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ABSTRACT 

CRANIODENTAL ANATOMY OF A NEW LATE CRETACEOUS 

MULTITUBERCULATE MAMMAL FROM UDAN SAYR, MONGOLIA 

Amir S. Sheth 

July 18, 2014 

Multituberculates were the longest-lived group of early mammals, with a 

nearly worldwide distribution, and a temporal range from the Middle Jurassic to 

the Late Eocene. Multituberculates are typically represented by isolated teeth 

and jaw fragments; however, several localities in Mongolia revealed abundant, 

well-preserved multituberculate skulls and partial skeletons from the Late 

Cretaceous.  

This study is centered on two specimens of a new multituberculate taxon 

from a locality in the Gobi desert, Udan Sayr. Included is a (1) bone-by-bone 

description of the cranial and mandibular elements, as well as the dental features 

of both specimens, PSS-MAE 141 (holotype) and PSS-MAE 142, followed by a 

(2) phylogenetic analysis, culminating in a (3) discussion regarding comparisons 

with other multituberculates and the unique middle ear region in the new 

multituberculate.  

The new taxon is a derived member of a specious group of Late 

Cretaceous Mongolian multituberculates (LCMM), clustering together with large-

size forms such as Catopsbaatar, Tombaatar, and Djadochtatherium, forming a 

monophyletic group. Tombaatar sabuli, also from the Late Cretaceous of 
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Mongolia, is the sister taxon and shares with the new form the dental formula, 

overall dental morphology, and approximate size. The new multituberculate from 

Udan Sayr has a very large middle ear cavity, housing a petrosal and 

promontorium that are deeply-sunk into the braincase. The expansion of the 

middle ear cavity seems to be absent among basal LCMM, only developing 

among members of Djadochtatherioidea, and to an extreme degree in the Udan 

Sayr multituberculate. Among living mammals, enlarged middle ear cavities 

confer enhanced low frequency audition and are often found in fossorial species, 

such as golden moles, and several groups of rodents. Therefore, a burrowing 

habit is likely for the new mammal and its closest relatives. The new taxon further 

demonstrates the diversity of morphologies in multituberculates. 
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INTRODUCTION 

Since 1990, the American Museum of Natural History (AMNH) and the 

Mongolian Academy of Sciences have been prospecting the Mesozoic outcrops 

of Mongolia in search of fossil vertebrates. This new project is the heir of a 

similar series of expeditions organized by the AMNH during the 1920s that 

recovered some of the first early mammals from Central Asia (Gregory and 

Simpson, 1926; Simpson, 1928a, b; Matthew et al., 1928, 1929). The recent 

American-Mongolian expeditions (1990 to the present) have followed that 

tradition and results have been plentiful, including the discovery of one of the 

richest Mesozoic localities in the world, Ukhaa Tolgod (Norell et al., 1994, 2000, 

2001, 2006; Novacek et al., 1994; Dashzeveg et al., 1995, 2005; Rougier et al., 

1996a, 1997, 1998; Gao and Hou, 1996; Chiappe et al., 1998; Gao and Norell, 

1998, 2000; Makovicky and Norell, 1998; Horovitz, 2000; Wible and Rougier, 

2000; Clarke et al., 2001; Clarke and Norell, 2002; Makovicky et al., 2003; 

Ksepka and Norell, 2004; Norell and Hwang, 2004; Pol and Norell, 2004; Andres 

and Norell, 2005; Joyce and Norell, 2005; Dingus et al., 2008; Minjin, 2008). The 

Cretaceous localities of Mongolia, especially those of the Djadochta and similarly 

aged Barun Goyot Formations (Shuvalov, 2000; Jerzykiewicz, 2000), are 

exceptionally rich in well-preserved small vertebrates when compared to those in 

other parts of the world. The joint efforts of the Polish-Mongolian and Russian-
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Mongolian expeditions of the1960s and 1970s resulted in the discovery of new 

Cretaceous localities in the Nemegt Valley which raised the bar regarding 

specimen quality and allowed for much more detailed anatomical work than 

previously possible (Clemens et al., 1979). With very few exceptions, the most 

complete Late Cretaceous mammalian skeletons known to date have been 

recovered from those localities (Kielan-Jaworowska, 1969a, b, 1970, 1974, 

1975a, b, c, 1977, 1978, 1979, 1984a, b, 2013; Kielan-Jaworowska and 

Sochava, 1969; Kielan-Jaworowska and Dashzeveg, 1978; Kielan-Jaworowska 

and Trofimov, 1980; Kielan-Jaworowska and Gambaryan, 1994; Gambaryan and 

Kielan-Jaworowska, 1995; Kielan-Jaworowska and Hurum, 1997, 2001; Kielan-

Jaworowska et al., 2005). Most of the mammalian specimens collected in these 

Cretaceous localities of Mongolia are multituberculates, a group of mammals 

which superficially resemble rodents, named for their multi-cusped molars. The 

Late Cretaceous Mongolian Multituberculates (LCMM) are the best-known 

specimens of multituberculates and currently eleven genera are recognized 

(Wible and Rougier, 2000; Kielan-Jaworowska and Hurum, 2001, 2005; Kielan-

Jaworowska et al., 2004). To those I add a new form here. 

 Multituberculates possess the longest fossil record of all mammals, 

extending from the early middle Jurassic to the late Eocene (Prothero and 

Swisher, 1992; Freeman, 1976, 1979; Kielan-Jaworowska et al., 2004). Several 

recent studies (Zheng et al., 2013; Zhou et al., 2013) have opened discussion 

regarding the timing of certain events within the basal branches of the 

mammalian tree, namely the origin of the very first mammals via the relationships 
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between Haramiyidae and Allotheria. Zheng et al. (2013) describe the preserved 

mandibles of Arboroharamiya, found in the Tiaojishan Formation of China, with 

an age estimate from the Middle to Late Jurassic. They conclude that the jaw of 

Arboroharamiya lacks a postdentary trough, suggesting that the postdentary 

bones had been reduced to the middle ear ossicles which are considered 

diagnostic for mammals, ultimately leading them to ally Haramiyidae with 

Allotheria, making the estimated timing of the appearance of mammals within the 

Late Triassic. If their interpretation of the postdentary trough is correct then it 

follows that the mammalian middle ear may have evolved convergently three 

times, within allotherians, monotremes, and therians. Though the specimen of 

Arboroharamiya described therein is very well-preserved, the postdentary region 

is not complete and their interpretation is thus uncertain to some degree. 

Competing viewpoints were put forward by Zhou et al. (2013) in their recent 

analysis of Megaconus, found in the same formation but of slightly older age. 

Megaconus, a more complete specimen within Haramiyidae, consists of a better 

preserved jaw which clearly displays the inclusion of the postdentary bones 

within the jaw, thus weakening the argument for the alliance of haramayidans 

with Allotheria and in turn of haramayidans within Crown mammals. 

Multituberculates are also one of the best-represented Mesozoic mammals: over 

five hundred partial or complete skulls and skeletons have been collected from 

Ukhaa Tolgod between 1993 and 2000. However, the taxonomic diversity in 

Ukhaa Tolgod and other localities of the Djadochta Formation is relatively low, 

the fauna being dominated by medium sized forms such as Kryptobaatar 
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dashzevegi (Wible and Rougier, 2000). The specimens described here are from 

a different locality, Udan Sayr (Figures 1, 2), which is supposedly somewhat 

younger than traditional localities like the Flaming Cliffs, probably corresponding 

to the Barun Goyot Formation (Jerzykiewicz and Russell, 1991; Keilan-

Jaworowska et al., 2004) and of late Campanian age. A few tantalizing 

mammalian specimens have been collected at Udan Sayr, including basal 

metatherians (Trofimov and Szalay, 1994; Szalay and Trofimov 1996), 

eutherians, and multituberculates (Minjin, 2008), the last of which is reported 

here. 

 The collection of complete or nearly complete specimens of LCMM led to 

a revival in the study of multituberculate phylogeny (Simmons, 1993; Rougier et 

al., 1997; Kielan-Jaworowska and Hurum, 1997, 2001; Kielan-Jaworowska et al., 

2002, 2005), which has subsided in recent years. One of the most notable results 

of the work on the late 1990s and early 2000’s has been the recognition of an 

endemic LCMM clade, Djadochtatheria, later reclassified as Superfamily 

Djadochtatherioidea (Rougier et al., 1997; Kielan-Jaworowska and Hurum, 1997; 

Kielan-Jaworowska and Hurum, 2001). Multituberculate cranial anatomy has 

been monographically treated in two instances: Miao (1988) described the 

taeniolabidoid Lambdopsalis bulla and Wible and Rougier (2000) described 

Kryptobaatar dashzevegi; later Kielan-Jaworowska and Hurum (2005) provided a 

revised description of Catopsbaatar, with a good level of detail. Kryptobaatar is a 

member of Djadochtatherioidea interpreted to occupy a relatively basal position 

in the group and is a suitable generalized LCMM to serve as interpretative 
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baseline for understanding the evolution of Djadochtatherioidea. On the other 

hand, Tombaatar sabuli (Rougier et al., 1997) is thought to be a much derived 

member of this clade, but the fragmentary skull so far described is quite poorly 

preserved. The well-preserved specimens described here are closely related to 

Tombaatar and provide a substantial amount of new information (of the ear 

region and basicranium in particular) about this highly derived group. A detailed 

knowledge of a generalized form, such as Kryptobaatar, and derived forms, such 

as Tombaatar and allies, will provide a range of morphological diversity for 

Djadochtatherioidea that will facilitate the interpretation of similar morphologies of 

multituberculates and other mammals. 
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MATERIALS AND METHODS 

Described here are two specimens of a new multituberculate discovered in 

the Late Cretaceous Mongolian locality of Udan Sayr (44 03’ 09” N, 102 55’ 50” 

E; See Figures 1, 2). Udan Sayr is, in fact, a series of very small outcrops 

exposed in a relatively large area. The specimens described here are from the 

larger of two outcrops within close proximity to each other. During the first visit to 

this locality in 1997, the group discovered evidence of excavation of large 

tetrapods. The consensus was that this was also the locality where 

Udanoceratops (Kurzanov, 1992; Dong and Currie, 1993) was collected. Udan 

Sayr is also the type locality for Asiatherium reshetovi (Trofimov and Szalay, 

1996), a basal metatherian (Rougier et al., 1998), but the exact location where 

the fossil was collected is unkown. The lithology of Udan Sayr is similar to that of 

the Djadochta and Barun Goyot formations (Gradziñski et al., 1977; Jerzykiewicz 

and Russell, 1991; Jerzykiewicz et al., 1993; Loope et al., 1998; Dashzeveg et 

al., 2005), and the environment is thought to be similarly arid and the age 

Campanian, likely late Campanian. 

The specimens were collected in friable red sandstones that vary from fine 

to medium in grain size. As in the Djadochta and Barun Goyot formations, the 

fossils are frequently complete including, in some instances, articulated 

specimens of which Asiatherium (Trofimov and Szalay, 1996) is a good example. 
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Isolated skulls are frequently included in harder carbonate concretions which 

often result from the erosion of a partial skeleton. The postcranium associated 

with the specimen PSS-MAE 141 formed the core of a Ph.d. thesis and has been 

described elsewhere (Minjin, 2008), while PSS-MAE 142 shows portions of the 

skeleton enclosed in a concretion.  

The skull morphology of multituberculates is distinct from that of other 

mammals and different authors have used various organizational schemes to 

describe them with a rather elaborated, sometimes incompatible nomenclature 

(Gidley, 1909; Simpson, 1937; Kielan-Jaworowska, 1971; Kielan-Jaworowska et 

al., 1986, 2002, 2005; Gambaryan and Kielan-Jaworowska, 1995; Wible and 

Rougier, 2000; Kielan-Jaworowska and Hurum, 2005). Here, I will follow the 

nomenclature of Wible and Rougier (2000) as developed in their glossary, 

incorporating recent additions by Kielan-Jaworowska et al. (2005). The term 

“Lateral Flange” has been used to denote two slightly different portions of the 

multituberculate middle ear. Kielan-Jaworowska et al. (2005) followed earlier 

usage by Kielan-Jaworowska (1971), against that used by Rougier, Wible and 

Hopson (Rougier et al., 1992, 1996a; Wible and Hopson, 1993; Wible and 

Rougier, 2000; Rougier and Wible, 2006). Kielan-Jaworowska et al. (2005) 

reported that Wible and Rougier (2000: 40, 94) endorsed the interpretations of 

Kielan-Jaworowska, (1971) of “Lateral Flange”; that is not so. The referred 

pages, in particular Wible and Rougier (2000:40), are an almost textual use of 

Hopson’s personal communication (Kielan-Jaworowska et al., 2005:488-489) 

defining his interpretation of “Lateral Flange”. Here, “Lateral Flange” refers to the 
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thickened lower edge of the anterior lamina that, in multituberculates, is inturned 

(medially directed) and contacts the promontorium. 

I will present in this contribution a detailed description of the craniodental 

anatomy of a new multituberculate from the Late Cretaceous Mongolia and will 

limit comparisons to those forms also occurring in the Mongolian Late 

Cretaceous. The preliminary comparison and evaluation of the morphological 

features of these new specimens strongly suggest that they are members of 

Djadochtatherioidea, an endemic Late Cretaceous multituberculate clade of Asia 

(Rougier et al., 1997; Kielan-Jaworowska and Hurum, 1997; Kielan-Jaworowska 

et al., 2003), representing fairly derived members of that clade (see analysis 

below). In fact, these new specimens are similar to Catopsbaatar catopsaloides 

from the classical Late Cretaceous locality of Kheermin Tsav (Kielan-

Jaworowska, 1994, Kielan-Jaworowska et al., 2002, 2005) and to the type of 

Tombaatar sabuli (Rougier et al., 1997), a species from the Mongolian Late 

Cretaceous locality of Ukhaa Tolgod (Dashzeveg et al., 1996; Novacek et al., 

1997). Tombaatar was identified, by Rougier et al. (1997) and Kielan-

Jaworowska and Hurum (1997), as closely related to another large LCMM, 

Catopsbaatar catopsaloides (Kielan-Jaworowska, 1974, 1994). Tombaatar, 

Catopsbaatar, and a third form, Djadochtatherium (Simpson, 1925), are 

diagnosed by a relatively large suite of derived characters (Rougier et al., 1997; 

Kielan Jaworowska and Hurum, 1997; Kielan-Jaworowska et al., 2002, 2005) 

that are also present in this new species. Therefore, following Rougier et al. 

(1997), and Kielan-Jaworowska and Hurum (1997, 2001), this study accepts the 
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existence of a group formed by the large sized LCMM and I will discuss the 

affinities of these specimens in this context. 

The specimen PSS-MAE 141 consists of a skull (Figures 3, 4, 5, 6a, b, 7, 

8, 9, 10) lower jaws (Figures 11, 12a, b, 13, 14, 15a, b), and postcranial elements 

(Minjin, 2008). The skull has been dorsoventrally compressed, resulting in a 

moderate loss of height and a general oblique deformation of the skull to the left 

when viewed from the front. Missing are portions of the right zygomatic arch and 

basicranium. Only remnants of the skull roof elements are preserved. The 

sutures, however, can be followed in most instances. The left lower jaw is nearly 

complete with full dentition, while the dentary and three teeth are all that remain 

of the right lower jaw. 

 A second specimen PSS-MAE 142, attributed to the hypodigm, is 

represented by an incomplete skull (Figures 16, 17, 18, 19a, b) and postcranial 

skeleton. The specimen includes a good portion of the rostrum, palate, 

braincase, fragments of both glenoids, and an isolated right premaxilla. The 

lower jaws are only partially preserved. The right lower jaw is a fragment showing 

p3-m2 while on the left only the m2 has been recovered. The postcranium 

includes most dorsal lumbar vertebrae, an articulated segment of the caudal 

series, fragmentary shoulder girdle and forelimbs, and nearly complete pelvis 

and hindlimbs.  

 The body mass of both specimens has been estimated following Wilson 

et. al, (2012) by measuring Log(body mass) = 3.488*Log(skull length) – 3.332. 

The body mass is calculated in grams while the skull length is measured in 
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millimeters (Mangasbaatar has a skull length of 63.0 mm and an estimated body 

mass of 879.0 grams).  

 

Institutional abbreviations 

  

AMNH: American Museum of Natural History, New York, USA 

IGGP: Collections of the former Geological Museum of the institute of 

Precambrian Geology and Geochronology, USSR Academy of Sciences in 

Leningrad, Russia 

PIN: Paleontological Institute of the Russian Academy of Sciences, Moscow, 

Russia 

PSS-MAE: Paleontological and Stratigraphic Section (PSS) of the Geological 

Institute, Mongolian Academy of Sciences, Ulaan Baatar, Mongolia  

ZPAL: Institute of Paleobiology of the Polish Academy of Sciences, Warsaw, 

Poland 
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SYSTEMATIC PALEONTOLOGY 

 

Class MAMMALIA 

Subclass ALLOTHERIA 

Order MULTITUBERCULATA 

Superfamily DJADOCHTATHERIOIDEA, Kielan-Jaworowska and Hurum, (2001) 

Family DJADOCHTATHERIIDAE, Kielan Jaworowska and Hurum, (1997) 

 

Mangasbaatar, new genus 

 

Type and Only Species: Mangasbaatar udanii, new species. 

Etymology: Mangas, transliteration from Mongolian: Mangas is a 

mythological monster of Mongolian folklore; baatar, transliteration from the 

Mongolian for hero, a suffix commonly used to designate Mongolian 

multituberculates; udanii, after the locality Udan Sayr where the specimens were 

found. Udan: probably a corruption of the Mongolian Ulaan, meaning red: red 

wash, or gulch, which describes the locality well. 

Holotype: PSS-MAE 141, an almost complete skull and jaws. 

Referred Material: PSS-MAE 142, an incomplete skull and jaws 

associated with a fairly complete postcranium. 

Locality: Udan Sayr, 85 km northwest of Bulgan-Somon, Umuni Gobi 

Aimak (southern region), Mongolia, from beds of similar lithology and age as the 

Barun Goyot Formation. 
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Diagnosis: Large-sized multituberculate similar to Tombaatar and 

Catopsbaatar, but differing from other Late Cretaceous Mongolian 

Multituberculates in lacking the P2. Mangasbaatar shares with Tombaatar the 

proportions of the M1 and a similar cusp formula for the M1 (one extra cusp in 

each of the rows for Mangasbaatar), but differs in the slightly larger skull size, 

smaller size of the P1, and different M1 to M2 length ratio (1.78 Mangasbaatar, 

1.46 Tombaatar). The M1 in Mangasbaatar is proportionately 20% longer than in 

Tombaatar. Mangasbaatar resembles Catopsbaatar, but differs fromTombaatar 

and Djadochtatherium, in having broad flat nasals. The frontals and parietals in 

Mangasbaatar are strongly convex, but less so in Catopsbaatar (the condition is 

unknown in Djadochtatherium and Tombaatar). The proportionally longer molars 

in Mangasbaatar determine that the root of the zygomatic arch is approximately 

at the level of the posterior root of the P4/M1 embrasure. Mangasbaatar 

resembles Catopsbaatar in this feature, but Tombaatar, and probably 

Djadochtatherium, share the primitive condition with the root of the zygomatic 

arch more anteriorly positioned at the level of the anterior root of the P4. All of 

the large sized LCMM share a posterior position for the orbit, a derived feature 

absent in more generalized LCMM. The ear region of most LCMM lodges large 

tympanic sinuses. Mangasbaatar’s development of these features is extreme and 

similar to an as yet undescribed specimen of Tombaatar (MAE 96-31). 

Catopsbaatar seems to have this sinus complex less developed, while in 

Djadochtatherium the relevant portion of the skull is not known. Mangasbaatar 

shares with other LCMM except Tombaatar the premaxilla as the only element 
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forming the alveolus for P3. Mangasbaatar shares with Djadochtatherium and 

Catopsbaatar the presence of a polygonal p4. It also shares with Catopsbaatar, 

but not with Djadochtatherium, an almost vertical anterior wall of the diastema in 

front of the p3. In Mangasbaatar the occlusal plane of the lower teeth forms a low 

angle to the plane of the bottom of the lower jaw similar to that in Catopsbaatar, 

but different than in Djadochtatherium. The p3 still has a clearly differentiated 

crown in Mangasbaatar, but it is more “peg-like” in Catopsbaatar. Kryptobaatar, 

Nemegtbaatar, and Chulsanbaatar retain more primitive conditions for these 

characters of the lower dentition. 
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Table 1 

Full List of Anatomical Abbreviations 

al     anterior lamina   maf  masseteric fossa 
ali    alisphenoid      man   mandible 
bo   basioccipital      mapf  major palatine foramen 
bs  basisphenoid     mcp   medial choanal passage 
ci    crista interfenestralis    mec   middle ear cavity 
con   (mandibular) condyle   mf   mental foramen 
cor   coronoid process     mp   masseteric protuberance 
cp   crista parotica     mpf   minor palatine foramen 
ctpp   caudal tympanic process of petrosal  mx   maxilla 
ef   ethmoidal foramen     na   nasal 
er   epitympanic recess     or   orbitosphenoid 
exoc   exoccipital      otc   orbitotemporal canal 
fbu   foramen bucinatorium    P3   third upper premolar 
ff   facial foramen     p3   third lower premolar 
fi   fossa incudis     p4   fourth lower premolar 
fica   foramen for internal carotid artery  pa   parietal 
fma   foramen masticatorium    pal   palatine 
foi   foramen ovale inferium    pat   postpalatine torus 
fo   fenestra ovalis     pef   perilymphatic foramen 
fr   frontal      pet   petrosal 
frs   foramen for ramus superior   pmx   premaxilla 
frt   foramen for ramus temporalis   pop   postorbital process 
fs   facial sulcus      ppp   pterygoparaoccipital proc. 
fv   fenestra vestibuli     pr   promontorium 
gl   glenoid fossa     prc   prootic canal 
i   lower incisor      pt   pterygoid 
inf   incisive foramen     ptc   posttemporal canal 
iof   infraorbital foramen     spf   sphenopalatine foramen 
izr   intermediate zygomatic ridge   sphf   sphenorbital fissure 
jfos  jugular fossa      sq   squamosal  
jf   jugular foramen     stmf   stylomastoid foramen 
lac   lacrimal      sup   supraoccipital 
lcp   lateral choanal passage   tg   temporal groove 
lf   lateral flange     tr   temporal ridge 
m1   first lower molar     v3   foramina for v3 nerve 
M2   second upper molar    vo   vomer  
m2   second lower molar 
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DESCRIPTION 

General 

Mangasbaatar udanii is one of the largest Late Cretaceous Mongolian 

multituberculates and, along with Catopsbaatar is among the largest mammalian 

herbivore of the Mesozoic with a body mass estimate of 0.879 kg (Wilson et. al, 

2012). The two specimens described in this paper are preserved well enough to 

allow a reconstruction of the skull (Figures 20, 21, 22, 23) and jaws (Figure 24). 

Presented here is a bone-by-bone description of the skulls and lower jaws of the 

type specimen, PSS-MAE 141, and the referred specimen, PSS-MAE 142. The 

postcranial skeleton is described elsewhere (see Minjin, 2008). The type 

specimen is a young adult with only little wear of the cheek teeth, while the 

referred specimen is an old adult whose cusps have been worn flat. 

Premaxilla 

 The premaxilla is a large bone with both horizontal (palatal) and vertical 

(facial) processes well-developed, forming a substantial portion of the muzzle. 

The horizontal component forms the anterior portion of the palate and the floor of 

the nasal cavity. In ventral view of PSS-MAE 141, the point of contact between 

both premaxillae is obscured by the deformation of this specimen. The suture 

with the maxilla on the rostrum meanders posteromedially from the raised labial 

margin (crista premaxillaris of Kielan-Jaworowska et al., 2005). Most of the 
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external surface of the right premaxilla in PSS-MAE 141 is missing, exposing the 

broken I2 inside the alveolus. Enough is preserved of the premaxilla however to 

show that, as in Tombaatar, the maxilla extensively overlaps the premaxilla. This 

feature is also shown by the isolated premaxillae of PSS-MAE 142. The 

premaxilla lodges the ever-growing I2 that bulges into the nasal cavity.  

In ventral view the premaxilla-maxilla suture does not form the caudal rim 

of the alveolus for I3, as in Tombaatar, but rather runs posterior to this alveolus 

conforming to the condition present in most members of Djadochtatherioidea. 

Therefore, the circular alveolus for I3 is fully contained within the premaxilla. Both 

alveoli, I2 and I3, are anteroposteriorly aligned along a parasagittal plane. Medial 

to the I3 alveoli are the large, anteroposteriorly oriented incisive foramina which 

are jointly formed by premaxilla and maxilla. As in Tombaatar, the premaxilla is 

perforated by several nutrient foramina anterior to the incisive foramina and there 

are distinct thickenings of the premaxilla between the alveoli for I2 and I3 

(Rougier et al., 1997). The crista premaxillaris (Kielan-Jaworowska et al., 2005) 

is well-developed, but lacks most of the nutrient foramina seen in Catopsbaatar. 

Only a few are present in PSS-MAE 141 and 142. 

 The vertical component of the premaxilla forms the lateral wall of the nasal 

cavity and the lower margin of the external nares. The opening of the nares is 

oriented directly anteriorly and no indication of a septomaxilla or internarial bar is 

discernible, as in, for example, the Late Cretaceous Multituberculate 

Lambdopsalis. In lateral view, contact with the maxilla is along a rostrally convex 

suture posterior to the alveolus of a large I2. A slender posterior process of the 
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premaxilla extends between the maxilla and nasal, ending above P1. The narrow 

extension of the posterior process is similar to Tombaatar and Catopsbaatar but 

differs from the blunter process of other members of Djadochtatherioidea.  

Maxilla 

 The maxilla in multituberculates is a large bone that forms part of the 

palate, rostrum, and orbital areas. These three portions of the bone define 

individual processes: the palatal, facial, and orbital, respectively. The maxilla 

contacts the premaxilla anteriorly, the nasals and lacrimals dorsally, and the 

palatine posteriorly in the palate. Posteriorly in the orbital-temporal area the 

maxilla contacts the frontal, the alisphenoid, and possibly the orbitosphenoid. 

The rostral process of the maxilla is large and is the main bone forming the 

rostrum. It is convex laterally, reflecting the large size of the maxillary sinuses as 

seen in multitubereculate serial sections (Kielan-Jaworowska et al., 1986; 

Hurum, 1994) or CT scans (Kik, 2002). This conspicuous lateral bulging of the 

maxilla gives multituberculates their distinctly triangular appearing rostrum. The 

extreme development of this feature is seen in members of Djadochtatherioidea 

where the rostrum and the side of the zygomatic arches become confluent 

(Rougier et al., 1997; Kielan-Jaworowska and Hurum, 1997, 2001; Kielan-

Jaworowska et al., 2004, 2005). The premaxillary-maxillary suture is well-

preserved only on the left side of PSS-MAE 142. The suture forms a long arcuate 

line that extends posteriorly both at the ventral and dorsal limits. The dominant 

feature on the rostral process is the large, depressed infraorbital foramen that 

opens into the rostrum at the level corresponding to the diastema between P1 
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and P3. The infraorbital foramen is depressed dorsoventrally and its exit forms a 

deep groove that extends anteriorly under the bulging sides of the maxilla. Thus 

far, with the sole exception of some specimens of Catopsbaatar (Kielan-

Jaworowska et al., 2005) all late LCMM have been described as having only one 

infraorbital foramen. This is a derived condition shared by all cimolodonts but 

absent in the Jurassic paulchoffatiids (Hahn 1985, 1987; Hahn and Hahn, 1994; 

Simpson 1928a). In Mangasbaatar, there is a second, small foramen anterior to 

the main infraorbital foramen just described. This small aperture opens at the 

level of the P1, or slightly in front of it, and is present bilaterally in PSS-MAE 141 

and 142. Given the distribution of the character among the remaining LCMM it is 

likely that the presence of this secondary infraorbital foramen in Mangasbaatar, 

and those variably present in Catopsbaatar, are a convergence to the primitive 

morphology. The condition of this character in the closely related Tombaatar 

cannot be ascertained in the type specimen because of the poor preservation of 

the relevant area, but other available specimens show a single foramen.  

The infraorbital canal is broken open on both sides of PSS-MAE 142 so 

that the communication between the maxillary foramen in the orbit and the 

infraorbital foramen in the rostrum can be traced. The left side of the specimen 

has been prepared revealing several foramina of various sizes that open medially 

from the infraorbital canal. These foramina correspond to those described by 

Rougier et al. (1997) in Tombaatar and Djadochtatherium. These foramina likely 

correspond to alveolar nerves providing blood and nervous supply to the teeth 
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and maxillary sinus. A similar pattern is known among recent mammals (Sisson 

and Grossman, 1955; Evans and Christensen, 1979; Moore and Agur, 2002).  

 The external surface of the maxilla in PSS-MAE 142 is well-preserved and 

shows numerous small nutrient foramina perforating the substance of the bone. 

A distinctive pattern of small ridges and rugosities mostly oriented 

anteroposteriorly are present on the lower half of the maxilla indicating the area 

of attachment of superficial facial musculature. The m. buccinatorius is, most 

likely, responsible for the scars mentioned above. 

The rostral process continues posteriorly to form, together with the 

lacrimal, the anterior edge of the orbit. As in all other LCMM, Mangasbaatar lacks 

a distinct floor for the orbit, and the maxilla shows a well-developed orbital pocket 

in front of the orbital ridge (Kielan-Jaworowska et al; 1986; Gambaryan and 

Kielan-Jaworowska, 1995; Wible and Rougier, 2000). This orbital pocket 

accounts for approximately one-third of the length of the preorbital region of 

Mangasbaatar. The root of the zygomatic arch marks the anterior extent of the 

orbital pocket. The zygomatic process of the maxilla is broad, originates at the 

level of the embrasure between P4 and M1, and extends backward to contact the 

zygomatic process of the squamosal at roughly the lowest point of the orbit. The 

dorsal edge of the zygomatic process is concave-convex determining a very 

peculiar orbital outline, shared with Tombaatar. The area forming the orbital edge 

is slightly convex, becoming concave posteriorly, towards the maxillo–squamosal 

suture; this arrangement results in a very slender posterior portion of the 
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zygoma. The great height of the zygomatic arch produces a relatively small, 

dorsally located orbit, located in the posterior half of the skull. 

Between the root of the zygoma, the infraorbital foramen, and P1-P4, 

there is a flat area that forms a distinct platform dorsal to the teeth. A sharp ridge, 

the anterior zygomatic ridge, divides this platform. The anterior zygomatic ridge 

ends directly lateral to the anterior root of P4 and extends posteriorly into the 

zygoma (although the exact distal extension cannot be determined because of 

insufficient preservation). Enough is preserved in isolated maxilary fragments of 

PSS-MAE 142 to show that the ridge is well developed with a lightly rugose apex. 

What is preserved of the anterior zygomatic ridge conforms to the morphology 

present in other LCMM, but is longer and narrower than that present in 

Catopsbaatar (Kielan-Jaworowska and Hurum, 2005). 

In ventral view, the palatal process of the maxilla is preserved in both 

PSS-MAE 141 and 142. Nevertheless, both specimens are broken and parts of 

the palate have been displaced and asymmetrically deformed. The result of this 

deformation is that right and left elements are not always aligned. The sutures 

are better shown by PSS-MAE 141, but PSS-MAE 142 conforms quite closely to 

the pattern of the type. The maxillary contribution to the incisive foramina is not 

well preserved in either specimen, though it seems limited to the posterior-most 

edge of the apertures. The contact of the skull between the premaxilla and 

maxilla in this region has already been described though, in addition, along the 

suture on the right side of both PSS-MAE 141 and 142, there is a medium sized 

foramen in the suture right behind I3. The anterior portions of the palatine 



21 
 

processes of the premaxillae are moderately concave becoming more so 

posteriorly. This change in curvature of the maxilla is so pronounced that the 

palate can be considered almost flat at the level of P1 but very deep at the level 

of M1.  

The maxilla contacts the subrectangular exposure of the palatine 

approximately at the level of the middle of M1. The contact between maxilla and 

palatine is made through an inverted “L”-shaped suture with an anterior 

transverse component and a posterior parasaggital component. A large foramen 

can be distinguished at the lateral extent of the transverse suture between the 

maxilla and the palatine bones. It is the greater palatine foramen that grooves the 

maxilla only in the immediate vicinity of the opening. The foramen probably 

transmitted the greater palatine artery and nerve that in modern mammals supply 

the roof of the mouth, to finally anastomose with the arteries and nerves reaching 

the incisive foramen from the nasal cavity, likely branches of the sphenopalatine 

artery and nasopalatine nerve. 

The longitudinal portion of the maxillary-palatine suture runs closely to the 

M2 and the posterior portion of M1. Along the longitudinal portion of this suture 

there is a slit-like foramen interpreted here as the lesser palatine foramen that 

opens in front of the M2. Kielan-Jaworowska et al. (2005), followed earlier 

interpretations (Kielan-Jaworowska et al., 1986) and identified the slit-like 

foramina, here identified as lesser palatine foramina (following Wible and 

Rougier, 2000), as a deep pocket called “palatonasal notch”. Examination of CT 
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scans of Kryptobaatar skull PSS-MAE 101 reaffirms the interpretation of Wible 

and Rougier (2000) and is thus followed here for Mangasbaatar.  

The maxilla has no contribution to the transverse aspect of the palate 

along the saggital suture with the palatine. The maxilla is restricted to the bone 

immediately around the roots of the molars, the alveolar process. Immediately 

behind the M2 the maxilla contacts the alisphenoid through a sharply serrated 

suture. 

The maxilla is extensively exposed in the orbital-temporal region; its orbital 

portion is broad and flat with the ascending process forming the medial wall of 

the orbit and contacting dorsally with the lacrimal. The fronto-maxillary suture is 

extensive and runs obliquely from the anterodorsal aspect of the orbit to the 

sphenopalatine foramen that occupies a posteroventral position in the orbit. After 

reaching the sphenopalatine foramen the fronto-maxillary suture becomes 

approximately horizontal and runs posteriorly along the floor of the temporal area 

toward the sphenorbital fissure. In the deeper part of the temporal area the 

frontal is replaced by the orbitosphenoid in its contact with the maxilla. The 

maxilla also contacts the alisphenoid in the floor of the temporal region. The 

suture between these two elements is well-shown by PSS-MAE 142. This 

serrated contact runs from immediately behind M2 to the lateral edge of the 

sphenorbital fissure. It follows, from the above-described contacts with the 

maxilla, that a prong of this bone is wedged between the alisphenoid, frontal, and 

probably the orbitosphenoid in the floor of the temporal area. This wedge of the 

maxilla forms a platform, originating in the vicinity of the sphenorbital fissure, 
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which opens and broadens anteriorly to become continuous with the orbital 

contribution of the maxilla. 

The sphenopalatine foramen is large, with a “dumb-bell” shape, and 

incompletely divided in half by a process that is well-preserved only in the right 

side of PSS-MAE 142. The sphenopalatine foramen transmits the 

sphenopalatine artery and nerve, and the major palatine nerve and artery. 

Following recent models (Evans and Christensen, 1979), the former pair will 

occupy the anterodorsal subdivision of the sphenopalatine foramen on its way to 

the nasal cavity, while the latter pair would occupy the larger posteroventral 

subdivision of the sphenopalatine foramen on its way to the palate. Along the 

maxillo-frontal suture on the floor of the orbitotemporal region there is a broad 

surface, the sphenopalatine groove, that leads to the sphenopalatine foramen. 

 As in Kryptobaatar (Wible and Rougier, 2000) and Tombaatar (Rougier et 

al., 1997) there is a small foramen, posteroventral from the sphenopalatine 

foramen, which transmits the minor palatine nerve and companion vessels from 

the orbit into the minor palatine foramen of the hard palate. This foramen is 

preserved only on the right side of PSS-MAE 141. In the type specimen of 

Tombaatar the orbital entrance of the minor palatine nerves and vessels and the 

minor palatine foramina are connected by a groove on the maxilla that is open to 

the choanae, and therefore leaves no doubts that the “palatonasal notch” 

transmitted a structure to, or from, the orbit to the palate; the status of this feature 

is Mangasbaatar cannot be ascertained. 
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Palatine 

 The palatine is well-preserved in both PSS-MAE 141 and 142. In 

Mangasbaatar the palatine is exposed only in the palate. There is no orbital 

exposure of this bone as in most other LCMM, with the possible exception of 

Nemegtbaatar (Hurum, 1998a). Right and left palatines meet in the saggital 

plane to form a sharp median crest that preserves an open suture throughout its 

length. The crest becomes taller posteriorly where it meets the robust post-

palatine torus. The palatine is essentially flat between the median crest and its 

lateral contact with the maxilla. 

Bordering the ventral-lateral margin of the choanae there is a massive 

post-palatine torus. This is an unusually complex structure that resembles that of 

Tombaatar. The torus begins anteriorly at the level of the M1-M2 embrasure, 

where it rises abruptly from the palate. The torus is formed by two distinct wings, 

right and left, which project ventrally to the level of the occlusal plane. The wings 

are concave posteriorly and are limited medially by two sharp crests that result 

from the bifurcation of the median crest described above in the anterior portion of 

the palatine. Between these two crests that form the medial edge of the wings of 

the torus there is a deep recess occupying the midline. The function of this 

elaborate torus in Mangasbaatar is uncertain. The posterolateral corner of the 

torus extends posteriorly on the sides of the choanae through a “splint”-like 

process directly medial to the alisphenoid. This posterior extension of the 

palatine into the choanae is preserved only in PSS-MAE 141. 
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Nasal 

 The nasals are large paired bones that form the roof of the nasal cavity. 

They are in contact with each other medially, with the premaxillae and maxillae 

laterally, and with the frontals posteriorly. Erosion of the dorsal surface of PSS-

MAE 141 has destroyed most of the nasals, leaving the crest and sutures that 

projected into the nasal cavity. The overall features of the nasal are preserved 

mostly as natural molds. Enough remains, however, to show that the nasals 

become broader posteriorly and are overlapped by the frontals. 

In PSS-MAE 141 (Figure 3), the dorsal surface of the nasal cavity and the 

paranasal sinuses are exposed because of missing nasals and maxilla. Along the 

suture between nasal and maxilla there is a ridge of bone that projects ventrally 

into the nasal cavity. This roughly parasaggital ridge is the remnant of the nasal-

turbinal ridge. Throughout its length the nasal seems to be mostly cancellous 

bone with only a thin, dense layer of cortical bone. Based on CT scanning of 

other Mongolian multituberculates like Kryptobaatar (PSS-MAE 101), it is likely 

that those intranasal cavities were connected to the nasal cavity, indicating an 

extreme degree of pneumatization of the multituberculate skull. The great 

development of pneumaticity is frequently reflected by the preservation of the 

specimens. When found as isolated specimens, the skulls are often missing the 

thin cortical bone forming the outer surface of nasals, frontal and parietals.  

In the specimen PSS-MAE 142 (Figure 4), the posterior one-third of the 

right nasal is well-preserved, as is a small portion of the left nasal. Along the 

midline, right and left nasals are separated by a broad prong of the frontals that 
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extends anteriorly at about the level of the lacrimal. This process of the frontal 

and the concomitant separation of the back part of the nasals is a primitive 

feature for mammals, present in various degrees almost universally among 

Mesozoic forms. Catopsbaatar has a more transverse nasal-frontal suture than 

most other LCMM (Kielan-Jaworowska et al., 2005). Not enough is preserved to 

determine the number of nasal foramina, but judging from the natural endocast it 

is likely that at least one relatively large foramen was present. 

Lacrimal 

Portions of the lacrimal are preserved in both specimens, the most 

complete being the right side of PSS-MAE 142 (Figures 4, 14). The external 

exposure of the lacrimal is subrectangular and is wedged in the orbital margin 

between frontal and maxilla. The nasal contacts the lacrimal along its 

anteromedial edge. The lacrimal contribution to the orbital mosaic cannot be fully 

ascertained, but it is clear that it was restricted to the dorsal portions of the orbit 

without extensive ventral projection. The lacrimal was, however, involved in the 

formation of a very deep orbital pocket and sharp orbital ridge for the attachment 

of the anterior portion of the middle zygomatic muscle. Remnants of a bifid 

nasolacrimal canal are present on the right side of PSS-MAE 142 and most of its 

course can be traced through the denuded skull roof of the left side of PSS-MAE 

141. 

Frontal 

Most of the contribution of the frontal to the skull roof is missing in PSS-

MAE 141 (Figure 3), however, the orbital portions of this bone are well-preserved 
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(Figure 13). The right frontal in PSS-MAE 142 is mostly complete (Figures 4, 14). 

Sutures in the skull roof are well shown by PSS-MAE 142 but those in the orbit 

are somewhat ambiguous in both specimens, especially in the area near the 

sphenorbital fissure. The frontal is the largest component of the skull roof and 

extends roughly from the level of the anterior root of M1 until the posterior one-

third of the braincase. This moderately convex bone is slightly raised in the 

midline where it contacts the frontal from the other side via an open suture. 

Anteriorly the frontal is wedged between the nasals and anterolaterally contacts 

the lacrimal. The parietal demarcates the posterior expansion of the frontal. The 

frontals contact the parietals through a broad “V”-shaped suture extending from 

just in front of the post-orbital process backwards. The frontal forms the dorsal-

most portion of the rugose orbital edge. The lateralmost extension of the dorsal 

orbital rim is damaged in both specimens; however the right side of PSS-MAE 

142 may preserve the some evidence of this feature.  

In the orbit, the frontal forms most of the posteromedial wall, contacting 

the orbitosphenoid throughout much of its length and reaching the dorsal-most 

aspect of the anterior lamina through a narrow process. The frontal-

orbitosphenoid suture forms a gentle arch from the floor of the orbitotemporal 

region to the dorsal portion of the anterior lamina. Approximately in the middle of 

this arch there is a large foramen formed jointly by frontal and orbitosphenoid, the 

ethmoid foramen; grooves from above and below the foramen lead to it. The one 

from below, the larger of the two, starts in the sphenopalatine groove and 

through a gentle curve reaches the ethmoid foramen from directly below. This 



28 
 

groove follows the likely course of the frontal-orbitosphenoid suture in the area 

and it was likely occupied by the ethmoid nerve and artery. The groove reaching 

the ethmoid foramen from above has a sigmoid shape and is developed mostly 

above the frontal-orbitosphenoid suture, in the frontal. This groove is continuous 

with the anterior opening of the orbitotemporal canal that is broken open on both 

sides of PSS-MAE 141. The rostral end of the orbitotemporal canal is formed 

mostly by the frontal and is completed by the parietal that forms its roof. The 

likely occupant of this groove was a large orbitotemporal artery and its 

accompanying vein. A similar pattern is known in most LCMM including 

Kryptobaatar (Wible and Rougier, 2000). The anterodorsal portion of the frontal 

contributes to the orbital ridge and orbital pocket that is jointly formed by maxilla, 

lacrimal, and frontal. 

Parietal 

 The parietal has been mostly eroded away in PSS-MAE 141 (Figure 3) but 

most of it is preserved in the right side of PSS-MAE 142 (Figure 4). The parietal 

contributes to the posterior one-third of the braincase and helps separate the 

orbit from the temporal area by forming a post-orbital process. The parietal 

contacts with the frontal anteriorly, through the already described broad, “V”-like 

suture anteroventrally with the anterior lamina, posteroventrally with the 

squamosal, and posteriorly with the supraoccipital. The parietal is slightly convex 

dorsally. This feature becomes more pronounced laterally than in the midline. 

Right and left parietals are separated by a suture that is difficult to trace because 

of partial fusion between these bones. 
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 Temporal lines are present but are not very sharp and they do not meet 

each other to form the saggital crest. Instead, they contact the lambdoidal crest 

parasaggitally. The temporal lines originate from the posterior edge of the post-

orbital process and extend posteromedially forming a broad arch. The relatively 

lateral position of the temporal lines implies a proportionally small area for the 

temporalis muscle, much smaller than that in other forms with a saggital crest 

such as Kryptobaatar (Wible and Rougier, 2000). 

 The parietals are the sole elements forming the median portions of the 

lambdoidal crests (i.e. there is no supraoccipital participation). These crests are 

minimally developed saggitally but flare out and become quite large laterally. This 

development of the lambdoidal crests begins on the lateral portions of the 

parietal contribution to these crests and becomes more pronounced in the 

squamosal/petrosal portion of the crests. 

As in all the other LCMM the post-orbital process is formed in its entirety 

by the parietal. It is preserved in its full length only on the left side of PSS-MAE 

141. The process is inordinately long at 10.2 mm (measured from the root of the 

process). A very long process of similar dimensions is present in Catopsbaatar 

(Kielan-Jaworowska, 1974, 1994), another large LCMM probably related to both 

Tombaatar, and Mangasbaatar (Rougier et al., 1997; Kielan-Jaworowska and 

Hurum, 1997). 

At the base of the post-orbital process is the opening of the orbitotemporal 

canal, which has already been described as being formed jointly by the frontal 

and parietal. The orbitotemporal canal is open to the braincase as shown by the 
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endocast of the skull PSS-MAE 141. The parietal forms the roof of the canal but 

it has no floor (is open to the cranial vault) until it reaches the petrosal in the back 

portion of the braincase (see below). 

Squamosal 

The squamosal has sustained damage in both specimens, but the one on 

the left side of PSS-MAE 141 is the most complete (Figures 3, 12, 16). The 

squamosal can be subdivided into two portions: the squama abutting the 

braincase, and the zygomatic process contacting the maxilla and bearing the 

glenoid fossa. The squamosal contacts the maxilla anteriorly, the petrosal 

medially, and the parietal dorsally. 

As in all other multituberculates the zygomatic arch is formed mostly or 

solely by the jugal and maxillary bones. In Mangasbaatar, due to the posterior 

location of the orbit, the zygomatic arch is very short and throughout its length 

forms the ventral edge of the relatively small orbitotemporal fossa, characteristic 

of LCMM. In other LCMM a very small jugal has been described as occupying 

the medial surface of the arch (Hopson et al., 1989; Wible and Rougier, 2000), 

but preservation in PSS-MAE 141 and 142 is not sufficient to confirm or deny the 

presence of this element. The contact of the squamosal with the maxilla occurs 

through a relatively long and oblique suture seen on the left side of PSS-MAE 

141 that reaches anteriorly to the level of the anterior edge of the orbit. The 

shape of the anterior portion of the zygomatic process is very conspicuous and 

characteristic of Mangasbaatar and Catopsbaatar (Tombaatar unknown); unlike 

other LCMM the squamosal achieves its maximum dorsoventral development at 
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the posterior end, achieving a greater height than the lowest part of the 

zygomatic process.  

Most of the lateral surface of the very short zygomatic process of the 

squamosal is occupied by a concave surface limited dorsally by a blunt ridge. 

This is the intermediate zygomatic ridge, which might marginally extend into the 

maxillary’s contribution to the zygomatic arch. Behind the intermediate zygomatic 

ridge, the squamosal becomes narrower and more robust forming a neck 

connecting the glenoid with the braincase. The glenoid is best seen in ventral 

view (Figures 6, 16, 17, 18) and is teardrop-shaped with its broader portion 

oriented posteriorly. There is no post-glenoid ridge, but a broad crest continuous 

with the lower edge of the zygomatic arch marks the lateral extent of the glenoid. 

The articular surface is mostly flat, with a shallow anterior concavity.  

Behind the glenoid, the squamosal neck forms a flat area that ultimately 

becomes continuous with the epitympanic recess of the petrosal. The medial 

extension of the neck reaches the braincase, broadens slightly and becomes the 

squama of the squamosal. The squama overlies the petrosal and does not 

contribute directly to the braincase proper. The anterior extension of the squama 

is limited by its contact with the anterior lamina of the petrosal. The suture 

between these two elements is not very clear in any of these specimens, but it is 

best on the left side of PSS-MAE 141. The right squamosal of PSS-MAE 142 

(Figure 6) is completely lost, exposing its contact with the underlying petrosal. 

This specimen shows that the squamosal forms the lateral and dorsal walls of the 

ascending canal as described in Kryptobaatar and Vincelestes (Rougier et al., 
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1992; Wible and Rougier, 2000). The squama of the squamosal also forms part 

of the ventrolateral portion of the lambdoidal crest overlying the mastoid 

exposure of the petrosal. 

Pterygoid 

 The area of the skull presumed to be formed by the pterygoids is 

preserved only in PSS-MAE 141 (Figure 6) but no sutures are visible in the 

specimen. This is not to say that sutures were not present, but fractures make 

recognition of them difficult. In order to describe these elements in 

Mangasbaatar, particular reference is given to the morphology present in other 

LCMM. Specifically, the pterygoids are interpreted as forming the two tall, 

parasaggital flanges present in the choanae following a similar pattern as seen in 

Kryptobaatar (Wible and Rougier, 2000). There is a suture at the level of the 

posterior extent of the pterygoids connecting right and left elements. Behind this 

suture and between the flanges of the pterygoids there is a triangular element on 

the roof of the choanae interpreted as the basisphenoid. If this interpretation is 

correct the pterygoids would meet along the midline, in front of the vomer, and 

they would be separated by the latter along the posterior one-third of their length.  

The pterygoid flanges are tall and subdivide the choanae into three 

passages: a broad median one, between right and left lamina, and two lateral 

ones, between the lamina and the walls of the choanae. The full anterior extent 

of the pterygoid lamina cannot be traced into the choanae because the left one is 

incomplete and the right one is obscured by matrix. The lamina end posteriorly in 

a short, rounded process separated from the main portion of the lamina by a 
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shallow notch. This notch and process are likely to be homologous to the 

hamular process, serving as a “pulley” for the m. tensor velii palatini, a muscle 

originated from the primitive pterygoid musculature of non-mammalian cynodonts 

(Barghusen, 1986).  

In the lateral troughs, which are between the pterygoid laminae and the 

walls of the choanae, the pterygoid forms most, or all, of the roof and medial 

walls of the enormously excavated lateral connection of the nasopharynx and the 

middle ear; this space serves as an equivalent of the Eustachian Tube of later 

mammals.The exact contribution of the pterygoids to this region, however cannot 

be fully determined. 

Sphenoid 

 The sphenoid is at least partially preserved in both specimens and lacks 

sutures delimiting its individual components, namely the presphenoid, 

alisphenoid, orbitosphenoid, and basisphenoid. The individual names will be 

used here in reference to standard anatomical areas formed by these 

components in other mammals for which the embryological origin of the 

individual elements is known or presumed. 

The alisphenoid has contributions to the palate, choanae, mesocranial 

region, and middle ear cavity. The three-dimensional arrangement of the 

alisphenoid is complex so that this element is exposed in ventral and lateral 

views, in addition to a sizeable portion around the sphenorbital recess that is not 

accessible in any of these views. 
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The alisphenoid is the portion of the sphenoid forming the lateral wall of 

the braincase in most mammals. In multituberculates the alisphenoid is small 

(Kielan-Jaworowska, 1971; Kermack and Kielan-Jaworowska, 1971; Kielan-

Jaworowska et al., 1986; Wible and Rougier, 2000), probably reduced from a 

primitive condition in which it was large (Hopson and Rougier, 1993; Rougier and 

Wible, 2006). This reduced alisphenoid in multituberculates forms a small portion 

of the anteroventral area of the lateral wall of the cavum epiptericum (Kermack 

and Kielan-Jaworowska, 1971). In Mangasbaatar, the alisphenoid, as recognized 

here, is also small and its braincase contribution is limited to the area 

surrounding the cavum epiptericum. The alisphenoid, however, has a long 

anterior process that reaches the back of the palate. The alisphenoid contacts 

the palatine, maxilla, pterygoid and petrosal, and it becomes confluent with the 

basisphenoidal and orbitosphenoidal portions of the sphenoid. In ventral view, 

the most prominent feature of the alisphenoid is its anterior process that extends 

to the hard palate. A little slip of the alisphenoid forms part of the minor palatine 

foramen and wedges its way between the maxillary and palatine contributions to 

the rim of the foramen (Figure 18). The anterior process of the alisphenoid has 

been described as having a möbius strip shape (Wible and Rougier, 2000), 

resembling the shape of a twisted ribbon. The alisphenoid of Mangasbaatar 

presents the same basic shape and, because of this “twisting” of the anterior 

process, the anterior, ventrally oriented surface becomes laterally oriented 

towards the back. This anterior portion of the alisphenoid is concave and merges 

anteriorly into the maxilla. The medial limit of the alisphenoid in this area is 
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formed by a ridge running along the edge of the choanae and its posterior limit is 

a tall and sharp crest that also bounds the middle ear cavity. This concave 

anterior surface is likely to provide the attachment for the medial pterygoid 

musculature. The alisphenoid is also likely to contribute to the formation of the 

lateral choanal passage or trough and contact the pterygoid in doing so. 

However, preservation in both specimens is deficient in this area and the 

morphology of the lateral wall of the choanae is, to some degree, uncertain. 

 Behind (distal to) the already mentioned sharp crest in the alisphenoid is 

the middle ear contribution of the alisphenoid. The alisphenoid forms 

approximately one-fourth of the epitympanic recess. The alisphenoid portion of 

the epitympanic recess is restricted to the anterior pole and forms the very 

prominent anterior and lateral walls of the recess. A thin, narrow process projects 

back medial to the petrosal contribution to the epitympanic recess to almost 

reach the tip of the promontorium. Preservation on PSS-MAE 141 is not very 

satisfactory in this region; it is clearer to follow the morphology in PSS-MAE 142. 

In the epitympanic recess there are two large foramina for branches of V3. The 

most anterior of these foramina is very near the serrated alisphenoid-petrosal 

suture, but the foramen is formed solely by the petrosal. 

 In lateral view, the alisphenoid is limited posteriorly by the tall ridge that 

marked the posterior edge of the möbius strip in ventral view. The alisphenoid in 

this view (lateral) is the continuation of the alisphenoid surface immediately 

behind the palate in ventral view. The lateral aspect of the alisphenoid is best 

shown on the left side of PSS-MAE 142 and the right side of PSS-MAE 141. This 
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surface is concave dorsally and anteriorly, extending toward the sphenorbital 

recess medial to the anterior lamina. This surface of the alisphenoid is broader 

anteriorly and tapers posteriorly. There is a small foramen anteriorly directed in 

the anterior lamina-alisphenoid suture or in its proximity depending on the 

specimen. Similar variation has been reported for Kryptobaatar (Wible and 

Rougier, 2000). The foramen is lodged in a deep recess and, leading anteriorly 

from it, there is a deep groove. Given the orientation and position of the foramen, 

it is likely that this structure conveyed the buccal branch of the trigeminal nerve 

(V) and it is thus identified here as the foramen buccinatorium, which also occurs 

among other multituberculates (Kielan-Jaworowska et al., 1986; Hurum, 1998b; 

Wible and Rougier, 2000). Posteromedially from the foramen buccinatorium, the 

alisphenoid occupies the floor of the sphenoidal recess. Laterally, it contacts the 

tall petrosal wall that guards the lateral extension of the sphenoidal recess. 

Sutures between the anterior lamina of the petrosal and the alisphenoid in this 

area are not apparent. 

The orbitosphenoid portion of the sphenoid is a laminar process that forms 

the medial wall of the orbitotemporal fossa connecting the skull base with the 

elements forming the skull roof and the rear of the nasal cavity. The 

orbitosphenoid contacts the frontal dorsally and anteriorly, the maxilla anteriorly, 

the anterior lamina posteriorly, and is continuous with the rest of the sphenoid 

posteromedially. The orbitosphenoid has extensive contact with the frontal, and 

together these bones form the ethmoid foramen in the anterodorsal aspect of the 

temporal area. The dorsal suture with the frontal is shown in the right side of 
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PSS-MAE 141. It is a smooth line running obliquely from the vicinity of the 

anterior opening of the orbitotemporal canal to the ethmoid foramen. The contact 

between frontal and orbitosphenoid under the ethmoid foramen, as already 

mentioned, is less clear. With the exception of the left side of PSS-MAE 141, 

most of the orbitosphenoid spanning from the sphenoidal recess to the ethmoid 

foramen is missing in both specimens. The left side of the skull PSS-MAE 141, 

however, is crushed and the suture pattern cannot be made out. 

The orbitosphenoid abuts the medial aspect of the anterior lamina and 

forms the medial edge of the sphenorbital fissure. In PSS-MAE 142 the skull is 

deformed so that the fissure and its contents can be clearly seen, through the 

artificially enlarged fissure. The sphenorbital fissure is a large, oval-shaped 

foramen leading anteriorly. It transmits the contents of the cavum epiptericum, 

specifically V2 and the ethmoidal artery. Directly medial to the edge of the 

sphenorbital fissure, and slightly above its midpoint, there is a small foramen 

piercing the orbitosphenoid. This foramen is interpreted here as transmitting the 

oculomotor nerve (III). The multituberculates Chulsanbaatar, Nemegtbaatar, 

Kryptobaatar, and Sloanbaatar, have each been identified as having a separate 

foramen for CN III (Hurum, 1998b; Rougier et al., 1997; Wible and Rougier, 

2000). Medial to the oculomotor foramen, slightly above its level, in the deepest 

part of the orbit, there is a circular foramen in both specimens PSS-MAE 141 and 

142: the optic foramen. A broad, shallow sulcus extends anterodorsally from the 

optic foramen, grooving the external surface of the orbitosphenoid. The portion of 

the orbitosphenoid directly in front of and ventral to the optic foramen is the 
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jugum sphenoidale (Wible and Rougier, 20000) which, in multituberculates, is 

relatively narrow and proportionally tall. This is also the condition in 

Mangasbaatar. Anteroventral to the optic foramen, there is another foramen of 

relatively large size in both specimens that penetrates the substance of the 

sphenoid. This corresponds to the transverse canal identified in Kryptobaatar 

(Wible and Rougier, 2000). The size of the transverse canal in Mangasbaatar is 

substantial and it grooves, slightly, the floor of the sphenorbital recess. 

The orbitosphenoid appears to have been convex externally and would 

have essentially provided support (ventrolateral) for the frontal lobes of the brain. 

The orbitosphenoid contacts the anterior lamina immediately under the anterior 

opening of the orbitotemporal canal. The suture between these two elements is 

best shown on the right side of PSS-MAE 141. This suture is heavily 

interdigitated and runs almost vertically down towards the sphenorbital recess, 

but the ventral portion of the suture is not recognizable. 

The presphenoid, if present in Mangasbaatar, is not recognizable in the 

specimens currently available. What remains of the sphenoid can be vaguely 

identified as part of the basisphenoid. It has a relatively small exposure in ventral 

view and a more substantial one in the area of the sphenorbital recess. The 

ventral exposure contacts the pterygoids, petrosals, and basioccipital. The orbital 

exposure is in contact with the alisphenoid and the anterior lamina, and possibly 

the maxilla. 
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The ventrally exposed basisphenoid is subtriangular with a smooth 

surface and lacks any evidence of carotid foramina. The basisphenoid, as part of 

the mosaic formed by the pterygoids, alisphenoid, and petrosal, is involved in the 

formation of the posteromedial wall of the lateral palatine trough. Concomitantly, 

these elements shape the enormously excavated posterior expansion of the 

lateral palatine trough, but their individual contributions are unclear. 

Petrosal 

 The petrosal, or parts thereof, are preserved in both specimens. When 

viewed aneriorly, it is obvious that both skulls have been somewhat deformed 

from left to right. This makes observation of the left portion of the ear region, in 

particular, problematic but helps to expose the right sides very satisfactorily. In 

addition, the right squamosal and part of the petrosal are missing in PSS-MAE 

141 and 142, helping observation (Figures 25, 26). 

 In therian mammals, the petrosal can be divided into two main portions: 

the pars cochlearis, housing the organs of hearing, and the pars canalicularis, 

housing the organs of equilibrium and balance. Breakage through the petrosal 

exposes some of these components of the inner ear in both skulls. A third 

element, the anterior lamina, is described here jointly with the petrosal. Among 

living mammals, monotremes are the only group presenting this structure 

(Kermack and Kielan-Jaworowska, 1971; Griffiths, 1978; Zeller, 1989). In 

monotremes, the anterior lamina results from the ossification of the lamina 

obturans, which fuses at various stages of development with the endochondral 

petrosal (Presley and Steel, 1976; Griffiths, 1978; Presley, 1981; Kemp, 1983; 
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Kuhn and Zeller, 1987; Zeller, 1989; Hopson and Rougier, 1993). Although the 

presence of an anterior lamina has been widely documented among basal 

mammaliaforms, thus far no sutural distinction between the anterior lamina and 

the petrosal proper has been identified. In multituberculates, these ossifications 

seem to be continuous. However, without developmental evidence, it cannot be 

made certain that the anterior lamina and the petrosal are separate ossifications. 

Though, considering the evidence afforded by monotremes, it is most 

parsimonious to assume a similar fundamental pattern in multituberculate 

mammals. Since the petrosal proper and the anterior lamina cannot be strictly 

differentiated, and in order to be consistent with treatment of this area by other 

authors, the anterior lamina will be described as part of the petrosal (See Rougier 

and Wible, 2006 for a review).  

 In lateral view (Figures 13, 14), the petrosal contacts the sphenoid 

anteriorly and medially, the frontal anteriorly, the parietal dorsally, and the 

squamosal posteriorly and laterally. In occipital view, the petrosal contacts the 

exoccipital and the supraoccipital medially, while contacting the squamosal 

dorsally. In ventral view (Figures 6, 9, 16, 17, 18, 19, 20), the petrosal contacts 

the exoccipital in the middle ear recess, basioccipital medially, basisphenoid, 

alisphenoid and pterygoids anteriorly, and squamosal laterally. 

 None of the specimens show the endocranial surface of the petrosal and, 

therefore, its description will be limited to three views: lateral, ventral, and 

occipital. In ventral view, the most distinctive feature is the enormously excavated 

middle ear cavity. This cavity has an approximate volume of 4 mm3 (average of 
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four measurements of the left ear region of PSS-MAE 141, other ear regions are 

too damaged to provide reliable estimates). The middle ear cavity is formed 

mostly by the petrosal with sizeable contributions from the alisphenoid, 

basioccipital, and exoccipital. The limits of the middle ear cavity are defined by 

tall crests that approach each other and form a partial, but fairly extensive, floor 

for this cavity. Deeply recessed in this middle ear space, and occupying an 

approximate central position in it, is an elongated and ventrally bulging 

prominence, the promontorium. Several crests at the front and back of the 

promontorium connect it with other structures of the middle ear. Nevertheless, 

the main axis and bulging of the promontorium reflect the morphology of the 

finger-like cochlea, which is partially exposed on the right side of PSS-MAE 141. 

The three-dimensional arrangements of these crests connecting the 

promontorium to other structures is best preserved in PSS-MAE 142 because the 

specimen has sustained less damage to this area. The anterior pole of the 

promontorium forms a sharp crest that extends ventrally to form an extremely 

long and robust process, which, on its medial side, is continuous with the middle 

ear cavity and, on its lateral side, is grooved and is in communication with the 

epitympanic recess. This very peculiar process in Mangasbaatar is produced by 

elaboration of the rostral tympanic process of the petrosal (RTPP), which is 

present in other multituberculates like Kryptobaatar (Wible and Rougier, 2000). 

However, its extreme dorsoventral elongation results from a ventral projection of 

the basioccipital and anterior portions of the petrosal in order to accommodate a 

grossly enlarged middle ear cavity. The recess of the promontorium and medial 
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margins of the epitympanic recess might also be factors in enlarging the middle 

ear space and in determining the unusual morphology of the middle ear of 

Mangasbaatar. 

 The groove on the RTPP opens ventrally at the likely junction of the 

pterygoids, basioccipital, and petrosal. This notch would accommodate the 

internal carotid artery (ICA). The ICA leaves no other traces of its presence on 

the skull base, but it was dorsoventrally oriented and tightly pressed to the lateral 

wall of the RTPP. The broad ICA groove bifurcates at the level of the 

promontorium, sending a branch posteriorly and a larger one anteriorly. The 

larger branch excavates a recess in the bony floor of the epitympanic recess. 

This recess leads to a canal located between the medial edge of the epitympanic 

recess and the crest marking the dorsal-most extent of the RTPP. The opening of 

this canal is the internal carotid foramen, well-shown in the right side of PSS-

MAE 141 and 142. A small fragment of bone is in the ICA foramen in PSS-MAE 

142, obstructing the view of the ICA canal further into the bone. The ICA foramen 

is formed solely by the petrosal, but a slender posterior process of the 

alisphenoid, already mentioned, reaches its proximity (this is best shown on the 

right side of PSS-MAE 141). The condition in Mangasbaatar is different than that 

presumed to be primitive for members of Djadochtatheriidae, like Kryptobaatar, 

where the posterior opening of the carotid canal is jointly formed by the petrosal 

and the alisphenoid before reaching the deeper lying basisphenoid (Wible and 

Rougier, 2000). Kielan-Jaworowska et al. (2005:499) illustrated the carotid 

foramen in Catopsbaatar as exposed ventrally and in a very different position 



43 
 

than in Kryptobaatar and Mangasbaatar, however in their description they 

mention that the “carotid foramina have not been preserved” (Kielan-Jaworowska 

et al., 2005:500). The posterior extension of the deep lateral palatine trough 

extends posteriorly to the edge of the petrosal formed by the RTPP and the 

carotid foramen. 

The posteriorly directed groove originating from the ICA corresponds to 

the stapedial artery. This extremely rostral position for the stapedial artery is 

unusual for mammals in general (Wible, 1987), but is actually the condition 

present in all LCMM for which this area is known. This is also probably the case 

in most other multituberculates given that is also present in Lambdopsalis (Miao, 

1988). The groove for the stapedial artery is proportionally small and runs along 

the lateral aspect of the promontorium and ventral to the level of the epitympanic 

recess. The stapedial groove is shallow in all of the specimens and runs along 

the ventral edge of the fenestra vestibuli. In the vicinity of the fenestra vestibuli, 

the direction of the groove is ambiguous when considering whether the stapes 

was columelliform or bicrurated. After traversing the fenestra vestibuli, or running 

in its vicinity, the stapedial artery is directed towards the common canal for the 

ramus superior and the prootic sinus. 

At the posterior end of the promontorium, there are two fenestrae, one of 

them laterally positioned (the already mentioned fenestra vestibuli) and the other 

one medially positioned (the perilymphatic foramen). The fenestra vestibuli can 

be observed only on PSS-MAE 142 because those of 141 are obscured. The 

fenestra vestibuli is subcircular and is hardly recessed, if at all, in a fossula 
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fenestra vestibuli. The stapedial ratio (Segall, 1970) is 1.3 (average of right and 

left side of PSS-MAE 142). The fenestra vestibuli is separated from the 

perilymphatic foramen by a narrow, posteriorly trending bony ridge, the crista 

interfenestralis (Wible et al., 1995; Rougier et al., 1996a, b). The crista projects 

ventrally to the body of the promontorium and marks the ventral-most extension 

of the inner ear. The back of the promontorium and the crista interfenestralis is 

damaged on the right side of both specimens. The crista, well-preserved on the 

left side of PSS-MAE 142, remains very tall behind the promontorium and 

partially subdivides the middle ear cavity into two areas: the first area, lateral to 

the promontorium, is formed mostly by the epitympanic recess. The second, 

more medial area, is developed around the jugular foramen and the portion of the 

middle ear created by contributions of the exoccipital, basioccipital, and petrosal.  

The medial portion of the middle ear cavity is further subdivided into two 

realms, an anterior and a posterior one, by a low crest that extends 

posteromedially from the edge of the perilymphatic foramen. The posterior 

portion includes the perilymphatic foramen, the jugular foramen, and the 

exoccipital contribution to the middle ear space. The perilymphatic foramen is 

lodged in a deeply-excavated recessus scalae tympani. The edges of the 

perilymphatic foramen are best seen on the right side of PSS-MAE 142 and 

appear to be sharp and particularly well developed on the medial aspect of the 

foramen. The perilymphatic foramen is oriented posteromedially in its direction 

with respect to the jugular foramen. The large recessus scalae tympani has its 

major axis oriented in the same direction. The recessus itself extends to the edge 
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of the jugular foramen. On the right side of PSS-MAE 142, the anterodorsal 

border of the recessus scalae tympani is marked by a small crest that extends 

from the vicinity of the perilymphatic foramen to the jugular foramen. 

A second crest, in conjunction to the before mentioned crest, determines a 

deep groove identified here to have contained the perilymphatic duct. This 

groove, the perilymphatic sulcus, is almost transformed into a canal by the 

closely approaching crests mentioned above. It is unsettling, however, to notice 

that on the left side of the same specimen (PSS-MAE 142), there are no traces of 

the perilymphatic sulcus, and instead, a poorly developed bulge in the petrosal 

runs in a similar direction to the groove. The conspicuous absence of the groove 

on the left side suggests that the perilymphatic duct has been fully enclosed in 

bone and transformed into a cochlear aqueduct. It is likely that the open groove 

on the right side is an artifact; the edges of the crests show some breakage, 

though other portions seem natural. The left side of PSS-MAE 141 (the only side 

observable for this feature) agrees with the left side of PSS-MAE 142 in showing 

no traces of a perilymphatic groove. In monotremes the development of the 

aqueductus cochlea (or lack thereof) differs between Ornithorhynchus and 

Tachyglossus, as shown by the collection of monotremes housed at the 

American Museum in New York (AMNH 252512, AMNH 200255, AMNH 

157072). The platypus retains a perilymphatic duct mostly open to the middle ear 

space throughout life (Zeller, 1989), but the echidna closes it later in 

development. Zaglossus has, in general, an even more complete enclosure of 

the perilymphatic duct than the echidna. It is possible that a similar situation 
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happened in Mangasbaatar, but the fact that its development seems to be 

different on left and right sides of the same specimen is problematic.  

The area of the middle ear cavity developed between the perilymphatic 

groove, the jugular foramen, the hypoglossal foramen, and the crests subdividing 

the medial portion of the middle ear cavity is slightly concave and essentially 

featureless. The petrosal forms at least half of the jugular foramen, which is 

equal in size to the fenestra vestibuli. The presence of a large jugular bulb in 

Mangasbaatar is evidenced by the large depression surrounding the jugular 

foramen and its endocranial enlargement. A portion of the middle ear, anterior to 

the crest that subdivides the medial portion of the middle ear cavity, forms the 

bulk of the middle ear volume and determines a concave median surface for the 

petrosal by excavating all the elements forming the middle ear roof. The RTPP 

forms the anterolateral limit of this space. 

The petrosal extends laterally and posteriorly from the promontorium to 

form what can be roughly described as an “L”-shaped platform. The long arm of 

the “L” is formed by the epitympanic recess, and the short one is formed mostly 

by the caudal tympanic process of the petrosal (CTPP). The epitympanic recess 

extends from its contact with the alisphenoid anteriorly to the level of the fenestra 

vestibuli posteriorly. The posterior-most portion of the epitympanic recess is lost 

from the right side of both specimens and is distorted/incomplete on the left side 

of both of them. The epitympanic recess is a strongly concave surface that 

projects ventrally, especially at its anterior pole as it continues into the 

alisphenoid. Its lateral limits are marked by the ventral edge of the anterior 
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lamina and its medial boundary is formed by a low crest that runs 

posteromedially and that approaches the promontorium quite closely, especially 

at the level of the fenestra vestibuli. Foramina are present in the petrosal 

contribution to the epitympanic recess. The most anterior one, already mentioned 

in connection with the alisphenoid, is oval, anteroventrally directed, and placed 

approximately along the midline of the epitympanic recess. A second, much 

smaller foramen, seen only on the right side of PSS-MAE 142, is near the lateral 

edge of the epitympanic recess and is also anteroventrally directed. A third, of 

very large size, is centrally positioned in the epitympanic recess, roughly at the 

level of the internal carotid sulcus. Leading anteroventrally from this foramen, 

there is a broad, deep sulcus that nearly extends to the anteroventral limits of the 

epitympanic recess. The three aforementioned foramina of the epitympanic 

recess likely transmitted branches of the mandibular division of the trigeminal 

nerve (V3). The first two foramina are in turn associated with a third foramen that 

perforates the anterior lamina of the petrosal in lateral view. The three of them 

can be considered the foramen masticatorium, with two branches directed 

ventrally and one ventrolaterally. 

The big foramen occupying a central position in the epitympanic recess is 

the foramen ovale inferium. In other multituberculates (Kielan-Jaworowska, 1970, 

1971; Kermack and Kielan-Jaworowska, 1971; Kielan-Jaworowska et al., 1986; 

Hurum, 1988b; Wible and Rougier, 2000) and in some rodents (Hill, 1935; 

Wahlert, 1974, 1985) the mandibular division of the trigeminal nerve is also 

divided into numerous foramina. Variations in the number, pattern, and size of 
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these foramina seem to be very frequent (Wible and Rougier, 2000), but in PSS-

MAE 141 and 142 the morphology in this area is consistent. Behind the foramen 

ovale inferior, the epitympanic recess is walled laterally by the ventral extension 

of the anterior lamina and at least partially by the squamosal. This region is best 

preserved in PSS-MAE 141. The medial limit of the epitympanic recess becomes 

confluent, in this area, with a low crest: the crista parotica, which increases in 

size posteriorly. 

Lateral to the crista parotica, there is a small portion of the epitympanic 

recess that is deeper than the surrounding area that likely lodged the articulation 

between the incus and malleus. Therefore, this specific portion of the 

epitympanic recess is here interpreted as the fossa incudis, for the short crus of 

the incus. On the left side of PSS-MAE 141, there is a fragment of a small bone, 

most likely a middle ear ossicle, lying in the fossa incudis. Unfortunately, it is not 

possible to exactly identify the element. The fossa incudis is fully continuous 

anteriorly with the epitympanic recess and its posterior limit is formed by the 

squamosal and the petrosal jointly. 

The crest marking the medial limit of the epitympanic recess is connected 

in the anterior two-thirds of its length to the promontorium. The anterior-most 

portion of this connection is occupied by the groove for the internal carotid artery. 

The posterior portion of this connection is almost flat and is notched, only slightly, 

by the groove for the stapedial artery. The posterior one-third of the crest 

marking the medial edge of the epitympanic recess is free: the rostral 

continuation of the crista parotica. At the level of the posterior margin of the 



49 
 

fenestra vestibuli there is a small process arising from the medial aspect of the 

crista parotica, which is ventromedially directed, the tympanohyal. Behind the 

tympanohyal, there is a shallow notch, the stylomastoid notch, which 

corresponds to the exit of the hyomandibular branch of the facial nerve (CN VII) 

from the tympanic cavity. 

A series of structures occupies the space between the epitympanic recess 

and the fenestra vestibuli. Posterior to the bony shelf, already described as 

connecting the epitympanic recess, the petrosal, and the promontorium, there is 

a deep recess that excavates the lateral surface of the promontorium. This 

recess marks the likely site of attachment of the m. tensor tympani and is 

identified here as the tensor tympani fossa. The tensor tympani fossa in 

Mangasbaatar seems to be proportionally small in relation to the size of the 

middle ear as compared with Kryptobaatar (Wible and Rougier, 2000). 

In other LCMM, the facial nerve opening into the middle ear and the 

prootic canal opening into the middle ear are found behind the tensor tympani 

fossa. This area is preserved on the left side of PSS-MAE 141 and 142. 

Unfortunately, preparation of this area is not possible due to the distortion of the 

skull and the deeply recessed position of these openings. Presence of these 

structures, namely the prootic canal and the tympanic opening of the facial nerve, 

is evidenced on the broken right side of PSS-MAE 141. In this specimen, directly 

rostral to the vestibular structures and lateral to the promontorium, there are two 

canals shown in section through the anterior lamina. The most medial of these 

corresponds to the facial foramen, and the more lateral canal corresponds to the 
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prootic canal. The prootic canal can be traced posterodorsally to the vicinity of 

the subarcuate fossa on the internal surface of the petrosal in PSS-MAE 141. A 

broad facial groove extends posterolaterally, parallel to the promontorium and 

directed towards the stylomastoid notch. This groove is jointly limited by the 

squamosal and petrosal. The stylomastoid notch occupies a deeply recessed 

space between the root of the squamosal, the styloid process, and the tall 

paraoccipital process of the petrosal. Medial to the stylomastoid notch, at the 

base of the prominent crista interfenestralis, there is an oval depression: the 

stapedial fossa. This fossa, subequal in size to the fenestra vestibuli, served as 

an attachment point for the m. stapedius and is hidden in posteroventral view by 

the prominent paraoccipital process.  

The paraoccipital process, in occipital view, is subtriangular with a broad, 

round apex. A sharp crest extends anteroventrally from the tip of the 

paraoccipital process and connects this process with the back of the 

promontorium. The crest on the paraoccipital process is continuous with the 

crista interfenestralis of the promontorium.This rather large, anteromedially 

trending crest partially subdivides the rear of the middle ear cavity and results in 

the absence of a continuous post-promontorial tympanic sinus. The crista 

interfenestralis-paraoccipital process crest fully separates the structures of the 

lateral trough from those in the area of the perilymphatic foramen and jugular 

foramen. 

The crista interfenestralis, the edge of the perilymphatic foramen, and the 

back of the middle ear cavity separate a small portion of the tympanic cavity 



51 
 

around the jugular foramen. This is the jugular fossa of other multituberculates 

(Kielan-Jaworowska, 1986; Wible and Rougier, 2000). The jugular fossa in 

Mangasbaatar represents another out-pocketing of the massive middle ear 

cavity. The jugular fossa is dominated by the round ventral bulging of the 

common ampulla of the posterior and lateral semicircular canals. This structure is 

very similar to that of Kryptobaatar (Wible and Rougier, 2000). The ampullar 

prominence determines two deep pits in the roof of the middle ear cavity: a 

lateral and a medial pit. The lateral pit is walled off medially by the crista 

interfenestralis and posteriorly by the posterior wall of the middle ear cavity. The 

medial pit is closely associated with the perilymphatic foramen and shows a very 

well delimited oval depression immediately posterior to the perilymphatic 

foramen. This area is similar to the recessus scalae tympani described in 

monotremes (Zeller, 1989). The excavation of this pocket is not as prominent in 

PSS-MAE 142 as it is in PSS-MAE 141. Determining the occupant of this space 

is problematic. The resemblance of this area with the recessus scala tympani 

could suggest that an expansion of the perilymphatic duct would occupy this 

area, but it was previously noted that the perilymphatic duct is enclosed in an 

aqueductus cochlearis throughout much of its length. The lateral opening of this 

aqueduct is on the medial edge of the perilymphatic foramen. It is possible that 

the perilymphatic duct expanded out of the perilymphatic foramen in a sac filled 

with perilymph occupying this recess, which is essentially the condition found in 

monotremes. Alternatively, in eutherians the secondary tympanic membrane 

stretches over the fenestra cochlearis (the partial homologue of the perilymphatic 
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foramen) and there is no expansion of the perilymphatic system into the middle 

ear cavity. Under this model the recess in Mangasbaatar would be empty and 

part of the middle ear cavity. The rest of the jugular fossa is gently concave 

around the jugular foramen. 

From the paraoccipital process there is another crest in the petrosal that 

extends medially; this is the CTPP, which extends to its contact with the 

exoccipital immediately lateral to the occipital condyles. The CTPP extends 

anteroventrally and contributes, along with other elements of the braincase, to 

the floor of the middle ear cavity. 

In lateral view, the anterior lamina is the dominant component of the 

petrosal and, in an undistorted specimen, would probably completely hide the 

pars canalicularis and the pars cochlearis of the petrosal. The anterior lamina 

contacts the parietal dorsally through a fairly horizontal suture that extends 

rostrally up to the anterior opening of the orbitotemporal canal under the root of 

the postorbital process. The anterior lamina forms the posteroventral edge of this 

foramen. Following approximately the direction of the anterior lamina-parietal 

suture, there is an endocranial groove interpreted here as a space for the 

orbitotemporal system. The major occupant would be the orbitotemporal artery 

(Kielan-Jaworowska et al., 1986; Rougier et al., 1992; Wible and Rougier, 2000), 

likely accompanied by a vein. The orbitotemporal artery was fed posteriorly 

through a fairly vertical dorsal ascending canal. This canal runs between the 

anterior lamina and the squamosal and is shown by the right side of PSS-MAE 

142. In the specimen, the overlying squamosal is missing, affording a direct view 
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of the inside of the ascending canal. When complete, the canal would have been 

perforated by a few foramina that would distribute its contents to the temporal 

area. The foramina would be occupied by temporal rami feeding the temporal 

musculature (Rougier et al., 1992; Wible and Gaudin, 2004). 

The ascending canal contacts two other grooves: a larger posterodorsal 

one and a somewhat smaller anteroventral one. The posterodorsal canal opens 

on the occiput through the posttemporal canal and likely transmitted the arteria 

diploetica magna and a companion vein (Kielan-Jaworowska et al., 1986; 

Rougier et al., 1992). The anteroventral canal is filled with matrix in PSS-MAE 

142 and represents the ventral ascending canal, likely transmitting a fairly 

horizontal portion of the ramus superior. This canal, horizontally directed, runs 

through the thickened ventral edge of the anterior lamina: the lateral flange. The 

ventral extent of the lateral flange is mostly complete on the left side of PSS-MAE 

141. The lateral flange extends anteriorly along the lateral edge of the 

epitympanic recess as a gently concave lamina. At its most anteroventral extent, 

near the suture with the alisphenoid, there is a foramen that faces ventrolaterally: 

the lateral opening of the foramen masticatorium, which has already been 

mentioned. On the left side of PSS-MAE 141, there is a small foramen on the 

lower third of the anterior lamina, corresponding to the supraglenoid foramen of 

Kryptobaatar (Wible and Rougier, 2000) and other LCMM. 

The anterior margin of the anterior lamina has a long anteroventrally 

trending ridge that forms the lateral wall of the sphenorbital fissure. The very long 

anteroventrally-extending portion of the anterior lamina is one of the most 
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conspicuous features distinguishing Mangasbaatar from other LCMM. The 

extension of the anterior lamina is coupled with the general enlargement of the 

middle ear cavity through the ventral projection of the elements involved in its 

formation. The dorsal portion of the anterior edge of the anterior lamina is 

moderately concave and faces forward as in other LCMM. In Mangasbaatar, this 

surface is proportionally more dorsally located. The reorganization of this area is 

mostly due to the very large opening of the sphenorbital fissure, which occupies 

the floor of the orbitotemporal region. The size and proportions of this area are 

very well shown by PSS-MAE 142 and at least partially confirmed by the right 

side of PSS-MAE 141. 

In occipital view, the petrosal is exposed between the squamosal, 

exoccipital, and supraoccipital. The mastoid exposure of the petrosal supports, 

dorsolaterally, the base of the lambdoid crest. Along the dorsolateral edge of the 

petrosal there is a fairly prominent posttemporal foramen, partially obliterated by 

crushing in PSS-MAE 141. This anteroventrally directed foramen is formed solely 

by the petrosal. A broad groove extends ventrally from the posttemporal canal, 

continuing into the mastoid exposure of the paraoccipital process. The 

posttemporal foramen is also slightly notched dorsally suggesting that a large 

occipital artery ran in close contact with the occiput and continued dorsally to 

supply the nucal musculature. The area of the mastoid exposure of the petrosal 

medial to the posttemporal canal is slightly concave and forms a shallow 

depression on the side of the occipital condyles. This shallow depression 
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probably accommodated the transverse processes of the atlas during skull 

movements. 

Basioccipital 

The basioccipital is preserved in both specimens, although only the one in 

PSS-MAE 142 is incomplete. The basioccipital forms most of the basicranial axis; 

it is in contact anteriorly with the basisphenoid, laterally with the petrosals, and 

posteriorly with the exoccipital. It is also possible that a small portion of the 

pterygoids contacts the anterolateral corner of the basioccipital. In ventral view 

the basioccipital shows a deep odontoid notch, as described earlier, and a 

narrow median exposure that is flanked by the exoccipital. In front of the 

exoccipital, the basioccipital expands laterally contributing to the floor of the 

middle ear cavity through a thin lamina. Further rostrally, the basioccipital 

contribution to the floor is in contact with a similar lamina of the petrosal. At the 

rostral end of the basioccipital there is a transverse suture, mentioned earlier in 

the description of the pterygoid, that separates the basioccipital from the 

basisphenoid and probably the pterygoids. The contribution of the basioccipital to 

the floor of the middle ear is laminar and ventrally convex, similar to the 

processes of other bones delimiting the middle ear cavity. 

In the middle ear cavity, the basioccipital is deeply excavated medially so 

that this bone forms not only a substantial part of the floor of the middle ear 

cavity, but also the medial wall and part of the roof. The medial excavation of the 

basioccipital results in a bone that is very thin, so much so that it can be 

transilluminated from the opposite middle ear space. This very close 
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approximation of right and left middle ear cavities to the midline is ventral to the 

braincase proper because, as mentioned above, only a thin, tall crest of the 

basioccipital separates right and left cavities. The suture with the petrosal runs 

deeply in the roof of the middle ear, obliquely from the jugular foramen towards 

the anteromedial pole of the middle ear recess. The basioccipital, the petrosal, 

and possibly the exoccipital, jointly form the jugular foramen. The aperture is of a 

relatively small size with respect to the overall size of the skull. 

Exoccipital 

 The exoccipital is incomplete in both specimens. The left side of PSS-

MAE 141 is the best preserved. The exoccipital contacts the basioccipital 

anteriorly, the supraoccipital dorsally, and the petrosal laterally and dorsally in 

the occiput. The exoccipital forms the occipital condyles, most of the foramen 

magnum, and the posteromedial wall of the middle ear cavity. 

 Only part of the left condyle is preserved in PSS-MAE 141. What is 

preserved resembles the condyles present in other LCMM. The condyles are not 

very prominent, are moderately convex, and have a small lateral extension. The 

articular surface extends over the bony floor of the middle ear cavity. Right and 

left exoccipitals are separated ventrally along the midline by a wedge of the 

basioccipital bearing the odontoid notch. The exoccipital forms most of the lateral 

edge and floor of the foramen magnum and right and left are separated ventrally, 

as mentioned before, by the basiocciptal and dorsally by the supraoccipital. The 

contribution of the exoccipital to the occiput is limited to the area immediately 

surrounding the foramen magnum. This lamina is flat and slopes slightly forward, 
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away from the foramen magnum. The suture with the petrosal runs obliquely, 

from slightly above the level of the foramen magnum downwards to the medial 

side of the paraoccipital process in the middle ear cavity. 

 Mangasbaatar has an extremely well developed and expansive middle ear 

cavity formed jointly by the squamosal, petrosal, basioccipital, alisphenoid, and 

exoccipital. The exoccipital forms the posteromedial aspect of this cavity 

providing a thin floor that extends anterolaterally. This floor is incomplete in both 

specimens. From what remains of the left side of PSS-MAE 141, it is clear that 

this floor almost completely enclosed the middle ear. The contribution of the 

exoccipital to the internal surface of the middle ear can be evaluated only on the 

right side of PSS-MAE 141. The exoccipital is deeply excavated medially forming 

a small infundibulum separated anteriorly from the main middle ear cavity by a 

sharp crest. 

In the posteroventral corner of both sides of PSS-MAE 142, a single 

hypoglossal foramen can be recognized. The area surrounding this foramen is 

damaged on both sides, so it is unclear if Mangasbaatar had only one 

hypoglossal foramen or more. A second foramen, piercing the substance of the 

exoccipital, can be seen on the right side of the exoccipital and part of the same 

foramen is preserved on the left side. The left exoccipital is more eroded than the 

right so that the above-mentioned foramen can be seen to be continuous with a 

cylindrical endocast of the left side. These foramina were inside a condylar area 

of the exoccipital and can be interpreted to be part of a condylar canal. The 

endocranial structure leading to the left condylar canal is congruent with similar 
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endocasts described for Kryptobaatar (Wible and Rougier, 2000). The relatively 

large size of these endocasts and the proportionally small size of the jugular 

foramen imply that most of the blood from the cranial venous system was drained 

in Mangasbaatar through the foramen magnum instead of the jugular foramen, a 

condition congruent with that reconstructed for other multituberculates (Kielan-

Jaworowska et al., 1986; Rougier et al., 1992). The basioccipital-exoccipital 

suture in the middle ear region cannot be discerned in any of the specimens so 

the lateral extent of the bone cannot be ascertained with any certainty. However, 

it is likely that the relatively large hypoglossal foramen, present on the 

posteromedial corner of the middle ear cavity, is completely enclosed in the 

exoccipital (shown by the right side of PSS-MAE 141). 

Supraoccipital 

 The supraoccipital is a flat bone positioned sagittally on the occiput dorsal 

to the foramen magnum and is vertical, or inclined slightly forward. The 

supraoccipital is at least partially preserved in both of the specimens. This 

element contacts the parietals dorsally, the petrosals parasaggitally and the 

exoccipitals ventrolaterally. A small portion of the supraoccipital forms the dorsal-

most portion of the foramen magnum. In PSS-MAE 142 there are remnants of a 

small midline crest, which increases in size dorsally. The supraoccipital provides 

support to the lambdoidal crest but does not directly contribute to it and it is 

therefore limited to the occipital aspect of the skull. 
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Mandible 

 Fragments of both right and left lower jaws are preserved in both 

specimens. Those of PSS-MAE 142 were found dissociated among the 

numerous fragments that resulted from erosion of the skeleton. The jaws of PSS-

MAE 141 were still articulated to the skull when found. The right jaw was almost 

completely eroded away, leaving only the tip of i1, p4-m2, and the apex of the 

coronoid process in articulation. An impression of the body of the jaw was 

present so that the shape and curvature of the area of the dentary surrounding i1 

could be observed. Preparation of the specimen removed all of these remnants 

of the right jaw and destroyed the natural mold of the dentary. However, the 

specimen was molded before preparation and the relative positions of the 

elements are preserved in a rubber cast of the original. The left lower jaw is 

largely preserved but is missing the symphysis, most of the incisor, and the back 

of the jaw. This description is based on this jaw and is supplemented with details 

from PSS-MAE 142. 

The jaw of Mangasbaatar is heavy and deep under the molars with a very 

steep diastema and i1 alveolus. The i1 is very high and almost reaches the level 

of the molars. The space between i1 and p3 is relatively short. The symphysis is 

very robust, as shown by the fragments of PSS-MAE 142. The bottom part of the 

body of the jaw is missing in both specimens, but can be observed in the cast of 

PSS-MAE 141. The external surface of the jaw is marked by a series of 

depressions. The first depression is ventral to the p4-m1 embrasure and has the 

masseteric fovea preserved as a gentle concavity. Between the masseteric fovea 
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and p4, the alveolar ridge is slightly concave and continues along the chipped 

teeth to end directly medial to the coronoid process. The anterior portion of this 

depression under p4 is the lunule (Gambaryan and Kielan-Jaworowska, 1995), 

which is not very well developed in Mangasbaatar. The more substantial 

depression extending back is the temporal groove. As previously mentioned, the 

bottom of the jaw is not well preserved in the specimens and the masseteric crest 

cannot be fully recognized in any of them, but isolated fragments suggest the 

presence of the masseteric protuberance (Kielan-Jaworowska et al., 2005). The 

masseteric fossa, however, is slightly concave and not very large, restricted to 

the base of the coronoid process, and probably expanding toward the back of the 

jaw. The coronoid process in Mangasbaatar is high, narrow, and forms a sharp 

angle with the molariform occlusal plane (78 degrees). The tall coronoid process 

resembles that described in Catopsbaatar (Kielan-Jaworowska, 1974; 

Gambaryan and Kielan-Jaworowska, 1995; Kielan-Jaworowska et al., 2005). 

 Only the dorsal-most portion of the condylar process is preserved in the 

left lower jaw of PSS-MAE 141. Fortunately, most of the condylar articular 

surface remains intact. The condyle is perched in a broad neck and is separated 

from the coronoid process by a wide notch that places the condyle above the 

occlusal plane of the molars. An isolated left condyle is also preserved in PSS-

MAE 142. The articular surface is teardrop-shaped with the broad end directed 

anteriorly. The articular surface continues back along the posterior edge of the 

jaw for a short distance beyond the broader portions of the condyle, indicating 

the potential for a large range of jaw opening. The medial view of the jaw shows 
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a deep pterygoid fossa that extends anteriorly up to the m2. The pterygoid fossa 

is bordered anteriorly by the remnants of the pterygoid ridge, which is only 

partially preserved. At the anterior pole of the pterygoid fossa there is a large 

foramen that is directed anteriorly into the substance of the dentary: this is the 

mandibular foramen or canal. All of the features of the medial view of the jaw 

described by Gambaryan and Kielan-Jaworowska (1995) cannot be described in 

these specimens. 

Dentition 

 Mangasbaatar is clearly a member of Djadochtatherioidea (Rougier et al., 

1997; Kielan-Jaworowska and Hurum, 1997; 2001) and, as seen in all members 

of this group, the lower dentition is reduced to one incisor, two premolars, and 

two molars. The upper dentition is reduced, like Tombaatar and Catopsbaatar, to 

two incisors, three premolars, and two molars. Therefore, the dental formula for 

Mangasbaatar is I2/1, C0/0, P3/2, M2/2. 

PSS-MAE 141, the type, is a younger individual than PSS-MAE 142. The 

crown morphology of PSS-MAE 141 is very well-preserved and most of the 

cusps are intact. PSS-MAE 142, on the other hand, shows extensive wear, which 

has reduced the cusps to their truncated bases. On the left side of PSS-MAE 

141, there is a small element in the diastema between P1 and P3. This element 

is a tooth or parts thereof which might be incompletely preserved, but it seems 

more likely to be part of a deciduous tooth (likely a DP3) which is retained at this 

ontogenetic stage. The relevant area on the right side of PSS-MAE 141 is 

damaged, so the presence or absence of this element cannot be corroborated. 
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There is, however, a fragment of a tooth in a position that approximately 

corresponds to the element mentioned above but the damage to the area is so 

extensive that a positive identification is not warranted. PSS-MAE 141 is a young 

adult, but the older adult, PSS-MAE 142, shows no trace of this element between 

P1 and P3. 

Upper Dentition 

 The upper dentition is fairly well-preserved in PSS-MAE 141, although 

most of the I1 are missing, the left I2 and right P4 are damaged, and the right P1-

P3 are missing. On the skull PSS-MAE 142, only part of the right and left I1 are 

preserved. Both of the I2, as well as the right P1 and P4, are damaged. The left 

P1-P4 and the right M1 are also missing. 

INCISORS: The upper I1 is a big, strong tooth that is sharply curved, and 

occupies most of the premaxilla. The tooth is strongly compressed mediolaterally 

with a thick layer of enamel covering its lateral aspect, wrapping around the 

dorsal aspect of the tooth to extend into the medial face (restricted enamel). The 

medial extension of the enamel is limited to a small dorsal band that occupies 

less than a third of the medial height of the tooth. Right and left I1 were medially 

directed and probably contacted each other in the midline. This, however, cannot 

be seen in the specimens because of imperfect preservation. 

 The left I2 of both skulls seem to be complete and show heavy wear on 

their occlusal facets. The I2 in Mangasbaatar is a cylindrical tooth that is slightly 

curved posteriorly, occupying a position close to the midline on the palate. The I2 
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projects ventrally as a long freestanding tooth that culminates into a flat 

subhorizontal wear facet. The wear of the I2 crowns is enough to obscure the 

original crown morphology of this element. It is, therefore, uncertain if the I2 had 

one or more cusps (a primitive condition). The wear on the I2 is so extensive that 

the boundary between the crown and the root is obliterated. The wear has also 

exposed, in the center of the cylinder, a small area showing the cementum 

surrounded by dentin. This condition is well developed in PSS-MAE 141, but in 

PSS-MAE 142 the wear on the I2 crown does not reach the cementum. 

PREMOLARS: PSS-MAE 141 bears a well-preserved left P1 which shows little 

wear. The P1 is biradiculated, short, and has a short crown that culminates in 

three conical cusps. The cusp formula is 1-2. The cusps are arranged in a closed 

triangle. The roots are unequal, the anterior root being larger and sloping 

backwards, a feature quite common among LCMM, likely associated with the 

palinal masticatory movements (Wall and Krause, 1992; Gambaryan and Kielan-

Jaworowska, 1995). 

 The P2 seems to be absent in Mangasbaatar. No traces of it remain on 

both sides of PSS-MAE 142. The alveolar bone in this area is well preserved, 

showing a smooth, short diastema between P1 and P3. On PSS-MAE 141, 

however, the left side shows the remnant of a tooth between P1 and P3. As 

preserved, this remnant is little more than a rootlet. It is likely that this is a 

transitory remnant of a deciduous premolar, likely DP3. The right side of the 

same specimen is not preserved well enough to be certain of the presence or 

absence of a P2. Under this interpretation, Mangasbaatar shares the absence of 
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a P2 in the adults with Tombaatar and Catopsbaatar. All these large size LCMM 

represent a closely related group of multituberculates (Kielan-Jaworowska and 

Hurum, 1997; Rougier et al., 1997). Kielan-Jaworowska et al. (2005) described 

that in old Catopsbaatar specimens P1 and P3 disappear without leaving traces 

of their respective alveoli. This does not seem to be the case in Mangasbaatar as 

attested by the relatively old PSS-MAE 142 which still preserves P1 and P3. 

 The P3 is a small subrectangular tooth in occlusal outline, with two roots 

that slant posteriorly. The crown is separated by a strong neck from the roots and 

bears four conical cusps. The cusp formula is 2-2. The four cusps of the P3 

occupy the corners of a rectangle with a small posterior broadening of the crown 

behind the two posterior cusps. The posterobuccal and the two lingual cusps are 

subequal in height, but the anterobuccal is substantially shorter than the other 

three. The three larger cusps suggest a triangular pattern similar to that present 

in the P1. 

 The P4 are missing or badly broken in PSS-MAE 142 and the right side of 

PSS-MAE 141. The left side of the latter, though, has this element preserved 

almost completely. The P4 is a large, strong premolar supported by two roots. 

The cusp formula on the P4 is 1-5-1?. The lingual row is damaged or worn down 

on both sides of PSS-MAE 141 and it is likely that only one cusp was present; 

however, it would be possible to have a very small cusp anteriorly positioned 

relative to the main one. The buccal cusp is small and conical, showing no wear 

on PSS-MAE 141. The middle row has five cusps that increase in size posteriorly 

from the first to the fourth, forming a continuous ridge. The fifth cusp is separated 
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by a deep embrasure from the rear slope of the prominent fourth cusp. The 

buccal row, as in other multituberculates, is more dorsally placed than the middle 

and lingual rows in the P4. The lingual row is likely formed by a single cusp and 

forms a medially bulging projection which, in essence, represents the abraded 

base of that large cusp. The wear that obliterated the lingual cusp extends a flat 

surface to the lingual slopes of the cusps forming the middle row. The buccal 

bulge formed by the buccal row is offset by the medial bulge of the lingual row, 

resulting in a slightly oval crown view for the P4 in Mangasbaatar. In 

Mangasbaatar, as is common among multituberculates, the direction of the 

middle row is oblique, aligned anteriorly with the lingual row of the P3 but aligned 

posteriorly with the buccal line of the M1. 

The M1 is well preserved in both sides of PSS-MAE 141, but is worn down 

or broken in PSS-MAE 142. There are three rows of cusps on this molar with a 

cusp formula of 5-5-3. As is common in other LCMM the buccal and middle rows 

extend through the length of the tooth, but the lingual row is incomplete. In 

Mangasbaatar, the incomplete lingual row of the tooth reaches anteriorly to the 

level of the apex of the third cusp of the middle row, or to the embrasure between 

the second and third buccal cusps. The elongated M1 is supported by two roots. 

The anterior root is buccal-lingually compressed and the posterior root, that 

supports the back half of the tooth, is massive and cylindrical. 

 The cusps have subrectangular to hexagonal bases and probably 

culminated in conical apices when unworn. At present, the M1 in PSS-MAE 141 

shows small crater-like depressions centrally positioned on each cusp of the 
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middle row, reflecting wear through the enamel and exposing the softer dentin. 

PSS-MAE 142 shows that in older individuals the molars lose almost all relief in 

their crowns and that the “craters” seen in PSS-MAE 141 expand to occupy the 

whole crown. The only remnants of the original cusp pattern are in PSS-MAE 

142, seen in the eroded bases of the cusps. The buccal row that is formed by five 

subequal cusps shows strong wear-facets in all of the lingual slopes. The 

individual cusps of the buccal row are separated by valleys that become 

shallower posteriorly; therefore, the first buccal cusp, which is somewhat 

removed from the anterior margin of the molar, is also separated from the rest of 

the cusps by the deepest valley. The valley between the second and third cusps 

of the buccal row is relatively shallow and the bases of these two cusps are 

partially merged together, a condition that is also present in Tombaatar and other 

LCMM (Rougier et al., 1997). The fifth buccal cusp is small and poorly separated 

from the fourth. A blunt ridge extends postero-lingually from its apex towards the 

last cusp in the middle row, thus closing the trough between the buccal row and 

other rows. The middle row has five cusps that increase in size progressively 

toward the back. The cusps in the middle row are positioned at the level of the 

valleys between the cusps in the buccal row. The imbrication between the cusp 

bases of the buccal and middle row results in a strongly angular trough between 

the buccal and middle row. The lingual row has three poorly differentiated cusps, 

of which the middle is the highest. The bases of these cusps are not as well-

developed as those of the first two rows and they develop a fairly uniform, 
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straight slope that is continuous from the most mesial cusp to the most distal 

one. Wear facets are developed only on the buccal slope of these cusps. 

 Both M2 are preserved in both specimens, but those of PSS-MAE 142 are 

very heavily worn. The M2 is a pear-shaped tooth supported by two roots, a large 

anterior one and a smaller posterior one that slopes backwards. This position of 

the roots of the M2 make the occlusal surface of the last molar face 

anteroventrally, giving the dental arcade a slightly concave outline in lateral view, 

that is characteristic of multituberculates (Wall and Krause, 1992). The cusp 

formula of the M2 is ridge-2-3. The two cusps in the middle row are larger than 

the rest in the molar and continue the posterior increase in size of the middle row 

of the M1. The bases of these cusps are not polygonal as in the M1. The lingual 

row is much more prominent in the M2 than the M1, forming a fairly sharp ridge 

that is separated from the middle row by a broad valley. The middle cusp of the 

three is the largest and has heavy wear as shown by the left molar of PSS-MAE 

142. The cusps on the lingual row are very poorly differentiated from one 

another. The buccal row is very short and does not extend throughout the length 

of the tooth. It reaches, posteriorly, the middle of the cusp space of the posterior 

cusp of the middle row. The row lacks distinct cusps and forms a broad, low, 

shallow crest aligned with the buccal row of the M1. 

Lower Dentition 

 The best lower dentition is that of the specimen PSS-MAE 141, which is 

complete (with the exception of the i1). In PSS-MAE 142, only part of the right 
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dentition is still in place in a small fragment of the dentary. The left is represented 

only by isolated broken crowns of the i1, m1, and m2. 

The first lower incisor is a strong tooth, buccolingually compressed with a 

partial covering of enamel that, as in the I1, covers only the external and a small 

portion of the lingual surface of the tooth. As in all large LCMM, the i1 are very 

large teeth with an anterior-posterior length subequal to the m1 length, the 

largest cheek tooth. 

As in all LCMM, Mangasbaatar shows only two premolars, conventionally 

called p3 and p4. The p3 is, in Mangasbaatar and other LCMM, a very small 

element, essentially “peg”-like in front of the towering p4. The p3 in 

Mangasbaatar has only one anteriorly curved root. This root follows the concave 

contour of the mandibular diastema between i1 and the p3. There is a clear 

distinction between the crown and root, indicated by a conspicuous neck. The 

crown is essentially a more bulbous, enamel-clad continuation of the root that 

culminates in a single blunt cusp. The apex of the p3 is at roughly the level of the 

neck between the roots and the crown of the p4. The anterior margin of the p4 

overhangs the minute p3 so that the anterior edge of the p4 is continuous 

anteroventrally with the mesial edge of the p3. The p3 is well preserved in both 

the left jaw of PSS-MAE 141 and the right jaw of 142. 

The p4 is well preserved in both jaws of PSS-MAE 141, but missing on the 

left of 142. The p4 in all cimolodont multituberculates is blade-like with a serrated 

margin. This is also the condition in Mangasbaatar. The p4 in Mangasbaatar is a 
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peculiar trapezoidal shape with a nearly straight mesial edge and a fairly 

horizontal occlusal surface. A similar condition is seen in Catopsbaatar and in 

Tombaatar (unpublished specimens). The premolar is supported by three roots, 

two big and stout located mesially and distally and a small one between the two, 

a condition also known in other LCMM including Kryptobaatar (Kielan-

Jaworowska, 1971). The cusp formula in the premolar is ridge-5. The labial ridge 

is substantial, forming a broad platform on the posterior one-third of the tooth, 

approximately the area supported by the back root. This ridge becomes broader 

and stronger posteriorly, reaching the occlusal plane of the buccal row of the m1 

at its posterior extent. The cusps in the central row are very blunt and form a 

weakly-serrated edge that reaches the level of the occlusal plane of the lingual 

row of cusps of the m1. 

The first molars (m1) are present bilaterally in both specimens. The best 

preserved are those in PSS-MAE 141. The m1 is the largest of the lower cheek 

teeth, has a cusp formula is 4-3, and is supported by two massive cylindrical 

roots. The crown of the m1 is very low and the cusps of the buccal and lingual 

rows have different heights (the buccal cusps are lower than the lingual cusps). 

This difference in height may be exaggerated by differential wear. As is common 

in other LCMM, the cusps of the buccal and lingual rows occupy alternate 

positions, with the lingual cusps placed between two successive buccal cusps. 

The cusps on the buccal side have subhexagonal bases but those on the lingual 

side are less so. All the cusps in the m1 were, in the unworn state, conical. 
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The m2 is well preserved and lodged in the dentaries, or fragments thereof, with 

the exception of the left m2 of PSS-MAE 142 that was found isolated. The m2 is 

a relatively small tooth with only two cusps in the labial and lingual rows. 

Therefore, its cusp formula is 2-2. The crown outline is subrectangular and cusps 

in both rows are subequal in height. The two rows of cusps are further apart than 

in the m1 and, the cusps of different rows do not alternate with each other so that 

the first cusp of the lingual row is at the same level as the first cusp of the buccal 

row. The four cusps occupy the corners of the subrectangular m2, determining a 

broad basin between them. The left m2 of PSS-MAE 142 has been found 

isolated and it has sustained substantial damage, however, the buccal row is 

almost complete and shows that the posterior buccal cusp is, in this tooth, 

subdivided into subequal cusps, a condition not clearly seen on the right m2 of 

the same specimen or those of PSS-MAE 141. The m2 is supported by one root. 

This root is approximately of the same diameter as the crown and is deeply 

constricted apically, but is not divided. 
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DISCUSSION 

Cladistic Analysis 

Few published phylogenetic analyses include LCMM among a wider 

sample of multituberculates, most notably Simmons (1993), Rougier et al. (1997), 

Kielan-Jaworowska and Hurum (1997) and Kielan-Jaworowska and Hurum 

(2001). Following Rougier et al. (1997) and Kielan-Jaworowska and Hurum 

(1997) this study recognizes Djadochtatherioidea as a monophyletic group of 

Late Cretaceous multituberculates and based on shared diagnostic features (see 

diagnosis) the new taxon will be compared primarily with other LCMM, some of 

which are found in the same, or similarly aged, sediments. The wider problem of 

the position of Djadochtatherioidea within Allotheria is not the main purpose of 

this study; thus I follow Kielan-Jaworowska and Hurum (2001) and Kielan-

Jaworowska et al. (2004), regarding the higher-level relationships of 

Djadochtatherioidea. 

To provide a systematic background for the new taxon, I adopt the 

character and taxon list used by Kielan-Jaworowska and Hurum (1997) with the 

removal of the unnecessary hypothetical ancestor and the addition of one 

character for the postpalatine torus. This character is uniquely developed in 

Tombaatar and Mangasbaatar, and its addition ultimately brings the character 

number to 45 across 17 taxa, after the addition of Mangasbaatar.  
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The resultant data matrix was analyzed using implicit enumeration via 

Asado version 1.7 which uses TNT as its base searching algorithm. The analysis 

recovered one most parsimonious tree of 101 steps (ci:0.64 and ri:0.68) which 

concurs in its structure with that of Kielan-Jaworowska and Hurum (2001) and 

recovers Djadochtatherioidea as a distinctive taxonomic unit among which the 

large-sized mutlituberculates including Djadochtatherium, Catopsbaatar, 

Tombaatar and Mangasbaatar are terminal taxa (Figure 27). These very 

distinctive mulituberculates reduce the blade-like lower p4, have very robust 

jaws, dorsoventrally shallow skulls with small temporal areas but preserve, 

overall, the typical cimilodontan morphology for the upper and lower molars. 

Kryptobaatar is a more generalized LCMM and, as a point of comparison, can be 

interpreted as pleisomorphic within LCMM with regards to the more derived 

characters seen in Mangasbaatar. Namely, among those, is the development of 

a very prominent jugular fossa and middle ear cavity, which develops to an 

unparalleled degree in Mangasbaatar.  

The topology of the tree does not identify any clear geographical or 

stratigraphic pattern. Udan Sayr, where the specimens of Mangasbaatar are 

from, has traditionally been considered of likely affinities with Barun Goyot from 

the western Gobi (Szalay and Trofimov, 1996; Kurzanov, 1992). It should be 

noted, however, that the closest relative of Mangasbaatar appears to be 

Tombaatar from Ukhaa Tolgod, a locality which is likely to be a Djadochta near-

equivalent (Loope et al., 1998; Dingus et al., 2008). Obviously the faunas from 
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Ukhaa Tolgod, Barun Goyot and Udan Sayr are all very similar, though, lacking 

any clearly datable horizons, the relative temporal resolution is somewhat poor 

(but see Makoviky, 2007).  

Four taxa can be considered as large LCMM: they are Djadochtatherium, 

Tombaatar, Mangasbaatar, and Catopsbaatar. The first two are poorly known, 

mostly based on palate and jaws, while Catopsbaatar and Mangasbaatar are 

represented by better preserved specimens. A skull of Djadochtatherium has 

been utilized in discussing cranial evolution of the large-sized Late Cretaceous 

Mongolian multituberculates (Kielan-Jaworowska and Hurum, 2001) based on 

photographs published in reports (sent by Mahito Watabe to Zofia Kielan-

Jaworowska in 1996) and popular articles (Webster, 1996). However the 

specimen has never been thoroughly studied and it is uncertain if it actually is 

Djadochtatherium. As such there are limited opportunities for comparisons with 

those bona fide Djadochtatherium specimens recovered by the American 

expeditions (Simpson, 1925) and deposited in the AMNH (Rougier et al., 1997). It 

follows that most of what is known about the cranial morphology of these 

multituberculates is based on Catopsbaatar and now these two specimens of 

Mangasbaatar. Catopsbaatar has been the focus of a detailed revision by Keilan-

Jaworowska et al. (2005), where a detailed description is provided of the known 

specimens. All of them, however, have a missing or poorly preserved 

basicranium. Mangasbaatar, on the other hand, has a relatively complete ear 

region preserved, with some deformation, in two specimens. It is presently 

uncertain if the extreme development of sinuses and cavities in the ear region of 
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Mangasbaatar is characteristic of all four of these large LCMM. However, in 

unpublished specimens of Tombaatar, the ear region is also greatly excavated 

but differs substantially in detail from that of Mangasbaatar. In conjunction with 

the fact that, in Kryptobaatar, there is already a substantial excavation of the 

middle ear region (Figure 27), and particularly of the area surrounding the jugular 

fossa (Wible and Rougier, 2000, Figures 14, 20, 21), it seems likely that at least 

some degree of middle ear expansion was present in all of these large-sized 

LCMM. The enlargement of the middle ear cavity would therefore be a 

synapomorphy of this group that is further elaborated and taken to an extreme. 

Discussion of characters 

Rougier et al. (1998), Wible et al. (2004) included the postpalatine torus as 

a binary character with the states absent (0) and present (1) in an analysis of 

Zalambdalestes. In order to include the peculiar morphology of the torus seen in 

Tombaatar and Mangasbaatar, this study adds this character in 3 states; absent 

or very faint (0), developed laterally and with a venral projection from the palate, 

forming a distinctive bulge (1), strongly developed, forming a raised, ornate and 

sharply angled plate (2) (see Figures 32 and 33 for full character list and 

scoring). This character alone resolves relationships at the most terminal end of 

the LCMM, placing Tombaatar and Mangasbaatar as sister groups, one node 

removed from Catopsbaatar.  

For character 15, which codes the cusp formula for M1 as either 4-5:4-5:0-

5 (0), 5-7:5-8:2-5 (1) or 5-11:7-10:6-11 (2), Mangasbaatar falls ambiguously 
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within character states 0 and 1, due to its M1 cusp formula of 5-5-2. Therefore, in 

this analysis, this character has been coded as multistate (0+1). As noted by 

Kielan-Jaworowska and Hurum (2001) the level of parallelism within 

multituberculate dental development makes results from their comparison less 

robust. As such, this character would benefit from further breakdown in future 

studies which attempt to resolve relationships at these more terminal taxa.  

For character 18, which encodes the M2 cusp formula, there exists 

ambiguity in the inner ridge of the M2 of Mangasbaatar between specimens, with 

PSS-MAE 141 showing ridge-2-3 and PSS-MAE 142 displaying ridge-2-2, though 

the M2 of PSS-MAE 142 is heavily worn. Given the character states, 1:2:2 (0), 

1:2:3 (1), and greater than 1:2:3 (2), Mangasbaatar is tentatively scored as 0+1, 

to account for the apparent ambiguity.  

The addition of Mangasbaatar and the postpalatine torus as a character 

generate a phylogenetic tree (Figure 28) which is highly similar to that in Kielan-

Jaworowska et al. (1997), with few exceptions. Differences include the placement 

of Buginbaatar within a clade with Taeniolabis and Lambdopsalis, the placement 

of Bulganbaatar with Nemegbaatar as a sister group to the clade containing 

Nessovbaatar and Kamptobaatar. Similarly to Kielan-Jaworowska et al. (1997), 

positioning Nessovbaatar is difficult due to the lack of data, and the variable 

positions of Bulganbaatar and Kamptobaatar in different trees, which in turn 

affects the affinities of Nessovbaatar. Beside these changes, the monophyly of 

Chulsanbaatar, Sloanbaatar, Kryptobaatar, Djadochtatherium, Catopsbaatar, 

Tombaatar and the new taxon Mangasbaatar remains clear.  
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Status of Djadochateriidae 

The results of my analysis are consistent with recent LCMM phylogenies 

(Rougier et al., 1997; Kielan-Jaworowska and Hurum, 1997; 2001) which assign 

Kryptobaatar, Djadochatherium, Catopsbaatar and Tombaatar to the 

monophyletic clade Djadochtatheriidae. This family of LCMM is recognized by 

cranial characters, differing from the remaining members of Djadochtatherioidea 

in having a subtrapezoidal snout in dorsal view which is confluent with the 

zygomatic arches, an irregular, non-oval anterior part of the promontorium, in 

addition to the snout extending for more than 50% of the skull length (Kielan-

Jaworowska et al., 1997). Given the anatomical evidence provided by the two 

skulls in this study and the resulting cladogram Mangasbaatar is here referred to 

Djadochtatheriidae. Ultimately, this contribution adds yet another Mongolian 

taxon represented by well-preserved skull material, which provides details that 

can potentially serve as a reference for the derived multituberculate morphology 

characteristic of the large-sized LCMM.  

Kryptobaatar is perhaps the best known LCMM (Kielan-Jaworowska, 

1971; Wible and Rougier, 2000), with hundreds of skulls known from Ukhaa 

Tolgod, Mongolia (Dashzeveg et al., 1995; Wible and Rougier, 2000). There are, 

however discrepancies regarding its relationships within Djadochtatheriidae, 

mostly due to differences in the characters used in the phylogenetic analyses; 

Kielan-Jaworowska et al. (1997) placed Kryptobaatar within Djadochtatheriidae in 

contrast with a cladistic analysis by Rougier et al. (1997) which placed 

Kryptobaatar between Chulsanbaatar and Bulganbaatar. Kielan-Jaworowska 
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reasoned that the character for the subtrapezoidal snout, which is unique for 

Djadochtatheriidae within all of Mammalia, likely evolved only once, which places 

Kryptobaatar next to Djadochtatherium, Tombaatar and Catopsbaatar, however 

Kryptobaatar is similar in size to the smaller LCMM. The cladistic analysis 

performed here agrees with this placement, thus I hold that Kryptobaatar is 

currently the most closely related form to these large LCMM multituberculates. 

Comparisons with other LCMM 

Highlited here are outsanding features of the dentition and skull of 

Mangasbaatar in comparison to other LCMM, in a bone by bone discussion 

where appropriate (See Figures 28, 29, 30, 31 for comparative photographs, and 

illustrations).  

Premaxilla 

In ventral view the premaxilla has thickenings between the alveoli for I2 

and I3, a feature which is present in several other forms such as Tombaatar, 

Nemegbtaatar, Kryptobaatar and Chulsanbaatar, but not present in 

Kamptobaatar (Kielan-Jaworowska et al., 1986; Wible and Rougier, 2000; 

Rougier, 1997). 

As is the condition for nearly all multituberculates described to date, there 

is no internarial bar or septomaxilla present in Mangasbaatar. The internarial bar 

was noted by Miao (1988) in two specimens of Lambdopsalis, though this finding 

is controversial as both of these bars were of differing size between specimens. 

Regardless, the feature has no taxonomic utility, as Lambdopsalis is the only 
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known multituberculate to express this condition. The condition is currently 

unknown in Haramiyavia, Arboroharamiyavia and Megaconus (Jenkins et al., 

1997; Zheng et al., 2013; Zhou et al., 2013 ) and is absent in other primitive 

forms, only making an appearance within basal mammaliaformes such as 

Morganucodon (Kermack et al., 1981), Haldanodon (Lillegraven and Krusat, 

1991), and possibly Docodon (Rougier et al., 2014).  

Maxilla 

The sub-trapezoidal shape of the skull is due, in part, to the lateral bulging 

of the maxilla. This bulging is, as indicated by CT scans (Kielan-Jaworowska and 

Hurum, 1997, 2001; Rougier et al., 1997; Kik, 2002; Kielan-Jaworowska et al., 

2004, 2005) an accommodation for an enlarged maxillary sinus. Such a large 

development of the maxillary sinuses is found uniquely within some members of 

Djadochtatherioidea, namely Kryptobaatar, Djadochtatherium, Catopsbaatar and 

Tombaatar (Kielan-Jaworowska & Hurum, 1997; Wible & Rougier, 2000; Rougier 

et al., 1997; Kielan-Jaworowska et al., 2005) and results in a distinctive 

trapezoidal snout. Other LCMM, ptilodontoids and taeniolabidoids such as 

Lambdopsalis and Taenolabis, exhibit an arcuate snout which forms a sharp 

angle with the zygomatic arches at their point of contact (Kielan-Jaworowska & 

Hurum, 1997; Miao, 1988).  

Like Catopsbaatar, there appears to be a secondary infraorbital foramen 

present in Mangasbaatar, though the utility of this feature in cladistics has been 

questioned by Miao (1988) and others as it may be variable within a species. 
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Nevertheless, multiple rostral exits for the infraorbital canal is a basal 

mammaliaform feature present in morganucodontids (Kermack, 1981), some 

dryolestoids, and Vincelestes (Rougier et al., 1992; Rougier, 1993) in addition to 

monotremes (Kuhn, 1971; Zeller, 1989). 

Palatine 

The bones which contribute to the formation of the “orbital mosaic” are 

best known in Kryptobaatar and Lambdopsalis, where in both the palatine has no 

contribution and the maxilla forms the anterior part of the orbital roof. Like these 

two taxa, Mangasbatar also lacks an exposure of the palatine within the orbital 

fossa. Miao (1988) speculated that the lack of the palatine within the orbit may be 

a synapmorphy for multituberculates, which is supported by Lambdopsalis, 

Kryptobaatar and Mangasbaatar. Interpretations of the orbital fossa of 

Nemegbaatar by Hurum (1994, 1998a) and illustrations of Ectypodus (Sloan, 

1979: fig. 1) noted a palatine exposure within the orbital area which would, if 

interpreted correctly, suggest that the feature is polymorphic within LCMM. In 

contrast, Wible and Rougier (2000), though unable to examine some of the 

reported specimens of Nemegbataar, examined Ectypodus (YPM-PU 14724), 

and did not identify the sutures suggesting the presence of this exposure, 

confirming that the same area in Kryptobaatar is formed of maxilla. It appears 

likely that in LCMM the palatine is excluded from the orbital mosaic or it is at 

least very small. 
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Djadochtateriid multituberculates routinely share a uniquely developed 

postpalatine torus, most strongly developed in Mangasbaatar. The presence, 

absence, and relative size of this feature has been scored within Kryptobaatar 

(Wible & Rougier, 2000), Tombaatar (Rougier et al., 1997), Catopsbaatar 

(Kielan-Jaworowska, 2005), Lambdopsalis (Miao, 1988), and Zalambdalestes 

(Rougier et al., 1998). The postpalatine torus in Tombaatar is strongly developed; 

however, when compared with that in Mangasbaatar, the central ridge on the 

torus lacks the shallow recess that the torus of Mangasbaatar exhibits. The torus 

in Kryptobaatar is weaker than either previously mentioned and also, like 

Tombaatar, lacks the central recess present in Mangasbaatar. In 2005, a 

specimen of Catopsbaatar was published in which the torus was completely 

preserved, specimen ZPAL MgM-I/80, which shows a weakly developed torus. 

Nevertheless, the post-palatine torus is consistently present among large 

Mongolian multituberculates.  

Though the exact role of the postpalatine torus in extinct and extant 

mammals remains ambiguous, the degree of development within 

djadochtatheriids to the exclusion of other multituberculates suggests that it may 

represent, at least, a useful phylogenetic character. In extant mammals, such as 

the aardvark or the hedgehog, this bony feature is located at the attachment for 

the tensor veli palatini muscle (Barghusen, 1986), which tenses the soft palate. It 

is unclear what benefit a more robust process of this sort confers as modern taxa 

which share it do not establish a clear pattern among diet, body size and the 

morphology of the torus.  
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Nasal 

PSS-MAE 142 retains the posteromost portion of the right nasal, which 

reveals that the frontals project a wedge in between the suture between the 

nasals posteriorly, a primitive character present in nearly all Mesozoic mammals, 

save for perhaps Catopsbaatar, though it is likely that this is due to poor 

preservation of the sutural pattern in Catopsbaatar (Kielan-Jaworowska et al., 

2005).  

Lacrimal 

Due to previous interpretations of multituberculate skulls which noted the 

absence of a lacrimal (Kielan-Jaworowska, 1971) it was argued that this 

character may be a synapomorphy of multituberculates, strengthening the 

argument for a close relationship between monotremes and multituberculates. 

Following the observation of a lacrimal in Nemegbaatar (Kielan-Jaworowska, 

1974), this view was revised. Indeed, a lacrimal has since been recognized as 

characteristic of LCMM, as a large, roughly rectangular bone visible on the dorsal 

surface of the skull, bordering the frontal from the maxilla (Kielan-Jaworowska 

and Hurum, 1997). Wible and Rougier (2000) were unable to identify with 

certainty the presence of a lacrimal in the specimens of Sloanbaatar, 

Catopsbaatar, or Bulganbaatar stored in Warsaw, though other specimens of 

Catopsbaatar show the character clearly. They add that a sizable lacrimal is a 

primitive feature in multituberculates, present in paulchoffatids and LCMM, 

though the extent of the orbital exposure of this bone was uncertain in other taxa. 
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Lambdopsalis (Miao, 1988) lacks the lacrimal completely and Taeniolabis must 

have lacked a facial exposure of the bone if it were present as claimed by Kielan-

Jaworowska and and Hurum (1997). Mangasbaatar fits the condition described 

for other LCMM, displaying a large, subrectangular lacrimal which separates the 

frontal from the maxilla on the dorsal surface of the skull. In Mangasbaatar, the 

lacrimal contributes to the formation of an orbital pocket, as in Kryptobaatar 

which has a small orbital process (Wible and Rougier, 2000). 

Frontal 

The ethmoid foramen in Mangasbaatar is formed by both the frontal and 

orbitoshpenoid and likely distributed the ethmoid nerve and artery. Though the 

presence of this foramen was questioned by Simmons (1993) in both Ectypodus 

and Ptilodus, a more recent analysis by Wible and Rougier (2000) refuted this 

claim, holding that the character is present, not only in Kryptobaatar but in all 

multituberculates including Ptilodus and Ectypodus, as well in all living mammals.  

Parietal 

The postorbital process is common among mammalian skulls (Novacek, 

1986), and its morphology, whether long, short, or composed of frontal, parietal 

or both has been a point of interest in distinguishing relationships within 

multituberculates. Miao (1988) held that the postorbital process seen in 

multituberculates is not homologous to that seen in other mammals because the 

parietal position of the postorbital process does not delimit the back of the orbit. 

This claim has, however, been refuted numerous times (see Wible and Rougier, 
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2000). Among multituberculates the postorbital process is positioned more 

posteriorly over the orbit than in other therians and among LCMM this feature is 

entirely formed by the parietal (Gambaryan and Kielan-Jaworowska, 1995). In 

Tombaatar, Catopsbaatar Mangasbaatatar and Djadochtatherium, the postorbital 

process is comprised entirely by the parietal and, contrary to the condition in 

Chulsanbaatar, Kamptobaatar and Nemegbaatar (Kielan-Jaworowska and 

Hurum, 1997) is very long (Kielan-Jaworowska and Hurum, 1997; Wible and 

Rougier, 2000; Kielan Jaworowska et al., 2005), and is best seen on the left side 

of PSS-MAE 141. 

Squamosal 

The exposed region on the right side of PSS-MAW-141 reveals the 

contact between the squamosal and the petrosal, showing that the squamosal 

forms the lateral and dorsal walls of the ascending canal. This has been 

previously described in Kryptobaatar and Vincelestes (Rougier et al., 1992; Wible 

and Rougier, 2000) and it is a primitive component of the basal mammaliaform 

circulatory pattern (Wible, 1983, 1986; Rougier et al., 1992, 2006). 

Sphenoid 

Mangasbaatar has a sphenorbital fissure, which is assumed to transport 

V2 and the ethmoidal artery from the cavum epiptericum. Chulsanbaatar, 

Nemegtbaatar, Kryptobaatar, and Sloanbaatar have all been interpreted as 

having a separate foramen for CNIII (Rougier et al., 1997; Hurum, 1998b; Wible 

and Rougier, 2000), dubbed the metoptic foramen, which is unknown in the 
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chondrocranium of any living mammal, as they do not co-express the pilae 

metoptica and antotica.  

Anteroventral to the optic foramen, there is another relatively large 

foramen which penetrates the sphenoid, corresponding to the transverse canal in 

Kryptobaatar, which is known in some marsupials and placentals to transmit the 

transverse canal vein (Wible and Rougier, 2000). The specimens of 

Catopsbaatar described by Kielan-Jaworowska et al. (2005) were not well 

preserved in this area, making interpretation of foramina or sutures in the area of 

the orbit uncertain. The phylogenetic implications of this are not clear as the area 

is not commonly accessible. 

Petrosal 

The petrosal is the bony region of the skull with two parts, the pars 

cochlearis that houses the cochlea, the organ of hearing, and the pars 

cannalicularis, that houses the vestibular organs. There are four surfaces of this 

bone: an endocranial, ventral, lateral and dorsal view, although the endocranial 

portion of the bone in either of the specimens is not exposed.  

It is notable that the perilymphatic grooves which differ on the left and right 

of PSS-MAE 142 present a hurdle in the comparison of these specimens. The 

left side of PSS-MAE 141 has no evidence of a groove, agreeing with the 

condition on the right side of PSS-MAE 142, suggesting that in Mangasbaatar, 

the groove is covered by bone forming an enclosed duct. Despite some variability 

in this particular feature, the jugular fossa between the two is highly similar. 
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Multituberculates, though, have shown some variability in the perilymphatic 

duct’s enclosure by bone. Several isolated petrosals, likely belonging to 

taeniolabidoids, collected from the Late Cretaceous of North America displayed a 

condition wherein the perilymphatic duct was not fully bounded by bone, but 

rather by two bony lappets bordering the groove without making contact with one 

another (Wible and Rougier, 2006). 

Some multituberculates share certain features with monotremes such as a 

large anterior lamina of the petrosal, and, like adult monotremes, in 

Mangasbaatar, no clear suture can be seen between the anterior lamina and the 

petrosal. Given the developmental origin of this feature within monotremes, 

however, it is parsimonius to assume that a similar origin accounts for the feature 

within multituberculates. The anterior lamina of the petrosal is lacking in 

Lambdopsalis but present in Mangasbaatar, further distinguishing 

Djadochtatherioidea from Lambdopsalis (Miao, 1988; Kielan-Jaworowska et al., 

2004) and potentially other taeniolabidoids. 

On the ventral view it becomes apparent that the region surrounding the 

braincase is significantly dorsally depressed posterior to the palatine which 

produces several exaggerated features such as an enlarged rostral tympanic 

process of the petrosal. In Mangasbaatar the RTPP is significantly larger in 

proportion with the rest of the skull when compared with Kryptobaatar, likely 

owing to the depressed ear region. Within this area, a concave space formed 

between the RTPP and the basioccipital is composed of both the petrosal and 

the basioccipital in Mangasbaatar and Kryptobaatar (Wible and Rougier, 2000). 
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The two bones both contribute to this cavity; however, in Mangasbaatar, the 

bordering basioccipital bone which forms the cavity’s medial wall has a greater 

height dorso-ventrally and the contribution of this bone to the aforementioned 

cavity is nearly vertical in its entirety. This space is further subdivided by crests 

expanding into the middle ear cavity from the petrosal and the basioccipital; 

these extensions do not fully divide the region in compartments, but determine 

specific areas within the cavernous middle ear. 

Middle Ear (Petrosal, Basioccipital and Exoccipital) 

Due to the acquisition of several derived features, particularly in the ear 

region, Mangasbaatar appears as a highly specialized member of 

Djadochtatherioidea, closely related to Tombaatar and Catopsbaatar. 

Observations of Kryoptobaatar, currently the most thoroughly documented 

multituberculate, and related members establish a trend among derived 

members of this group to enlarge the middle ear space. This region in 

Mangasbaatar is unique among other LCMM in the depth created by a dorsal 

depression of the basicranium, measured at roughly 4mm3. It is difficult to 

compare this specimen to related taxa due to lack of consistent preservation of 

the region; however it is clear that this cavity is proportionally larger than that of, 

Kryptobaatar, Catopsbaatar, and based on unpublished specimens, Tombaatar.  

In Mangasbaatar, all of the surrounding elements of the ear region project 

ventrally and help to encompass a very large space. The membranous 

component of the middle ear cavity likely extended ventrally from the edges of 
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those cavities, and it was certainly of sizable proportions. But if compared with 

other LCMM, the proportion of the cavity delimited by bone is much larger in 

Mangasbaatar than in any of the other previously described multituberculates 

from the region. In Kryptobaatar, the same elements — exoccipital, basioccipital, 

basisphenoid, squamosal, and petrosal — also project ventrally and form distinct 

pockets but these are not as prominent. The circumscribing of the middle ear 

region by bony projections in Mangasbaatar is interpreted here as an alternate 

way of producing a bony encasing of the middle ear region. A similar “sinking” of 

the petrosal into the braincase can been seen in some borhyenoid marsupials 

(de Muizon et al., 1997) and the surrounding elements also provide a partial 

enclosure of the middle ear cavity; in these marsupials, as in multituberculates, 

the vast majority of the middle ear space was enclosed by a membrane and a 

fully developed bulla is lacking.  

The functional significance of an expanded middle ear region is not 

straightforward to ascertain. The mammalian middle ear is an impedance 

transformer that matches the impedance between air-transmitted sound and the 

perilymphatic fluid in the inner ear (Webster and Webster, 1984). Often, among 

living mammals, the middle ear cavity is surrounded by a rigid osseous bulla 

composed by a variety of bony elements that include the ectotympanic as the 

main support for the tympanic memebrane. The ectotympanic can contribute to 

the enclosure of the middle ear by forming a substantial portion of the bulla, but 

depending on the groups, a variety of neomorphic elements or other bones from 

the basicranium can participate in the formation of the bulla. The specific 
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composition of the bulla has traditionally been a source of systematic and 

phylogenetic data (Novacek and Wyss, 1977). The combination of elements, 

shapes, sizes, and presence of internal division by septae, etc., of the ear region 

determine an optimal frequency for a given array of morphologies; this is the 

natural frequency of a middle ear (Fleischer, 1978). This frequency increases 

with stiffness of both membrane-ear ossicles and tympanic cavity, but decreases 

with a greater mass of the membrane (functionally including the ossicular chain) 

and a larger air volume (Dallos, 1973; Fleischer, 1978; Mason, 2006; Mason, 

2013). However, the primitive condition for mammals is the absence of a bulla, 

and most of the tympanic cavity is surrounded by a membrane that has, on its 

lateral aspect, a ring formed by the ectotympanic that supports the tympanic 

membrane. Such a middle ear is susceptible to deformation by chewing and jaw 

movements that deform the middle ear space and alter its auditory tuning. 

Additionally, a membrane-encased middle ear region is more susceptible to 

interference of the low frequency sounds. This primitive mammalian ear is 

present among monotremes and basal marsupials (Klaauw, 1931; Simpson, 

1938; Griffiths, 1978; Ashwell, 2013). Similarly, in Mangasbaatar the middle ear 

cavity is surrounded only partially by bone and most of its ventral surface must 

have been enclosed by membrane; therefore it is hard to accept the same 

degree of stiffness in multituberculates than, for example, in desert dwelling 

rodents with large middle ear spaces enclosed by a bulla (Webster, 1966; 

Fleischer, 1973; Mason 2006, 2013). Nevertheless, many of these recent 

mammals with large middle ear spaces (Mason, 2004; Mason, 2013) spend a 
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substantial portion of their lives underground; the environmental conditions in 

Ukhaa Tolgod and most of the Late Cretaceous Mongolian sites seem to indicate 

that the environment was dominated by sands and some degree of periodical or 

seasonal aridity (Loope, 1998; Dingus et al., 2008). In this context, an enlarged, 

more rigidly enclosed middle ear region would be consistent with an optimization 

for the perception of low frequency sound by increasing the non-pliable surfaces 

surrounding the middle ear.  

Talpids (moles) and golden moles share a medially sunken middle ear 

cavity which forms an open connection between the two middle ears through an 

opening in the basicranium which allows for pressure-difference localization in 

the low frequency range. Though such an adaptation is common among non-

mammalian tetrapods, it is rare among mammals which typically have these two 

cavities separated by bone and soft tissue. Among the talpids and golden moles 

the expansion of the middle ear cavity is done by recession of the basicranium 

bordering the medial wall of the middle ear cavity, while other mammals typically 

expand their middle ear cavities via ventral expansion of the bulla (Mason, 2013). 

If the volume of the middle ear spaces of Kryptobaatar and Mangasbaatar are 

compared, it is clear that the increase is due mostly to the “sinking” of the 

petrosal and promontorial area into the braincase. Though there is no known 

open connection between the middle ear spaces of any multituberculate studied 

thus far, the medial expansion of the middle ear cavity is similar to what must 

have occurred in the ancestors of golden or talpid moles.  
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Furthermore, the tensor tympanii fossa, which is formed via attachment of 

the m.tensor tympanii, is relatively small in Mangasbaatar in comparison with the 

rest of the middle ear space. It can be inferred, by extension, that the m. tensor 

tympanii was also relatively small. A similar morphology is noted in the marsupial 

mole Notoryctes (Ladeveze et al., 2008), while the muscle is completely lost in 

adult golden moles (Mason, 2003) and a variety of mammals with a fossorial life-

style (Mason, 2013). Indeed, the tensor tympanii muscle has been lost, 

convergently, in at least 4 distantly-related groups: marsupial moles, spalacid 

molre-rats, golden moles and talpid moles, all of which occupy a subterranean 

habitat (Mason, 2013). The stapedius muscles is also often missing in forms with 

enlarged middle ear cavities (Hinchcliffe and Pye, 1969; Webster and Webster, 

1975; Heffner et al., 2001), however no mammal is known to be missing both 

muscles, the tensor tympani and the stapedius muscle. The stapedius muscle 

increases stiffness of the middle ear ossicles and this in turn dampens 

transmission of low frequency sound. The presence or absence of a stapedius 

muscle cannot be unequivocally ascertained in Mangasbaatar, however a 

stapedius fossa has been identified in multituberculates (Kielan-Jaworowska et 

al., 1986; Rougier et al., 1992, 1996a; Wible and Rougier, 2000) and it appears 

likely that the muscle was present among LCMM. Meng (1992) described the 

stapes of Lambdopsalis, the element is well preserved, columelliform, and 

without a distinct stapedius process. It is therefore possible that in at least some 

multituberculates the stapedius muscle was much reduced or absent. A partial 

stapes of Kryptobaatar was described by Rougier et al. (1996a) as bicrurated, 
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but the specimen is incomplete and no evidence of a stapedius process is 

preserved. It is clear that some degree of diversity existed among 

multituberculates and that the LCMM and Lambdopsalis are both radically 

different regarding their adaptation related to the ear region. Reports of middle 

ear bones by Hurum et al. (1995, 1996) in some LCMM are hampered by 

misidentification of calcite concretions as fragmentary ear ossicles and cannot be 

discussed further until the specimens are restudied. 

In summary, such adaptations to the middle ear could confer a number of 

advantages, as seen in extant mammals such as the golden mole, which is 

nearly blind, relying on its acute hearing to track prey and avoid predation 

(Mason, 2003; Webster and Webster, 1975). Though multituberculates were 

previously assumed to be mostly arboreal, several discoveries have suggested 

that these creatures fulfilled a greater variety of ecological niches, including a 

fossorial existence for Lambdopsalis, suggested by Miao (1988), in part, by its 

expanded ear region, a flat incudomalleal joint, and the apparent lack of a fossa 

muscularis minor which would, if present, aid in high frequency hearing, an ability 

which does not appear to be cruicial when living underground (Miao & 

Lillegraven, 1986; Miao, 1988; Gambaryan and Kielan Jaworowska, 1995). 

Applying these assumptions to the paleobiology of djadochtatheriids is still, 

however, highly speculative. 
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Dentition 

The dental formula of both Mangasbaatar specimens (I2/1, C0/0, P3/2, 

M2/2) and their molar and premolar morphology clearly refer these 

multituberculates to Djadochtatherioidea, and further analysis of their skull 

morphology and petrosal anatomy refers them as terminal members of 

Djaadochtatheriidae. Unlike Tombaatar, and similar to all other LCMM, the I3 is 

placed entirely within the premaxilla, whereas in Tombaatar, the I3 is in direct 

contact with the maxilla and premaxilla, lying within the suture between the two 

bones. Like Tombaatar, the biradiculated P1 has three, conical cusps and the P3 

in turn has four conical cusps; all that remains between P1 and P3 is a short 

diastema which likely housed the remnants of the DP3 (Rougier et al., 1997). 

The best preserved P4 among these two specimens is highly similar to that in 

Tombaatar, differing in the relative heights of the cusps within the middle row. In 

Tombaatar, the middle cusp row in P4 contains five cusps, with the third in the 

row being the tallest of them all (Rougier et al., 1997), in contrast to 

Mangasbaatar, in which the 5 cusps of the middle row of P4 increase in size 

posteriorly. Aside from this difference, the overall morphology of this cusp row is 

highly similar to Tombaatar and other LCMM, aligned posteriorly with the buccal 

cusp row of M1 and anteriorly with the lingual cusp row of P3 (Rougier et al., 

1997).  

The M1 cusp formula in Mangasbaatar (5:5:2) differs from Tombaatar 

(4:5:2), Catopsbaatar (5-6:5-6:4) and Kryptobaatar (4-5:4:3-5), while the M1 is 

not preserved in the type specimen of Djadochtatherium (Rougier et al., 1997; 
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Kielan-Jaworowska and Hurum, 1997; Kielan-Jaworowska et al., 2004; Kielan-

Jaworowska et al., 2005). Mangasbaatar most closely resembles Tombaatar in 

this regard, though the molars are slightly larger within Mangasbaatar. 

Additionally, in occlusal view, the outer edge of the lingual cusp row in the M1 of 

Tombaatar, Mangasbaatar, and Kryptobaatar forms a bulge from the remaining 

body of the tooth. In Catopsbaatar, the outer edge of the M1 lingual cusp row is 

confluent with the remaining rows in the M1. 

Though the type specimen of Tombaatar is lacking the posterior half of the 

cranium, preliminary observations of another, more complete (unpublished) 

specimen of Tombaatar show a high degree of similarity with Mangasbaatar. 

Despite their similarities, both specimens of Mangasbaatar are slightly larger in 

comparison with Tombaatar.The M2 on Tombaatar are slightly smaller with 

respect to Mangasbaatar, and the skull length of PSS-MAE 141 (6.30 cm) is 

greater than that of the unpublished specimen of Tombaatar (5.91 cm). Though 

PSS-MAE 141 and PSS-MAE 142 are somewhat deformed, the palatal region 

and the dental arch of Mangasbaatar can be accurately observed and exhibit 

less curvature than in Tomabaatar. The dentition of the large members of 

Djadochtatherioidea retains the same overall morphology of more generalized 

multitubeculates like Kryptobaatar, where the M/m1 is of moderate size and the 

M/m2 remains small but distinctive, while the P4 is relatively small and 

uncomplicated. The p4 on the other hand loses the blade-like aspect 

characteristic of most multituberculates and it it supported mesially by a peg-like 
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p3. The trapezoidal outline of the p4 and the absence of a P2 are distinctive 

dental feature of the large LCMM. 
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 CONCLUSIONS  

Multituberculates posses the longest-spanning fossil record of any known 

mammal lineage, extending from as early as the Middle Jurassic to the late 

Eocene (Kielan-Jaworowska et al., 2004). Reported in this study is a new genus, 

Mangasbaatar, based on the craniodental description of two specimens, PSS-

MAE 141 and PSS-MAE 142, from the Late Cretaceous locality Udan Sayr, 

located in the Gobi Desert of Mongolia, a site which has produced several well-

preserved specimens (Kurzanov, 1992; Dong and Currie, 1993; Trofimov and 

Szalay, 1996; Rougier et al., 1998). 

The skull of Mangasbaatar is highly similar to the closely related 

Tombaatar, Catopsbaar, Kryptobaatar, and Djadochtatherium. The suite of 

features including the subtrapezoidal shape of the skull, the dentition, petrosal 

anatomy and other features clearly ally Mangasbaatar with these other taxa. The 

morphology of the postpalatine torus, though unknown in function, is a highly 

conspicuous character among more derived members of LCMM and is most 

strongly developed in Mangasbaatar and Tombaatar. Based on the phylogenetic 

analysis adapted from Kielan-Jaworoska and Hurum (1997), and emended here, 

this study recovers Mangasbaatar among the djadochatherian LCMM. 

Specifically, Mangasbaatar is a terminal member of the monophyletic clade 

Djadochtatherioidea, and sister-group to Tombaatar.  
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The degree of excavation of the middle ear cavity in Mangasbaatar, in 

addition to the relatively small tensor tympanni fossa, may suggest a fossorial or 

semi-fossorial habit for Mangasbaatar, as this is a pattern seen among modern, 

fossorial, desert-dwelling rodents (Mason, 2013). The ventral expansion of the 

bones enclosing this space may have functioned similarly to the bulla in modern 

mammals, forming a rigid base for the soft structures encasing the middle ear, 

increasing the rigidity of the cavity thus aiding in low frequency audition 

(Fleischer, 1978; Mason, 2013), adding to the wide variety of habitats and niches 

occupied by multituberculates.  
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Fig. 1. Map of the Udan Sayr locality of the Gobi Desert in Mongolia.  
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Fig. 2. Photograph of the Udan Sayr locality of the Gobi Desert in Mongolia. 
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Fig. 3. Stereophotograph of the skull of PSS-MAE 141, holotype of Mangasbaatar 

udanii, gen. et sp. nov., in dorsal view, with accompanying line drawing. Dotted pattern 

represents matrix. Abbreviations: al anterior lamina; fr frontal; lac lacrimal; mx maxilla; 

na nasal; pa parietal; pmx premaxilla; sq squamosal. 
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Fig. 4. Stereophotograph of the skull of PSS-MAE 141, holotype of Mangasbaatar 

udanii, gen. et sp. nov., in ventral view with accompanying line drawing. Dotted pattern 

represents matrix; parallel lines represent damaged surfaces. Abbreviations: al anterior 

lamina; exoc exoccipital; fr frontal; lac lacrimal; man mandible; mx maxilla; na nasal; 

or orbitosphenoid; pa parietal; pet petrosal; pmx premaxilla; sq squamosal. 
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Fig.5. Stereophotograph  of the palatal region of PSS-MAE 141, holotype of 

Mangasbaatar udanii, gen. et sp. nov., in ventral view.  
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Fig. 6. Stereophotographs of the right and left sides of the palatal region of PSS-MAE 

141, holotype of Mangasbaatar udanii, gen. et sp. nov., in ventral view (A) Detailed view 

of the right half of the skull and (B) a detailed view of the left side of the skull.  
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Fig. 7. Ilustration of the left upper dentition of PSS-MAE 141, holotype of Mangasbaatar 

udanii, gen. et sp. nov., in occlusal view. Parallel lines represent damaged surfaces.  
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Fig. 8. Stereophotograph of the left side of the skull of PSS-MAE 141, holotype of 

Mangasbaatar udanii, gen. et sp. nov., in lateral view. 

 

 

 

 

 

 

 
 

 

Fig. 9. Stereophotograph of the right ear region PSS-MAE 141, holotype of 

Mangasbaatar udanii, gen. et sp. nov., in lateral view. 
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Fig. 10. Stereophotograph of the basicranium of PSS-MAE 141, holotype of 

Mangasbaatar udanii, gen. et sp. nov., in ventral view with accompanying illustration.  
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Fig. 11. Line drawing of the basicranium of PSS-MAE 141 in ventral view. Abbreviations: 

ali alisphenoid; bo basioccipital; er epitympanic recess; ff facial foramen; fi fossa 

incudis; fica foramen for internal carotid artery; foi foramen ovale inferiorum; frs 

foramen for ramus superior; fs facial sulcus; gl glenoid; jfos jugular fossa; lf lateral 

flange; M2 upper molar 2; pef perilymphatic foramen; pr promontorium; prc prootic 

canal; pt pterygoid; ptc posttemporal canal; ? possible fragment of incus. 
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Fig. 12. Stereophotographs of the dentary of PSS-MAE 141, holotype of Mangasbaatar 

udanii, gen. et sp. nov., in (A) buccal  and  (B) mesial views.  
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Fig. 13. Illustration of the dentary of PSS-MAE 141 in mesial view.  
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Fig. 14. Stereophotograph of the dentary of PSS-MAE 141, holotype of Mangasbaatar 

udanii, gen. et sp. nov., in occlusal view. 
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Fig. 15. Illustrations of the lower dention of PSS-MAE 141, holotype of Mangasbaatar 

udanii, gen. et sp. nov., in (A) occlusal view and (B) fragment of the left dentary of PSS-

MAE 141 in lateral view.   
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Fig. 16. Stereophotograph of the skull of PSS-MAE 142, Mangasbaatar udanii, gen. et 

sp. nov., in dorsal view with accompanying line drawing. Dotted pattern represents 

matrix; parallel lines represent damaged surfaces. Abbreviations: fr frontal; lac lacrimal; 

mx maxilla; na nasal; pa parietal. 
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Fig. 17. Stereophotograph of the skull of PSS-MAE 142, Mangasbaatar udanii, gen. et sp. 

nov., in ventral view.  
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Fig. 18. Stereograph of the palatal region of PSS-MAE 142, Mangasbaatar udanii, gen. et 

sp. nov., in ventral view. 
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Fig. 19. Stereophotographs of the skull of PSS-MAE 142, Mangasbaatar udanii, gen. et 

sp. nov., in lateral view from the (A) left and (B) right sides. 
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Fig. 20. Reconstruction of the skull of Mangasbaatar in dorsal view. Abbreviations: fr 

frontal; lac lacrimal; mx maxilla; na nasal; pa parietal; pmx premaxilla; sq squamosal.  
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Fig. 21. Reconstruction of the skull of Mangasbaatar in ventral view. Abbreviations: ali 

alisphenoid; bo basioccipital; exoc exoccipital; gl glenoid; inf incisive foramen; mapf 

major palatine foramen; mec middle ear cavity; mpf minor palatine foramen; mx 

maxilla; pal palatine; pat postpalatine torus; pet petrosal; pmx premaxilla; pr 

promontorium; pt pterygoid; ptc posttemporal canal; vo vomer.  
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Fig. 22. Reconstruction of the basicranium of Mangasbaatar in ventral view. 

Abbreviations: ali alisphenoid; bo basioccipital; ci crista interfenestralis; cp crista 

parotica; er epitympanic recess; exoc exoccipital; ff facial foramen; fi fossa incudis; fica 

foramen for internal carotid artery; frs foramen for ramus superior; fs facial sulcus; fv 

fenestra vestibuli; gl glenoid; jfos jugular fossa; lcp lateral choanal passage; lf lateral 

flange; M2 upper molar 2; mcp medial choanal passage; pef perilymphatic foramen; ppp 

pterygoparaoccipital process; pr promontorium; prc prootic canal; pt pterygoid; ptc 

posttemporal canal; sq squamosal; stmf stylomastoid foramen; V3 foramina for 

branches of v3 cranial nerve.  
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Fig. 23. Reconstruction of the skull and mandible of Mangasbaatar in lateral view. The 

mandible is in occlusion with the skull in expected life position. Abbreviations: al 

anterior lamina;azr anterior zygomatic ridge; dent dentary; ef ethmoidal foramen; exoc 

exoccipital; fbu foramen bucinatorium; fr frontal; frt foramen for ramus temporalis; iof 

infraorbital foramen; iof2 secondary infrorbital foramen; izr intermediate zygomatic 

ridge; lac lacrimal; man mandible; mec middle ear cavity; mf mental foramen; mp 

masseteric protuberance; mx maxilla; na nasal; or orbitosphenoid; otc orbitotemporal 

canal; pa parietal; pf posttemporal foramen; pet petrosal; pmx premaxilla; spf 

sphenopalatine foramen; sphf sphenorbital fissure; sq squamosal; tr temporal ridge.  
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Fig. 24. Reconstruction of the jaw of Mangasbaatar. Abbreviations: con (mandibular) 

condyle; cor coronoid process; i lower incisor; m1first lower molar; m2 second lower 

molar; maf masseteric fossa; mf mental foramen; mp masseteric protuberance; p3 third 

lower premolar; p4 fourth lower premolar. 
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Fig. 25. Stereophotograph of the middle ear region of the right side of PSS-MAE 142, 

Mangasbaatar udanii, gen. et sp. nov., in ventral view. 

 

 

 

 

 

 

 
 

 

 

Fig. 26. Stereophotograph of the middle ear region of the left side of PSS-MAE 142, 

holotype of Mangasbaatar udanii, gen. et sp. nov., in ventral view.  
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Fig. 27. Phylogenetic tree showing interrelationships between multituberculates. Green 

branches indicate Djadochtatherioidea. Red branches indicated Djadochtatheriidae. 
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Fig. 28. Collection of multituberculate skull reconstuctions in dorsal view, rendered to 

be approximately the same length. Drawing is modified from Kielan-Jaworowska et al. 

(2004) to include Mangasbaatar.  
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Fig. 29. Collection of multituberculate skull reconstuctions in ventral view, rendered to 

be approximately the same length. Drawing is modified from Kielan-Jaworowska et al. 

(2004) to include Mangasbaatar.  
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Fig. 30. Collection of multituberculate mandible reconstructions in lateral view, 

rendered to be approximately the same length. Drawing is modified from Kielan-

Jaworowska et al. (2004) to include Mangasbaatar. 
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Fig. 31. Stereophotograph of the skull of an unpublished specimen of Kryptobaatar, in 

ventral view, field number PSS-MAE 93-191, from the Late Cretaceous of Mongolia.  
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APPENDICES 
 

Appendix A. Character list adapted from Kielan-Jaworowska and Hurum (1997), 

with the addition of character 44 for the post-palatine torus and the addition of 
Mangasbaatar udanii as a new taxon.  

 

 

1. Enamel covering of lower incisor of uniform thickness (0), thicker on labial 

surface than on lingual surface (1), completely restricted to labial surface of tooth 

(2). Mangasbaatar (2) 

2. p3 present (0), absent (1). Mangasbaatar (0) 

3. p4 serration count 5 or less (0), 6-10 (1), more than 10 (2). Mangasbaatar (0) 

4. p4 in lateral view rectangular (0), arcuate (1), trapezoidal (2), triangular (3). 
Mangasbaatar (2) 
5. m1 cusp formula 4:3 (0), 4:4 (1), 5:4-5 (2), 7:4 or higher (3). Mangasbaatar (0) 

6. Ratio of p4:m1 length less than 0.6 (0), 0.6-1.7 (1) above 1.7 (2). 
Mangasbaatar (1) 
7. m2 cusp formula 2-2 (0), more (1). Mangasbaatar (0) 
8. I2 bicuspid (0), single-cusped (1). Mangasbaatar (?) 

9. I3 located on margin of palate (0), slightly shifted from the labial margin (1), in 
about the middle of  
the palatal part of the premaxilla (2). Mangasbaatar (2) 
10. Upper premolars five (0), four (1), three (2) one (3). Mangasbaatar (2) 
11. P3 double-rooted (0), single-rooted (1). Mangasbaatar (0) 
12. P4 double-rooted (0), single-rooted (1). Mangasbaatar (0) 

13. Length of upper premolar tooth row:molar tooth row more than 1.5 (0), 1.54.5 
(1), 0.5-0.1(2). Mangasbaatar (1) 

14. P4 cusp formula 0-5:1-4:0-5 (0), 0-5:5-10:0-5 (1), 5-7:5-8:2-5 (2). 
Mangasbaatar (1) 

15. M1 cusp formula 4-5:4-5:0-5 (0), 5-7:5-8:2-5 (1), 5-11:7-10:611 (2). 
Mangasbaatar (0+1) 

16. M1 inner ridge length:length of M1 0.5 or less (0), more than 0.5 (1). 
Mangasbaatar (0) 

17. Width of P4:M1 ratio more than 0.9 (0), 0.9-0.6 (1), 0.6-0.45 (2), 0.45-0.2 (3). 
Mangasbaatar (2) 
18. M2 cusp formula 1:2:2 (0). 1:2:3 (1), more (2). Mangasbaatar (0+1) 

19. Ridge between the palate and the lateral walls of the premaxilla absent (0), 
present (1). Mangasbaatar (1) 

20. Shape of the snout in dorsal view: incurved in front of the zygomatic arches 
with anterior part  
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directed posterolaterally (0), incurved with anterior part of zygomatic arches 
directed transversely  
(1), trapezoidal, not incurved in front of zygomatic arches (2). Mangasbaatar (2) 

21. Number of pairs of vascular foramina on nasal: 1 (0), 2 (1), more (2). 
Mangasbaatar (?) 

22. lnfraorbital foramen positioned dorsal to P1 (0), dorsal to P2 (1), dorsal to P3 
or P3 (2). Mangasbaatar (1) 

23. Base of zygomatic arch as marked by posterior edge directly dorsal to P4 (0), 
dorsal or posterior to  
P4/M1 embrasure (1). Mangasbaatar (0) 
24. Postorbital process short (0), long (1). Mangasbaatar (1) 

25. Snout length 49% or less of total skull length (0), 50% or more of skull length 
(1). Mangasbaatar (0) 

26. Frontals pointed anteriorly and not deeply inserted between the nasals (0), 
pointed anteriorly and  
deeply inserted between the nasals (1), with subtransversal anterior margins (2). 
Mangasbaatar (1) 
27. Frontal-parietal suture V-shaped (0), U-shaped (1). Mangasbaatar (1) 
28. Contacts between nasal and parietal absent (0), present (1). Mangasbaatar 
(0) 

29. Facial surface of lacrimal very small and arcuate (0), large, roughly 
rectangular (1). Mangasbaatar (1) 

30. Thickening in palatal process of premaxilla absent (0), present (1). 
Mangasbaatar (1) 

31. Incisive foramen situated within premaxilla (0), limited posteriorly by maxilla 
(1). Mangasbaatar (1) 
32. Palatal vacuities absent (0), single (1), double (2). Mangasbaatar (0) 

33. Foramen ovale inferium placed medial to foramen masticatorium (0), 
posterior to foramen masticatorium (1). Mangasbaatar (0) 
34. Jugular fossa small and shallow (0), large and deep (1). Mangasbaatar (1) 

35. Anterior part of the promontorium oval (0), irregular with incurvatures on both 
sides (1). Mangasbaatar (1) 

36. Glenoid fossa (anterolateral to posteromedial) length:width ratio more than 
1.7 (0), below 1.69 (1). Mangasbaatar (1) 

37. Angle of coronoid process relative to tooth row steep, 45 degrees or > 45 
degrees (0), low < 45 degrees (1). Mangasbaatar (0) 

38. Coronoid process parallel to the rest of the outer wall of the dentary (0), 
flared laterally (1). Mangasbaatar (0) 
39. Posttemporal fossa large (0), reduced to a small foramen (1). Mangasbaatar 
(0) 

40. Angle between the lower margin of the dentary and the occlusal level of the 
molars between 11-20 degrees (0), above 20 degrees (1). Mangasbaatar (0) 

41. Mandibular condyle opposite or below the level of the molars (0), above the 
level of the molars (1). Mangasbaatar (1) 

42. Width of the snout:skull length ratio below 0.3 (0), 0.3-0.39 (1), above 0.4 (2). 
Mangasbaatar (2) 
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43. Skull width:skull length ratio 0.79 and below (0), above 0.8 (1). 
Mangasbaatar (1) 

44: Post-palatine torus absent or very faint (0), developed laterally and with a 
venral projection from the palate, forming a distinctive bulge (1), strongly 
developed, forming a raised, ornate and sharply angled plate (2). Mangasbaatar 
(2) 
 

 
 
Appendix B. Scored character matrix, adapted from Kielan-Jaworowska and 
Hurum (1997) for 42 characters across 17 taxa including Ptilodus, Stigymys, 
Taeniolabis, Eucosmodon, Lambdopsalis, Sloanbaatar, Buginbaatar, 
Kamptobaatar, Nemegbaatar, Chulsanbaatar, Kryptobaatar, Djadochtatherium, 
Catopsbaatar, Tombaatar and Mangasbaatar. “A” denotes multi-state (0+1). 
 
 
 
Ptilodus         00212211010002210200120?00000011000100000100 
Stigymys         21213210211011102??0?00??????111????10?0???? 

Taeniolabis      2103311103?120213201?2??020100?0????001?1110  

Eucosmodon       21213210??10??10????????????????????1??00??? 
Lambdopsalis     2103201113?120213201221?02010010?11?0?101110 

Sloanbaatar      101101012100110021100100011011020?0001011010 

Buginbaatar      0101301????0?12132???????????????????0?0???? 
Nessovbaatar     ?011021??????????????????????????????1?01??1 

Bulganbaatar     ???????1210011011010?10?????11?1???????????? 

Kamptobaatar     101101?1210011012110200001101110?10011001101 
Nemegbaatar      20112111210011111210210001101111010010000101 

Chulsanbaatar    20110101210011002010100001101110110110000001 

Kryptobaatar     2011011121001100211211001110111011111000021? 
Djadochtatherium 20?101?121???0????12?1011110111?????00001??? 

Catopsbaatar     20021101220011112212121111101100?11100011211 

Tombaatar        2??????1220011002112110??1?01110???????????2 

Mangasbaatar     2002010?220011A02A12?10101101110011100001212 
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