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ABSTRACT 

CYTOKINE GENETICS AND EXPRESSION: IMPLICATIONS OF AN 

IMMUNOGENETIC PATHOGENESIS IN AUTISM SPECTRUM DISORDERS 

Meghan Carey Mott 

May 3,2011 

Autism Spectrum Disorder (ASD) is an idiopathic pervasive neurodevelopmental 

disorder associated with various neuropathologies and immunological dysfunctions. 

Cytokines are regulatory proteins that facilitate communication between the immune and 

central nervous systems and mediate inflammation, immunity, and hemopoiesis. Previous 

literature demonstrates that cytokine expression is altered systemically and in the central 

nervous system of individuals diagnosed with ASD when compared to matched 

neurotypical controls. Here it is proposed that cytokines are crucial mediators in autism 

pathogenesis. The central hypothesis of this research posits that an underlying genetic 

susceptibility in cytokine genes is triggered by environmental exigencies (e.g., stress, 

infection, ultrasound, hypoxia, pollutant or chemical exposure) during prenatal 

development. This hypothesis proposes that the convergence of these scenarios during 

vulnerable periods of neurodevelopment ultimately culminates in the autism phenotype. 

To test whether cytokines are crucial mediators in autism pathogenesis, the DNA 

sequences of 22 single nucleotide polymorphisms (SNPs) within 13 cytokine genes were 

genotyped in a cohort of autistic patients and controls. Three SNP frequencies for both 
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pro-inflammatory [ll.IR(+1970)] and anti-inflammatory [ll.A(-590) and IL4(-33)] 

cytokine genes were found to be significantly associated with autism incidence. 

Next, cytokine mRNA profiles were investigated in post-mortem cortical tissue of eight 

autistic subjects and eight matched controls. Transcriptional profiling of cytokine genes 

in five post-mortem cortical regions corresponding to Brodmann Areas 4, 9, 17, 22 and 

46 indicated heterogeneous expression of cytokine (TNF-a, IL-6, TGFp-l, IL-I P) and 

chemokine (lL-8) transcripts in autistic subjects, but these alterations did not reach 

statistical significance or reflect values of cortical cytokine translational patterns 

established in previous literature. Finally, it was shown that systemic cytokine 

translational expression in the blood plasma of children diagnosed with autism disorder 

was not modulated with intravenous glutathione administration. These findings indicate 

that cytokines play an important role in ASD pathogenesis and reveal possible molecular 

mechanisms that warrant future investigation in etiological research. They also show that 

the antioxidant agent glutathione, which ostensibly alters cytokine expression at the 

intracellular level, does not affect systemic cytokine expression or ameliorate behavioral 

outcome when administered exogenously. 
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CHAPTER I 

Introduction 

Autism: Defining the Clinical Phenotype 

When the term 'autism' was first introduced in 1912 by Swiss psychiatrist Eugen 

Bleuler (1857-1939), it was used to describe schizophrenic behavior. Etymologically, the 

word autism is derived from the Greek terms autos, or self, and -ismos, a suffix denoting 

an action or state. Bleuler observed several clinical manifestations of autism in his 

schizophrenic patients, referring to their dementia as a "detachment from reality with 

relative and absolute predominance of the inner life" (Parnas et aI., 2002). Schizophrenics 

were often withdrawn and socially inaccessible, and seemed to live in a world of their 

own. Bleuler attempted to integrate autism into the diagnostic criteria for schizophrenia. 

This goal, however, was never realized as autistic behavior is only present in a subset of 

individuals with the disorder, and thus is not considered a core feature of the 

schizophrenic pathology. Instead, autism would come to define a pervasive 

developmental disorder demonstrated in pediatric populations only a few years after 

Bleuler's death. 

As the father of pediatric psychiatry, Leo Kanner (1894-1981) could also be 

considered the father of autism research. After his emigration from Austria in 1924, 

Kanner soon founded the Johns Hopkins Children's Psychiatric Clinic. In 1938, he began 
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studying a group of extremely detached children who had either been diagnosed with 

childhood schizophrenia or were considered emotionally disturbed. Five years later, 

Kanner published his seminal article "Autistic disturbances of affective contact," in 

which he proposed that this group of 11 children, composed of eight boys and three girls 

who were all under the age of 11 years old, suffered from a unique syndrome that seemed 

to afflict children of highly intelligent parents. He described them as "happiest when left 

alone," "like in a shell," with an "anxiously obsessive desire for sameness" and language 

that contained innumerable verbal rituals and echolalia which was "not meant to have 

communicative value" (Kanner, 1943). Although many of these children had been 

diagnosed as 'feebleminded,' Kanner ascertained that they were not cognitively impaired; 

on the contrary, they were endowed with excellent vocabularies and uncanny memory for 

past events as well as rote memory for precise and complex patterns and sequences. 

Kanner concluded that they were suffering from what he termed "early infantile autism," 

and that while it behaviorally resembled many features found in schizophrenia, this 

condition had an inherently distinct symptomatology. 

At the same time, Hans Asperger (1906-1980), a Viennese pediatrician, noticed a 

similar pattern of behavior in four boys referred to him at the University of Vienna 

Children's Hospital. In 1944 he published his Habilitation, or second doctoral thesis, 

"Autistic psychopathy in childhood," in which he identified behavioral deficits and 

abilities in these children that clearly resembled the characteristics Kanner had recently 

qualified. Although he described "autistic psychopathy" only one year after Kanner's 

article was published, Asperger's contribution remained largely unknown outside of 

German literature until it was translated into English in 1991. Once translated, it was 
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clear that Asperger's accounts echoed Kanner's. While Asperger focused on milder 

manifestations of autism in less affected children, he emphasized that this disorder had a 

distinct range of deficits, and was most easily recognizable when it appeared 

concomitantly with mental retardation. In his thesis, Asperger described isolated and 

"particularly interesting and highly recognizable" children who suffered from "severe and 

characteristic difficulties in social integration," extreme clumsiness, "emotional poverty," 

stereotypic movements, "strikingly odd" eye gaze, "a paucity of facial and gestural 

expression," and stilted, idiosyncratic language that "feels unnatural" due to their unusual 

diction (Asperger, 1991). 

Both Kanner and Asperger are considered pioneers of autism research because 

they were the first to define the disorder as a distinct and recognizable clinical entity in 

the field of pediatric psychiatry. It is certainly interesting that two Austrian physicians on 

different continents independently and simultaneously discovered the same disorder and 

gave it the same descriptive label. Both authors described their patients as socially 

isolated often with aggressive and destructive behavioral problems, clumsy in gait and 

gross motor performance, and impaired with language deficits that included the reversal 

of pronouns, the tendency to invent words and the use idiosyncratic language. Kanner 

and Asperger noted that non-verbal aspects of communication were also impaired, which 

included poor eye contact, lack of expressive gestures and odd vocal intonation during 

speech. Additionally, they each recognized several other features, namely deficient 

imaginative play, repetitive patterns of activities that included stereotyped play and body 

movements, fixation on objects and a dislike of environmental change, odd responses to 

sensory stimuli, hypersensitivity to noise, and special abilities which usually involved 
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rote memory skills. While their behavioral observations were strikingly similar, their 

interpretations of the underlying cause of autistic behavior were very different. Kanner 

was preoccupied with attributes he thought were shared by parents of autistic children, 

namely a "maternal lack of genuine warmth" that led to the conception of 'refrigerator 

mothers,' which predominated autism etiological theory in the 1950s (Kanner, 1949). 

Asperger, however, considered autism an inherited personality disorder and emphasized 

that it had a genetic basis. Both authors noted that these autistic behaviors were much 

more common in boys than in girls. 

Comparisons of what later became known as Kanner's early infantile autism and 

Asperger's syndrome yielded significant disparities between the two otherwise very 

similar conditions. Kanner's autism could be apparent in infants as early as six months of 

age, whereas Asperger contended that his syndrome was rarely diagnosed until the third 

year of life or later. While both physicians agreed that deficiencies in non-verbal 

communication and social interaction were distinguishing features of the disorder, 

language skills and acquisition differed significantly between them. Kanner's autism was 

associated with markedly delayed speech onset, abnormal speech or selective mutism, 

while children suffering with Asperger's syndrome could learn good use of grammar and 

vocabulary, although the content was often impoverished and inappropriate in social 

context and complex meanings were poorly understood (Wing, 1981). Asperger's 

accounts maintained that his patients often learned to speak before walking, and that 

walking occurred later than normal, while Kanner's observations indicated that walking 

developed normally or even earlier than average, while speech developed later or not at 

all (Van Krevelen, 1971). These distinctive characteristics between Kanner's early 
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infantile autism and Asperger's syndrome led investigators to question whether the two 

conditions were simply varieties of the same underlying abnormality or if they were in 

fact two separate entities. 

Four decades after the initial publication of their seminal articles, research and 

clinical findings suggested that a clear distinction between Kanner's autism and 

Asperger's syndrome did not exist. While Kanner never acknowledged Asperger's work, 

Asperger recognized that there were several similarities between his syndrome and 

Kanner's early infantile autism. Subsequent authors agreed that the two conditions could 

be differentiated, but that they were more alike than different, and thus could not be 

considered mutually exclusive diagnostic categories (Van Krevelen, 1971; Wolff & 

Barlow, 1979). Their dissimilarities were interpreted as variations in severity of the same 

clinical behavioral pattern, where individuals with Asperger's syndrome showed fewer 

signs and were less severely affected than those with Kanner's autism. Investigators 

recognized hallmark behavioral discrepancies between the two similar disorders: 

"Children who do not talk or who parrot speech and use strange idiosyncratic 
phrases, who line up toys in long rows, who are oblivious to other people, who 
remember meaningless facts - these will rightly conjure up Kanner's memory. 
Children and adults who are socially inept but often socially interested, who are 
articulate yet strangely ineloquent, who are gauche and impractical, who are 
specialists in unusual fields - these will always evoke Hans Asperger's name." 
(Frith, 1991) 

Although Kanner's autism and Asperger's syndrome had somewhat different profiles of 

cognitive, language and motor functions, it was posited that they could be considered 

subclassifications on the same 'autistic continuum' (Wing, 1988). Lending further 

support to this argument, the same individual who was considered autistic in early life 
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could be diagnosed with Asperger's syndrome in adolescence and adulthood (Wing & 

Gould, 1979). 

Currently, the Diagnostic and Statistical Manual for Mental Disorders (DSM) 

defines autism as a pervasive developmental disorder which manifests during the first 

three years of life and is qualified by a triad of impairments in reciprocal social 

interactions, the development of communication, and severely restricted, stereotyped and 

repetitive patterns of interests and behaviors (American Psychiatric Association, 2000). 

To account for the variations of deficiencies and abilities that are present in affected 

individuals, the DSM considers autism a spectrum disorder, where sUbtypes are 

categorized for diagnostic purposes. The three sUbtypes that compose the autism 

spectrum include: autistic disorder, Asperger's disorder, and pervasive developmental 

disorder not otherwise specified (PDD-NOS). 

Autistic disorder is defined as classic autism, essentially the same condition 

identified by Kanner. Qualitative impairments in social interaction are often manifested 

as marked impairments in eye-to-eye gaze or communicative gestures, inappropriate or 

limited facial expressions, failure to develop peer relationships at the appropriate 

developmental level, a lack of spontaneous seeking to share enjoyment or interests with 

others, and a lack of social or emotional reciprocity. Communicative impairments often 

include a delay in or lack of spoken language, impairment in the ability to initiate or 

sustain a conversation, and stereotyped or repetitive use of language or idiosyncratic 

language. Manifestations of restricted and repetitive patterns of interests or behaviors 

frequently include an encompassing preoccupation with a subject of interest that is 

abnormal in intensity, an inflexible adherence to routines or rituals, stereotyped and 
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repetitive motor mannensms (e.g. hand flapping or twisting or complex whole-body 

movements) and a preoccupation with parts of objects. In order for a subject to be 

diagnosed with autistic disorder, a total of six of the abovementioned items must be 

present with at least two in the category of social interaction, and one per category of 

communication and restricted/repetitive behaviors or interests. 

Criteria for diagnosis of Asperger's disorder and PDD-NOS are very similar to 

those of autistic disorder, although behavioral differences are apparent. In Asperger's 

disorder, qualitative impairments in social interaction and manifestations of restricted and 

repetitive behaviors or interests are similar to those that typify autistic disorder; however, 

no clinically significant general delay in language or cognitive development is present. 

PDD-NOS is considered 'atypical autism', where individuals do not meet criteria for 

either autistic or Asperger's disorder but do present with severe or pervasive impairments 

in social interaction, verbal or non-verbal communication, or have the restricted or 

repetitive behaviors or interests previously mentioned. Although these subjects exhibit 

autistic symptomatologies, these are usually atypical, subthreshold, or occur at a late age 

of onset and thus cannot be classified as either autistic or Asperger's disorder. For a 

complete and thorough review of diagnostic criteria for each subgroup contained with the 

autism spectrum, please refer to the appendix. 

As the abovementioned DSM criteria demonstrates, diagnosing autism spectrum 

disorders (ASDs) can be challenging since it is solely based on behavioral and 

developmental observation. Research indicates that at age two, an ASD diagnosis can be 

considered very reliable (c. Lord et ai., 2006). The American Academy of Pediatrics 

recommends that pediatricians screen children for ASDs at 18 months and 24 months of 
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age. There are a variety of screening tools available for health care professionals to assess 

the general development of ASDs. Many incorporate parent reports to increase provider 

observation of the child's development and promote parent awareness of developmental 

milestones and disabilities. Examples of parent questionnaires or parent-completed 

screening tools used to diagnose developmental delays include the Ages and Stages 

Questionnaires, Communication and Symbolic Behavior Scales, Parents' Evaluation of 

Developmental Status, Modified Checklist for Autism in Toddlers, and the Screening 

Tool for Autism in Young Toddlers. Additionally, specialists often screen for ASD 

diagnosis using one of the following assessments: the Autism Diagnostic Interview­

Revised (ADI-R), Autism Diagnostic Observation Schedule-Generic (ADOS-G), 

Childhood Autism Rating Scale (CARS), and the Gilliam Autism Rating Scale-Second 

Edition (GARS-2). Pediatric specialists rely on parent interviews and direct observation 

of the child using standardized autism assessments specific for cognitive and adaptive 

functioning. While each of these tests has a different method of evaluation, studies have 

shown that their screening measures have sensitivities and specificities greater than 70% 

(Committee on Children and Disabilities, 2001). 

The reliability of parent-completed screening tools in addition to inter-test 

diagnostic agreeability and validity represent significant limitations in the consistency of 

ASD classification assessment. Early intervention programs improve long-term function 

in children diagnosed with an ASD (D. Dawson & Osterling, 1997). Thus, conflicting 

diagnoses from different professionals can have significant academic, behavioral and 

social consequences for the individual child. Evidence indicates that the ADI-R and 

ADOS-G are the most accurate and reliable assessments available for identifying autism; 
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however, most evaluators do not use these measurements due to the fact that they are 

more expensive and require more time and training to administer (c. Lord et aI., 2000; 

M. E. Williams et aI., 2009). Cultural and socio-economic status can delay access to 

diagnostic services available to affected families, make assessment difficult, and result in 

diagnostic errors (Mandell et aI., 2002). An examination of the practices used to evaluate 

ASDs found that different service systems, measured at public schools, programs 

evaluating eligibility for developmental disabilities services, and hospital-based programs 

agreed on ASD diagnosis in the same individual only 45% of the time (M. E. Williams et 

aI., 2009). These discrepancies in diagnosis may be a reflection that professionals do not 

follow best practice guidelines for assessment of ASDs, and carry significant implications 

regarding ASD diagnostic criteria measured using different tools by different 

professionals. 

Epidemiology of ASD 

The first epidemiological study of autism surveyed 78,000 urban British children 

aged 8-10 years old between 1963-64, and estimated a prevalence rate of 4.5 per 10,000 

(Lotter, 1966). At that time, Kanner's definition of early infantile autism provided the 

only behaviorally defined criteria for ascertaining the presence of 'autistic conditions.' 

Thus, this survey's estimate of prevalence may not represent the most accurate estimate 

of a syndrome poorly defined relative to current standards. Since then, numerous studies 

have been performed attempting to estimate prevalence of ASDs in countries world-wide, 

including Australia, Canada, China, Denmark, Finland, France, Germany, Iceland, India, 

Indonesia, Iran, Ireland, Israel, Japan, Norway, Oman, Singapore, South Africa, Spain, 
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Sweden, the United Arab Emirates, the United Kingdom, and the United States. 

Comparison between studies is challenging due to variations in diagnostic assessment 

tools used and well as changes in diagnostic criteria defined in successive publications of 

the DSM and the International Classification of Diseases (lCD). Subsequently, it is 

difficult to assess changes in prevalence rates of ASD over time and in different 

countries, and even more challenging to extrapolate whether the actual incidence of ASD 

is related to ethnicity, geographic location, or year of evaluation. 

A review of 22 non-overlapping epidemiological studies conducted in 12 

countries between the years of 1966-1998 reported a prevalence estimate of 4.4 per 

10,000 people diagnosed with autism (Fombonne, 1999). This study found a significant 

correlation between prevalence rate and year of publication, indicating an increase in 

prevalence estimates in the 1990s compared to previous decades. The author suggests this 

increase reflects "an improved recognition and detection of autism together with a 

broadening of the diagnostic concept and definitions," rather than a true increase in 

incidence of the disorder (Fombonne, 1999). This review also found a clear association 

between autism and mental retardation, a significant gender bias where males were 

approximately 4 times more likely to be affected than females, an association with autism 

and rare or genetic medical conditions, and no association between autism and social 

class or parental education. Interestingly, all of the studies surveyed also identified a 

larger group of children who did not meet diagnostic criteria for autism but qualified for a 

pervasive developmental disorder. 

In contrast to autism studies, very few epidemiological inquiries regarding 

Asperger's syndrome were investigated until several years later. The first study, 

10 



performed in Sweden in 1977, originally estimated a prevalence for Asperger syndrome 

in seven-year-old children to be 26 per 10,000 (c. Gillberg et aI., 1982). Also in the 

1970s, British investigators estimated that 1.1 per 10,000 children under the age of 15 

years old in London who had been diagnosed as autistic early in life were later diagnosed 

with Asperger's syndrome (Wing & Gould, 1979). In 1985, another Swedish study 

estimated the population frequency of Asperger's syndrome in 10,500 children aged 7-16 

years old to be 8 per 10,000 (I. C. Gillberg & Gillberg, 1989). Years later, the same 

Swedish group studied 1,519 7-16 year old children in the same area and estimated the 

prevalence of Asperger's syndrome to be 28.5 per 10,000; however, their confidence 

intervals were very large and thus this data should be considered imprecise (Ehlers & 

Gillberg, 1993). While these early studies suggested that the prevalence of Asperger's 

syndrome was higher than that for autism, recent findings indicate that prevalence rates 

of Asperger's syndrome are actually significantly lower (Chakrabarti & Fombonne, 2001; 

Ellefsen et aI., 2007; Kadesjo et aI., 1999; Powell et aI., 2000; Sponheim & Skjeldal, 

1998). 

Follow up epidemiological studies of ASD estimated autism prevalence rates for 

surveys published between 1966-1991 to be 4.411 0,000 while these rates increased to 9-

11/10,000 between the years of 1992-2001, with the most recent estimation being 

20/10,000 within the last decade (Fombonne, 2001, 2009). In the 1990s, average 

prevalence estimates for PDD-NOS were approximately 15/10,000 and the rate of 

Asperger's syndrome was consistently lower, at 2.5/10,000 (Fombonne, 2001). Within 

the last decade these values have increased to 30/10,000 for PDD-NOS and 6/10,000 for 

Asperger's syndrome (Fombonne, 2009). These apparent increases in ASD prevalence 
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rates cannot be directly attributed to increases in incidence of the disorder, however. 

Research suggests that variability in prevalence of ASDs across studies can be explained 

by differences in diagnostic criteria, case-finding method and issues of study design 

(Posserud et ai., 2009; J. G. Williams et ai., 2006). Referral trends over time are affected 

by heightened public awareness, availability of diagnostic services, changes in referral 

patterns, decreasing age at diagnosis, and changes in diagnostic concepts and definitions. 

Thus, there are multiple confounding factors in ASD prevalence estimate investigations 

and comparison between studies is problematic. Ideally, repeated surveys that use the 

same diagnostic tools, performed in the same geographic locations at different periods of 

time would yield the most accurate prevalence estimates of ASD. 

Although evaluating ASD prevalence over time is challenging, epidemiological 

evidence collected within the last decade suggests that incidence of the disorder is 

increasing. The Centers for Disease Control and Prevention (CDC) conducted a 

surveillance study in 2006, which estimated that 1 % or one child in every 110 aged 8 

years old in the United States is currently diagnosed with an ASD (Centers for Disease 

Control and Prevention, 2009). Compared to data they collected in 2002, this represented 

at 57% increase in the average prevalence of ASD measured at the same locations 

throughout the country (Centers for Disease Control and Prevention, 2007). These sites 

included areas in Alabama, Arizona, Colorado, Georgia, Maryland, Missouri, North 

Carolina, Pennsylvania, South Carolina, and Wisconsin. Every site except Colorado 

reported a significant increase in identified ASD prevalence within all major sex, 

racial/ethnic and cognitive functioning categories (Centers for Disease Control and 

Prevention, 2009). Interestingly, these increases were more attributable to autism 
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diagnosis rather than broader ASD diagnoses (e.g., PDD-NOS or Asperger's syndrome). 

ASD prevalence estimates of 1 % in the United States match recent estimates provided by 

groups in the United Kingdom and Canada (Baird et aI., 2006; Baron-Cohen et aI., 2009; 

Lazoff et aI., 2010). The most recent estimate of ASD prevalence was performed in 2007 

by the Health Resources and Services Administration's Maternal and Child Health 

Bureau. This report surveyed over 78,000 children, and found that 1.1 % or one child out 

of 91 in the United States aged 3-17 years old is currently diagnosed with an ASD 

(Kogan et aI., 2009). This study also found a ma1e-to-fema1e ratio of approximately 4: 1, 

and higher ASD prevalence among single mothers and non-Hispanic white children. One 

limitation of this study that should be mentioned, however, is that it was based on parent­

reports of diagnosis, which were not externally validated. 

Comparative analysis indicates that ASD prevalence estimates are associated with 

geographic region. Studies performed outside North America and Europe show 

significantly lower prevalence estimates for ASDs (AI-Farsi et aI., 2011; Honda et aI., 

2005; Zhang & Ji, 2005). One study compared estimates reported for children born 

between the years of 1994-1999 within Denmark and Western Australia, and found that 

overall ASD prevalence rates were significantly higher in Denmark (Pamer et aI., 2011). 

It is likely that these differences are due to diagnostic assessment tools and service 

availability associated with each country. Children in Western Australia are not routinely 

screened for developmental disabilities as they are in Denmark. Assessments and services 

are also free in Denmark, whereas individual families are financially responsible for the 

same services in Western Australia. Studies comparing ASD prevalence rates between 

countries are only just beginning, and preliminary results indicate that significant 
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differences exist (Zaroff & Uhm, 2011). Interpretation of this analysis will prove 

complicated because In addition to differences in diagnostic assessment tools and 

serVIces, investigators must also take into consideration the effects of culture on 

information processing specifically regarding social interaction, a core feature in ASD 

symptomatology. It is also possible that environmental and/or geographical differences 

could account for disparities in prevalence estimates between countries. Increased 

prevalence rates indicate that environmental influence plays a particularly significant role 

in the incidence of ASD, and that research into viable environmental etiologies is 

warranted. 

Regardless of differences in prevalence rates across countries and ethnicities, 

evidence suggests that ASD incidence may be increasing. One fact IS becoming 

progressively clearer: pervasIve developmental disorders are not rare and should be 

considered an urgent public health concern. Future epidemiological studies should aim to 

be longitudinal in their analysis of the same geographic location, and make sure to use the 

same screening tools and diagnostic criteria for assessment. Additionally, population 

studies performed in different countries should aim to standardize assessment tools in 

order to make inter-study comparison more feasible. Until then, estimates of ASD 

prevalence according to birth date and geographic location will prove difficult, and few 

conclusions can be made regarding changes in incidence rates through time. 

It is estimated that American society spends $35 billion annually in direct and 

indirect costs associated with autism treatment (Ganz, 2006). Direct costs are based on 

medical and nonmedical expenditures. Direct medical expenses include physician, 

emergency and other professional serVIces, behavioral therapies, prescription 
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medications, equipment and other supplies, and medically related travel and time costs. 

Special education, childcare, home and vehicle modifications, and supported employment 

services are examples of direct nonmedical expenses. Indirect costs are qualified as loss 

of productivity measured in income associated with individuals with autism and their 

caregivers, due to missed work hours, switching to jobs that are lower paying but more 

flexible, and loss of employment. Age-specific autism data show that direct medical costs 

are highest for the first five years of life where behavioral therapies are the largest 

contributor, and that adult care represents the largest lifetime direct cost (Ganz, 2007). 

Compared to lifetime estimates of direct medical costs for typical Americans, this means 

that individuals with autism spend twice as much, and spend it at a much younger age 

(Alemayehu & Warner, 2004). Clearly these financial burdens are daunting, not only for 

the families of affected individuals, but also for society in general. Taken together, 

studies that suggest increased incidence combined with significant annual individual and 

societal cost estimates indicate that etiologic and preventative research in ASD is 

imperative. 

Neuroanatomical and Neuropathological Features 

Magnetic resonance imaging (MRI) and postmortem neuropathological studies 

indicate that ASD is characterized by dynamic age-specific structural and functional 

abnormalities. Developmental heterochronicity, wherein various brain regions grow at 

different rates compared to controls, is a defining anatomical feature associated with the 

disorder (Carper & Courchesne, 2005; Carper et aI., 2002; Courchesne et aI., 2001; 

Sparks et aI., 2002). Topographic change caused by developmental heterochronicity 
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likely produces the cytoarchitectural alterations that delineate a distinct neuropathology 

in autism. The extent of deviation from the normal trajectory of brain development may 

be used as a diagnostic tool of subtype specificity in the future (Courchesne et aI., 2003). 

Impairments in both local and global connectivity have been described, with an over­

development of local connectivity networks at the expense of long distance connectivity 

(Casanova et aI., 2006; Courchesne & Pierce, 2005). The developmental abnormalities 

that typify ASD, outlined below, are sources of structural and functional change that 

generate the clinical phenotype. 

Young children with ASD are macrocephalic and macroencephalic, two features 

which manifest prior to and during the time clinical diagnosis is ascertained. Longitudinal 

studies have shown that at birth, head circumferences of ASD children are significantly 

smaller than those of neurotypical children, but that by 6-14 months of age ASD head 

circumferences are significantly larger (Courchesne et aI., 2003). Head circumference 

values are considered an accurate index of brain size, and MRI-based studies reveal that 

autistic children have significantly increased brain volumes compared to controls 

(Bartholomeusz et aI., 2002; Piven et al., 1996). Brain volumes of autistic children 

increase the most between the ages of 2 and 4.5 years, where cerebellar and cerebral 

white matter (WM) accounts for the majority of growth (Courchesne et aI., 2001). This 

macroencephaly does appear to have regional specificity, but volumetric studies are 

inconsistent in their findings. For example, one study indicated that the greatest increase 

in WM volume takes place in the frontal lobes, and the least in the occipital lobes (Carper 

et aI., 2002). Still others report that the greatest generalized volume increase occurs in the 

occipital and parietal lobes (Filipek, 1996; Piven et aI., 1996). Brain growth acceleration 
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precedes and is associated with the onset of clinical symptoms, and the specific pattern of 

growth reflects the severity of ASD diagnosis (Courchesne et aI., 2003; G. Dawson et aI., 

2007; Dementieva et aI., 2005). ASD brain growth trajectories appear to decelerate after 

the first year of life, plateau during adolescence, and be comparable to controls in 

adulthood (Redclay & Courchesne, 2005). The functional consequences of abnormal 

brain development observed in autism explain many of the behavioral characteristics that 

define the disorder (I. L. Cohen, 2007). Although adult brain sizes are comparable 

between autistic subjects and matched controls, a core neuropathology remains present, 

and indicates that functional connectivity in different regions is diminished. 

MRI-based studies reveal multiple distinguishing neuranatomical features 

associated with autism, and the foremost of these involves a significant increase in WM 

volume. While WM makes up less than a third of total cerebral volume, it accounts for 

65% of the volume increase reported in the brain tissue of autistic subjects over controls 

(Herbert et aI., 2003). After adjusting for total brain volume, autistic subjects maintain a 

significantly greater WM volume compared to age-matched controls, which suggests that 

this WM volume increase is a specific feature associated with autism rather than a 

reflection of macrocephaly (Bigler et aI., 2010; Herbert et aI., 2003). When cerebral WM 

areas were parcellated into an outer zone of radiate WM composed of intrahemispheric 

corticocortical connections and an inner zone of bridging and sagittal compartments, the 

outer radiate WM was increased in all cerebral lobes with frontal lobe predominance 

while the inner zone WM showed no increase in autism (Herbert et aI., 2004). Relative 

reduction in various areas of the corpus callosum is a consistent finding in autism when 

compared to controls (Hardan et aI., 2000; Hardan et aI., 2009; Piven et aI., 1997). As 
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with findings in overall brain enlargement, WM concentrations are not as large compared 

to controls in older autistic individuals (Chung et al., 2004; Waiter et al., 2005). The 

overgrowth of specific WM regions is part of a pathologic process that disrupts the 

development of normal brain structure and function in autism, although the underlying 

molecular mechanisms by which this occurs are currently not understood. 

Volumetric analyses indicate that abnormalities in multiple cortical and 

subcortical structures are associated with autism. The limbic system, known for its role in 

emotion, memory and motivation, is consistently affected. Several studies report 

reductions in the size of the amygdala and hippocampus in autistic subjects, as well as 

poorer performance on neuropsychological tasks associated with each structure (Aylward 

et aI., 1999; Herbert et aI., 2003; Loveland et aI., 2008; Saitoh et aI., 2001). Still other 

studies report that children with autism have larger hippocampi compared to controls, 

while the amygdala is enlarged in only young autistic children (Schumann et aI., 2004). 

While these limbic structures may be larger in autistic children, they have been found to 

be smaller in adults when compared to controls (Aylward et aI., 1999). Thalamic 

abnormalities have also been observed, and include increased cell packing density, 

decreased cell size, and an overall decrease in thalamic volume in autistic individuals 

(Hardan et aI., 2006; Schultz et aI., 1999; Tsatsanis et aI., 2003). Increased parieto­

temporal lobe and cerebellar hemisphere volumes are associated with autism (Brambilla 

et aI., 2003). Overgrowth of the frontal and temporal lobes and amygdala are 

synchronized with the abnormally accelerated brain growth that occurs between the ages 

of 2-4 years in autistic children (Carper et aI., 2002; Hazlett et aI., 2005; Sparks et aI., 

2002). While cortical thinning typically occurs with age, this process appears to be 
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accelerated in autistic individuals (Hustler et aI., 2007). According to voxel-based MRI 

analysis, gray matter is reduced in a regionally specific manner and CSF total volume is 

significantly increased in autistic patients when compared to controls (McAlonan et aI., 

2005). Other studies report gray matter volumetric increases in specific areas in autism 

(Rojas et aI., 2006). While some MRI studies have produced discordant findings, they 

reveal a deregulation of brain growth in early childhood in autism, wherein growth 

trajectories are atypical and regionalized. 

The first studies to reveal neuropathological changes in autism were performed in 

the 1980s by numerous groups (Bauman & Kemper, 1985; Courchesne et aI., 1988; 

Gaffney et aI., 1987; Ritvo et aI., 1986). Five neuropathological features, in particular, are 

associated with autistic disorder l
: increased brain weight and WM volume during 

childhood, reduced neuronal size and increased cell packing density in the forebrain 

limbic system, reduced numbers of Purkinje cells in the cerebellum, age-related changes 

in cell size and numbers in the nucleus of the diagonal band of Broca, deep cerebellar 

nuclei and inferior olive, and malformations of cerebral cortex and brainstem (Bauman & 

Kemper, 2005). The most consistent finding across postmortem studies in autism is the 

significant decrease in cerebellar Purkinje cells when compared to controls (Arin et aI., 

1991; Bailey et aI., 1998; Ritvo et aI., 1986). Purkinje cells are also smaller in size in 

autism compared to age and sex-matched controls (Fatemi et aI., 2002). Abnormalities in 

size and number of neurons in the fastigeal, globose and emboliform nuclei have also 

1 As a cautionary note, postmortem neuropathological studies in autism are based on 
reports of a very small number of brains. Due to the broad age spectrum as well as 
clinical diversity of ASD, the pattern of neuropathological changes is incomplete and 
inconsistent. Thus, the morphological markers and neuropathological diagnostic criteria 
of autism have not been established. 
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been shown, and appear to change with age (Bauman & Kemper, 1994). What follows is 

a summary of the collection of neuropathological features in autism that have been 

observed by different groups. 

Cortical and sub-cortical morphological abnormalities associated with autism 

primarily involve the limbic system. Histological studies have shown that the 

hippocampus of autistic individuals has reduced cell size and simplified dendritic 

branching compared to age-matched controls (Raymond et aI., 1996). Evidence of 

neuronal cell size and packing density in autistic amygdale is contradictory. While some 

studies report a reduction in neuronal size and increased cell packing densities, others 

find no significant difference in cell size but do report significantly fewer neurons 

associated with the amygdala of autistic patients (Bauman & Kemper, 1990; Schumann 

& Amaral, 2006). Cell packing density was reportedly increased in the hypothalamus and 

mamillary body (Bauman & Kemper, 1985). Smaller neurons have been reported in the 

basal ganglia and cerebellum of 4- to 7-year-old children with autism, specifically in 

Purkinje cells, the dentate nucleus, amygdala, nucleus accumbens, caudate and putamen, 

with corrections in size by adulthood (Wegiel et aI., 2008). A generalized reduction in 

density ofaxons and dendrites in the autistic brain has also been proposed (Guerin et aI., 

1996). These studies indicate that a delay of neuronal growth evidenced by cortical 

dysgenesis, which is brain structure-specific, occurs in autism and undergoes 

modification during the life span. 

Several brain stem and cerebellar morphological abnormalities have been revealed 

in neuropathological studies on autism. Neurons in the inferior olivary nucleus appear 

more abundant in autism, but their size varies with age in that they are enlarged in 

20 



children younger than 12 years old but smaller in adults over 21 when compared to age­

matched controls (Anderson et aI., 1993; Kemper & Bauman, 2002). The pons, medulla, 

and midbrain midsagittal areas are all smaller in autistic subjects, and the pons seems to 

develop more rapidly in autism compared to controls (Hashimoto et aI., 1995). As 

mentioned previously, the cerebellum is the most consistent site of neural abnormality in 

autism. Alterations in Purkinje cell density and number appears to be more prominent in 

specific regions (Arin et aI., 1991). Hyerplasia and hypoplasia in cerebellar vermal 

regions is evident (Courchesne et aI., 1994). These studies indicate atrophy of the 

neocerebellar cortex, with regionally specific marked loss of Purkinje cells. 

Neocortical rninicolumns, the basic architectonic and functional units of the 

human brain that organize neurons in cortical space, are smaller, more numerous, and less 

compact in autistic patients compared to controls (Buxhoeveden & Casanova, 2002; 

Casanova et aI., 2002; Casanova et aI., 2006). While this minicolumnar pathology has 

been observed bilaterally in Brodmann cortical areas 3,4,9, 17, 21 and 22, the narrowest 

minicolumns are found in the dorsolateral prefrontal cortex of autistic subjects (Casanova 

& Trippe, 2009; Casanova et aI., 2006). Reduction in size of neocortical neurons and 

their nuclei is likely an indicator of reduced or impaired functional connectivity between 

distant cortical regions with a bias toward local rather than global information processing 

(Casanova et aI., 2006; Just et aI., 2004; Koshino et aI., 2005). Reductions in corpus 

callosum and gyral window size confirm that a constrained cortical network of 

connections exists, which favors short-range corticocortical fibers at the expense of long­

range commissural fibers (Casanova et aI., 2009). Malformations of cortical development 

have been observed in disorders caused by abnormalities of cell proliferation, apoptosis, 
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cell migration, cortical organization and axon pathfinding (Hevner, 2007). Thus, the 

minicolumnar abnormalities seen in autistic individuals suggest that the cause of the 

underlying pathology likely occurs during fetal or very early postnatal development. 

Studies of clinicopathological correlations in autism reveal a link between several 

domains of functional deficits and primary neuropathology. One of the core features of 

ASD symptomatology involves deficient verbal abilities related to the understanding of 

semantics and social pragmatics (Wetherby et aI., 1998). Studies of language-related 

neocortex reveal reduced neuronal density in Wernicke's area (BA 22) and gyrus 

angularis (BA 39) and increased glial cell density in both of these regions as well as in 

Broca's area (BA 44) in autistic subjects when compared to controls (Lopez-Hurtado & 

Prieto, 2008). Investigators hypothesize that structural alterations in language-related 

cortical areas contributes to the communication impairment in autism. 

Another core feature of ASD behavior includes abnormalities in social 

reciprocity, eye contact, and facial expression. It has been established that patients with 

autism have deficits in face processing, perception and recognition (Grelotti et aI., 2001; 

Joseph & Tanaka, 2003). Functional magnetic resonance imaging (tMRI) studies have 

shown that the fusiform gyrus, which is involved in face-processing, is hypoactive in 

autistic patients (Pierce et aI., 2004). It is believed that this hypo activation is associated 

with the failure of autistic subjects to make direct eye contact (Dalton et aI., 2005). 

Neuropathological studies reveal reduced neuronal number and volume in the fusiform 

gyrus and suggest that an underdevelopment of connections between primary visual 

cortex (BA 17) and the fusiform gyrus may contribute to abnormal face perception in 

autism (van Kooten et aI., 2008). 
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Impairments in gross and fine motor function as well repetitive and stereotyped 

behaviors are common findings in patients with autism. It has been proposed that 

sensorimotor deficits may be associated with pathological changes in the basal ganglia 

and cerebellum (Bailey et aI., 1998; Sears et aI., 1999). A positive correlation between 

caudate volume and repetitive behavior scores has been reported in autism (Hollander et 

aI., 2005). Cerebellar findings including a decrease in the number of GABAergic 

Purkinje cells and increased feed-forward inhibition from basket cells indicate altered 

inhibition of cerebellar nuclei which could directly affect cerebellocortical output and 

lead to changes in motor behavior and cognition (Arin et aI., 1991; Yip et aI., 2008). 

A particular range of cognitive deficits in autism demonstrate that performance IQ 

is generally higher th,m verbal IQ and that comprehension is usually low on intelligence 

tests (Siegel et aI., 1996). These cognitive deficits are likely related to abnormalities in 

the memory and limbic systems. Size reductions in the hippocampal formation and 

amygdala in autism have been reported, as well as reduced complexity of dendritic arbors 

in the hippocampus (Aylward et aI., 1999; Bauman & Kemper, 1985). The anterior 

cingulate gyrus is reduced in volume and positron emission tomography (PET) activity in 

subjects with autism is decreased (Haznedar et aI., 1997). The caudate nucleus is 

involved in learning, short- and long-term memory, planning and problem solving, thus 

observed caudate volume changes in autistic children may also explain cognitive deficits 

that typify autism (Fuh & Wang, 1995; Poldrack et aI., 1999; Schmidtke et aI., 2002). 

Neuroanatomical and neuropathological studies have revealed an atypical pattern 

of development in ASD. The brains of autistic subjects are generally larger during the 

onset of clinical symptoms when compared to controls, where WM contributes 
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disproportionately to brain volume enlargement in a regionally specific manner. 

Developmental heterochronicity is a defining feature of ASD, however inconsistencies in 

findings make cross-study comparison difficult. Multiple factors account for these 

inconsistencies, most notably among them conflicting subject diagnostic and 

exclusionary criteria. Statistical problems also exist in data collection, due to small 

sample size, confounding factors such as co morbidity with other disorders, IQ, 

postmortem interval, cause of death and medication history. While discordant findings 

exist, it is clear that characteristic neuropathologies are associated with the core 

symptoms of ASD. Image analysis can be used to distinguish subjects with autistic 

disorder, Asperger's syndrome or PDD-NOS from controls, which may yield significant 

diagnostic applications (Akshoomoff et ai., 2004; EI-Baz et ai., 2007). Generalized 

processing abnormalities related to a constrained neural network underlie the observed 

and defining behaviors found in ASD and lead to the idea of autism as a neural 

information processing disorder (Gustafsson, 1997; Happe et ai., 2001; Herbert, 2005). 

Precisely how these neurobiological abnormalities relate to the behavioral phenotype is 

currently under investigation. Taken together, these findings suggest that while 

abnormalities seen in the brains of autistic individuals represent an ongoing 

neuropathology that continues to change through adulthood, this process has a 

neurodevelopmental component that may be prenatal in origin. 

Concept of Inflammation 

The immune system serves as a sentinel against foreign invasion, injury, and 

aberrant cell growth, and propagates the appropriate response necessary to eliminate 
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foreign antigens, facilitate tissue repair, and maintain homeostasis. The immune response 

can be divided into two basic components: innate immunity and adaptive immunity. 

Innate immunity is often referred to as the first line of defense in the host immune system 

because it is stimulated by common structures shared by groups of microbes. Once 

microbial presence is recognized, a programmed immunological response is initiated. In 

the case of a pathogen invasion, for example, innate immune cells recognize pathogen­

derived molecular patterns (PAMPS) and molecular patterns from injured tissue via the 

pattern recognition receptors (PRRs) in their cell membranes. Toll-like receptors (TLRs) 

are a class of PRRs that are well defined and one of the most conserved components of 

the innate immune system. The principal components of the innate immune system 

include physical and chemical barriers, phagocytic cells, natural killer (NK) cells, blood 

proteins, and cytokines (Abbas et aI., 2007). The adaptive immune system is sometimes 

referred to as the acquired or specific immune system, due to its ability to distinguish 

between closely related antigens, and the fact that its protective responses are acquired 

with experience. The main components of the adaptive immune system include 

lymphocytes and their secreted products, including antibodies. There are two types of 

adaptive immune responses: humoral and cell-mediated. Humoral immunity is mediated 

by antibodies, which are produced by B lymphocytes. These antibodies recognize and 

target extracellular microbes for elimination by effector cells and molecules (e.g., the 

complement system). Cell-mediated immunity is mediated by T lymphocytes and their 

products, which include cytokines. These cells recognize and target infected host cells for 

elimination, thus protecting the host from intracellular microbial infection. 

Phylogenetic ally, the innate immune system is older than the adaptive immune system, 
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which has become increasingly more specialized in more highly evolved species. Both 

innate and adaptive immune systems function cooperatively in order to maintain an 

integrated system of host defense. 

Inflammation is a cellular reaction of immunity, triggered by injury or infection, 

which is characterized by vasodilation along with the concurrent recruitment of local 

immune and chemical mediators acting in concert to eliminate infectious agents and 

restore homeostasis. Inflammation can result from either innate or adaptive immune 

system responses. Although it is commonly considered a protective mechanism used to 

control injury or infection and promote tissue repair, inflammation can also cause tissue 

damage and disease. In the classical pathogen-initiated inflammatory response, tissue­

resident macrophages and mast cells recognize signs of infection and produce a variety of 

inflammatory mediators; including cytokines and chemokines. Cytokines are a group of 

regulatory proteins that play vital roles in cellular communication during both the innate 

and adaptive immune responses. Chemokines are a family of structurally homologous 

small cytokines that stimulate leukocyte movement and regulate their migration from 

blood into tissue. Both cytokines and chemokines serve as mediators of inflammation, 

immunity, and hemopoiesis. When resident immune cells encounter pathogens in the 

local area, they release cytokines that activate and recruit circulating leukocytes to the 

site of infection. Recruitment, and thereby the acute-phase immune response, is possible 

due to the fact that cytokines cause the postcapillary venules in the activated endothelium 

of local blood vessels to become selectively permeable to leukocyte (mostly neutrophil) 

extravasation (Medzhitov, 2008). This selectivity is based on the distinct expression of a 

combination of adhesion molecules and chemokine receptors that exist on neutrophils 
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and monocytes. In this way, systemic immune cells are allowed access to the infected 

area so that they can recognize and ingest bound microbes by the process of 

phagocytosis. Once ingested, the phagosome fuses with lysosomes, creating the 

phagolysosome. It is within the phagolysosome that microbicidal mechanisms occur. 

Activated neutrophils or macrophages ultimately destroy microbes with the proteolytic 

enzymes, reactive nitrogen intermediates, or highly reactive oxidizing agents that are 

contained in their phagolysosomes. 

In an acute inflammatory response, once neutrophils reach the site of injury or 

infection, they kill any pathogen or antigen-presenting cell (APC) with which they come 

into contact by releasing the toxic contents of their granules (Nathan, 2002, 2006). If the 

acute response is successful, the pathogen is destroyed and a tissue repair phase is 

initiated by anti-inflammatory lipoxins, which recruit monocytes to the area that produce 

another cytokine: transforming growth factor-~ (TGF-~). Together they serve to remove 

dead cells and begin the tissue remodeling process (Serhan & Savill, 2005). If neutrophils 

are unable to destroy the pathogen, they are replaced with macrophages and T cells, and 

chronic inflammation may occur in which granulomas are produced from layers of 

macrophages and T lymphocytes that cluster together and form walls in order to contain 

infection and protect the host (Abbas et aI., 2007). The mechanisms of infection-based 

inflammation are well defined compared to inflammation caused by other conditions, 

particularly chronic inflammatory states. Systemic chronic inflammation seems to be 

caused by different instigators and characterized by different physiologic mechanisms 

that are not related to those seen in the acute inflammatory response. For this reason, it 

has been proposed that the standard view of inflammation as a reaction to infection or 
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injury should be expanded to account for such inflammatory processes (Medzhitov, 

2008). 

Resident CNS Immune Cells and Their Role in Neuroinflammation 

Neuroinflammation is characterized by the activation of resident immune CNS 

cells, the expression of proinflammatory mediators, and the infiltration of various cellular 

components from the peripheral immune system. Although it was once considered an 

immune-privileged site because of the existence of the blood brain barrier (BBB), 

accumulating evidence shows that the CNS is capable of immune and inflammatory 

responses reminiscent of those seen systemically (Rivest, 2009). While pathogen-specific 

immune responses are limited because the lymphatic system does not extend into the 

brain, rapid responses to immune challenge occur nonetheless. In response to injury, 

infection, or tissue dysfunction, the CNS is capable of mounting an appropriate response 

involving either the innate or adaptive immune elements discussed previously. In addition 

to recruiting cells from the peripheral immune system, the CNS has its own resident 

immunological cells and immune signaling pathways. In fact, the human nervous system 

has a greater range of distinct cell types than any other organ system ih the body. 

Although cell types are different in the CNS, they perform similar functions. Review of 

the major glial cell types and their immunological roles provides a basis of comparison 

between inflammation exhibited systemically versus that seen in the CNS. 

The term glia originates from the Greek word meaning "glue," as nineteenth 

century scientists assumed that these cells held the nervous system together. While there 

is no evidence to support that glial cells bind neurons, they do serve several significant 
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functions in the developing and adult eNS. They support neurons, provide the brain with 

structure, produce myelin to insulate nerve cell axons, scavenge for debris following 

neuronal injury or infection, guide neuronal migration and direct process outgrowth, 

regulate the properties of the pre-synaptic terminal, and control neuronal metabolism by 

regulating the substances that reach neurons and supplying the necessary metabolites to 

axons. Glial cells can be divided into two major classes: microglia and macroglia. 

Microglia are physiologically and embryologically unrelated to other eNS cell types. 

Derived from mesencyme, they invade the brain in perinatal stages of development or 

following brain injury in adulthood. Thus it is not surprising that microglia function as 

phagocytes that respond to injury, infection and disease in the eNS. There are two types 

of macroglial cells in the eNS: oligodendrocytes and astrocytes. These cells arise from 

ectoderm during embryologic development. In white matter, oligodendrocytes envelop 

several axonal internodes simultaneously, thus insulating these neuronal processes and 

modulating the rate of nerve signal propagation. In gray matter, oligodendrocytes 

surround and support neuronal cell bodies. Astrocytes are the most numerous of the glial 

cells, named for their star-shaped morphology. Although they have several 

immunological functions, astrocytes are best known for their constitutive role as an 

element of the BBB. Recent research regarding glial cell dysfunction reveals a common 

mechanism implicated in the etiology of neurodegenerative and neurodevelopmental 

disease. 

Microglial cells are considered the resident macrophages of the eNS, as they are 

the primary effector cells that respond to changes in the microenvironment and the 

principle mediators of inflammation. As the first line of defense against neural infection, 
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microglial cells are responsible for the innate immune response in the brain. Because of 

their function in general maintenance, phagocytosis of cellular debris, and expression of 

toll-like receptors (TLRs), which are types of PRRs that recognize the presence of 

pathogens in their local environment, microglial cells are easily relatable to the 

macrophages and dendritic cells seen systemically (Beyer et aI., 2000). They differ, 

however, in that they have lower expression of various cell surface markers, which makes 

them less effective at recognizing antigens or executing phagocytosis (Davoust et aI., 

2008). In healthy brain tissue, microglia are considered to be in a resting state with a 

small cell soma and elaborate branching processes that extend and retract as they monitor 

an area approximately 30-50~m wide (Raivich, 2005). The motility of microglial 

processes is so highly specialized that it provides them with the remarkable ability to 

completely scan the neural parenchyma every few hours with little process overlap 

(Nimmerjahn et aI., 2005). These microglial processes are in direct contact with 

astrocytes, neurons, and blood vessels, providing the brain with a dynamic and efficient 

immune surveillance system whose components are able to interact with each other. 

Microglia become activated in response to brain injury or various immunological 

stimulants, which induces a significant morphological change from a ramified to an 

amoeboid cellular shape (Frank-Cannon et aI., 2009; Kreuzberg, 1996). This amoeboid 

shape allows microglia to perform the same functions as macrophages, namely the ability 

to phagocytose foreign matter, serve as APCs, produce inflammatory mediators in the 

form of cytokines and chemokines, and recruit T cells to the site of injury. Damaged 

tissue, infectious agents, and P AMPs are recognized by microglial PRRs, which trigger 

the rapid cellular activation and release of several soluble factors that can be pro- or anti-
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inflammatory in nature and may also be cytotoxic (Liao et aI., 2004; Liu et aI., 2002; S. 

C. Morgan et aI., 2004; Moss & Bates, 2001). Microglia are capable of proliferation 

(microgliosis) upon activation, a condition associated with several pathological 

conditions (Streit et aI., 1999). Meningeal inflammation evidenced by diffuse microglial 

activation can be particularly detrimental to brain tissue, and is associated with 

demyelination, substantial neuron, astrocyte and oligodendrocyte loss, and pronounced 

cortical thinning (Magliozzi et aI., 2010). Conversely, research indicates that the 

proinflammatory response is essential in the promotion of brain and spinal cord tissue 

repair following injury, specifically in remyelination, axonal regeneration, and locomotor 

recovery (Arnett et aI., 2001; Boivin et aI., 2007; Kigerl et aI., 2007). Thus it seems that 

microglia can have either neurotoxic and neuroprotective roles in the inflammatory 

process, depending on the type of stimulus introduced or the stage of disease progression. 

If microglial activation persists, the permeability of the BBB may become compromised, 

allowing increased infiltration of peripheral macrophages, which propagate the 

neuroinflammatory scenario (Schmid et aI., 2009). 

As the most abundant glial cell population in the CNS, astrocytes outnumber 

neurons ten-fold, and they play a pivotal role in maintaining CNS homeostasis and 

neuronal function (Dong & Benveniste, 2001; Pekney & Nilsson, 2005). Astrocytes 

contact CNS-resident immune cells and blood vessels through their long processes, which 

terminate in end-feet. They maintain an extensive network of finely branched processes 

that, like microglia, occupy contiguous non-overlapping domains (Bushon et aI., 2002). 

Astrocytes interact extensively with microglia, and can exert both pro- and anti­

inflammatory effects on them (Farina et aI., 2007; Min et aI., 2006). While some 
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important functional components of their end-feet include bringing nutrients to neuronal 

cells, participating in synaptic function and plasticity, and maintaining an appropriate 

chemical environment for neuronal signaling, astrocytes are better known for the 

influence of their perivascular end-feet. When their end-feet contact microvessels within 

the eNS, astrocytes cause vessel endothelial cells to form tight junctions, which restrict 

systemic access to the eNS by forming a glia limitans between brain parenchyma and the 

vascular system: the BBB (Bechmann et aI., 2007). Astrocytes are also highly permeable 

to potassium and maintain the extracellular potassium ion concentration between 

neurons. These functions protect neurons from excess firing that could interfere with cell 

signaling. In addition to maintaining the integrity of the BBB and protecting neurons 

from surfeit potassium influx, astrocytes detoxify excess excitatory amino acids, 

metabolize neurotrophic factors, and secrete proinflammatory cytokines and chemokines 

(Bauer et aI., 2001; Nedergaard et aI., 2002; Prat et aI., 2001). Like microglial cells, 

astrocytes express basal levels of TLRs, where TLR3 is most predominantly expressed 

(Bsibsi et aI., 2006; Farina et aI., 2005). Importantly, astrocytes interact with and 

modulate the actions of other cell types such as microglia and monocytes, and even 

down-regulate their activation (Andjelkovic et aI., 2000; Kostianovsky et aI., 2008). 

Like microglia, astrocytes are also responsible for propagating the 

neuroinflammatory scenerio. There is evidence that in addition to forming the BBB, 

astrocytes up-regUlate many BBB features in response to particular exposures within their 

microenvironment (Haseloff et aI., 2005; Hayashi et aI., 1997; Sobue et aI., 1999). This 

process can have detrimental ramifications. Several eNS pathologies involve 

disturbances of BBB function and astrocyte-endothelial cooperation including stroke, 
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bacterial infection, multiple sclerosis, HIV, Alzheimer's disease, Parkinson's disease, 

epilepsy, and brain tumors (Abbott et aI., 2006). Reactive astrogliosis occurs in response 

to infection, trauma, ischemia, and neurodegenerative disease, which causes molecular 

and morphologic changes in astrocytes, and may also cause scar formation (Eddleston & 

Mucke, 1993; Maragakis & Rothstein, 2006; Pekney & Nilsson, 2005). Glial scar 

formation occurs in response to extreme tissue damage and inflammation when astrocyte 

proliferation and processes overlap to form barriers that prevent axon regeneration and 

inflammatory cell infiltration in an effort to protect healthy tissue (Bush et aI., 1999; 

Herrmann et aI., 2008). In this way, glial scars can be neuroprotective by forming potent 

cell migration barriers that separate areas of intense inflammation from healthy tissue, 

and prevent the infiltration of inflammatory cells or infectious agents (Sofroniew, 2005). 

Recent research indicates that astrocytes enhance neutrophil survival and regulate 

neutrophil function, a process that may be considered neuroprotective since necrotic 

neutrophils are neurotoxic and enhancing their phagocytotic abilities is protective against 

microbial infection (Xie et aI., 2010). It is becoming increasingly clear that different 

specific signaling mechanisms trigger different functional changes in reactive astrocytes 

in a context-dependent manner, which can impact neural function, regulation of blood 

flow, synaptic function and plasticity (Sofroniew, 2009). 

Resident oligodendrocytes and neuronal cells are also capable of participating in 

the innate immune response of the CNS. Cellular apoptosis, necrosis, and inflammation 

are associated with white-matter damage in response to CNS injury (Raghupathi, 2004). 

Pericytes, perivascular macrophages and neurons have been shown to contribute to BBB 

induction (Ramsauer et aI., 2002; Schiera et aI., 2003; Zenker et aI., 2003). In addition to 
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microglial cells, other types of CNS macrophages exist of mesodermal origin, including 

perivascular, meningeal, and chroid plexus macrophages. Recent studies have found that, 

like astrocytes and microglial cells, perivascular and chroid plexus macrophages also 

express TLRs (Crack & Bray, 2007; Laflamme & Rivest, 2001). There is ample evidence 

to suggest that almost all CNS cell types participate in the pathophysiology of CNS 

trauma and immune activation as a byproduct of being a component in a complex neural 

network that can have both beneficial and detrimental effects depending on 

environmental context. No doubt the discovery of new neuroimmunomodulatory 

mechanisms will continue to evolve the neuroinflammatory paradigm. 

Resident CNS immune cells share many similarities with systemic immune cells, 

in that they express various PRRs, communicate using the same chemical mediators such 

as cytokines, and modulate inflammatory behavior through a complex cellular network. 

Embryologically, most neuroimmune cells are derived from different tissue than systemic 

immune cells, with the exception of microglia. Although these cells are physiologically 

different, they perform similar functions as their systemic counterparts. Acute 

neuroinflammatory responses, like systemic ones, are usually short-lived and considered 

beneficial to the CNS because they repair damaged tissue and prevent further injury. 

Chronic neuroinflammation, however, is detrimental and damaging to the nervous 

system. It is characterized by long term activation of microglial cells, increased 

expreSSIOn of inflammatory mediators, and increased oxidative and nitrosative stress 

(Tansey et aI., 2007). Chronic neuroinflammation has been implicated in the etiology of 

various neurodegenerative disorders, including multiple sclerosis, Alzheimer's disease, 

Parkinson's disease, and Huntington's disease (Block & Hong, 2005; E. G. McGeer & 
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McGeer, 2007). Here, it is proposed that neuroinflammatory processes playa role in the 

etiology and pathophysiology of ASD. 

Cytokine Polymorphisms: Implications in CNS Disease 

Cytokines are a diverse group of soluble regulatory proteins that function as 

mediators in many physiological processes, including inflammation, immunity and 

hemopoiesis. As mediators, cytokines regulate the migration, activation, proliferation, 

differentiation, and function of the many types of cells involved in inflammatory and 

immune responses. While they are essential to maintaining protective immunity, 

cytokines have been implicated in autoimmune diseases and diseases with a chronic 

inflammatory component (Borish & Steinke, 2003). 

Cytokines are usually very complex in their activities. Most cytokines are highly 

pleiotropic and act on many different cell types exerting different effects. Different 

cytokines can have redundant effects, or their activities can be either synergistic or 

antagonistic depending on the target cells. Normally, cytokines do not act alone, but are 

produced in a cascade fashion, and it is their combined effect that determines the type of 

response. The responsiveness of a cell to a particular cytokine is determined by the 

expression of specific receptors for that cytokine. The binding of the cytokine to its 

receptor then triggers the activation of a variety of signaling mechanisms that lead to 

changes in at the level of gene expression, resulting in transient-or chronic-altered 

cellular proliferation, differentiation, and/or function. 

Cytokines play an essential role in the regulation of inflammatory responses and 

are involved in the regulation of both innate and acquired immunities. The cytokines that 
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function in innate immunity and inflammation are normally produced by cells of the 

monocitic and myeloid lineages and several other types of cells in response to microbial, 

chemical, physical, and other types of inflammatory stimuli. The main goal of cytokines 

in these responses is the localization and elimination of the instigating insult, 

orchestrating the recruitment of both cells and molecules (accomplished through 

increased vascular permeability and leukocyte infiltration) at the local site and a variety 

of systemic responses that include fever, acute-phase protein synthesis and the 

mobilization of leukocytes from the bone marrow. Among the main cytokines involved in 

these responses are tumor necrosis factor a (TNFa), interleukin (IL)-l, IL-6, IL-12, type 

I interferons (IFN; IFNa and IFN~), and chemokines, a family of cytokines that function 

to mobilize and attract different types of leukocytes to sites of inflammation. These 

cytokines are said to have pro inflammatory activity. If cytokines are secreted in excess as 

a result of an overwhelming infection, or in cases where the insult cannot be easily 

eliminated or the stimulus for cytokine secretion persists, leading to chronic 

inflammation, these same cytokines can have pathologic effects leading to the damage of 

healthy cells and tissues. Because of its potentially serious consequences, the immune 

system has mechanisms to prevent excessive inflammation, including cytokines with 

anti-inflammatory activity. These cytokines include transforming growth factor ~ (TGF~) 

and IL-lO, which antagonize many of the effects of the proinflammatory cytokines 

mentioned above. It should be kept in mind, however, that certain cytokines can have 

both pro- and anti-inflammatory effects depending on different factors such as the cell 

and tissue type and the kinetics of release. 
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In acquired immunity, cytokines play an equally important role. In general, the 

type of cytokines produced during an immune response determines the effector 

mechanisms that predominate and major expression patterns have been characterized 

(Mosmann & Coffman, 1989). For example, different subsets of helper (CD4+) T cells 

that differ in both their cytokine secretion patterns and the effector mechanisms that they 

induce have been identified. Cells belonging to the Thl subset secrete IFNy, IL-2 and 

TNF aJ~ and are primarily involved in cellular immunity mechanisms and delayed-type 

hypersensitivity reactions; cells of the Th2 subset secrete IL-4, IL-5, IL-I0 and IL-13 and 

are primarily involved in humoral mechanisms and allergic-type reactions; and cells of 

the newly described Th17 subset secrete IL-17, IL-22 and a variety of other 

proinflammatory cytokines (Harrington et a!., 2006). Th17 cells are thought to be 

involved not only in immune responses to extracellular bacteria but also in autoimmune 

diseases. Thl and Th2 cells affect one another: Thl cells trigger macrophage activation 

using IFNy, which inhibits the proliferation of Th2 cells, and Th2 cells secrete IL-IO, 

which inhibits the secretion of IFNy by Th 1 cells. In keeping with the need for balance in 

the immune system, a different subset of T cells exists, namely T -regulatory cells, which 

act as negative regulators of the activities of other subsets. These cells act, in part, 

through the secretion of the anti-inflammatory cytokines TGF~ and IL-IO (Bettelli et a!., 

2006). 

Both in innate and acquired immunity, the maintenance of a balance between pro­

and anti-inflammatory cytokines or among the different CD4 + T-cell subsets and their 

cytokines is essential for homeostasis and the proper function of the immune system. 

Disruptions in the balance can have pathologic implications resulting in excessive 
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inflammation and tissue damage, increased susceptibility to infectious agents, and/or the 

emergence of autoimmune conditions (Ollier, 2004). Abnormal levels of various 

cytokines have been described in many diseases, such as autoimmune hepatitis, 

rheumatoid arthritis, asthma, systemic lupus erythematosus, inflammatory bowel disease, 

and some brain disorders like schizophrenia and Alzheimer's disease (Kronfol & Remick, 

2000; Theoharides et aI., 2004; Vitkovic et aI., 2000). Given that cytokines are key 

components in the homeostatic mechanisms regulating the immune system, it is not 

surprising that variations III their structure at the genetic or protein level or their 

production level have been associated with disease processes and the susceptibility to 

infections. 

Cytokines and their receptors are encoded by highly polymorphic genes. These 

polymorphisms are responsible for the observed inter-individual differences in cytokine 

production and they likely impact the immune response (Hollegaard & Bidwell, 2006; 

Keen, 2002b; Wade et aI., 2003). Cytokine genes and their receptor genes are highly 

conserved in their exon sequences, while the majority of polymorphisms occur in the 

non-translated regions of the gene, located within the promoter, the introns, or the 

untranslated-3' regions (Keen, 2002a). Cytokine polymorphisms continue to be 

discovered as mutation detection techniques improve to map the extent of cytokine 

polymorphisms. Cytokines that were once thought to be non-polymorphic, such as IL-2, 

IL-8, and IL-12 are now being shown to have single nucleotide pol ymorphisms (SNPs), 

often within the 5' promoter regions (Keen, 2002b). Polymorphisms that occur in 

promoter regions impact the levels of protein expression in several ways. Polymorphisms 

within the 3' and 5' regulatory sequences can affect transcription factors. Intronic 
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polymorphisms can affect mRNA splicing or the binding of enhancers and silencers 

(Keen, 2002b). As the amount of data on cytokine polymorphisms increases and 

becomes available, there are a growing number of studies that show an effect of cytokine 

gene polymorphism on immune disease susceptibility, severity, and outcome (Keen, 

2002a). 

Most cytokines can be synthesized and released within the central nervous 

system and while they are mainly produced by microglia and astroglia, neurons also 

produce cytokines under certain conditions. Although cytokines are usually secreted in 

response to specific stimuli, the low-level expression of specific cytokines appears to be 

maintained in blood vessels within the brain (Licinio et aI., 1998; Vitkovic et aI., 2000). 

Within the eNS, just as within the systemic immune system, cytokines are regulated in 

cascades through feedback loops, and cytokine receptors have been detected in the brain 

(Kronfol & Remick, 2000). Besides providing communication between neural cells, 

specific cytokines have a significant role in signaling the brain to produce neurochemical, 

neuroendocrine, neuroimmune, and behavioral changes (Maes et aI., 1995). There is 

suggestive evidence that this signaling is part of the comprehensive mechanism to 

mobilize resources to combat physical and physiological stress in an attempt to maintain 

relative homeostasis. Because cytokines are associated with central neurotransmitters and 

cytokine regulation is affected by stress, many studies have investigated the possible role 

of cytokines in psychiatric disorders. These studies have demonstrated the role of 

abnormal levels of cytokines in major depression, Alzheimer's disease and schizophrenia 

(Hanson & Gottesman, 2005; Hopkins, 2007; Maes et aI., 1995; P. McGeer & McGeer, 

2001a, 2001b). Analysis of cytokine genetics in autism, however, is yet uninvestigated. 
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Evidence for Systemic Immune Dysfunction in ASD 

In addition to behavioral and neurological impairments, increasing evidence 

substantiates that immune abnormalities are also prevalent in patients diagnosed with 

ASD. Epidemiological studies demonstrate that ASD is strongly associated with various 

familial autoimmune diseases. Mothers and relatives of autistic patients are significantly 

more likely to have autoimmune diseases such as multiple sclerosis, rheumatoid arthritis, 

and type 2 diabetes, than are family members of healthy controls (Comi et aI., 1999). 

Interestingly, it has also been shown that the frequency of autoimmune diseases including 

hypothyroidism and rheumatic fever is significantly increased in families that have a 

child diagnosed with ASD in comparison with families that have a child with an 

autoimmune disorder (Sweeten et aI., 2003a). A medical record study found that mothers 

who suffer from asthma or allergies during their second trimester are at the highest risk of 

having a child with ASD (Croen et aI., 2005). A recent Danish study indicated that 

parental autoimmune conditions, specifically maternal ulcerative colitis and paternal type 

1 diabetes, are significantly associated with the incidence of infantile autism (Mouridsen 

et aI., 2007). While there is no definitive autoantibody pattern in ASD, enhanced 

autoimmunity has been reported in several cases, leading some investigators to speculate 

whether autism should be considered an autoimmune disease (Ashwood & Van de Water, 

2004). 

Several systemic immune aberrations have been demonstrated in patients with 

ASD, lending further support to the hypothesis that immune factors play a role in its 

pathogenesis. Changes in the numbers and activities of various immune cells indicate that 

both cell-mediated and humoral immunity are impaired in ASD. Autistic children 
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demonstrate significantly higher monocyte counts in blood plasma when compared to 

healthy controls, suggesting that their immune system is activated (Sweeten et aI., 

2003b). It has been reported that 45% of children with autism have significantly 

decreased NK cell activity compared to controls, indicating that the innate immune 

system's ability to kill virus-infected or damaged cells is diminished (Vojdani et aI., 

2008). Significantly increased serum concentrations of albumin, gamma globulin, and 

immunoglobulins of the IgG subclass have been reported in children with autism, 

suggesting an enhanced susceptibility to viral infection (Croonenberghs et aI., 2002b). 

Upon stimulation with various agents, peripheral blood mononuclear cells (PBMC) of 

ASD patients produce significantly higher amounts of proinflammatory cytokines than 

controls, yet another demonstration of aberrant innate immune responses associated with 

the disorder (Jyonouchi et aI., 2001). Plasma levels of active TGF-~1 are significantly 

lower in ASD children when compared to both typically developing children and children 

with developmental disabilities, suggesting that immune responses in autism may, in part, 

be regulated by this cytokine (Ashwood et aI., 2008). 

Anomalous T cell function and numbers have been reported in autism, but 

specific findings have not been reproducible. Adaptive immune responses stimulated by 

exposure to specific antigens are often driven by T helper (Th) cells, which are classified 

into two or more distinct functional types based on the cytokines that they produce and 

which ultimately determine their effector functions (Abbas et aI., 1996). Among these, 

Th1 cells are stimulated mainly by intracellular pathogens and promote the activation and 

microbicidal activities of phagocytes by producing cytokines such as IFN-y. Th2 cells are 

stimulated by chronic parasitic infections or allergens, and promote the production of IgE 
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antibodies by B cells and the activation of eosinophils by producing cytokines such as IL-

4 and IL-S. Elevated levels of both Thl and Th2 cytokines have been reported in children 

with ASD, which suggest that an imbalance of Thl or Th2 cytokines may playa role in 

its pathogenesis. Evidence of Th system shifts from Thl to increased Th2 activity is 

supported by decreases in intracellular IL-2 and IFN-y production and increases in IL-4 

production (Gupta et aI., 1998). A study of PBMC in children with ASD found that they 

produced significantly higher levels of the Th2 cytokines IL-4, IL-S and IL-13 than 

controls at baseline, suggesting that the immune response appears to be predominantly 

Th2 in origin (Molloy et aI., 2006). However, other investigators have found significantly 

elevated plasma production of IL,-2, IL-12 and IFN-y, suggesting that autism involves 

activation of the Thl type of immune response (Singh, 1996). Studies of whole blood 

cultures from children with ASD have also shown increased levels of IFN-y production, 

supporting a Thl response (Croonenberghs et aI., 2002a). These preliminary findings 

have not been replicated in subsequent studies perhaps due to differences in 

methodology, ASD classification criteria, co-morbidity presence, case-control matching 

criteria, immunization status, or co-administration of psychotropic medications. 

Although the evidence is controversial, gastrointestinal symptoms and an 

inflammatory mucosal pathology have been demonstrated in a subset of children with 

ASD as well (Horvath et aI., 1999; Wakefield et aI., 2000). While prevalence estimates 

from population-based studies are lacking, epidemiological studies report that 

approximately 20% of ASD children have GI symptoms (Fombonne et aI., 2001; Taylor 

et aI., 2002). Intestinal pathologies include ileo-colic lymphoid nodular hyperplasia, 

enterocolitis, gastritis and esophagitis (Furlano et aI., 2001; Torrente et aI., 2002; 
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Wakefield et aI., 2000l Gluten and casein-free diets have proven to improve behavior in 

ASD children (Knivesberg et aI., 2002). There is evidence that a dysregulated 

proinflammatory cytokine profile and reduced level of regulatory cytokines is present in 

the peripheral blood and intestinal mucosa of children with ASD who have 

gastrointestinal symptoms (Ashwood & Wakefield, 2006). This data suggests that ASD 

pathogenesis may result from a primary mucosal immunopathology during development 

that leads to the secondary systemic and eNS immunopathologies seen in these patients. 

How the immune dysfunctions seen in ASD are related to the neuropathies that 

typify this disorder is not yet understood, but it may have significant implications 

regarding disease pathogenesis and treatment. The apparent association between ASD 

diagnosis and familial autoimmune disease prevalence suggests that common genes 

and/or environmental factors may contribute to both immune dysfunction and 

developmental brain pathologies. Immune responses measured in children with ASD 

have yielded contradictory results, and these studies suffer from inherent limitations. An 

estimated 46% of children with ASD are treated with psychotropic medications that are 

known to increase cytokine levels, which could serve as a significant confounding factor 

in the baseline measurements of these immune mediators (Aman et aI., 2003; Haack et 

aI., 1999; Pollmacher et aI., 2000). Additionally, the developmental progression with 

regards to the immune system is unclear since no longitudinal studies have been 

performed, thus it is not known how the cytokine responses of ASD children change over 

time compared to neurotypical children. Further investigations into the immune 

2 Due to issues pertaining to patient collection bias and possible conflicts of interest 
regarding data interpretation, the majority of the authors on the Wakefield et al., 2000 
paper retracted this article from public record in January 2010. 
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regulatory mechanisms in ASD are clearly warranted, and will likely yield therapeutic 

applications. 

Evidence for CNS Immune Dysfunction in ASD 

Increasing evidence indicates that in addition to systemic immune abnormalities, 

an atypical CNS immune profile is also present in ASD patients. Autistic patients have 

significantly higher levels of circulating anti-brain autoantibodies when compared to 

controls; including antibodies to myelin basic protein, cerebellar neurofillaments, neuron­

axon filament proteins, caudate nucleus, serotonin receptor, and brain endothelial cells 

(Connolloy et aI., 1999; Plioplys et aI., 1989; Singh & Rivas, 2004; Singh et aI., 1997a; 

Singh et aI., 1997b; Singh et aI., 1993). It has also been shown that glial fibrillary acidic 

protein is significantly elevated in the CSF of children with ASD, which indicates an 

ongoing process of reactive astrogliosis (Rosengren et aI., 1992). Whether or not the 

presence of anti-brain antibodies and reactive astrogliosis are primary or secondary 

factors in the pathophysiology of ASD is yet to be determined, but these studies suggest 

that localized inflammation of the central nervous system may be a contributing factor. 

While only a few studies have been performed regarding neuroinflammation in 

ASD, they demonstrate an active and ongoing neuroinflammatory process in the cerebral 

cortex, white matter, and cerebellum. Immunohistochemical studies of brain tissue from 

ASD patients reveal marked microglial and astroglial activation in the anterior cingulate 

gyrus and midfrontal gyrus, with the most prominent activation in the granular cell layer 

and white matter of the cerebellum (Vargas et aI., 2005). The dorsolateral prefrontal 

cortex of autistic individuals demonstrates significant increases in white matter microglial 
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somal volume and gray matter microglial density that does not correlate with age and 

appears to be heterogeneous (J. T. Morgan et al., 2010). The anti-inflammatory cytokine 

TGF-p 1 is significantly increased in cortical and cerebellar regions, and the largest 

spectrum of increases in pro-inflammatory cytokines is present in the anterior cingulate 

gyrus of autistic individuals (Vargas et al., 2005). Of particular interest from this study 

are one chemokine, macrophage chemoattractant protein-l (MCP-l), and one cytokine, 

TGF-p 1. MCP-l is produced by activated astrocytes, mediates the infiltration of 

monocytes and macrophages to areas of injury, and its elevation in brain tissue is 

associated with various diseases characterized by neuroinflammation (Henkel et al., 

2004; Kelder et al., 1998; Mahad & Ransohoff, 2003). TGF-pl is an anti-inflammatory 

cytokine, with key roles in tissue remodeling and repair following injury, that suppresses 

the immune response by inhibiting T-cell proliferation and maturation and down­

regulating the expression of MHC II receptors (Letterio & Roberts, 1998). Reactive 

astrocytes were found to be the main source of cytokines in the brains of autistic subjects 

(Vargas et al., 2005). Significant increases in several proinflammatory cytokines (TNF-a, 

IL-6, GM-CSF, IFN-y, and IL-8) have been demonstrated in the frontal cortex of patients 

with ASD when compared to controls, with no concomitant increase in the Th2 cytokines 

(IL-4, IL-5 and IL-lO) analyzed (Li et al., 2009). It has been proposed that the presence 

of activated neuroglia and proinflammatory cytokines in the CNS of autistic subjects may 

reflect an abnormal persistence of fetal patterns of development in response to genetic 

and/or environmental factors that disturb neurodevelopment and produce the 
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neurocytoarchitectural changes and CNS dysfunction that typifies ASD3 (Pardo & 

Eberhart, 2007). 

Consistent and significantly higher levels of activated immune markers have also 

been measured in the CSF of ASD subjects, indicating an overall pro-inflammatory 

profile. CSF from autistic patients shows a significant increase in MCP-l, IL-6, IFNyand 

IL-8 when compared to controls (Vargas et aI., 2005). In a pilot study of autistic children 

with developmental regression, comparative analysis of CSF to concurrent cytokine 

serum levels in autistic patients demonstrates a significant elevation of TNF-a expression 

in CSF, with an averaged ratio of 53: 1 compared to a 1: 1 ratio for control subjects (Chez 

et aI., 2007). These results suggest that TNF-a in CSF may serve as a potential marker 

for the pathological process involved in autistic regression. Evidence indicates that levels 

of soluble tumor necrosis factor receptor II are significantly elevated in the CSF of 

children with autism, which do not reflect serum expression levels in the same 

individuals either (Zimmerman et aI., 2005). While CSF studies of immune mediators in 

autism are still in their infancy, these findings can be interpreted as indicators of chronic 

neuroinflammation. 

In order to better understand the molecular changes associated with ASD 

neuropathology, investigators have assessed the immune transcriptome in the cerebral 

3 A cautionary note in reference to immunocytochemical studies of postmortem brain 
tissue from autistic subjects: a majority of the patients studied in the Vargas et aI., 2005, 
Li et aI., 2009, and Morgan et aI., 2010 died of hypoxic lesions that were ischemic in 
origin including near death experiences associated with drowning. Ischemic reperfusion 
injuries of this kind result in inflammation and oxidative damage primarily targeting 
white matter, and are defined neuropathologic ally by astrogliosis and micro gliosis. 
Therefore, it cannot be determined whether the neuroinflammation present in these 
tissues represents a core pathology associated with ASD or are secondary reactions of 
this tissue associated with the cause of death. 
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cortex of postmortem brain specimens. Expression profiling of the superior temporal 

gyrus reveals that transcriptome variability is generally increased in autistic subjects, 

indicating that the disorder is heterogeneous even at the molecular level (Garbett et aI., 

2008). Cytokine and chemokine transcriptional analysis in various cortical regions 

reveals a heterogeneous regulation of expression of these proteins when compared to 

controls (Mott et aI., unpublished data). Given that cytokines mediate inflammatory 

responses in the CNS and that their heterogeneous expression in cortical tissue is 

associated with ASD pathology, comparative analysis of polymorphic sites in cytokine 

genes may produce significant results and implicate them in the pathogenesis of this 

neurodevelopmental disorder. 

Given the abovementioned neurOlmmune evidence and the neuropathological 

features that typify this disorder, it has been proposed that a critical period of 

pathogenesis occurs during fetal brain development or in the first year of life which 

results in the ASD phenotype (Pardo, 2008; Pardo & Eberhart, 2007). The dominant 

features of ASD neuropathology include abnormalities in mini-columnar organization 

and subcortical white matter, disorganization of cortical neurons, and brain growth 

abnormalities (Bauman & Kemper, 2005; Casanova, 2007). The neurobiological and 

behavioral features that characterize ASD could be attributed to a pathogenic process that 

disturbs neurodevelopment during crucial periods pre- or perinatally. Recent studies 

show that maternal autoantibodies are present in the serum of mothers of patients with 

autism, indicating that maternal immunological factors may also play a role in the 

pathogenesis of ASD (Braunschweig et aI., 2007; Singer et aI., 2008; Zimmerman et aI., 

2007). Glial neuroimmune responses are associated with pathogenic mechanisms of 
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neurodegeneration in several neurological disorders, and appear to be involved in 

processes that lead to neuronal dysfunction. In the future, microglial activation, reactive 

astrogliosis and increased expression of specific cytokines in the CNS may provide early 

markers for ASD and allow clinical diagnosis within the first year of life, even before 

obvious clinical features manifest. In the meantime, immune studies in autism should 

focus on elucidating the underlying neuroimmunopathology responsible for the chronic 

neuroinflammation that seems to characterize at least a subset of subjects with ASD. 

Etiological Evidence in an Idiopathic Disorder 

Although there is no known cause of ASD, unequivocal evidence indicates that 

there is a strong genetic component. Several genetic disorders are consistently associated 

with autism, including Angelman syndrome, Rett's syndrome, tuberous sclerosis, fragile 

X syndrome, and Down syndrome (D. Cohen et aI., 2005; Harris et aI., 2008; Lowenthal 

et aI., 2007). Whether autism and these syndromes share underlying pathophysiological 

genetic networks has yet to be determined, but current research in this area is underway. 

Twin and family studies demonstrate that autism is one of the most highly heritable 

complex neuropsychiatric conditions. In the late 1960s it was noted that the recurrence 

rate of autism in a given family was 50-100 times greater than that expected by chance 

(Rutter, 1968). A more recent study estimated that parents of a child diagnosed with ASD 

are 25 times more likely to produce affected siblings compared to controls (L. B. Lord et 

aI., 1991). While it is difficult to interpret recurrence rates of autism due to the 

phenomenon of genetic 'stoppage' wherein families choose not to have more children 

once an ASD diagnosis is obtained, studies report significantly higher sibling recurrence 
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rates in ASD families compared to the general population (Rutter et aI., 1999; Slager et 

aI., 2001). Additionally, siblings and parents of ASD patients are more likely than 

controls to show cognitive and behavioral features reminiscent of those seen in the 

broader autism phenotype (Bishop et aI., 2004; Bolton et aI., 1994; Costantino et aI., 

2006). These findings indicate that ASD traits are not only genetically transmitted, but 

also highly heritable. 

A verage concordance rates of autism III monozygotic (MZ) twin pans are 

consistently and significantly higher than those found in dizygotic (DZ) twin pairs 

(Bailey et aI., 1995; S. Folstein & Rutter, 1977; Le Couteur et aI., 1996; Lichtenstein et 

aI., 2010; Ritvo et aI., 1985; Rosenberg et aI., 2009; Steffenburg et aI., 1989). Recent 

research estimates average concordance rates of autism in MZ twin pairs to be 70-80% 

while DZ twin pair rates are 0-10% (S. E. Folstein & Rosen-Sheidley, 2001). Even 

studies investigating concordance rates in more generalized ASDs report significantly 

higher MZ concordances compared to those for DZ twins (Lichtenstein et aI., 2010; 

Rosenberg et aI., 2009; Taniai et aI., 2008). While some investigators postulated that 

twining could be a risk factor in the development of ASD, subsequent studies do not 

support this hypothesis (Betancur et aI., 2002; Croen et aI., 2002; Hallmayer et aI., 2002). 

Multivariate twin studies suggest that the three core behavioral symptoms of the autism 

'triad' are fractionable and highly heritable individually, such that different autistic 

aspects of behavior may have distinct genetic origins (Happe & Ronald, 2008; Happe et 

aI., 2006; Ronald & Hoekstra, 2011). The question of whether genetic influences can be 

ascertained in a disorder defined by symptomatic heterogeneity is substantial, and 

represents a significant limitation in cross-study comparison. Future research will likely 
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reveal that different genetic causal pathways result In different ASD sUbtypes and 

symptoms. 

Little is known about the genes underlying autism susceptibility, and the majority 

of studies focus on linkage analysis and candidate gene identification. It has been 

estimated that genetic abnormalities account for up to 20% of ASDs, and include 

chromosomal abnormalities, copy number variations (CNVs), single-gene disorders, and 

rare point mutations (Abrahams & Geschwind, 2008; Marshall et aI., 2008). Examples of 

chromosomal abnormalities identified in ASD include autosomal aneuploidies, sex 

chromosome anomalies, deletions, duplications, translocations, inversions and marker 

chromosomes (c. Gillberg, 1998). One of the most common sites for chromosomal 

abnormalities in autism is located on chromosome 15q 11-13, where duplications of 

maternal origin are frequent (S. E. Folstein & Rosen-Sheidley, 2001). The most 

consistent evidence for linkage, however, occurs on chromosome 7q22-32, according to 

meta-analysis (Trikalinos et aI., 2006). Other studies also implicate autism loci on 

chromosome 7, as well as chromosomes 3, 4, and 11 (Schellenberg et aI., 2006). Despite 

the significantly different sex ratio present in autism, few studies suggest linkage on the 

X chromosome (Auranen et aI., 2002; Shao et aI., 2002). It has been proposed that 

linkage analyses have yielded inconsistent findings due to limitations inherent to this 

analytic approach in a complex genetic model where it is likely that multiple risk alleles 

confer susceptibility to the disorder (Losh et aI., 2008). 

Conversely, genome wide association scans (GWAS) and screening for CNVs 

provide a more powerful approach in comparing genetic risk factors between cases and 

controls in disorders of complex etiologic origin. This analytic approach is capable of 
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scanning thousands of samples and applies algorithms that compare the frequencies of 

single alleles or multimarker haplotypes between disease and control cohorts. Inherited 

CNV s have been found in 50% of ASD subjects, as compared to control estimates of 5-

10% (ltsara et aI., 2009; Zhao et aI., 2007). CNVs may include insertions, deletions, and 

duplications of DNA, as measured in oligonucleotides and single nucleotide 

polymorphisms (SNPs). While a unified genetic theory for ASD based on the observed 

high frequencies of CNVs fits the prevalence estimates previously discussed, it does not 

explain the sex-dependent penetrance in which males are four times more likely to be 

affected (W. T. Brown, 2010; Zhao et aI., 2007). GWAS have identified several genes 

and SNPs that are associated with autism disorder on chromosomes 2, 6, 7, 15, and 17; 

although subsequent studies have been unable to replicate many of these findings 

(Freitag, 2007). 

Discordant findings in GW AS are likely due to many the same confounding 

factors that make comparison between epidemiological studies in ASD difficult. Many of 

the original GW AS studies had small sample sizes and thus may not be considered 

reliable in detecting true autism loci. Additionally, false-positive signals are always a 

possibility even in studies with large sample sizes. Perhaps the largest contributing 

factors are disparities in diagnostic definition or pedigree ascertainment between studies. 

Even cohorts that use similar diagnostic criteria may have somewhat different 

characteristics. Examples include gender composition, language, developmental 

regression, IQ distribution, family size, and ethnic origins. Future GW AS studies of large 

sample size that follow rigorous diagnostic protocols and replicate distributions of cohort 
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characteristics will minimize heterogeneity and provide the most accurate linkage 

analysis. 

Like most neuropsychiatric disorders, ASD is a syndrome of complex genetic 

origin. The genetic traits that have been characterized do not exhibit classic Mendelian 

dominant or recessive modes of inheritance associated with a single gene locus. 

Likewise, the wide phenotypic variability found in ASD cannot be attributed to simple 

modes of inheritance. Contemporary etiologic theory proposes a genetic model in which 

multiple genes interact with one another to produce the autism phenotype. Thus, ASD 

may be considered a polygenetic disorder whereby several genes act synergistically. 

Early studies supported a multi-locus model of inheritance, where at least three epistatic 

(interacting) loci were predicted (Pickles et aI., 1995). More recent estimations based on 

GW AS predict as many as 10-20 different genes interact in ASD pathogenesis (Risch et 

aI., 1999; Spence, 2004). GWAS and cytogenetic analyses serve to narrow down genetic 

regions of interest, but they are not hypothesis-driven and do not account for clinical and 

empirical evidence, which is essential in elucidating candidate genes that may predispose 

individuals to disease. While it is apparent that genes strongly impact the likelihood of 

developing ASD, no definitive genetic pattern has been identified although a multitude of 

candidate genes have been implicated (Muhle et aI., 2004). Replications of these findings 

have been inconsistent, however, likely due to the heterogeneity of the ASD phenotypes 

in vestigated. 

Given the neuropathological features and immunological dysfunctions that are 

found in ASD subjects, genes that are known to affect neurodevelopment and immune 

function are prime candidates for analysis. Several studies have linked autism with 
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immune-based genes (Lee et aI., 2006; Torres et aI., 2006; Warren et aI., 1996; Warren et 

aI., 1992). One group found a genetic linkage with autism for a variant of the MET 

receptor tyrosine kinase, which is involved in both neurobehavioral and immune function 

(Campbell et aI., 2006). It is possible that the convergence of multiple combinations of 

genotypes may result in different ASD phenotypes, further complicating analytic 

interpretations. Thus, the phenotypic traits of chosen cohorts must be clearly and 

narrowly described when investigating candidate genes of interest. While the interaction 

of multiple genetic factors has become increasingly evident as a causative function in 

ASD pathogenesis, genetic influence cannot explain the increased prevalence indicated 

by epidemiological studies. 

Given that the autism heritability estimate is approximately 80% based on the 

abovementioned twin studies, environmental factors must represent another etiologic 

component in ASD pathogenesis. It has been proposed that MZ twin discordances can be 

attributed to epigenetic changes, somatic mutations or chorionic environmental influences 

(Bohm & Stewart, 2009; Bruder et aI., 2008; Cheung et al., 2008; Kaminsky et aI., 2009). 

Two of the most salient environmental factors associated with ASD are prenatal maternal 

exposures and postnatal birth complications. Perinatal obstetric complications represent a 

putative risk factor for the development of ASD (Kolevzon et aI., 2007; Ronald et aI., 

2010). Types of obstetric complications associated with autism include prematurity, low 

birth weight, respiratory distress syndrome, rhesus incompatibility, resuscitation, 

infection, anemia, and trauma (Bolton et aI., 1997). Maternal use of various agents, 

including thalidomide, valproic acid, misoprostol, and ethanol have been associated with 

ASD (Aronson et aI., 1997; Bandim et aI., 2003; Christianson et aI., 1994; Moore et al., 
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2000; Nanson, 1992; Stromland et aI., 1994; G. Williams et aI., 2001). Congenital 

conditions associated with autism include hypothyroidism, cytomegalovirus infection, 

and rubella infection (Chess, 1971; Rovet & Ehrlich, 2000; Stubbs et aI., 1984). Although 

the measles-mumps-rubella (MMR) vaccine received considerable attention in its relation 

to the development of ASD, subsequent studies refute any evidence to substantiate that 

MMR vaccination is a risk factor for ASD development (Dales et aI., 2001; Kaye et aI., 

2001; Madsen et aI., 2002; Taylor et aI., 1999). 

Intrauterine and perinatal exposure to infectious agents and immune factors have 

been implicated as primary mediators of CNS damage in several neuropsychiatric 

conditions including schizophrenia, bipolar disorder, cerebral palsy and autism (Miller et 

aI., 2005; Nelson et aI., 1998; Rodier & Hyman, 1998; Yolken & Torrey, 1995). It has 

been proposed that ASD pathogenesis may be attributed to environmental toxicity 

experienced during fetal development or early postnatal life (Deth & Muratore, 2010; 

Palmer et al., 2009; Windham et aI., 2006). Xenobiotic risk factors associated with autism 

include the heavy metals mercury, lead, and cadmium, as well as arsenic, maternal 

smoking, alcohol, cocaine abuse, and certain pesticides (Ashwood et aI., 2006; Kern et 

aI., 2007; London, 2000; Mutter et aI., 2005). Specifically, maternal seafood ingestion 

and dental amalgams could provide primary sources for in utero mercury exposure, while 

mercuric or aluminum vaccine preservatives may serve as potential postnatal sources 

(Deth & Muratore, 2010). Although thimerosal was considered to playa causative role in 

autism development, removal of this preservative from infant vaccines in 2001 did not 

result in a change in prevalence of the disorder (Schechter & Grether, 2008). Pesticides 

are known to have severe neurotoxic effects, and can cross the blood-brain-barrier and 
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placenta. One epidemiological study reported an association between maternal residential 

proximity to areas of pesticide application during gestation and incidence of ASD 

(Roberts et aI., 2007). Another found an association between ASD and the use of 

household pesticides, with the strongest effect during the second trimester (Hertz­

Picciotto et aI., 2008). Of particular interest is the fact that estrogen and progesterone 

have been shown to be neuroprotective against inflammatory damage, suggesting that sex 

hormonal status may be a critical mediating factor involved in xenobiotically induced 

inflammatory brain damage (Kipp et aI., 2007). Gender-based differences in 

developmental immunotoxicity have been evidenced in animal studies of in utero 

exposure to heavy metals (Bunn et aI., 2001). These studies obviously have significant 

implications regarding the gender bias in ASD and suggest that it may be linked to 

specific prenatal teratogenic exposures. 

Maternal infection resulting in neurological damage to the offspring in a 

temporally dependent manner associated with gestational development has been proposed 

in ASD (Depino, 2006; Meyer et aI., 2006). Animal models of ASD, while controversial, 

report behavioral and neuropathological features reminiscent of the ASD phenotype in 

humans and may be useful models of etiologic investigation. Maternal respiratory viral 

infections produce autistic neuropathological and behavioral features in rodent models 

(Patterson, 2002; Shi et aI., 2007). Interestingly, the same group found that a single 

administration of the cytokine IL-6 during a specific period of murine gestation produced 

the same 'autistic' phenotype (S. E. Smith et aI., 2007). Maternal infections have also 

been shown to influence the offspring immune system. For example, stimulation of pro­

inflammatory cytokine production in rats during pregnancy resulted in innate immune 
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dysfunction in the offspring (Hodyl et aI., 2007). Early life immune insult is likely a 

significant component in ASD pathogenesis, but little is known regarding the precise 

developmental period(s) of immune vulnerability or the array of environmental toxins, 

infections or conditions that produce observable dysfunctional outcomes. 

Recent evidence indicates that prenatal stress is associated with ASD. Mothers of 

children diagnosed with autism disorder report significantly more stressful life events 

during their pregnancies when compared to controls (Beversdorf et aI., 2005). Prenatal 

stress caused by natural disasters measured in tropical storms and hurricanes from 1980-

1995 was significantly associated with autism prevalence, which increased in a dose­

response fashion with storm severity (Kinney et aI., 2008a). Furthermore, the results of 

this study indicated that fetuses exposed during gestational months 5-6 and 8-9 had 

significantly greater risk of developing ASD compared to children exposed during other 

gestational periods. This group outlines multiple mechanisms by which prenatal stress 

could result in the altered neurodevelopmental trajectory that typifies ASD. Examples 

include neuroinflammatory effects, fetal hypoxia caused by a reduction in uterine or 

placental circulation, maternal stress hormones crossing the placenta and altering the 

development of the hypothalamic-pituitary-adrenal axis, complications of pregnancy 

and/or delivery, and epigenetic effects on gene expression involved in the stress response 

(Kinney et aI., 2008b). Prenatal stress and fetal exposure to elevations of maternal stress 

hormones such as testosterone during critical periods of gestation could represent a risk 

factor for ASD and explain the gender differences in prevalence (Knickmeyer & Baron­

Cohen, 2006). 
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Since the interaction between genes and environment guide development, gene­

environment interactions likely play etiologic roles in ASD pathogenesis. It has been 

proposed that the majority of ASD cases are caused by the combination of environmental 

factors and multiple susceptibility genes (Cederlund & Gillberg, 2004; Glasson et aI., 

2004). The actual environmental insult, considered here to be of immunologic origin, 

likely precedes the first neurological sign of ASD. Possible models to explain early life 

immune insult and the neuropathologic/immunologic features of ASD have been 

proposed elsewhere (Dietert & Dietert, 2008). Given a particular genotype, an individual 

may be genetically predisposed to developing ASD based on particular pre- or perinatal 

environmental exigencies. The confluence of genetic predisposition in an epistatic 

multilocus model and a second "hit" from an environmental or immunogenetic risk factor 

could account for the pathogenesis and etiologic heterogeneity of ASD. 

Molecular pathways critical for normal neuronal and cortical organization as well 

as immune function signify the most likely influential targets in a disorder typified by 

dysfunction in these areas. Specifically, the HGFIMET pathway is associated with 

multifunctional roles involved in these systems, and recent evidence demonstrates a 

strong association of a SNP in the promoter region of the MET gene with ASD, as well as 

altered levels of mRNA in proteins associated with this pathway in the brain tissue of 

affected individuals (Campbell et aI., 2007; Campbell et aI., 2006). Other genes 

implicated in the ASD pathophysiology have been reviewed, and include those encoding 

reelin, various neurotrophins, serotonin-related genes, GABAergic receptors, neuroligins, 

SHANK3, and HOXAI (Pardo & Eberhart, 2007). These genes are associated with the 

neurobiological causes of autism, but cannot account for the immunological aspects of 

57 



the disorder. Thus the search for distinguishing genetic characteristics related to ASD and 

how these interact with prenatal environmental triggers to produce the ASD phenotype 

remains an avenue for continued research. 

While it is evident that ASDs have a strong genetic component, they have a 

complex and poorly understood pattern of inheritance, likely due to the heterogeneous 

nature of the disorder. Because GW AS have failed to reveal strong genetic candidates 

due to conflicting results, it is probable that multiple rare genetic variants are involved. 

Future linkage analyses must aim to describe endophenotypes in ASD in order to create 

more narrow behavioral and pathological profiles and thereby more homogenous and 

comparable samples. Current etiologic theory predicts that the confluence of genetic 

predisposition at multiple interacting sites along with the presence of prenatal 

environmental risk factors represents the most feasible model of ASD pathogenesis. 

During which stage of development these events are likely to occur is yet undetermined. 

Studies investigating prenatal windows of vulnerability in autism contain evidence to 

support environmental risk at every trimester of gestation. While one study suggested that 

maternal stress factors prior to the 32nd week of gestation played significant roles in ASD 

incidence, still other studies suggest second and third-trimester stress and infectious risk 

factors are critical (Beversdorf et aI., 2005; Kinney et aI., 2008a; Yamashita et aI., 2003). 

Determining specific periods of developmental vulnerability along with identifying the 

teratogenic insults that elicit the immunologic and pathologic manifestations of the ASD 

phenotype will play essential roles in future prevention of the disorder. Equally as 

important will be the identification of islets of genetic susceptibility associated with 
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ASD, which will have significant therapeutic implications. Once these etiological 

attributes are described, true prevention and treatment can begin. 

Investigating Cytokine Polymorphisms and Expression in ASD: Central Hypothesis and 

Specific Aims 

Current literature demonstrates abnormalities in cytokine expressIOn levels in 

ASD subjects when compared to controls. Independent study results, however, are 

contradictory in their findings regarding characterization of these differences (see Table 1 

below). One potential reason for discrepancies between studies could be associated with 

comparisons of young ASD patients with adult controls, or sample cohorts that have a 

wide range of ages within patient and control groups. It has been established that 

cytokine expression profiles change with age in a tissue-specific manner (Csiszar et aI., 

2003; Sack et aI., 1998). Thus, studies that do not compare age-matched cohorts when 

investigating cytokine expression profiles face significant confounding factors associated 

with age related changes in immune mediators. Contradictory results in different autistic 

samples could also confirm the presence of different endophenotypes in ASD based on 

cytokine genotypes. It is reasonable to infer that the combination of these different 

genotypes may bias a characteristic immune response, constitutively affecting the 

Th1ffh2ffh17 balance. In the context of an acute inflammatory episode, such a bias may 

tip the balance toward a more vigorous and potentially deleterious acute-phase immune 

response or induce a state of chronic inflammation. 

59 



Table 1. Cytokine expression patterns in autistic patients compared to controls: an inter­
study comparison 

Cytokine Plasma 
Whole 

PBMC CSF Brain blood 
ll.,-1 P 11'(1) NS(5) i (6) NS(7) 11'(8) NS(I3) 
ll.,-IRA NS(3) 11'(3) NS(8) i(ll) 
ll.,-2 NS(7) i(l4) 
ll.,-4 11'(14) NS(13) 

ll.,-6 11'(1) NS(3) NS(4) 
i (3) NS(7) 11'(8) 11' (12) i (12) 11'(13) 

i (6) NS(11) 
ll.,-8 11'(1) 11'(13) 

ll.,-10 NS(6) NS(3) NS(7) U ( IO) 
i (12) NS(13) NS(14) 

ll.,-12 11' (I) 11'(4) NS(7) 
IFN-y 11'(4) NS(5) 11'(3) NS(7) i(1 4) 11'(14) 11' (13) 

TNFa NS(4) NS(5) i (3) 
NS(7) 11'(8) 

11'(13) 
11'(10) 

TGFp-1 U (2) U (9) 11'(12) 

11' U Significantly increased/decreased level (p~ 0.05), iTrend toward increased level that 
does not reach significance, NS No significant difference. PBMC: Peripheral blood 
mononuclear cells, CSF: cerebrospinal fluid. 

Study Index: 

1. (Ashwood et ai., 2011) 8. (Jyonouchi et ai., 2001) 

2. (Okada et ai., 2007) 9. (Ashwood et ai., 2008) 

3. (Croonenberghs et ai. , 2002a) 10. (Ashwood & Wakefield, 2006) 

4. (Singh, 1996) 11. (Zimmerman et ai., 2005) 

5. (Sweeten et ai., 2004) 12. (Vargas et ai., 2005) 

6. (Emanuele et ai., 2010) 13. (Li et ai., 2009) 

7. (Saresella et ai., 2009) 14. (Molloy et ai., 2006) 
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There is currently not enough evidence to determine if the abnormal immune 

response present in ASD is a contributing factor for or a simple by-product of the disease. 

However, growing evidence demonstrates that ASD may be caused by the combination 

of genetic susceptibility and specific environmental insults that occur during 

neurodevelopment such as particular infections or antigens in the diet; and a 

pro inflammatory scenario associated with abnormal cytokine production would 

exacerbate the whole process. It is possible that there are phenotypes of the immune 

system predisposed to stronger or weaker inflammatory immune responses, chronic 

inflammation or autoimmunity, and that these phenotypes can manifest from several 

different combinations of genotypes in different cytokine genes with variable expression. 

The combinations of specific genotypes of multiple cytokines may therefore be useful as 

markers for specific autistic endophenotypes. 

Immune activation during pregnancy can impact offspring neurodevelopment 

with far-reaching behavioral sequelae. Cytokine levels are altered in human pregnancies 

complicated with infection and maternally generated cytokines can cross the placenta and 

enter fetal circulation (Depino, 2006; Zaretsky et ai., 2004). Thus, it is possible that a 

maternal abnormal immune response linked to infection or injury during pregnancy may 

be one contributing factor for altered neurological development in the fetus. The immune 

activation of pregnant mice or rats using either lipopolysaccharide (a proxy for bacterial 

infection) or polyriboinosinic polyribocytidylic acid (a proxy for viral infection) results in 

modified cytokine expression in the maternal-fetal tandem pair (Gillmore et ai., 2005; 

Urakubo et ai., 2001). Furthermore, the timing of the insult during gestation is important 

with regard to the ultimate neurological and behavioral impact (S. E. Smith et ai., 2007). 
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A recent study of maternal infection requiring hospitalization during pregnancy found 

that first trimester viral infection and second trimester bacterial infection were 

significantly associated with ASD diagnosis (Altadottir et aI., 2010). It is inferred here 

that the timing and etiological origin of immune activation potentiates different 

neurological and behavioral fetal results, and that variability due to cytokine expression 

polymorphisms could either exacerbate or attenuate the degree of both maternal and fetal 

immune activations. 

If specific cytokine genotypes associated with abnormal cytokine expression are 

linked to autism, this could be understood as a genetic predisposition to ASD. Given 

expression polymorphisms in certain key cytokine genes, some overall immune 

phenotypes will be predisposed for stronger or weaker immune activation, contributing to 

the etiology or emergence of autism. Beyond the concept of cause and effect, it is 

proposed here that specific genetic cytokine make up may be a risk factor that will 

exacerbate any immune response triggered by multiple prenatal environmental factors 

leading to the oxidative stress and neuropathological abnormalities present in this disease. 

Maternal and/or fetal immune activation may permanently alter the fetal Thlffh2ffh17 

balance, predisposing the fetus to a lifetime of chronic inflammatory or autoimmunity 

issues. 

The central hypothesis investigated herein purports that autism pathogenesis is 

caused by the combination of genetic susceptibility in cytokine genes and a second "hit" 

prenatal infectious scenario that occurs during specific periods of neurodevelopment. The 

questions this research aims to answer are: 

1.) Do cytokine genes differ between autistic subjects and controls? 
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2.) Does cytokine transcriptional expressIOn differ significantly from that of 

controls in the cerebral cortex of autistic patients? 

3.) Can cytokine expression profiles be modified systemically in autism? 

Specific experimental aims were designed to address each question, and are relayed 

below. 

Experimental aim 1 was to characterize different SNPs of selected candidate 

genes encoding cytokines In autistic patients and controls. Based on prevIOus 

investigations that convey abnormal expression levels of cytokines in ASD, it is 

hypothesized that there will exist significant differences between cytokine SNPs in an 

autism cohort compared to neurotypical controls. A positive association with ASD for 

cytokine SNPs could be interpreted as genetic susceptibility and represent a significant 

risk factor for ASD pathogenesis. 

Experimental aim 2 was to characterize the transcription (mRNA) pattern for 

chosen cytokines in postmortem cortical brain tissue of autistic patients and compare 

these to control values. Previous investigations of cytokine translational (protein) profiles 

have revealed significant differences in cytokine expression between autistic subjects and 

controls (see Table 1). The assumption, based on molecular dogma, is that investigated 

transcriptional patterns will reflect translational patterns already established. If cytokine 

mRNA patterns are not significantly different between autistic and control cohorts, this 

would indicate that post-transcriptional modification of cytokine genes my playa role in 

ASD pathogenesis. This would open new investigative areas of etiologic research in ASD 

focused on molecular mechanisms of immunogenetic regulation. 
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Experimental aim 3 was to characterize the cytokine translational expression 

patterns in autistic subjects treated with placebo or glutathione. Systemic oxidative stress 

has been documented in autistic children (Chauhan & Chauhan, 2006; James et aI., 

2004). The tripeptide glutathione is the primary determinant of redox status in human 

cells (Schafer & Buettner, 2001). Plasma levels of glutathione are abnormally decreased 

in autistic subjects (James et aI., 2004). Glutathione has significant impact on a multitude 

of cellular processes involved in immune signaling. It is known to modulate cell 

differentiation, proliferation, antigen presentation, regulate apoptosis, and enhance 

lymphocyte proliferation. Disturbances in glutathione homeostasis are implicated in the 

etiology and progression of neurodegenerative diseases (Ballatori et aI., 2009). It is 

proposed here that intravenous administration of glutathione in autistic subjects will alter 

systemic cytokine expression and ameliorate behavioral symptoms. If cytokine 

expression levels are significantly altered (and reflect expression patterns seen in 

neurotypical subjects) in response to glutathione administration, this could represent a 

metabolic treatment for autism with potential therapeutic applications. 

The focus of this research is to determine if cytokine genetic and expressional 

profiles can be linked, in a causative fashion, to the pathophysiology of ASD. Because of 

their role in prenatal neurodevelopment and immune signaling pathways, cytokines offer 

an associative link between the abnormal immunological profiles and neuropathological 

features present in this disorder. Indications of a genetic susceptibility in cytokine genes 

linked to abnormal expression profiles would provide significant etiologic evidence in 

this idiopathic disease. In addition, metabolic treatment that regulates cytokine expression 

may yield substantial therapeutic implications. 
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CHAPTER II 

Cytokine Polymorphisms in Autism 

Introduction 

Autism is an idiopathic neurodevelopmental disorder that typically appears during 

the first three years of life. It is diagnosed on the basis of impairments in cognition, social 

interaction, and communication (American Psychiatric Association, 2000). Autism 

spectrum disorder (AS D) comprises a broader category of neurodevelopmental disorders 

including autistic disorder, Asperger's disorder and pervasive developmental disorder not 

otherwise specified (PDD-NOS). An epidemiological survey performed in 2007-2008 

found that 1.1 % of children in the United States aged 3 to 17 years old are currently 

diagnosed with ASD, and males are four times more likely to be diagnosed than females 

(Kogan et aI., 2009). Though the etiology remains largely unclear, ASD is a highly 

heritable disorder (85 %) that affects monozygotic and dizygotic twins twelve and four 

times greater, respectively, than the general population (Greenberg et aI., 2001; Spence, 

2004). In the largest and most recent study of proband-ascertained twin pairs, it was 

found that pairwise ASD concordance was 31 % for dizygotic and 88% for monozygotic 

twins; and this data also suggests that zygosity and sex may contribute to ASD 

heritability (Rosenberg et aI., 2009). Family studies have shown that parents of an 

affected child are more likely than control parents to demonstrate cognitive or behavioral 

65 



features that are reminiscent of those found in ASD, though fail to achieve diagnosis 

(Losh et aI., 2008). 

Genome-wide association studies have rendered some relevant findings for 

possible genetic risk factors, but lack consistency; that is, none of the single nucleotide 

polymorphisms (SNPs) or genomic regions correlated with ASD has been replicated 

across studies. This apparent lack of consistency may be due to several reasons. How 

different studies clinically conceptualize ASD endophenotypes may rule out the 

possibility of consistency. It has been shown that analysis of different core deficits results 

in associations with multiple different regions of the genome (Schellenberg et aI., 2006). 

Rare variants that impinge on common neurodevelopmental pathways may lead to 

convergent diagnosis (Bucan et aI., 2009). At issue is whether ASD en do phenotypes truly 

represent a spectrum of neurological behavior and deficits with a common underlying 

pathology or are rather a collection of similar behaviors of heterogeneous genetic and/or 

developmental origin. Association studies assume environmental homogeneity, but it is 

likely that ASD is the result of combinations of variable genetic susceptibilities and 

pertinent environmental exposures. 

Recent studies suggest a strong immunological component may contribute to the 

pathogenesis of ASD. An increased prevalence of autoimmune disorders has been 

reported among first- and second-degree relatives of children with ASD when compared 

to controls; even when compared to families of children with autoimmune diseases 

(Sweeten et aI., 2003a). Interestingly, in detailed analysis of ASD SUbtypes in Sweeten et 

aI., it was found that an increased frequency of autoimmunity existed in the autism and 

Asperger's disorder families when compared to those of children with autoimmune 
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diseases-but not in the PDD-NOS families. Research demonstrates that some autistic 

children have perturbed cellular and humoral immunity (Gupta, 2000; Plioplys et aI., 

1994; Saresella et aI., 2009). Brain protein auto-antibodies have been found in sera from 

autistic children, implying an autoimmune response is present in this disorder in the 

individuals studied (Singh et aI., 2002; Singh et aI., 1998). Research from the same group 

maintains that a major subset of autism, so called Autoimmune Autistic Disorder, is 

caused by a neuro-autoimmune pathogenesis triggered by viral infection (Singh, 2009). 

Increased neuroglial response, characterized by astroglial and microglial activation, has 

been demonstrated in the post-mortem brain tissue of autistics (Vargas et aI., 2005). Such 

neuroglial activation indicates an immune response of the central nervous system (CNS) 

representing an overall neuroinflammatory scenario which, argued here, may typify this 

disorder in some individuals. This is relevant for the current study, as cases of PDD-NOS 

and cases diagnosed with co-morbid autoimmunity were excluded. Obviously, 

neuroinflammation can occur in the absence of an auto-immune response. 

The immune system affects the CNS primarily through cytokines and 

chemokines; diverse groups of regulatory proteins that mediate inflammation, immunity, 

and hemopoiesis. Levels of the proinflammatory cytokines TNF-a and IL-6 are 

significantly increased in brain tissue of some ASD patients when compared to controls 

(Li et aI., 2009). Increased levels of proinflammatory cytokines TNF-a, IL 1-~, IL-2, IL-6, 

and IFN-y are present in the peripheral blood mononuclear cells (PBMC) of some 

children with ASD (Jyonouchi et aI., 2001; Molloy et aI., 2006). A neuro-inflammatory 

process is shown in the cerebral cortex, cerebellum, and CSF of some autistic individuals, 

and cytokine expression profiling indicates that macrophage chemo-attractant protein 
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MCP-l and TGF-~l are the most up-regulated cytokines in these brain tissue samples 

(Vargas et aI., 2005). 

Polymorphisms III the regulatory regIOns of cytokine genes effect expreSSIOn 

levels and have been shown to play a role in a variety of diseases including asthma, 

autoimmune diseases, periodontal diseases, diabetes, Alzheimer's disease, and coronary 

heart disease (Yucesoy et aI., 2003). It is known that cytokine gene polymorphisms can 

alter immune disease susceptibility, severity, and outcome (Keen, 2002b). Since some 

polymorphisms directly impact protein expression, and some ASD is characterized by an 

abnormal immune response demonstrated in cytokine expression systemically and in the 

CNS, it is reasonable to conjecture that polymorphisms in cytokine genes are correlated 

with ASD pathogenesis. Here, a model that involves immune activation and 

inflammatory processes is proposed, not one necessarily contingent on autoimmunity. 

To investigate the co-occurrence of cytokine polymorphisms and ASD, this study 

was carried out to ascertain frequency-based differences between two ASD 

endophenotypes and population controls for polymorphisms among a set of eleven 

cytokine genes (ILIA, ILIB, IFNG, TGFBI, TNF, IL2, lIA, IL6, IL12B, and ILIO), two 

cytokine receptors (lLIRI, lIAR), and one cytokine receptor antagonist (lLIRN) (see 

Table 2 for more details)4. These genes represent cytokines from both the innate and 

adaptive immune response systems. The results of this study may offer insight into 

immune activation and its role in the pathogenesis of ASD. 

4 Note: If referring to the protein, a hyphen is used; if referring to a gene, no hyphen is 
used. For example, ItA is the gene name, while IL-4 refers to the cytokine protein. Also, 
cytokine names use the Greek nomenclature, while gene names do not. For example, 
IFNG refers to the interferon gamma gene, while IFN-y indicates the cytokine. 
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Table 2. Cytokine SNP name, chromosome locus and RS number 

Gene Polymorphism* Chromosome locus dbSNPID 
ILiA -889C-T 2q14 rs1800587 

ILiB 
-511 C-T 

2q14 
rs16944 

+3962 C-T rsl143634 
ILiRi +1970 C-T 2q12 rs2234650 
ILiRN mspa1 11100 C -T 2q14 rs315952 

IL2 
-330T-G 

4q26-q27 
rs2069762 

+166 G-T rs2069763 
-1098T-G rs2243248 

lIA -590C-T 5q31.1 rs2243250 
-33 T-C rs2070874 

lIAR +1902G-A 16p12.1~11.2 rs1801275 

IL6 
-174G-C 

7p21 
rs1800795 

nt565 G-A rs1800797 
-1082A-G rs1800896 

ILiO -819 C-T 1q31-q32 rs1800871 
-592C-A rs1800872 

ILi2B -1188 A-C 5q31.1-q33.1 rs3212227 
IFNG +874T-A 12q24.1 rs2430561 

TGFBi 
codon 10 C-T 

19q13 
rs1800470 

codon 25 G-C rs1800471 

TNF 
-308 G-A 

6p21.3 
rs1800629 

-238G-A rs361525 

* Alleles to the left of the arrow are ancestral and those to the right are derived 

SNP information was retrieved from the dbSNP (build 119, 
http://www.ncbi.nlm.nih.gov/SNP; accessed March 2011) 

Materials and Methods 

ASD Samples and Sources 

DNA samples of ASD participants came from two sources: 23 participants were 

from Coriell Cell Repositories (http://ccr.coriell.org/autism/) and 26 autistic/ Asperger's 

participants were recruited for the study by Dr. Lonnie Sears in the Department of 

Pediatrics at the University of Louisville Hospital. All ASD samples fit the diagnostic 
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criteria of the Diagnostic and Statistical Manual-IV, as confirmed by the Autism 

Diagnostic Interview-Revised (C. Lord et aI., 1994). Of the 49 ASD patients, 37 were 

autistic, six were autistic with co-morbid mental retardation, and six were diagnosed with 

Asperger's disorder. Of the six female ASD patients, two were diagnosed as autistic co­

morbid with mental retardation, two were autistic, and two were diagnosed with 

Asperger's disorder. Potential participants with autism were excluded if they had any 

patent genetic disorder such as fragile-X syndrome or tuberous sclerosis; evidence of 

seizure disorder or autoimmunity also precluded participation. Exclusions were based on 

medical and neurological histories and examination. This study was approved by the 

Institutional Review Board of the University of Louisville (IRB 284.07). 

Control Samples and Sources 

DNA samples were obtained from amalgamated population surveys (Middleton et 

aI., 2003). Data was verified in the original articles prior to inclusion in the present study. 

Populations were chosen to reflect a general European sample given the constraints of 

populations available. Specifically, population data was chosen from Germany, Ireland, 

England, Italy, and several regional samples of Caucasians in the United States. Not 

surprisingly, complete data for all cytokines reported for the ASD participants were not 

available for all population controls (see Table 3 for details). 
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Table 3. Allele and genotype frequencies at 22 SNP loci in ASD participants and controls 

Gene SNP 
Sample size Minor allele frequency (%) Genotype frequency (%) 

Control ASD Control ASD Control ASD Control ASD Control ASD 
ILIA -889 C-T 976 39 29.7 29.5 CC 48.5 53.8 CT 43.6 33.3 TT 7.9 12.8 

ILIB 
-511 C-T 1241 48 34.4 35.4 CC 42.1 37.5 CT 47.0 54.2 IT 10.9 8.3 

+3962 C-T 540 47 24.4 26.6 CC 57.4 53.2 CT 36.5 40.4 IT 6.1 6.4 
ILIRI +1970 C-T 540 49 33.1 45.9 CC 43.5 28.6 CT 46.9 51.0 IT 9.6 20.4 
ILIRN mspal 11100 T-C 540 49 27.9 33.7 TT 51.3 38.8 TC 41.7 55.1 CC 7.0 6.1 

IL2 
-330T-G 816 47 30.4 27.7 TT 48.0 53.2 TG 43.1 38.3 GG 8.8 8.5 
+166 G-T 540 47 30.2 31.9 GG 49.4 48.9 GT 40.7 38.3 IT 9.8 12.8 

-1098 T-G 540 45 7.7 10.0 IT 85.0 80.0 TG 14.6 20.0 GG 0.4 0.0 
lIA -590C-T 1505 46 13.7 20.7 CC 74.6 67.4 CT 23.6 23.9 IT 1.9 8.7 

-33 C-T 540 44 12.8 20.5 CC 75.7 68.2 CT 23.0 22.7 IT 1.3 9.1 ...... 
lIAR +1902A-G 540 49 21.3 23.5 AA 62.0 59.2 AG 33.3 34.7 GG 4.6 6.1 r-

IL6 
-174 G-C 540 49 39.7 40.8 GG 37.0 34.7 GA 46.5 49.0 AA 16.5 16.3 
nt565 G-A 2505 49 39.9 39.8 GG 35.8 34.7 GC 48.5 51.9 CC 15.7 14.3 
-1082A-G 2650 48 47.9 49.0 AA 26.8 16.7 AG 50.6 68.8 GG 22.6 14.6 

ILID -819 C-T 1172 48 22.5 18.8 CC 60.0 64.6 CT 35.0 33.3 IT 5.0 2.1 
-592C-A 2407 48 23.4 21.9 CC 59.0 62.5 CA 35.1 31.3 AA 5.8 6.3 

ILI2B -1188 A-C 631 43 20.7 26.7 AA 62.6 51.2 AC 33.4 44.2 CC 4.0 4.7 
IFNG +874T-A 351 47 47.7 40.4 AA 25.4 34.0 AT 53.8 51.1 IT 20.8 14.9 

TGFBI 
codon 10 T-C 890 46 39.7 43.5 IT 35.5 28.3 TC 49.7 56.5 CC 14.8 15.2 
codon 25 G-C 888 43 7.7 10.5 GG 85.7 81.4 GC 13.3 16.3 CC 1.0 2.3 

TNF 
-308 G-A 2360 49 16.2 20.4 GG 70.1 63.3 GA 27.4 32.7 AA 2.5 4.1 
-238 G-A 540 49 6.9 6.1 GG 86.7 87.8 GA 13.0 12.2 AA 0.4 0.0 



DNA Isolation and Amplification 

Samples collected using buccal swabs at the University of Louisville were 

isolated using a standard phenol-chloroform extraction and ethanol precipitation. The 

Cytokine Genotyping PCR Kit (Invitrogen, Carlsbad, CA) was used to ascertain 

genotypes reported in Table 2. 

Statistical Analysis 

Genotype, minor allele frequencies, and tests of Hardy-Weinberg equilibrium 

were calculated using Excel. While the SNP data for the ASD participants could be 

linked within individuals, the controls were based on population data. Therefore, each 

SNP was tested individually with logistic regression in R (R Development, 2011). 

Genotype was encoded using orthogonal polynomials, such that the linear coefficient 

could be interpreted as the log-odds ratio as in the Cochran-Armitage test, assuming the 

alleles are co-dominant. The quadratic term accounted for any deviation from co­

dominance. Statistical significance was corrected for multiple comparisons with a false 

discovery rate of q* = 0.1 according to the method of Benjamini and Hochberg 

(Benjamini & Hochberg, 1995). 

Results 

The distributions of allele and genotype frequencies at 22 SNP loci in ASD 

participants and controls are found in Table 3. When carefully examining the table, 

several items of interest are apparent. The ILl family is found closely clustered on 

72 



chromosome 2q13. This may be of potential interest from the perspective of population 

genomics. A review of the table frequencies of minor alleles and genotypes reveals 

relative congruency across the five ILl loci except for ILIRI. The difference between the 

minor allele frequency for cases versus controls is rather large, and the relative 

frequencies of the different homozygotes vary. The fact that the minor allele frequency 

for this one locus among the family of ILl loci differs between cases and controls and not 

at the other four ILl loci suggests a possible association between ILIRI SNPs and ASD. 

Scanning down the minor allele frequencies, two SNPs (-590 and -33) for IrA seem to 

vary between cases and controls, and similarly differ in one of the homozygotes. This 

pattern of differences implies that the IrA -590 T and -33 T constitute a linked haplotype; 

though this was unable to be tested due to the use of population controls. Of particular 

interest are the results for ILl a -1082. There is very little difference between the minor 

allele frequencies for cases and controls, but consideration of the genotype frequencies 

suggests that the cases may be out of Hardy-Weinberg equilibrium. 

Tests for Hardy-Weinberg Equilibrium 

Tests of Hardy-Weinberg equilibrium are found in Table 4. While two SNPs, IrA 

-33 and ILIa -1082, are statistically significant at p < .05 and thus not considered in 

Hardy-Weinberg equilibrium; none of the results are statistically significant when the 

Benjamini-Hochberg correction is applied. Although this is true, the results of ILIa -

1082 are brought to the attention of the reader. IL-1O is one of the more important anti­

inflammatory cytokines; it has been associated with several diseases likely due to 

immune activation, and ILIa -1082 is the locus that exerts the greatest control of gene 
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expreSSIOn. There was a lower frequency of the higher expression ILlO -1082 GG 

genotype among ASD patients in this study. Though not statistically significant in this 

data set following a multiple-test correction, a possible relationship between ILlO -1082 

and ASD should be further explored. 

Risk Estimates for Genotype Association 

The estimates of odds ratios for the association of ASD and individual SNPs show 

that genotype frequencies for the proinflammatory ILl Rl + 1970 and anti-inflammatory 

IIA -590 and IIA -33 alleles are significantly different in ASD patients compared to 

controls even after the Benjamini-Hochberg correction (Table 5). All three of these SNPs 

are negatively associated with ASD; that is, they are not protective. None of the tests for 

the linear coefficient of the overall trend of the genotypes (e.g., the Cochran-Armitage 

test) was significant. Due to sample zeros, the quadratic term was excluded from the 

models for IIA -1098 and TNF -238: None of the autistics were homozygous for the 

minor allele at these loci, and maximum likelihood estimates of the parameters would 

diverge to CIJ were both the linear and quadratic terms included. 
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Gene SNP 

ILIA -889 C-T 

ILIB 
-511 C-T 

+3962 C-T 

ILIRI +1970C-T 
ILIRN mspal 11100 T-C 

IL2 
-330T-G 

+166G-T 
-1098 T-G 

lIA -590C-T 

-33 C-T 

lIAR +1902 A-G 

IL6 
-174 G-C 
nt565 G-A 

-1082A-G 

ILIO -819 C-T 

-592C -A 

ILI2B -1188 A-C 

IFNG +874T-A 
codon IOT-C 

TGFBI 
codon 25 G-C 

TNF 
-308 G-A 

-238 G-A 

Table 4. Hardy-Weinberg table for raw data 

Sample size Chi-Square 

Control Autistic Control ASD 
976 39 1.898677548 1.530522007 
1241 48 2.124070384 1.643534762 
540 47 0.046411601 0.056275809 
540 49 1.930570968 0.035469831 
540 49 0.764843801 2.681770178 
816 47 0.323264051 0.085809257 
540 47 0.597612045 0.667976972 
540 45 0.397807863 0.555555556 
1505 46 0.008231917 3.371032001 
540 44 0.496365467 4.021224476 
540 49 0.012818436 0.054920288 
540 49 0.460495721 0.010078319 

2505 49 0.294291928 0.266799465 
2650 48 0.503812276 6.77187697 
1172 48 0.015056333 0.414465515 
2407 48 0.881695966 0.362081494 

631 43 0.19007596 0.685462593 

351 47 2.150933539 0.173143771 
890 46 1.319108458 1.031284593 

888 43 3.060845721 0.716507246 
2360 49 0.198168534 0.001172724 
540 49 0.075516242 0.206787635 

------_.-

P-Value 

Control ASD 

0.168226476 0.216034228 

0.145000787 0.199841262 

0.829429339 0.812482065 

0.16469607 0.850614552 

0.381816907 0.101502877 

0.569652641 0.769573999 

0.439490599 0.413757818 

0.528223545 0.456056544 

0.927707203 0.066352195 

0.481101474 0.044931087 

0.909857305 0.814712666 

0.497392389 0.920034048 

0.587483201 0.605486845 

0.477829815 0.00926054 

0.902341299 0.519711645 

0.347737594 0.547352494 

0.662853404 0.407712023 

0.142483281 0.67733282 

0.250752305 0.309857384 

0.080199936 0.397291992 

0.656203231 0.972681736 

0.783468218 0.649296959 i 

In 
r-



Table 5. Results of the logistic regression analysis 

Gene SNP 
Linear trend (odds ratio) 

PQ MLE CI P 
ILIA -889 C~T 1.21 [0.69, 1.93] 0.458 0.138 

ILIB 
-511 C~T 0.93 [0.50, 1.53] 0.790 0.333 
+3962 C~T 1.06 [0.51, 1.85] 0.851 0.766 

ILIRI +1970 C~T 1.80 [1.15,2.76] 0.00795 - 0.793 
ILIRN mspa1 11100 T ~C 1.07 [0.51, 1.89] 0.827 0.200 

IL2 
-330T~G 0.93 [0.50, 1.53] 0.803 0.679 
+166 G~T 1.15 [0.68, 1.79] 0.571 0.584 

-1098 T~G 1.35 [0.60,2.72] 0.426 n.t. 
lIA -590C~T 2.27 [1.21,3.77] 0.00362 - 0.0897 

-33 C~T 2.79 [1.40,5.23] 0.00171- 0.0446 
lIAR +1902A~G 1.18 [0.56, 2.07] 0.610 0.852 

IL6 
-174G~C 0.97 [0.60, 1.48] 0.891 0.709 
nt565 G~A 1.03 [0.65, 1.57] 0.901 0.772 
-1082A~G 1.02 [0.60, 1.71] 0.939 0.0152 

ILI0 -819 C~T 0.62 [0.15, 1.36] 0.351 0.534 
-592C~A 1.01 [0.49, 1.70] 0.981 0.651 

IL12B -1188 A~C 1.20 [0.47,2.30] 0.637 0.508 
IFNG +874T~A 0.73 [0.44, 1.15] 0.190 0.918 

TGFBI 
codon 10 T~C 1.14 [0.69, 1.79] 0.597 0.462 
codon 25 G~C 1.55 [0.36, 3.66] 0.409 0.778 

TNF 
-308 G~A 1.36 [0.54,2.51] 0.411 0.951 
-238 G~A 0.88 [0.33, 1.95] 0.782 n.t. 

MLE: maximum likelihood estimate; CI: 95 % confidence interval; PQ: P-value for the 
quadratic term; n.t.: not testable; -: statistically significant at q * = 0.1. 
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Discussion 

This is the first study to examine the association between ASD and cytokine 

polymorphisms. Previous research has focused on the measurement of cytokine levels in 

the brain, CSF, and blood rather than genotyping the polymorphic sites that are putatively 

responsible for relative inter-individual levels of circulating cytokine concentrations. The 

present study demonstrates positive association with ASD for cytokine polymorphisms 

lIA -590T, lIA -33T, and ILIRI +1970T. 

The Issue of Multiple Comparisons 

The fundamental issue with using something like a cytokine panel, where many 

SNPs are scored simultaneously, is the theoretical statistical concern of multiple 

comparisons. If one considers that the probability of obtaining a statistically significant 

result by chance is 1- 0.95K
, where K is the number of tests conducted, appropriately 

interpreting the results of multiple comparisons can quickly become an issue. In this 

particular case, 22 SNPs in 13 genes were tested. Considering only the 13 genes, there is 

roughly a 50% chance of obtaining a significant result by chance. In order to correct for 

multiple comparisons, the method of Benjamini and Hochberg was used. However, 

statistically correcting for multiple comparisons, while important, can obviate some 

important data, and further fails to account for the importance of population history and 

the hazards of operating without a model of biologic plausibility. 

Consider two possible models for the contribution of particular genes (or SNPs in 

those genes) influencing inflammation and the etiology of ASD. One model is that 

independent spontaneous mutations are occurring in individuals in any of multiple genes 
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contributing to the initiation or maintenance of inflammation. This model presumes that 

the regulation of inflammation can be broken in multiple ways; all leading to 

inflammation contributing to the suite of behaviors that are clinically distributed along 

the autistic spectrum. Arguably, it would be unlikely that in a small group of autistics the 

same SNP would be shared among sufficient individuals to achieve statistical 

significance5
. The consequence of using this model is that while it might be proven that 

inflammation is a common contributing factor to the etiology of autism, it would be 

difficult to prove the genetic contributions of particular SNPs. 

Another possible model is that autistics share immune gene SNPs in common as a 

function of population structure and shared ancestry. In this model, theoretical constraints 

would preclude historically negative selection coefficients, and the contribution of 

particular genes to the etiology of autism would emerge only in conducive environmental 

circumstances. Environmental factors interacting with genetic variability may be the in 

utero influence of industrial pollutants or exposure to infectious disease. Admittedly, a 

logical weakness of this model is that if individuals are sharing SNPs in inflammation 

genes they would also be sharing SNPs in genes not related to inflammation; and the 

problem of multiple comparisons becomes once again significant. This model does, 

however, allow the possibility that when considering the contribution of the immune 

system to the etiology of ASD, some cytokine genes (and their SNPs) would be more 

likely than other cytokine genes to be implicated depending on their roles in the immune 

activation process. Herein it is argued that IL4 and ILIRI are two genes playing 

5 However, certain regions of the genome do seem particularly susceptible to mutation. 
An example is ILlO, which lies in a region of high recombination, and has a relatively 
large number of SNPs in its promoter region. 
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fundamental roles in the immune activation process, and putatively in the etiology or 

progression of ASD. 

IL-4 and IL-IR functions in the immune system and CNS 

Of interest are the specific functions of IL-4 and IL-IR within the immune system 

and CNS. IL-4 activates cytotoxic immunity in response to virus-infected cells, and 

drives T cell differentiation toward the Th2 phenotype. It is released in allergic and 

inflammatory responses, and rescues T lymphocytes from apoptosis (Vella et aI., 1997). 

IL-4 enhances the antigen-presenting capacity of B cells by stimulating MHC class II 

molecules, B7, CD40, surface IgM, and low-affinity IgE receptor expression (Borish & 

Steinke, 2003). Research with adult murine neural progenitor cells shows that IL-4-

activated microglia preferentially induce oligodendrogenesis over neurogenesis 

(Butovsky et aI., 2006). This study also demonstrates that both neuro- and 

oligodendrogenesis activated by microglia are blocked in the presence of LPS (a proxy 

for bacterial infection). These results are of particular interest, given that microglia are 

activated in various brain regions of autistic patients where enlarged cerebral white 

matter volumes are also present and recent evidence indicates an association between 

increasing radiate white matter volume and impairment (Courchesne et aI., 2001; Herbert 

et aI., 2004; Mostofsky et al., 2007). IL-4 production in peripheral blood mononuclear 

cells of autistic children is significantly higher than that of normal controls (Molloy et aI., 

2006). Increased IL-4 levels are present in the sera of patients with asthma, and it was 

recently established that a SNP in the IL-4 gene confers susceptibility to the disease 

(Amirzargar et aI., 2009). Therefore, evidence of the increased IL-4 production, 
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chronically activated microglial cells, elevated white matter volumes, and significantly 

different genotypic frequencies in the llA promotor region which are capable of effecting 

protein expression levels suggests that this cytokine may relay susceptibility to autism. 

In the brain, IL-I plays a role in long-term potentiation, and in mouse and rat 

studies it has been demonstrated that most IL-I receptors are found in the hippocampus, a 

region that is morphologically enlarged in autistic individuals (Schumann et aI., 2004). 

Rodent studies demonstrate that IL-I is induced in the hippocampus during the learning 

process, and that exogenously administered IL-I increases memory function while 

blockage of IL-I signaling impairs memory function (Yirmiya & Goshen, 2011). In the 

immune system, IL-I plays a significant role in the induction of Th 17 cells, which have 

been shown to provide protection against bacterial infection in mice (Acosta-Rodriguez 

et aI., 2007). While studies of IL-I expression in the CNS of autistic individuals do not 

yield significant differences when compared to controls, systemic evidence indicates that 

increased IL-l levels are present in the plasma, whole blood, and peripheral blood 

mononuclear cells of autistic patients (Ashwood et aI., 20 II; Croonenberghs et aI., 

2002a; Jyonouchi et al" 2001). Micro-array evidence suggests that the gene pair IL­

IRlIILI-R2 plays a crucial role in mediating dendritic cell functions during the primary 

immune response (Zhong et aI., 2009). If polymorphisms in the ILIRI gene cause 

deficient dendritic cell functioning in the systemic immune system, this would impair the 

antigen presenting abilities of these cells and weaken communication between the innate 

and adaptive immune systems. Functionally, autistic patients demonstrate impaired 

performance on neuropsychological tasks involving hippocampal circuits when compared 

to controls (Loveland et aI., 2008). While IL-l expression has not been investigated in the 
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hippocampus of autistic individuals, future research in this area may link IL-l levels in 

this region to behavioral impairment. Given the findings of this study, which demonstrate 

significantly different genotypic frequencies in the ILIR gene of autistic individuals, this 

cytokine may play significant roles in the pathogenesis of ASD. 

Conclusion 

The original impetus for this research project was to investigate the possible 

association of varIOUS cytokine SNPs with autism. It has been reasonably well­

established that inflammation, at some level, is involved in the etiology and progression 

of ASD. The thirteen genes in the genotyping panel used in this study are arguably some 

of more significant genes involved in the initiation and/or mediation of inflammation. 

Much remains to be learned about the intricacies of the expression dynamics of the 

cytokine network. Much more remains to be learned about the pleiotropic nature of 

cytokine expression at different times in the life history of the organism and in response 

to different kinds of immune challenges. 

ASD is a complex disease with a pathogenesis that involves the genetic variation 

of a number of contributing genes in addition to the action of environmental factors. 

Changes in gene expression, coordination, and patterns of interactions of cytokine gene 

products likely influence the development of ASD, but the mechanisms remain to be 

revealed. Simultaneously, epigenetic factors play contributing roles by affecting the 

network of interaction of critical genes and their proteins. This is the first reported study 

to examine the association between ASD and cytokine polymorphisms. SNPs in cytokine 

genes and their promoters may alter cytokine expression and cause an overall imbalance 
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in the regulation of the immune system, resulting in an inflammatory profile seen both in 

the central nervous system and systemically in autistic individuals. The present study 

demonstrates positive association with ASD for cytokine polymorphisms lIA (-590T), 

lIA (-33T) and ILIRI (+1970T), and adds to the growing literature that a dysregulated 

immune response may be central to the pathogenesis of certain endophenotypes within 

ASD. 
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CHAPTER III 

Cytokine Transcriptional Expression in the Cerebral Cortex of Autistic Subjects 

Introduction 

Autism is a pervasive neurodevelopmental disorder typically manifesting in the 

first three years of life, and diagnosis depends on a triad of impairments in social 

interaction, communication and cognition (American Psychiatric Association, 2000). 

Autism is idiopathic, although evidence indicates a complex etiology with an underlying 

genetic susceptibility likely acting in concert with immunological dysfunctions and 

unidentified environmental exposures (Ashwood et aI., 2006; Persico & Bourgeron, 

2006). Post-mortem studies reveal neurobiological abnormalities in cytoarchitectural and 

neuronal organization, suggesting altered neuronal maturation and/or defective cortical 

organization may play roles in the pathogenesis of autism (Bauman & Kemper, 2003; 

Casanova et aI., 2002; Pardo & Eberhart, 2007). Evidence indicates that maternal 

immune activation during embryonic development could account for these 

neuropathological abnormalities and this activation may be cytokine dependent (Shi et 

aI., 2007; Shi et aI., 2009; S. E. Smith et aI., 2007). Cytokines are regulatory proteins that 

mediate inflammation, immunity and hemopoiesis, and facilitate communication between 

the immune and central nervous systems (CNS) (Borish & Steinke, 2003). Patients with 
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autism have altered cytokine levels in plasma, peripheral blood mononuclear cells, whole 

blood supernatant, cerebrospinal fluid, and brain tissue (Croonenberghs et aI., 2002a; 

Jyonouchi et aI., 2001; Li et aI., 2009; Molloy et aI., 2006; Vargas et aI., 2005). 

To investigate neuroinflammatory mechanisms, the transcription of four cytokines 

(TGFB-l, IL-IB, IL-6, and TNFa) and one chemokine (lL-8) was analyzed in five regions 

of the cerebral cortex of postmortem brains using reverse transcriptase-initiated real-time 

PCR on eight autistic-control pairs. This technique permits monitoring product formation, 

and allows precise quantification of baseline mRNA. Sample size is limited by RNA 

quality and tissue availability but is sufficient to uncover robust changes that may 

characterize the neuropathology typifying autism. This study reveals differential 

transcription of cytokine genes in various cortical regions of autistic brains compared to 

neurotypical controls, and proposes novel molecular mechanisms yet uninvestigated 

which may be involved in the pathogenesis of ASD. 

Materials and Methods 

Human Brain Samples 

Autistic and control brain specimens were obtained through The Autism Tissue 

Program (ATP) (http://www.brainbank.org) from the Harvard Brain Tissue Resource 

Center, supported in part by PHS grant R-240MH068855. Formaldehyde-fixed sections 

of Brodmann Areas (BA) 4, 9,17,22 and 46 from eight individuals with autism and eight 

control individuals were analyzed. Cortical areas correspond to primary motor cortex 

(BA 4), dorsolateral prefrontal cortex (BA 9 and 46), primary visual cortex (BA 17), and 

superior temporal gyruslWernicke's area (BA 22). Review of the ATP clinical database 

84 



resulted in the 16 matched subjects presented in this study (Table 6), and no significant 

difference in mean age or postmortem interval (PMI) was present between groups. Tissue 

recovery followed an institutionally approved informed consent procedure and was 

coordinated nationally by the ATP and NIMHlNINDS Harvard Brain Tissue Resource 

Center. 

Table 6. Autistic and control samples 

Diagnosis ATPID# Sex Age PMI Cause of Death 
Control AN12552 M 56 24 Multiple Injuries 
Control AN03334 M 36 26.02 Possible Pulmonary Embolism 
Control AN08678 M 40 25.25 Hepatic Encephalopathy 
Control AN12137 M 31 32.92 Asphyxia 
Control AN19760 M 28 23.25 Unknown 
Control AN05475 M 39 UK Heart Attack 
Control AM07932 M 17 6.5 Accident 
Control AN04432 M 22 12 Central Hepatic Laceration 

Control MEAN 33.6 21.4 
Autism AN08792 M 30 20.3 Gastrointestinal bleeding 
Autism AN00493 M 27 8.3 Drowning 
Autism AN01093 M 56 19.48 Anoxic Encephalopathy 
Autism AN06746 M 44 30.8 Acute Myocardial Infarction 
Autism AN00764 M 20 23.7 Accident 
Autism AN01971 M 39 31.5 Hospitalized with Pneumonia 
Autism AN01613 M 29 UK Heart Attack 
Autism AN11989 M 30 16.06 Congestive Heart Failure 

Autism MEAN 34.4 21.4 

PMI: Post-mortem interval (hours), UK: Unknown. Autism Tissue Program identifier is 
depicted by ATP ID#. The age and postmortem interval were not significantly different 
across groups (two-tailed t-test = 0.9 and 0.99, respectively). 
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Sample Preparation 

Tissue was dissected for gray matter specimens approximately 40-80 /-lg, and total 

RNA was isolated using the Ambion Recoverall™ Total Nucleic Acid Isolation Kit for 

FFPE Samples (Applied Biosystems, Foster City, CA) according to the manufacturer's 

protocol. The integrity of RNA was assessed on an ND-1000 Spectrophotometer V3.3 

(Nanodrop Technologies, Wilmington, DE). 

Two-step RT-PCR 

Total RNA extractions were reverse transcribed into cDNA using the TaqMan 

Reverse Transcription Reagent Kit (Applied Biosystems) and primed with the standard 

random hexamer according to the protocol. The reverse transcription (RT) reaction was 

performed with a DNA Thermal Cycler 480 (PerkinElmer, Fremont, CA) as follows: 

25°C for 10 min, 48°C for 30 min and 95°C for 5 min. Real-Time PCR was performed in 

low-transmissiveness 96-well reaction plates (AbiPrism; Applied Biosystems) using 

SYBR@ Green PCR Master Mix (Applied Biosystems) as the reporter. All reactions were 

conducted as follows: 50°C for 2 min, 95°C for 10 min, 95°C for 15 s (40 cycles), 60°C 

for 1 min (40 cycles), 95°C for 15 s, 60°C for 30 s, and 95°C for 15 s with a 7300 Real­

Time PCR System (Applied Biosystems). Amplified cellular GAPDH from all samples 

served as a housekeeping gene to normalize expression and monitor reproducibility. 

Primers were synthesized by Alpha DNA (Montreal, Quebec) and their sequences follow: 
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TGF~-l: 

Forward: 5' -CAACAATTCCTGGCGATACCT -3' 

Reverse: 5' -GCTAAGGCGAAAGCCCTCAAT -3' 

IL-8: 

Forward: 5' -CAAAGAACTGAGAGTGATTGAGAGTG-3' 

Reverse: 5' -CCCTACAACAGACCCACACA-3' 

IL-l~: 

Forward: 5'-TCTACACCAATGCCCAACTG-3' 

Reverse: 5' -AGCGAATGACAGAGGGTTTC-3' 

TNFa: 

Forward: 5'-AGGCGGTGCTTGTTCCTCA-3' 

Reverse: 5' -GTTCGAGAAGATGA TCTGACTGCC-3' 

IL-6: 

Forward: 5' -CACACAGACAGCCACTCACCTC-3' 

Reverse: 5' -CTGCCAGTGCCTCTTTGCTG-3' 

GAPDH: 

Forward: 5' -GAGTCAACGGATTTGGTCGT -3' 

Reverse: 5' -TGGAAGATGGTGATGGGATT -3' 

Qualitative Analysis 

The instrument on-board software 7300 System SDS (Applied Biosystems) 

generated output data, which was transferred to an MS Excel spreadsheet for analysis. 

The software generated a log-linear calibration graph which plotted primer copy number 

87 



from run-off transcript for each sample's mRNA against the number of cycles it took for 

each reaction product to exceed a preset florescence threshold (Cr). To obtain 

quantitative measurements, Cr values for each sample were performed in duplicate and 

compared with those obtained in the standard curve fitted to points of the calibration 

graph. All readings were standardized to the amplification values obtained for the 

GAPDH housekeeping gene: L1CT,x = CT,x - CT,GAPDH where x is the target gene. Thus, the 

number of each transcript is expressed relative to GAPDH. Relative change in expression 

of gene x between the autistic and neurotypical case is MCT,x = L1C;~tism - L1Ci,~ntrol, and 

the corresponding fold change in expression was calculated using TMCT,X (Fu et al., 

2006). 

Statistical Analysis 

The relative expression of gene x (x = TNF,IL6, TGFBi, ILiB, or IL8) in the 

tissue sample from participant i, Brodmann area j was analyzed using the mixed-effects 

linear model 

L1C(i,j) = R + R D + R,T R + 1/ + C' T,x fJo,x fJl,x i I-' 2, x j I i,x Cij ,x 

D is a dummy variable encoding diagnostic category (Di = 0.5 for autistic i, and Di = -0.5 

otherwise). Encoding ensures that the coefficient Ihx is an estimate of L1L1CT x over all 

five Brodmann areas. Rj is a dummy variable encoding BA j; the Yi,x are independent, 

identically distributed random intercepts with zero mean; and the cij,x are independent, 

identically distributed residuals. 
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Prior to fitting, preliminary analysis with the LmRA toolbox (Verboven & 

Hubert, 2005) robustly examined the raw CT data for outliers. The linear models were fit 

using R software packages NLME (Pinheiro et aI., 2010) and contrast (Kuhn et aI., 2010). 

Goodness of fit was established by comparing standardized residuals to a standard normal 

distribution using the Kolmogorov-Smirnov D statistic. 

The mixed effects linear model used here accounts for the correlation between 

measurements of different Brodmann areas within the same brain. Five univariate 

Wilcoxon tests would implicitly assume that those different measurements were 

independent, necessitating a correction for multiple comparisons. The linear model, on 

the other hand, assumes a particular (normal) distribution of observed data within groups. 

Preliminary non-parametric tests for outliers in the data, as well as post-hoc tests of the 

residuals of the fit indicate that this assumption is not validated. Thus, the mixed effects 

linear model was considered the best choice for this data analysis and applied 

accordingly. 

Results 

The investigated control and autistic brains showed no significant difference in 

age (t14 = 0.13, two-tailed p = 0.900) or post-mortem interval (t12 = 0.006, P = 0.995) 

between autistic and comparison subgroups. Preliminary analysis detected no statistical 

outliers among the CT values. Post hoc test of the residuals found no significant deviation 

from the expected standard normal distribution, with the greatest Kolmogorov-Smirnov 

D = 0.127 and its associated p = 0.214, in the model fit for TNF. Average MCT,x was 

not significantly different from zero for any of the target genes: TNF (F1,14 = 0.207, P = 
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0.656), IL6 (F1,14 = 0.308, p = 0.587), TGFBI (F1,14 = 0.024, p = 0.879), ILIB (F1,14 = 

0.665, p = 0.428) or IL8 (F1,14 = 0.074, p = 0.789). Relative expression of all five target 

genes also did not vary significantly by Brodmann area, nor was there any significant 

variation of MCT,x with Brodmann area. Mean transcriptional expression levels for 

autistic and control samples and fold change values by cortical region are shown in Table 

7 below. 

Table 7. Differential gene expression in autistic patients 

Target Relative expressionb Fold change 
Gene BAa Aut. C.C. Mean 95 % CI 

4 -10.9 -10.8 1.14 [0.66, 1.97] 
9 -11.0 -10.8 1.19 [0.69,2.04] 

IL6 17 -11.1 -10.8 1.22 [0.70,2.11] 
22 -11.0 -11.0 1.04 [0.60, 1.81] 
46 -11.1 -10.8 1.17 [0.68, 2.02] 
4 0.136 0.258 1.09 [0.44,2.71] 
9 0.258 0.266 1.01 [0.41, 2.49] 

TGFBI 17 0.440 0.260 0.88 [0.35,2.21] 
22 0.168 -0.015 0.88 [0.35, 2.22] 
46 0.420 0.113 0.81 [0.32, 2.02] 
4 -1.20 -1.32 0.92 [0.31, 2.68] 
9 -1.17 -1.33 0.89 [0.31, 2.60] 

IL8 17 -1.19 -1.28 0.93 [0.32,2.74] 
22 -1.16 -1.51 0.78 [0.27,2.30] 
46 -1.07 -1.44 0.77 [0.26, 2.27] 
4 -4.25 -4.03 1.17 [0.70, 1.93] 
9 -4.26 -4.09 1.12 [0.68, 1.84] 

TNF 17 -4.38 -4.06 1.25 [0.75, 2.08] 
22 -4.32 -4.33 0.99 [0.59, 1.68] 
46 -4.05 -3.92 1.09 [0.66, 1.82] 
4 0.96 2.21 2.37 [0.54, 10.31] 
9 1.17 2.00 1.78 [0.41, 7.65] 

ILIB 17 1.29 1.98 1.61 [0.37, 7.06] 
22 0.92 1.63 1.64 [0.37, 7.28] 
46 1.14 1.95 1.75 [0.40, 7.66] 

a. Brodmann area 
b. CT,target - Cr,GAPDH; estimated from the fixed effects of the linear models; Aut = autism; 
C.c. = comparison clients 
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Discussion 

Results indicate altered cytokine expression in the cortex of autistic patients, 

where gene transcripts TNF-a, IL-6, TGF~-1, IL-1~, and IL-8 are heterogeneously 

expressed in different cortical regions when compared to controls. BA 22 showed a 

differential pattern of expression in which gene transcript levels were down-regulated 

compared to controls for all transcripts except IL-1~, which appeared up-regulated. IL-1 ~ 

showed the most up-regulation throughout all five cortical regions, with BA 4 showing a 

two-fold increase compared to control samples. Though sample size was limited and no 

statistical significance was determined, these findings suggest that transcriptional changes 

may be related to the neuropathology present in autism. 

The CNS immune profile is only beginning to be revealed in autistic patients, 

where studies demonstrate an active and ongoing neuroinflammatory process in the 

cerebrospinal fluid, cerebral cortex, white matter and cerebellum (Chez et aI., 2007; 1. T. 

Morgan et aI., 2010; Vargas et aI., 2005). Very few studies have investigated cytokine 

expression profiles within the brain tissue of autistic subjects. TGF~-1 was found to be 

significantly increased in cortical and cerebellar tissue when compared to controls, while 

proinflammatory cytokines including IL-6 were significantly increased in the anterior 

cingulate gyrus (Vargas et aI., 2005). Significant increases in several proinflammatory 

cytokines, including IL-6, IL-8, IFNy, and TNFa, have also been demonstrated in the 

frontal cortex of ASD patients (Li et aI., 2009). These postmortem studies indicate that 

cytokine expression at the translational level is significantly different in various cortical 
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regIOns of autistic subjects when compared to neurotypical controls6
. Interestingly, 

although we analyze different cortical regIOns than the abovementioned translational 

studies, our transcriptional results did not indicate significant differences in cytokine 

transcripts of autistic subjects when compared to matched controls. These contradictory 

results suggest that post-transcriptional regulatory mechanisms may playa role in ASD 

pathogenesis. Indeed, investigations of post-transcriptional gene regulatory networks in 

patients with ASD suggest that epigenetic factors, including dysregulation of microRNA 

expression, may contribute to observed alterations in gene expression and lead to the 

pathophysiological conditions that underlie autism (Sarachana et aI., 2010). 

Immune transcriptome alterations in the temporal cortex of ASD patients have 

been previously identified, and microarray studies reveal that greater transcript variability 

is present in the brains of autistic subjects when compared to controls (Garbett et aI., 

2008). Whether this variability is a reflection of the heterogeneity of the disorder or an 

inherent characteristic related to the core neuropathology is not known, but represents a 

serious limitation when drawing conclusions in studies of gene expression in the brain 

tissue of autistic subjects. Another confounding factor that should be considered when 

reviewing results of gene expression in the postmortem human brain involves agonal 

conditions associated with the samples provided. A majority of the patients contained in 

6 Investigators should be cautious when interpreting these results. Multiple investigators 
have reported that brain samples from the Autism Tissue Program show extensive 
degradation, which was discovered after several research groups had already published 
studies using the same tissue. Brain banks need to focus their efforts on establishing 
quality assessment measures prior to distributing brain samples to research laboratories. 
In the meantime, investigators should be cautious drawing conclusions from their 
findings, and perform quality control assessments on tissue to determine whether their 
evidence represents a core pathology associated with ASD or rather is a remnant of poor 
tissue quality. 
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the A TP database died of hypoxic lesions that were ischemic in origin including near 

death experiences associated with drowning. Ischemic reperfusion injuries of this kind 

result in inflammation and oxidative damage primarily targeting white matter, and are 

defined neuropathologic ally by astrogliosis and microgliosis. Thus, there is a distinct 

possibility that the cytokine profiles relayed in Vargas et aI., 2005, Li et aI., 2009, 

Morgan et aI., 2010, and in the current study are attributed to conditions associated with 

near death experiences rather than the autism neuropathology. There is evidence that 

hypoxia has significant effects on RNA integrity in postmortem brain samples (Tomita et 

aI., 2004), and as three of our samples died of injuries that were hypoxic in origin, this 

should be considered a limitation in the present study. Future studies regarding 

neuroinflammatory mechanisms in autism should match samples not only based on age, 

gender and PMI, but also on agonal conditions in order to determine if gene expression 

profiles truly are associated with autism or are simply remnants of the cause of death. 

In conclusion, multiple studies demonstrate that an altered immune profile IS 

present in the brain tissue of autistic individuals. While only a few studies have attempted 

to characterize the cytokine translational profile within various cortical regions, they have 

all revealed significant alterations in cytokine expression in autism. This is the first study 

to report on cytokine transcriptional expression in autism cortical tissue. Surprisingly, 

transcriptional results did not reflect those of translational results reported by other 

groups. This finding has led the investigators herein to conclude that post-transcriptional 

regulatory mechanisms may be putatively responsible for the observed differences in 

translational cytokine expression reported by other groups. The increased expression 

variability among ASD subjects indicates that the disorder may be heterogeneous on the 
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molecular level, further supporting the idea that the interplay between the environment 

and genetics are significant etiological components in this multifactorial disorder. 
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CHAPTER IV 

Intravenous Glutathione Administration and Cytokine Expression Analysis in the 

Plasma of Autistic Children 

Introduction 

Autism spectrum disorders (ASD) are complex neurodevelopmental disabilities 

defined on the basis of a triad of behavioral impairments in three domains: socialization, 

language, and stereotyped behaviors (American Psychiatric Association, 2000). 

Accumulating evidence over the last few decades indicates that immune dysregulation is 

another key feature of the ASD pathology. Gastro-intestinal (GI) abnormalities, including 

inflammation, are frequently reported in children with autism, however the prevalence of 

these GI symptoms is inconsistent and varies widely across studies (Horvath & Perman, 

2002; Molloy & Manning-Courtney, 2003; Taylor et aI., 2002; Valicenti-McDermott et 

aI., 2006). As a result, many non-traditional treatments have been proposed for autistic 

patients, including heavy metal detoxification and nutritional therapies (Aman, 2005). No 

evidence-based studies support these kinds of interventions in the treatment of autism, 

although anecdotal reports claim that they are effective (Christison & Ivany, 2006; Levy 

& Hyman, 2003). Systemic and CNS inflammation is present in patients diagnosed with 

autism, and persist despite oral or intravenous steroid or immunoglobulin therapies 
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(Handen et aI., 2009). Thus, it is undetermined whether there is a pathophysiological 

relationship between autism and GI abnormalities or if these are just unrelated co-existing 

conditions that affect a subset of patients. Regardless, there is clearly some force that is 

driving the ongoing inflammatory response in ASD. 

Oxidative stress, defined as an imbalance between the production and 

manifestation of reactive oxygen species (ROS) and the body's ability to detoxify 

reactive intermediates or repair the damage caused by them, has been demonstrated in the 

peripheral tissues of children with autism (Chauhan & Chauhan, 2006; Keller & Persico, 

2003). Increased nitric oxide levels in red blood cells and higher antioxidant enzyme 

activity have been reported in autistic patients (Sogut et aI., 2003). Chemically, oxidative 

stress is associated with increased production of oxidizing species or a significant 

decrease In the capability of antioxidant defenses, such as glutathione (Schafer & 

Buettner, 2001). The cys-containing tripeptide glutathione is the primary determinant of 

redox status in all human cells because it is a thiol-containing compound that is critical 

for heavy metal detoxification and elimination. Significantly lower levels of glutathione 

peroxidase, an antioxidant enzyme, and plasma glutathione, as well as higher ratios of 

oxidized glutathione to reduced glutathione, have been reported in autistic children and 

indicate that a disruption in antioxidant defense mechanisms is associated with the 

disorder (James et aI., 2004; James et aI., 2006; Yorbik et aI., 2002). 

Oxidative stress occurs in the brain tissue of various neurodegenerative diseases 

including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, 

Huntington's disease, and stroke (Beal, 2002; Neumann et aI., 2008; M. A. Smith et aI., 

1994; Takeda et aI., 2000). The brain is particularly vulnerable to oxidative stress during 

96 



early development because it has low levels of antioxidants, high energy requirements, 

and a high fat and iron content (Juurlink & Paterson, 1998). Astrocytes serve as 

reservoirs for glutathione within the brain, and provide the cysteine necessary for thiol 

metabolism in human neuronal cells. There is growing evidence supporting the role of 

oxidative stress in the brain tissue of autistic subjects (Sajdel-Sulkowska et aI., 2008). 

Postmortem immunohistochemical studies have demonstrated that oxidative damage, 

evidenced by lipid modification, is localized primarily in the white matter of patients with 

autism, suggesting that axons may be the sites of primary oxidative damage within the 

brain of these individuals (Evans et aI., 2008). This evidence is particularly relevant to 

the global underconnectivity deficits demonstrated in ASD (Casanova et aI., 2009), and 

may account for these white matter changes from a molecular perspective. 

Glutathione is the main intracellular antioxidant and protects neurons from 

oxidative stress (Siesjo et aI., 1980). Thus, impaired glutathione production contributes to 

oxidative stress, which could delay the clearance of heavy metals or xenobiotics. 

Glutathione deficiency has been associated with Parkinson's disease, schizophrenia, 

ADHD, HN, and inflammatory bowel disease (Do et al., 2000; Dvorakova et aI., 2006; 

Iantomasi et aI., 1994; Jenner, 1993; Kalebic et aI., 1991). Although studies of 

glutathione expression in postmortem brain tissue of autistic subjects remain to be 

performed, systemic studies clearly indicate dramatically lower glutathione in ASD, 

which suggests that autistic children may have more difficulty resisting infection, 

resolving inflammation, and detoxifying environmental contaminants (James et aI., 

2006). The control of intracellular redox status is vital to proper cellular function via 

transcription factor-regulated intracellular signaling pathways that culminate in the 
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transcription of proinflammatory cytokines (see Figure 1 below). During oxidative stress 

and inflammation, transcription factors including NF-K13 are activated and lead to the up­

regulation of proinflammatory genes (Arrigo, 1999; Mercurio & Manning, 1999). The 

redox status of glutathione in particular is essential for the transcriptional regulation of 

these proinflammatory genes, and increasing intracellular glutathione has been shown to 

decrease the release of cytokines and chemokines by decreasing NF-K13 activation 

(Rahman et ai., 2005). Specifically, the NF-K13 family of transcription factors is known to 

activate the expression of IL-1~, TNF-a, IL-6 and IL-8 (Akira & Kishimoto, 1997; 

Gotoh & Cooper, 1998; Rahman & MacNee, 1998). Thus, given that intracellular 

glutathione levels are low in ASD subjects (James et ai., 2006), it is expected that an over 

abundance of pro inflammatory cytokines will be expressed systemically. Indeed, several 

studies demonstrate that proinflammatory cytokine levels are significantly increased in 

the plasma and whole blood of autistic individuals (Ashwood et ai., 2011; Croonenberghs 

et ai., 2002a; Singh, 1996). In addition, increases in specific cytokine levels in autistic 

children have been associated with more impaired communication and aberrant behaviors 

(Ashwood et ai., 2011). In this study, it is proposed that peripheral administration of 

exogenous glutathione in autistic children will result in a decrease of the expression of 

pro inflammatory cytokines in plasma and improvements in behavioral outcome. 
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Figure 1. Oxidative stress alters the intracellular concentrations of glutathione (GSH), 
which modulates NF-lCB activation leading to the transcription of proinflammatory 
cytokines. 

Pro-inflammatory gene expression 
TNF-a, IL-8, IL-1 P 

It is challenging to determine how the immune-brain connection is responsible for 

creating and maintaining the ongoing eNS inflammatory response and abnormal 

metabolic profiles in autism. Exposures to environmentally toxic agents, disturbances in 

redox homeostasis and perturbations in immune balance have all been proposed as 

contributing factors to the pathophysiology of ASD. The cause of oxidative species in 

autism is not known but could be a result of exposure to environmental toxins such as 

heavy metals or infections during early development. It has been shown that chronic 

methylmercury exposure in primate cortex leads to a large increase in activated 

microglia, suggesting that heavy metal exposure may not only play an etiologic role in 
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oxidative stress but also in microglia-based neuroinflammation which is evident in autism 

(Charleston et aI., 1994; Vargas et aI., 2005). Additionally, thimerosal and inorganic 

mercury lower glutathione levels in a dose-response fashion in cultured human neuronal 

cells (Deth & Muratore, 2010). It is important to keep in mind that the production of ROS 

occurs in the course of normal physiological processes, however oxidative stress occurs 

when an overabundance of ROS causes cellular damage. The most important intracellular 

determinant of redox status is glutathione, and depleted levels of glutathione in patients 

with autism are an indication of oxidative stress (James et aI., 2004). It is proposed here 

that weekly exogenous administration of glutathione will decrease the expression of 

proinflammatory cytokines measured in the plasma of children with ASD, and be 

correlated with behavioral improvement. In this way, modification of systemic 

glutathione levels and thereby cytokine expression may offer molecular therapeutic 

mechanisms in children diagnosed with ASD. 

Materials and Methods 

Subjects 

Participants were enrolled in the study through the Kosair Charities Pediatric 

Research Unit at Kosair Children's Hospital in Louisville, Kentucky. Children with 

autism and severe behavior problems between the ages of 5 and 17 years old were invited 

to participate in this research study through the Department of Pediatrics at the University 

of Louisville Health Sciences Center, Weisskopf Child Evaluation Center, and Kosair 

Children's Hospital. Participants included 19 children with ASD (mean age 8.1, 17 

males). This study was approved by the University of Louisville institutional review 
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board (GLUTATHIONE-KCPCRU-Ol; HSPPO #08.0220) and complied with all 

requirements regarding human subjects. Parents gave informed consent. Prior to study 

inclusion, the Autism Diagnostic Interview-Revised (ADI-R) was administered to 

confirm that each patient met diagnostic criteria. Rating scales were administered at 

designated times throughout the study per the protocol schedule to determine changes in 

behavior with treatment. The Clinical Global Impressions Improvement (CGI-I) Scale 

was completed to assess change in response to treatment. This assessment has been used 

extensively in psychiatric treatment studies and has been shown to have good reliability 

and validity. 

Study Design 

This was placebo-controlled and double-blind study, in which parents, study 

doctors and research nurses did not know when each child received which treatment. 

Patient participation lasted up to five months and included 18 study visits (including the 

screening visit). Once diagnosis was confirmed, a pre-drug phase screening visit was 

scheduled during which time written consent and a baseline blood specimen (-1 

teaspoon) was obtained. Subjects were randomized to receive either glutathione or 

placebo (normal saline) intravenously over 15 minutes on a weekly basis. Randomization 

ensured that subjects received either glutathione or placebo in the first 2-month block and 

then crossed over to the alternate treatment in the second 2-month block. There was one 

week between the glutathione and placebo treatments during which time subjects did not 

receive any study drug. 
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During weeks 1-8, subjects received weekly injections of glutathione or placebo 

(whichever they were randomized to during that 2-month block). At week 9, the subject 

did not receive study drug and a blood specimen (-1 teaspoon) was collected. The subject 

crossed over to the other treatment during weeks 10-17 and at week 18 the subject did not 

receive study drug and a final blood specimen (-1 teaspoon) was obtained. Subject and 

sample information is contained in Table 8 below. 
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Table 8. Subject and sample information for glutathione study 

Subject # Gender Age Collection Type Collection Date 
002 M 10 Placebo 10/09/09 
003 M 9 Glutathione 9125/09 

004 M 6 
Glutathione 09/04/09 

Placebo 11106/09 

005 M 7 
Glutathione 10/09/09 

Placebo 12/11109 
Baseline 08128/09 

006 F 6 Placebo 11106/09 
Glutathione 01108/10 

Baseline 10123/09 
009 M 9 Placebo 12/31109 

Glutathione 03/05/10 
Baseline 11106/09 

010 M 10 Placebo 01115/10 
Glutathione 03/19/10 

Baseline 01129/10 
013 M 7 Placebo 04/09/10 

Glutathione 06/11110 
Baseline 02/05/10 

014 M 7 Glutathione 04/16/10 
Placebo 06/18/10 

015 F 11 Baseline 02/12/10 
Baseline 04/02/10 

016 M 8 Placebo 06/11/10 
Glutathione 08/13/10 

Baseline 04/16/10 
017 M 11 Glutathione 07/01110 

Placebo 09/03/10 
Baseline 04123/10 

018 M 6 Placebo 07/09/10 
Glutathione 08127/10 

Baseline 09/17/10 
020 M 6 Placebo 11126/10 

Glutathione 01128/10 

021 M 8 
Baseline 10129/10 
Placebo 01107/11 

022 M 6 Baseline 02/18/11 
023 M 7 Baseline 12/03/10 
024 M 11 Baseline 02125/11 
025 M 9 Baseline 02/25/11 
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Sample preparation 

For each subject, peripheral blood was collected in acid-citrate dextrose 

Vacutainers (BD Biosciences; San Jose, CA), centrifuged at 2,000 rpm for 20 minutes at 

room temperature, and the plasma harvested. Plasma was aliquoted and stored at -20°C 

at the Kosair Charities Pediatric Clinical Research Unit facility. Plasma samples were 

transplanted on ice every 2 months to the Molecular Anthropology and Population 

Studies (MAPS) laboratory at the University of Louisville Health Sciences Center where 

they were stored at -20°C until cytokine analysis. 

Multiplex Analysis 

Quantification of cytokines in the plasma were determined using human 

multiplexing bead immunoassays (Invitrogen, Carlsbad, CA) that are based on sandwich 

immunoassays that utilize Luminex® fluorescent-bead-based technology. Plasma samples 

were run in concordance with the human cytokine 1O-plex assay (Invitrogen) as 

recommended by the manufacturer. The following cytokines were measured: Interleukin-

113 (IL-lj3), IL-2, IL-4, IL-5, IL-6, IL-8, IL-1O, interferon-y (IFN-y), tumor necrosis 

factor-a (TNF-a), and granulocyte macrophage-colony stimulating factor (GM-CSF). 

Briefly, all samples were clarified by centrifugation (1,000 g for 10 min) prior to 

analysis. 50 ilL of plasma was diluted 1: 1 in human cytokine 1O-plex assay diluent and 

incubated with antibody-coupled beads for two hours at room temperature on an orbital 

shaker at 500-600 rpm. Between each step the complexes were washed twice in wash 

buffer (Invitrogen) and aspirated using a vacuum manifold. The beads were then 

incubated with a biotinylated detector antibody for one hour before incubation with R-
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Phycoerythrin (streptavidin-RPE) for 30 minutes. Finally, the complexes were 

resuspended in 100 ilL of wash buffer and analyzed using a flow-based Luminex® 1O0™ 

device (Luminex Corporation, Austin, TX). Sample cytokine concentrations were 

calculated using a standard curve derived from the known reference cytokine 

concentrations supplied by the manufacturer. A five-parameter algorithm model with a 

weighted function (lIl) was used to calculate final concentrations and values are 

expressed in pg/mL. 

Statistical Analysis 

Sample cytokine concentrations III pg/mL were estimated by inverting the 

response curves, which were calculated using samples of known concentration provided 

by the manufacturer. Mean MFI (maximum fluorescence intensity) for a gIven 

concentration was modeled using a five-parameter logistic curve in the form 

recommended by Liao and Liu (Liao & Liu, 2009): 

A-D 
MFI = D +------

[1 + (21/g -1)( ;. )b
g

] 

The parameters were estimated by maximum likelihood, assuming that the observed MFI 

followed a Poisson distribution. Cytokine concentrations between glutathione and 

placebo phases were tested using the Wilcoxon signed rank test for matched pairs. In all 

there were 11 matched pairs because one subject, #003, had glutathione data but no 

placebo data. The null hypothesis for each cytokine was that there would be no difference 

in concentration between placebo and glutathione phases. The alternative hypotheses 

were that concentrations of pro-inflammatory cytokines would be reduced under 
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glutathione treatment, and that other cytokine levels would differ in either direction from 

their placebo values. P-values were corrected for multiple comparisons using the false 

discovery rate (Benjamini & Hochberg, 1995). All calculations were performed using R 

software version 2.10.0 (R Development, 2011). 

Results 

Cytokine levels for mne of the ten cytokines investigated did not differ 

significantly between ASD patients who received placebo or glutathione administration 

when the Benjamini Hochberg correction was applied (Table 9). Median plasma cytokine 

levels were not calculable for GM-CSF as they were below the sensitivity limit of 

detection by the Luminex® 1O0™ device. CGI-I test scores indicated that no change was 

evaluated in most (8/12) autistic subjects in response to treatment with glutathione, and 

two subject's behavior actually worsened with glutathione treatment (Table 10). One 

subject, #009, reportedly had minimal improvement to little change in behavior with 

glutathione administration and another subject, #004, had minimal to much improvement 

in behavior with glutathione administration. Only two subjects had much improved 

behavior reported on the CGI-I scale, and both of these values were associated with 

placebo administration. 
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Table 9. Comparison of median plasma cytokine levels in children with ASD at baseline, 
placebo and glutathione blood draws 

Cytokiner Baseline (n=15) Placebo (n=13) Glutathione (n=12) P-values (n=l1) 
IFN-y 1.009 1.009 1.129 0.584 

IL-l13 0.829 0.097 0.995 0.6637 
IL-2 0.427 0.868 0.321 0.4755 
IL-4 6.486 6.486 6.332 0.8311 
IL-5 0.120 0.120 0.122 0.0144 
IL-6 1.781 1.416 1.689 0.4492 
IL-8 5.940 7.737 8.339 0.7676 

IL-I0 0.550 0.632 0.865 0.3326 
TNFu 1.032 1.842 0.821 0.6499 

* All values are measured in pg/mL. 
t GM-CSF concentrations are not reported as they were below the sensitivity limit of 
detection. 
§ P-values were calculated using the Wilcoxon rank test for matched pairs between 
glutathione and placebo groups. When corrected for multiple comparisons using the false 
discovery rate, none of these P-values reached statistical significance at p ::; 0.05. 
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Table 10. Comparison of treatment and CGI-I scores 

Subject # Treatment CGI-I Score'" 
002 Placebo 2 
003 Glutathione 4 

004 
Glutathione 2.5 

Placebo 2 

005 
Glutathione 4 

Placebo 4 

006 
Placebo 4 

Glutathione 4 

009 
Placebo 3 

Glutathione 3.5 

010 
Placebo 4 

Glutathione 4 

013 
Placebo 2 

Glutathione 5.5 

014 
Glutathione 4 

Placebo 4 

016 
Placebo 4 

Glutathione 4 

017 
Glutathione 4 

Placebo 4 

018 
Placebo 5 

Glutathione 5 

020 
Placebo 4 

Glutathione 4 
021 Placebo 4 

* Compared to the patient's condition prior to initiation of treatment, this patient's 
condition is rated as: 1 =very much improved; 2=much improved; 3=minimally improved; 
4=no change from baseline; 5=minimally worse; 6= much worse; 7=very much worse 
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Discussion 

The etiology of ASD remains unknown, but accumulating evidence indicates that 

there is an association between the ASD pathology and immune dysfunction. 

Peripherally, altered T cell function, increased natural killer and monocyte cell activation, 

and altered immunoglobulin profiles have been demonstrated in autistic individuals 

(Ashwood & Wakefield, 2006; Croonenberghs et aI., 2002a; Enstrom et aI., 2009; 

Saresella et aI., 2009; Sweeten et aI., 2004). Neuroinflammation is another characteristic 

finding in autism (Vargas et aI., 2005). Oxidative damage, evidenced by plasma 

glutathione deficiency, is also present in individuals with ASD (James et aI., 2004). The 

mechanisms linking immune and neuropathological dysfunction in ASD are still unclear, 

but evidence indicates that specific cytokines are capable of affecting neurodevelopment 

and consequently, behavior. Cytokines and cytokine receptors in the CNS modulate 

neural differentiation and plasticity. IL-6 is known to alter neuron proliferation and 

survival, cortical neuron dendrite development, neural activity and long-term potentiation 

(Gadient & Patterson, 1999; Juttler et aI., 2002; Mehler & Kessler, 1998). Other 

cytokines, including IL-1 p and TNF-a, are associated with neurite growth, 

oligodendrocyte toxicity, and regulation of homeostatic synaptic plasticity in the 

hippocampus (Barker et aI., 2001; Cacci et aI., 2008; Munoz-Fernandez & Fresno, 1998). 

Taken together, these findings suggest that cytokine dysregulation during the process of 

neurodevelopment may have significant biological effects on neuronal development and 

activity, which would negatively affect behavior. 

It is likely that dysfunctional immune activity related to cytokines may affect the 

core features of ASD. Significant elevation of IL-1 p, IL-6, IL-8 and IL-12p40 cytokine 
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levels have been reported in the plasma of ASD children, and those with a regressive 

form of ASD exhibited higher levels compared to children with non-regressive ASD 

(Ashwood et aI., 2011). Furthermore, impairments in behavior were more pronounced as 

certain cytokine levels increased, such that IL-4 levels were associated with greater 

impairments in non-verbal communication, and significant associations were observed 

between increased IL-6, IL-8, and IL-1 ~ levels and aberrant behaviors assessed by the 

Aberrant Behavior Checklist (Ashwood et aI., 2011). Systemic modulation of cytokine 

expression, therefore, may provide therapeutic applications for ASD children with severe 

behavioral problems. Given that increasing intracellular glutathione levels has shown to 

decrease the release of proinflammatory cytokines, exogenous glutathione treatment 

offers a possible molecular therapy capable of putatively decreasing the expression of 

those cytokines associated with aberrant behaviors, and ultimately resulting in behavioral 

improvement in affected individuals. 

In the present study, no significant changes in cytokine levels were reported in the 

plasma of ASD children in response to treatment with glutathione. CGI-I scores assessed 

throughout the study indicated that no significant changes in behavior were reported in 

response to glutathione treatment. Glutathione is synthesized intracellularly from 

glutamate, cysteine and glycine and is located largely within the cell (Voet & Voet, 

2004). Exogenous administration of glutathione has been shown to have a very short half 

life in human plasma, with rapid elimination and total clearance within approximately 10 

minutes (Wendel & Cikryt, 1980). Thus, one possibility as to why cytokine expression 

levels were not affected by exogenous glutathione administration could be that the 

tripeptide was simply unable to permeate cell membranes due to it being metabolized so 
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quickly within the bloodstream. Repleting glutathione levels with precursors of its 

synthesis, such as N-acetyl-cysteine (NAC) or 2-oxothiazolidine-4-carboxylic acid may 

prove to be more applicable treatments for increasing intracellular glutathione levels in 

ASD as cysteine precursors are more cell-permeable, and may even be given orally 

(Ghezzi, 2011). Modification of intracellular glutathione levels should still be considered 

a possible molecular therapy capable of regulating systemic proinflammatory cytokine 

expression and behavioral outcome in autistic children but not with exogenous 

administration of glutathione itself. Instead, treatment should focus on precursors of 

glutathione synthesis that are more permeable and metabolized more slowly, so that 

changes in intracellular glutathione levels may have more long-lasting effects on NF-1d3 

activation, proinflammatory cytokine expression, and ultimately behavior. 
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CHAPTER V 

Discussion 

Review of Findings 

Previous investigations demonstrate that abnormalities in cytokine translational 

expression levels both systemically and in the CNS are one component of the immune 

dysfunction that characterizes a subset of subjects with ASD. Some of these results are 

contradictory (see Table 1) and could be a reflection of discrepancies between studies in 

terms of classification and inclusionary criteria, methodology, co-morbidity presence, 

immunization status, or co-administration of psychotropic medications. Contradictory 

evidence could also confirm the presence of yet undetermined immune derived 

endophenotypes within ASD. Immune activation during pregnancy alters cytokine 

expression in maternal serum, the placenta, and fetal brain (Urakubo et aI., 2001; 

Gillmore et aI., 2005; Depino, 2006). Evidence for CNS and immune dysfunction 

involving cytokines in ASD led to the hypothesis purported here: that autism 

pathogenesis is caused by the combination of genetic susceptibility in cytokine genes and 

a second "hit" prenatal infectious scenario that occurs during specific periods of 

development. The primary questions of each investigation are as follows: 

1.) Do cytokine genes differ between autistic subjects and controls? 

2.) Does cytokine transcriptional expression reflect previously qualified values of 

translational expression in the cerebral cortex of autistic patients? 
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3.) Can cytokine expression profiles and behavior be modified systemically with 

glutathione administration in children with ASD? 

The findings of each investigation are reviewed below. 

SNP Investigation 

Polymorphisms within the regulatory regions of cytokine genes are known to 

effect expression levels and playa role in a variety of diseases. Thus, experimental aim 1 

was to characterize different SNPs of selected candidate genes encoding cytokines in 

autistic patients and controls to determine if any cytokine SNPs are associated with ASD. 

Twenty-two single nucleotide polymorphisms (SNPs) in 11 cytokine genes (ILIA, lLIB, 

IFNG, TGFB1, TNF, IL2, llA, IL6, IL12B, ILI0), two cytokine receptors (ILIRl, lIAR) 

and one cytokine receptor antagonist (ILl RN) were analyzed. These genes were chosen 

because they represent cytokines from both the innate and adaptive immune responses. 

ASD DNA samples were obtained through an online cell repository and recruited for the 

study at the University of Louisville Hospital. Control samples were obtained though 

amalgamated population surveys available in an online database. Tests for Hardy­

Weinberg equilibrium in both ASD and control cohorts indicated no statistically 

significant p-values following a multiple-test correction, indicating that the two groups 

were genetically comparable at the investigated locations. Results indicated that 

pro inflammatory ILl Rl + 1970T, and anti-inflammatory llA -590T and -33T alleles are 

significantly different in ASD patients compared to controls. This analysis suggests that 

these cytokine SNPs may confer susceptibility to the disorder. 
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Transcription Investigation 

Recent research indicates that a neuroinflammatory scenarIO IS present In 

individuals with autism, evidenced by abnormal cytokine translational expression In 

various cortical regions (Li et aI., 2009; Vargas et aI., 2005). To investigate whether a 

neuroinflammatory scenario is present at the transcriptional level, the mRNA profiles of 

four cytokines (TGF~-l, 1L-1~, 1L-6 and TNF-a) and one chemokine (1L-8) were 

analyzed in five regions of the cerebral cortex (BA 4,9, 17,22, and 46) of postmortem 

brains in eight autistic-control pairs. Autistic and control brain specimens were obtained 

through the Autism Tissue Program and formaldehyde-fixed sections corresponded to 

primary motor (BA 4), dorsolateral prefrontal (BA 9 and 46), primary visual (BA 17) and 

superior temporallWernicke's (BA 22) cortical areas. No significant difference was found 

in mean age or postmortem interval between autistic and control samples, indicating that 

these groups were comparable. RNA extraction and reverse transcription reactions were 

followed by real-time peR analysis, where GAPDH was used as the housekeeping gene. 

Statistical analysis used a mixed effects linear model to account for correlation between 

measurements of different Brodmann areas within the same brain, and results indicated 

that relative expression of all five target genes did not vary significantly by cortical 

location between autistic and control groups. Thus, these transcriptional results do not 

indicate that a neuroinflammatory scenario is present at the transcriptional level. Because 

increased levels of proinflammatory cytokines have been evidenced at the translational 

level (see Table 1), the investigators herein concluded that post-transcriptional regulatory 

mechanisms may be putatively responsible for the observed differences in translational 

cytokine expression and warrant future study. 
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Glutathione Investigation 

Oxidative stress, evidenced by depleted levels of plasma glutathione, indicate that 

a disruption in antioxidant defense mechanisms is associated with ASD (James et aI., 

2004). During oxidative stress and inflammation, transcription factors including NF-KB 

are activated and lead to the up-regulation of proinflammatory cytokines. Increases in 

several proinflammatory cytokines have been demonstrated in the plasma of ASD 

children, and specific cytokine levels have been associated with more impaired 

communication and aberrant behaviors (Ashwood et aI., 2011). It has been demonstrated 

that increasing intracellular glutathione decreases the activation of NF-KB and results in a 

decrease in the release of proinflammatory cytokines and chemokines (Rahman et aI., 

2005). To investigate whether cytokine expression can be modified systemically and 

demonstrate a correlation with behavioral change, exogenous glutathione was 

administered weekly in children with ASD and their plasma analyzed after a 2-month 

treatment block. ASD children were recruited for this study through Kosair Charities 

Pediatric Research Unit at Kosair Children's Hospital. This study was double-blind and 

placebo controlled. Multiplex analysis of ten cytokines (GM-CSF, IL-l p, IL-2, IL-4, IL-

5, IL-6, IL-8, IL-lO, IFN-yand TNF-a) was performed using a Luminex® 100 device and 

statistical analysis was performed using the Mann Whitney Wilcoxon test. Results 

indicated that there was no significant difference in median cytokine concentrations for 

nine of the ten cytokines investigated between ASD patients who received placebo or 

glutathione administration. The median plasma cytokine concentrations of GM-CSF were 

not calculable as they were below the sensitivity limit of detection by the Luminex® 

100rM device. CGI-I test scores indicated that little to no change was evaluated in the 
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majority of autistic subjects in response to treatment with glutathione. As exogenous 

administration of glutathione has been shown to have a very short half-life in human 

plasma, it was concluded that cytokine expression levels were not affected by glutathione 

administration because the tripeptide was simply unable to permeate cell membranes due 

to its quick systemic elimination. Repleting glutathione levels with precursors of its 

synthesis, such as N-acetyl-cysteine (NAC) or 2-oxothiazolidine-4-carboxylic acid may 

prove to be more applicable treatments for increasing intracellular glutathione levels in 

ASD, as these cysteine precursors are more cell-permeable (Ghezzi, 2011). This study 

demonstrates that exogenous administration of glutathione is not sufficient to change 

cytokine expression or aberrant behavior in ASD children. Changes in intracellular 

glutathione levels mediated by cysteine precursors may have more long-lasting effects on 

NF-KB activation, proinflammatory cytokine expression, and behavioral improvement. 

Limitations of Findings 

There are inherent statistical Issues with analyzing multiple polymorphic sites 

within a genetic association study. One critical assumption in calculations of genotypic 

frequency within a small sample cohort is that the estimated allele frequencies exactly 

equal the underlying allele frequencies in the population being considered. In analyzing a 

cytokine panel that contains 13 genes, there is roughly a 50% chance of obtaining a 

significant result by chance. In order to correct for multiple comparisons, the Benjamini 

Hochberg method was used. One limitation in the SNP study, therefore, is the possibility 

that some important data may have been obviated during the application of the Benjamini 

Hochberg correction. Another significant limitation was the number of ASD samples 

116 



available for companson. Generally, statistical power increases with the number of 

individuals studied in genotypic investigations, and ideal genotype studies involve 

hundreds, if not thousands, of individuals (Purcell et aI., 2003). This investigation was 

limited by the 49 ASD subjects that could be recruited from the University of Louisville 

Hospital for participation during the duration of the study. Future investigations of 

cytokine genetics in ASD should analyze sample sizes that include much larger sample 

cohorts. Perhaps the most significant limitation contained in the SNP study is the 

assumption that the contribution of particular cytokine SNPs influences inflammation and 

the etiology of ASD equally. Just as ASD is heterogeneous, so too may be the etiological 

mechanisms that confer susceptibility to the disorder. In other words, it is possible that 

specific SNPs may be associated with the ASD SUbtypes or even with comorbidities that 

so often occur within these SUbtypes. Thus, future research into any genotype analysis 

regarding ASD should correlate subtype classification with SNP frequency for the most 

robust conclusions. 

Two significant limitations in the analysis of cytokine transcriptional profiles 

included agonal conditions associated with the samples investigated, as well as issues of 

tissue quality provided by the brain bank. These issues affect all immunocytochemical 

studies of postmortem brain tissue from autistic subjects as investigators receive their 

tissue from the same brain banks. Several of the autistic patients studied here and 

elsewhere in the literature died of hypoxic lesions that were ischemic in origin. Ischemic 

reperfusion injuries of this kind result in inflammation and the oxidative damage that 

have been interpreted as characterizing an "autistic" neuropathology. Due to these issues 

of agonal conditions associated with the samples available, it has not been definitively 
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demonstrated that the neuroinflammation (and cytokine expression) present in these 

tissues represents a core pathology associated with ASD or are rather secondary reactions 

of this tissue associated with the cause of death. Additionally, multiple investigators who 

received samples from the Autism Tissue Program have reported extensive degradation 

in their tissue. While RNA quantification was performed prior to analysis in this 

investigation, brain banks should focus their efforts on establishing quality assessment 

measures prior to distributing tissue to research laboratories. Otherwise, remnants of poor 

tissue quality may be inferred as pathological findings inherent to the ASD phenotype. 

While there are several advantages of Luminex® analysis, there are also several 

major problems. Baseline levels and detected levels of cytokines and other proteins 

reported in studies that use Luminex technology are not the same as those observed by 

ELISA techniques, or of other immunoassay kits (Loo et aI., 2011; Richens et aI., 2010). 

Cytokine concentrations reported in the study of glutathione treatment did not match 

those reported by other groups, and this is likely attributable to issues associated with the 

specific kit being used for analysis. Different manufacturers use different buffering, 

antibodies, and antibody sensitivities, and design their systems to start at higher or lower 

baselines with more or less dynamic ranges in order to fit mUltiple assays into one kit. 

Thus, cytokine levels cannot be compared across different manufacturers. Additionally, 

under physiological conditions cytokines are generally low and many patients simply do 

not have detectable cytokines in their plasma (de Jager et aI., 2009). GM-CSF was not 

detectable in any of the plasma analyzed in the glutathione study. Although the cytokine 

concentrations reported in this study did not match concentrations measured by other 

groups, the baseline trends were similar and the reliability of the behavioral results is 
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unequivocal. Exogenous glutathione administration does not ameliorate aberrant behavior 

in autistic children and does not warrant therapeutic application in future research, 

although modification of intracellular glutathione via the use of precursor molecules may 

modify cytokine expression systemically in ASD children and result in improved 

behavioral outcome. 

Infection and inflammation during neurodevelopment: Common mechanisms in collateral 

neuropathological damage 

The fetal and neonatal Immune system has significant influences on the 

developing CNS, and immune dysfunction during critical periods of development carries 

serious neuropathological implications. Increasing evidence suggests that progressive 

CNS damage is mediated by immune mechanisms, which may be contributing factors of 

susceptibility in Alzheimer's disease, Parkinson's disease, and schizophrenia (Long­

Smith et aI., 2009; Porcellini et aI., 2010; Teixeira et aI., 2008). Review of current 

research regarding neurodegeneration in the presence of neuroinflammation has led some 

investigators to postulate that inflammatory and neurodegenerative pathologies of the 

CNS share common molecular mechanisms (Zipp & Aktas, 2006). A classic example to 

substantiate this theory can be found in studies of mUltiple sclerosis (MS). As a 

demyelinating disease, previous research focused on oligodendrocyte and white matter 

dysfunction. Subsequently, a century of histopathological study ignored the significance 

of neuronal damage in MS, and it was not until the 1990s that early axonal pathologies in 

the brains of MS patients were correlated with the degree of inflammation within a lesion 

(Trapp et aI., 1998). Since then, infiltration of immune mediators into brain parenchyma 
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has proven to have severely deleterious effects on neuronal tissue, as evidenced by 

Wallerian degeneration in MS and neuronal apoptosis in bacterial meningitis and HIV 

encephalopathy (Evangelou et aI., 2000; Kaul et aI., 2001; Nau & Bruck, 2002). Neuronal 

damage was considered an indirect consequence of immune cell invasion since immune 

cells did not usually have neuronal antigens and supposedly had no affinity for neurons 

since they did not express major histocompatibility complex molecules. However, recent 

evidence illustrates that activated immune cells actually do have the capacity to directly 

target neurons and induce apoptosis in the inflamed brain (Giuliani et aI., 2003). 

Perinatal exposure to infectious agents is linked to the pathogenesis of 

neuropsychiatric disorders, but the mechanisms responsible for triggering the interaction 

of the developing immune system and eNS which result in neurodevelopmental 

disturbance have yet to be discovered. Epidemiological studies indicate that pregnant 

women exposed to second-trimester respiratory infection have a significantly increased 

risk for giving birth to a child that will develop schizophrenia (A. S. Brown, 2006). 

Recent epidemiological research also indicates that early prenatal viral infection is 

associated with ASD incidence (Altadottir et aI., 2010). Mouse models of intrauterine 

infectionlinflammation cause cognitive deficits and neurodegeneration in their offspring 

(Golan et aI., 2005). Inflammatory responses in the fetus and neonate have been shown to 

contribute to cerebral white matter damage (Rezaie & Dean, 2002). Regarding autism, 

several pre- and perinatal environmental exposures have been investigated using animal 

models. 

Although the use of animal models in investigations of neuropsychiatric disease is 

controversial, measurements of behavioral, functional, anatomical, and histological 
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characteristics parallel those found in humans and thus warrant review. Neonatal 

infection with borna disease virus has been proposed as a model of neurodevelopmental 

damage in rats that causes cytoarchitectural features and behavioral abnormalities similar 

to those observed in children with autism (Hornig et aI., 1999). It has been proposed that 

genetic susceptibility and exposure to a maternal immune response (rather than direct 

infection of the fetus) are key players in the development of the autism phenotype 

(Patterson, 2005). Offspring of pregnant mice who are injected with poly(l:C) to mimic 

viral infection during early gestation show cerebellar pathologies consistent with those 

seen in autism (Shi et aI., 2009). Systemic lipopolysaccharide (LPS) administration, a 

commonly used experimental method designed to mimic bacterial infection, is known to 

induce a peripheral inflammatory response that crosses the BBB and affects cognitive 

function, dendritic structure, neuronal and glial proliferation, and in some cases produces 

brain lesions (Hagberg & Mallard, 2005). There is substantial evidence to suggest that 

proinflammatory cytokines, particularly IL-6, mediate the effects of maternal immune 

activation on fetal brain development (S. E. Smith et aI., 2007). This should come as no 

surprise, since it has been established that IL-6 effects brain development, the balance 

between neurogenesis and gliogenesis, learning, memory, and the CNS response to injury 

and disease (Bauer et aI., 2007; He et aI., 2005). Although the precise mechanisms of 

fetal brain activation are yet undetermined, evidence indicates that immune mediators 

have a significant role in the pathogenesis of autism and other neuropsychiatric disorders. 

Neuroglial cells have significant roles in pre- and postnatal neurodevelopment, 

thus prenatal neuroimmune disruption mediated by these cells can have profound 

neurological ramifications. Microglia and astroglia, for example, are involved in cortical 
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organization, neuroaxonal guidance and synaptic plasticity (Fields & Stevens-Graham, 

2002). Astrocytes promote neuronal survival by releasing growth factors and controlling 

uptake and removal of excitotoxic neurotransmitters from the synaptic microenvironment 

(Nedergaard et aI., 2002). Astrocytes also produce several soluble factors that promote 

synaptogenesis (Barres, 2008). In a study of human fetal astrocytes, TLR3 was the only 

TLR with consistent expression in the resting state, which is known to bind double 

stranded RNA in the presence of a viral infection (Farina et aI., 2005). Microglia have 

roles in late embryonic brain development and early postnatal brain maturation by 

modulating axon pathfinding and inducing neuronal apoptosis, phagocytosis, synapse 

refinement, and innate immunity (Chamak et aI., 1994; Deverman & Patterson, 2009). 

Embryonic microglia also secrete factors that are angiogenic, and depletion of microglia 

during neonatal development reduces vascularization (Checchin et aI., 2006). All neural 

and glial cell types in the developing CNS use cytokines for paracrine and autocrine 

signaling. Since cytokines also serve as peripheral immune regulators, it follows that 

neurodevelopmental processes are vulnerable to disruption by immune dysregulation 

occurring prenatally in the form of maternal infection. 

While neuronal damage is a characterizing feature of neuroinflammatory disease, 

it is unclear whether neuroinflammation is a consequence of neurodegeneration or vice 

versa. Molecular imaging techniques will be required to reveal the precise mechanisms 

shared by each pathological condition. Although various neurological diseases differ 

considerably etiologically and pathologically, many share crucial inflammatory processes 

and immunological mechanisms that cause brain damage. Future research that targets 

these processes will focus on the interface of immune response and neuronal 
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homeostasis, and elucidate novel therapeutic applications for both neurodegenerative and 

neurodevelopmental disorders. 

Conclusions 

ASD remams a pervasIve idiopathic neurodevelopmental disorder with a 

characteristic neuropathology that is associated with specific behavioral deficits. While 

accumulating evidence suggests that genetic and immunological components have 

significant pathogenic roles in the development of ASD, inheritance patterns and immune 

mechanisms are complex and difficult to interpret in a disease defined by heterogeneity. 

In addition to the assorted behavioral manifestations on the spectrum, endophenotypes of 

ASD based on genetic or immunologic markers may be associated with symptom severity 

in subsequent studies. The notion that prenatal factors are involved in autism is currently 

only speculative but has significant implications. Maternal and/or fetal immune activation 

during critical periods of development may permanently alter the fetal immunological 

balance and predispose the fetus to a lifetime of chronic inflammation both peripherally 

and in the CNS. Collaboration will be imperative in future studies, which should be 

performed on larger cohorts of ASD patients and aim to rectify inclusionary criteria for 

both patient and control cases. Well-designed demonstrations of environmental influence 

on neurodevelopmental trajectories will provide coherent and compelling molecular 

mechanisms by which genetic susceptibility and prenatal immune challenge contribute to 

the etiology of autism. Longitudinal studies that begin prior to diagnosis would provide 

ideal means for understanding whether changes in cytokine expression play an etiologic 

role or have predictive potential in ASD, or whether they are purely phenomenological. 
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The investigations contained herein add to the growing research that implicates 

cytokines in the pathogenesis of ASD. These novel findings indicate that SNPs in the 

cytokine genes ILl Rl + 1970, and IIA -590 and -33 are significantly different in a cohort 

of ASD patients when compared to controls, and suggest that the T allele at each of these 

locations may confer susceptibility to ASD. In the first investigation of cytokine 

transcriptional expression in the cortical tissue of autistic subjects, it was found that 

cytokine mRNA expression does not differ significantly in the cortex of autistic patients 

when compared to controls. Given that translational expression patterns do indicate 

significant alterations in cytokine expression at the protein level, this work suggests that 

post-transcriptional regulatory mechanisms may be responsible for altered translational 

cytokine profiles in cortical tissue of autistic individuals. This was the first study to 

investigate the use of exogenous glutathione as a therapeutic application in modifying 

systemic cytokine expression and ameliorating aberrant behaviors associated with ASD. 

Results indicated that exogenous glutathione administration is not sufficient for systemic 

modification of cytokine expression and that, contrary to anecdotal reports, glutathione 

does not improve aberrant behaviors in ASD subjects. Given the immunological and 

neuropathological dysfunctions that characterize ASD, cytokines provide a molecular 

pathway whereby basic cellular processes in both systems may be permanently altered 

during prenatal development and ultimately culminate in the autistic phenotype, and the 

results presented herein indicate that cytokine studies in ASD merit further investigation. 
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APPENDIX 

Diagnostic Criteria for Autism Spectrum Disorder according to the American 
Psychiatric Association's Diagnostic and Statistical Manual-IV, Text Revision (DSM­
IV-TR). 

Diagnostic Criteria for 299.00 Autistic Disorder 

A. Six or more items from (1), (2), and (3), with at least two from (1), and one 
each from (2) and (3): 

1. qualitative impairment in social interaction, as manifested by at least 
two of the following: 

a. marked impairment in the use of multiple nonverbal behaviors 
such as eye-to-eye gaze, facial expression, body postures, 
and gestures to regulate social interaction 

b. failure to develop peer relationships appropriate to 
developmental level 

c. a lack of spontaneous seeking to share enjoyment, interests, or 

a. 

b. 

c. 

d. 

achievements with other people (e.g., by a lack of showing, 
bringing, or pointing out objects of interest) 

d. lack of social or emotional reciprocity 

2. qualitative impairments in communication as manifested by at least 
one of the following: 

delay in, or total lack of, the development of spoken language 
(not accompanied by an attempt to compensate through 
alternative modes of communication such as gesture or 
mime) 

in individuals with adequate speech, marked impairment in the 
ability to initiate or sustain a conversation with others 

stereotyped and repetitive use of language or idiosyncratic 
language 

lack of varied, spontaneous make-believe play or social imitative 
play appropriate to developmental level 

3. restricted repetitive and stereotyped patterns of behavior, interests, 
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b. 

and activities, as manifested by at least one of the following: 

a. encompassing preoccupation with one or more stereotyped 
and restricted patterns of interest that is abnormal either in 
intensity or focus 

apparently inflexible adherence to specific, nonfunctional 
routines or rituals 

c. stereotyped and repetitive motor manners (e.g., hand or 
finger flapping or twisting, or complex whole-body 
movements) 

d. persistent preoccupation with parts of objects 

B. Delays or abnormal functioning in at least one of the following areas, with 
onset prior to age 3 years: (1) social interaction, (2) language as used in social 
communication, or (3) symbolic or imaginative play. 

C. The disturbance is not better accounted for by Rett's Disorder or Childhood 
Disintegrative Disorder. 

Diagnostic Criteria for 299.80 Asperger's Disorder 

A. Qualitative impairment in social interaction, as manifested by at least two of 
the following: 

1. marked impairment in the use of multiple nonverbal behaviors such as 
eye-to eye gaze, facial expression, body postures, and gestures to 
regulate social interaction 

2. failure to develop peer relationships appropriate to developmental 
level 

3. a lack of spontaneous seeking to share enjoyment, interests, or 
achievements with other people (e.g., by a lack of showing, 
bringing, or pointing out objects of interest to other people) 

4. lack of social or emotional reciprocity 

B. Restricted repetitive and stereotyped patterns of behavior, interests and 
activities, as manifested by at least one of the following: 

1. encompassing preoccupation with one or more stereotyped and 
restricted patterns of interest that is abnormal either in intensity of 
focus 

2. apparently inflexible adherence to specific, nonfunctional routines 
or rituals 

3. stereotyped and repetitive motor mannerisms (e.g., hand or finger 
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flapping or twisting, or complex whole-body movements) 

4. persistent preoccupation with parts of objects 

C. The disturbance causes clinically significant impairment in social, 
occupational, or other important areas of functioning. 

D. There is no clinically significant general delay in language (e.g., single words 
used by age 2 years, communicative phrases used by age 3 years). 

E. There is no clinically significant delay in cognitive development or in the 
development of age-appropriate self-help skills, adaptive behavior (other than 
in social interaction), and curiosity about the environment in childhood. 

F. Criteria are not met for another specific Pervasive Developmental Disorder or 
Schizophrenia. 

Diagnostic Criteria for 299.80 Pervasive Developmental Disorder Not Otherwise 
Specified (Including Atypical Autism) 

This category should be used when there is a severe and pervasive impairment in the 
development of reciprocal social interaction associated with impairment in either 
verbal or nonverbal communication skills or with the presence of stereotyped 
behavior, interests, and activities, but the criteria are not met for a specific Pervasive 
Developmental Disorder, Schizophrenia, Schizotypal Personality Disorder, or 
Avoidant Personality Disorder. For example, this category includes "atypical autism" -
presentations that do not meet the criteria for Autistic Disorder because of late age at 
onset, atypical symptomatology, or subthreshold symptomatology, or all of these. 
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