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ABSTRACT OF DISSERTATION 

 

 

IMPACT OF CLIMATE CHANGE ON EXTREME HYDROLOGICAL EVENTS IN 
THE KENTUCKY RIVER BASIN 

     Anthropogenic activities including urbanization, rapid industrialization, deforestation 
and burning of fossil fuels are broadly agreed on as primary causes for ongoing climate 
change. Scientists agree that climate change over the next century will continue to impact 
water resources with serious implications including storm surge flooding and a sea level 
rise projected for North America. To date, the majority of climate change studies 
conducted across the globe have been for large-sized watersheds; more attention is 
required to assess the impact of climate change on smaller watersheds, which can help to 
better frame sustainable water management strategies. 

     In the first of three studies described in this dissertation, trends in annual precipitation 
and air-temperature across the Commonwealth of Kentucky were evaluated using the 
non-parametric Mann-Kendall test considering meteorological time series data from 84 
weather stations. Results indicated that while annual precipitation and mean annual 
temperature have been stable for most of Kentucky over the period 1950-2010, there is 
evidence of increases (averages of 4.1 mm/year increase in annual precipitation and 0.01 
°C/year in mean annual temperature) along the borders of the Kentucky. Considered in its 
totality, available information indicates that climate change will occur – indeed, it is 
occurring – and while much of the state might not clearly indicate it at present, Kentucky 
will almost certainly not be exempt from its effects. Spatial analysis of the trend results 
indicated that eastern part of the state, which is characterized by relatively high 
elevations, has been experiencing decreasing trends in precipitation.  

     In the second study, trends and variability of seven extreme precipitation indices (total 
precipitation on wet days, PRCPTOT; maximum length of dry and wet periods, CDD and 
CWD, respectively; number of days with precipitation depth ≥20 mm, R20mm; 
maximum five-day precipitation depth, RX5day; simple daily precipitation intensity, 
SDII; and standardized precipitation index, SPI were analyzed for the Kentucky River 
Basin for both baseline period of 1986-2015 and the late-century time frame of 2070-
2099. For the baseline period, the majority of the indices demonstrated increasing trends; 
however, statistically significant trends were found for only ~11% of station-index 



 
 

combinations of the 16 weather stations considered. Projected magnitudes for PRCPTOT, 
CDD, CWD, RX5day and SPI, indices associated with the macroweather regime, 
demonstrated general consistency with trends previously identified and indicated modest 
increases in PRCPTOT and CWD, slight decreases in CDD, mixed results for RX5day, 
and increased non-drought years in the late century relative to the baseline period. The 
study’s findings indicate that future conditions might be characterized by more rainy days 
but fewer large rainfall events; this might lead to a scenario of increased average annual 
rainfall but, at the same time, increased water scarcity during times of maximum demand.  

     In the third and final study, the potential impact of climate change on hydrologic 
processes and droughts over the Kentucky River basin was studied using the watershed 
model Soil and Water Assessment Tool (SWAT). The SWAT model was successfully 
calibrated and validated and then forced with forecasted precipitation and temperature 
outputs from a suite of CMIP5 global climate model (GCMs) corresponding to two 
different representative concentration pathways (RCP 4.5 and 8.5) for two time periods: 
2036-2065 and 2070-2099, referred to as mid-century and late-century, respectively. 
Climate projections indicate that there will be modest increases in average annual 
precipitation and temperature in the future compared to the baseline (1976-2005) period. 
Monthly variations of water yield and surface runoff demonstrated an increasing trend in 
spring and autumn, while winter months are projected as having decreasing trends. In 
general, maximum drought length is expected to increase, while drought intensity might 
decrease under future climatic conditions. Hydrological droughts (reflective of water 
availability), however, are predicted to be less intense but more persistent than 
meteorological droughts (which are more reflective of only meteorological variables). 
Results of this study could be helpful for preparing any climate change adaptation plan to 
ensure sustainable water resources in the Kentucky River Basin. 

 

KEYWORDS: Climate Change, Trend Analysis, Kentucky River Basin, Extreme 
Precipitation Indices, Soil and Water Assessment Tool, Drought Indices 
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CHAPTER 1: INTRODUCTION 
 

1.1 Background 

Water resources management in the 21st century is challenged by climate change-

related impacts on the hydrologic cycle. Although climate change is a global 

phenomenon, regional scale variations can be significant, such as within the United States 

(Portman et al., 2009). Trends in meteorological variables, often considered as important 

tools in climate change detection (Gocic and Tracjovik, 2013), demonstrate this regional 

variation. While many regions within the United States, have demonstrated increasing 

trends in precipitation frequency and/or intensity (Donat et al., 2013; Guilbert et al., 

2015), this is by no means a spatially uniform finding. This being the case, it is prudent to 

investigate climate variability on a more local scale, especially in regions that exhibit 

complex weather patterns such as Kentucky.  

Impacts of extreme precipitation, particularly in the form of flooding, have caused 

more loss and property damage in the United States than any other natural disaster during 

the 20th century (Easterling et al., 2000). Establishing a direct linkage between changes in 

extreme precipitation with flooding can be difficult, however, as records are often 

confounded by changes in land use and increasing settlement in floodplains (Kunkel, 

2003). However, great floods (defined as floods with discharges exceeding 100-year 

levels from basins larger than 190,000 km2) have increased in the 20th century and are 

only exacerbated by increasing rainfall rates (Milly et al., 2002). Historical analysis and 

projection of climate extremes involving outputs from coordinated modelling 

experiments such as Climate Model Intercomparison Phase 5 (CMIP5) with Expert Team 

on Climate Change Detection and Indices (ETCCDI) indices or other measures have been 
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performed for many regions in the United States (Sillman et al., 2013; Wuebbles et al., 

2013). However, direct comparison of one study with other is complicated by differences 

in watershed characteristics, climatic conditions, resolution of data and analyses, climate 

models, emission scenarios, downscaling methods, and other factors. To our knowledge, 

there exists no study that exclusively focuses on trends and variability of climatological 

variables (both means and extremes) in the Commonwealth of Kentucky.  

Similar to flooding, drought is a commonplace occurrence that has caused both 

economic losses and conflicts over rights of water usage in the United States (Mitra and 

Srivastava, 2016). Kentucky has been affected by recent droughts; the drought of 2012, 

for example, caused more than $275M in economic loss to the region, and the EPA 

(2016) projects longer drought durations in the future. Understanding spatiotemporal 

characteristics of droughts can help in evaluating future drought risk and selecting 

appropriate drought mitigation strategies.   

1.2 Objectives 
 

The objectives of this research were to: 

1. Analyze the historical long term-trends and variability in precipitation and 

air temperature for the Commonwealth of Kentucky. 

2. Evaluate the spatio-temporal characteristics of contemporary and future 

extreme precipitation indices in the Kentucky River Basin. 

3. Assess the implications of climate change on water resources availability 

and droughts in the Kentucky River Basin. 
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1.3 Dissertation outline 
 

This dissertation is organized as six chapters. Chapter 1 presents broad background 

information and the research objectives. Chapter 2 provides relevant reviews regarding 

trend analysis studies of hydroclimatic variables and extreme precipitation events. The 

chapter also presents reviews of studies describing climate change impacts on droughts 

using various drought indices. Chapter 3 describes the results from a long-term trend 

analysis of precipitation and air-temperature across the Commonwealth of Kentucky in 

which trends in annual average time series were computed for 84 weather stations using 

non-parametric methods. Chapter 4 provides the comparison of trends and variability of 

seven extreme precipitation indices for the historical and future time periods for the 

Kentucky River Basin. Chapter 5 presents the results from an investigation of climate 

change impacts on hydrologic processes and droughts in the Kentucky River Basin. 

Chapter 6 integrates and summarizes the major findings from the three studies and 

provides recommendations for future research.  

The bulk of the material in this dissertation is either published or accepted for 

publication in a peer-reviewed scientific journal.  The material of Chapter 3 is identical to 

final version of the manuscript subsequently published in Climate:  

Chattopadhyay, S., Edwards D.R. (2016) Long term trend analysis of 

precipitation and air temperature for Kentucky, United States.  Climate, 4, 10, doi: 

10.3390/cli4010010 

     The material of Chapter 4 is identical to the final version of the manuscript 

subsequently published in Water: 
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Chattopadhyay, S., Edwards, D. R., Yu, Y. (2017) Contemporary and future 

characteristics of precipitation indices in the Kentucky River Basin.  Water, 9, 

109, doi: 10.3390/w9020109 

     The original text of Chapter 5 was submitted for publication in Environmental 

Processes and was accepted for publication.  The current text of Chapter 5 represents the 

original text as modified on the basis of Advisory Committee member comments; it is 

anticipated that the current text will be highly similar to the manuscript version that is 

ultimately published, but the revision and follow-up review process is currently ongoing.  

The citation for the upcoming article is: 

Chattopadhyay, S., Edwards, D. R., Yu, Y., Hamidisepehr, A. (2017) An 

assessment of climate change impacts on future water availability and droughts in 

the Kentucky River Basin.  Environmental Processes (accepted).   
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CHAPTER 2: LITERATURE REVIEW 
 

2.1 Introduction 
 

     The Intergovernmental Panel on Climate Change (IPCC) (2013) have estimated that 

near-surface global mean temperatures have increased by 0.72° C between 1951 and 

2012, while global mean annual land precipitation has displayed a slightly increasing 

trend of approximately 1.1 ± 1.5 mm per decade between 1901 and 2005. In other words, 

global climate has been changing over a relatively short duration.  These changes, 

considered as due primarily to anthropogenic activities (fossil fuel consumption in 

connection with growing industrialization and urbanization) have the potential to 

influence almost every aspect of life on the planet with noteworthy examples that include 

agriculture, aquatic and terrestrial ecosystems and water resources.  Indeed, some impacts 

of a changing climate may already be occurring in the form of increasingly frequent 

extreme weather events (intense floods and droughts) (IPCC, 2013).   

     At smaller scales of space and time, historical trends in precipitation and temperature 

are less uniform; magnitudes, directions and statistical significance of trends can vary 

appreciably in space on a management/decision-making scale, with these variations 

demonstrating additional dependence on season.  Similar findings have been reported 

with respect to extreme precipitation, streamflow and drought, all of which strengthen the 

case for relatively high-resolution studies in situations for which a relatively practical 

application of the results is envisioned.    

     Projections of future climate and its impacts rely necessarily on highly complex 

mathematical simulation models to (a) forecast basic climate variables and (b) translate 
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those forecasted variables into the associated hydrological impacts.  Such studies 

typically involve the outputs of one or more global climate model (GCM) simulation for 

a given period of time, with the outputs then cast as inputs to a hydrological simulation 

model.  This approach has been reported for a variety of locations worldwide, with results 

that can be helpful in anticipating future water availability and demands.  It is not, 

however, without challenges.  Apart from the conceptual challenges of compounding 

uncertainties in climate modelling with uncertainties in hydrological modelling, it is 

acknowledged that data from GCM simulations are subject to scale-based (both time and 

space) limitations.  Methods for accommodating the typically coarse scale of outputs 

have been well-reported and are in widespread use; techniques for improving GCM 

performance on smaller time scales (hours and days; i.e., in the weather regime) are a 

topic of active research interest.   

2.1.1 Precipitation variability  
 

     Precipitation is the primary element of the hydrological cycle, and changes in 

precipitation depths are often considered as one of the primary signals of climate change 

(McVicar et al., 2007; Irannezhad et al., 2014). Global precipitation patterns are changing 

as a result of global warming; these changes can have dramatic effects on the 

hydrological cycle and, consequently, both ground and surface water resources 

availability (Arnell, 2001). Hulme et al. (1998) have reported that global average 

precipitation has increased by approximately 2% during the 1900-1998 time period, 

although considerable variation is possible at the regional scale (Dai et al., 1997). Both 

regional and local variations in precipitation were evident in the increasing trends across 

regions north of 30°N for the period 1900-2005 along with decreasing trends in the 
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tropical region since the 1970s (IPCC, 2013). Scaling down the results for northern 

Europe, annual precipitation exhibited an 8-14% increase in Norway during last century 

(Hanssen-Bauer and Forland, 2000), while a slightly smaller increase for northern and 

southern Sweden was reported by Raisannen and Alexandersson (2003). An increase of 

0.92 ± 0.50 mm/year for annual precipitation in Finland was noted by Irannezhad et al. 

(2014). Liuzzo et al. (2016) studied the spatial and temporal variation of rainfall trends in 

Sicily during 1921-2012.  These researchers reported a generally decreasing trend in 

precipitation during 1921-2012; when only the last 30 years (1981-2012) were analyzed, 

however, the trend direction was positive. Spatiotemporal variations in rainfall over the 

period of 1940-2012 in Greece were quantified by Markonis et al. (2016). Findings of 

this study highlighted that while most of the regions demonstrated a decline since 1950, 

an increase since 1980 (stable since last 15 years) is also present.  

     Similar precipitation trend analysis studies have been conducted in India for the 

eastern state of Jharkhand by Chandniha et al. (2016) and for the Sindh River Basin by 

Gajbhiye et al. (2016). Monthly rainfall data from 18 weather stations for the time period 

of 1901-2011 were analyzed to determine spatiotemporal trends in the state of Jharkhand. 

Results showed that five stations out of 18 experienced decreasing trends in annual 

rainfall. Though the authors did not propose a physical explanation, the year 1949 was 

identified as a change point in the time series; trends from 1901-1949 were found to be 

positive, whereas the trend was negative for 1950-2011 time frame. Contrasting results 

were found for precipitation trends in Sindh River Basin, where significant increasing 

trends prevailed for both annual and seasonal time series during 1901-2002. In the 

desertification prone region (DPR) of China, the majority of the stations in the western 
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region exhibited increasing precipitation trends, while negative trends prevailed over the 

eastern region for the time period of 1960-2013 (Shi et al., 2016). The authors’ analysis 

suggested that while climate is becoming wetter in the western regions of DPR, the likely 

condition for the eastern region is drier. Similar studies in China were performed by 

Huang et al. (2013) and Wang et al. (2012). Huang et al. (2013) investigated precipitation 

trends during 1960-2008 in Jiangxi province of southeast China. They found that 

significant differences existed among the stations with positive and negative precipitation 

trends present at monthly, annual and seasonal scales. Another prominent feature of the 

analysis was that significant increasing trends were mostly occurring in January, August, 

winter and summer in contrast to significant decreasing trends mostly in October and 

autumn.  

     Recent studies in North America include spatiotemporal trend analysis and change 

point detection in Kansas by Rahmani et al. (2015) and in Florida by Martinez et al. 

(2012). The average rate of increase in precipitation for Kansas was found to be 0.68 

mm/year over the time period 1890-2011.  These studies and others on trends in United 

States precipitation are summarized in Table 2.1.  Similar to the earlier-discussed studies 

of precipitation trends on other continents, the results can be considered as having a very 

mixed nature, with trend directions, magnitudes and statistical significance dependent on 

factors such as season, location, and the time frame under investigation.  Considered in 

the aggregate, therefore, even the studies specific to the United States suggest that finer 

spatial resolution is necessary to develop results that are meaningful to policy makers and 

water resources managers/planners.  To our knowledge, no peer-reviewed studies have 

been performed on quantifying the historical trends in precipitation in Kentucky to date.  
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Table 2.1.  Summarized studies on precipitation trends in the United States. 

     Study area Time frame  Major findings Reference 
Upper Tennessee 
River Valley  

1950-2009 Average trend: -0.50 mm/year  
Range: (-14.27 – 5.04 mm/year) 

Jones et al. (2015) 

North Carolina 1950-
2009 

Range of trend: -5.5 – 9 
mm/year 

Sayemuzzaman 
and Jha (2014) 

Kansas 1890-2011 Increasing trend of 0.68 mm/year  Rahmani et al. 
(2015) 

12 Midwestern states 
(Illinois, Indiana, 
Iowa, Kansas, 
Michigan, Minnesota, 
Missouri, Nebraska, 
Ohio, South Dakota, 
North Dakota and 
Wisconsin)  

1980-2013  Majority of locations with 
increasing trend (few significant) 
in growing season precipitation, 
but declining in late growing 
season  

Dai et al. (2016) 

Florida  1895-2009 
and 1970-
2009 

Significant decreasing trends in 
October and May for the time 
periods of 1895-2009 and 1970-
2009, respectively  

Martinez et al. 
(2012) 

Great Plains  1900-2000 Increasing precipitation varied by 
15-30% during July from 
easternmost part of the Ogallala 
Aquifer to Indiana.  

DeAngelis et al. 
(2010) 

 
 

2.1.2 Air temperature variability  
 

     Surface air temperature is a crucial climatic parameter that can play a prominent role 

in many hydrological processes and particularly with respect to evapotranspiration. An 

increase of 0.65 – 1.06 °C in global mean annual temperature has been reported in the 5th 

assessment report of IPCC over the time period 1880-2012 (IPCC, 2013). Although 

temperature is usually more spatially homogenous than precipitation, predicting 

spatiotemporal variability of temperature across local and global scales can still be a 

challenging task (Shi and Xu, 2008; Moral, 2010). Muslih and Blazejczyk (2016) used 

linear regression and the Mann-Kendall test as parametric and non-parametric methods, 

respectively, to analyze inter-annual and long-term variations in monthly air-temperature 
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in Iraq. The study period consisted of the years 1941-2013, which was later divided into 

two separate periods (1941-1980 and 1995-2013) to ensure homogeneity in the datasets. 

Results indicated that, consistent with the global warming pattern, increasing trends were 

experienced in Iraq beginning in the mid-1970s.  

     Islam et al. (2015) analyzed temporal changes in seasonal temperature extremes over 

Saudi Arabia for the time period of 1981-2010, finding warming trends in extreme 

indices for a majority of the 27 stations  with statistically significant trends in spring and 

summer seasons. In contrast, the autumn and winter seasons evidenced mixed results with 

both increasing and decreasing trends present in the data. Temperature trends along with 

diurnal temperature range and sunshine duration in northeast India were evaluated by 

Jhajharia and Singh (2011). These researchers found increasing trends in temperature in 

the monsoon and post-monsoon seasons, but temperatures remained stable during winter 

and pre-monsoon seasons. Mikkonen et al. (2015) employed a dynamic linear model to 

investigate trends in average temperature across Finland for the period 1847-2013. Mean 

temperature over Finland was found to have risen over 2°C during the 166-year period,  

corresponding to an increase of  to 0.14°C per decade. The warming rate was found to 

have accelerated after the 1960s, indicating an amplifying effect of global warming. 

Supportive results have been documented by Shi et al. (2016) for a 54-year period (1960-

2013) in China and by Kenawy et al. (2012) for the period 1920-2006 in northeastern 

Spain.  By-season analyses showed that spring months were associated with higher 

warming rates than the annual average, while summer months did not experience 

significant warming. Saboohi et al. (2012) showed that, on an annual scale, most stations 

in the western and southern parts of Iran had significant positive trends. Most of the 
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significant trends occurred in the summer season, which implied that climate in Iran has 

been growing warmer, particularly in summer.  

     Sayemuzzaman and Jha (2014) reported that the majority of the 249 stations 

considered in North Carolina demonstrated increasing trends in mean temperature with 

decreasing differences between minimum and maximum temperatures. Change point 

analysis using the sequential Mann-Kendall test further indicated that significant 

increasing trends in minimum temperature data and decreasing trends in maximum 

temperature data began roughly after 1970 and after 1960, respectively, for most of the 

stations. In a similar investigation by Martinez et al. (2012), increasing trends 

(particularly in summer and autumn) were reported for temperatures in Florida.  

     The Sayemuzzaman and Jha (2014), Martinez et al. (2012), and related studies on 

temperature trends in the United States are summarized in Table 2.2. Considered 

collectively, it is evident that similar to other parts of the world, climate change is in 

progress in the United States; more specifically, the studies generally indicate that the 

change is in the direction of increasing temperature.  Similar to precipitation, though, the 

studies are not unanimous in terms of magnitude or direction of trend, and the results are 

suggestive of variation with location, study time frame, season, proximity to urban 

environment, and other factors.  These differences among studies reinforce the earlier 

conclusion that relatively high-resolution studies may be most helpful in the context of 

water resources policy and management decisions 
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Table 2.2.  Summarized studies on temperature trends in the United States. 

Study area Time frame Major Findings Reference 
North Carolina  1950-2009 Highest warming trend: 

0.073°C/year (autumn) 
Highest cooling trend: 
0.12°C/year (summer) 
Change point: 1970 

Sayemuzzaman et al. 
(2014) 

Florida  1895-2009 
and 1970-
2009 

Trends in mean, minimum 
maximum temperature 
generally positive, higher 
percentage in 1970-2009 

Martinez et al. (2012) 

Urban and rural 
temperature trends 
near large cities in the 
United States 

1951-2000 Mean decadal rate of change 
in the heat island intensity: 
0.05°C 

Stone, 2007 

California 1950-2000 Average warming of 0.99°C Ladochy et al. (2007) 
North Carolina  1949-1998 Temperatures warmest 

during 1950’s but last 10 
years warmer than average 

Boyles and Raman 
(2003) 

Southeastern United 
States  (Florida, 
Alabama, Georgia, 
South Carolina and 
North Carolina) 

1948-2010 Majority of the stations with 
higher warming rates in 
urban areas 

Misra et al. (2012) 

Prairie Pothole 
Region (Dakotas, 
Minnesota, Iowa) 

1906-2000 Minimum daily temperature 
warmed by 1°C, maximum 
daily temperature cooled by 
0.15°C 

Millett et al. (2009) 

 

2.2 Extreme precipitation events  
 

Extreme climatic events pose significant risks to human society in general, which 

makes it prudent investigate the potential future behavior of these events. The broad 

scientific community take the view that, on a global scale, climate change due to 

anthropogenic activities has intensified extreme precipitation (IPCC 2007, 2012). Tank 

and Konnen (2003) found increases in all Europe-wide average indices of precipitation 

extremes including maximum rainfall in 10 consecutive days (RX10) and number of days 

with more than 20 mm rainfall (R20mm) over the 1946–99 period, even though the 

trends were not spatially consistent. Lupikasza (2010) analyzed spatial and temporal 
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variability of extreme precipitation in Poland for the period of 1951-2006. The five 

extreme precipitation indices selected for investigation in the study were highest five day 

precipitation total, precipitation total from events ≥90th and 95th percentiles of daily 

precipitation amount, and number of days with precipitation ≥ 90th and 95th percentiles of 

daily precipitation amount. Results indicated that decreasing trends dominated in both the 

summer and winter seasons. The summer season demonstrated the greatest number of 

statistically significant decreasing trends, while autumn exhibited highest number of 

positive trends. The southern parts of the country were associated with decreasing 

(though statistically insignificant) trends. Increasing trends, however, were found to have 

no distinct spatial pattern. Very similar conclusions about the seasonal trends of extreme 

precipitation indices in Portugal were drawn by Santos and Fargoso (2013). The authors 

found decreasing trends in selected extreme precipitation indices during annual, spring, 

winter and summer seasons, but increasing trends in autumn.  

Increasing trends in maximum one- and five-day precipitation, precipitation on very 

wet days and the number of consecutive dry days were reported in Japan by Duan et al. 

(2015). Song et al. (2015) investigated changes in extreme precipitation and droughts 

over the Songhua River basin in China during 1960-2013. Regional average total 

precipitation on wet days (PRCPTOT) as well as precipitation total from events ≥90th and 

95th percentiles of daily precipitation amount (R95 and R99) evidenced increasing trends. 

The simple daily precipitation intensity (SDII), however, exhibited a statistically 

significant negative trend with an average annual trend slope of -0.02 mm/day/year. All 

stations showed significant positive trends in consecutive dry days (CDD), while 

maximum five-day precipitation total (RX5) demonstrated significant positive trends in 
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April and October. Spatially complex trends in extreme precipitation in Yunnan 

Province, China for a similar time frame (1960-2012) were noted by Li et al. (2015). The 

majority of the 10 extreme precipitation indices exhibited increasing trends in western 

Yunnan and decreasing trends in eastern Yunnan. An increasing trend in CDD and 

decrease in consecutive wet days (CWD) (although most of the trends were insignificant) 

were noted for the western, southern and central regions. Precipitation intensity 

demonstrated a consistent increasing (only 10% of the stations were significant) trend 

over Yunnan. Total annual precipitation experienced a slight decrease on a region-

average basis which was correlated with the increase in precipitation intensity. Perhaps 

Zhang et al. (2013) provide the most robust analysis of extreme precipitation behavior, 

analyzing daily precipitation data from 590 stations in China over the period of 1960-

2005. The non-parametric Mann-Kendall test and parametric approach of linear 

regression were used to determine patterns of extreme precipitation events. Results 

indicated that 1) northwest China experienced a wetting trend, which was reflected in 

increasing consecutive rainy days and decreasing non-rainy days, 2) a drying tendency is 

exhibited mainly in regions within the Yellow River Basin, the Huaihe River Basin while 

relatively small variations in precipitation indices were found for northeast China, and 3) 

the highest intensity of extreme precipitation events was mainly associated with regions 

east of 100° E, particularly in the case of south China, and specifically the lower Yangtze 

River basin, the southeast rivers and the Pearl River basin. An increase in annual rainfall 

caused by increases in frequency and intensity of heavy precipitation in summer was 

reported for Korea (Jung et al., 2011).  
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Omondi et al. (2014) found a significant decrease in total precipitation on wet days 

for the Greater Horn of Africa region for the period 1961-2010. Very weak and 

insignificant trends in extreme precipitation indices were noted by Alp and Washington 

(2014) for 1986-2008 in the Arabian Peninsula with the only exception being the number 

of days with precipitation more than 10 mm (R10), which showed significant negative 

trends. Oliveira et al. (2016) investigated trends in extreme precipitation for northeastern 

Brazil. These authors used daily rainfall data from 148 rain gauges for the period 1972 - 

2002. Heavy, normal and weak rainfall were defined as rainfall above 95th percentile, 

between 45th and 55th percentile and under 5th percentile, respectively. Based on Mann-

Kendall trend results and cluster analysis, the authors concluded that the region was not 

substantially influenced by El Niño and La Niña, and that dry areas have greater 

variability and the highest number of intense events. Aguilar et al. (2005) reported that 

although no significant increases in the total amount were found, rainfall events were 

intensifying, and the contributions of wet and very wet days were increasing in Central 

America and northern South America for the period of 1961-2003.  

The frequency of extreme precipitation events at the sub-daily time scale, which is 

often responsible for flash flooding in the United States, was investigated by Lejiang et 

al. (2016). Observed hourly precipitation data from the North American Land Data 

Assimilation System Phase 2 were used to determine trends in the frequency of extreme 

precipitation events of short (1, 3, 6, 12 and 24 h) duration for the time period 1979-2013. 

Results varied for different parts of the country. While an increasing trend was noticed 

for the central and eastern parts of the country, most of the western United States 

(particularly the Southwest and the Intermountain West) exhibited negative trends. 
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Mallakpour and Villarini (2016) noted a striking similarity regarding the increasing trend 

in frequency of heavy precipitation over large areas of the contiguous United States (with 

the exception of northwest). Powell and Keim (2015) reported an overall increasing trend 

in magnitude and intensity of extreme precipitation events in the southeastern United 

States for 1948-2012 except for the more easterly locations (specifically South Carolina). 

Extreme wet spell and dry spell durations are projected to be longer in the future for 

many locations in the eastern United States (Schoof, 2015). Jiang et al. (2016) studied the 

spatiotemporal characteristics of extreme precipitation events in the Western United 

States. The authors’ analysis included spatial characterization of the El Nino Southern 

Oscillation (ENSO) and identification of multiscale temporal variability in precipitation 

extremes. Based on the results of indices such as R10, RX5, CDD and R95, a dipolar 

pattern was observed with a transition zone that separates the west into two main dipolar 

centers referred to as the Pacific Northwest and the Desert Southwest.  

To summarize the major findings from all the above-reported studies, it can be 

concluded that changes in extreme precipitation occur according to mixed patterns and 

with regionally-dependent variation, arguing again in favor of regional- and local-scale 

studies if the results are to be used in a practical setting. 

2.3 Drought events 
 

     Growing populations, increasing industrial activities, and many other factors have led 

to increasing demand for freshwater resources (Zarch et al., 2015). This demand becomes 

much more acute during periods of drought. Many countries have suffered devastating 

losses in the economy, infrastructure as well as direct loss of human life due to extreme 

weather events such as droughts, particularly during the last several decades (Rosenzweig 
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et al., 2001; Coumou and Rahmstorf, 2012). Drought is a natural feature of climate that 

occurs frequently across different climatic regimes. According to Gocic and Trajkovic 

(2014), drought is an extended period of water deficit and typically occurs when an area 

receives below-normal precipitation for several months. Mishra and Singh (2010) 

presented a comprehensive review of drought concepts and modelling. Three different 

types of drought events can be defined depending on the hydrological variable and 

perspectives: a) meteorological or climatological drought, b) hydrological drought and c) 

agricultural drought (Tallaksen and van Lanen, 2004). Meteorological droughts result 

from a deficit of precipitation, while a shortage in water supply leads to hydrological 

drought (closely related to meteorological drought). A lack of sufficient soil moisture for 

crop growth that results in decreased crop production is termed an agricultural drought.  

     Several drought indices have been proposed in the scientific literature to quantify 

different types of drought, including the Palmer Drought Severity Index (PDSI) (Palmer, 

1965); the Standardized Precipitation Index (SPI) (McKee et al., 1993); the Surface 

Water Supply Index (SWSI) (Shafer and Dezman, 1982); the Standardized Precipitation 

Evapotranspiration Index (SPEI) (Vicente-Serrano et al., 2010); the Reconnaissance 

Drought Index (RDI) (Tsakaris  and Vangelis, 2005) and the copula-based joint deficit 

index (JDI) (Kao and Govindaraju, 2010). Each of these indices usually depends on some 

function or combination of precipitation, temperature, evaporation or potential 

evapotranspiration (PET), soil moisture and/or streamflow, and is used to describe a 

particular type of drought as summarized in Table 2.3.  A fuller discussion of these 

indices appears in following sections, with particular attention given to those most 

important in the context of this study. 
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Table 2.3.  Summarized drought indices. 

Index Type of 
drought 

Data used Reference 

Standardized 
Precipitation Index 
(SPI) 

Meteorological  Rainfall  Mckee et al. (1993) 

Reconnaissance 
Drought Index 
(RDI) 

Meteorological  Rainfall, potential 
evapotranspiration  (PET) 

Tsakaris and Vangelis, 2005 

Standardized 
Precipitation 
Evapotranspiration 
Index (SPEI) 

Meteorological  Rainfall, PET  Vicente-Serrano et al., 2010 

Surface Runoff 
Index (SRI) 

Hydrological  Surface runoff Shukla and Wood, 2008 

Streamflow Drought 
Index (SDI) 

Hydrological  Streamflow  Nalbantis and Tsakiris, 2009 

Surface Water 
Supply Index 
(SWSI) 

Hydrological  Reservoir storage and 
streamflow 

Shafer and Dezman, 1982 

Joint Deficit Index 
(JDI) 

Hydrological Rainfall, streamflow Kao and Govindaraju, 2010 

Palmer Drought 
Severity Index 
(PDSI) 

Agricultural  Soil moisture  Palmer, 1965 

 

2.3.1 Meteorological drought 
 

     The index most commonly used by researchers in describing meteorological drought 

is perhaps the SPI (Bonsal et al., 2013; Spinoni et al., 2014; Jenkins and Warren, 2015; 

Svoboda et al., 2015; Zhou and Liu, 2016), which has been recommended by the World 

Meteorological Organization (WMO) as the standard index for characterizing 

meteorological droughts (Hayes et al., 2011). Zhai et al. (2010) analyzed frequencies of 

dry and wet years and their trends for seven basins representing three regions in China 

using the time series of averaged annual SPI. Raziei et al. (2013) used SPI to analyze 

regional drought patterns in Iran with a focus on the effects of time scale and spatial 

resolution. The results showed that both spatial resolution of precipitation data and time 
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scale may affect drought frequency as well as their spatial homogeneity. Edossa et al. 

(2010) reported more frequent extreme droughts in the upper and middle portions of the 

Awash River basin in Ethiopia using SPI at a 12-month scale. Mild and moderate 

droughts, however, were more common in the middle and lower parts of the Awash River 

basin. Applying the SPI drought index method using rainfall data from 12 weather 

stations, Shahid (2008) investigated spatial and temporal drought characteristics in 

Western Bangladesh. The findings suggested that the north and northwestern parts of 

Bangladesh are most vulnerable to droughts. 

     Lee and Kim (2013) analyzed climate change effects on drought severity-duration-

frequency relationships in Korea. For the historical assessment, observed data from the 

Seoul weather station were used; for assessment of future behavior, data from four 

different global climate models (GCMs) were considered. Results indicated a decrease in 

the future frequency of mild droughts and an increase in the future frequency of severe 

and extreme droughts. Additionally, the average duration of droughts is expected to 

increase.  

     The Reconnaissance Drought Index (RDI) uses both precipitation and 

evapotranspiration data in the calculations and is thus more sensitive to climatic 

variability than the SPI (Khalili et al., 2011). Kousari et al. (2014) used the RDI to detect 

trends in drought for the arid and semi-arid regions of Iran for the time period of 1975-

2005. Increasing drought intensity was noted, which could be a threat to sustainable 

water resource management in the area. Xu et al. (2015) compared three drought indices 

(namely SPI, RDI and SPEI) to quantify spatiotemporal variations of drought in China 
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during 1961-2012. Although the three indices performed equally in the humid climatic 

regions, SPI and RDI were found more applicable in the arid regions than SPEI.  

     Zarch et al. (2015) assessed global drought conditions for both the historical time 

frame of 1960-2009 and future climatic conditions using the SPI and RDI. Results 

indicated the presence in arid zones of insignificant trends in both the downward and 

upward directions.  Even so, however, agreement between the SPI and RDI in arid zones 

is higher than in the humid zones. In the semi-arid, sub-humid, and humid zones, where 

there are prominent inconsistencies in drought trends as assessed using the two indices, 

RDI showed more trends toward dryness than SPI. The SPI identified more years as 

drought-prone before 1998, while RDI computations resulted in more drought prone 

years after 1998. For future climatic conditions, agreement between SPI and RDI 

diminished considerably with time, which suggests the importance of the ET component 

of the hydrologic cycle in the context of global warming and indicates that it should not 

be neglected in drought modeling.  

     In conclusion, it can be noted that SPI is the most widely used index to quantify 

meteorological drought. The SPI has the distinct advantage of having a direct and 

exclusive relation to precipitation; however, the drawback of using the SPI is that it does 

not directly account for the impacts of evaporation or transpiration on soil moisture. 

Additionally, meteorological drought can be indirectly related to hydrological or 

agricultural drought as a precursor.   

2.3.2 Hydrological drought  
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     Some of the commonly-used indices to quantify hydrological drought include the 

Surface Runoff Index (SRI), the Surface Water Supply Index (SWSI) and the Streamflow 

Drought Index (SDI). Shukla and Wood (2008) developed the concept of the SRI based 

on SPI to include human water use practices, which are direct indications of hydrologic 

conditions. Comparing the behavior of SPI and SRI during drought events in a snowmelt 

region revealed similar patterns based on long accumulation patterns, but the authors 

found that the SRI was more reflective of the seasonal lags induced by the hydrologic 

processes. Faraj et al. (2014) investigated the sensitivity of surface runoff to drought and 

climate change in the Diyala watershed, shared between Iraq and Iran, using both SDI 

and RDI.  Talaee et al. (2014) reported negative anomalies in river discharge during the 

warm phase of ENSO (El Nino) responsible for severe and extreme droughts in West Iran 

using standardized streamflow index (SSFI).  

     Nalbantis and Tsakiris (2009) introduced the concept of Streamflow Drought Index 

(SDI) and established a linear relationship between SDI and SPI. Since streamflow data 

can be difficult to obtain in real time, a direct comparison with an existing meteorological 

drought index is very helpful. Drought states were defined, which form a non-stationary 

Markov chain. The researchers validated the proposed methodology using the data from a 

basin in the West Sterea Hellas Water District in Greece. 

2.4 Global climate models 
 

     Projections of future climate variables (precipitation and temperature) as well as 

dependent phenomena and processes (droughts, floods, water yield, etc.) are normally 

derived from climate models. Modern climate modeling emerged in the 1950s 

meteorology literature to predict atmospheric events through explicit solutions to the 
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equations describing conservation of energy, conservation of momentum, mass balance, 

and the behavior of gases. These efforts represented the first ever attempt at a “global 

circulation model” (Phillips, 1956; Manabe & Wetherald, 1975), or GCM. Thus, climate 

modeling was based on the fundamental equations known as the first law of 

thermodynamics, Newton’s second law of motion, the continuity equation, and the ideal 

gas law. Diversification and increasing complexity of climate models have resulted in 

four broad categories of climate models (Shine & Henderson-Sellers 1983): (1) energy 

balance (EBM), (2) one-dimensional radiative-convective (RC), (3) two-dimensional 

zonally average dynamical models, often grouped with Earth system models with 

intermediate complexity (EMIC) and (4) three-dimensional general or global circulation. 

     Following the advent of high-performance computing, the three-dimensional GCMs 

largely replaced the other classes of models.  As originally formulated, GCMs considered 

only the atmosphere, identical to a computational fluid dynamics simulation on large 

temporal and spatial scales. Given the prospect and implications of climate change, 

however, many GCMs evolved into fully coupled ocean-atmospheric circulation models 

with some including the biosphere and its carbon cycling (Sellers et al., 1986). 

     Parameterizations of current GCMs include equations intended to reflect small scale 

processes/phenomena and to approximate bulk effects of physical processes that are too 

complex to be represented (e.g., clouds, cumulus convection and surface albedo). 

Although the functional form of parameterization is physically-based, choices of 

parameter values are dependent on empirical studies. In broad terms, the input data 

required by GCMs typically describes Earth properties, CO2 emissions, solar energy, 

volcanic activity, ozone concentrations, and other initial/boundary conditions.   While 
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GCM computations are sensitive to projected atmospheric CO2 concentrations, there is 

considerable uncertainty regarding their future values.  The uncertainty is accommodated 

by specifying multiple emissions scenarios, referred to as Representative Concentration 

Pathways (RCPs).  The four currently-recognized RCPs, which are derived on the basis 

of differing assumptions regarding global economic development, mitigation strategies 

and other factors, are summarized below in Table 2.4.   

    Table 2.4.  Representative concentration pathways (RCPs) (van Vuuren et al., 2011) 

RCP Description Global mean 
temperature 

anomaly (°C) 

Global mean CO2 
concentration 

(ppmv) 
RCP 
8.5 

Rising radiative forcing pathway leading to 8.5 
W/m2 in 2100 

4.9 1370 

RCP 
6.0 

Stabilization without overshoot pathway to 6 
W/ m2 at stabilizing after 2100  

3.0 850 

RCP 
4.5 

Stabilization without overshoot pathway to 4.5 
W/ m2 at stabilization before 2100 

2.4 650 

RCP 
2.6 

Peak in radiative forcing at 3 W/m2 before 2100 
and reaching 2.6 W/m2 by 2100 

1.5 490 then declines 

 

     The outputs of GCM simulations can be of a relatively comprehensive nature, 

including not only surface temperatures and precipitation, but detailed information on 

atmospheric and ocean circulation, aerosol concentrations, carbon cycling, sea and land 

ice coverage, ocean biogeochemistry and other processes.  Since no single GCM is 

widely acknowledged as superior for all locations and applications, outputs are very often 

obtained from an ensemble of models whose results are averaged preparatory to inference 

and follow-on analysis.   

     The coarse spatial resolution of GCM outputs (typically hundreds of km horizontally) 

is often incompatible with regional- and smaller-scale analysis (Xu et al., 2013).  Some 
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climate extremes, especially precipitation extremes, are mainly controlled by sub-grid 

processes.  As a result, the coarse resolution of projected GCM outputs cannot meet the 

typical requirements of end users in research areas such as hydrology, conservation, and 

climate risk assessment (Diaz-Nieto and Wilby 2005). Therefore, appropriate 

downscaling is necessary to improve the coarse resolution and poor representation of 

precipitation and temperature in GCMs (Xu et al., 2013; Xu and Luo, 2015). Future 

chapters will provide expanded treatment of issues such as downscaling, resolution, use 

of ensembles, and GCM limitations.    

2.5 Climate change impact assessment 
 

Global warming has been identified as the driving factor of climatic change in the 

coming century, and global climate change has the potential to directly affect 

hydrological processes (Chattopadhyay and Jha, 2016; Zhang et al., 2016). Examples of 

hydrological processes that are susceptible to climate change include evapotranspiration 

(ET), water yield, soil moisture, streamflow and extreme events such as floods and 

droughts (Jha and Gassman, 2014; Neupane and Kumar, 2015; Li et al., 2016).  Observed 

and projected behavior of streamflow and evapotranspiration are discussed more fully in 

subsequent paragraphs due to their relatively prominent role in the context of this 

research.   

2.5.1 Streamflow 
 

     Several studies have noted that climate change is anticipated to accelerate 

hydrological response, which will directly affect streamflow (Ficklin et al., 2014; Dahal 

et al., 2016; Brianna et al., 2016; Mishra and Lilhare, 2016). For instance, Mishra and 
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Lilhare (2016) reported that streamflow could increase by more than 40% in eight basins 

during the monsoon season under the RCP 4.5 scenarios in India. The authors further 

observed that water availability in the sub-continental river basins is more sensitive to 

changes in the monsoon season precipitation rather than air-temperature. Streamflow 

sensitivity to future rainfall and temperature fluctuations in the Dinder River basin, Sudan 

was observed by Basheer et al. (2016). Shrestha and Htut (2016) investigated climate 

change impacts on the hydrology of the Bago River basin, Myanmar. The results of the 

study indicated that annual and rainy season stream flows are projected to increase by 

approximately 40% and 29% over the entire basin, respectively, while summer seasonal 

flows will decrease by 21%. Similarly, for the Lower Missouri River in the United States, 

most of the water fluxes are expected to increase consistent with future precipitation 

trends except during the summer season (Qiao et al., 2014). Thomson et al. (2003) found 

a wide range of variation in water yield (-210% to 77%) relative to the baseline levels 

within the entire United States. Brianna et al. (2016) reported that for Southern 

California, earlier snow melt and significantly stronger winter precipitation events in the 

future will pose increased flood risks and require water releases from the controlling 

reservoirs, which can result in less available water outside the wet season.  

     Novotny and Stefan (2007) linked increasing trends in streamflow to increasing mean 

annual precipitation and intense rainfall events in Minnesota. Chien et al. (2013) applied 

the SWAT model to assess potential impacts of climate change on streamflow in the 

agricultural watersheds of the Midwestern United States. The results of the study 

suggested that future streamflow will increase in winter but decrease in summer. 

Furthermore, increasing temperatures could influence both evapotranspiration and the 
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form of precipitation, both of which can impact streamflow patterns. Jha and Gassman 

(2014) used meteorological inputs from an ensemble of 10 GCMs to study changes in 

hydrology and streamflow in the Raccoon River Watershed in Iowa.  Mid-century (2046-

2065) projections indicated a modest 0.7% increase in annual average precipitation and a 

2.7°C increase in annual average temperature. These changes in climate were assessed as 

reducing total water yield by 17%, while streamflow at the watershed outlet decreased by 

17% on an average annual basis.  

     Decreasing trends in water balance components such as groundwater recharge and 

storage have been reported for Turkey (Erturk et al., 2014), with analogous changes in 

surface runoff and sediment yield reported for Spain (Zabaleta et al., 2014). Potential 

climatic variability can increase flood risks due to significant increases in streamflow at 

locations around the world. Relevant examples are found in studies by Middelkoop et al. 

(2001) for Germany, Jung et al. (2013) for  Korea, Burn and Whitefield (2016) for 

Canada, Brath et al. (2006) for  Italy and Viallrini et al. (2011) for the midwestern United 

States. Heim et al. (2013) reported that while flood magnitudes in the southwestern 

United States have been decreasing, the northeast and north-central United States have 

been experiencing increases in flood magnitudes.  

     Major findings from United States climate change impact studies are summarized in 

Table 2.5.  These studies indicate that streamflow will demonstrate the expected 

sensitivity to future changes in climate.  In keeping with the previously-developed theme, 

however, the impacts very often demonstrate significant regional and small-scale 

variations.  
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Table 2.5.  Summarized findings of climate change impacts on streamflow. 

Study area Hydrologic 
Model 

Major findings Reference 

Agricultural 
watersheds in 
Midwestern US 

SWAT Future streamflow will increase in winter but 
decrease in summer 

Chien et al. 
(2013) 

Raccoon River 
Watershed, 
Iowa 

SWAT Reducing total water yield and streamflow in 
mid-century (2046-2065) by 17% 

Jha and 
Gassman 
(2014) 

Western United 
States (Upper 
Colorado River 
Basin, 
Columbia 
River Basin 
and Sierra 
Nevada  Basin) 

SWAT Significant decline in snowmelt and shift in 
streamflow timing because of warmer and 
wetter projections  

Ficklin et al. 
(2015) 

Arid central 
Arizona 

SWAT Stream discharge is projected to decrease by 31 
% in the 2020s, 47 % in the 2050s, and 56 % in 
the 2080s compared to the mean discharge for 
the base period 

Ye and 
Grimm 
(2013) 

Contiguous US VIC Most regions with significant increase in future 
spring and winter runoff  

Naz et al. 
(2016) 

New York City 
water supply 
watershed  

SWAT Earlier snowmelt and reduced snowpack will 
advance the timing and increase the magnitude 
of discharge in the winter and early spring and 
corresponding decrease in late spring  

Pradhanang 
et al. (2013) 

 

2.5.2 Evapotranspiration (ET) 
 

     Given that the ET process is dependent on precipitation and air-temperature, increases 

in these variables normally result in increased actual ET (Zhang et al., 2016). Increasing 

temperature and decreasing precipitation could result in increasing ET during the 2080s 

in  

California, as reported by Ficklin et al. (2013). In a very recently concluded study by 

Mehan et al. (2016), increasing temperatures (between 2.2°C to 3.3°C) combined with a 

decrease in precipitation (1.8 - 4.5%) will result in an increase in projected actual ET by 2 

- 3% during the mid-21st century (2046-2065) in an agricultural watershed in South 
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Dakota. Chattopadhyay and Jha (2016) reported the higher sensitivity of ET to 

temperature than to precipitation changes in the Haw River Watershed, North Carolina 

for the future time frame of 2040-2069. While fewer studies devoted exclusively or 

primarily to future ET are available, published accounts suggest that its future behavior 

will react to temperature and precipitation changes in the expected manner and, by 

extension, with analogous variation.   
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CHAPTER 3: LONG-TERM TREND ANALYSIS OF PRECIPITATION AND 

AIR TEMPERATURE FOR KENTUCKY, UNITED STATES 

 

Abstract 
 

 Variation in quantities such as precipitation and temperature is often assessed by 

detecting and characterizing trends in available meteorological data. The objective of this 

study was to determine the long-term trends in annual precipitation and mean annual air 

temperature for the state of Kentucky. Non-parametric statistical tests were applied to 

homogenized and (as needed) pre-whitened annual series of precipitation and mean air 

temperature during 1950–2010. Significant trends in annual precipitation were detected 

(both positive, averaging 4.1 mm/year) for only two of the 60 precipitation-homogenous 

weather stations (Calloway and Carlisle counties in rural western Kentucky). Only three 

of the 42 temperature-homogenous stations demonstrated trends (all positive, averaging 

0.01 °C/year) in mean annual temperature: Calloway County, Allen County in southern-

central Kentucky, and urbanized Jefferson County in northern-central Kentucky. In view 

of the locations of the stations demonstrating positive trends, similar work in adjacent 

states will be required to better understand the processes responsible for those trends and 

to properly place them in their larger context, if any.  

Keywords: climate variability; trend analysis; Kentucky; non-parametric 
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3.1 Introduction 
 

Precipitation and air temperature are two of the most important variables in the fields 

of climate sciences and hydrology. Precipitation is a critical component in rainfall–runoff 

relationships, and influences flood/drought assessment as well as mitigation measures. 

Temperature plays a prominent and well-known role in evaporation, transpiration, and 

water demand (both animal and human), and thus significantly affects both water 

requirements and strategies to assure its availability. The implications of changes in 

precipitation and temperature make it crucial for water resource planners to accurately 

assess their behavior and impacts on related hydrologic variables. 

3.1.1 Relationship between climate data and hydrologic studies 
 

     Modeling studies, with hydrologic simulation models operated with data projections 

from climate models, have recently been undertaken to assess the potential hydrologic 

impacts of changing climate (Fickilin et al., 2013; Chatttopadhyay and Jha, 2016; Jin and 

Sridhar, 2012; Chattopadhyay and Jha, 2014; Modala, 2014; Abdo et al., 2009). Ficklin et 

al. (2013) applied a hydrologic model to the Upper Colorado River Basin and combined 

it with forecast data from 16 Global Climate Models (GCMs), finding a temporal shift in 

most hydrologic outputs with a significant decline in snowmelt projected by the end of 

the 21st century. Additionally, projected temperature increases translated to increased 

(23%) estimates of average annual evapotranspiration. In a similar study focusing on the 

Haw River Watershed in North Carolina, Chattopadhyay and Jha (2016) linked the Soil 

and Water Assessment Tool (SWAT) model (Neitsch et al., 2005) with climate 

projections from four Regional Climate Models (RCMs). The study indicated that an 
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overall average 14% increase in precipitation would increase water yield by a 

disproportionately high 38% on an annual basis. Jin and Sridhar (2012) used the same 

basic approach for hydrologic cycle impact assessment in the Boise and Spokane River 

Basins but used a different suite of climate models. For the Spokane River watershed, the 

projected precipitation changes ranged from 3.8 to 36%, and projected temperature 

changes ranged from 0.0 to 3.9 °C over the study period (2010–2060), corresponding to 

estimated changes in annual peak flows ranging from −58 to 106 m3/s. The results for the 

Boise River watershed were similar; precipitation changes of −6.7–17.9% and 

temperature changes of 0.1–3.5 °C were projected to change annual peak flows by −198–

88 m3/s. The general findings of modeling studies such as these are strengthened by 

observations of hydrologic cycle changes on regional to global scales, attributable to 

greenhouse gas emissions (Brutsaert and Parlange 1998; Solomon et al., 2007; 

Prudhomme et al., 2003; Minville et al., 2008). The hydrologic cycle, then, responds in 

predictable ways to variation in influential variables, sometimes in a more-than-

proportional manner. This outcome magnifies the importance of characterizing future 

climate in the context of hydrology. 

3.1.2 Trends in air temperature 
 

     Many studies, representing a wide range of locations and scales, have investigated 

trends in climatic variables (New et al., 2001; Boyles and Raman, 2003; Small et al., 

2006; Mohsin and Gough, 2010; Prat and Nelson, 2013; Sayemuzzaman et al., 2014; 

Sayemuzzaman et al., 2015). The overall trend with respect to temperature seems clear at 

the global scale. According to IPCC 5th Assessment report, global mean annual 

temperature, for both surface and ocean air in combination, has increased by 0.65–1.06 
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°C over the period 1880–2012. At smaller spatial and temporal scales, there is less 

uniformity of findings. Zhao et al. (2014) reported that mean surface air temperature in 

Eastern China increased by 1.52 °C over the last 100 years. In a similar study, Ceppi et 

al. (2012) analyzed seasonal air temperatures in Sweden for the period 1959–2008, 

finding increasing trends that were greatest in summer (0.34–0.62 °C/decade) and least in 

autumn (0.02–0.38 °C/decade). Supportive results have been reported by Rio et al. (2011) 

for a 40-year period of records in Spain and by Degaetano and Allen (2002) for the 

period 1950–1996 in the US. At still smaller scales, increasing trends have been reported 

for Florida (2012) and several northeastern states (Karmeshu, 2012). Two of the nine 

states investigated by Karmeshu (2012), however, demonstrated no significant trend in 

temperature. Variation in long-term behavior of temperature thus appears to be present, 

especially at relatively small spatial and temporal scales. 

3.1.3 Trends in precipitation 
 

Recent reports on the long-term behavior of precipitation suggest similar, if not 

larger, variation on spatial and temporal scales. Toward the upper end of the spatial scale, 

(Xu et al., 2005; IPCC, 2001) reported that mean annual land-surface precipitation over 

the 20th century increased by 7%–12% in the middle and high latitudes (30°–85°) of the 

Northern hemisphere, but only by 2% for latitudes ranging from 0° to 55°S, whereas Karl 

and Knight (1998) reported a 10% increase in annual precipitation across United States 

between 1910 and 1996. On a smaller scale, Philandras et al. (2011) studied long-term 

precipitation within the Mediterranean region over the period 1901–2009, finding that the 

trends were generally negative. Slightly positive trends were detected, however, in the 

sub-regions of northern Africa, southern Italy and the western Iberian Peninsula. 
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Abbaspour et al. (2009) reported a similarly mixed result for Iran, noting that the wet 

regions of Iran are expected to receive more rainfall in future, while dry regions would 

receive less; i.e., an amplifying effect. In an investigation of extreme precipitation events 

in Bulgaria over the years 1961–2005, Bocheva et al. (2008) found that total precipitation 

was stable over this period. However, extreme events occurred more frequently, and 

weak/moderate events occurred less frequently during the last 15 years of the study 

period, again suggesting a relatively recent process of amplification.  

Mixed findings are reported at still smaller scales. In a study involving 211 weather 

stations in the Campania region of southern Italy over the period 1918–1999, Longobardi 

et al. (2009) detected negative trends in annual precipitation for 27% of the stations and 

positive trends for 9% of the stations. When only the last 30 years were considered, 

however, negative trends were detected for 97% of the stations. In the northeastern US, 

on the other hand, Karmeshu (2012) found increasing trends in precipitation for seven of 

the nine states studied, with no trend detected for either Maine or New Hampshire. Jones 

et al. (2015) analyzed the temporal variability of precipitation in Upper Tennessee Valley 

for the period 1950–2009. Over this period, only 11% of the 78 sub-basins experienced 

either significant increasing or decreasing trends. The average trend for precipitation was 

−0.50 mm/year with the range being –14.27 mm/year to 5.04 mm/year. 

The studies cited earlier suggest that, relative to temperature, the long-term behavior 

of precipitation is characterized by greater spatial variability, indicating a proportionately 

higher dependence on regional and local variables. In this case, relatively small-scale 

analyses (tens or hundreds of thousands of km2) might be required in practical 

applications. 
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3.2 Objective 

     The potential magnitude and range of impacts of climate change makes it prudent to 

translate trends in hydrologic variables into effects experienced by ecosystems, 

populations and infrastructure. Reliably detecting and characterizing these trends is a 

necessary first step in such an analysis, whether at a relatively small scale (watershed) or 

at the larger scale of a political decision-making entity (state). The objective of this study 

was to evaluate trends in precipitation and air temperature for the state of Kentucky. The 

results can indicate whether additional analysis is required and, if so, serve as a necessary 

input to forecasting, decision-making and planning processes to mitigate any adverse 

consequences of changing climate. 

3.3 Materials and methods 
 

3.3.1 Study area description  
 

Kentucky is situated roughly from 36º30’N to 39º09ʹN latitude and 81º58’W to 

89º34ʹW longitude. Kentucky is the smallest of the eight states comprising the south-

central region, encompassing a total area of roughly 105,000 km2 (Figure 3.1). It is 

located approximately midway between the Gulf of Mexico to the south and the Great 

Lakes to the north, with the Atlantic Ocean and the Great Plains located to its distant east 

and west, respectively. The state is characterized by a broad range of elevations varying 

from 122 m above mean sea level (MSL) along the Mississippi River in the west to more 

than 1220 m MSL in the southeast, averaging 229 m MSL. Most of the river networks 

and streams in Kentucky drain to the Ohio River. Major land uses in the state include 
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forest and grassland in the eastern portions and cultivated cropland in the western 

portions. Major urban areas include Louisville and Lexington in the central part of the 

state; their metropolitan statistical areas contain populations of approximately 1.3 and 0.5 

million residents, respectively, of the state’s 4.4 million total residents. Annual average 

precipitation over the state varies from 1060 mm in the north to 1502 mm in the 

southwest with average annual temperature ranging from 10.8 °C in the northeast to 

14.1°C in the southwest (Kentucky Climate Center). There are no distinct “wet” or “dry” 

seasons as observed in some other parts of the US, though summer often experiences 

more rainfall than the other seasons. 

 

Figure 3.1 Locations of weather stations in the initial dataset. Lines are physiographic region 
boundaries. 

 

3.3.2 Dataset description  
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Time series of daily precipitation, maximum air temperature and minimum air 

temperature, collectively covering each of Kentucky’s 120 counties, were obtained from 

the US Department of Agriculture, Agricultural Research Service’s (USDA ARS) online 

data retrieval tool. These data were derived from National Oceanic and Atmospheric 

Administration data sets as described by the USDA ARS (2014). The 61-year period 

from 1950 to 2010, inclusive, was selected as the study duration to ensure standardization 

among stations and an adequate record length. Stations not meeting this requirement were 

discarded from further analysis. Inspection of the remaining time series indicated that still 

others had a minimum of one instance of missing data for at least 30 consecutive daily 

days; these series were also discarded, leaving a total of 84 weather stations’ data to be 

used in the study (Figure 3.1). 

Subsequent processing was performed for individual stations’ data series, rather than 

averaged series. While there is the potential for inferences to differ between averaged and 

individual series due to the relatively low variance of averaged data, individual series 

were preferred from the standpoint of achieving maximum spatial resolution of results. 

This, in turn, would ideally permit the data itself to point to any regions of consistent 

temperature and/or rainfall behavior rather than using an a priori definition of regions 

over which to average the stations’ data.  

3.3.3 Pre-processing of data  
 

The 61 years of daily data were reduced to annual series of total precipitation and 

average temperature. Consistent with WMO guidance, these series were subsequently 

tested for homogeneity (i.e., to detect changes in station location, instruments and/or 

protocols) and to determine whether pre-whitening was appropriate. As reviewed and 
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critiqued by Costa and Suares (2009), methods for both absolute homogenization (in 

which series are tested separately) and relative homogenization (in which discontinuities 

are detected by comparison to applicable reference stations) are available, the categories 

differing in terms of assumptions, performance, applicability and available data. 

Homogeneity testing in this study followed an absolute method described by Longobardi 

et al. (2009), in which the time series must pass two separate tests (a t-test and 

modification of Ward’s test) to be included for subsequent analysis. The t-test has also 

been applied in homogeneity testing by Panofsky and Brier (1968) and Alamgir et al. 

(2015) among others, whereas Ward’s test has been additionally applied by Kalkstein et 

al. (1987) and Unal et al. (2003) for example. Absolute homogenization was preferred in 

this study on the basis of the minimal assumptions required and the lack of a requirement 

to identify optimal station groupings within the highly diverse study area.  

The purpose of the t-test was to determine whether the mean μ1 of the series subset 

consisting of the first n1 values should be considered as different from the mean μ2 of the 

remaining n2 (= n − n1) values of the series, in which case the overall series would be 

considered non-homogenous. The test statistic 𝑡𝑡𝑛𝑛1,𝑛𝑛2 was calculated as Longobardi et al. 

(2009): 

𝑡𝑡𝑛𝑛1,𝑛𝑛2 =
𝑋𝑋�1 − 𝑋𝑋�2

𝑆𝑆 �𝑛𝑛1𝑛𝑛2/(𝑛𝑛1 + 𝑛𝑛2) (1) 

where the weighted sample variance S is given by: 

𝑆𝑆 = �(𝑛𝑛1𝑆𝑆12 + 𝑛𝑛2𝑆𝑆22)/(𝑛𝑛1 + 𝑛𝑛2 − 2) (2) 
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t-statistics were calculated for all possible values of n1 (and thus n2) and compared to 

tν,1−α/2, where α was taken as 0.05 and the degrees of freedom ν were calculated from 

Longobardi et al. (2009): 

𝑣𝑣 =  
[𝑆𝑆1

2

𝑛𝑛1
+ 𝑆𝑆22
𝑛𝑛2

]2

�𝑆𝑆1
2

𝑛𝑛1
�
2

𝑛𝑛1 − 1 +
�𝑆𝑆2

2

𝑛𝑛2
�
2

𝑛𝑛2 − 1

 
(3) 

If 𝑡𝑡𝑛𝑛1,𝑛𝑛2 > tν,1−α/2 for any value of n1, then the null hypothesis Ho: μ1 = μ2 was 

rejected, and the alternate hypothesis Ha: μ1 ≠ μ2 was accepted. The series was then 

considered non-homogenous, having failed the t-test for homogeneity, and excluded from 

subsequent analysis.  

The data were also subjected to a modified and simplified version of Ward’s test 

(Kalkstein et al., 1987) to assess whether the data should be considered as representing 

multiple clusters, which would be considered an indication of non-homogenous data. 

Following Longobardi et al. (2009), the Huygens decomposition of system deviance 

dev(x) of a process x with two subsets of sizes n1 and n2 = n − n1 can be written as: 

𝑑𝑑𝑑𝑑𝑣𝑣(𝑥𝑥) =  ��(𝑥𝑥𝑖𝑖,𝑗𝑗 −  𝜇𝜇𝑥𝑥𝑗𝑗)
2

𝑛𝑛𝑖𝑖

𝑗𝑗=1

+ �𝑛𝑛𝑖𝑖(𝜇𝜇𝑥𝑥𝑖𝑖 −  𝜇𝜇𝑥𝑥)2
2

𝑖𝑖=1

2

𝑖𝑖=1

 (4) 

As discussed by Longobardi et al. (2009), the goal is to identify the optimal value of n1 

(and thus n2) that maximizes the second term of Equation (4) and, in so doing, provides 

the best definitions of the two clusters. Optimal values of n1 other than the first five or 

last five values in the series were considered as evidence of distinct clusters within the 

series; i.e., evidence of non-homogeneity. Series exhibiting non-homogeneity were 
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categorized as having failed Ward’s test of homogeneity and excluded from subsequent 

analysis.  

Several relevant studies (Douglas et al., 2000; Zhang et al., 2001; Yue et al., 2002; 

Matalas et al., 2003; Gocic and Trajkovic, 2013; Sayemuzzaman and Jha, 2014) have 

highlighted the need to test for serial correlation and, if present, correct for serial 

correlation in time series data prior to a trend analysis. Otherwise, trends might be 

incorrectly estimated, and the probability of a Type 1 error can increase. The 

precipitation and temperature series passing the homogeneity tests were next examined 

for the presence of significant serial correlation as described by (Gocic and Trajkovic, 

2013; Sayemuzzaman and Jha, 2014) to determine whether pre-whitening was necessary. 

The serial correlation coefficient r1 was calculated as 

𝑟𝑟1 =
1

𝑛𝑛 − 1∑ �𝑥𝑥𝑖𝑖 − 𝑋𝑋�(𝑥𝑥𝑖𝑖+1 − 𝑋𝑋)𝑛𝑛−1
𝑖𝑖=1

1
𝑛𝑛∑ (𝑥𝑥𝑖𝑖 − 𝑋𝑋)2𝑛𝑛

𝑖𝑖=1

 (5) 

No significant serial correlation was judged present if the value of r1 fell inside the 

bounds given by: 

−1 − 1.645�(𝑛𝑛 − 2)
𝑛𝑛 − 1

≤  𝑟𝑟1 ≤
−1 + 1.645 �(𝑛𝑛 − 2)

𝑛𝑛 − 1
 (6) 

If, however, significant serial correlation was detected, then a pre-whitened series x* 

(with one fewer data point than the original) was created for subsequent analysis from: 

𝑥𝑥𝑖𝑖∗ = 𝑥𝑥𝑖𝑖+1 − 𝑟𝑟1𝑥𝑥𝑖𝑖 (7) 
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3.3.4 Trend detection and characterization  
 

A variety of statistical methods have been applied in studies such as those previously 

noted to detect trends and other changes in hydrologic and climatic variables (Modarres 

and Silva, 2007; Wang et al., 2009; Tabari et al., 2011; Jain et al., 2012; Sonali and 

Nagesh, 2013; Jha and Singh, 2013; Sayemuzzaman et al., 2014). These methods can be 

broadly categorized as parametric and non-parametric methods; parametric methods 

assume an underlying distribution (typically Normal) for the variables of interest, 

whereas non-parametric methods do not. Sonali and Nagesh (2013), among others, have 

advocated the use of non-parametric methods of trend detection, noting that 

untransformed hydrologic and climatic data are often distinctly non-normal with positive 

skewness.  

The non-parametric Mann-Kendall test (Mann, 1945; Kendall, 1975) was used to 

assess the presence of significant trends in precipitation and temperature data, consistent 

with environmental applications reported by Modarres and Silva (2007) and Modarres 

and Sarhadi (2009). The Mann-Kendall statistic SM of the series x is given by: 

𝑆𝑆𝑀𝑀 = � � 𝑠𝑠𝑠𝑠𝑛𝑛 (𝑥𝑥𝑗𝑗

𝑛𝑛

𝑗𝑗=𝑖𝑖+1

𝑛𝑛−1

𝑖𝑖=1

− 𝑥𝑥𝑖𝑖) (8) 

where sgn is the signum function. The variance associated with SM is calculated from 

(Mann, 1945; Kendall, 1975): 

𝑉𝑉(𝑆𝑆𝑀𝑀) =  
𝑛𝑛(𝑛𝑛 − 1)(2𝑛𝑛 + 5) − ∑ 𝑡𝑡𝑘𝑘(𝑡𝑡𝑘𝑘 − 1)(2𝑡𝑡𝑘𝑘 + 5)𝑚𝑚

𝑘𝑘=1

18
 (9) 
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where m is the number of tied groups and tk is the number of data points in group k. In 

cases where the sample size n > 10, the test statistic Z(SM) is calculated from (Mann, 

1945; Kendall, 1975):  

𝑍𝑍(𝑆𝑆) =

⎩
⎪
⎨

⎪
⎧
𝑆𝑆𝑀𝑀 − 1
�𝑉𝑉(𝑆𝑆𝑀𝑀)

, 𝑖𝑖𝑖𝑖 𝑆𝑆𝑀𝑀 > 0

0 𝑖𝑖𝑖𝑖 𝑆𝑆𝑀𝑀 = 0
𝑆𝑆𝑀𝑀 + 1
�𝑉𝑉(𝑆𝑆𝑀𝑀)

, 𝑖𝑖𝑖𝑖 𝑆𝑆𝑀𝑀 < 0

 (10) 

Positive values of Z(SM) indicate increasing trends, while negative Z(SM) values 

reflect decreasing trends. Trends are considered significant if |Z(SM)| are greater than the 

standard normal deviate Z1−α/2 for the desired value of α (taken as 0.05 in this study).  

The Theil-Sen approach (TSA), a commonly-used method to quantify the significant 

linear trends in time series, was used in this study. The TSA is considered more robust 

than the least-squares method due to its relative insensitivity to extreme values and better 

performance even for normally distributed data (Hirsch et al., 1982) In general, the slope 

Q between any two values of a time series x can be estimated from  

𝑄𝑄 =  
𝑥𝑥𝑘𝑘 − 𝑥𝑥𝑗𝑗
𝑘𝑘 − 𝑗𝑗

,𝑘𝑘 ≠ 𝑗𝑗 (11) 

For a time series x having n observations, there are a possible N = n (n − 1)/2 values 

of Q that can be calculated. According to Sen’s method, the overall estimator of slope is 

the median of these N values of Q. The overall slope estimator Q* is thus: 

𝑄𝑄∗ = �
𝑄𝑄(𝑁𝑁+1)/2,𝑁𝑁 odd

𝑄𝑄𝑁𝑁/2 + 𝑄𝑄(𝑁𝑁+2)/2

2
,𝑁𝑁 even

 (12) 
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When significant trends in the data were detected, 95% confidence intervals were 

calculated using non-parametric techniques as described by Salmi et al. (2002). The 

quantity Cα is first calculated as 

𝐶𝐶𝛼𝛼 = 𝑍𝑍1−𝛼𝛼/2�𝑉𝑉(𝑆𝑆) (13) 

where Z is again the standard normal deviate, V(S) is as defined earlier, and α is taken as 

0.05. Indices M1 and M2 are determined from: 

𝑀𝑀1 =
𝑁𝑁 − 𝐶𝐶𝛼𝛼

2
 (14) 

𝑀𝑀2 =
𝑁𝑁 + 𝐶𝐶𝛼𝛼

2
 (15) 

where N is as previously defined. Finally, the confidence limits are defined by the M1
th 

and (M2+1)th largest of the ordered estimates of Q, with interpolation as appropriate for 

non-integer values of M1 and M2. 

 

3.4 Results and discussions  
 

3.4.1 Precipitation  
 

As indicated in Table 3.1, mean annual precipitation ranged from a low of 1080 mm 

for station Boyd (1) (Figure 3.2, station 6) to a high of 1352 mm for station Calloway 

(Figure 3.2, station 59) with a mean over all stations of 1224 ± 75 mm. Twenty-four 

stations’ series failed either the t-test, Ward’s test or both and were excluded from further 

analysis (Table 3.1) as non-homogeneous. Pre-whitening was necessary for only two of 

the remaining 60 stations (Boyd (2), Figure 3.2, station 7 with a serial correlation 
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coefficient of 0.28 and Garrard (2), Figure 3.2, station 31 with a serial correlation 

coefficient of 0.21) and did not affect the detection of a significant trend. For the great 

majority (58 of 60, or 97%) of the homogenous stations, no significant trends in annual 

precipitation were detected. In the two instances of significant trends, both trends were 

positive: Calloway, with a Sen slope of 3.51 mm/year (0.26% of the mean), and Carlisle 

(1) (Figure 3.2, station 60), with a Sen slope of 4.78 mm/year (0.37% of the mean). 

Figure 3.3 provides a more detailed depiction of the data for the Calloway County station, 

as an example, along with the calculated trend slope and 95% confidence limits on the 

slope. While it must be noted that the homogenization tests admit the possibility of a 

series with very low variability about a relatively large trend slope failing the tests, this 

appears not to have happened in this case. Only six of the 24 series assessed as non-

homogenous would have had significant Sen slopes; however, the average of the six 

slope magnitudes was no greater than for the Calloway and Carlisle (1) stations.  

 

                           Table 3.1 Summarized precipitation trend analysis results. 

Station 
No. Station Elevation Mean Annual 

Precipitation Sen Slope 

 County (m) (mm) (mm/year) 

1 Allen (2) 189 1280 1.29 (−2.07–4.24) 1 

2 Allen (3) 259 1324 0.57 (−2.33–3.83) 
3 Ballard 113 1268 2.06 (−1.90–5.73) 
4 Bell (1) 348 1274 −1.05 (−3.84–1.93) 
5 Bell (2) 354 1297 −0.64 (−3.54–2.64) 
6 Boyd (1) 171 1080 2.12 (−0.43–4.16) 
7 Boyd (2) 226 1085 −1.01 (−4.29–2.45) 
8 Boyle 274 1207 2.02 (−1.01–5.06) 
9 Breckinridge (1) 116 1206 2.27 (−0.85–5.37) 
10 Breckinridge (2) 180 1218 1.61 (−1.19–4.44) 
11 Breckinridge (3) 218 1200 2.79 (−0.66–6.08) 
12 Bullitt (1) 168 1238 1.36 (−1.66–4.16) 
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13 Carlisle (2) 125 1326 3.41 (−0.41–6.25) 
14 Carlisle (3) 107 1291 2.99 (−0.41–5.88) 
15 Casey 265 1336 0.29 (−3.11–2.93) 
16 Christian (1) 171 1272 1.80 (−1.57–4.71) 
17 Christian (2) 159 1276 1.68 (−1.70–4.70) 
18 Clay (2) 265 1281 −0.25 (−3.65–3.21) 
19 Clinton 284 1319 0.17 (−2.78–3.72) 
20 Cumberland 183 1293 −0.42 (−3.92–2.53) 
21 Daviess (1) 123 1162 0.98 (−1.82–4.10) 
22 Daviess (2) 122 1156 1.52 (−1.21–4.59) 
23 Daviess (3) 125 1153 1.62 (−1.28–4.46) 
24 Edmonson (1) 125 1301 1.35 (−1.47–4.27) 
25 Edmonson (2) 177 1321 0.85 (−2.32–4.18) 
26 Edmonson (3) 241 1299 1.09 (−1.76–3.85) 
27 Fayette (1) 294 1158 0.60 (−2.69–3.83) 
28 Fayette (2) 284 1152 1.34 (−1.60–4.67) 
29 Franklin 152 1111 1.33 (−0.85–5.07) 
30 Garrard (1) 335 1225 −1.05 (−4.31–2.41) 
31 Garrard (2) 311 1083 −0.34 (−2.8 –2.38) 
32 Grant (1) 288 1108 1.09 (−1.58–3.34) 
33 Grant (2) 287 1105 0.08 (−2.78–2.64) 
34 Grant (3) 287 1309 1.64 (−1.93–4.59) 
35 Graves 110 1301 0.68 (−2.75–3.80) 
36 Grayson (2) 143 1234 2.60 (−0.24–5.75) 
37 Green (1) 180 1314 0.06 (−3.27–3.44) 
38 Green (2) 213 1267 1.04 (−2.32–3.44) 
39 Hancock 128 1183 2.05 (−0.56–5.00) 
40 Harrison (1) 213 1119 0.97 (−1.73–3.29) 
41 Harrison (2) 220 1125 0.80 (−2.16–3.27) 
42 Hopkins (2) 134 1217 2.70 (−0.26–5.44) 
43 Jackson 381 1243 1.78 (−4.93–1.49) 
44 Jefferson (1) 223 1193 1.60 (−1.49–4.64) 
45 Jefferson (2) 141 1128 2.05 (−0.72–4.94) 
46 Jessamine 165 1199 0.64 (−2.41–3.41) 
47 Knox 302 1282 −0.39 (−3.60–2.64) 
48 Larue 240 1260 0.37 (−2.88–3.74) 
49 Laurel 384 1230 −0.81 (−3.90–2.79) 
50 Madison 326 1189 −1.06 (−3.93–2.48) 
51 Magoffin 277 1124 0.35 (−2.24–3.08) 
52 Owen 293 1122 0.48 (−2.20–2.97) 
53 Perry (2) 366 1236 −0.77 (−3.47–2.14) 
54 Shelby 223 1187 2.68 (−0.28–5.98) 
55 Simpson 220 1236 1.38 (−2.05–4.54) 
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56 Trigg 116 1290 2.29 (−1.40–5.29) 
57 Whitley (1) 323 1254 −0.47 (−3.47–2.81) 
58 Wolfe 308 1169 0.33 (−2.50–3.35) 
59 Calloway 161 1352 3.51 (0.10–7.06) 2 

60 Carlisle (1) 110 1293 4.78 (0.73–8.42) 
1 Values in parentheses are 95% confidence limits on the Sen slope; 2 Bold 
values represent significant at p = 0.05. 

 

Figure 3.2 Spatial distribution of annual precipitation trend analysis results 
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Figure 3.3 Annual precipitation with Sen slope estimate and 95% confidence intervals for the 
Calloway County, Kentucky, weather station. 

     The findings clearly indicate that, according to the dataset and methods used in this 

study, annual rainfall depths in Kentucky generally exhibit no statistically significant 

trends with respect to time. It is difficult to directly compare our findings to those from 

similar studies due to differences in data aggregation, trend detection methodology, and 

pre-processing technique (if any). Kentucky Climate Center reports overall increasing 

trends in annual precipitation for three of the state’s four climate divisions (all except the 

easternmost), but an evaluation of the statistical significance of the trends is unavailable. 

In similar fashion, the online trend analysis tool available at NOAA indicates positive 

trends in annual precipitation ranging from 0.9 mm/year (eastern Kentucky) to 2.5 

mm/year (western Kentucky) for Kentucky’s four climate divisions when considering the 

same period of record as used in this study. This result is consistent with our findings in 

so far as the only stations identified in this study as having significant trends are in 

western Kentucky, the climate division having the highest trend as calculated by NOAA, 
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but little else can be said. Larger-scale studies provide perhaps the best context for our 

findings. As described in the IPCC AR5 report, the Global Historical Climatology 

Network (GHCN), Global Precipitation Climatology Center (GPCC) and Climatic 

Research Unit (CRU) datasets indicate positive—though not statistically significant—

trends in annual precipitation for Kentucky. These data sets also indicate lower trend 

magnitudes in the eastern direction and higher magnitudes in the northern and (consistent 

with our findings) western directions, becoming statistically significant (p = 0.10) for 

grid points within 200–300 km north-northwest of Kentucky. 

     The two instances of significant trends in annual precipitation are noteworthy in the 

sense that (a) both are located in extreme southwestern Kentucky (the Mississippi 

Embayment physiographic region), (b) both have relatively high mean annual 

precipitation (the Calloway station has the highest among the stations studied, and 

Carlisle (1) has the 13th highest), (c) both stations are situated at relatively low elevations 

(Carlisle (1) is the second lowest and Calloway is the 13th lowest among the stations 

studied), and (d) the trend slopes are intermediate in comparison to what Sayemuzzaman 

and Jha (2014) reported for the Southern Coastal Plain region of North Carolina (a 

maximum of 9 mm/year), the findings published by Karmeshu (2012) for the 

northeastern US (up to 0.13 mm/year) and the results from the GHCN, GPCC and CRU 

datasets as reported by Hartmann et al., (2013); i.e., within previously-reported bounds 

for the region. It thus seems possible that, instead of being anomalies or artifacts, the 

positively-trending stations might roughly mark the edge of a larger region of positively-

trending annual precipitation. Analogous studies in the neighboring states, especially 

those to the north and west, would be required to explore this possibility more fully. 
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3.4.2 Temperature  
 

As indicated in Table 3.2, 42 stations (50%) passed both the homogeneity tests. 

Mean annual temperature varied over these stations from 12.22 °C for the Shelby station 

(Figure 3.4, station 35) to 14.84 °C for the Calloway station (Figure 3.4, station 41), with 

an overall mean of 13.55 ± 0.66 °C. Pre-whitening was performed on eight of the 42 

homogenous stations having serial correlation coefficients ranging from 0.32 to 0.42: 

Bell (1) (Figure 3.4, station 4), Clay (2) (Figure 3.4, station 15), Edmonson (3) (Figure 

3.4, station 21), Garrard (1) (Figure 3.4, station 25), Grayson (3) (Figure 3.4, station 29), 

Simpson (Figure 3.4, station 36), Carlisle (2) (Figure 3.4, station 10) and Daviess (2) 

(Figure 3.4, station 20). Pre-whitening did not affect the statistical significance of 

subsequently-calculated trend slopes in any case. The general findings with regard to 

trends in the temperature series were similar to those reported earlier for precipitation: 

only a small proportion (3 of 42, or 7%) of the stations demonstrated a significant trend, 

though the trend in each case was in the increasing direction. Figure 3.5 provides an 

example of more detailed information for one of the stations having a positive trend in 

mean annual temperature (the Calloway station). As during the analysis precipitation 

data, trend slopes for series assessed as non-homogenous were examined to ensure that 

authentic non-homogeneities, rather than especially high trend slopes, were the reason for 

failing the homogeneity test(s). In all cases, the trend slopes of series assessed as non-

homogenous were less than that for the homogenous Allen (2) station.  

Table 3.2 Summarized temperature trend analysis results. 

Station No. Station Elevation 
Mean 

Annual 
Temperature 

Sen Slope 
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 County (m) (°C) (°C/year) 

1 Allen (1) 213 14.24 0.001 (−0.010–0.012)1 

2 Allen (3) 259 14.30 −0.001 (−0.140–0.010)  
3 Ballard 113 14.26 0.004 (−0.006–0.015) 
4 Bell (1) 348 12.84 −0.008 (−0.017–0.004) 
5 Bourbon 247 12.57 −0.002 (−0.012–0.009) 
6 Breckinridge (1) 116 13.18 0.009 (−0.006–0.019) 
7 Breckinridge (2) 180 13.37 0.009 (−0.003–0.023) 
8 Breckinridge (3) 218 13.33 −0.002 (−0.016–0.008) 
9 Carlisle (1) 110 14.49 −0.001 (−0.010–0.009) 

10 Carlisle (2) 125 14.44 −0.001 (−0.011–0.009) 
11 Carlisle (3) 107 14.48 0.002 (−0.007–0.011) 
12 Carroll 137 13.11 −0.001 (−0.009–0.011) 
13 Casey 265 13.34 −0.008 (−0.018–0.003) 
14 Christian (1) 171 14.29 0.008 (−0.009–0.009) 
15 Clay (2) 265 13.06 −0.002 (−0.008–0.012) 
16 Clinton 284 13.56 −0.005 (−0.003–0.019) 
17 Crittenden (1) 110 14.07 −0.005 (−0.015–0.006) 
18 Crittenden (2) 165 14.21 0.003 (−0.017–0.007) 
19 Daviess (1) 123 14.06 0.000 (−0.008–0.011)  
20 Daviess (2) 122 13.81 0.001 (−0.009–0.010) 
21 Edmonson (3) 241 13.28 −0.001 (−0.015–0.011) 
22 Fayette (1) 294 12.93 0.007 (−0.004–0.018) 
23 Fayette (2) 284 12.69 0.009 (−0.002–0.020) 
24 Fulton 116 14.54 −0.000 (−0.005–0.020) 
25 Garrard (1) 335 13.25 0.004 (−0.009–0.015) 
26 Garrard (2) 311 13.20 0.003 (−0.008–0.014) 
27 Graves 110 14.60 0.006 (−0.005–0.025) 
28 Grayson (2) 143 13.14 −0.003 (−0.016–0.009) 
29 Grayson (3) 183 13.41 0.005 (−0.006–0.014) 
30 Jessamine 165 13.01 0.004 (−0.009–0.015) 
31 Laurel 384 13.07 0.001 (−0.007–0.013) 
32 Madison 326 13.84 0.002 (−0.007–0.012) 
33 Perry (1) 285 12.80 0.007 (−0.003–0.019) 
34 Powell 366 13.13 0.000 (−0.010–0.011) 
35 Shelby 223 12.22 −0.011 (−0.025–0.006) 
36 Simpson 220 14.12 0.003 (−0.008–0.013) 
37 Whitley (1) 323 13.23 −0.002 (−0.010–0.011) 
38 Whitley (2) 326 13.09 −0.010 (−0.020–0.000) 
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39 Wolfe 308 12.80 −0.002 (−0.009–0.011) 
40 Allen (2) 189 13.97 0.021 (0.010–0.030) 2 

41 Calloway 161 14.84 0.012 (0.001–0.020) 
42 Jefferson (1) 223 13.06 0.010 (0.001–0.019) 

1 Values in parentheses are 95% confidence limits on the Sen slope; 2 Bold 
values represent significant at p = 0.05. 

 

Figure 3.4 Spatial distribution of annual temperature trend analysis results 
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Figure 3.5 Annual temperature with Sen slope estimate and 95% confidence intervals for the 
Calloway County, Kentucky, weather station. 

The data and analysis in the present study indicate that, broadly speaking, mean 

annual temperatures in Kentucky have not demonstrated a statistically significant trend 

with regard to time. The exceptions to this rule are the data from the Calloway, Allen (2) 

(Figure 3.4, station 40) and Jefferson (1) (Figure 3.4, station 42) stations. The Jefferson 

(1) station’s results (with an estimated trend slope of 0.01 °C/year) are difficult to 

interpret; the included city of Louisville could have been exerting an urban heat island 

effect on temperatures, but as a hypothesized explanation, this seems unsatisfactory given 

Louisville’s steadily declining population over the period 1960–2000. The other two 

stations having significant trends in mean annual temperature (Calloway at 0.01 °C/year 

and Allen (2) at 0.02 °C/year) seem not to have many relevant factors in common other 

than a non-urban dominant land-use and their location on or along Kentucky’s southern 

border.  
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The magnitudes of the positive trends in this study detected are consistent with 

results reported elsewhere in the world by Zhao et al. (2014) for China (1.52 °C over the 

last century) and by Ceppi et al. (2012) for Sweden, to cite two examples. The existence 

of spatially-varied results over the scale investigated in this study is also consistent with 

findings published by Karmeshu, (2012), who found that comparably-sized regions with 

positive temperature trends and with no significant trends could exist within relatively 

short distances of one another. In closer proximity to our study area, Portmann et al. 

(2009) reported an overall cooling trend for the southeastern region of the United States 

for 1950–2006, but, at finer resolution, an increasing trend in daily maximum and 

minimum temperature along the western parts of Kentucky (consistent with the locations 

of the trends identified in this study as significant).  

State-wide positive trends in temperature are identified by both Kentucky Climate 

Center and NOAA though, as discussed previously for these sources, the statistical 

significance of these trends is not assessed. A study reported by Tebaldi (2012) using 

data from the period 1912–2011 indicates a slight (0.04 °C/century; statistically 

insignificant) increasing trend in state-wide temperatures. Comparable findings of 

positive, though statistically insignificant, trends are reported by Hartmann et al., (2013) 

based on three datasets: the CRU’s HadCRUT4, the National Climatic Data Center 

(NCDC) Merged Land-Ocean Surface Temperature (MLOST), and the Goddard Institute 

for Space Studies (GISS) datasets. Results differ, however, when considering shorter, 

more recent periods of record. When considering only the period 1970–2012, Tebaldi 

(2012) found a statistically significant trend of 0.02 °C/year state-wide, comparable to 

our findings for the Calloway, Allen (2) and Jefferson (1) stations. A very similar result is 
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reported by Hartmann et al. (2013) for the MLOST dataset over the period 1981–2012. 

Overall, the findings of the present study are consistent in many respects with others, 

including larger scale studies, but indicate an influence of data handling, selected period 

of record, and other factors on the results and inferences.  

3.5 Conclusions  
 

This study of annual precipitation and mean annual temperature in the state of 

Kentucky indicates that, over the period 1950–2010, both of these variables generally 

(97% of the precipitation stations and 93% of the temperature stations) did not exhibit 

any statistically significant trends with respect to time. Should it hold true with the 

accumulation of more data, this finding can serve to simplify (or at least not to 

complicate) larger analyses that depend on this type of data as inputs, especially for the 

interior and eastern portions of the state. The relatively small number of significant trends 

detected, however, were all in the positive direction, and all were associated with weather 

stations very close to the borders of the state; these findings are comparable to those from 

larger-scale studies employing differing methods of analysis and periods of record. 

Similar studies involving weather stations from surrounding states will be required to 

more satisfactorily contextualize the occurrence of those positive trends in annual rainfall 

and mean annual temperature and to gain a broader understanding of how these variables 

are behaving on the larger regional scale.  
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CHAPTER 4: CONTEMPORARY AND FUTURE CHARACTERISTICS OF 

PRECIPITATION INDICES IN THE KENTUCKY RIVER BASIN 

 

Abstract 
 

     Climatic variability can lead to large-scale alterations in the hydrologic cycle, some of 

which can be characterized in terms of indices involving precipitation depth, duration and 

frequency. This study evaluated the spatiotemporal behavior of precipitation indices over 

the Kentucky River watershed for both the baseline period of 1986-2015 and late-century 

time frame of 2070-2099. Historical precipitation data were collected from 16 weather 

stations in the watershed, while future rainfall time-series were obtained from an 

ensemble of 10 Coupled Model Intercomparison Project Phase 5 (CMIP5) global 

circulation models under two future emission pathways: Representative Concentration 

Pathways (RCP) 4.5 and 8.5. Annual trends in seven precipitation indices were analyzed: 

total precipitation on wet days (PRCPTOT), maximum length (in days) of dry and wet 

periods (CDD and CWD, respectively), number of days with precipitation depth ≥ 20 mm 

(R20mm), maximum five-day precipitation depth (RX5day), simple daily precipitation 

intensity (SDII) and standardized precipitation index (SPI, a measure of drought 

severity). Non-parametric Mann-Kendall test results indicated significant trends for only 

≈ 11% of the station-index combinations, corresponding to generally increasing trends in 

PRCPTOT, CWD, R20mm and RX5day and negative trends for the others.   Projected 

magnitudes for PRCPTOT, CDD, CWD, RX5day and SPI, indices associated with the 

macroweather regime, demonstrated general consistency with trends previously identified 

and indicated modest increases in PRCPTOT and CWD, slight decrease in CDD, mixed 
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results for RX5day, and increased non-drought years in the late century relative to the 

baseline period.  Late-century projections for the remaining indices (SDII, R20mm) 

demonstrated behavior counter to trends in the trends identified in the baseline period 

data, suggesting that these indices - which are more closely linked with the weather 

regime and daily GCM outputs – were relatively less robust. 

Keywords: climate change, drought, extreme precipitation; Kentucky River Basin 

 

4.1 Introduction  
 

     The hydrologic cycle is recognized as subject to significant changes as a result of 

anthropogenic global warming (Narsimlu et al., 2013; Ashraf et al., 2014; Ficklin et al., 

2014; Chattopadhyay et al., 2016; Mehan et al., 2016). As per IPCC AR5 estimates, the 

global average surface temperature will rise by 1.8 - 4.0° C ; precipitation is expected to 

increase by 5 - 20% over the period of 1990 - 2100, suggesting increasing floods on a 

widespread basis (Hirabayashi et al., 2013). Portmann et al. (2009) have linked spatial 

variations in the US temperature trends to variations the in hydrologic cycle with more 

pronounced effects anticipated in the southern US. The authors reported a statistically 

significant inverse relationship between trends in daily temperature and average daily 

precipitation across 30- 40° N latitudes during May-June and a weaker relationship 

between the variables in the northern (40 – 50°N) United States during July-August. Karl 

et al. (2009) highlighted a significant increase in extreme precipitation events and 

moderate to severe droughts for the Southeast US in the 20th century. Sayemuzzaman and 

Jha (2014) investigated spatial and temporal trends in precipitation for North Carolina 

and found mixed results for annual, Spring and Summer precipitation time series. Up to 
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100 mm more total extreme precipitation (95th percentile and greater) is expected in the 

eastern US by the end of 2050’s according to Gao et al. (2012). Chattopadhyay and 

Edwards (2016) studied long-term climatic variability considering the annual trends in 

precipitation and temperature across the state of Kentucky (84 weather stations) for the 

time period of 1950-2010. The majority of the stations demonstrated an increasing trend 

for both precipitation and air-temperature; however, the relatively small number of 

statistically significant trends were mostly found along the western parts of the state. 

Considered collectively, these and similar studies indicate that climate change due to 

global warming is in progress to varying degrees in North America, at both the regional 

and smaller (state-wide) scales; the potential for disruptive consequences argues for 

increased scrutiny of both future changes and likely impacts. 

     Being less dependent on relatively specific variables such as topography and land use, 

precipitation is a common subject of investigations into the effects of climate change on 

the hydrologic cycle. While society is most sensitive to extremes (extreme magnitudes, 

intensities and frequencies) in precipitation (IPCC, 2012), their infrequent nature can 

raise challenges in accurately assessing them under stationary conditions, let alone non-

stationary conditions. For such reasons, precipitation inputs to the hydrologic cycle are 

often characterized in the form of several statistics and indices, such as numbers of “wet” 

and “dry” days, number of days with precipitation greater than some threshold depth, and 

total annual precipitation. Use of such indices is widespread in climate research, with 

recent applications reported for China by Ren et al. (2015), mainland Portugal by Lima et 

al. (2015) and in India by Mondal and Majumdar (2015). 
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     Historical trends in indices may be identified through simple linear regression or, due 

to its relative lack of required assumptions, through nonparametric regression (Roth et al., 

2015; Kamruzzaman et al., 2016). However, regression can be an unsatisfactory 

technique for generating projections of climate data due to the lack of physical basis in 

the predictive model. Rather, the class of complex, physically-based, global-scale models 

(General Circulation Models, or GCMs) is typically used for this task. Relatively recent 

research has resulted in enhanced predictive capability through refined representation of 

the relevant physical processes and more robust coupling of sea, atmosphere and land-

based processes (Yuan et al., 2011; Mearns et al., 2015).   

     Use of GCMs for climate data projections is associated with well-known and 

substantial challenges. Due to internal model differences, projections can vary 

significantly with regard to GCMs, output variables, and seasons as discussed by Fu et al. 

(2013).  More relevant to the present study, GCM performance can vary among model 

outputs. Deser et al. (2012) found the internal variability of GCM outputs to be higher for 

precipitation than temperature, and Rocheta et al. (2014) note that precipitation 

simulations are typically of lower fidelity than others (e.g., temperature). As discussed by 

Emori et al. (2005), additional challenges occur as the result of evaluating outputs, 

especially precipitation, from climate models on the daily time scale.  Lafon et al. (2013) 

have noted that GCMs often simulate daily precipitation to occur more often, but at lower 

intensities, than observed. Such behavior can introduce bias into daily precipitation 

statistics and indices.  Ines and Hansen (2006), for example, reported GCM outputs 

tended to overestimate runs of dry days even after bias correction for precipitation depths. 

Mahoney et al. (2013) discuss the particular challenges involved in extreme precipitation 
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simulation.  Downscaling the relatively course-resolution GCM outputs to regional or 

local scales is often desirable from the standpoint of decision-making and resource 

management.  While the method of downscaling can have significant impact on the 

quality of the projections, there remains no consensus on a single best downscaling 

method (Sunyer et al., 2015).   Finally, there is no uniform agreement on how to compare 

the performance of one model relative to another, with a variety of metrics such as skill 

scores (Johnson and Sharma, 2009) root mean square error (Radic and Clarke, 2011) and 

Nash-Sutcliffe model efficiency (Miao et al., 2012) in current use. Notwithstanding such 

challenges, GCM projections remain the state-of-the-art for spatially-consistent 

assessments of future climate and its impacts, with GCM outputs being directly available 

for application at both large and (through downscaling) relatively local scales.  

     The objectives of this study were to (a) evaluate spatio-temporal magnitudes and 

trends of historical extreme precipitation indices for a river basin in Kentucky and (b) 

compare these findings to projections from global circulation models (GCMs).  The 

specific basin to be studied is the Kentucky River basin, a major tributary of the Ohio 

River that provides water for nearly 70 municipalities and roughly one-sixth of the 

Commonwealth’s population. Given the relatively recent (2008 and 2012) droughts in 

Kentucky and the Kentucky River basin and the impacts of drought on ecosystems, 

agriculture and water management, the findings of this study can be beneficial to policy 

makers, planners and managers entrusted with ensuring appropriate protection and 

sustained supplies for the basin’s residents.   
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4.2 Materials and methods  
 

4.2.1 Study area   
 

     The Kentucky River watershed is centered at approximately 38°41´N 85°11´W and 

encompasses an area of roughly 18,000 km2 in the north-central part of the state (Figure 

4.1). Elevations range from 110 m in the northwest to 998 m in the southeast with a mean 

elevation of 554 m. The length of the main stream of the Kentucky River is 418 km. 

Mean annual rainfall varies from 1107 to 1308 mm, with the southern portion generally 

receiving more rainfall than the northern. The major land uses in the watershed are forest 

(55%) and hay production (25%) with smaller proportions in urban (8%), rangeland 

(6%), agricultural (2%) and other (4%) land uses. The Kentucky River provides 378,000 

m3/day water for drinking and other uses (Kentucky River Facts). 
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Figure 4.1 Location of Kentucky River basin inside the United States. 

 

4.2.2 Data collection and quality assessment  
 

     Daily precipitation data were obtained from the Global Historical Climatology 

Network (GHCN) database (http://www.ncdc.noaa.gov/oa/climate/ghcn-daily/) 

maintained on the National Oceanic and Atmospheric Administration (NOAA) server 

(https://www.ncdc.noaa.gov/cdo-web/). Sixteen weather stations in the watershed were 

considered for the selected 30-year period of 1986–2015, subsequently referred to as the 

baseline period. The 30-year record length, which was near the limit of availability for 

consistent and near-complete stations in the basin, has a greater potential for bias than 

http://www.ncdc.noaa.gov/oa/climate/ghcn-daily/
https://www.ncdc.noaa.gov/cdo-web/
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longer record lengths but is consistent with historical record lengths used in similar 

analyses (Li et al., 2010; Pierce et al., 2015; Schoof and Robeson, 2016). Characteristics 

of the stations are summarized in Table 4.1, and their locations in relation to elevations, 

land uses and physiographic regions in the basin are given in Figure 4.2. The Climatol 

software package (Guijarro, 2013) was used to assess relative homogeneity of the data for 

each station and, had discontinuities been detected, to apply appropriate corrections. No 

discontinuities were detected in the data, and Climatol was further used to interpolate 

missing data on the basis of observations at neighboring stations. 

 

Table 4.1 Weather stations used in the study. 

Station 
Name 

Latitude  
(° N) 

Longitude  
(° W) 

Elevation  
(m) 

Mean Annual 
Rainfall  
(mm) 

Missing 
Data 

Whitesburg 37.1167 −82.8167 355.1 1308.0 ± 184.5 1% 
Skyline  37.0667 −82.9667 366.1 1233.0 ± 197.3 <1% 

Carr Fork 37.2333 −83.0333 309.1 1159.9 ± 226.1 <1% 
Hazard 37.2500 −83.1833 267.9 1287.5 ± 219.1 <1% 

Buckhorn 37.3500 −83.3833 285.3 1266.7 ± 214.7 <1% 
Jackson  37.6000 −83.3167 416.1 1273.9 ± 213.1 <1% 

Crab 
Orchard 37.4833 −84.4333 335.9 1238.0 ± 199.2 <1% 

Berea 37.5666 −84.3333 309.1 1201.0 ± 192.8 <1% 
Danville 37.6500 −84.7667 291.1 1228.4 ± 247.1 <1% 
Dix Dam 37.8000 −84.7167 265.2 1116.4 ± 251.3 1% 

Clay 37.8666 −83.9333 192.0 1172.0 ± 242.7 <1% 
Lexington  38.0333 −84.6000 294.4 1220.6 ± 227.3 <1% 
Frankfort 

Lock 38.2333 −84.8667 152.4 1176.2 ± 203.6 2% 

Frankfort 38.1833 −84.9000 230.1 1249.0 ± 250.9 <1% 
Georgetown 38.2000 −84.5500 271.0 1224.2 ± 233.8 <1% 
Gest Lock 38.4167 −84.8833 149.4 1153.6 ± 201.0 1% 
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(a) 
 

 

(b) 
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(c) 
 

Figure 4.2 (a) Elevation; (b) land use; and (c) physiographic regions of the Kentucky River 
Basin. 

 

4.2.3 Future climate data compilation  
 

This study employed a suite of CMIP5 GCMs to generate daily precipitation data for 

the period 2070–2099 (subsequently referred to as the late-century period) at a resolution 

of 0.125°. A total of 10 GCMs (Table 4.2) were used to incorporate the models’ output 

variability into the study and to reduce the uncertainty associated with choosing any 

particular model. Subsequent calculations of precipitation indices were based on the 

means of ensemble output of the GCMs as reported by, for example, Jha et al. (2014), 

Zhang et al. (2015) and Venkataraman et al. (2016). Since the focus of this paper is only 
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on extreme precipitation indices, only RCP 4.5 and 8.5 were chosen, as they represent the 

intermediate and upper range, respectively, of radiative forcings at the end of century. 

These two emission pathways are considered more realistic in comparison to RCP 2.6. 

     The bias-corrected and spatially-disaggregated (BCSD) method (Maurer et al., 2009; 

Bennett et al., 2012; Rana & Moradkhani, 2015) was adopted to downscale the GCM 

results. The BCSD method is a statistical downscaling algorithm that can be considered 

as consisting of two steps: a bias correction (BC) step and a spatial disaggregation (SD) 

step. The BC step broadly consists of a comparison of GCM outputs with corresponding 

observations over a common period. The results of the comparison are used to adjust 

projections to achieve greater agreement with the historical data and thus a more realistic 

representation of the spatial domain of interest (Wood et al., 2004; Thrasher et al., 2012). 

The SD step involves interpolating the bias-corrected GCM outputs to higher-resolution 

grids by utilizing the spatial detail provided by observationally-derived datasets. Ning et 

al. (2015) used the BCSD method to analyze projected changes in extreme climatic 

events over the northeastern United States and provided a detailed description of 

procedures used for bias correction and spatial disaggregation of GCM outputs. It is to be 

noted that, as reported by Ines et al. (2006), this type of downscaling method does not 

guarantee close correspondence between short-term (days or weeks) behavior in 

observations and GCM projections. Additionally, elevation differences are unaccounted 

for in the interpolation algorithm. Even so, the quantile mapping technique (Panofsky and 

Brier, 1968) used in BCSD to eliminate bias in daily precipitation data resulted in 

monthly and annual precipitation predictions that agreed very well with observations 

(Coats et al., 2013). In the present study, only the GCM grid points located nearest to the 
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ground-based weather stations were considered in comparing GCM outputs to historical 

data. 

 

Table 4.2 Description of CMIP5 models used in this study. 

Model Name Institution Spatial 
Resolution Reference 

ACCESS 1-0 Commonwealth Scientific and Industrial 
Research Organization, Australia 1.9° × 1.2° Lewis and Karoly 

(2014) 

BCC-CSM 1.1 Beijing Climate Center, China 
Meteorological Administration, China 2.8° × 2.8° Xin et al. (2013) 

CCSM4 National Center for Atmospheric Research, 
United States 

1.25° × 
0.94° Gent et al. (2011) 

CNRM-CM5 National Center for Meteorological Research, 
France 1.4° × 1.4° Voldoire et al. (2013) 

GFDL-
ESM2G 

NOAA/Geophysical Fluid Dynamics 
Laboratory, United States 2.5° × 2.0° Donner et al. (2011) 

HadGEM2-CC Met Office Hadley Center, United Kingdom 1.9° × 1.2° Jones et al. (2011) 
IPSL-CM5A-

MR L’Institut Pierre-Simon Laplace, France 2.5° × 
1.25° Dufresne et al. (2013) 

MIROC5 

Japan Agency for Marine-Earth Sciences and 
Technology, Atmosphere and Ocean 
Research and National Institute for 

Environmental Studies, Japan  

1.4° × 1.4° Watanabe et al. (2010) 

MIROC-ESM 

Japan Agency for Marine-Earth Sciences and 
Technology, Atmosphere and Ocean 
Research and National Institute for 

Environmental Studies, Japan  

2.8° × 2.8° Watanabe et al. (2010) 

NorESM1-M Norwegian Climate Center, Norway 2.5° × 1.8° Bentsen et al. (2013) 
 

4.2.4 Extreme precipitation indices  
 

     Following the joint recommendation of World Metrological Organization Commission 

for Climatology (CCI), World Climate Research Programme project on Climate 

Variability and Predictability, several extreme precipitation indices have been used in 

recent studies to characterize precipitation (Santos and Fragoso, 2013; Trambalay et al., 

2013). This study considered six of these indices as relevant to the basin and its potential 



66 
 

hydrologic issues in terms of describing depth, duration and intensity for precipitation 

events up to a moderately extreme nature:  

1. The total precipitation in wet days (days with  ≥1 mm precipitation) (PRCPTOT, 

mm) 

2. The maximum length of dry periods (CDD, days) 

3. The maximum length of wet periods (CWD days) 

4. Number of days in a year with precipitation ≥20 mm (R20mm, days) 

5. The annual maximum precipitation over five consecutive days (RX5day, mm) 

6. The simple daily precipitation intensity (SDII, mm/day), calculated as 

PRCPTOT/(number of wet days) 

The R package Climdex was used to calculate these indices from the daily time series 

data produced from each GCM, which were subsequently averaged over all GCMs. The 

final index used in the study was the Standardized Precipitation Index (SPI) (Mckee et 

al., 1993), which has recently been recommended as a standard drought index by the 

World Metrological Organization (WMO) (Chen et al., 2013). For a given duration, the 

SPI is calculated as the standard normal deviate of the distribution of cumulative rainfall 

for that duration; hence, negative values of SPI represent relative drought conditions with 

drought severity increasing with more negative SPI values (e.g., an SPI ≤ −2 can be 

considered an extreme drought; Table 4.3). Following Wang et al. (2014), a 12-month 

duration (ending in December) was used for SPI computations to reflect longer-term 

conditions using the SPI package in R statistical software. 
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Table 4.3 Drought classification using the SPI index (Mckee et al., 1993) 

Level Drought Category SPI Values 
0 Non-drought 0 ≤ SPI 
1 Mild drought −1.0 < SPI < 0 
2 Moderate drought −1.5 < SPI < −1.0 
3 Severe drought −2.0 < SPI < −1.5 
4 Extreme drought SPI ≤ −2.0 

 

4.2.5 Trend detection 
 

Prior to trend detection, total annual rainfall was examined for the presence of serial 

correlation, since serial correlation can adversely affect the quality of trend estimates of 

the indices such as PRCPTOT and SPI. However, none of stations was found as having 

significantly serially correlated data.  

Trends were estimated at annual scale for the extreme precipitation indices using the 

nonparametric Mann–Kendall test (Kendall, 1976). The Mann–Kendall test has the 

advantage of being relatively unaffected by outliers and is not restricted to a particular 

sample distribution. Trends were spatially interpolated for graphical representation 

purposes from the point estimates using the surface inverse-distance-weighted (IDW) 

algorithm in the ArcGIS framework. Interpolation techniques that account for elevation 

variations have been shown (Xu et al., 2015) to reduce the mean absolute error of daily 

precipitation interpolations from 7% to 18% relative to inverse distance weighting. Maps 

derived from the two methods were very similar in major regards; however, the influence 

of individual stations on the maps was greater for IDW than when altitude was accounted 

for. While these results were obtained for daily precipitation rather than precipitation 

indices, the indices might exhibit a similarly high degree of station influence when 

mapped using the IDW technique.  
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4.3 Results and discussion  
 

4.3.1 GCM performance evaluation  
 

Performance of the GCMs and ensemble mean in terms of total annual precipitation 

is indicated in Table 4.4, in which the mean absolute error (MAE) and normalized 

standard deviation (NSD) are used as metrics (Taylor et al., 2001; Taye et al., 2011; 

Venkataraman et al., 2016). Near-unity values of MAE and NSD imply relatively high 

accuracy and similar variation, respectively, of projections relative to observations. On 

the basis of both MAE and NSD values, then, the GFDL-ESM2G model can be 

considered as demonstrating best overall performance (Table 4.4). While the performance 

of the ensemble mean was better than that of any individual model, the ensemble mean 

was also associated with the lowest NSD, reflecting the damping effect of averaging 

projections across models. This is indicated in Figure 4.3, in which the GCM ensemble 

mean is shown to be very comparable to observations in terms of average magnitude, 

even if not reflecting the same degree of yearly variation. This comparison argues in 

favor of the ensemble mean if the interest is primarily in magnitudes (as may apply to 

studies involving data projections), though the variation in projections might be 

substantially lower than observed. 

Figure 4.4 indicates that, relative to observations, GCM outputs were relatively 

consistent across models and comparable to observations. Across all GCMs and months, 

Mean Absolute Error (MAE) (Taylor et al., 2001; Taye et al., 2011; Venkataraman et al., 

2016) ranged from 0.22 to 14.16 mm. Across all months, MAE was lowest for the 

HadGEM2-CC (4.16 mm) and highest for the MIROC5 (7.40 mm) GCMs. Across all 

GCMs, overall performance was best for February (MAE = 1.74 mm) and worst for 
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October (MAE = 10.30 mm). Based on t-tests applied to monthly results, the ensemble 

mean was in no case significantly (p < 0.05) different from the observed mean, indicating 

that the ensemble mean successfully reflects observed total monthly precipitation. 

 

Figure 4.3 GCM ensemble and observed annual precipitation for the time frame of 1986–
2005. 

 

 

Figure 4.4 Observed and GCM simulated monthly precipitation in the Kentucky River 
Watershed (1986–2005). 
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Table 4.4 Mean Absolute Error (MAE) and Normalized Standard Deviation (NSD) of GCM 
simulated annual precipitation in the Kentucky River Watershed (1986–2005).  

Model MAE (mm) NSD (mm) 
ACCESS 1-0 206.65 0.97 

BCC-CSM 1.1 164.51 0.84 
CCSM4 202.35 0.92 

CNRM-CM5 177.12 1.18 
GFDL-ESM2G 136.21 1.02 
HadGEM2-CC 140.58 0.78 

IPSL-CM5A-MR 203.89 0.70 
MIROC5 169.37 0.98 

MIROC-ESM 206.87 0.92 
NorESM1-M 164.67 0.69 

Ensemble Mean 134.73 0.27 

 

4.3.2 Trend analysis of extreme indices 
 

Table 4.5 lists the annual mean values of the studied indices along with the trend 

slope estimates identified from baseline period data, each of which will be discussed 

individually in the coming subsections. Only a relatively small proportion (≈11%) of the 

trends were statistically significant (p < 0.05); all stations exhibiting a statistically 

significant trend for any of the indices were located in the central and northern portions 

of the basin (Clay station and north). The indices PRCPTOT, CWD and SDII 

demonstrated significant trends for the highest number of stations (three each), whereas 

trends in RX5day and SPI were not significant for any of the stations. Significant trends 

were identified for four of the seven indices for the Clay station, followed by three for the 

Lexington station.  
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Table 4.5 Mean annual index values with standard deviation and Sen slope estimates. Bold 
values indicate a significant (p < 0.05) trend. 

Stations 

PRCPTOT 
(mm) 

CDD 
(days) CWD (days) R20mm 

(days) 
RX5day 

(mm) SDII (mm/day) SPI 

Trend 
(mm/year) 

Trend 
(days/year) 

Trend 
(days/year) 

Trend 
(days/year

) 

Trend 
(mm/year) 

Trend 
(mm/day/year) 

Trend  
(SPI 

value/year) 
Whitesburg        Mean 1284 ± 185 13.5 ± 3.3 9.6 ± 2.6 14.0 ± 4.3 101 ± 25 8.0 ± 1.2 0.0 ± 1.2 

Trend −0.97 −0.04 0.00 0.08 0.50 0.04 −0.01 
Skyline        Mean 1221 ± 197 15 ± 4 6.0 ± 1.5 16.6 ± 4.5 97 ± 24 9.8 ± 1.1 0.0 ± 1.1 

Trend 4.50 −0.09 0.03 0.05 0.51 0.00 −0.02 
Carr Fork        Mean 1143 ± 225 17.1 ± 4.7 5.9 ± 2.1 14.8 ± 5.6 95 ± 29 9.6 ± 1.6 0.0 ± 1.2 

Trend 0.22 0.00 0.00 −0.05 0.25 −0.02 −0.00 
Hazard        Mean 1278 ± 221 16.7 ± 3.9 5.9 ± 1.3 18.4 ± 5.1 111 ± 35 10.7 ± 1.3 0.0 ± 1 

Trend 7.78 0.00 0.00 0.18 0.71 0.04 −0.02 
Buckhorn        Mean 1249 ± 217 16.4 ± 4.3 7.6 ± 2.6 15.6 ± 6.7 101 ± 23 9.2 ± 1.7 0.0 ± 1.1 

Trend 7.92 −0.04 0.00 0.17 0.50 0.04 −0.01 
Jackson        Mean 1260 ± 213 16.3 ± 4.5 5.9 ± 2.0 18.9 ± 6.0 112  ± 27 10.7 ± 1.5 0.0 ± 1.1 
Trend 2.30 0.00 0.00 0.00 −0.70 0.00 −0.01 

Crab Orchard        Mean 1230 ± 199 19.4 ± 5.4 6.0 ± 1.8 19.4 ± 4.8 72 ± 41 11.8 ± 1.8 0.0 ± 1.3 
Trend 6.81 0.00 0.04 0.00 0.08 0.05 −0.00 
Berea        Mean 1182 ± 194 15.2 ± 3.0 8.4 ± 2.4 13.4 ± 6.3 105 ± 30 8.8 ± 2.2 0.0 ± 1.2 
Trend 2.51 0.04 0.08 −0.21 −0.94 −0.06 −0.01 

Danville        Mean 1217 ± 246 19.0 ± 5.7 5.4 ± 1.6 18.4 ± 5.0 123 ± 42 11.8 ± 1.9 0.0 ± 1.2 
Trend 2.08 0.13 0.00 0.00 0.10 −0.03 −0.02 

Dix Dam        Mean 1107 ± 250 20.6 ± 7.6 5.7 ± 1.6 16.2 ± 4.8 118 ± 39 11.05 ± 1.6 0.0 ± 1.2 
Trend −0.21 0.16 0.00 0.00 −0.35 −0.01 −0.02 

Clay        Mean 1169 ± 242 21.6 ± 8.0 5.1 ± 1.7 18.4 ± 5.3 122 ± 38 13.5 ± 2.9 0.0 ± 1.1 
Trend 15.68 −0.34 0.14 0.14 −0.21 −0.20 −0.00 

Lexington        Mean 1208 ± 227 17.7 ± 4.3 5.1 ± 1.1 18.2 ± 5.2 122 ± 35 11.6 ± 1.4 0.0 ± 1.2 
Trend 10.63 0.00 0.00 0.25 1.25 0.07 −0.07 

Frankfort Lock        Mean 1156 ± 202 16.7 ± 3.3 6.8 ± 2.5 14.4 ± 5.8 107 ± 29 9.9 ± 2.3 0.0 ± 1.2 
Trend 7.54 −0.10 0.15 −0.20 0.03 −0.16 −0.01 

Frankfort        Mean 1239 ± 248 18.6 ± 5.3 6.0 ± 1.7 18.9 ± 5.0 120 ± 41 11.8 ± 1.4 0.0 ± 1.2 
Trend 1.34 −0.10 0.00 0.00 0.25 −0.02 −0.00 

Georgetown        Mean 1212 ± 232 16.6 ± 4.4 6.3 ± 2.0 17.7 ± 5.6 116 ± 38 10.8 ± 1.7 0.0 ± 1.2 
Trend 12.51 −0.09 0.00 0.27 0.74 0.07 −0.01 

Gest Lock        Mean 1139 ± 199 18.2 ± 7.0 6.9 ± 2.4 14.1 ± 5.7 109 ± 39 9.8 ± 2.5 0.0 ± 1.2 
Trend 7.62 −0.05 0.12 −0.18 0.27 −0.12 −0.03 

Overall        
Mean 1206 ± 52 17.4 ± 2.1 6.4 ± 1.2 16.7 ± 2.1 108 ± 13 10.6 ± 1.4 0.0 ± 0.92 
Trend 5.51 −0.03 0.03 0.03 0.19 −0.02 −0.02 

 

 

4.3.3 PRCPTOT 
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The majority of stations (87.5%) demonstrated an increasing trend in PRCPTOT, 

suggestive of an overall wetting trend over the baseline period. Trends in PRCPTOT 

were significant for three of the 16 stations (Clay, Georgetown and Lexington, Table 4.5) 

in the north-central portion of the watershed (Figure 4.5), ranging from 10.6 (Lexington) 

to 15.7 (Clay) mm/year. 

 

Figure 4.5 Spatial distribution of PRCPTOT (a) trend and mean values under: (b) baseline; 
(c) late-century RCP 4.5; and (d) late-century RCP 8.5, in the Kentucky River Basin. Filled 
triangles indicate a statistically significant (p < 0.05) trend. 

 
     The spatial distribution of PRCPTOT and its trends are given in Figure 4.5. Late-

century projections for RCPs 4.5 and 8.5 are similar in the sense that both indicate 

modest basin-wide average increases in PRCPTOT (7 mm for RCP 4.5 and 29 mm for 

RCP 8.5), and except for the extreme southeastern portion (with decreases of 145–165 

mm relative to the baseline period), most prominently in the southern portion of the 

watershed. In some cases, however, the projections are spatially inconsistent with 

baseline PRCPTOT values (Figure 4.5b) and trends (Figure 4.5a). The Lexington and 

Georgetown stations, for example, had significantly increasing trends over the baseline 
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period. Late-century projections, however, reflect a decrease (relative to the baseline 

period) of 8–36 mm for Georgetown and a net change of only −15–13 mm for Lexington. 

Similarly, the Clay station (which had the highest trend) is unremarkable in RCP 4.5 

projections (Figure 4.5c) and has a lower PRCPTOT than the surrounding area in RCP 

8.5 projections (Figure 4.5d). 

4.3.4 CDD and CWD 
 

Magnitudes of trends in CDD and CWD over the baseline period were generally low 

and significant in only four instances involving three stations (Clay, Frankfort Lock and 

Gest Lock). Figure 4.6a indicates generally negative trends in CDD in the northeastern 

portion of the basin, with (usually weakly) positive trends elsewhere. Figure 4.6b 

demonstrates that the northern portion of the basin had relatively higher CDD values than 

the southern for baseline conditions, a situation expected to persist according to late-

century projections (Figure 4.6c, d). The late-century projections also indicate basin-wide 

decreases in CDD, with the areal average decreases ranging from two days (RCP 4.5) to 

three days (RCP 8.5). The projected decreases are generally consistent with trends 

identified in the baseline period with the possible exception of the west-central portion. 
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Figure 4.6 Spatial distribution of CDD (a) trend and mean values under: (b) baseline; (c) late-
century RCP 4.5; and (d) late-century RCP 8.5, in the Kentucky River Basin. Filled triangles 
indicate a statistically significant (p < 0.05) trend. 

 
Findings regarding CWD were generally complementary to those for CDD in that 

decreases in CDD were accompanied by increases in CWD. Trends in CWD were 

uniformly positive, strongest in the central and northern portions of the basin (Clay, 

Frankfort Lock and Gest Lock stations) and weaker elsewhere (Figure 4.7a). This general 

result is reflected in the late-century projections (Figure 4.7c, d) where, relative to 

baseline conditions, CWD is anticipated to increase (particularly in the southern portion) 

throughout the basin. Late-century projections indicate an increase in CWD averaging 3 

days across the basin, concentrated primarily in the southern portion for RCP 4.5 and 

somewhat more uniformly-distributed for RCP 8.5. Similar to the situation of PRCPTOT, 

the relatively high baseline trend in CWD for the Clay is not reflected in CWD 

projections (Figure 4.5c, d). Taken together, the CDD and CWD results suggest basin-

wide decreases in runs of dry days along with increases in runs of wet days in the late-

century period. Schoof (2015) investigated changes in extreme precipitation indices for 
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contiguous US and reported very similar projected changes in CDD and CWD for the 

time frame of 2066–2095 around the study area. 

 

Figure 4.7 Spatial distribution of CWD (a) trend and mean values under: (b) baseline; (c) 
late-century RCP 4.5; and (d) late-century RCP 8.5, in the Kentucky River Basin. Filled 
triangles indicate a statistically significant (p < 0.05) trend. 

 

4.3.5 R20mm 
 

Two stations (Georgetown and Lexington) indicated significant trends in R20mm 

(0.27 and 0.25 days/year, respectively); the remainder of the basin was found to have an 

approximately equal distribution of weakly positive and negative trends (Figure 4.8a). It 

is noteworthy that the Georgetown and Lexington stations are nearest in proximity to the 

most heavily urbanized portion of the basin; Misra et al. (2011) suggested a linkage 

between urbanized areas in the US and increasing trends in indices such as daily 

maximum rainfall intensity and number of days with heavy precipitation, a finding more 

recently corroborated by Zilli et al. (2016). 

Late-century projections reflect basin-wide decreases of 4–5 days in R20mm (Figure 

4.8c, d). Although the Georgetown/Lexington area is, consistent with baseline period 
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trends, in the region of highest projected R20mm, late-century projections indicate 

decreases for these stations as well. The results in this case indicate spatial consistency 

with baseline period analysis, but not trend consistency. This finding is suggestive that, 

rather than indicating reversal of contemporarily-assessed trends, the GCM projections 

might be reflecting the issues discussed by Lafon et al. (2013); namely, underestimation 

of rainfall intensities.  

 

Figure 4.8 Spatial distribution of R20mm (a) trend and mean values under: (b) baseline; (c) 
late-century RCP 4.5; and (d) late-century RCP 8.5, in the Kentucky River Basin. Filled 
triangles indicate a statistically significant (p < 0.05) trend. 

 

4.3.6 RX5day 
 

Analysis of baseline period data indicated a tendency toward decreasing trends in 

RX5day in the central portion of the basin and increasing trends elsewhere (Figure 4.9a). 

However, no station demonstrated a statistically significant trend in annual maximum 

five-day rainfall. Consistent with this result, late-century projections indicated modest or 

very slight changes in RX5day (<7% decrease for RCP 4.5, <1% increase for RCP 8.5) 

relative to the baseline period (Figure 4.9b–d). Shifts in the spatial distribution of 
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RX5day across the basin are projected, however, with higher values in the north for the 

late-century. 

 

Figure 4.9 Spatial distribution of RX5day (a) trend and mean values under: (b) baseline; (c) 
late-century RCP 4.5; and (d) late-century RCP 8.5, in the Kentucky River Basin. 

 

4.3.7 SDII 
 

Baseline period trends in SDII were mixed; the statistically significant (p < 0.05) 

trends were negative for two stations (Clay and Frankfort Lock) and positive for the 

Lexington Station (Figure 4.10a), and inconsequential overall (Table 4.5). Projections for 

RCP 4.5 and 8.5 (Figure 4.10c, d), however, reflect decreases in SDII throughout the 

watershed for the late-century period (approximately 3 days for both RCP 4.5 and 8.5). 

As previously discussed, PRCPTOT was projected to increase (albeit modestly) by late 

century; this result must therefore necessarily reflect a projected change in annual 

numbers of wet days. Thus, this finding appears related to results related to CWD, 

collectively suggesting that either: (a) a currently-weak and mixed trends in SDII (or, 
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more precisely, numbers of wet days) will broadly shift toward the positive direction in 

the late-century; or (b) the GCM projections contain excessive numbers of wet days. 

 

Figure 4.10 Spatial distribution of SDII (a) trend and mean values under: (b) baseline; (c) 
late-century RCP 4.5; and (d) late-century RCP 8.5, in the Kentucky River Basin. Filled 
triangles indicate a statistically significant (p < 0.05) trend. 

 

4.3.8 SPI 
 

While the direction of annual trend in year-ending SPI was in all cases negative, the 

trend in SPI was not significant (p < 0.05) for any of the 16 stations (Figure 4.11a). In 

terms of numerical magnitudes (Table 4.5), SPI values were quite small relative to 

drought category ranges (Table 4.3). Furthermore, as a result of the non-linear 

relationship between total annual rainfall and SPI, variation in annual rainfall (i.e., 

PRCPTOT) is amplified during SPI computations; this is evident in the relatively high 

standard deviations of year-ending SPI (Table 4.5). 

Relative to baseline SPI values (Figure 4.11b; zero by definition), both scenarios 

project increasing average SPI values (i.e., less drought) that demonstrate spatial 
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variation across the watershed (Figure 4.11c,d). Projections from RCP 4.5 indicate a late-

century basin-wide average SPI of 0.11, whereas RCP 8.5 indicates an average of 0.17. 

Both of these findings are consistent with the earlier-discussed results regarding 

PRCPTOT, which is also projected to increase modestly in the late-century.  

 

Figure 4.11 Spatial distribution of SPI (a) trend and mean values under: (b) baseline; (c) late-
century RCP 4.5; and (d) late-century RCP 8.5, in the Kentucky River Basin. 
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Figure 4.12 Percentage of time in each drought category under baseline and late-century 
conditions. (BL denotes baseline). 

 

Figure 4.12 indicates a late-century reapportionment of time spent in non-drought 

and mild drought conditions. For baseline conditions, approximately 86% of year-ending 

SPI values were evenly divided between the non-drought and mild drought categories. 

Late-century projections indicate that the proportion of non-drought and mild drought 

years will remain similar, but with an increase in non-drought years (to 60%–67%, 

depending on RCP) and a corresponding decrease in mild drought years. The spatial 

distribution of average late-century SPI projections is similar for the two RCPs, 

indicating relatively high values in the central portion of the watershed and lower values in 

the extreme southeast. 

4.4 Summary and conclusions  
 

This study used data from 16 GHCN weather stations over the period 1986–2015 

(the baseline period) to evaluate spatial variability and trends in precipitation indices for 
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the Kentucky River basin. These findings were then considered alongside projections 

from 10 CMIP5 GCMs for the period 2070–2099 (late-century period) to assess changes 

in index magnitudes and spatial distribution as well as consistency with trends identified 

during the baseline period. 

Averaged baseline period findings indicated that the southern portion (with higher 

elevations and proportion of forest cover) of the basin experienced generally higher 

PRCPTOT with fewer days separating rainfall events (CDD) and, especially in the 

extreme southeastern portion, longer runs of days with rainfall ≥1 mm (CWD). The 

spatial distribution of other indices was generally more uniform; noteworthy variations 

are more suggestive of microclimate effects (e.g., the Lexington/Georgetown and Clay 

stations) than systematic spatial trends. Trends in the indices over the baseline period 

were significant for only about 11% of the station-index combinations, all in the central 

and (to a lesser degree) northern portions of the basin, which are generally dominated by 

pasture/hay and urban land uses. Trends in PRCPTOT were among the most consistent, 

demonstrating increasing values (up to 15.68 mm/year) for all but two of the 16 stations 

and significant for three stations in the north-central portion of the basin. The Lexington 

and Georgetown stations, both in close proximity to the most heavily urbanized portion 

of the basin and separated by only about 50 km, had significant trends in R20mm, 

indicative of an increasing number of heavy rainfall events over the baseline period. 

Trends for remaining indices were directionally and spatially mixed to a higher degree, 

demonstrating less apparent relation to elevation or land use. The Clay station, in 

particular, was associated with inconsistent (relative to neighboring stations) results, 

perhaps related to its location near a physiographic region boundary (in the transition 
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between Eastern Coal Fields and Outer Bluegrass, also transitional between dominant 

land uses), its relatively low elevation within the Kentucky River valley, or both. 

Late-century projections for PRCPTOT, CDD, CWD, RX5day and SPI were, in the 

spatial aggregate, consistent with the trends identified on the basis of baseline data. These 

projections indicate modest (<2.5%) increases in total precipitation on wet (>1 mm) days 

with decreases (by 2–3 days) in maximum runs of dry days and increases (approximately 

three days) in maximum runs of wet days. Maximum five-day precipitation (RX5day) 

projections demonstrated more sensitivity to the RCP, ranging from a roughly 7% 

decrease for RCP 4.5 to a 1% increase for RCP 8.5. Both RCPs project that on the basis 

of watershed-wide average SPI values, non-drought years will be more-common in the 

late-century, with mild drought years becoming less common; the proportion of years 

with more intense drought conditions (moderate, severe or extreme) is projected to 

remain essentially unchanged from the baseline period. Additional analysis based on a 

higher level of temporal disaggregation of projections will be required to support water 

resource management planning and operations that are based on smaller time durations 

(e.g., semi-annually or seasonally). 

It may be noted that the above indices are associated with the “macroweather” 

(Lovejoy, 2013) regime, considered as 5–10 days to 10–30 years. In other words, they are 

less vulnerable to the challenges of shorter-duration (i.e., the “weather” regime) GCM 

projections and could have been expected to be of relatively high fidelity. While this 

appears to have been the overall case, anomalous results occasionally surfaced in the 

spatial domain. The apparent microclimates in the vicinities of the 

Lexington/Georgetown and Clay stations, for example, were not evidenced as expected in 
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the projections. This phenomenon is likely an outcome of the GCM output downscaling 

algorithm and/or the mapping algorithm, especially given the distance and elevation 

difference between the Clay station and its neighbors. 

In the cases of the remaining indices (R20mm and SDII), late-century projections 

sometimes stood in contrast to trends identified during the baseline period. The 

significant baseline period trends in R20mm, for example, were in the positive direction; 

projections from both RCPs, however, indicate basin-wide decreases in the late-century 

period. Similarly, an overall negligible trend was identified for SDII during the baseline 

period; however, basin-wide decreases were projected for the late-century, including 

stations for which the SDII trend was statistically significant (p < 0.05) and positive. 

Unlike the previous five indices, R20mm and SDII are highly associated with the 

“weather” regime with R20mm being a sum individual, not-necessarily-consecutive days 

and SDII being a function of a similar sum. To a relatively high degree, therefore, the 

robustness of these indices is dependent on that of daily GCM outputs. For this study, 

ensemble GCM projections appear to have more wet days, containing fewer instances of 

moderately severe rainfall, than anticipated on the strength of baseline data analysis. 

This, in turn, suggests opportunity in terms of improvements to appropriate internal 

model structure and/or supplementary output processing algorithms. 

The inconsistencies between baseline period trends and late-century projections are 

cautionary; at a minimum, they suggest limitations in reconciling analyses on relatively 

small temporal and spatial scales to GCM projections, even when those projections are 

bias-corrected and spatially downscaled. It seems possible that this study’s findings with 

regard to baseline period conditions and trends reflect relatively large influences of small-
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scale variables such as elevation and land cover, whose relative importance diminishes in 

the context of relatively low-resolution GCM projections. While scale- and timeframe-

related anomalies need not be irreconcilable, their occurrence can represent challenges to 

those charged with applying low-resolution projections to smaller scales of decision-

making and effective management. 
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CHAPTER 5: AN ASSESMENT OF CLIMATE CHANGE IMPACTS ON 

FUTURE WATER AVAILABILITY AND DROUGHTS IN THE KENTUCKY 

RIVER BASIN 

Abstract 
 

     Global climate change is anticipated to present a variety of challenges to water 

resources management due to shifts in water supplies, demands and their spatio-temporal 

distributions. This study evaluated the potential impacts of climate change on hydrologic 

processes in the Kentucky River basin using the Soil and Water Assessment Tool 

(SWAT). Following calibration and validation, the SWAT model was forced with 

forecasted precipitation and temperature outputs from a suite of CMIP5 GCMs, 

corresponding to two different representative concentration pathways (RCP 4.5 and 8.5) 

for two distinct time periods; 2036-2065 and 2070-2099, referred to as mid-century and 

late-century respectively. Climate projections indicate modest increases in average annual 

precipitation and higher increases in temperature relative to the baseline (1976-2005) 

period. Monthly variations of water yield and surface runoff demonstrate increasing 

trends in Spring and Fall, while winter months are projected as having decreasing trends. 

Evapotranspiration (ET) displayed a consistent increasing (decreasing) trend in winter 

(summer) under all the future scenarios. Spatial analysis indicated basin-wide increase in 

water yield with the north-central portions likely to experience the least increase resulting 

from the highest increases in ET. Meteorological and hydrological droughts were 

quantified using the Reconnaissance Drought Index (RDI) and Streamflow Drought 

Index (SDI). In general, maximum length of hydrological drought is expected to increase, 

while drought intensity might decrease under future conditions. Meteorological droughts, 
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however, are projected to be slightly less intense and of approximately the same 

persistence as for the baseline period. The overall findings suggest only modest changes 

in drought indices through the 21st century on a watershed basis, but changes (and thus 

the issue of future reliability) might be more significant on the subwatershed basis.   

Keywords Climate Change. RCP. Kentucky River Basin. SWAT model. Reconnaissance 

Drought Index (RDI). Streamflow Drought Index (SDI). 

5.1 Introduction 
 

     The current century is an era of ubiquitous climate change (Huntington, 2006; Green 

et al., 2011) and studies having a variety of provenances agree on the major role of 

anthropogenic global warming (Haddeland et al., 2014; Trenberth et al., 2014). 

Vijayavenkatraman et al. (2012) pointed out that there has always been variation in the 

earth’s climate, but the recent and rapid changes on a global scale are of growing 

concern. In the U.S., for example, Diffenbaugh and Ashfaq (2010) have reported that 

exceptionally long heat waves and other hot events could become commonplace in the 

between 2010-2039. Higher future temperatures can increase rates of hydrologic system 

losses to evaporation and transpiration and, in turn, produce more rainfall. As a result, the 

Intergovernmental Panel on Climate Change (IPCC) have noted a widespread sense 

among climate scientists that extreme events (e.g., droughts and floods) will become 

increasingly frequent, intense and widespread in the future (IPCC, 2007).  

Global climate models (GCMs) have been developed to predict characteristics of 

future in response to increased anthropogenic greenhouse gases. However, analyses based 

on GCM projections are constrained by mathematical representations of atmospheric 

dynamics at spatial resolutions finer than 2o of longitude and latitude. Accurate GCM 



87 
 

projections of precipitation, in particular, can be challenging due to the difficulties in 

applying the atmospheric dynamic equations to faithfully replicate the complex 

spatiotemporal behavior that this important variable exhibits (Emori et al., 2005; Khalil et 

al., 2010; Deser et al., 2012).  However, relatively high-resolution projections can be 

important to reflect the known variation that can be present at the scales of practical 

management and political decision-making.  Significant regional variation within larger-

scale patterns, due to global circulation changes, has been demonstrated (Oki and Kanae, 

2006; Giorgi et al., 2011; Kirtman et al., 2013). The U.S. state of Kentucky, for example, 

spans approximately 2.5o of longitude and 7o of latitude but demonstrated substantial 

north-south and east-west variation in historical temperature and precipitation trends 

(Chattopadhyay and Edwards, 2016). Downscaling GCM outputs is thus helpful in 

reproducing the underlying physics at finer spatial and temporal scales. When spatially 

downscaled (using either statistical or dynamical methods), GCM projections have been 

found useful for both long-term climate change projections as well as short term seasonal 

forecasts (Vitart and Stockdale, 2001; Robertson et al., 2004).  Downscaled GCM 

projections are very commonly used in both assessments of future climate and follow-on 

studies to evaluate its impacts (droughts, floods, etc.).   

Projected GCM outputs are often used as inputs for process-based hydrologic models 

to assess the influence of climate variables on availability and quality of water resources. 

Numerous studies of this nature have been recently reported, with examples including 

Chattopadhyay and Jha (2016) for Haw River Watershed in North Carolina, Stewart et al. 

(2015) for the mountainous river basins of the southwestern United States, Daggupati et 

al. (2016) for the Missouri River basin, Uniyal et al. (2015) for Upper Baitarani River 
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basin in India and Xu et al. (2015) for two climate regions in China. Reports of this type 

have generally emphasized the sensitivity of watershed hydrologic response to variations 

in atmospheric carbon dioxide concentrations, precipitation and temperature. As an 

example of a larger-scale study, Naz et al. (2016) analyzed hydrologic response of the 

conterminous US using high resolution hydroclimatic simulations. Using a suite of 10 

GCMs, dynamically downscaled to 4 km resolution to provide inputs to the Variable 

Infiltration Capacity model, the authors found that most regions of the US are expected to 

experience an average 20% more winter precipitation, which can cause considerable 

increases in Spring and Winter runoff. As noted by Xu et al. (2013), hydroclimatic 

modelling study results can reflect uncertainties due to selection of hydrological model, 

specification of model parameters, greenhouse scenario selection and GCMs used for 

climate projections as duly noted in some of these studies. Even so, hydroclimatic 

modelling represents one of the few tools available to policy makers and water resource 

managers for proactively identifying acceptable climate change mitigation strategies. 

Some of the consequences of climate change, such as more extreme floods and 

droughts, might be unavoidable.  Some of the impacts, however, can be diminished with 

foreknowledge of the scope and magnitude of future events.   Drought, for example, is an 

event that generally cannot be prevented but can be mitigated through policy and 

infrastructural measures. Quantified by a variety of indices applicable over a variety of 

spatio-temporal scales (Mitra and Srivastava, 2016), droughts are often classified as 

meteorological (low precipitation), hydrological (low stream flows, low groundwater 

availability and/or low reservoir storage), and agricultural (low crop yields) (Wang et al. 

2011).  The objective of this study was to evaluate the potential impacts of climate 
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change on droughts in the Kentucky River basin in the southeastern US. The focus was 

on meteorological and hydrological droughts, since agricultural production within the 

basin is relatively low. The findings can inform policy makers and resources managers on 

beneficial courses of action to ensure sustained water availability during changing 

climate.    

 

5.2 Materials and methods 
 

5.2.1 Description of study area 
 

     The Kentucky River Basin, encompassing 42 counties and a drainage area of roughly 

18000 km2, is centered at approximately 38°41´N 85°11´W in the north-central portion of 

Kentucky (Fig. 5.1). The river originates in the mountainous eastern region of the state 

and continues for almost 418 km northwest prior to its confluence with the Ohio River. 

Major tributaries of the Kentucky River include the Dix and Red Rivers as well as the 

North, South and Middle Forks of the Kentucky River. Elevations in the watershed range 

from 110 - 998 m with a decreasing gradient in the southeast-to-northwest direction. 

Average annual rainfall in the basin varies from 1107 in the south to 1308 mm in the 

north (Fig. 5.2).  The average annual temperature across the basin is 13.1°C with highest 

temperatures tending to occur in the central portion of the basin (Fig 5.3). The major land 

uses in the watershed are forest (55%) and hay production (25%) with smaller 

proportions in urban (8%), rangeland (6%), agricultural (2%) and other (4%) land uses.   
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Figure 5.1 Location of the Kentucky River Basin in north-central Kentucky showing the 
USGS streamflow gages and weather stations. 
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Figure 5.2 Spatial distribution of average annual rainfall in the Kentucky River Basin. 
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Figure 5.3 Spatial distribution of average annual temperature in the Kentucky River Basin. 

 

5.2.2 SWAT model setup  
 

SWAT is a long term, continuous, semi-distributed, process-based river basin or 

watershed scale model developed to analyze and predict the impacts of land-management 

practices on water, sediment and chemical yields (Arnold et al., 2012).  Documentation 

of the SWAT model (Neitsch et al., 2005) provides details about the theoretical 

background of the model. The model has been used previously across a variety of scales, 

geomorphologic and climate conditions to evaluate the effect of management practices, 

climate change and other variables (Taylor et al., 2016; Yao et al., 2016; Chattopadhyay 

and Jha, 2016). The SWAT model was selected for use due to its widespread use and the 

compatibility between previously reported SWAT model applications and the objectives 

of this study.   
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Hydrologic simulation in SWAT involves data on topography, soils, land use and 

weather. Thirty-meter resolution raster Digital Elevation Model (DEM) data were 

obtained from the United States Geological Survey (USGS) Seamless Data Warehouse 

(http://viewer.nationalmap.gov/launch/) to represent the topography of the watershed. 

Subwatersheds were delineated on the basis of standard 12-digit hydrologic unit codes 

(Seaber et al., 1987). The stream network was created by processing the DEM using the 

ArcHydro algorithm (Maidment, 2002). Land use data were obtained from the National 

Land Cover Database (NLCD, 2006) of USGS, and the Soil Survey Geographic Database 

(https://websoilsurvey.sc.egov.usda.gov/App/HomePage.htm) was used to generate the 

soil map. This configuration resulted in 49 subwatersheds and 14,289 hydrologic 

response units (HRUs; the smallest unit defined with a unique combination of soil, 

landuse, slope). Model calculations of water balance are performed at the HRU level and 

then aggregated for each subbasin. Daily precipitation and air temperature for 38 weather 

stations within and near the basin were obtained from the United States Department of 

Agriculture (USDA ARS, http://www.ars.usda.gov/Research/docs.htm?docid=19390). 

Daily streamflow data were obtained from the USGS (http://waterdata.usgs.gov/nwis) for 

three gauging stations (Fig. 5.1).     

5.2.3 Model calibration and validation process 
 

     The SWAT model was calibrated and validated for three gaging stations in the 

watershed, selected on the basis of data availability and quality: Lockport (USGS station 

03290500), Frankfort (USGS station 03287500) and Booneville USGS (station 

03281500).  The Lockport station is closest to the basin outlet, with nearly 90% of the 

entire basin draining to that location. Data for time frames of 1991-2000 and 2002-2009 

http://viewer.nationalmap.gov/launch/
https://websoilsurvey.sc.egov.usda.gov/App/HomePage.htm
http://www.ars.usda.gov/Research/docs.htm?docid=19390
http://waterdata.usgs.gov/nwis
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(http://waterdata.usgs.gov/nwis) were used in model calibration and validation, 

respectively. It is recommended to have few “warm-up” years so that the model 

approaches reasonable values initially (Kalogerophoulous and Chalkias, 2012). 

Consistent with these guidelines, the calibration period involved a three-year warm-up 

period, while the validation period included a one-year warm-up period.  

     Due to the very large number of parameters contained in the SWAT model, Sequential 

Uncertainty Fitting II (SUFI2) (Abbaspour et al., 2007) was used with the Nash-Sutcliffe 

Efficiency (NSE) as the objective function to identify the parameters to be calibrated on 

the basis of their respective sensitivities. The most sensitive model parameters were 

calibrated using the SWAT Calibration and Uncertainty Procedure (SWAT-CUP) 

software (Abbaspour et al., 2007). Calibrated values of SWAT model parameters are 

given in Table 5.1. Guidelines given by Moriasi et al. (2007) for model evaluation were 

followed in assessing model performance.  

5.2.4 Climate data 
 

     Bias corrected (Multivariate Adopted Constructed Analogue or MACA; Abatzoglou 

and Brown, 2012; Records et al., 2014; Rana and Moradkhani, 2016) 4-km resolution 

daily data on precipitation and maximum and minimum temperature were obtained from 

the University of Idaho (http://maca.northwestknowledge.net/index.php) for 10 GCMs 

(Table 5.2).  The MACA algorithm is a statistical downscaling method, capable of 

transferring GCM outputs to the spatial scales necessary for impact modelling while 

preserving meteorological patterns and spatiotemporal properties of the data. The GCM 

data reflect two RCP scenarios, RCP 4.5 and RCP 8.5, which are indicative of medium 

and high 

http://waterdata.usgs.gov/nwis
http://maca.northwestknowledge.net/index.php
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Table 5.1 SWAT model initial and calibrated values. 

Parameter Initial value/range Calibrated value 

Curve Number (CN2) Based on land use 
 

Increased by 19% 

Baseflow alpha factor (Alpha_BF) [0-1] 0.14 

Groundwater Delay (GW_DELAY) [0-500] 8.75 

Soil evaporation compensation factor (ESCO) [0-1] 0.4 

Plant uptake compensation factor (EPCO) [0-1] 0.63 

Groundwater revap coefficient (GW_REVAP) [0-1] 0.15 

Soil available water capacity (SOL_AWC) [0.00-0.21] Decreased by 5% 

Deep aquifer percolation fraction (RCHRG_DP) [0-1] 0.98 

Groundwater REVAP minimum (REVAPMN) [0-750] 369.37 

Threshold depth of water in shallow aquifer 

(GWQMN) 

[0-5000] 700 

Surface Lag (SURLAG) [0.05-24] 5.49 

 

emission of carbon, respectively. Data were obtained for the periods 1976 – 2005 

(defined as the baseline period), 2036 – 2065 (the mid-century period) and 2070-2099 

(the late-century period).   

     Skill of the GCMs was evaluated by comparing GCM computations to observations 

for the baseline period.  The metrics involved in the comparison were the commonly-used 

(Taye et al., 2011) mean absolute error (MAE) and normalized standard deviation (NSD) 

applied to basin-averaged annual mean temperature and annual total precipitation.  Mid- 
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and late-century projections from only the top-three performing GCMs for each historical 

period variable/metric combination were used as SWAT model inputs for computation of 

drought indices as described in following paragraphs. 
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Table 5.2 Global Climate Models used in the study. 

Model name Institution Spatial 

resolution 

Reference 

BCC-CSM 1.1 Beijing Climate Center, China Meteorological 
Administration, China 

2.8° x 2.8° Xin et al. (2013) 

CCSM4 National Center for Atmospheric Research, United 
States 

1.25° x 
0.94° 

Gent et al. (2011) 

CNRM-CM5 National Center for Meteorological Research, France 1.4° x 1.4° Voldoire et al. (2013) 

GFDL-ESM2G NOAA/Geophysical Fluid Dynamics Laboratory, 
United States 

2.5° x 2.0° Donner et al. (2011) 

GFDL-ESM2M NOAA/Geophysical Fluid Dynamics Laboratory, 
United States 

2.5° x 2.0° Donner et al. (2011) 

HadGEM2-CC Met Office Hadley Center, United Kingdom 1.9° x 1.2° Jones et al. (2011) 

IPSL-CM5A-MR L’Institut Pierre-Simon Laplace, France 2.5° x 
1.25° 

Dufresne et al. (2013) 

MIROC5 Japan Agency for Marine-Earth Sciences and 
Technology, Atmosphere and Ocean Research and 
National Institute for Environmental Studies, Japan 

1.4° x 1.4° Watanabe et al (2010) 

MIROC-ESM Japan Agency for Marine-Earth Sciences and 
Technology, Atmosphere and Ocean Research and 
National Institute for Environmental Studies, Japan 

2.8° x 2.8° Watanabe et al. (2010) 

NorESM1-M Norwegian Climate Center, Norway 2.5° x 1.8° Bentsen et al. (2013) 
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5.2.5 Drought analysis  
 

     Two basic indices were used in defining drought events and in assessing their 

intensity: the reconnaissance drought index (RDI) and streamflow drought index (SDI).   

     The RDI is a relatively recently-developed meteorological index that accounts for both 

precipitation and potential evapotranspiration in calculating water deficits (Tsakiris and 

Vangelis, 2005; Tsakiris et al., 2007; Capetillo et al., 2016). The gamma probability 

density function was used to model the distribution of αk, and monthly values of 

standardized RDI were computed in this study. Positive and negative values of RDI 

indicate wet and dry periods, respectively, while more negative values represent more 

severe droughts. Table 5.3 details the drought classification scheme used in this study. 

Table 5.3 Drought classification scheme using RDI and SDI as indices (Tabari et al., 2013) 

State Drought Category Criteria 

0 Non-drought 0 ≤ RDI/SDI 

1 Mild drought -1.0 < RDI/SDI < 0 

2 Moderate drought -1.5 < RDI/SDI < -1.0 

3 Severe drought -2.0 < RDI/SDI<-1.5 

4 Extreme Drought RDI/SDI ≤ -2.0 

 

     The SDI (Nalbantis and Tsakiris. 2009; Tabari et al., 2013, Hong et al. 2015) is a 

hydrological drought index that is calculated on the basis of  cumulative streamflow 

volumes Si,k for each reference period k of the i-th hydrological year. Monthly streamflow 

data from the SWAT model simulation were fitted using the gamma distribution function 

to calculate monthly SDI values. As with the RDI, positive values of SDI reflect 
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relatively wet conditions, while negative values indicate hydrological drought (Table 

5.3).  

     A drought event was defined as a duration over which both the RDI and SDI were 

continuously negative. Drought onset was therefore determined as the month in which 

both RDI and SDI values first became negative, while the drought was considered as 

ending on the first month for which either RDI or SDI became positive. Additional 

indices were calculated to indicate drought magnitude for each identified drought event.   

     For a drought event of duration n months, drought severity (S) was calculated as the 

sum of absolute RDI/SDI values over that duration.  Since S was calculated on the basis 

of both RDI and SDI values, 

𝑆𝑆𝑅𝑅𝑅𝑅𝑅𝑅 =  ∑ �𝑅𝑅𝑅𝑅𝑅𝑅𝑗𝑗�𝑛𝑛
𝑗𝑗=1            (1) 

and 

𝑆𝑆𝑆𝑆𝑅𝑅𝑅𝑅 =  ∑ �𝑆𝑆𝑅𝑅𝑅𝑅𝑗𝑗�𝑛𝑛
𝑗𝑗=1            (2) 

     Drought intensity (I) was calculated as mean S over the drought event: 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  𝑆𝑆𝑅𝑅𝑅𝑅𝑅𝑅
𝑛𝑛

            (3) 

𝑅𝑅𝑆𝑆𝑅𝑅𝑅𝑅 =  𝑆𝑆𝑆𝑆𝑅𝑅𝑅𝑅
𝑛𝑛

            (4) 

     Maximum Drought Length (MDL) was calculated as the maximum drought event over 

each of the three timeframes investigated (historical, mid-century and late-century) for 

each of the subwatersheds.   
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5.3 Results and discussions  
 

5.3.1 SWAT model performance  
 

     Monthly average observed and SWAT-simulated streamflow during the calibration 

and validation periods are given for the Lockport station in Fig. 5.4.  As indicated, 

simulated and observed flows were, with the exception of some of the highest observed 

peaks, in generally good agreement.  Comparisons for the Frankfort and Booneville 

stations are consistent with Fig. 5.4. Calculated values of coefficient of determination 

(R2), NSE, percent bias (PBIAS), root mean squared error: standard deviation ratio (RSR) 

(Table 5.4) indicate acceptable model performance (Moriasi et al., 2007) for both the 

calibration and validation periods. 

 

Figure 5.4 Monthly streamflow calibration (1991-2000) and validation (2002-2009) for the 
Lockport station. 
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Table 5.4 Summary of model performance for the calibration (1991 – 2000) and validation 
(2002 – 2009) periods. 

Station R2 NSE PBIAS RSR 
Lockport     
   Calibration 
   Validation 

0.91 
0.79 

0.87 
0.77 

  9.9% 
  8.1% 

0.36 
0.46 

Frankfort     
   Calibration  
   Validation 

0.89 
0.75 

0.87 
0.76 

  3.7% 
  7.2% 

0.35 
0.52 

Booneville     
   Calibration  
   Validation 

0.85 
0.84 

0.81 
0.78 

  9.8% 
10.8% 

0.43 
0.47 

 

 

 

5.3.2 Evaluation of GCM performance  
 

     The performance of the GCMs in terms of simulating observed annual average 

temperature and annual total precipitation, as assessed using the MAE and NSD metrics, 

is indicated in Table 5.5.  Though not used in subsequent SWAT model computations, 

the ensemble mean is also given for reference. 

     As indicated in Table 5.5, “best performance” varied both in terms of the simulated 

variable (annual average temperature vs. annual total precipitation) and metric (MAE vs. 

NSD).  Thus, no single GCM was a clear and consistent top performer, and only two 

GCMs (CRNM-CM5 and HadGEM2-CC) were eliminated as subsequent sources of input 

to the SWAT model.  In terms of the MAE, the ensemble mean is seen as performing 

better than any individual GCM (Table 5.5). In terms of NSD, however, the ensemble 

mean demonstrates a characteristically low NSD, reflecting less success in replicating 

observed variation as reported elsewhere (Chattopadhyay et al., 2017). 
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5.3.3 Projected climate in the Kentucky River Basin 
 

5.3.3.1 Temperature  
 

     Projections from the GCMs indicate that the Kentucky River basin will experience 

increasing temperatures.  The projected areal average increases (relative to baseline) for 

RCP 4.5 were 2.2 and 2.6 °C for the mid- and late-century, respectively, whereas RCP 

8.5 led to projected increases of 2.7 and 4.9 °C for the mid- and late-century, 

respectively.  Results with regard to daily minimum temperatures (data not shown) were 

similar though with somewhat smaller (10%) changes relative to baseline.  As shown in 

Figure 5.5, mean daily maximum temperatures are projected to increase during all 

months, especially in late  

Table 5.5 Mean Absolute Error (MAE) and Normalized Standard Deviation (NSD) for GCM 
simulation of historical (1976-2005) precipitation and temperature in the Kentucky River 
Basin. The three best-performing models for each variable/metric combination are 
highlighted in bold. 

 

Model Precipitation  Temperature  

 MAE (mm) NSD MAE (°C) NSD 

GFDL ESM2M 206.65 0.96 0.76 1.30 

BCC-CSM 1.1 161.78 1.19 0.67 1.29 

CCSM4 173.72 0.89 0.89 1.37 

CNRM-CM5 199.17 1.19 0.90 1.59 

GFDL-ESM2G 153.56 1.13 0.79 1.24 

HadGEM2-CC 206.67 1.23 0.97 1.27 

IPSL-CM5A-MR 284.18 1.32 0.71 1.35 

MIROC5 190.77 1.17 0.78 1.23 

MIROC-ESM 200.44 1.12 0.76 1.28 

NorESM1-M 157.48 0.72 0.65 1.22 

Ensemble Mean 137.88 0.33 0.60 0.68 
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Figure 5.5 Basin-wide changes (relative to baseline) in mean maximum temperature in a) 
mid- and b) late-century. 

 

summer and early fall. This finding suggests that, in the future, evaporation and 

transpiration will increase during the months in which it is already relatively high and, in 

the absence of offsetting factors, tend to promote hydrologic drought conditions in these 

months.     
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5.3.3.2 Precipitation  
 

     Projections from both RCP indicate modest (2.5 – 5%) increases in areal mean annual 

precipitation from the baseline. In contrast to the projected changes in temperature, 

however, changes in in areal mean annual precipitation do not differ substantially 

between the mid- and late-century periods.  Precipitation projections also differ from 

temperature projections in that projected precipitation exhibited distinct monthly 

variations (Figure 5.6) with less consistency between the RCPs in terms of magnitude and 

direction of change.  While both RCPs are relatively consistent in terms of projecting 

wetter winters and early springs (Figure 5.6), there is less agreement on precipitation 

changes during the warmer months. Figure 5.6 also indicates that, while the net change in 

areal mean annual precipitation between the mid-century and late-century might be 

negligible, the distribution of precipitation across months and seasons might change 

between those periods.  The projected precipitation changes are thus relatively (to 

temperature) complex, which discourages straightforward translation to projected 

changes in droughts (particularly hydrologic droughts (e.g., 12% increase and 4% 

decrease in spring and summer in late-century).  

5.3.4 Climate change impact analysis  
 

5.3.4.1 Evapotranspiration 
 

     Projected changes in actual (as distinct from potential) evapotranspiration (ET), which 

plays a key role in hydrologic droughts, were based on SWAT model outputs, in which 
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ET is calculated as a function of crop/vegetation, soil water status and meteorological 

variables.  Evapotranspiration outputs can thus be viewed as a modeled integration of 

 

Figure 5.6 Basin-wide changes (relative to baseline) in mean precipitation in a) mid- and b) 
late-century. 

 

previously-discussed projected temperatures, precipitation and other variables. Figure 

5.7, in which projected ET is given as a function of RCP scenario and future timeframe, 

clearly indicates a consistent pattern of increasing ET during all months except for the 

summer season (for which ET is projected to decrease), with the greatest increases 

associated with the coldest months.  
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     When considered on an areal mean annual basis, ET is projected to increase by 3% 

(RCP 4.5) to 5% (RCP 8.5) for the mid-century, with similar projections for the late-

century (4% for RCP 4.5, 5% for RCP 8.5). While the changes are consistent with 

projected precipitation changes, the distributions of changes across months are amplified 

for ET relative to precipitation. For example, the maximum projected increase in 

precipitation was approximately 18% (late-century March for RCP 8.5), whereas the 

maximum projected increase in ET was roughly 42% (late-century January for RCP 8.5).  

It is also noteworthy that the overall pattern of Fig. 5.7 resembles that for precipitation 

(Fig. 5.6) more than temperature (Fig. 5.5), suggesting that ET projections demonstrate a 

controlling effect of relatively low soil moisture.   

     The spatial distribution of projected changes in ET is given in Fig. 5.8.  As indicated, 

all of the 49 subwatersheds are projected as having increases in both the mid- and late-

century periods, with spatial similarities between the RCPs in terms relative magnitudes 

of increase.  The timeframes and RCPs are consistent in projecting the north-central 

portion of the basin as having the largest increases in ET.  Coincidentally, this portion of 

the basin is in proximity to the Lexington-Fayette metropolitan statistical area, which has 

a population of nearly 500,000.   

5.3.4.2 Water yield 
 

     Projected basin-wide temporal variations in water yield, which is directly associated 

with hydrologic drought, as based on SWAT model computations are shown in Fig. 5.9.  

Similar to findings for precipitation and ET, modest basin-wide increases in water yield 

are projected for both the mid-century (3% for RCP 4.5, 5% for RCP 8.5) and late-

century (2% for RCP 4.5, 4% for RCP 8.5).  Projected water yields are less-regularly 
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distributed across months than projected ET, which can be anticipated on the basis of 

water yield being 

 

 

Figure 5.7 Basin-wide changes (relative to baseline) in ET in a) mid- and b) late-century. 
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Figure 5.8 Change in mean annual ET (from baseline) (a-b) in the mid -century and late-
century (c-d) under RCP 4.5 and RCP 8.5 respectively. 

 

a higher-level hydrologic process (and described in SWAT as such) for which ET can be 

considered an input.  However, the monthly distribution of projected water yields is 

highly similar to that for precipitation (Fig. 5.6), suggesting that future water yields and 

their temporal variation might be more dependent on precipitation than temperature and 

ET, at least in some regions. Both RCPs 4.5 and 8.5 are consistent in projecting mid-

century increases in water yield for the spring (March through June) and fall months 

(October through December) months as well as decreases for January; i.e., there is 
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agreement on direction of change for eight of the 12 months.  A similar result is apparent 

for late-century water yield projections, though with minor changes (February is more 

clearly projected as having decreased water yields, September with increased water 

yields, and May – August with RCP-dependent changes).   

 

Figure 5.9 Basin-wide changes (relative to baseline) in water yield in a) mid- and b) late-
century. 

 

     The spatial distribution of projected water yield changes is given in Fig. 5.10.  For 

mid-century projections, all but one of the 49 subwatersheds are projected to experience 
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water yield increases.  Late-century projections for RCP 8.5 indicate the same result (and 

involving the same subwatershed), while RCP 4.5 projections identify approximately 

88% of the subwatersheds as experiencing water yield increases.  The portion of the basin 

having decreasing projected water yields (north-central) is also associated with the 

highest projected ET values (Fig. 5.8), suggesting of the importance of ET in the context 

of water yield for this region. 

 

 

Figure 5.10 Change in mean annual water yield (from baseline) (a-b) in the mid -century and 
late-century (c-d) under RCP 4.5 and RCP 8.5 respectively. 
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5.3.5 Drought analysis  
 

5.3.5.1 Overview  
 

     Computations of RDI and SDI for the baseline period produced the expected finding 

that the basin was in an overall state of drought (negative RDI/SDI) for basically half the 

time (Table 5.6). This proportion did not change appreciably for any projected 

timeframes/RCP scenarios, consistent with the previously-discussed results with respect 

to rainfall, ET and water yield.  The results with respect to SDI-defined droughts are 

consistent with earlier work reported by Chattopadhyay et al. (2017), who suggested that, 

relative to the baseline period, the region might experience fewer drought years in the late 

21st century.  

Table 5.6 Proportions of total months (%) under basin-wide drought conditions. 

          

  
  Index   

Scenario 
 

RDI 
 

SDI 
Baseline 

 
51.0 

 
51.1 

Mid-Century 
              RCP 4.5 
 

49.8 
 

50.6 
          RCP 8.5 

 
50.2 

 
50.3 

Late-Century 
              RCP 4.5 
 

47.3 
 

50.9 
          RCP 8.5   50.0   50.2 

 

     Analysis of RDI drought durations for each of the 49 subwatersheds indicated average 

drought lengths of 1-4 months, with 80% in the 3-4 month range (Fig. 5.11(a)) for the 

baseline period.  Projected average drought durations were similar for the mid-century 

timeframe but exhibited more differences for the late-century.  The late-century RCP 4.5 

scenario indicated subwatersheds shifting from the 1-2 month into the 3-4 month average 
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drought duration category, while the reverse was true for RCP 8.5.  In comparison to the 

RDI findings, Fig. 5.11(b) indicates that droughts as defined the SDI are of a more 

chronic nature; for the baseline timeframe, roughly 45% of subwatersheds had average 

drought lengths of 4-5 months. Projected average drought (SDI) lengths were consistent 

for all timeframes and RCP scenarios except for late-century RCP 8.5 which, similar to 

RDI-defined drought lengths, demonstrated a shift of subwatersheds away from the 4-5 

month and toward the 3-4 month average drought length category.   

 

(a)
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Figure 5.11 Proportion of subwatersheds in average drought length categories as defined by 
(a) RDI and (b) SDI. 

 
5.3.5.2 Maximum drought length  
 

     Basin-wide MDLs are given in Table 5.7 for all timeframes/scenarios and for both 

RDI- and SDI-defined droughts.  Consistent with previous discussion, Table 5.7 reflects 

the more persistent nature of hydrological droughts (SDI) relative to meteorological 

droughts (RDI), with MDLs for SDI-defined droughts being about 50% greater than 

those for RDI-defined droughts.  Projected MDL deviations from the baseline timeframe 

tended to be relatively small except for the mid-century RCP 4.5 projections, which were 

associated with a 25% increase in SDI-defined MDL. 

 

 

 

 

(b)
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Table 5.7 Basin-wide duration and intensity of drought events calculated from RDI/SDI 
values for the Kentucky River Basin. 

 

     The spatial distribution of MDL for the baseline timeframe is given in Figure 5.12, 

which indicates that the southern portion of the basin experienced greater MDLs for both 

RDI- and SDI-defined droughts.  Figure 5.12(b) also indicates that the region of greatest 

MDL is coincident with the previously-discussed Lexington-Fayette area, the most 

heavily developed region in the basin.   

Maximum Drought Length Average Drought  Intensity
Scenario RDI SDI RDI SDI

----- Months -----
Baseline 8 12 1.38 1.20
Mid-century

RCP 4.5 9 15 1.37 1.11
RCP 8.5 7 13 1.31 1.24

Late-century
RCP 4.5 8 12 1.33 1.17
RCP 8.5 9 13 1.27 1.14
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     Differences in spatial MDL distribution due to type of drought and RCP scenario are 

apparent in Fig. 5.13 for projected mid-century MDL values.  The RCP 4.5 projections 

indicate that the northern portion of the basin is generally associated with increasing 

MDL for both RDI- and SDI-defined droughts.  In contrast, RCP 8.5 projections indicate 

near-uniform decreases in MDL for meteorological drought, with increasing MDL for 

hydrological drought associated primarily with the southern portion basin.  More 

consistency is apparent in late-century MDL projections, as shown in Fig 5.14.  For both 

RDI- and SDI-defined droughts, the highest MDL values are generally, though with some 

variation, associated with the northern and central portions of the basin.  

 

 

Figure 5.12 Spatial distribution of maximum drought length calculated from a) RDI b) SDI 
values in the baseline 
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Figure 5.13 Spatial distribution of changes in maximum drought length in the mid-century 
calculated from RDI (a-b) and SDI (c-d) under RCP 4.5 and 8.5 respectively. 



 

117 
 

 

Figure 5.14 Spatial distribution of changes in maximum drought length in the late-century 
calculated from RDI (a-b) and SDI (c-d) under RCP 4.5 and 8.5 respectively. 

 

5.3.5.3 Drought intensity  
 

      In contrast to the findings for MDL, basin-wide average intensities were lower for 

SDI-defined droughts (1.20) than for RDI-defined droughts (1.38) during the baseline 

period (Table 5.7).  This result suggests that hydrologic droughts, insofar as regards their 

intensity, experienced a damping effect, perhaps as a result of the additional processes 

and storages involved.  The same relationship was generally (with the exception of mid-
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century, RCP 8.5) true for drought projections for all timeframes and scenarios.  

Additionally, with the same exception, intensities of both SDI- and RDI-defined basin-

wide droughts decreased relative to the baseline period for all drought projections.   

     The spatial distribution of drought intensities for the baseline period is given in Figure 

5.15.  The figure reinforces the generally higher intensities of meteorological drought, but 

with some differences in spatial distribution.  Both RDI- and SDI-defined droughts tend 

to be highest near the central and northern portions of the basin; however, intensities 

differ in the southern portion, being among the highest for meteorological droughts and 

lowest for hydrological droughts.   

     The spatial distribution of projected drought intensities (Figs. 5.16 and 5.17) is quite 

complex.  Mid-century drought intensity projections (Fig. 5.16) demonstrate no clear 

pattern of behavior with the possible exception of a tendency toward more intense 

droughts (as defined by both indices) in the northern and eastern portions of the basin, 

with subwatersheds projected as having less intense droughts scattered throughout.  Late-

century drought projections (Fig. 5.17) are similarly complex in terms of spatial 

distribution, but possibly more RCP-dependent than mid-century projections.  Projections 

for RCP 4.5 suggest that the highest increases in drought (both meteorological and 

hydrological) intensity are associated with the northern portion of the basin, whereas 

these increases are associated more with the southern portion for RCP 8.5.   
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Figure 5.15 Spatial distribution of drought intensity calculated from a) RDI and b) SDI 
values for the baseline period. 
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Figure 5.16 Spatial distribution of changes in average drought intensity in the mid-century 
calculated from RDI (a-b) and SDI (c-d) under RCP 4.5 and 8.5 respectively. 
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Figure 5.17 Spatial distribution of changes in average drought intensity in the mid-century 
calculated from RDI (a-b) and SDI (c-d) under RCP 4.5 and 8.5 respectively. 

 

5.4 Conclusions 
 

The objective of this study was to evaluate historical and projected droughts, both 

meteorological (RDI) and hydrological (SDI), for the Kentucky River Basin.  The basic 

approach was to combine historical data and projections from a suite of GCMs with the 

calibrated SWAT model for computation of subwatershed-level and basin-wide 
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hydrological drought indices, whereas meteorological drought indices were calculated on 

the basis of meteorological data only.   

Relative to the baseline period, GCM projections indicate modest basin-wide 

increases in precipitation (2.5 – 5%, with relatively consistent increases in the winter) 

with more substantial basin-wide increases in average annual temperature (2 – 4.7 oC, 

with greatest increases during the summer months), depending on timeframe (mid-

century or late-century) and RCP scenario (4.5 or 8.5).  Similar basin-wide increases (3-

5% relative to baseline) are projected for ET, with greatest increases during the winter 

and decreases in the summer.  Basin-wide water yield is projected to increase (2-5%), 

though the pattern of increasing and decreasing months appears more related to RCP 

scenario than for other variables. 

Findings indicated that, basin-wide, there was very little projected change in the 

proportion of time in a drought condition or in the average length of drought conditions.  

Projections further indicated that maximum length of basin-wide hydrological droughts 

might increase slightly, but changes in maximum drought length for meteorological 

droughts were minimal.  Drought projections additionally indicated that basin-wide 

drought severity is anticipated to generally decrease, even if slightly.   

When drought indices were calculated on the subwatershed level, broad and 

consistent spatial patterns were usually difficult to identify.  Whether for meteorological 

or hydrological droughts, the spatial distribution of changes was dependent on the 

timeframe (historical, mid-century and late-century) and RCP scenario. 
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     The overall findings suggest that, as assessed using the methods of this study, changes 

in investigated hydrological and meteorological drought indices investigated will change 

only slightly (and perhaps in the direction of less severity) in the mid- to late-21st century 

on the basin level.  However, smaller-scale (subwatershed level) changes may be 

significant, suggesting that water resources originating from smaller drainage areas might 

merit more scrutiny to evaluate their reliability in coming years. 
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CHAPTER 6: CONCLUSIONS 
 

     The present research focused on determining long-term natural climate variability for 

the Commonwealth of Kentucky, trends in extreme precipitation events, and climate 

change impacts on hydrological behavior and extreme hydrological events for a 

watershed in the southeastern United States. For the first objective, non-parametric 

statistical tests were conducted using long-term (61 years) precipitation and temperature 

datasets to evaluate the annual trends in the time series. The second objective of this work 

involved examining spatiotemporal variability in six extreme precipitation indices for the 

Kentucky River Basin, a major tributary of the Ohio River Basin. The last objective was 

focused on determining hydrological impacts caused by anticipated climate change on 

water balance components and droughts in both near- and long-term future time frames. 

Major findings from this research are summarized below: 

6.1 Major conclusions 
 

a) Kentucky’s climate has generally become wetter and warmer over the last 60 

years.  Some stations on Kentucky’s western and southern borders have 

demonstrated statistically significant increases in average annual rainfall and 

temperature.  

b) The majority of the extreme precipitation indices evidenced increasing trends for 

the baseline period (1986-2015) in the Kentucky River Basin. Urban portions of 

Kentucky River Basin have experienced statistically significant trends in extreme 

precipitation indices such as total precipitation in wet days and number of days 

with more than 20mm of rainfall for the baseline period.  
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c) The research described in Chapter 4 identified inconsistencies between baseline 

period trends and late-century projections.  These inconsistencies can be 

considered cautionary; at a minimum, they suggest limitations in reconciling 

analyses on relatively small temporal and spatial scales to GCM projections, even 

when those projections are bias-corrected and spatially downscaled. Findings with 

regard to baseline period conditions and trends might be reflective of relatively 

large influences of small-scale variables such as elevation and land cover, whose 

relative importance diminishes in the context of relatively low-resolution GCM 

projections. While scale- and timeframe-related anomalies need not be 

irreconcilable, their occurrence can represent challenges to those charged with 

applying low-resolution projections to smaller scales of decision-making and 

effective management. 

d) Late-century (2070-2099) projections indicated that indices such as total wet day 

precipitation (PRCPTOT), lengths of dry and wet spells (CDD and CWD) that are 

related to the macroweather regime were consistent with the baseline trends, 

whereas indices that were closely linked with the weather regime such as simple 

daily precipitation index (SDII) indicated reversals of baseline trends. This 

finding might be due in part to GCMs having inherent weaknesses in simulating 

events on the weather scale of time. As defined on an annual basis, droughts are 

expected to be less frequent in the Kentucky River Basin compared to the 

baseline.  

e) A successfully-calibrated SWAT model was executed with projected climate data 

from a suite of CMIP5 GCMs, corresponding to two different representative 
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concentration pathways (RCP 4.5 and 8.5) for two distinct time periods; 2036-

2065 and 2070-2099 referred to as mid-century and late-century, respectively, to 

quantify the impact of future climate on surface water availability and droughts 

for the Kentucky River Basin. The climate models predicted slight increases in 

average annual precipitation and temperature in the future compared to the 

baseline period. 

f) Spring and fall months were found to be associated with increasing trends in 

surface runoff and water yield, in contrast to decreasing trends in winter. 

Evapotranspiration evidenced a generally increasing trend in winter and a 

decreasing trend in summer, consistent across scenarios/time frames.  

g) Hydrological and metrological aspects of drought were studied using two 

different indices: Streamflow Drought Index and Reconnaissance Drought Index 

(RDI). Results indicated that future would be characterized by longer but less 

intense drought events. Hydrological droughts, however, are projected to be less 

intense but more persistent than the meteorological droughts.   

 

6.2 Recommendations for future research 
 

a) In the first objective, absolute homogenization was performed on the time series 

data before assessing the linear trends using the Mann-Kendall test. It might be 

instructive to adopt a relative homogenization approach and subsequently use a 

parametric method to detect trends such as regression and finally compare the 

trend estimates. This address the issue of sensitivity of inferences to methods of 

analysis. Future research should also focus on subdividing the entire time series 
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data into shorter intervals (e.g., decades) for a more comprehensive evaluation of 

short term variability and change point detection. 

b) This study only considered six extreme precipitation indices from the set of 

available ETCCDI indices. Future research should also investigate other 

precipitation indices as well as temperature indices to more fully characterize the 

range of plausible extreme climate scenarios. Furthermore, only daily data were 

considered in this study; future studies might explore trends at a finer time 

resolution (e.g., subdaily data). Notwithstanding the challenges in some of the 

GCMs to simulate finer temporal resolution data as noted from results of the 

second study, such an effort might be of interest to researchers. Research efforts 

should also focus on considering different downscaling methods and more RCP 

scenarios.   

c) This study used 10 GCMs with two scenarios each. Statistical methods were 

adopted to downscale and bias-correct the GCM outputs. Future studies should 

explore dynamic downscaling methods from RCM outputs as well as apply 

different bias-correction techniques such as the delta change method to the 

forecasted climatic time series. 

d) Changes in future land use were not explicitly accounted for in terms of model 

input specification. Land use changes can have significant influences on 

hydrologic processes, and future modelling efforts should consider land use 

change scenarios along with climate change scenarios in the Kentucky River 

Basin. Further studies are also needed to determine combined impacts of climate 

and land use changes in water quality of the Kentucky River Basin.  
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e) The implications of this study (Chapter 3, in particular) with respect to intensive 

crop production (e.g., western Kentucky) were not investigated in detail.  It seems 

possible that parameters of future climate will be of mixed value in this context.  

Should the apparent broad trends of increasing temperatures and rainfall continue, 

then benefits in the forms of longer growing seasons, ground water recharge, and 

decreased irrigation requirements are possible.  However, wetter field conditions 

could hinder agricultural operations, and increased evapotranspiration demand 

might more than offset the increased rainfall.  A more detailed and focused study 

on questions of this nature could help to clarify probable future scenarios and 

enable producers to begin the process of helpful adjustments in practices and 

techniques.  

6.3 Suggestions for water resource managers 
 

a) The results from this study indicate that the north-central urbanized portion of the 

Basin might merit more scrutiny in terms of developing sustainable management 

plans, as some of the longest durations of droughts (corresponding to greatest 

decreases in future water yield) were noted for this area. In particular, the 

Lexington-Fayette Metropolitan Statistical Area (Lexington, Versailles, 

Georgetown, Nicholasville, Winchester and smaller cities) may require attention 

in the planning process to alleviate some of the climate change impacts by 

effectively utilizing available water resources.  

b) At the same time, the future potential for increasing days of heavy (> 20 mm) 

rainfall in the Lexington-Fayette Metropolitan Statistical area could promote 

increased and more frequent flooding.  This scenario could call into question the 
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effectiveness of existing flood mitigation measures (e.g., stormwater detention 

basins) and require revisions to the design process in order to achieve current 

levels of protection.   

c) It was also noticed that in the future, flow in the Kentucky River will decrease in 

the winter months. Although peak water demand usually occurs in the summer 

season, further analysis might be helpful in terms of ensuring that relatively non-

seasonal demands (e.g., household and industrial) will not be adversely affected 

by declining winter flows.   

d) Projections of climate and its impacts are necessarily accompanied by appreciable 

uncertainty.  Some of these sources of uncertainty have been mentioned in this 

dissertation using words such as “limitations” or “challenges.”   Whether this 

uncertainty is quantified, it is inherent in all projections and can make the already-

challenging tasks of water resource planning and management even more 

difficult.  The framework offered by adaptive management might be helpful in the 

context of resource planning, management and policy development, as it promotes 

flexible decisions that can be revised as newer and more precise information 

becomes available.  
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Appendix 1.  List of weather stations in the initial dataset  
Station 
Number 

Station 
Code Weather station Longitude Latitude 

   
  1 C150043 Allen1 -86.2500 36.6333 

2 C150422 Allen2 -86.1333 36.9000 
3 C157215 Allen3 -86.2167 36.7333 
4 C154967 Ballard -88.8333 36.9667 
5 C150700 Bell1 -83.5167 36.7833 
6 C151973 Bell2 -83.6833 36.6000 
7 C153006 Bell3 -83.7500 36.7833 
8 C156170 Bourbon -82.6167 38.4500 
9 C150254 Boyd1 -82.7000 38.4333 

10 C150268 Boyd2 -84.7667 37.6667 
11 C152040 Boyle -86.5667 37.9167 
12 C154196 Breathitt1 -86.4333 37.7833 
13 W03889 Breathitt2 -86.2833 37.8833 
14 C156624 Breathitt3 -86.5000 37.6167 
15 C150031 Breckinridge1 -85.6500 37.9167 
16 C153604 Breckinridge2 -85.7000 38.0000 
17 C154165 Breckinridge3 -88.3000 36.6000 
18 C156988 Breckinridge4 -89.0000 36.8333 
19 C150630 Bullitt1 -88.9667 36.8833 
20 C157334 Bullitt2 -88.8833 36.8000 
21 C155694 Calloway -85.1500 38.6667 
22 C150214 Carlisle1 -87.5667 36.6667 
23 C150402 Carlisle2 -87.5167 36.8500 
24 C155415 Carlisle3 -85.1333 36.6833 
25 C151345 Carroll -88.1000 37.4667 
26 C154755 Casey -88.0667 37.3333 
27 C153798 Christian1 -85.4000 36.7833 
28 C153994 Christian2 -87.1500 37.7667 
29 C150687 Clay1 -87.0667 37.8000 
30 C155111 Clay2 -87.0833 37.7667 
31 C150063 Clinton -86.2667 37.2000 
32 C152961 Crittenden1 -86.2667 37.2000 
33 C155150 Crittenden2 -86.0833 37.1833 
34 C151137 Cumberland -84.6000 38.0333 
35 C156091 Daviess1 -84.5000 38.1333 
36 C156094 Daviess2 -89.1667 36.5667 
37 C156096 Daviess3 -84.9667 38.7667 
38 C151046 Edmonson1 -84.4333 37.4833 
39 C155097 Edmonson2 -84.5667 37.6167 
40 C155834 Edmonson3 -84.5833 38.7167 
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41 C154748 Fayette1 -84.7833 38.6500 
42 W93820 Fayette2 -84.6167 38.6667 
43 C153028 Franklin -88.6500 36.7333 
44 C153186 Fulton -86.5167 37.4167 
45 C158446 Gallatin -86.5500 37.6000 
46 C151890 Garrard1 -86.3000 37.5167 
47 C154620 Garrard2 -85.5000 37.2500 
48 C152250 Grant1 -85.5500 37.2333 
49 C154309 Grant2 -86.9000 37.9000 
50 C158714 Grant3 -87.7000 37.1667 
51 C155230 Graves -87.5167 37.3500 
52 C151294 Grayson1 -85.5333 38.2667 
53 C152770 Grayson2 -85.7667 38.2333 
54 C155438 Grayson3 -83.8833 36.8833 
55 C153430 Green1 -85.7333 37.5333 
56 C153435 Green2 -84.3000 37.5667 
57 C154732 Hancock -84.8167 38.5167 
58 C151998 Harrison1 -82.6000 37.2000 
59 C152003 Harrison2 -84.3333 37.3500 
60 C152072 Hopkins1 -86.5667 36.7167 
61 C155067 Hopkins2 -87.9667 36.7667 
62 C153382 Jackson -87.9500 37.7667 
63 C150155 Jefferson1 -84.1000 36.9500 
64 C154949 Jefferson2 -84.3167 36.8333 
65 C153837 Jessamine -84.2333 38.2000 
66 C150381 Knox -83.3833 37.5500 
67 C153929 Larue -83.3167 37.5833 
68 C154893 Laurel -83.3667 37.5333 
69 C153741 Lee -84.9333 37.3167 
70 C150619 Madison -83.5667 37.1667 
71 C157129 Magoffin -83.8167 37.1500 
72 C156104 Owen -84.8667 38.2333 
73 C151080 Perry1 -84.3000 38.3833 
74 C152131 Perry2 -84.2833 38.3833 
75 C151119 Pike -83.9500 37.4000 
76 C151576 Powell -84.7167 37.8167 
77 C155648 Rockcastle -84.0667 37.1167 
78 C157324 Shelby -83.7667 37.5500 
79 C153036 Simpson -83.0833 37.7500 
80 C151206 Trigg -83.3833 37.3500 
81 C158197 Union -83.0667 37.0333 
82 C151806 Whitley1 -83.9333 37.8667 
83 C151969 Whitley2 -85.2000 38.2000 
84 C153716 Wolfe -83.4500 37.7833 
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