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ABSTRACT

Dheekonda, Raja Sekhar Rao M.S., Purdue University, May 2017. Enumerating k-
cliques in a Large Network Using Apache Spark. Major Professor: Mohammad Al
Hasan.

Network analysis is an important research task which explains the relationships

among various entities in a given domain. Most of the existing approaches of network

analysis compute global properties of a network, such as transitivity, diameter, and

all-pair shortest paths. They also study various non-random properties of a network,

such as graph densification with shrinking diameter, small diameter, and scale-free-

ness. Such approaches enable us to understand real-life networks with global proper-

ties. However, the discovery of the local topological building blocks within a network

is an important task, and examples include clique enumeration, graphlet counting,

and motif counting. In this paper, my focus is to find an efficient solution of k-clique

enumeration problem. A clique is a small, connected, and complete induced subgraph

over a large network. However, enumerating cliques using sequential technologies is

very time-consuming. Another promising direction that is being adopted is a so-

lution that runs on distributed clusters of machines using the Hadoop mapreduce

framework. However, the solution suffers from a general limitation of the framework,

as Hadoop’s mapreduce performs substantial amounts of reading and writing to disk.

Thus, the running times of Hadoop-based approaches suffer enormously. To avoid

these problems, we propose an efficient, scalable, and distributed solution, kc-spark

, for enumerating cliques in real-life networks using the Apache Spark in-memory clus-

ter computing framework. Experiment results show that kc-spark can enumerate

k-cliques from very large real-life networks, whereas a single commodity machine can-

not produce the same desired result in a feasible amount of time. We also compared
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kc-spark with Hadoop mapreduce solutions and found the algorithm to be 80-100

percent faster in terms of running times. On the other hand, we compared with the

triangle enumeration with Hadoop mapreduce and results shown that kc-spark is

8-10 times faster than mapreduce implementation with the same cluster setup. Fur-

thermore, the overall performance of kc-spark is improved by using Spark’s inbuilt

caching and broadcast transformations.
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1 INTRODUCTION

Network analysis is an important research task which explains the relationship among

various entities in a given domain. Most of the existing approaches of network analysis

either compute some global properties of a network, such as transitivity, diameter,

all-pair shortest paths, etc. or they study various non-random properties of a network,

such as graph densification with shrinking diameter [1], small diameter [2], and scale-

free-ness [3]. Unfortunately, global analysis of a network fails to capture the local

topological building blocks of a network.

Discovery of local topological building blocks is important for understanding the

formation of a network from the perspective of the vertices in the network, so there is

a growing need to develop algorithms for enumerating and counting local topological

building blocks of a network. In recent years, researchers have developed algorithms

for enumerating and counting various kinds of local topological structures of a net-

work, examples include clique enumeration [4–10], graphlet counting [11–17], and

motif counting [18–21]. However, all these tasks are expensive and the cost of the

cost increases exponentially with the number of vertices.

Among various local topological analysis of networks, enumeration of cliques prov-

ably received the most attention due to its wide-spread applications in various fields,

such as, system science [22], social science [6] and bioinformatics [11]. In bioinformat-

ics, clique enumeration has been used for protein-protein interactions [23], sequence

clustering [23], and gene expression analysis [24]. In system science, cliques are used

for circuit design [25], and in social science, cliques are also used for detecting com-

munities [26]. In cheminformatics, cliques have been used for comparing the chemical

properties of two compounds [27]. In machine learning and information retrieval,

cliques are used for spam detection [28], and association rule mining [29].
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Enumeration of cliques in a network are categorized into 3 forms, such as, maximal

clique, maximum clique, and k-clique. For the first form, i.e., enumerating maximal

cliques several works have been proposed by the researchers [5,30–39]. However, solv-

ing this task in large real-world graphs is difficult and expensive. In fact, Tomita et

al. [5] have proven that the time complexity of maximal clique enumeration is expo-

nential; if n is the number of vertices the complexity is O(3n/3). For the second form,

which is maximum clique enumeration several works have also been proposed [40–48].

One of the fastest among those is proposed by Robson [48] which runs in O(20.249n).

Since the collection of of maximal cliques is a superset of the collection of maximum

cliques, the latter form of clique enumeration is less interesting and easier to solve.

Nevertheless, both the above forms are NP-complete, so for large input networks

enumeration of maximal or maximum cliques is very time-consuming. Besides, for

many real-life applications of cliques (such as, community detection and spam detec-

tion), one may only need cliques upto a certain number of vertices only, resulting the

third form of clique enumeration, namely k-clique enumeration. In this paper, my

focus is to find an efficient solution of k-clique enumeration problem.

The brute-force time complexity of enumerating fixed size (say, k) clique is O(nk k2);

where n is the number of vertices and k is the desired clique size. Here, O(nk) is the

number of potential subgraphs of size k in the network, and the time complexity to

analyze whether a subgraph is a clique is O(k2). Various sequential clique enumer-

ation algorithms have been proposed over the years. One of the fastest solutions

among those is proposed by Virginia Vassilevska [49] which runs in O(nk/(ε log n)k−1)

time and O(nε ) space, for all ε > 0, on networks with n nodes. In fact, this is the first

solution that takes o(nk) time and O(nc) space, for some constant c independent of

clique size k. MACE, introduced by Tomita et al. [5], is Another solution that gained

a lot of prominence. However, in this approach, when the size of the input network

increases, the computation can not be completed within reasonable amount of time

on a single commodity machine. Another approach was put forward by Borgatti and
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Everett et al. [6] who introduced the UCINET software. This software is not scalable

as it cannot work on real-life networks with more than 2 million nodes.

Networks, in presents days are very large; specifically on-line social networks [50]

and web networks [51] typically consist of millions and even billions of vertices and

edges. None of the existing sequential k-clique enumeration methods perform well

on such networks either due to memory limitation and/or due to very large running

time. To overcome these limitations, scientists have proposed k-cliques enumeration

methods which find approximation solutions. Another promising direction that is

adopted is the solution that run on distributed clusters of machines.

A couple of approximation algorithms have been suggested by Lars Eilstrup et

al. [4] and Shweta Jain et al. [7] that can be applied for 2 million nodes easily. But

these algorithms have their limitations too and the maximum number of nodes they

can handle is 100 million. Also, since they are approximations, they are not very

ideal for large real-world networks. Other sequential algorithms have been discussed

in detail in the Previous Research chapter 2.

A collection of parallel and distributed solutions are proposed in recent years by

Suri and Vassilvitskii [8], Afrati et al. [9] and Finocchi et al. [10]. All these methods

run on mapreduce based distributed platform. The earliest among them, Suri and

Vassilvitskii’s [8] algorithm enumerates triangles only, which are merely cliques of

size three. Afrati’s [9] method works for arbitrary k size cliques, but it is based

on “multiway join” operation in mapreduce framework. Since join takes enormous

amount of time, the performance of this method is poor for large real-life networks.

Finocchi’s [10] algorithm is the latest among the distributed solutions of k-clique

enumeration. It is considered to be better than the above two algorithms. However,

all the above methods suffer from a general limitation of mapreduce framework, i.e.,

they perform substantial amount of reading and writing to disk file, thus their running

time suffers enormously.

To avoid the above mentioned limitations, researchers, in recent years, are adopt-

ing in-memory distributed platforms for large scale data processing, such as Spark [52].
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Spark is an open source in-memory cluster computing framework that supports iter-

ative and interactive applications with implicit data parallelism while retaining the

Hadoop mapreduce scalability and built-in fault tolerance. This is achieved by the

Resilient Distributed Datasets (RDDs) data structure in Spark. RDD is a read-only

set of objects that is partitioned across the cluster of machines. Should there be a

loss in any partition, it is rebuilt implicitly using Spark’s in-built RDD lineage [52].

Also it is reported that Spark outperforms Hadoop by being 10 times faster on disk

based applications and 100 times faster for in-memory applications [52].

In this work, we propose a new algorithm kc-spark , which enumerates all k-

cliques for any given k value. Our algorithm runs on Spark, which makes it scalable,

distributed and fault-tolerant. Experiment results show that kc-spark can enumer-

ate k-cliques from very large real-life networks, where a single commodity machine

cannot produce the desired result in feasible time. In our experiment results, of the

network ca-HepPh, enumerating 5-cliques in a single machine with quad-core took

18 hours approximately and it took 53 minutes when executed in cluster of 10 ma-

chines. Execution running time comparison between standalone mode and cluster

mode for different benchmark graphs are given in Table 5.8. We also compared our

solution with the mapreduce framework proposed by Finocchi et al. [10] and Afrati

et al. [9] and our algorithm has proven to be 80-100 percent faster than both of these

methods. Execution running time comparison of our solution i.e., kc-spark with

the afore-mentioned mapreduce solutions for different benchmark graphs are given in

Table 5.3. Furthermore, we also ran our algorithm for k=3 to enumerate triangles

only and compared this setup with Suri et al. [8] method. Our results show that kc-

spark performed faster than their algorithm even with around 40% smaller number

of machines. We also compared triangle enumeration using Hadoop mapreduce with

the same cluster set up and results shown that kc-spark is 8-10 times faster than

Hadoop mapreduce shown in Table 5.6
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1.1 Thesis Structure

Chapter 1 provides the introduction of k-clique enumeration and the rationale

for using in-memory solutions compared to sequential and Hadoop mapreduce frame-

works. The major applications of using cliques especially in social and web networks

have also been discussed. Chapter 2 provides details about previous research of dif-

ferent clique enumeration techniques using sequential algorithms as well as parallel

solutions. Chapter 3 presents the background knowledge of graph mining along with

Apache Spark technology which have been used for the algorithm implementation.

Chapter 4 describes the proposed work in a detailed manner by taking a small

graph as an example. It also describes the broadcasting and caching of in-built trans-

formations used to achieve better performance in execution time. Chapter 5 presents

the experiments and results performed on benchmark graphs. The experiments are

conducted on standard data sets taken from SNAP repository [53] and a comparison

of execution times with the mapreduce implementations [8–10] for standard data sets

has been done. Chapter 6.2 concludes the thesis with some suggestions of future

works.
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2 PREVIOUS RESEARCH

Clique enumeration problems are categorized into three groups:

1. Maximal clique : enumerating cliques that cannot be extended even after

including one more vertex.

2. Maximum clique: finding the clique with the largest possible number of ver-

tices in a given network.

3. k-clique mining: enumeration of all cliques of size k in a given network.

2.1 Review of sequential algorithms for k-clique enumeration

Several solutions are proposed for each of the above groups. Most of them are

based on the maximal clique enumeration problem. However, solving this task in

large real-world graphs is difficult and expensive. In fact, Tomita et al. [5] have

proven that the time complexity of maximal clique enumeration is exponential; if n is

the number of vertices the complexity is O(3n/3). The most effective and well-known

solution was proposed by Bron and Kerbosch et al. [30]. In fact, a faster algorithm

has been suggested by Tomita et al. [5] and its time complexity is almost similar to

Bron and Kerbosch et al. [30]. Tomita’s [5] work was initially focused on enumerating

maximal cliques, but it can also be used to enumerate k-cliques in a graph as well.

Their implementation is called MACE which is available online.

The sequential algorithm that is the closest to our work, proposed by Virginia

Vassilevska [49] for enumerating k-clique, which runs in O(nk/(ε log n)k−1) time and

O(nε ) space, for all ε > 0, on networks with n nodes. In fact, this is the first solution

that takes o(nk) time and O(nc) space, for some constant c independent of clique size

k. The algorithm aims to deal with the complexity of gathering (k−1)-cliques in many
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small subgraphs, where each subgraph is of size (log n), by attempting to complete

these cliques by adding an extra vertex. This algorithm partitions the input vertices

into n/(ε′ log n) parts, where ε′ = ε/2(k − 1), and each part is of size (ε′ log n) nodes.

The partition is considered according to the order of the columns present in the

adjacency matrix. This makes sure that concatenation of k chunks, each of (ε′ log n),

can be done in O(k) time. It is a space efficient algorithm, where each iteration reuses

the space used by the previous iterations.

Borgatti and Everett et al. [6] present a software called UCINET that is used to

enumerate k-cliques in a network. This is one of the traditional sequential algorithms

to analyze social network data. This package can also be utilized to visualize the

input network with intermediate results. The limitation of this algorithm is that,

it can only enumerate the cliques upto 2 million nodes. And hence, enumeration of

cliques in large networks such as web, social etc is impossible.

Lars Eilstrup et al. [4] present an approximate solution for enumerating cliques in

large networks. This algorithm is based on randomization and approximation. But

their algorithm does not provide an exact count of the clique enumeration.

Shweta Jain and Seshadhri et al. [7] propose an approximation solution for count-

ing cliques over a network with less than 2 % error. But this solution is limited to

one hundred million edges and also, it is not scalable for large real-life graphs.

2.2 Review of Parallel algorithms for k-clique enumeration

Most of the solutions are exist for enumerating cliques in a single machine envi-

ronment, but very few solutions are exist for distributed and parallel settings. Few

of such are presented by Suri and Vassilvitskii [8], Afrati et al. [9], Tsourakakis et

al. [15], and Finocchi et al. [10], all of which are primarily based on hadoop mapreduce

distributed computing framework.

Suri and Vassilvitskii’s [8] proposed the enumeration of triangle counting in a

network, where the value of k=3 in k-clique. As mentioned before, this work is based
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on mapreduce framework and enumerated triangles over real-life graphs. The main

idea of this algorithm is performed in two rounds. In the first round, it computes all

possible 2 length path in the network by pivoting on every vertex in a distributed

manner. In the second round, it checks which of these 2 length path can be closed

by an edge, which forms a triangle. Finally, they enumerate and count the triangles

in the network. In fact, this algorithm takes O(m3/2) space. They also provided a

detailed research on the curse of map reducer, which is one of the biggest problems

in distributed computing. They have performed experiments in a 16-36 node cluster.

As the name suggests, it works only for 3-clique and they are not able to enumerate

cliques for cliques of size k>3. Another limitation that comes from using hadoop

mapreduce framework is the I/O bottleneck which is very time consuming process for

enumeration in large real-life graphs.

Afrati et al. [9] proposed a distributed solution for enumerating complete sub-

graphs using multiway joins with mapreduce framework. The basic idea of this

algorithm is partition the input network into sub-graphs and by using sequential

algorithms on each sub-graph to enumerate cliques. This method works for arbitrary

k size cliques, but it is based on “multiway join” operation in mapreduce framework.

Since join takes enormous amount of time, the performance of this method is poor for

large real-life networks. In addition to the I/O bottleneck limitation of using Hadoop,

their algorithm performed poor in execution times to enumerate cliques over large real

time networks such as power-law random-graphs.

Tsourakakis et al. [15] proposed an algorithm for counting triangles using approx-

imation based methods. They used mapreduce framework, but their algorithm is

limited to triangle counting. Their algorithm has the same limitations as the triangle

counting method suggested by Suri and Vassilvitskii et al [8]. Besides, this algorithm

does not enumerate the cliques in a given network.

Finocchi et al. [10] also presented a solution for the enumeration of k-cliques in

large-scale networks using mapreduce framework, with their implementation being

able to handle cliques of size k >= 3. Total space consumed for k-clique enumeration
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is O(m3/2) and time complexity is given as O(mk/2) where m is the number of edges

in a given network and k is the clique size. They also provided a sampling based

approach for enumeration of cliques in large networks with extremely accurate esti-

mates and high speedups. Their approximation algorithm is specially useful when it

is not feasible to use an exact algorithm for enumeration over large graphs. In such

instances, exact algorithm can be used until a certain threshold, after which approxi-

mation can be implemented for effective time management. This is one of the fastest

solutions for enumeration of k-cliques compared to the above solutions [8] [9]. The

experiments are done over Amazon EC2 platform with 16 machines. Each machine

has 4 virtual cores, 7.5 GB primary memory, and a 32 GB solid state disk. Although

it can be said that this is the best solution so far, in this approach, intermediate

outputs are stored in the solid state disk and the data is retrieved when required.

This again leads to the I/O bottleneck problem rendered by hadoop.

To provide an effective solution to the above mentioned drawbacks of sequential

and hadoop based implementations, we chose Spark in-memory cluster computing

framework to enumerate cliques over large scale graphs and also to eliminate I/O

bottlenecks which has been the primary issue of using hadoop based framework. We

present a novel algorithm kc-spark to enumerate k-cliques in a graph using Spark

in-memory cluster computing framework.
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3 BACKGROUND

Section3.1 describes the domain knowledge required for this research. Section3.2

discusses the technological aspects of Spark distributed framework.

3.1 Notation

Consider G = (V, E), which is a connected, undirected, unweighted graph where

V refers to the set of vertices and E refers to the set of Edges. Edge e ∈ E and is

represented using two vertices (vi,v j) which belongs to set V. In this report, the term

graph is sometimes referred to as a network. A graph is said to be connected, only if

there exists a path between any two vertices in the graph. For a connected network,

there should not be any unreachable vertices. Otherwise, it is said to be disconnected.

A simple graph can be connected or disconnected, is one in which there are no self

loops and multiple edges present between any two vertices selected. An undirected

network is a network, where all the edges are bidirectional. An unweighted graph does

not have weights associated for an edge. Neighborhood for a vertex v is represented

as N (v), where N (v) defines the set containing (u ∈ V : (u, v) ∈ E). Neighborhood

can also be referred as adjacency list in this report.

Graph G′ = (V ′, E′) can be considered as a subgraph of graph G, if and only if

V ′ ⊆ V and E′ ⊆ E . For a graph G, if V ′ ⊆ V and E′ ⊆ E and {e = (va, vb) : va, vb ∈

V ′, e ∈ E, e < E′} = φ , then G′ = (V ′, E′) is defined as a vertex-induced subgraph. A

vertex-induced subgraph G′ = (V ′, E′) is a subset of the vertices of a graph G = (V, E)

together with any edges whose endpoints are both in this subset. A vertex induced

graph is also referred to as an induced graph in this report.

Two graphs G and G′ are isomorphic, if there exists a structure preserving (both

adjacency and non adjacency preserving ) bijection f : V → V ′ ; such a function f is
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called an isomorphic function from G to G′. An embedding of a graph G′ in graph

G is a sub graph S of G, such that S and G′ are isomorphic to each other. S is an

induced embedding of G′ in graph G, when the sub graph S is vertex induced sub

graph of G .

A complete graph is an undirected graph where every pair of distinct vertices is

connected by a unique edge. Any induced graph that is a complete graph forms a

clique. In graph domain, a clique is a small, connected, complete induced subgraph

of a network. In this work, we work with enumeration of all possible cliques having

k vertices; where k=3,4,5 etc. We refer to a clique with k vertices as k-clique; So,

1-clique is simply a vertex, 2-clique is an edge between two vertices, 3-clique is a

triangle. For a k-clique, all k vertices are connected to each other, where the total

number of edges are
(k
2

)
i.e., (k ∗ (k - 1))/2.

Figure 3.1. subgraph with set of vertices (A,C,D,F) induced from the
complete graph k6

The figure 3.1 demonstrates the subgraph induced from the complete graph k6

by a set of vertices (A,C,D,F). Here, the induced subgraph forms a complete graph.

Therefore, the induced subgraph is called as 4-clique, since it contains 4 vertices. The

total number of edges present in the subgraph is 6; from the formula
(4
2

)
= (4 ∗ (4 -

1))/2 = 6.
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3.2 Technology

3.2.1 Apache Spark

Apache Spark is an open source in-memory cluster computing platform [52]. It

belongs to the Hadoop open-source community and is built on top of Hadoop Dis-

tributed File System (HDFS). It was developed to overcome the limitations in the

mapreduce cluster computing paradigm. There are some similarities between Hadoop

and Spark, but the later performs better in some specific types of applications specifi-

cally for iterative applications. Also it is reported that Spark outperforms Hadoop by

being 10 times faster on disk based applications and 100 times faster for in-memory

applications [52].

The main advantage of Spark is that it provides in-memory cluster computing

which speeds up the execution of the iterative applications. The input data is loaded

into the main memory which can be processed by multiple processes. As the data

resides in the main memory, it takes constant time to access the data unlike from disk

access and hence it completely removes the disk I/O time. Due to this advantage,

it is well suited for iterative and machine learning algorithms. In addition, it is also

efficient for processing large scale applications, such as, community detection and

spam detection.

Apache Spark works with the master/worker model. The main operation in the

Spark program is SparkContext, which is also called master (also referred to as driver

in some cases) that manages workers, where executors run. Both, the Driver and the

Executor execute in their own java processes [52]. Spark package must be installed

across all the workers in the cluster. Every Spark program contains transformations

and actions which is similar to methods in object-oriented terminology. Transforma-

tions are evaluated in lazy manner and actions are computed immediately, whenever

action is invoked. If the program contains collect transformation, then SparkContext

driver collects the results from all the workers that are associated with the task in the

cluster and produces it to the master. The main responsibility of the SparkContext
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Figure 3.2. Spark Architecture in detail. Figure borrowed from [54]

is to make sure that the workers are not sitting idle, by assigning them tasks peri-

odically. To achieve scalability, workers can be increased dynamically just by adding

them to the cluster with Spark and Scala installed. The detailed architecture is shown

in the figure 3.2

3.2.2 Specific Applications performed well by spark

Below are the drawbacks of Hadoop when compared to Spark.

1. Iterative Jobs:Many machine learning algorithms follow an iterative approach,

which requires the same algorithm to be applied repeatedly. Now, each iteration

can be viewed as a mapreduce job. The disadvantage here is that for every

iteration the same data needs to be loaded from the disk. Hence this operation

is expensive and is very time consuming.

2. Interactive Analytics : Hadoop is generally used to run queries on databases

with large amount of data using Pig and Hive. Now, the user expect that the

data is loaded once into the main memory and then queried multiple times.
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But in Hadoop each query is executed as a separate job and hence each of them

access the disk separately. This is not desirable as it increases the execution

time and does not effectively utilize the resources.

To overcome the above limitation, Spark uses an abstraction called Resilient

Distributed Data sets (RDDs). RDD is a read-only collection of objects which

is partitioned over several machines. It also can be re-built if a partition ac-

cidentally crashes. It is reported that Spark is 10x faster when compared to

Hadoop on disk and 100x faster on memory in performing iterative machine

learning algorithms. It [52] also can be used to execute a query on a 39GB data

set with sub-second response time.

3.2.3 Spark Programming Model

RDD is a read-only collection of objects which is partitioned over several machines.

It can also be re-built if a partition crashes accidentally. The main advantage with

RDD is that it does not have to reside in the physical memory, instead a handle

to the RDD contains all the necessary information to construct the RDD from the

data in the reliable storage. With this advantage it can re-construct any RDD if any

node fails. As the data does not have to exist in the physical storage, this makes

the iterative and interactive jobs to execute much faster compared to Hadoop. Each

RDD is represented as a Scala object, if we use Scala as the programming language.

There are four ways in which a RDD can be constructed,

1. File: Shared file system, for example, HDFS.

2. Parallelizing: In this procedure the array is divided into a number of slices

and then each of these slices can be sent to multiple nodes.

3. Transforming an existing RDD [52]: In this procedure a dataset of type X

can be transformed to a dataset of type Y . This transformation can be done by
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using the flatMap operation, which scans each element of the dataset by using

a user-defined function.

4. Changing the persistence: RDD are lazy when they are initialized and they

are not stored in the disk immediately. They are stored in the main memory

as long as enough space is available. They are only saved onto the disk if the

action is invoked in the application. The persistence properties of the RDD is

configurable and can be modified to cache or save action.

The cache action means that the data set is available in the cache for faster access

in future i.e., it is kept in the memory. As the dataset is cached and not stored on

the file system such as HDFS in mapreduce; execution takes very fast. This is the

main advantage for the Spark where the program can access data locally. Now, the

caution here is that enough memory should be available across all the machines. If the

memory is not sufficient then Spark recomputes the data as and when it is required.

The save action means that the data set is saved and is written onto the file

system. Now the saved file can be referred for all the future operations.

3.2.4 Parallel Operations

The main aim of parallel operations is to increase the speed of execution. Below

are the parallel operations which are possible with RDDs,

1. map : It is a transformation which takes input as dataset element through a

function and outputs a new RDD representing the results.

2. Reduce:The reduce operation is similar to the Hadoop reduce operation which

performs action. This operation will combine the results from all the worker

nodes and then gives a combined result to the master node.

3. Collect: This operation assists in getting the results from all the worker nodes

i.e., collection of results. It also sends all the required information from the
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data set to the user or driver program. For example, in case of processing an

array, the user can map the array to all the available nodes. After the nodes

have finished the processing, the collect operation can collect the results. The

main advantage here is the single collect operation that gets the results from

all the nodes.

4. Foreach: This transformation is used to iterate through the RDD elements

stored in the spark RDD construct.

Figure 3.3. Spark collect action

As shown in the figure3.3, the elements of the data set are first mapped onto the

available nodes and then the processing is performed. In this way we are parallelizing

the processing of the data set between the nodes. The results are later collected by

the user or driver program.

3.2.5 Shared member Variables

In Spark, transformations like map, reducebykey, groupbykey, filter are used in

the program. We generally call these transformations by passing the functions as

parameters to Spark. Therefore the variables used in these transformations should be
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within the scope of functions where it gets executed by Scala user defined functions.

Suppose if a slave node wants to execute a specific function, then all the correspond-

ing variables required for that procedure needs to be copied into that particular slave

machine. However, spark uses two special kind of shared variables called Broad-

cast and Accumulators. Due to these shared variables, we can just invoke these

transformations by writing 2 lines of code in the program. It provides program level

transparency, where Spark developers can concentrate on application logic rather

than lower level implementation details.

1. Broadcast Variables: Broadcast variables allow the programmer to keep a

read only variable on each machine that can be treated like cached object [52]

rather than transporting a copy of the whole object. It uses efficient algorithms

to communicate across the machines with reduced communication cost in the

cluster. This variable is being invoked from the SparkContext package. Doing

this invocation, the data will be cached across all the worker machines. Due

to this, it will take constant time in order to access the data. Value can be

returned using the in-built property called valueof.

2. Accumulators: This operation supports parallel implementations especially

to implement sums and counters. This variable is fault tolerant and it uses

mapreduce paradigm. We can define our own type of accumulators according

to the scenario.
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4 PROPOSED ALGORITHM

Section 4.1 provides the architecture and implementation details of kc-spark algo-

rithm. We then explain the algorithm by executing it over a small graph. Section 4.2

provides the detailed information about the proposed algorithm, and also includes

some sample code snippet. Section 4.3 provides the study of time complexity of

kc-spark in the distributed cluster.

4.1 Architecture of kc-spark

The architecture of kc-spark is shown in Figure 4.1. The input of this algorithm

is a graph G which is stored in a file as a list of edges. Each line of this file is a pair of

numbers separated by a delimiter (we used tab a a delimiter) representing the source

and destination vertices of one of G’s edges. The edges are listed in the input file in

an arbitrary order.

The main idea of kc-spark is to enumerate cliques of fixed size k in a network

iteratively. For an input graph G, kc-spark finds all cliques of size l, from the list

of all l − 1 size cliques and the adjacency list of G for an l value, 2 unto k. Thus,

the first iteration generates all size-2 cliques (edges), the second iteration generates

all size-3 cliques (triangles), the third iteration generates all size-4 cliques, and the

process continues until all k-cliques are generated.

A key idea of kc-spark in that in each of its iterations, each of the l-size cliques

are enumerated exactly once, starting from l = 2. To achieve this, kc-spark view

an undirected graph G as a DAG Gd, where each edge (u, v) is directed in a given

precedence order of vertices, u ≺ v. We consider u ≺ v, if d(u) < d(v) or (d(u) =

d(v)) ∧ (u.id < v.id), here d(·) stands for the degree value of a vertex. Thus, in Gd,

every edge is directed from a low degree vertex to a high degree vertex. In case an
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edge connects two vertices of the same degree, the direction of the edge goes from

the smaller id vertex to the higher id vertex. By using this DAG representation of G,

each of the cliques will be enumerated only by the highest precedence vertex of that

clique, so duplicate enumeration of cliques is entirely eliminated.

First iteration of kc-spark computes the adjacency list of G, the size of adjacency

list of each vertex is the degree of the vertex in G. From the degree value we can

easily obtain the precedence order of the vertices. Then the next iteration constructs

the adjacency list of DAG Gd. For an undirected edge (u, v) of G, the adjacency list

of u contains (u, v), and the adjacency list of v contains (v, u). However, for Gd, an

edge between u and v is listed only in the adjacency list of either u or v (exclusively),

depending on the precedence order. In subsequent discussion the adjacency list of

Gd is called filtered adjacency list to distinct it from the original adjacency list of G

and we use N (v) to represent the filtered adjacency list of v. kc-spark broadcasts

and caches the adjacency list N (v) of DAG Gd across all the worker machines in the

cluster. By using this, it eliminates the I/O bottleneck to/from the disk. Thus, N (v)

acts as local or in-memory data structure during computation across all the machines

in the cluster. After the above process, kc-spark enumerates l-cliques from the

(l − 1)-cliques, which we discuss in the subsequent paragraph.

In order to compute l-cliques from (l − 1)-cliques, two operations are carried out:

Extension and Completion. Extension takes two inputs: first is a (l − 1) sized clique

(say, Cl−1), and the second is a list of vertices (say, E), which can be used to extend

Cl−1 to an l size clique, Cl . For a vertex v ∈ E and for all vertices u ∈ Cl−1, (u, v)

edge exists. For example, consider Figure 4.4; When we are extending the 2-clique

(1, 2), the extension list contains {3, 4}. The extension operation returns a tuple of

size 3, which consists of the vertex that is being added into Cl−1, l-size clique Cl (list

of vertices), and possible list of extensions of Cl . For the above example, the output

of Extension would be (3, (1, 2, 3), {3, 4}). The third field of Extension output, which

is an extension list of Cl is not necessarily valid, rather it is a super-set of the valid

extension list. Therefore, we need to perform the Completion operation. Completion
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takes two inputs: first, the output of Extension and the second is adjacency list of

the “key” vertex of Extension. Completion returns Cl-clique (list of vertices) and its

valid set of extensions. For our example the only valid extension for the clique (1, 2, 3)

is {4}. So the output of Completion is (1, 2, 3), {4}). From this the Extension of the

next iteration to obtain a clique of size l + 1 can proceeds.

Figure 4.1. Architecture of kc-spark

4.2 kc-spark : Enumeration of k-cliques using Spark

In this section, we discuss kc-spark algorithm in a detailed manner. kc-spark

is an iterative algorithm where k-clique enumeration is derived from (k − 1)-clique.

We first discuss an iterative kc-spark enumeration of cliques in Section 4.2.1. In
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the subsequent sections, we provided a detailed explanation of all the steps that

kc-spark performs.

4.2.1 Iterative kc-spark

Spark is based on mapreduce model and supports iterative computation. As it

does not provide an iterative approach by default, designer is responsible to write the

iteration logic for large networks. In an iterative Spark version, kc-spark generates

1-clique which contains the vertices and adjacency list of Gd of the network. Then,

it generates 2-clique which are the edges of the network from the 1-clique RDD. This

process is repeated until k-cliques are enumerated. The overall process of the iterative

spark algorithm kc-spark is shown in Algorithm1.

Algorithm 1 Steps for kc-spark

1: Convert G into adjacency list format using Algorithm 2

2: Compute adjacency list of Gd from the adjacency list of G using Algorithm 3

3: Cache and broadcast adjacency list of Gd using Algorithm 4

4: Generate k-clique extension using Algorithm 5

5: Generate k -clique completion using Algorithm 6

4.2.2 Distributing the enumeration and sample code snippet

A clique of size k (for k > 1) can be generated from its sub-cliques. Starting from

a vertex, we can extend it to an edge, then to a triangle, then to a 4-size clique all

the way unto a k-size clique. For a k-size clique, there are k! possible enumeration

paths. Since we want a unique enumeration, we generate a k-size clique by adding

the vertices of the clique in their precedence

by incrementally adding one of its vertices to and its relevant edges incrementally.

which are induced with the vertices that are already part of that clique.
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from a clique of size k−1 by adding a neighboring node and its corresponding edges.

This gives us a breadth first search (BFS) order exploration of clique enumeration

(see Figure 4.2). In BFS order, all the cliques of size l are enumerated before any

l + 1 cliques.

Figure 4.2. BFS exploration of kc-spark

For distributed clique enumeration, we use Spark computation framework. In this

framework collection of records are stored as resilient distributed datasets known as

RDD. Initially, we construct a RDD containing all 1-clique embedding, such that each

clique is a record in the RDD. In the RDD, the embedding of 1-clique is represented
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as a key-value pair: the key is the vertex id and the value is is the adjacency list

of that vertex in Gd. For a size l, we have a distinct RDD, which we name RDDl ,

containing all l-size cliques and their valid extensions. The following lemma holds.

Algorithm 2 Algorithm that generates adjacency list from the input graph G
1: procedure Map(u, v) . where u is source vertex and v is destination vertex

2: Input file: each line is represented as an undirected and unweighted edge

3: emit 〈u, v〉

4: emit 〈v, u〉

5: end procedure

6: procedure groupByKey(input) . where input is generated from the above

Map

7: Input : List of the undirected edges 〈u, v〉 and 〈v, u〉

8: emit 〈v,N (v)〉 . where v is a node and N (v) is an adjacency list for the node

(v)

9: end procedure

Figure 4.3. Snippet code for generating Adjacency List using Spark
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Figure 4.4. Enumeration of 4-clique for a small graph

Figure 4.3 provides the sample code snippet which produces the output as adja-

cency list by using map transformation that is described in the section1. In Spark,

a user can provide the number of partitions so that a task can be divided across the

worker nodes. This job of assigning the partitions is taken care by SparkContext

which is an in-built function that acts as a driver for the program. We can also use

Spark construct RDD.repartition, for equal distribution of clique records across the

Spark cluster.
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4.2.3 Adjacency List

We implemented each step of (Algorithm 1) and collected each k-clique informa-

tion into the Spark RDD that can be used for further iterations of generating k-clique.

(Algorithm 2) will provide adjacency list of each vertex for the input graph. This ad-

jacency list information will be helpful in generating next l-cliques. Therefore, using

map and groupbykey in-built transformation we can obtain adjacency list. Each line

of the adjacency list is represented as a tuple of size 2 consisting of the node id and

the neighbors associated with it.

Algorithm 3 Generate adjacency list of Graph Gd

1: procedure filterAdjList(v,N (v)) . where v is source vertex and N (v) is

adjacency list

2: Input : Output from Algorithm 2

3: f ilter AdjList ← Φ

4: for i ∈ N(v) do

5: if i > v then

6: f ilter AdjList ∪ i

7: end if

8: end for

9: emit 〈v, f ilter AdjList〉 . where v is a node and f ilter AdjList is filtered

adjacency list generated from N (v)

10: end procedure

In Algorithm 3, we enumerated cliques of size 2 which is straightforward. After

which we try to eliminate the duplicates (line no 5) by considering only nodes whose

vertex id’s are greater than the id of the node being considered. Since it does not

consider duplicates, after this step, we will be enumerating the cliques only once.

Typically, in mapreduce algorithms, we implement the reduce transformation imme-
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diately after the map transformation. But it is not mandatory and hence we decided

not to perform the reduce transformation step as we are not collecting any data.

Lemma 4.2.1 Say, r = 〈key, value〉 ∈ RDD1. Then r .key is a 1-clique and r .value

is valid extension of r .key clique.

Proof: Say, u = r .key. By construction, u is a vertex, which is a size-1 clique. r .value

is u’s adjacency list, so each vertex v ∈ r .value forms an edge with u. Besides, (u, v)

is an edge of Gd, so u ≺ v. Thus, the vertex v can be added with u to form a valid

size-2 clique, namely (u, v). �

Algorithm 4 Broadcasting filtered adjacency list

1: procedure broadcastAdjList( f ilter AdjList) . where f ilter AdjList is

filtered adjacency list from the Algorithm 3

2: Input : Output from Algorithm 3

3: local AdjList ← f ilter AdjList.collect AsMap() . local AdjList RDD is the

cached object

4: SparkContext.broadcast(local AdjList)

5: end procedure

4.2.4 Broadcasting Neighborhood Information

In the proposed distributed clique enumeration process, a clique embedding is

represented as a record in RDD. Thus making the enumeration process easily dis-

tributed across all the workers in the cluster. The neighborhood information N (v) of

the last added node v is the only piece of network topology information passed to the

distributed methods (Lines 3-4 of Algorithm4). As we demonstrate in experimental

results, the computational burden for clique enumeration in real world networks come

from the exponential count of clique embedding and not from the input network size.

Which means the clique counting algorithms often fail due to the number of embed-

ding it needs to enumerate but not due to the size of the network. The information
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regarding filtered adjacency lists of corresponding vertices will be cached and broad-

casted to the other workers in the cluster by invoking the respective collectAsMap

and broadcast transformations in the master node. This ensures that information is

available in-memory for the workers, thereby making Spark is much more faster than

Hadoop.

Starting from 3-cliques, we can repetitively apply Algorithms 5 and 6 to get RDDs

with increasingly larger cliques.

Algorithm 5 Generating k-clique extensions from (k-1)-clique

1: procedure Extension((k − 1)-clique)

2: Input file:(k − 1)-clique=(V,Extensions), where (k − 1)-clique is a tuple of

size 2, where (k − 1)-clique.V represents set of nodes that are responsible for

identifying (k − 1)-clique and (k − 1)-clique.Extensions is a set of vertices that are

valid extensions for (k − 1)-clique

3: posKCliExt ← Φ

4: possibleExt ← (k − 1) − clique.E xtensions

5: for i ∈ (k − 1) − clique.E xtensions do

6: emit posKCliE xt ∪ (i,(k-1)−clique ∪ (i), possibleE xt)

7: end for

8: end procedure

4.2.5 Clique Extension

For a record of size k clique embedding, the extension stage enumerates all interme-

diate extensions to give records of size k+1 cliques embedding (see Algorithm 5). Ini-

tially the function Extension constructs an empty list partialCliqueEmbedding for

gathering all cliques extended from the input arguments in (Algorithm 5). Enumerat-

ing k-cliques from (k−1)-cliques is done by the last node added to the CompleteE xtension

into the (k −1)-cliques (line no. 6) but this does not alter the extensions. All the new
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Algorithm 6 Generating k-clique completion from (k − 1)-clique

1: procedure Completion(posKCliE xt, local AdjList .value(posKCliE xt.V)) .

where posKCliE xt=(v,clique,PossExt) is a 3-tuple generated from Algorithm 5

and localAdjList is generated from Algorithm 4

2: Input file: posKCliExt is a RDD from the algorithm 5 and

local AdjList .value(posKCliE xt.v) is the filtered adjacency list for the node.

3: CompleteE xtensions← Φ

4: CompleteE xtensions ← local AdjList.value(posKCliE xt.v) ∩

posKCliE xt.PossE xt

5: emit posKCliE xt.clique,CompleteE xtensions

6: if |posKCliE xt.clique| == k then

7: return posKCliE xt.count()

8: else

9: repeat Algorithm 5

10: end if

11: end procedure
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records will be added to the partialCliqueEmbedding and the final list is returned

as output which will be used to generate complete extensions of the k-cliques. The

formal steps are given in (Algorithm 5).

4.2.6 Clique Completion

completion procedure (see Algorithm 6) is the responsible for re-evaluation of

all the newly created records as a result of the extension step. At this stage all

information necessary for clique type identification and further extensions of clique

enumerations are gathered from the adjacency list N (v) of newly added vertex v. The

function Completion takes the tuple from the output of Algorithm 5 which consists

of (v,clique,partialExtensions).

The steps for obtaining CompleteExtensions are described henceforth. First, we

gather neighborhood information of the newly added vertex v (Line 4) from the Local

Adjacency list map obtained after applying Algorithm 3. Local AdjacencyListRDD

is a restricted adjacency list containing all neighboring nodes of v whose id is larger

than the node considered in the embedding. Local AdjacencyListRDD is necessary

to ensure the correctness of the algorithm, so that each clique is embedded only

once. Complete extensions are computed by performing an intersection operation

of neighborhood list and current partial extension list of vertex v obtained from

(Algorithm 5). The function Completion returns the complete clique embedding

record (Line 5). Line 6-10 will compare the size of the clique obtained to k, if it

matches then it returns the count of cliques, if it does not it will repeat the (Algorithm

5).For a better understanding, a small graph and the procedure needed to enumerate

4-clique has been provided in the Figure 4.4

Lemma 4.2.2 Say, extension and completion operation takes r = 〈key, value〉 ∈

RDDl−1. Then it produces r′ = 〈key, value〉 ∈ RDDl such that r′.key is a l size clique

and r′.value contain vertices which are valid extension of r′.key clique.
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Proof: Say, C = r .key. By construction, C is a (l − 1)-size clique and r .value is

a set of vertices which are C’s valid extension, so each vertex v ∈ r .value forms an

edge with each vertex of C. Extension process takes a vertex v ∈ r .value and adds v

with C to form a clique of size l. Besides, for every vertex u ∈ C, (u, v) is an edge of

Gd, so u ≺ v. Thus, the vertex v can be added with C to form a valid size-l clique

C∪ {v}, which is set as r′.key. Then the Completion process intersects the adjacency

list of v with r .value and set the intersection set as r′.value. Now, for any vertex

w ∈ r′.value, w is adjacent to v, and it is also adjacent to all vertices of C. So, w is

a valid extension for the clique C ∪ {v} = r′.key. �

Theorem 4.2.3 For a given positive integer k and an input graph G, kc-spark

enumerates all k-size cliques of G in RDDk

Proof: We will prove this theorem by induction on k. Using Lemma 4.2.1, RDD1

contains all 1-size cliques with valid extension. So, the claim holds for k = 1.

Let’s assume that the theorem holds for k − 1, then by induction hypothesis,

RDDk−1 holds all (k−1)-size cliques and their valid extension. Then, k’th iteration of

kc-spark takes RDDk−1 and generates RDDk . Using the Lemma 4.2.2, RDDk holds

cliques of size k and their valid set of extensions. Hence, proved. �

4.3 Time Complexity Analysis

kc-spark enumerates all possible cliques of size k of a graph. The brute-force

time complexity of enumerating fixed size (say, k) clique is O(nk k2); where n is the

number of vertices and k is the desired clique size. Here, O(nk) is the number of

potential subgraphs of size k in the network, and the time complexity to analyze

whether a subgraph is a clique is O(k2). Since, kc-spark enumerates cliques in a

distributed manner for the larger input networks with multiple processors p. Hence,

the time complexity of kc-spark with p processors available is given as O(nk k2/p).

The space complexity is O(n) since Algorithm 4 collects neighbors into a Map which
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will be in-memory for all the CPU’s so that computations can be done in a faster

manner rather than overhead in disk I/O calls.
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5 EXPERIMENTS AND RESULTS

5.1 Data sets

We performed experiments on several graphs taken from the SNAP Stanford

repository [53] and network repository [55]. We pre-processed the input graphs

so that they are undirected, connected, and sorted according to their degree of dis-

tribution. Doing this we can achieve dynamic load balancing of the processes and

eventually control the curse of the last reducer. Each line in the input represents

an edge separated by the tab delimiter between the pair of vertices. In this paper,

we present the experiment results for the real time web graphs ( webBerkStan, we-

bGoogle, web-baidu-baike), social graphs (soc-brightkite,socfb-CMU), infrastructure

graphs (inf-road-usa,inf-roadNet-CA,inf-openflights,inf-italy-osm), and collaboration

networks (ca-dblp-2012, ca-HepPh). Few main characteristics were tabulated and

given in Table 1. We observed that as the number k in k-clique increases the k-clique

count increased from one million to one billion as shown in the graph web-BerkStan-

dir.

5.2 Platform

The experiments were carried out in a cluster of 10 machines and also on a stand

alone machine. Our cluster consists of 10 machines each having a 14 GB RAM and

4 cores which are specially devoted for Spark jobs. So there are a total of 40 cores

on our cluster. We also performed the same experiments on a single Ubuntu machine

which has 8 GB primary memory (RAM) and 4 cores. Experimental results for stand

alone mode and cluster mode are given in Table 1. Spark 2.0.1 and Scala 2.11.7 were
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installed on all the 10 machines with the same configuration setting as in stand alone

mode with 4 cores.

Experiments are performed for enumerating triangles using Hadoop mapreduce

using the same cluster configuration.

5.3 Comparison to the mapreduce works [8–10]

In this section we tabulated the clique counts and compared our experiment results

to benchmark data sets taken from the SNAP Stanford repository. Table5.1 provides

properties such as nodes, edges, max degree and number of cliques up until size 5

of benchmark graphs taken from [53]. Our experiments were performed over our

own cluster of 10 machines and each machine has been installed with Apache Spark

2.0.1. Table5.3 is the main outcome of this work, providing the execution time of our

algorithm including comparisions with the works of Suri et al. [8] (triangle counting on

a 1636 node cluster), Afrati et al. [9] (sub graph enumeration), and Finocchi et al. [10]

(latest and fastest work on clique counting using mapreduce framework on a 16 node

cluster) . Our solution ran on 10 machines with 40 cores and outperformed mapreduce

solutions even though they used 16 machines with 64 processors. Detailed execution

times are given in the table5.3. Running time of FFF3 is much slower than SV from

table5.3 on most of the graphs. To test our solution, we compared execution times

of E xactSpark3 with SV, FFF3, AFU3 and our solution has proved to be faster than

benchmark data sets. And then we compared 4-clique and 5-clique execution times

with the mapreduce solutions proposed by [9] and [10]. Figures5.3 and 5.4 showed

the execution time comparison among kc-spark and mapreduce solutions [8–10].

We also compared the running times with large graphs provided in Table5.4. Our

solution ran on 10 machines and outperformed mapreduce solutions even though [8–

10] used a 1636 node cluster. In order to process large graphs, we require more

primary memory to efficiently enumerate cliques of sizes k > 3. Figure5.5 showed
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the execution time comparison of triangle counting among kc-spark and mapreduce

solutions [8–10].

Table 5.1.
Benchmark graphs statistics: number of Nodes, number of Edges, max
degree, avg degree, and number of cliques on k=3,k=4,k=5 nodes

Network Nodes Edges AvgDeg # 3-Clique # 4-Clique # 5-Clique

citPat 3,774,768 16,518,947 8 7,515,023 3,501,071 3,039,636

youtube 1,134,890 2,987,624 5 3,056,386 4,986,965 7,211,947

locGowalla 196,591 950,327 9 2,273,138 6,086,852 14,570,875

socPokec 1,632,803 22,301,964 27 32,557,458 42,947,031 52,831,618

webGoogle 875,713 4,322,051 11 13,391,903 39,881,472 105,110,267

webStan 281,903 1,992,636 16 11,329,473 78,757,781 620,210,972

asSkit 1,696,415 11,095,298 6.54 28,769,868 148,834,439 1,183,885,507
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Figure 5.1. Execution time comparison of enumerating 3-clique for the
solutions SV, FFF3, AFU3 [10] with E xactSpark3
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Table 5.2.
Running time comparison of kc-spark on a cluster of 10 machines with
40 total processors. Running times for the executions SV,FFF, and AFU
in (minutes:Seconds) are taken from [10]. Comparison for k=3,4

Network SV FFF3 AFU3 E xactSpark3 FFF4 AFU4 E xactSpark4

citPat 2:44 3:22 2:23 1:03 3:11 3:11 1:08

youtube 2:06 2:04 1:25 0.29 2:39 1:41 0:32

locGowalla 2:36 3:08 1:18 0:22 3:04 1:21 0:24

socPokec 4:03 4:15 2:18 1:12 4:02 2:29 1:26

webGoogle 2:13 2:44 1:23 0:30 2:43 1:27 0:36

webStan 2:02 2:39 1:15 0:24 2:29 1:27 0:36

asSkit 2:44 3:14 1:43 0:52 3:17 2:59 1:30

Notations: (minutes:seconds)

Table 5.3.
Running time comparison of kc-spark on a cluster of 10 machines with
40 total processors. Running times for the executions SV,FFF, and AFU
in (minutes:Seconds) are taken from [10]. For comparison we used k=5

Network FFF5 AFU5 E xactSpark5

citPat 3:13 2:18 1:13

youtube 2:34 1:33 0:35

locGowalla 3:02 1:30 0:28

socPokec 4:13 2:39 1:46

webGoogle 2:43 1:32 0:47

webStan 2:37 2:06 2:01

asSkit 3:18 5:34 5:48

Notations: (minutes:seconds)
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Table 5.4.
Running time comparison of kc-spark on large graphs with the triangle
counting times reported in [10] . For comparison we used k=3

Network Nodes Edges AvgClusCoe f f # 3-clique

orkut 3,072,441 117,185,083 0.17 627,584,181

webBerkStan 685,230 7,600,595 0.60 64,690,980

comLiveJ 3,997,962 34,681,189 0.30 177,820,130

socLiveJ1 4,847,571 68,993,773 0.27 285,730,264

Table 5.5.
Running time comparison of kc-spark on large graphs with the triangle
counting times reported in [10] . For comparison we used k=3

Network SV FFF3 AFU3 E xactSpark3

orkut 30:07 24:00 8:21 14:53

webBerkStan 2:28 3:00 1:37 0:51

comLiveJ 5:31 5:31 2:53 3:21

socLiveJ1 6:36 6:33 3:14 5.07

Notations: Running time (minutes:seconds)
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Figure 5.2. Execution time comparison of enumerating 3-clique on large
graphs for the solutions SV, FFF3, AFU3 [10] with E xactSpark3

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

cit
Pat

youtu
be

locG
owalla

so
cP

okec

web
Google

web
Sta

n

asS
kit

E
x
ec

u
ti

o
n

-t
im

e(
m

in
s)

 f
o
r 

4
-c

li
q

u
e 

en
u

m
er

a
ti

o
n

FFF4

AFU4

ExactSpark4

Figure 5.3. Execution time comparison of enumerating clique-4 for the
solutions FFF4, AFU4 [10] with E xactSpark4



38

 0

 1

 2

 3

 4

 5

 6

cit
Pat

youtu
be

lo
cG

owalla

so
cP

okec

web
G

oogle

web
Sta

n

asS
kit

E
x
e
c
u

ti
o
n

-t
im

e
(m

in
s)

 f
o
r
 5

-c
li

q
u

e
 e

n
u

m
e
r
a
ti

o
n

FFF5
AFU5

ExactSpark5
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solutions FFF5, AFU5 [10] with E xactSpark5

5.4 Comparison of enumerating 3-clique between Hadoop mapreduce and kc-spark

with the same cluster setup

We implemented enumaration of triangles in a network using Hadoop mapreduce

with the same cluster setup and compared with the 3-clique from kc-spark . Table

5.6 provides the detailed comparison of experiment results.

5.5 Analysis of speedup of kc-spark between stand alone mode and cluster mode

We enumerated k-cliques, where the input size k=5 for all the graphs listed in Ta-

ble5.8 using iterative Spark framework. The clique count results have been tabulated

for input graphs as shown in Table 5.8. The number of cliques increased exponentially

for the social networks socfb-CMU and soc-brightkite from 3-clique to 5-clique. In

contrast, the number of cliques decreased for the infrastructure networks inf-roadNet-

CA, inf-italy-osm etc. We observed that for large graphs like web-BerkStan-dir, the
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Table 5.6.
Running time comparison of kc-spark on a cluster of 10 machines with
40 total processors. Running times for the executions Hadoop mapreduce
and kc-spark in (minutes:Seconds). For comparison, we used k=3

Network Nodes Edges # 3-Clique mapreduceTime kc − spark

(min:sec) (min:sec)

citPat 3,774,768 16,518,947 7,515,023 9:42 1:03

youtube 1,134,890 2,987,624 3,056,386 3:36 0:29

locGowalla 196,591 950,327 2,273,138 3:00 0:22

socPokec 1,632,803 22,301,964 32,557,458 22:42 1:12

webGoogle 875,713 4,322,051 13,391,903 4:24 0:30

webStan 281,903 1,992,636 11,329,473 4:01 0:24

asSkit 1,696,415 11,095,298 28,769,868 11:12 0:52

orkut 3,072,441 117,185,083 627,584,181 379:36 14:53

webBerkStan 685,230 7,600,595 64,690,980 11:37 0:51

comLiveJ 3,997,962 34,681,189 177,820,130 40:64 3:21

socLiveJ1 4,847,571 68,993,773 285,730,264 58:42 5:07

enumeration of cliques took longer duration and partitioned the input network into

400 partitions across all 40 cores.

5.5.1 Scalability and Performance evaluations with increasing # CPUs

Since Spark algorithms are parallel in nature, a simple question always asked

is how their execution times are affected by the number of CPU’s used i.e. the

number of cores used. Figure5.5 and Figure5.6 depict the execution time of the Spark

program in stand alone mode with 4 cores and in cluster mode with 40 cores. We

have demonstrated experiments for cliques of size 5, where k=5 in all the executions

ranging from small graphs to large graphs. Scalability can be obtained by increasing
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Table 5.7.
Benchmark graphs statistics: number of Nodes, number of Edges, max
degree, avg degree, and number of cliques on k=3,k=4,k=5 nodes

Network Nodes Edges Max # 3-Clique #5-Clique

inf-openflights 2,939 15,677 242 72852 875543

ia-email-EU-dir 265,009 364,481 8K 267,313 1,101,520

inf-roadNet-CA 1,957,027 2,760,388 12 120,492 40

soc-brightkite 56,739 212,945 1,134 494,408 19.4M

web-google-dir 876K 5M 6K 13.3M 105M

socfb-CMU 6,621 249,959 840 32,788,398 1.4T

web-baidu-baike 2M 18M 98K 25M 24M

ca-dblp-2012 317,080 1,049,866 343 2,224,385 262M

inf-road-usa 23,947,347 28,854,312 9 50,135,113 384M

ca-HepPh 11,204 117,619 491 3,357,890 6.4B

web-BerkStan-dir 617,094 7,600,595 84K 64.7M 21.8B

Notations: K = 1000, M = 1000K, B = 1000M, T = 1000B,



41

Table 5.8.
Running time comparison of kc-spark on a cluster of 10 machines with 40
cores and standalone mode with 1 machine and 4 cores . For comparison
we used k=5

Network Nodes Edges Max STANDALONE CLUSTER

inf-openflights 2,939 15,677 242 13 17

ia-email-EU-dir 265,009 364,481 8K 26 23

inf-roadNet-CA 1,957,027 2,760,388 12 78 33

soc-brightkite 56,739 212,945 1,134 86 26

web-google-dir 876K 5M 6K 351 47

socfb-CMU 6,621 249,959 840 387 (6.45m) 42

web-baidu-baike 2M 18M 98K 982 (16.36m) 95 (1.58 )m)

ca-dblp-2012 317,080 1,049,866 343 1,333 (22m) 99 (1.65m)

inf-road-usa 23,947,347 28,854,312 9 3190 (53.16m) 179 (2.95m)

ca-HepPh 11,204 117,619 491 63,716 (17.69h) 3,258 (54.3m)

web-BerkStan-dir 617,094 7,600,595 84K > 39h 6420 (107m)

K = 1000, M = 1000K, B = 1000M, T = 1000B, m→ min, h→ hour and d → day
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the number of CPUs in the cluster. Due to the broadcasting and caching mechanism

exhibited by Spark, the performance increased significantly on the cloud as opposed

to the execution time for the real time graph ca-dplp-2012
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6 FUTURE WORK AND CONCLUSION

6.1 Future work

1. In this work, kc-spark has been implemented using the Spark distributed

framework. For enumerating cliques efficiently on larger graphs, kc-spark can

be extended to run on a greater number of machines with more primary memory

due to the fact that Spark has been proven to work 100x faster in-memory

compared to Hadoop mapreduce.

2. The kc-spark algorithm can be modified to enumerate maximal and maximum

cliques on a network efficiently. To the best of my knowledge, there is no work

proposed on maximal and maximum clique using the Spark framework. Maxi-

mal cliques can be obtained by clique decomposition of a graph. For maximum

clique, we need to perform iterations with k value to be maximum degree in

the Graph Gd. For maximal cliques, shrink the graph by removing all the edges

from the input graph once we obtain maximal cliques of respective size till the

k value to be 1.

3. Approximation algorithms can be proposed using the kc-spark approach which

will be helpful for enumerating cliques if the graph size is too large.

4. kc-spark can be extended to work with multiple CPUs and GPUs. Since

GPUs provide faster computation when compared to CPUs, we can change the

kc-spark design accordingly for time efficient results.
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6.2 Conclusion

In this work, we propose a kc-spark , an efficient distributed clique enumeration

algorithm for large real-life networks using the Apache Spark distributed framework.

This method harnesses the power of a distributed computing paradigm to give a

scalable clique enumeration and counting mechanism in large real-life networks. Ex-

periment results show that kc-spark can enumerate k-cliques from very large real-life

networks, where a single commodity machine cannot produce the desired result in a

reasonable amount of time. In our experiment results, enumerating 5-cliques for the

network ca-HepPh in a single machine with a quad-core processor took approximately

18 hours. In contrast, the same computation took 53 minutes when executed in cluster

of 10 machines using kc-spark . We also compared our solution with the mapreduce

frameworks proposed by Finocchi et al. [10] and Afrati et al. [9] for clique enumer-

ation. Experimental results show that kc-spark is 80-100 percent times faster in

running times than both of these methods. On the other hand, we also compared

with the triangle enumeration using mapreduce with the same cluster setup. Our

results show that running times of kc-spark are 8-10x faster than Hadoop mapre-

duce implementation. Moreover, our system is fully fault-tolerant due to the inherent

features of the Spark framework. If there is an arbitrary failure in the worker node,

that particular node computation can be recomputed from the original fault tolerant

RDD using the Apache Spark lineage property.

We conducted many experiments to show that kc-spark efficiently runs on any

cloud platform using the Spark in-memory cluster computing framework. We have

shown that kc-spark is fast, distributed, and scalable because it can handle large

graphs that cannot be computed in a reasonable amount of time with a single com-

modity machine. In order to process larger graphs, kc-spark merely requires more

primary memory to efficiently enumerate cliques.
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[42] Patric RJ Österg̊ard. A fast algorithm for the maximum clique problem. Discrete
Applied Mathematics, 120(1):197–207, 2002.

[43] Panos M Pardalos and Jue Xue. The maximum clique problem. Journal of global
Optimization, 4(3):301–328, 1994.

[44] Roberto Battiti and Marco Protasi. Reactive local search for the maximum clique
problem 1. Algorithmica, 29(4):610–637, 2001.

[45] Qingfu Zhang, Jianyong Sun, and Edward Tsang. An evolutionary algorithm
with guided mutation for the maximum clique problem. IEEE Transactions on
Evolutionary Computation, 9(2):192–200, 2005.

[46] Panos M Pardalos and Gregory P Rodgers. A branch and bound algorithm for
the maximum clique problem. Computers & operations research, 19(5):363–375,
1992.

[47] Luana E Gibbons, Donald W Hearn, Panos M Pardalos, and Motakuri V Ra-
mana. Continuous characterizations of the maximum clique problem. Mathe-
matics of Operations Research, 22(3):754–768, 1997.

[48] J. Robson. Finding a maximum independent set in time O(2 (n/4)), January
2001.

[49] Virginia Vassilevska. Efficient algorithms for clique problems. Inf. Process. Lett.,
109(4):254–257, January 2009.

[50] Jure Leskovec, Daniel Huttenlocher, and Jon Kleinberg. Signed networks in
social media. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, CHI ’10, pages 1361–1370, New York, NY, USA, 2010.
ACM.

[51] Jure Leskovec, Kevin J. Lang, Anirban Dasgupta, and Michael W. Mahoney.
Community structure in large networks: Natural cluster sizes and the absence
of large well-defined clusters. CoRR, abs/0810.1355, 2008.

[52] Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker, and
Ion Stoica. Spark: Cluster computing with working sets. In Proceedings of
the 2Nd USENIX Conference on Hot Topics in Cloud Computing, HotCloud’10,
pages 10–10, Berkeley, CA, USA, 2010. USENIX Association.
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