as the evaluation metrics. HR is defined as the

rate of correctly recommended items, that is,

HR =
#hits

#users
, (4.10)

where #users is the total number of users in the testing set, and #hits is the number

of users who have their testing items correctly recommended (i.e., hit). ARHR is a

weighted version of HR defined as follows:

ARHR =
1

#users

#hits∑
i=1

1

pi
(4.11)

where if an item of a user is hit, pi is the position of the item in the ranked recommen-

dation list. Thus, ARHR measures how strongly an item is recommended, in which

the weight is the reciprocal of the hit position in the recommendation list. Higher

HR and ARHR values indicate better performance.

4.5 Experimental Results

4.5.1 Overall Performance

Table 4.2 presents the best performance of the methods on the four datasets.

SLIM outperforms other methods on ML100K-1 in HR. However, when the datasets

become sparser, LSME and MRA outperform SLIM. In specific, LSME with SPui
as the

training data selection method outperforms SLIM on ML100K-2 at 1.89%, and on

ML100K-3 at 2.97%. MRA with SKui
and Cs outperforms SLIM on ML100K-2 at 1.26%,

on ML100K-3 at 14.9% and on MK100K-4 at 18.4%. This demonstrates that the

48

Table 4.2.: Performance Comparison

dataset SLIM LSME-SPui

β λ HR ARHR α(%) n β λ HR ARHR
ML100K-1 50 10 1e-3 0.339 0.154 40.0 50 1e-1 5e-0 0.326 0.142
ML100K-2 50 20 1e-0 0.159 0.056 30.0 60 10 1e-0 0.162 0.057
ML100K-3 50 20 1e-1 0.101 0.036 40.0 50 10 1e-1 0.104 0.036
ML100K-4 50 25 1e-3 0.049 0.016 40.0 60 10 1e-4 0.047 0.014

dataset MRA-SKui-Cr MRA-SKui-Cs
n β λ HR ARHR n β λ HR ARHR

ML100K-1 50 1e-1 1e-7 0.255 0.097 20 1 1e-5 0.273 0.122
ML100K-2 50 5 1e-2 0.106 0.034 80 2 1e-5 0.161 0.057
ML100K-3 50 15 1e-1 0.093 0.029 20 10 1e-2 0.116 0.040
ML100K-4 70 20 1e-1 0.046 0.013 5 25 1e-4 0.058 0.020

Columns of “β” and “λ” present the parameters for the local SLIM models. Column of “n” rep-
resents the number of local models. Column of “α(%)” represents the percentage of users/items
selected for training. Columns of “HR” and “ARHR” present the hit rate and average reciprocal hit-
rank, respectively. LSME-SPui

, MRA-SKui
-Cr and MRA-SKui

-Cs represent the combinations of different
model ensemble, training data selection and recommendation combination schemes. Bold numbers
are the best performance in terms of HR for each dataset.

ensembled based methods are superior in learning from sparser datasets for top-N

recommendation.

Among the four methods, MRA-SKui
-Cr has the worst performance overall but

MRA-SKui
-Cs has the best. The difference may stem from the recommendation result

scoring and combination scheme Cr and Cs. The Cr method scores recommendations

based on their positions in multiple ranked lists, and thus treats the multiple local

models and their recommendations equally. The Cs scores recommendations using

a weighted sum of their respective recommendation scores from local models, and

therefore is able to differentiate local models based on their recommendation quali-

ties.

The LSME does not perform as well as MRA based methods. This may be due

to the fact that when LSME combines multiple local models as in Equation 4.9, the

qualities of local models and their respective significance are not considered. We will

investigate this aspect in our future work.

49

4.6 Discussions and Conclusions

4.6.1 Computational Consideration

Table 4.3 presents the running time of SLIM and LSME with respect to their best

performance on the four datasets. For LSME and MRA based methods, training multiple

local models is computationally expensive. However, the training process can be

trivially paralleled, that is, each local model can be trained independently and in

parallel with others. In addition, the training process for each local model is in

principle faster than the baseline SLIM model over a same dataset. This is because

each local model either has smaller values (e.g., selected by SKui
) or has fewer training

data (e.g., selected by SPui
). Thus, the model training for LSME and MRA based models

can be even faster than SLIM. For example, for ML100K-1, SLIM takes 75.47 seconds

for model training, but a parallel implementation of MRA-SKui
-Cs could take 26.72

seconds.

4.6.2 Parameter Selection

In principle, each local model should have its own optimal parameters. However,

this will lead to a huge set of parameters that each LSME and MRA based models need

to identify. To avoid this complexity, we use the same parameters for all the local

models. We will investigate heuristics to identify optimal parameters for local models

and thus further improve the performance of LSME and MRA.

4.6.3 Conclusions

We developed multiple LSME and MRA based methods to build local SLIM mod-

els and ensemble local models for better top-N recommendation. To select training

data for each local model, we developed SKui
and SPui

methods, which select training

data based on user-item similarities and popularities with respect to anchor pairs,

respective. To combine local models, we developed LSME, which combines models (co-

50

efficient matrices in local SLIM models) in a linear fashion, and MRA, which combines

local model recommendations based on recommendation orders and scores, respec-

tively. Our experiments demonstrate significant improvement from such ensemble

models particularly on sparse datasets.

Table 4.3.: Running Time SLIM and LSM

dataset SLIM LSME

β λ Time(second) β λ n α% Time(second)
ML100K-1 10 1e-3 75.47 1e-1 5e-0 50 40.0% 7802.01/156.0402
ML100K-2 20 1e-0 14.79 10 1e-0 60 30.0% 281.53/4.6921
ML100K-3 20 1e-1 6.06 10 1e-1 50 40.0% 170.91/3.4182
ML100K-4 25 1e-3 1.82 10 1e-4 60 40.0% 68.98/1.1496

Columns corresponding to β and λ present the parameters for the corresponding method (i.e.,
`1-norm regularization parameter β and `1-norm regularization parameter λ for the underling
SLIM models). Column corresponding to n represents the number of local models. Column
corresponding to α% represents the percentage of users/items selected for training. Columns
corresponding to Time(second) is the total cpu time in seconds.

51

5. SUMMARY

In this dissertation, I have developed a novel Dynamic and multi-Collaborative

F iltering method (DmCF) to improve information retrieval from electronic health

records. I also have developed local sparse linear model ensemble to tackle both the

data sparsity and the user/item heterogeneity issues for top-N recommendation.

When physicians review patient information in health information technology sys-

tems, most of them suffer from information overload because of the huge amount of

available information about individual patients. To help improve the information

retrieval from electronic health records, I have developed a novel hybrid dynamic

and multi-collaborative filtering method. I tackled the problem of recommending

the next search term to a physician while the physician is searching for information

about a patient. The developed hybrid method considers search dynamics and mul-

tiple similarities for the next search term recommendation. It consists of two scoring

components. The first component is designed to address search dynamics through a

first-order Markov Chain. The second component is to score search terms based on

similarities via multi-collaborative filtering. Multi-collaborative filtering (mCF) refers

to that multiple types of similarities (e.g., physician similarities, patient similarities

and information similarities) are integrated. I have developed physician-patient-

similarity-based Collaborative F iltering, and denoted as ypCF . Two approaches

to identify the set of similar physicians and the set of similar patients have been

developed for ypCF . The first approach is Patient-First Similarity Identification

(simP2Y). In this approach, a set of similar patients is first identified and then the

set of similar physicians is identified. The second approach is Physician-First Simi-

larity Identification (simY2P). In this approach, a set of similar physicians is first

identified and then the set of similar patients is identified. I also have developed

T ransition-involved patient-term-similarity-based Collaborative F iltering (TptCF).

52

TptCF aggregates from all similar patients the transitions from the last search term

in a sequence to another search term. The underlying assumption is that similar pa-

tients stimulate similar patterns of search sequences. I tested this new method using

real electronic health record data from the Indiana Network for Patient Care. The

experimental results demonstrated that for 46.7% of testing cases, this new method is

able to correctly prioritize relevant information among top-5 recommendations that

physicians are truly interested in.

To tackle both the data sparsity and the user/item heterogeneity issues for top-N

recommendation, I have developed local sparse linear method ensemble. To determine

the local training data of each local model, an anchor user-item pair is selected for each

local model, and I have developed similarity-based training data selection method and

popularity-based training data selection based on the selected anchor user-item pair.

The similarity-based selection method weights all training user-item pairs by their

similarites with respect to the anchor user-item pair. The popularity-based selection

method selects the training user-item pairs such that the selected users/items have

similar popularities as the anchor user/item. I have employed sparse linear method

SLIM model in each selected local training dataset. Three approaches to ensemble the

model results or the models themselves have been developed. In the first approach, I

have aggregated the model prediction results directly by using Borda list combination

method because each local model prediction result is a recommendation list of items.

In the second approach, I have used the weighted sum of recommendation scores

from all local model recommendation lists. In the third approach, I have combined

the local models in linear approach directly. Each local model is a coefficient matrix,

which contains the item-item coefficients. I have evaluated different methods in a

benchmark dataset ML100K and its sparsified versions. The experiments demonstrate

18.4% improvement from such ensemble models particularly on sparse datasets.

The hybrid of dynamics and multi-collaborative filtering method is able to produce

high quality recommendations that are most relevant to the patients and that are

most interested to physicians. The local sparse linear method ensemble achieves

53

significant improvement particularly on sparse datasets. Both of them demonstrate

the effectiveness of using ensemble idea in top-n recommendation.

REFERENCES

54

REFERENCES

[1] M. Deshpande and G. Karypis, “Item-based top-n recommendation algorithms,”
ACM Transactions on Information Systems (TOIS), vol. 22, no. 1, pp. 143–177,
2004.

[2] L. Guo, B. Jin, C. Yao, H. Yang, D. Huang, and F. Wang, “Which doctor to trust:
a recommender system for identifying the right doctors,” Journal of medical
Internet research, vol. 18, no. 7, 2016.

[3] H. Jiang and W. Xu, “How to find your appropriate doctor: an integrated rec-
ommendation framework in big data context,” in Computational Intelligence in
Healthcare and e-health (CICARE), 2014 IEEE Symposium on. IEEE, 2014,
pp. 154–158.

[4] Q. Zhang, G. Zhang, J. Lu, and D. Wu, “A framework of hybrid recommender
system for personalized clinical prescription,” in 2015 10th International Confer-
ence on Intelligent Systems and Knowledge Engineering (ISKE), Nov 2015, pp.
189 – 195.

[5] L. Duan, W. N. Street, and E. Xu, “Healthcare information systems: data mining
methods in the creation of a clinical recommender system,” Enterprise Informa-
tion Systems, vol. 5, no. 2, pp. 169–181, 2011.

[6] C. C. Aggarwal et al., Recommender systems. Springer, 2016.

[7] S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt-Thieme, “Bpr: Bayesian
personalized ranking from implicit feedback,” in Proceedings of the twenty-fifth
conference on uncertainty in artificial intelligence. AUAI Press, 2009, pp. 452–
461.

[8] F. Ricci, L. Rokach, and B. Shapira, Recommender systems handbook, 2nd ed.
Springer Publishing Company, Incorporated, 2015.

[9] X. Ning, C. Desrosiers, and G. Karypis, “A comprehensive survey of
neighborhood-based recommendation methods,” in Recommender Systems Hand-
book, F. Ricci, L. Rokach, and B. Shapira, Eds. Boston, MA: Springer US, 2015,
pp. 37–76.

[10] Y. Koren, R. M. Bell, and C. Volinsky, “Matrix factorization techniques for
recommender systems,” IEEE Computer, vol. 42, no. 8, pp. 30–37, 2009.
[Online]. Available: http://dx.doi.org/10.1109/MC.2009.263

[11] X. Ning and G. Karypis, “SLIM: sparse linear methods for top-n recommender
systems,” in Data Mining (ICDM), 2011 IEEE 11th International Conference
on. IEEE, 2011, pp. 497–506.

55

[12] Y. Shi, A. Karatzoglou, L. Baltrunas, M. Larson, N. Oliver, and A. Hanjalic,
“Climf: learning to maximize reciprocal rank with collaborative less-is-more fil-
tering,” in Proceedings of the sixth ACM conference on Recommender systems.
ACM, 2012, pp. 139–146.

[13] S. Zhang, L. Yao, and A. Sun, “Deep learning based recommender system: a
survey and new perspectives,” 2017.

[14] C. Zhang, K. Wang, H. Yu, J. Sun, and E.-P. Lim, “Latent factor transition for
dynamic collaborative filtering,” in Proceedings of the 2014 SIAM International
Conference on Data Mining. SIAM, 2014, pp. 452–460.

[15] N. Sahoo, P. V. Singh, and T. Mukhopadhyay, “A hidden markov model for
collaborative filtering,” Mis Quarterly, pp. 1329–1356, 2012.

[16] J. Z. Sun, K. R. Varshney, and K. Subbian, “Dynamic matrix factorization: a
state space approach,” in Acoustics, Speech and Signal Processing (ICASSP),
2012 IEEE International Conference on. IEEE, 2012, pp. 1897–1900.

[17] J. Z. Sun, D. Parthasarathy, and K. R. Varshney, “Collaborative kalman filtering
for dynamic matrix factorization.” IEEE Trans. Signal Processing, vol. 62, no. 14,
pp. 3499–3509, 2014.

[18] D. Luo, H. Xu, Y. Zhen, X. Ning, H. Zha, X. Yang, and W. Zhang, “Multi-task
multi-dimensional hawkes processes for modeling event sequences,” in Proceed-
ings of the 24th International Joint Conference on Artificial Intelligence, ser.
IJCAI’15, 2015, pp. 3685–3691.

[19] L. Xiong, X. Chen, T.-K. Huang, J. Schneider, and J. G. Carbonell, “Temporal
collaborative filtering with bayesian probabilistic tensor factorization,” in Pro-
ceedings of the 2010 SIAM International Conference on Data Mining. SIAM,
2010, pp. 211–222.

[20] M. Wiesner and D. Pfeifer, “Health recommender systems: concepts, require-
ments, technical basics and challenges,” International Journal of Environmental
Research and Public Health, vol. 11, no. 3, pp. 2580–2607, 2014.

[21] Y. Bao and X. Jiang, “An intelligent medicine recommender system framework,”
in Industrial Electronics and Applications (ICIEA), 2016 IEEE 11th Conference
on. IEEE, 2016, pp. 1383–1388.

[22] F. Gräßer, H. Malberg, S. Zaunseder, S. Beckert, D. Küster, J. Schmitt, S. K.
Abraham, and P. für Dermatologie, “Application of recommender system meth-
ods for therapy decision support,” in 2016 IEEE 18th International Conference
on e-Health Networking, Applications and Services (Healthcom), Sept 2016, pp.
1–6.

[23] P. Moffett and G. Moore, “The standard of care: legal history and definitions:
the bad and good news,” Western Journal of Emergency Medicine, vol. 12, no. 1,
p. 109, 2011.

[24] M. H. Lewis, J. K. Gohagan, and D. J. Merenstein, “The locality rule and the
physician’s dilemma: local medical practices vs the national standard of care,”
JAMA, vol. 297, no. 23, pp. 2633–2637, 2007.

56

[25] J. R. Norris, Markov chains. Cambridge university press, 1998, no. 2.

[26] C. C. Aggarwal and C. Zhai, Mining text data. Springer Science & Business
Media, 2012.

[27] S. Kabbur, X. Ning, and G. Karypis, “Fism: Factored item similarity models
for top-n recommender systems,” in Proceedings of the 19th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, ser. KDD
’13. New York, NY, USA: ACM, 2013, pp. 659–667. [Online]. Available:
http://doi.acm.org/10.1145/2487575.2487589

[28] Y. Hu, Y. Koren, and C. Volinsky, “Collaborative filtering for implicit feedback
datasets,” in Data Mining, 2008. ICDM’08. Eighth IEEE International Confer-
ence on. Ieee, 2008, pp. 263–272.

[29] J. Lee, S. Bengio, S. Kim, G. Lebanon, and Y. Singer, “Local collaborative
ranking,” in Proceedings of the 23rd international conference on World wide web.
ACM, 2014, pp. 85–96.

[30] E. Christakopoulou and G. Karypis, “Local item-item models for top-n recom-
mendation,” in Proceedings of the 10th ACM Conference on Recommender Sys-
tems. ACM, 2016, pp. 67–74.

[31] B. Xu, J. Bu, C. Chen, and D. Cai, “An exploration of improving collabora-
tive recommender systems via user-item subgroups,” in Proceedings of the 21st
international conference on World Wide Web. ACM, 2012, pp. 21–30.

[32] A. Beutel, A. Ahmed, and A. J. Smola, “Accams: Additive co-clustering to
approximate matrices succinctly,” in Proceedings of the 24th International Con-
ference on World Wide Web. ACM, 2015, pp. 119–129.

[33] C. Dwork, R. Kumar, M. Naor, and D. Sivakumar, “Rank aggregation methods
for the web,” in Proceedings of the 10th international conference on World Wide
Web. ACM, 2001, pp. 613–622.

