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In this paper we study the fluctuation limit of a particle system in non-equilibrium. Each

individual among n particles with current position x(t) moves on the positive axis according

to a Poisson clock. With probability 1− p, depending on the average position of the particle

configuration, it moves to x(t) + 1 and with probability p to γ x(t), γ ∈ (0, 1). This is

the Additive Increase Multiplicative Decrease (AIMD) internet traffic protocol, where x(t)

is the data transmission rate of a given user. Under proper scaling, when n → ∞, the

system has a deterministic fluid limit described as the solution of an ordinary differential

equation. We are looking at the functional second approximation ξ(t), i.e. departures from

this limit, on a Central Limit Theorem scale. The random field ξ(t) is identified by its

action on special test functions φ, where t → 〈ξ(t), φ〉 are formally identified as diffusions.

For polynomial test functions, the central limit theorem fluctuation field is tight and we

identify its limit explicitly. Labeling the random field Z(k, t) for each monomial φ(x) = xk

of degree k ≥ 1 we obtain a hierarchical system of diffusions, in the following sense: the

vector (Z(1, t), . . . ,Z(m, t)) is a linear diffusion with time dependent explicit coefficients

and the system for m′ > m is consistent with the system for m in that the matrix is sub-

diagonal. When the initial data is Gaussian, the infinite-dimensional process, indexed by

φ(x) polynomials, is a Gaussian process. The abstract random field limit is formulated as a

generalized Ornstein-Uhlenbeck process and we discuss some open problems.
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Chapter 1

Introduction

1.1 The general interacting particle model

In the following, we study a random system of n particles

x(n, t) = (x1(t), x2(t), ..., xn(t)) ∈ (0,∞)n , t ≥ 0 (1.1)

where the components xi(t), 1 ≤ i ≤ n, denoting their positions at time t, undergo a random

motion on the positive real axis guided by a variant of the Additive Increase Multiplicative

Decrease traffic control protocol (TCP). This is well known in the engineering literature as

the AIMD internet traffic protocol and this model had been analyzed in [3, 12, 27, 10, 25,

9, 11].

We begin by describing a more general model and then specialize to our case. The

dynamics will be a pure jump Markov process in continuous time t ≥ 0. By the law of the

movement of particles, as will be given below, the state space is S = (0,∞)n, with elements

x = (x1, . . . , xn). For every 1 ≤ i ≤ n, we denote the initial position xi(0) > 0.

1
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Using the standard construction of a pure jump process, for example in [24], as well

as [7], each particle carries a Poisson clock governing the jump times. All clocks are

independently distributed with parameter λ = 1. When xi, 1 ≤ i ≤ n (without loss of

generality) jumps at time τ, the particle has a probability p of moving backward and a

probability 1 − p of moving forward. The position of the particle xi when it jumps at time

τ will be described precisely in the following.

Attached to every particle xi are the deterministic measurable functions

ζi : S → [0, 1] , 1 ≤ i ≤ n (1.2)

denoting jump probabilities p = ζi(x(n, t)) whenever a jump occurs at time t (we note that in

the mean field model, the functions ζi(x) = p(x̄), where x̄ = (x1 + . . . xn)/n, p continuous).

In addition, a constant 0 < γ < 1 will be set for all particles and all times. The AIMD

model implies that

xi(τ) = γxi(τ−) with probability ζi(x(n, τ−)) (1.3)

xi(τ) = xi(τ−) + 1 with probability 1 − ζi(x(n, τ−)) .

General models of this kind have a detailed explanation in [2]. The first line in (1.3)

is the multiplicative decrease, and the second line the additive increase. The step size for

increase can be scaled (not equal to one unit) and the process speed λ > 0, can be scaled as

well, leading to other versions of the dynamics, studied in the literature [2, 3].

The moving law of the particle implies that for every 1 ≤ i ≤ n, at any moment t ≥ 0,

xi(t) > 0 almost surely, unless either a particle tends to zero or escapes to infinity in finite
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time with positive probability. These scenarios of explosion can be removed by setting

0 < p0 ≤ ζi(x) ≤ p′0 < 1 . (1.4)

These bounds are very strong, and in general can be relaxed significantly (see [15] and

others) when studying questions like irreducibility, ergodicity, and so on. In this work they

are needed because we are interested in the second order approximation of the empirical

measure, the fluctuation limit in non-equilibrium, that raises its own difficulties and requires

tighter bounds on the coefficients. They are formally stated in Assumption 1.2, Part (1).

1.2 Generator and Martingales

A detailed explanation for a general pure jump process can be seen in [4].

For a point in the state space x = (x1, . . . , xi, . . . , xn) ∈ S = (0,∞)n we introduce the

two shift notation

Lix = (x1, . . . , γ xi, . . . , xn)

meaning that the i-th particle jumps to the left (the multiplicative decrease part), and

Rix = (x1, . . . , xi + 1, . . . , xn)

meaning that the i-th particle moves to the right by one step (the additive increase).

For a test function f ∈ Cb([0,∞) × S )-the space of continuous bounded functions in

(t, x), the generator is

At,n f (t, x) = λ
[ n∑

i=1

(
(1 − ζi(x)) ( f (t,Rix) − f (t, x)) + ζi(x)( f (t, Lix) − f (t, x))

)]
(1.5)



4

Note that the jump probabilities (1.2) are naturally bounded above by one and cannot

vanish at the same time. Then we can state the following general result defining the process.

Definition 1.1. The generator (1.5) defines a pure jump Markov process x(n, t, ω), t ≥ 0,

adapted to a filtered probability space (Ω,F , (Ft)t≥0, P). It can be assumed that it satisfies

the usual conditions, i.e. the paths are right-continuous with left limits (RCLL) and the

filtration (Ft)t≥0 is right-continuous. We shall not write the notationω and use the simplified

x(n, t), t ≥ 0 instead. In this work, the process speed is not scaled and λ = 1.

Then, if M f (n, t) denotes the expression

M f (n, t) = f (t, x(n, t)) − f (0, x(n, 0))

−

∫ t

0
{∂s f (s, x(n, s−)) +As,n f (s, x(n, s−))}ds ,

(1.6)

then the differential formula (1.6) defines the analogue of Ito’s lemma for jump processes in

the sense that M f (n, t) is a (Ft)t≥0 martingale with quadratic variation given in the formula

〈M f (n, t)〉 =

∫ t

0
[As,n f 2(s, x(n, s−)) − 2 f (s, x(n, s−))As.n f (s, x(n, s−))]ds . (1.7)

The last equation can be written explicitly in this case

〈M f (n, t)〉 =

∫ t

0

n∑
i=1

(
(1−ζi(x(n, s−))) ( f (t,Rix(n, s−)) − f (t, x(n, s−)))2+

ζi(x(n, s−))( f (t, Lix(n, s−)) − f (t, x(n, s−)))2
)
ds .

(1.8)

Remark. In both equations (1.6) and (1.7) the left-limit s− can be dropped since the

integration takes place against the continuous Lebesgue measure on the positive axis ds. We
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discuss the construction and the martingales (1.6) and (1.7) in more generality in following

chapters.

1.3 The mean field model

If for any pair 1 ≤ i, j ≤ n, ζi(x(n, t)) = ζ j(x(n, t)), we simply denote the common value by

ζ(x(n, t)). Further, let

x̄n(t) =
1
n

n∑
i=1

xi(t) (1.9)

be the empirical average of the particle position at time t ≥ 0. Assume there exists a

continuous real valued function p : S → R such that

ζ(x) = p(x̄n) , 0 ≤ p(x) ≤ 1 . (1.10)

In this case the dynamics is said to be mean field model.

Assumption 1.2. Regularity of the jump rate p(x).

1. There exist constants p0 and p′0, 0 < p0 ≤ p′0 < 1, such that for any x ∈ (0,+∞),

0 < p0 ≤ p(x) ≤ p′0 < 1 . (1.11)

2. p ∈ C2
b((0,+∞)), i.e. p is twice continuously differentiable with bounded derivatives p′

and p′′.

3. p is non-decreasing.

Under (1.10), and even more so under Assumption 1.2, the process x(n, t, ω), t ≥ 0 is
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well defined for all times. Denote its empirical measures

µn(t, dy) =
1
n

n∑
i=1

δxi(t)(dy) ∈ M1((0,∞)) , t ≥ 0 , (1.12)

where M1(X), respectivelyM(X) is the space of probability measures, signed measures on

the polish space X. In this paper, X is (0,∞) equipped with the Euclidean norm, and thus

(1.12) is a probability measure on the Borel σ-algebra.

Definition 1.3. Applied to test functions φ ∈ C((0,∞),R), we write

〈ν, φ〉 =

∫
(0,∞)

φ(y)ν(dy)

for a signed measure ν ∈ M((0,∞)). We shall also use the notation

〈µn(t, dy), φ〉 = x̄n(φ, t) , respectively 〈µ(t, dy), φ〉 = x̄(φ, t) (1.13)

if µn(t, dy) has a limit µ(t, dy) as n → ∞. In the special case φ(x) = xk, k ≥ 0, we use the

shorthand

〈µn(t, dy), φ〉 = x̄n(k, t) , respectively 〈µ(t, dy), φ〉 = x̄(k, t) (1.14)

for the limit, whenever it exists.

The differential formulas (1.6) and (1.7) can be applied to a larger test function space.

We follow [15] to define the space of functions with positive exponential moment q > 0.
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1.4 Test functions

Definition 1.4. Given q > 0, we say that φ ∈ C2
q((0,+∞)) if it is a function in C2((0,+∞))

with all derivatives up to second order having an exponential moment up to q as x → +∞

and all negative moments as x → 0, which means that there exists k > 0 and a positive

constant Kφ(k) such that

sup
0≤b≤2

sup
x∈(0,+∞)

xke−qx
∣∣∣φ(b)(x)

∣∣∣ = Kφ(k) < ∞ .

Remark 1.5. Due to the bound away from zero of the jump probabilities, the definition can

be simplified by removing the condition as x→ 0.

Remark 1.6. The main purpose of defining these test functions is to be able to include not

only continuous, bounded functions as in (1.5), but also polynomials. More generally, any

φ(x) = P(x)eq′x, q′ < q and P polynomial, is in the C2
q - class.

We need a technical result to guarantee a larger set of test functions, including polyno-

mials.

Proposition 1.7. The differential formulas apply to functions φ of the C2
q - class where q is

determined by the bounds p0, p′0 in eq. (1.11), Assumption 1.2.



Chapter 2

Scaling limits

2.1 Fluid limit - the Law of Large Numbers

Theorem 2 in [15], here labeled Theorem 2.3 proves that the empirical measures (2.25)

have a deterministic limit. This scaling limit is a Law of Large Numbers for correlated

processes (xi(t)). Scaling limits of different models had also been analyzed in [14].

We can start with the particular case of the average x̄n(t). This deterministic limit x̄(t) is

given as the solution of an ordinary differential equation, i.e. a deterministic trajectory with

t ≥ 0. Two other assumptions on the initial configuration for the process are necessary.

Assumption 2.1. There exists a constant η0 > 0 such that

lim sup
n→+∞

E[〈eη0 x, µn(0, dx)〉] < +∞ (2.1)

Assumption 2.2. At t = 0, for every test function φ, as n→ +∞,

µn(0, dy) → µ(0, dy) ∈ M1((0,∞)) a deterministic probability measure .

8
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One can consider φ(x) in the theorem simply a polynomial, but the test functions are

more general. Please refer to Definition 1.4 for the notation φ ∈ C2
η((0,+∞)), which will be

used in the statement of Theorem 2.3.

Theorem 2.3 (Theorem 2 in [15]). Under Assumptions 1.2, 2.1 and 2.2, the average x̄n(φ, t)

is tight in the Skorohod space D([0,∞), (0,∞)) and any limit point x̄(t) is the unique deter-

ministic solution of the ordinary differential equation

dy1

dt
= 1 − p(y1) − (1 − γ)p(y1)y1 (2.2)

with y1(0) = limn→+∞
1
n

∑n
i=1 xi(0). The empirical measure process (1.12) is tight in the

Skorohod space of time indexed measure -valued paths D([0,∞),M1((0,∞))) and any limit

point is the unique solution that verifies the equation

〈µ(t, dx), φ(x)〉 − 〈µ(0, dx), φ(x)〉

−

∫ t

0
〈µ(s, dx), (1 − p(x̄(s)))(φ(x + 1) − φ(x)) + p(x̄(s))(φ(γx) − φ(x))〉ds = 0

(2.3)

for any φ ∈ C2
η((0,+∞)), with µ(0, dx) defined in Assumption 2.2.

Remark 2.4. In [15], assumptions for the jump probability function and the initial distri-

bution are given with less requirements. In Assumption 1.2 we require that the jump rate

function have a bounded second derivative.

Remark 2.5. The fact that the jump rate function is non-decreasing is motivated by the

application inspiring our model. Mathematically speaking, it is not necessary to establish

our results.
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2.2 Bounds for polynomials

Theorem 2.3 shows that for any arbitrary test function φ ∈ C2
η((0,∞)), the average x̄n(φ, t)

converges in distribution to the deterministic process x̄(φ, t), with the notations of Definition

1.3, eq. (1.13)-(1.14), when the test function is φ(x) = xk, with k ∈ N, we conclude that

x̄(k, t) is the solution to an ordinary differential equation.

When k = 0, for each n, x̄n(0, t) = 1 and x̄(0, t) = 1. When k = 1, we can show that

x̄(1, t) = x̄(t) (for the simple average we drop the index k = 1) is the unique deterministic

solution to the ordinary differential equation (2.2). We have

Mn(k, t) = x̄n(k, t) − x̄n(k, 0) −
1
n

n∑
i=1

∫ t

0

{
(1 − p(x̄n(s)))

×
[ k∑

j=1

(
k
j

)
xk− j

i (s)
]
− (1 − γk)p(x̄n(s))xk

i (s)
}
ds

(2.4)

〈Mn(k, t)〉 =

∫ t

0

{
(1 − p(x̄n(s)))

1
n2

n∑
i=1

[(k
1

)2

x2k−2
i (s)

+ 2
(
k
1

)(
k
2

)
x2k−3

i (s) + · · · + 1
]

+ p(x̄n(s))(1 − γk)2 1
n2

n∑
i=1

x2k
i (s)

}
ds

(2.5)

Denote 〈Mn(k, t)〉 as the quadratic variation of Mn(k, t), denote φk(x) = xk. Theorem 2.3

is based on the fact that 〈Mn(k, t)〉 vanishes uniformly with respect to t in a bounded interval

as n → +∞. Then, x̄n(k, t) converges in distribution to a deterministic process x̄(k, t) and

x̄(k, t) is the unique deterministic solution to the ordinary differential equation

dyk

dt
= (1 − p(y1))

k∑
j=1

(
k
j

)
yk− j − (1 − γk)p(y1)yk (2.6)
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with initial condition

yk(0) = lim
n→∞

1
n

n∑
i=1

xk
i (0) .

In here the initial value is non-random and y0(0) = 1.

We need to show that the non-random x̄(k, t) and E[x̄n(k, t)] are bounded for every k and

n when t ∈ [0,T ], T > 0 arbitrary but fixed. This is our Lemma 2.6 and Lemma 2.7. These

two lemmas are very important in our following proof, as they provide some boundedness

property of motions of our particle system.

Lemma 2.6. Let γ ∈ (0, 1) be the multiplicative decrease rate in (1.5) and p0 > 0 the lower

bound of the probability p(x) in (1.11). For every k ∈ N, there exists C0(k) > 0 depending

on k such that

x̄(k, t) ≤ (x̄(k, 0) −
C0(k)

(1 − γk)p0
) exp(−(1 − γk)p0t) +

C0(k)
(1 − γk)p0

(2.7)

Proof. by (2.2) and Assumption 1.2, we have

dy1

dt
≤ (1 − p0) − (1 − γ)p0y1 (2.8)

Replacing

y1(t) −
1 − p0

(1 − γ)p0

by z1(t), (2.8) will be
dz1

dt
≤ −(1 − γ)p0z1 . (2.9)

Consider z2(t) = e−(1−γ)p0t with the property that z′2(t) = −(1 − γ)p0z2(t) and the derivative
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of z1(t)/z2(t),

[z1(t)
z2(t)

]′
=

z′1(t)z2(t) − z1(t)z′2(t)
z2

2(t)

≤
−(1 − γ)p0z1(t)z2(t) + (1 − γ)p0z1(t)z2(t)

z2(t)
≤ 0 .

(2.10)

According to (2.10), for every t ≥ 0,

z1(t)
z2(t)

≤
z1(0)
z2(0)

,

thus

y1(t) −
1 − p0

(1 − γ)p0
≤

(
y1(0) −

1 − p0

(1 − γ)p0

)
e−(1−γ)p0t (2.11)

By arranging, we have

y1(t) ≤
(
y1(0) −

1 − p0

(1 − γ)p0

)
e−(1−γ)p0t +

1 − p0

(1 − γ)p0
. (2.12)

Seen from (2.12), y1(t) is bounded. Using induction, if y1(t), y2(t),...,yk−1(t) are bounded,

then for yk(t), by (2.6) and Assumption 1.2, there exists a constant C0(k) > 0, C0(k) depends

on k, such that
dyk(t)

dt
≤ C0(k) − (1 − γk)p0yk . (2.13)

Using the similar argument as for the k = 1 case,

yk(t) ≤
(
yk(0) −

C0(k)
(1 − γk)p0

)
exp(−(1 − γk)p0t) +

C0(k)
(1 − γk)p0

. (2.14)

Thus yk(t) is also bounded above by a constant depending on k, which completes our proof.

�
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Using a similar method as what we did in the proof of Lemma 2.6, we can extend our

conclusion, that for every n, E[x̄n(k, t)] is bounded, which is our Lemma 2.7.

Lemma 2.7. For every k ∈ N, n ∈ N, there exists C1(k) > 0 depending on k such that

E[x̄n(k, t)] ≤
(
E[x̄n(k, 0)] −

C1(k)
(1 − γk)p0

)
exp(−(1 − γk)p0t) +

C1(k)
(1 − γk)p0

(2.15)

Proof. By (2.4), when k = 1, since E[Mn(t)] = 0, so we have

E[x̄n(t)] = E[x̄n(0)] + E[
∫ t

0
(1 − p(x̄n(s))) − (1 − γ)p(x̄n(s))x̄n(s)ds] (2.16)

followed by
dE[x̄n(t)]

dt
= E[(1 − p(x̄n(t))) − (1 − γ)p(x̄n(t))x̄n(t)] . (2.17)

By our assumption, we have that

dE[x̄n(t)]
dt

≤ (1 − p0) − (1 − γ)p0E[x̄n(t)] (2.18)

Referring to the proof of our Lemma 2.6, we conclude that

E[x̄n(t)] ≤
(
E[x̄n(0)] −

1 − p0

(1 − γ)p0

)
e−(1−γ)p0t +

1 − p0

(1 − γ)p0
(2.19)

Also by induction, if for every 1 ≤ j ≤ k − 1, E[x̄n( j, t)] is bounded, since

E[x̄n(k, t)] = E[x̄n(k, 0)] + E
[ ∫ t

0

{
(1 − p(x̄n(s)))

×

k∑
j=1

(
k
j

)
x̄n(k − j, s) − (1 − γk)p(x̄n(s))x̄n(k, s)

}
ds

] (2.20)
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which is

dE[x̄n(k, t)]
dt

≤ (1 − p0) ×
k∑

j=1

(
k
j

)
E[x̄n(k − j, t)] − (1 − γk)p0E[x̄n(k, t)] (2.21)

By the boundedness of E[x̄n( j, t)], 1 ≤ j ≤ k − 1, there exists a positive constant C1(k),

which depends on k, such that

dE[x̄n(k, t)]
dt

≤ C1(k) − (1 − γk)p0E[x̄n(k, t)] (2.22)

Also referring to the proof of our Lemma 2.6, we conclude that

E[x̄n(k, t)] ≤
(
E[x̄n(k, 0)] −

C1(k)
(1 − γk)p0

)
exp(−(1 − γk)p0t) +

C1(k)
(1 − γk)p0

, (2.23)

which shows that for every k, n, the value E[x̄n(k, t)] is bounded above by a constant de-

pending on k.

�

2.3 Fluctuation limit - Central Limit Theorem

In this work, we pursue the second order scaling limit, namely, fluctuation limits. It can be

regarded as a generalization of the Central Limit Theorem at two levels. One, it is at the

level of empirical distributions for a time-indexed process, as in (2.26)-(2.27). The other

level is determined by the interaction among the particles. The jump probabilities depend

on the position of all other particles in the system.

Definition 1.4, which is cited from [15] establishes that we apply the martingale for-

mulas (1.5)-(1.6) to a larger class of test functions than just the class of continuous and
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bounded functions, for instance including all polynomials.

For the moment, let us assume that we can formally work with polynomials φ. Starting

with the simplest case, corresponding to the test function equal to the identity φ(x) = x, let

Zn(t) =
√

n[x̄n(t) − x̄(t)] , t ≥ 0 . (2.24)

The sequence of stochastic processes {Zn(t)}t≥0 is indexed by n ≥ 1, the number of

particles. Under some assumptions (Assumption 1.2) we will show that Zn(t) converges

in distribution to Z(t), which is a diffusion of affine type (7.4), ([22], Section 5.6 and also

[18]).

To establish the limit of Zn(t), one needs to show

(i) tightness, more precisely C-tightness, of the sequence of the stochastic processes

Zn(t), showing the existence of at least one limiting process with continuous paths;

(ii) the limiting process of Zn(t), is a specific Itô process with the appropriate coeffi-

cients.

Moving to the next level, we look at the empirical measures (1.12).

〈µn(t, dy), φ〉 =

∫
φ(y) µn(t, dy) =

1
n

n∑
i=1

φ(xi(t)) , t ≥ 0 . (2.25)

Theorem 2.3 shows that

µn(·, dy) → (in probability) µ(·, dy) (a deterministic trajectory)

in the sense that, for any fixed φ, the stochastic process 〈µn(t, dy), φ〉 converges weakly to a

deterministic process, which we denote as 〈µ(t, dy), φ〉. Since this limit is a Law of Large

Numbers (LLN), we look at the corresponding Central Limit Theorem (CLT) associated.
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To describe the fluctuation field we set

ξn(t, dy) =
√

n[µn(t, dy) − µ(t, dy)] , t ≥ 0 . (2.26)

With a Gaussian (or deterministic) initial condition, for instance, if the particles are

i.i.d. at time t = 0, the limit will be Gaussian.

Definition 2.8. The abstract random field (2.26) is defined against test functions. Some

notations will be used throughout the paper.

(i) For φ ∈ C((0,∞))

Zn(φ, t) =

∫
φ(y) ξn(t, dy) . t ≥ 0 . (2.27)

(ii) For convenience, we will use Zn(k, t) to represent the case when the test function is

φ(x) = xk, k ∈ N, more precisely Zn(k, t) = 〈ξn(t, dx), xk〉.

(iii) When k = 1, we just denote Zn(t) = 〈ξn(t, dx), x〉 as in (2.24).

The main result is Theorem 3.4 in Chapter 3. It will establish the exact form of the limit

ξ(t, dy)

〈φ, ξn(t, dy)〉 ⇒ 〈φ, ξ(t, dy)〉 (2.28)

when φ is a polynomial test function. The theorem can be stated in a more general form,

with 〈φ, ξ(t, dy)〉 being the solution to a stochastic differential equation.

When the test function φ is a polynomial function, 〈φ, ξ(t, dy)〉, which is the weak limit

of Zn(φ, t), is a Gaussian process. In fact, we prove more. Our result shows that the family

of processes indexed by polynomials φ

φ→ 〈φ, ξ(t, dy)〉 (2.29)
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are jointly Gaussian with explicit mean and variance as functions of t and φ. Definitions of

Gaussian random field and its special case Gaussian process will be given in Appendix.

Similar results exist, mostly involving diffusions, in [8], [13], [28] and [29]. In [8], [13],

fluctuation limits of different models had been analyzed, even though models are quite

different in nature, fluctuation limits of those models are also diffusions. In spite of the

simplicity of the model presented here, the fluctuation limit is obtained in non-equilibrium,

which is hard to capture in explicit form.

2.4 The polynomial case

Part of the problem is to define a suitable function space to work with by indexing the

random field. Ideally, we could consider

C =
{
φ ∈ C((0,∞),R)

∣∣∣∣ Zn(φ, ·) exists and converges in distribution as n→ ∞
}
.

(2.30)

Definition 1.4 shows that in the differential formulas (1.6)-(1.7) we can use test functions

with finite exponential moments. This includes polynomials.

Theorem 3.4 and 3.6 show that we can identify the limits Z(φ, t) of Zn(φ, t) from (2.27)

when φ(x) = xk, k ∈ N. The limits are linear diffusions with coefficients depending on the

smaller powers. In this sense we call the limit hierarchical. The linearity is a consequence

of the fact that ξn(t, dy) applies to φ as an integral against a signed measure.

When

φ(x) = akxk + ak−1xk−1 + · · · + a1x + a0 ,
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then

Zn(φ, t) =

k∑
j=0

a jZn( j, t) .

By linearity, it would be suffice in the following chapters to prove our main results for the

monomial case, meaning we prove the inclusion

C ⊇ R[x] (polynomials over the field of reals) .

We begin with a discussion of the simplest case, when the test function φ(x) = x. By

showing the C - tightness of the sequence of stochastic processes Zn(t), we are allowed to

pick a limit point, here a process with continuous paths. The limit process must satisfy

certain properties that identify it as unique. In this case it will be an Ito process (diffusion).

In more detail, the weak limit, which we denote as Z(t), is a linear one dimensional diffusion

and Gaussian process (if the initial configuration is Gaussian). The covariance formula is

explicit and will be given in Theorem 6.3 and eq. (6.10).

Using induction, for higher power monomials, Zn(k, t) is also tight and the limiting

process is again a solution to a stochastic differential equation. For each k ∈ N, the limit

process Z(k, t) contains terms with lower order Z( j, t), with 1 ≤ j ≤ k− 1. We shall see that

Z(k, ·) depends only on {Z( j, ·)}1≤ j≤k−1, which casts the problem, as far as polynomials are

concerned, into a finite closable equation. Moreover, it turns out that for any given k ∈ N,

the system of processes

(Zn(t),Zn(2, t), ...,Zn(k, t))

converges in distribution to a multidimensional linear process

(Z(t),Z(2, t), ...,Z(k, t)) .
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This multidimensional linear process is a k-dimensional linear diffusion process, and is

Gaussian when its initial condition is Gaussian. We shall also give a formula for the joint

distribution. Given different polynomial test functions φ1, φ2, the cross variation between

the martingale parts of Z(φ1, t) and Z(φ2, t) will be obtained explicitly in Theorem 6.3 as

well.



Chapter 3

Main result

3.1 The problem

The limit of the empirical measures in Theorem 2.3 is a generalization of the Law of Large

Numbers. We are interested in the next order of magnitude of the limit, which is corre-

sponding to a Central Limit Theorem for an interacting particle system. The following

question is the motivation of this work.

Theorem (Fluctuation field). Under the same assumptions as in Theorem 2.3, consider

the limit µ(t, dx) and denote for t ≥ 0

ξn(t, dx) =
√

n[µn(t, dx) − µ(t, dx)] . (3.1)

Determine the conditions such that the random field ξn converges in distribution and, if that

is the case, characterize its limit ξ.

The limit is a random field because it is random, as in the CLT, and is a field because

it is defined weakly, in the general sense of being an object in a dual space, i.e. integrated

20
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against a test function φ. In that case, 〈ξn(t, dx), φ〉 is a family of processes in time t ≥ 0,

indexed by the test functions φ. We shall see that if the test functions are polynomials, each

such process can be characterized as a diffusion. The joint distribution can be determined

because for monomials φ(x) = xk, k ≥ 0, the processes are jointly a linear diffusion.

3.2 Plan of the proof

Theorems 3.4 and 3.6 answer the questions posed here. The key derivation, even though

only formal, is to obtain equation (3.11). Theorem 3.4 gives a rigorous formulation of

(3.11), characterizing the limit ξ as a random field of the generalized Ornstein-Uhlenbeck

type, given in (3.11). We note that the drift term is linear with L◦s from (3.10) containing

Ls from the fluid limit (Theorem 2.3), plus a non-equilibrium component (3.9).

In fact the equation can be written, purely formally, as

dξ(t) = (L◦s)
∗ξ(t) dt + dW(t) , (3.2)

where the star stands for the formal adjoint and dW is a Gaussian zero mean noise defined

by (3.15). In particle systems, such limits are introduced in not only Holley - Stroock

[19, 18] but also Chang and Yau [8]. Theorem 3.6 translates the more abstract Theorem 3.4

by breaking down polynomials into monomials xk, ordering them by powers k and studying

the joint distribution of the corresponding diffusions.

• Theorem 6.3 (Chapter 6) implies Theorem 3.6 which implies Theorem 3.4.

• Theorem 6.3 is a statement on the degree k of the polynomial φ. It is proven by

induction, in the two steps below.
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• Theorems 4.4 and 4.6 (Chapter 4) answer the simpler question for φ(x) = x, which is

also the verification step k = 1 of the induction over k.

• Theorem 5.1 (Chapter 5) is the induction step, showing the fact that the fluctuation

field for φ(x) = xk is a diffusion with coefficients depending on the fluctuation field

applied to φ(x) = 1, x, x2, . . . , xk.

3.3 Formal equation for the fluctuation field

For the process x(n, t) = (x1(t), x2(t), ...xn(t)) with average x̄n(t) and a continous function f ,

denote

Lt,n f (x) = (1 − p(x̄n(t)))( f (x + 1) − f (x)) + p(x̄n(t))( f (γx) − f (x)). (3.3)

After n→ ∞, we want to denote

Lt f (x) = (1 − p(x̄(t)))( f (x + 1) − f (x)) + p(x̄(t))( f (γx) − f (x)) . (3.4)

The differential formulas applied to the test function 〈µn(t, dx), φ(x)〉 show that

Mn(φ, t) = 〈µn(t, dx), φ(x)〉 − 〈µn(0, dx), φ(x)〉 −
∫ t

0
〈µn(s, dx),Ls,nφ(x)〉ds (3.5)

is a martingale with respect to the filtration (Ft)t≥0 of the process.

According to Theorem 2.3, in the limit

0 = 〈µ(t, dx), φ(x)〉 − 〈µ(0, dx), φ(x)〉 −
∫ t

0
〈µ(s, dx),Lsφ(x)〉ds . (3.6)
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Subtracting and multiplying by the Central Limit Theorem scaling factor
√

n we obtain

√
nMn(φ, t) = 〈ξn(t, dx), φ(x)〉 − 〈ξn(0, dx), φ(x)〉

Part I −

∫ t

0
〈ξn(s, dx),Lsφ(x)〉ds

Part II −

∫ t

0
〈µn(s, dx),

√
n(Ls,nφ(x) − Lsφ(x))〉ds .

(3.7)

Throughout this paper we use the notations

Zn(φ, t) = 〈ξn(t, dx), φ(x)〉 =
√

n[x̄n(φ, t) − x̄(φ, t)]. (3.8)

Since in the expression of Zn(φ, t) = 〈
√

n(µn(t, dx)− µ(t, dx)), φ(x)〉 the element µ(t, dx)

is deterministic, the randomness is only shown in the martingale part that is equal to
√

nMn(φ, t).

For any s ≥ 0, we define the mapping between test functions

φ→ Gsφ , where Gsφ(x) = x
[
p′(x̄(s))〈µ(s, dx),−φ(x + 1) + φ(γx)〉

]
. (3.9)

Finally denote

φ→ L◦sφ , where L◦sφ(x) = (Ls + Gs)φ(x) . (3.10)

Part I in (3.7) corresponds to Ls and Part II corresponds to Gs. The second term is

discussed below.

Interpreting (3.7) we see that if the martingales converge in distribution to a Gaussian

random field W(φ, t) = limn→∞
√

nMn(φ, t), then the right hand side is simply the Ito for-

mula for a process ξ = limn→∞ ξn. Putting everything together, formally, the limit ξ should
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satisfy

W(φ, t) = 〈ξ(t, dx), φ(x)〉 − 〈ξ(0, dx), φ(x)〉 −
∫ t

0
〈ξ(s, dx),L◦s,nφ(x)〉ds . (3.11)

3.4 The non-equilibrium component

There are two integral terms in (3.7). The first contains Lsφ(x) and can be thought of as the

equilibrium part of the equation. The second is characteristic to non-equilibrium.

In Chapters 4 and 5 we show that for φ a polynomial, as n→ +∞, (Zn(φ, t))t≥0 converges

in distribution to a diffusion. Let Zn(t), respectively Z(t) be the fluctuation field before and

after scaling corresponding to φ(x) = x, i.e.

Z(t) = 〈ξ(t, dx), x〉 = lim
n→∞
〈ξn(t, dx), x〉 = lim

n→∞

√
n(x̄n(t) − x̄(t)) .

As n→ +∞, we will show that, in distribution,

lim
n→∞

∫ t

0
〈µn(s, dx),

√
n(Ls,nφ − Lsφ)〉ds =

∫ t

0
〈ξ(s, dx),Gsφ〉 ds .

To see that, consider

√
n
∫ t

0
〈µn(s, dx),Ls,nφ − Lsφ〉ds,

which is given as

√
n〈µn(s, dx),Ls,nφ − Lsφ〉 =

√
n(p(x̄n(s)) − p(x̄(s))) · [−

1
n

n∑
i=1

φ(xi(s) + 1) +
1
n

n∑
i=1

φ(γxi(s))] .
(3.12)



25

We have that

√
n(p(x̄n(s)) − p(x̄(s))) = p′(x̄(s))Zn(s) + o(

1
√

n
) from (4.42) . (3.13)

and as we shall show later in (4.45), we have that as n→ +∞, (3.12) converges in distribu-

tion to

∫ t

0
Z(s)p′(x̄(s))〈µ(s, dx),−φ(x + 1) + φ(γx)〉ds =

∫ t

0
〈ξ(s, dx),Gsφ〉 ds .

3.5 The Gaussian random field

The notion of Gaussian random filed is briefly introduced in the Appendix, Section 7.1.

Technically we work in finite setting, as the main theroem is proved for monomial, and then

polynomials of degrees k ∈ N. Denote R[x] the ring of polynomials with real coefficients

R[x] =
{
φ(x)

∣∣∣ φ(x) =

k∑
j=0

a jx j : a j ∈ R, k ∈ N
}
.

Recall that

Zn(φ, t) = 〈ξn(t, dy), φ〉 and Zn(k, t) = Zn(xk, t) .

Define the quadratic form

Dsφ = Lsφ
2 − 2φLsφ . (3.14)

Definition 3.1. Define the centered (mean zero) Gaussian random field (φ, t) → W(φ, t),
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t ≥ 0, φ ∈ R[x] with covariance

〈W(φ1, t1),W(φ2, t2)〉 =
1
4

∫ t1∧t2

0
〈µ(s, dx),Ds(φ1 + φ2) −Ds(φ1 − φ2)〉ds . (3.15)

Proposition 3.2. In here, there exists an extension (F̃t)t≥0 of the filtration of the process

(Ft)t≥0 from Definition 1.1 such that W(φ, t), t ≥ 0 are continuous, square integrable mar-

tingales. In particular

Cov(W(φ, t1),W(φ, t2)) =

∫ t1∧t2

0
〈µ(s, dx),Dsφ〉ds . (3.16)

Proof. The doubly indexed Gaussian random field is well defined as long as the covariance

is bilinear and positive definite. Bilinearity is a consequence of the polarization formula for

Ds. To show it is positive definite, we set φ1 = φ2 = φ in Definition 3.1 and obtain (3.16).

For t1 = t2 = t, and based on Definition (3.14) we see that

Dsφ(x) = (1 − p(x̄(s)))(φ2(x + 1) − φ2(x)) + p(x̄(s))(φ2(γx) − φ2(x))

−2φ(x)[(1 − p(x̄(s)))(φ(x + 1) − φ(x)) + p(x̄(s))(φ(γx) − φ(x))]

= (1 − p(x̄(s)))(φ(x + 1) − φ(x))2 + p(x̄(s))(φ(γx) − φ(x))2 ≥ 0 .

�

Theorem 3.4 is our main result and we will devote our next several chapters proving

this result step by step, and we state here. We recall Assumption 2.2 on the existence of the

initial measure

µn(0, dy) → µ(0, dy) ∈ M1((0,∞)) .
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We need a similar assumption on the initial fluctuation variable.

Assumption 3.3. At t = 0, for every test function φ, as n→ +∞,

Zn(φ, 0) =
√

n[〈µn(0, dy), φ〉 − 〈µ(0, dy), φ〉]

converges in distribution to Z(φ, 0), where Z(φ, 0) is normally distributed.

Theorem 3.4. Under the assumptions 1.2, 2.1 and 2.2 of Theorem 2.3, together with as-

sumption 3.3, for any polynomial φ(x), the fluctuation process, indexed by φ

Zn(φ, t) = 〈ξn(t, dx), φ〉 , t ≥ 0

converges in distribution, as n→ ∞, to a diffusion process Z(φ, t) satisfying

Z(φ, t) − Z(φ, 0) −
∫ t

0
〈ξ(s, dx),L◦sφ〉ds = W(φ, t) , (3.17)

whereL◦s is defined in (3.10) and the martingale (W(φ, t)) is the centered Gaussian random

field defined in (3.15).

The next result is the sub-diagonal lemma. While simply based on an observation, it

is essential because it allows the sub-diagonality of the infinite system Z(φ, ·) for φ(x) =

1, x1, x2, . . . (monomials), and in general to prove that the joint process of the first k mono-

mial is a linear diffusion with explicit form of the coefficients (Theorem 6.3), k ∈ N.

Lemma 3.5. For a fixed non-constant φ ∈ R[x],

deg(L◦sφ) ≤ deg(φ) .



28

Proof. In (3.4) and (3.10), the coefficients (jump probabilities) are functions of t only. In

x, the expressions φ(γx)− φ(x) (for the first) and φ(γx)− φ(x + 1) (for the second) have the

same degree as φ. �

Remark. Any subsystem of polynomials φk(x), k ∈ N, with deg(φk(x)) = k, will be

hierarchical, in the sense that Z(φk, t) is a fully determined Itô process.

To illustrate the hierarchy, start writing the martingales Mn(k, t) explicitly. In case

φ(x) = x,

Mn(t) = x̄n(t) − x̄n(0) −
∫ t

0
(1 − p(x̄n(s))) − (1 − γ)p(x̄n(s))x̄n(s)ds . (3.18)

In case φ(x) = x2,

〈µn(t, dx), φ2(x)〉 =
1
n

n∑
i=1

x2
i (t) = x̄n(2, t) (3.19)

and the corresponding martingale is

Mn(2, t) = x̄n(2, t)−x̄n(2, 0)−
∫ t

0
(1−p(x̄n(s)))(2x̄n(s)+1)−(1−γ2)p(x̄n(s))x̄n(2, s)ds (3.20)

and continue with φk(x) = xk, k = 3, 4, . . . thereafter.

These considerations are contained in the following theorem.

Theorem 3.6. Under the assumptions 1.2, 2.1 and 2.2 of Theorem 2.3, together with as-

sumption 3.3, let k ≥ 1 and Zn( j, t) = Zn(x j, t), i.e. the fluctuation process applied to the

test function φ(x) = x j, for all 1 ≤ j ≤ k. Then, the joint k - dimensional process converges

in distribution to a linear diffusion with explicit coefficients obtained from (3.17) when ap-

plied to the polynomials x j, 1 ≤ j ≤ k. As a consequence, the fluctuation random field

indexed by polynomials is jointly Gaussian.
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In the next several chapters, we will complete the proof step by step.

3.6 Martingales and the Gaussian random field

The first important thing is that in the limit
√

nMn(φ, t) converges in distribution to a Brow-

nian motion with time dependent variance. The second important feature is that for poly-

nomials the formula is hierarchic, meaning that the terms appearing in the drift of Zn(φ, t)

have degrees less or equal than deg(φ). This allows us to obtain an explicit formula for

polynomials, given in Theorem 6.3.

First we look at the quadratic variation of the martingale.

Proposition 3.7. From (1.8), the quadratic variation of Mn(φ, t) is given by

〈Mn(φ, t)〉 =
1
n

∫ t

0
〈µn(s, dx),Ds,nφ〉ds , Ds,nφ = Ls,nφ

2 − 2φLs,nφ . (3.21)

It follows that

lim
n→∞
〈
√

nMn(φ, t)〉 = lim
n→∞

∫ t

0
〈µn(s, dx),Dsφ〉ds , Dsφ = Lsφ

2 − 2φLsφ . (3.22)

Proof. The quadratic variation formula (1.7) is given in general form. When applied to the

generator (3.3) we see that by collecting all jump terms we obtain exactly the expression

(3.21). It is integrated against the empirical measure µn(s, dx) because the same jump

occurs for all particles i and is summed up.

For Zn(φ, t) = 〈ξn(t, dx), φ(x)〉, which has already been emphasized as our central topic,
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since

〈µn(t, dx), φ〉 = 〈µn(0, dx), φ〉 +
∫ t

0
〈µn(s, dx),Ls,nφ〉ds + Mn(φ, t) (3.23)

〈µ(t, dx), φ〉 = 〈µ(0, dx), φ〉 +
∫ t

0
〈µ(s, dx),Lsφ〉ds , (3.24)

then

√
nMn(φ, t) = 〈ξn(t, dx), φ〉 − 〈ξn(0, dx), φ〉 −

∫ t

0
〈ξn(s, dx),Lsφ〉ds

−
√

n
∫ t

0
〈µn(s, dx),Ls,nφ − Lsφ〉ds

(3.25)

is a martingale with quadratic variation

〈
√

nMn(φ, t)〉 =
1
n

n∑
i=1

∫ t

0
(1 − p(x̄n(s)))(φ(xi(s) + 1) − φ(xi(s)))2

+p(x̄n(s))(φ(γxi(s)) − φ(xi(s)))2ds .

(3.26)

�



Chapter 4

Fluctuation limit, φ(x) = xk, k = 1,

verification step

After the preliminary work on the scaling limit and formulating the problem and explaining

the outline of the proof, we begin the proof on the fluctuation limit with the case of φ(x) = x,

when the power of the monomial is k = 1, the simplest case. Of course, the trivial k = 0

gives null fluctuations.

In the central limit theorem, if we have a sequence of independent identical distributed

random variables, denoted as {xn}, with finite variance σ2 and expected value µ for each

xi, once we denote x̄n = 1
n

∑n
i=1 xi, then

√
n(x̄n − µ) converges in distribution to a normal

N(0, σ2).

In Chapter 2, we have already defined by eq. (2.27) a sequence of stochastic processes

Zn(φ, t), φ a test function in the space C2
q((0,∞)) defined in Definition 1.4. In this chapter,

φ(x) = xk, with k = 1 for the verification step.

Recall that the fluctuation field is 〈ξn(t, dx), φ〉. For φ(x) = xk it is denoted by Zn(k, t).

31
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In the following we simplify the notation by writing

Zn(1, t) := Zn(t) .

Step by step, we first prove that Zn(t) is tight. By the tightness of Zn(t), we denote the limit

point of Zn(t) as Z(t), we then prove that Z(t) is a diffusion process and the solution to a

stochastic differential equation. The property that Z(t) is a Gaussian process will be proved

at the end of this chapter.

4.1 Tightness of Zn(t)

Tightness, in fact C-tightness, proves that a sequence of probability measures (or laws of

processes) on the Skorohod space of right-continuous with left-limits paths is pre-compact

in the J − 1 metric. Moreover, the criterion we give in Proposition 7.8 (Appendix) guaran-

tees that any limit point is concentrated on the class of continuous paths.

We need to apply Gronwall’s inequality in Proposition 4.3. The lemma is stated in

many textbooks, see [26] (Exercise 5.17) assuming continuity of the function under con-

sideration. In the following lemma we generalize to cover the case when the function is

only bounded (the same proof can be used for a locally integrable function). In all our

applications the function is the expected value of a function of a RCLL (Skorohod space)

path.

Lemma 4.1 (Gronwall’s Inequality). If C1, C2 are positive constants and y(t) is a nonneg-

ative function.
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(i) If y(t) is continuous, then from

y(t) ≤ C1 + C2

∫ t

0
y(s)ds for 0 ≤ t ≤ T (4.1)

it follows that

y(t) ≤ C1 exp(C2t) for 0 ≤ t ≤ T. (4.2)

(ii) Assume y(t) is bounded and inequality (4.1) is satisfied. Then there exists a constant

C(T ) depending on T only such that

y(t) ≤ C(T ) exp(C2t) for 0 ≤ t ≤ T. (4.3)

Proof. Part (i):

Denote F(t) =
∫ t

0
y(s)ds, our (4.1) is

F′(t) ≤ C2(F(t) +
C1

C2
) (4.4)

Consider F1(t) = (F(t) + C1
C2

)e−C2t, by the above inequality, F′1(t) ≤ 0, so

(F(t) +
C1

C2
)e−C2t = F1(t) ≤ F1(0) =

C1

C2
,

and y(t) ≤ C2(F(t) + C1
C2

) ≤ C1 exp(C2t), for 0 ≤ t ≤ T .

Part (ii):

Denote G(t) =
∫ t

0
y(s)ds, then G(t) is continuous. By (4.1), we have

∫ t

0
y(s)ds ≤ C1t + C2

∫ t

0
G(s)ds ≤ C1T + C2

∫ t

0
G(s)ds (4.5)
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By the continuity property of G(t) and (i), we deduce that

G(t) ≤ C1T exp(C2t).

It follows that

y(t) ≤ C1(1 + C2T exp(C2t)) (4.6)

Choose C(T ) = C1(1 + C2T ), by (4.6), there exists a constant C(T ) depending on T only

such that

y(t) ≤ C(T ) exp(C2t) for 0 ≤ t ≤ T. (4.7)

�

We also need another lemma in the proof of Proposition 4.3, in here, we present without

proof, for a detailed explanation, please refer to [4].

Lemma 4.2. Due to the boundedness of all moments, {Mn(t)} is a sequence of square

integrable Ft-martingales. Then, by Doob-Meyer’s decomposition theorem,

∀n ≥ 1 [Mn(t)]2 − 〈Mn(t)〉 , respectively [
√

nMn(t)]2 − n〈Mn(t)〉

are martingales.

Proposition 4.3. For the sequence of stochastic processes defined as Zn(t) = 〈ξn(t, dx), x〉,

{Zn(t)} is tight.

Proof. Now let us consider Zn(t) = 〈ξn(t, dx), x〉 =
√

n[x̄n(t) − x̄(t)]. There exists T > 0,

such that 0 ≤ t ≤ T . By (3.18),

x̄n(t) = x̄n(0) +

∫ t

0
(1 − p(x̄n(s))) − (1 − γ)p(x̄n(s))x̄n(s)ds + Mn(t) (4.8)
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with 〈Mn(t)〉 vanishes uniformly in t as n→ +∞, so we also have that

x̄(t) = x̄(0) +

∫ t

0
(1 − p(x̄(s))) − (1 − γ)p(x̄(s))x̄(s)ds (4.9)

so we have

Zn(t) = Zn(0) +

∫ t

0
−
√

n(p(x̄n(s)) − p(x̄(s))) − (1 − γ)
√

n[p(x̄n(s))(x̄n(s) − x̄(s))

+(p(x̄n(s)) − p(x̄(s)))x̄(s)]ds +
√

nMn(t)
(4.10)

For the term p(x̄n(s)) − p(x̄(s)), by the mean value theorem, there exists vn(s), with

{vn(s)} a sequence of stochastic processes, such that for every n, p(x̄n(s)) − p(x̄(s)) =

p′(vn(s))(x̄n(s) − x̄(s)).

In the following discussion, when we come across such terms, we will adopt same

notations.

Denote qn(v, s) = −p′(vn(s)) − (1 − γ)[p(x̄n(s)) + p′(vn(s))x̄(s)].

By (4.5), Zn(t) itself is (4.6) below.

Zn(t) = Zn(0) +

∫ t

0
qn(v, s)Zn(s)ds +

√
nMn(t) (4.11)

〈
√

nMn(t)〉 =

∫ t

0
(1 − p(x̄n(s)))

n∑
i=1

[
√

n
1
n

((xi(s) + 1) − xi(s))]2

+ p(x̄n(s))
n∑

i=1

[
√

n
1
n

((γxi(s)) − xi(s))]2ds

=

∫ t

0
(1 − p(x̄n(s))) + (1 − γ)2 p(x̄n(s))x̄n(2, s)ds

(4.12)



36

By (4.7), we have

E[ sup
0≤t≤T
〈
√

nMn(t)〉] ≤ T (1 + E[ sup
0≤t≤T

x̄n(2, t)]) (4.13)

E[sup0≤t≤T x̄n(2, t)] is bounded, thus we know that E[sup0≤t≤T 〈
√

nMn(t)〉] is bounded.

Now let us show the tightness of {Zn(t)} in two parts. If our sequence of stochastic

processes satisfy two conditions stated in Definition 7.8, which we will prove below, then

this sequence of stochastic processes is tight.

Part 1. Based on our Assumption 1.2 and Lemma 2.6, there exists M0 > 0, such that

| qn(v, s) |≤ M0. We have

∣∣∣Zn(t)
∣∣∣2 ≤ 3

∣∣∣Zn(0)
∣∣∣2 + 3

∣∣∣ ∫ t

0

∣∣∣qn(v, s)
∣∣∣∣∣∣Zn(s)

∣∣∣ds
∣∣∣2 + 3

∣∣∣√nMn(t)
∣∣∣2 (4.14)

By Cauchy-Schwartz inequality,

∣∣∣ ∫ t

0

∣∣∣qn(v, s)
∣∣∣∣∣∣Zn(s)

∣∣∣ds
∣∣∣2 ≤ ∫ t

0

∣∣∣qn(v, s)
∣∣∣2ds

∫ t

0

∣∣∣Zn(s)
∣∣∣2ds (4.15)

Thus we have that

∣∣∣Zn(t)
∣∣∣2 ≤ 3

∣∣∣Zn(0)
∣∣∣2 + 3

∫ t

0

∣∣∣qn(v, s)
∣∣∣2ds

∫ t

0

∣∣∣Zn(s)
∣∣∣2ds + 3

∣∣∣√nMn(t)
∣∣∣2 (4.16)

Combining with the fact that | qn(v, s) |≤ M0 implies

| Zn(t) |2≤ 3 | Zn(0) |2 +3M2
0T

∫ t

0
| Zn(s) |2 ds + 3 |

√
nMn(t) |2 (4.17)
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Denote An(ω) = 3
∣∣∣Zn(0)

∣∣∣2 + 3 sup0≤t≤T

∣∣∣√nMn(t)
∣∣∣2, by (4.12), for all 0 ≤ t′ ≤ t,

∣∣∣Zn(t′)
∣∣∣2 ≤ An(ω) + 3M2

0T
∫ t′

0

∣∣∣Zn(s)
∣∣∣2ds (4.18)

∣∣∣Zn(t′)
∣∣∣2 ≤ An(ω) + 3M2

0T
∫ t

0
sup

0≤s′≤s

∣∣∣Zn(s′)
∣∣∣2ds (4.19)

Then

sup
0≤t′≤t

∣∣∣Zn(t′)
∣∣∣2 ≤ An(ω) + 3M2

0T
∫ t

0
sup

0≤s′≤s

∣∣∣Zn(s′)
∣∣∣2ds (4.20)

Denote Un(s) = sup0≤s′≤s | Zn(s′) |2. We point out that E[Un(s)], 0 ≤ s ≤ T is bounded.

To see this we notice that all particles xi(s) are bounded above by n independently iden-

tically distributed Poisson processes Xi(t) advancing at any Poisson clock by exactly one

unit. This shows that in the formula of Un(s) we only have to write upper bounds for

suprema of the form

E[ sup
0≤s′≤s

|xi(s′)|k] ≤ E[|Xi(s)|k] < ∞ , for k ≥ 2 . (4.21)

Then we write the inequality after taking the expected value on both sides of (4.20)

E[Un(t)] ≤ E[An(ω)] + 3M2
0T

∫ t

0
E[Un(s)]ds . (4.22)

We have already shown that

E[ sup
0≤t≤T
〈
√

nMn(t)〉] = E[〈
√

nMn(T )〉]

is bounded uniformly in n ≥ 1.
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So there exists C′1 > 0, independent of n such that

E[ sup
0≤t≤T

∣∣∣√nMn(t)
∣∣∣2] ≤ C′1 < ∞ ,

therefore there exists C1 > 0 independent of n such that E[An(ω)] ≤ C1. By Lemma 4.1,

E[Un(t)] ≤ C(T ) exp (3M2
0Tt) (4.23)

Since 0 ≤ t ≤ T , E[sup0≤t≤T

∣∣∣Zn(t)
∣∣∣2] is bounded, thus Chebyshev’s inequality implies

lim
K→+∞

lim sup
n→+∞

P( sup
0≤t≤T

∣∣∣Zn(t)
∣∣∣ > K) = 0 , (4.24)

which completes the proof of the part 1.

Part 2. Also consider
∣∣∣Zn(t) − Zn(r)

∣∣∣2, with 0 ≤ r < t ≤ T .

∣∣∣Zn(t) − Zn(r)
∣∣∣2 ≤ 2

∫ t

r

∣∣∣qn(v, s)
∣∣∣2ds

∫ t

r

∣∣∣Zn(s)
∣∣∣2ds + 2

∣∣∣√n(Mn(t) − Mn(r))
∣∣∣2 (4.25)

∣∣∣Zn(t) − Zn(r)
∣∣∣2 ≤ 2M2

0(t − r)
∫ t

r

∣∣∣Zn(s)
∣∣∣2ds + 2

∣∣∣√n(Mn(t) − Mn(r))
∣∣∣2 (4.26)

sup
0≤r<t≤T,0<t−r<δ

∣∣∣Zn(t) − Zn(r)
∣∣∣2 ≤ 2M2

0δ

∫ t

r

∣∣∣Zn(s)
∣∣∣2ds

+2 sup
0≤r<t≤T,0<t−r<δ

∣∣∣√n(Mn(t) − Mn(r))
∣∣∣2 (4.27)

Consider E[sup0≤r<t≤T,0<t−r<δ

∣∣∣√n(Mn(t) − Mn(r))
∣∣∣2], which we have that

E[ sup
0≤r<t≤T,0<t−r<δ

∣∣∣√n(Mn(t) − Mn(r))
∣∣∣2] ≤ δ(1 + E[ sup

0≤t≤T
x̄n(2, t)]) (4.28)
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Combining (4.21) and (4.22), we conclude that

E[ sup
0≤r<t≤T,0<t−r<δ

∣∣∣Zn(t) − Zn(r)
∣∣∣2] ≤2δ{M2

0E[
∫ t

r
sup

0≤s′≤s

∣∣∣Zn(s′)
∣∣∣2ds]

+ 1 + E[ sup
0≤t≤T

x̄n(2, t)]}
(4.29)

By (4.23) and above statements, it can be verified that as n→ +∞, for any ε > 0, there

exists δ′ > 0, such that if 0 < t − r < δ′, we have

lim sup
n→+∞

E[ sup
0≤r<t≤T,0<t−r<δ′

∣∣∣Zn(t) − Zn(r)
∣∣∣2] ≤ ε (4.30)

and so we conclude that for any positive number ε0 > 0, we have

lim
λ→0

lim sup
n→+∞

P( sup
0≤r<t≤T,0<t−r<λ

∣∣∣Zn(t) − Zn(r)
∣∣∣ > ε0) = 0 (4.31)

The sequence of stochastic processes {Zn(t)}n≥1 is tight. �

By Proposition 4.3, since {Zn(t)} is tight, just denote a limit point of {Zn(t)} as Z(t).

In Theorem 4.4, we will show that a limit point Z(t) is the solution to a stochastic

differential equation and Z(t) is a diffusion process.

4.2 Proof that Z(t) is a diffusion process

For the convenience of our statement, we will adopt the notation that

qn(s) = −(p′(x̄(s)) + (1 − γ)[p(x̄n(s)) + x̄(s)p′(x̄(s))]) (4.32)

rn(s) = (1 − p(x̄n(s))) + (1 − γ)2 p(x̄n(s))x̄n(2, s)
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Moreover,

q(s) = −
(
p′(x̄(s)) + (1 − γ)

[
p(x̄(s)) + x̄(s)p′(x̄(s))

])
(4.33)

r(s) = (1 − p(x̄(s))) + (1 − γ)2 p(x̄(s))x̄(2, s) .

In here, q(s) to represent for the limit of qn(s) and r(s) to represent for the limit of rn(s),

both with respect to n. By (4.33), we conclude that q(s) < 0, and r(s) > 0.

Theorem 4.4. Let Z(t) be a limit point of the tight sequence of stochastic processes {Zn(t)},

in other words there exists a subsequence converging in distribution to Z(t). Then for any

function ϕ ∈ C3(R), with |ϕ′|, |ϕ′′| and |ϕ(3)|bounded,

M(ϕ,Z(t), t) = ϕ(Z(t)) − ϕ(Z(0)) −
∫ t

0
[q(s)Z(s)ϕ′(Z(s)) +

1
2

r(s)ϕ′′(Z(s))]ds , (4.34)

where M(ϕ,Z(t), t) is a Ft- martingale.

Remark. The space or C∞c (R) with all bounded derivatives trivially satisfies this con-

dition for the test function ϕ.

Definition 4.5. By (1.6) and (1.7), for the pure jump processes {Zn(t)}, 0 ≤ t ≤ T,

ϕ(Zn(t)) = ϕ(Zn(0)) +

∫ t

0
−
√

nϕ′(Zn(s))x̄′(s) + n
{
(1 − p(x̄n(s)))[ϕ(Zn(s) +

1
√

n
)

−ϕ(Zn(s))] − p(x̄n(s))ϕ(Zn(s))
}
+ p(x̄n(s))

n∑
i=1

ϕ(Zn(s) −
(1 − γ)
√

n
xi(s))ds + Mn(ϕ,Z(t), t)

(4.35)

This equation serves as definition of the martingales Mn(ϕ,Z(t), t).

Proof. (Theorem 4.4)
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By Taylor’s formula with mean value form of remainder, there exists {εi(n, s)}(possibly

random), 0 ≤ i ≤ n, with the property that 0 < εi(n, s) < 1, such that

ϕ(Zn(s) +
1
√

n
) − ϕ(Zn(s)) =

1
√

n
ϕ′(Zn(s)) +

1
2n
ϕ′′(Zn(s)) +

1

6n
3
2

ϕ(3)(Zn(s) +
ε0(n, s)
√

n
)

(4.36)

and

ϕ(Zn(s) −
(1 − γ)
√

n
xi(s)) − ϕ(Zn(s)) = −

(1 − γ)
√

n
xi(s)ϕ′(Zn(s))

+
(1 − γ)2

2n
x2

i (s)ϕ′′(Zn(s)) −
(1 − γ)3

6n
3
2

x3
i (s)ϕ(3)(Zn(s) −

(1 − γ)εi(n, s)
√

n
xi(s))

(4.37)

x̄′(s) = (1 − p(x̄(s))) − (1 − γ)p(x̄(s))x̄(s) (4.38)

So our (4.35) is

ϕ(Zn(t)) = ϕ(Zn(0)) +

∫ t

0

√
n
{
[(1 − p(x̄n(s))) − (1 − γ)p(x̄n(s))x̄n(s)] − [(1 − p(x̄(s)))

− (1 − γ)p(x̄(s))x̄(s)]
}
ϕ′(Zn(s)) +

1
2

[(1 − p(x̄n(s)))

+ (1 − γ)2 p(x̄n(s))x̄n(2, s)]ϕ′′(Zn(s))ds + Rn(ϕ, t) + Mn(ϕ,Z(t), t)
(4.39)

In here,

Rn(ϕ, t) =

∫ t

0

1
6
√

n
[(1 − p(x̄n(s)))ϕ(3)(Zn(s) +

ε0(n, s)
√

n
)−

(1 − γ)3 p(x̄n(s))
1
n

n∑
i=1

x3
i (s)ϕ(3)(Zn(s) −

(1 − γ)εi(n, s)
√

n
xi(s))]ds

(4.40)

with the existence of a positive constant CRn(ϕ,t), such that

E[
∣∣∣Rn(ϕ, t)

∣∣∣2] ≤
CRn(ϕ,t)

n
(4.41)
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As n→ +∞, E[
∣∣∣Rn(ϕ, t)

∣∣∣2] vanishes uniformly in t.

Also by applying Taylor’s formula, there exists 0 ≤ ηn(s) ≤ 1 such that

p(x̄n(s)) = p(x̄(s)) + p′(x̄(s))(x̄n(s) − x̄(s)) +
1
2

p′′(x̄(s) + ηn(s)(x̄n(s) − x̄(s)))(x̄n(s) − x̄(s))2

(4.42)

and

√
n
{
[(1 − p(x̄n(s))) − (1 − γ)p(x̄n(s))x̄n(s)] − [(1 − p(x̄(s))) − (1 − γ)p(x̄(s))x̄(s)]

}
=

− p′(x̄(s))Zn(s) − (1 − γ)(p′(x̄(s))x̄(s) + p(x̄n(s)))Zn(s) + Rn(2, s)
(4.43)

In here

Rn(2, s) = −
1
2

(1 + (1 − γ)x̄(s))p′′(x̄(s) + ηn(s)(x̄n(s) − x̄(s)))(x̄n(s) − x̄(s))Zn(s) . (4.44)

One step further, since x̄(s), p′′(x̄(s)+ηn(s)(x̄n(s)−x̄(s))) are bounded, there exists a constant

CRn(2,s), such that

E[Rn(2, s)] ≤ CRn(2,s)E
1
2 [|x̄n(s) − x̄(s)|2]E

1
2 [|Zn(s)|2] . (4.45)

As we have already shown in Proposition 4.3, since E[|Zn(s)|2] is bounded, as n→ +∞,

E[Rn(2, s)] vanishes uniformly in s.

We have

ϕ(Zn(t)) = ϕ(Zn(0)) +

∫ t

0
qn(s)Zn(s)ϕ′(Zn(s)) +

1
2

rn(s)ϕ′′(Zn(s))ds

+ Mn(ϕ,Z(t), t) +

∫ t

0
Rn(2, s)ϕ′(Zn(s))ds + Rn(ϕ, t)

(4.46)



43

By (4.46), the sequence of martingales {Mn(ϕ,Z(t), t)} is given by

Mn(ϕ,Z(t), t) = ϕ(Zn(t)) − ϕ(Zn(0)) −
∫ t

0
qn(s)Zn(s)ϕ′(Zn(s)) +

1
2

rn(s)ϕ′′(Zn(s))ds

−

∫ t

0
Rn(2, s)ϕ′(Zn(s))ds − Rn(ϕ, t)

(4.47)

Let’s arbitrarily choose a bounded random variable H(ω) ∈ Ft′ and 0 ≤ t′ < t ≤ T .

Define the functional

V(t) 7→ [ϕ(V(t)) − ϕ(V(t′)) −
∫ t

t′
q(s)V(s)ϕ′(V(s)) +

1
2

r(s)ϕ′′(V(s))ds]H(ω) (4.48)

Denote this functional as ρ, by the continuous property of ϕ, ϕ′ and ϕ′′, for every V(t) ∈

D([t′,T ],R), ρ(V(t)) is a continuous functional and we have that E[ρ(Zn(t))] converges to

E[ρ(Z(t))].

Just denote f (n, ϕ, t, t′) =
∫ t

t′
(q(s) − qn(s))Zn(s)ϕ′(Zn(s)) + 1

2 (r(s) − rn(s))ϕ′′(Zn(s)) −

Rn(2, s)ϕ′(Zn(s))ds− (Rn(ϕ, t)−Rn(ϕ, t′)), using a similar argument as we did to E[Rn(2, s)],

we can show that E[ f (n, ϕ, t, t′)] vanishes as n→ ∞.

By (4.47), when 0 ≤ t′ ≤ t ≤ T , for every n,

E
{
[Mn(ϕ,Z(t), t) − Mn(ϕ,Z(t′), t′)]H(ω)

}
= E{[ϕ(Zn(t)) − ϕ(Zn(t′))−∫ t

t′
qn(s)Zn(s)ϕ′(Zn(s)) +

1
2

rn(s)ϕ′′(Zn(s))ds −
∫ t

t′
Rn(2, s)ϕ′(Zn(s))ds−

(Rn(ϕ, t) − Rn(ϕ, t′))]H(ω)} = E[ρ(Zn(t))] + E[ f (n, ϕ, t, t′)H(ω)] = 0

(4.49)
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Since limn→+∞ E[ f (n, ϕ, t, t′)H(ω)] = 0, as n→ +∞, we have

lim
n→+∞

E[ρ(Zn(t))] = E{[ϕ(Z(t)) − ϕ(Z(t′))

−

∫ t

t′
q(s)Z(s)ϕ′(Z(s)) +

1
2

r(s)ϕ′′(Z(s))ds]H(ω)} = 0 .
(4.50)

We conclude that ϕ(Z(t))−ϕ(Z(0))−
∫ t

0
q(s)Z(s)ϕ′(Z(s))+1

2r(s)ϕ′′(Z(s))ds is aFt-martingale.

We just denote this martingale as M(ϕ,Z(t), t).

Thus we have

ϕ(Z(t)) = ϕ(Z(0)) +

∫ t

0
q(s)Z(s)ϕ′(Z(s)) +

1
2

r(s)ϕ′′(Z(s))ds + M(ϕ,Z(t), t) (4.51)

When ϕ(x) = x, we have that

Z(t) = Z(0) +

∫ t

0
q(s)Z(s)ds + M(ϕ,Z(t), t) , ϕ(z) = z (4.52)

This concludes the proof. �

4.3 Z(t) is a one dimensional linear diffusion process and

its explicit formula

In our next Theorem 4.6, we will show that Zn(t) converges in distribution to a one dimen-

sional linear diffusion process and will give its explicit formula.

Theorem 4.6. Zn(t) converges in distribution to a linear diffusion process Z(t). Z(t) have a
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same distribution to a solution of the below stochastic differential equation

X(t) = X(0) +

∫ t

0
q(s)X(s)ds +

∫ t

0
r

1
2 (s)dW(s), X(0) = Z(0) (4.53)

with coefficients given in (4.33). {W(t)}t≥0 in here is a one-dimensional Brownian motion.

Proof. By Theorem 4.4, we have already given the explicit formula for ϕ(Zn(t)), which is

given in (4.46). For the martingale part, which is Mn(ϕ,Z(t), t), its quadratic variation is

given as

〈Mn(ϕ,Z(t), t)〉 =

∫ t

0
{n(1 − p(x̄n(s)))[ϕ(Zn(s) +

1
√

n
) − ϕ(Zn(s))]2

+p(x̄n(s))
n∑

i=1

[ϕ(Zn(s) −
(1 − γ)
√

n
xi(s)) − ϕ(Zn(s))]2}ds

=

∫ t

0
[(1 − p(x̄n(s))) + (1 − γ)2 p(x̄n(s))x̄n(2, s)](ϕ′(Zn(s)))2ds + Rn(3, ϕ, t)

(4.54)
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with

Rn(3, ϕ, t) =

∫ t

0

1
4n

(ϕ′′(Zn(s)))2[(1 − p(x̄n(s))) + (1 − γ)4 p(x̄n(s))x̄n(4, s)]

+
1

36n2 [(1 − p(x̄n(s)))(ϕ(3)(Zn(s) +
ε0(n, s)
√

n
))2+

(1 − γ)6 p(x̄n(s))
1
n

n∑
i=1

x6
i (s)(ϕ(3)(Zn(s) −

(1 − γ)εi(n, s)
√

n
xi(s)))2]+

1
√

n
ϕ′(Zn(s))ϕ′′(Zn(s))[(1 − p(x̄n(s))) − (1 − γ)3 p(x̄n(s))x̄n(3, s)]+

1
3n
ϕ′(Zn(s))[(1 − p(x̄n(s)))ϕ(3)(Zn(s) +

ε0(n, s)
√

n
)+

(1 − γ)4 p(x̄n(s))
1
n

n∑
i=1

x4
i (s)ϕ(3)(Zn(s) −

(1 − γ)εi(n, s)
√

n
xi(s))]+

1

6n
3
2

ϕ′′(Zn(s))[(1 − p(x̄n(s)))ϕ(3)(Zn(s) +
ε0(n, s)
√

n
)−

(1 − γ)5 p(x̄n(s))
1
n

n∑
i=1

x5
i (s)ϕ(3)(Zn(s) −

(1 − γ)εi(n, s)
√

n
xi(s))]ds

(4.55)

and there exists a positive constant CRn(3,ϕ,t), such that

E[
∣∣∣Rn(3, ϕ, t)

∣∣∣2] ≤
CRn(3,ϕ,t)

n
(4.56)

As n→ +∞, E[
∣∣∣Rn(3, ϕ, t)

∣∣∣2] vanishes uniformly in t.

Which gives Mn(ϕ,Z(t), t) converges to M(ϕ,Z(t), t) as n→ +∞ with

〈M(ϕ,Z(t), t)〉 =

∫ t

0
[(1 − p(x̄(s))) + (1 − γ)2 p(x̄(s))x̄(2, s)](ϕ′(Z(s)))2ds (4.57)

As n→ +∞, taking limits with respect to n on both sides of (4.46), we have

ϕ(Z(t)) = ϕ(Z(0)) +

∫ t

0
q(s)Z(s)ϕ′(Z(s)) +

1
2

r(s)ϕ′′(Z(s))ds + M(ϕ,Z(t), t) (4.58)
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and by (4.57), there exists a one dimensional Brownian motion {W(t)}t≥0, such that

ϕ(Z(t)) = ϕ(Z(0)) +

∫ t

0
q(s)Z(s)ϕ′(Z(s)) +

1
2

r(s)ϕ′′(Z(s))ds +

∫ t

0
r

1
2 (s)ϕ′(Z(s))dW(s)

(4.59)

choose ϕ(x) = x, Z(t) is an Ito process and (4.59) is

Z(t) = Z(0) +

∫ t

0
{−p′(x̄(s)) − (1 − γ)[p(x̄(s)) + x̄(s)p′(x̄(s))]}Z(s)ds

+

∫ t

0
[(1 − p(x̄(s))) + (1 − γ)2 p(x̄(s))x̄(2, s)]

1
2 dW(s)

(4.60)

Z(t) has the same distribution to X(t), with X(t) = X(0)+
∫ t

0
q(s)X(s)ds+

∫ t

0
r

1
2 (s)dW(s).

Coefficients are given as q(s) = −p′(x̄(s)) − (1 − γ)[p(x̄(s)) + x̄(s)p′(x̄(s))], r(s) =

(1 − p(x̄(s))) + (1 − γ)2 p(x̄(s))x̄(2, s). Zn(t) converges to a linear diffusion process given by

(4.53).

�

4.4 Proof that Z(t) is a Gaussian process

The computation process largely depends on the result and method of [22], Sec 5.6. It can

also be found in [20]. Define the linear process (U(t)) as the solution of the linear stochastic

differential equation

dU(t) = q(t)U(t)dt + r
1
2 (t)dW(t) (4.61)

with coefficients (r, q) defined in (4.33).

Proposition 4.7. The limiting process (Z(t))t≥0 is the unique solution of the one-dimensional

linear stochastic differential equation (4.61). Assuming that
√

n(x̄n(0) − x̄(0)) converges in
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distribution to normal random variable Z(0), then (Z(t)) is Gaussian.

Proof. By (4.60), we have that Z(t) satisfies (4.61). Consider the deterministic equation

dΦ(t) = q(t)Φ(t)dt (4.62)

with Φ(0) = 1. The solution to (4.62) is

Φ(t) = exp
( ∫ t

0
q(s)ds

)
.

Define

Z(t) = Φ(t)Z(0) + Φ(t)
∫ t

0
Φ−1(s)r

1
2 (s)dW(s) .

By Ito’s rule, we have that

dZ(t) = Φ′(t)Z(0) + Φ′(t)
∫ t

0
Φ−1(s)r

1
2 (s)dW(s) + Φ(t)Φ−1(t)r

1
2 (t)dW(t)

= q(t)Z(t)dt + r
1
2 (t)dW(t) .

So Z(t) here is exactly the solution to (4.61).

Uniqueness of Z(t) is verified immediately due to the fact that r(t), q(t) are smooth and

not depending on the space variable and the drift coefficient is linear, hence Lipschitz.

The above computation thus implies that

Z(t) = Φ(t)Z(0) + Φ(t)
∫ t

0
Φ−1(s)r

1
2 (s)dW(s)

= e
∫ t

0 q(s)dsZ(0) + e
∫ t

0 q(s)ds
∫ t

0
e−

∫ s
0 q(u)dur

1
2 (s)dW(s) .
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Provided Z(0) is Gaussian, we see that the stochastic integral is Gaussian as the limit in L2

of sums ∑
1≤ j≤m

r̃(s j−1)(W(s j) −W(s j−1)) |s j − s j−1| = t/m m→ ∞ ,

with r̃(s) = Φ−1(s)r
1
2 (s). This concludes the proof. �

4.5 The covariance of Z(t)

In [22], there is a direct conclusion indicating that for such stochastic process in the form

of Z(t) is a Gaussian process, and we in here analyze the characteristic function of Z(t) at

time t ≥ 0.

Denote R(t) =
Z(t)
Φ(t) , and so

R(t) = Z(0) +

∫ t

0
Φ−1(s)r

1
2 (s)dW(s) (4.63)

with

dR(t) = Φ−1(t)r
1
2 (t)dW(t) (4.64)

Consider eiξR(t), by Ito’s formula, we have

d[eiξR(t)] = iξeiξR(t)Φ−1(t)r
1
2 (t)dW(t) −

1
2
ξ2eiξR(t)Φ−2(t)r(t)dt (4.65)

and

eiξR(t) = eiξR(0) + iξ
∫ t

0
eiξR(s)Φ−1(s)r

1
2 (s)dW(s) −

1
2
ξ2

∫ t

0
eiξR(s)Φ−2(s)r(s)ds (4.66)
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thus

E[eiξR(t)] = E[eiξR(0)] −
1
2
ξ2

∫ t

0
E[eiξR(s)]Φ−2(s)r(s)ds (4.67)

By solving the differential equation (4.67), we conclude that R(t) is normally distributed

at any time t ≥ 0, and so is Z(t).

Z(t) is a Gaussian process given Assumption 2.3, and the covariance form, when 0 ≤

t1 ≤ t2 < ∞, is given as

Cov(Z(t1),Z(t2)) = exp
( ∫ t1

0
q(s)ds +

∫ t2

0
q(s)ds

)
×

∫ t1

0
exp

(
− 2

∫ s

0
q(u)du

)
r(s)ds

= Φ(t1)Φ(t2)
∫ t1

0
Φ−2(s)r(s)ds .

(4.68)



Chapter 5

Fluctuation limit φ(x) = xk, k ≥ 2,

induction step

By Proposition 4.3, Theorem 4.4 and Theorem 4.6, we have already shown that (Zn(t)),

n ≥ 1 is tight and the limit point Z(t) is the solution to the linear stochastic differential

equation (4.61). Now we introduce the processes Zn(k, t), k ≥ 2 and shall show that Zn(k, t)

is also tight. This implies that the joint process

Zn(k, t) = (Zn(1, t),Zn(2, t), . . . ,Zn(k, t)) t ≥ 0 , indexed over n (5.1)

is tight. Recall that

Zn(1, t) = Zn(t) , Z(1, t) = Z(t) . (5.2)

Consider now a limit point

Z(k, t) = (Z(1, t),Z(2, t), . . . ,Z(k, t)) t ≥ 0 (5.3)

51
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of this k-dimensional process. Under our assumptions, (Z(1, t),Z(2, t), ...,Z(k, t)) is a k-

dimensional linear diffusion process and, as a consequence, a Gaussian process, if the

initial value is Gaussian.

5.1 The formula of Z(k, t)

Using a similar argument as what we did in the proof of Theorem 4.6, in here, notations

are a bit different. We denote

qn(k,Zn(s),Zn(2, s), ...,Zn(k, s), s) = (5.4)

k∑
j=1

[(1 − p(x̄n(s)))
(
k
j

)
Zn(k − j, s) − p′(x̄(s))Zn(s)

(
k
j

)
x̄(k − j, s)]

−(1 − γk)[p(x̄n(s))Zn(k, s) + p′(x̄(s))Zn(s)x̄(k, s)] ,

together with

rn(k, s) = (1 − p(x̄n(s)))[
(
k
1

)2

x̄n(2k − 2, s) + 2
(
k
1

)(
k
2

)
x̄n(2k − 3, s) + · · · + 1]

+(1 − γk)2 p(x̄n(s))x̄n(2k, s)

and again

q(k,Z(s),Z(2, s), ...,Z(k, s), s) = (5.5)

k∑
j=1

[(1 − p(x̄(s)))
(
k
j

)
Z(k − j, s) − p′(x̄(s))Z(s)

(
k
j

)
x̄(k − j, s)]

−(1 − γk)[p(x̄(s))Z(k, s) + p′(x̄(s))Z(s)x̄(k, s)] ,
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and also

r(k, s) = (1 − p(x̄(s)))[
(
k
1

)2

x̄(2k − 2, s) + 2
(
k
1

)(
k
2

)
x̄(2k − 3, s) + · · · + 1]

+(1 − γk)2 p(x̄(s))x̄(2k, s) .

Theorem 5.1. For k ≥ 2, with the notations from eq. (5.1)-(5.3), assume that (Zn(k−1, t))t≥0

converges in distribution (jointly in all 1 ≤ j ≤ k − 1) to the process (Z(k − 1, t))t≥0. Let

(Z(k, t))t≥0 be a limit point of the tight sequence of stochastic processes {Zn(k, t)}. Then, for

any function ϕ ∈ C3(R) with bounded derivatives, the process

M(ϕ,Z(k, t), t) = ϕ(Z(k, t)) − ϕ(Z(k, 0))

−

∫ t

0
[q(k,Z(s),Z(2, s), ...,Z(k, s), s)ϕ′(Z(k, s)) +

1
2

r(k, s)ϕ′′(Z(k, s))]ds

(5.6)

is a Ft- martingale.

Remark. 1) The test functions here are not the same test functions φ, including the

special case of polynomials, used for the fluctuation random field ξn(t), which are defined

in Definition 1.4. Here we are simply proving that the limit point of the process Zn(k, t)

satisfies a certain martingale problem. The test functions φ(x) = xk give us a diffusion

process Z(xk, t). Now this process is characterized by its own martingale problem, with test

functions ϕ(z). Note the use of the variable z to distinguish the two levels of test functions.

2) We note the set includes smooth functions with compact support. However, we shall

need the fact that ϕ(z) = z is a valid test function. Since the derivatives are bounded, φ is

sub-linear anyway.
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Definition 5.2. When ϕ(z) = z we use the simplified notation

M(ϕ,Z(k, t), t) = M(Z(k, t), t) . (5.7)

This is consistent with Definition 5.4, eq. (5.7) for k > 1 and eq. (4.52) for k = 1.

5.2 Differential formula and martingales for Zn(k, t)

First, let us still consider the martingale part involved in this pure jump process, actually

large part of the below computations are just repeating what we did before, we repeat the

computation process here merely to keep the integrity of our proof.

For a test function φ as in Definition 1.4, including polynomials, consider the martingale

Mn(φ, t) given below as

Mn(φ, t) = x̄n(φ, t) − x̄n(φ, 0) −
n∑

i=1

∫ t

0
(1 − p(x̄n(s)))

1
n

[φ(xi(s) + 1) − φ(xi(s))]

+p(x̄n(s))
1
n

[φ(γxi(s)) − φ(xi(s))]ds

(5.8)

and the quadratic variation is given below as

〈Mn(φ, t)〉 =

n∑
i=1

∫ t

0
(1 − p(x̄n(s)))[

1
n

(φ(xi(s) + 1) − φ(xi(s)))]2

+p(x̄n(s))[
1
n

(φ(γxi(s)) − φ(xi(s)))]2ds

(5.9)

〈Mn(k, t)〉 vanishes uniformly in t as n → +∞. Using same notations, when the test
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function is φ(x) = xk, k ∈ N,

x̄n(k, t) = x̄n(k, 0) +

∫ t

0
(1 − p(x̄n(s)))

k∑
j=1

(
k
j

)
x̄n(k − j, s)

−(1 − γk)p(x̄n(s))x̄n(k, s)ds + Mn(k, t)

(5.10)

and as n→ +∞,

x̄(k, t) = x̄(k, 0) +

∫ t

0
(1 − p(x̄(s)))

k∑
j=1

(
k
j

)
x̄(k − j, s) − (1 − γk)p(x̄(s))x̄(k, s)ds (5.11)

In here, x̄(k, t) is deterministic and still consider their difference,

x̄n(k, t) − x̄(k, t) = x̄n(k, 0) − x̄(k, 0) +

∫ t

0

k∑
j=1

(
k
j

)
[(1 − p(x̄n(s)))(x̄n(k − j, s) − x̄(k − j, s))

−(p(x̄n(s)) − p(x̄(s)))x̄(k − j, s)]

−(1 − γk)[p(x̄n(s))(x̄n(k, s) − x̄(k, s)) + (p(x̄n(s)) − p(x̄(s)))x̄(k, s)]ds + Mn(k, t)
(5.12)

√
n(x̄n(k, t) − x̄(k, t)) =

√
n(x̄n(k, 0) − x̄(k, 0))

+

∫ t

0

k∑
j=1

(
k
j

)
[(1 − p(x̄n(s)))

√
n(x̄n(k − j, s) − x̄(k − j, s)) −

√
n(p(x̄n(s)) − p(x̄(s)))x̄(k − j, s)]

−(1 − γk)[p(x̄n(s))
√

n(x̄n(k, s) − x̄(k, s)) +
√

n(p(x̄n(s)) − p(x̄(s)))x̄(k, s)]ds +
√

nMn(k, t)
(5.13)

p(x̄n(s)) − p(x̄(s)) is still processed as what we did in Proposition 4.3 of Chapter 4, so
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for (5.13), we simplify to (5.14), which, there exists {vn(s)}, such that

Zn(k, t) = Zn(k, 0) +

∫ t

0

k∑
j=1

[(1 − p(x̄n(s)))
(
k
j

)
Zn(k − j, s) − p′(vn(s))Zn(s)

(
k
j

)
x̄(k − j, s)]

−(1 − γk)[p(x̄n(s))Zn(k, s) + p′(vn(s))Zn(s)x̄(k, s)]ds +
√

nMn(k, t)
(5.14)

This process also has martingale part involved and its quadratic variation is given in

(5.15).

〈Zn(k, t)〉 =

∫ t

0

n∑
i=1

(1 − p(x̄n(s)))[
√

n
1
n

((xi(s) + 1)k − xk
i (s))]2

+p(x̄n(s))[
√

n
1
n

((γxi(s))k − xk
i (s))]2ds =

∫ t

0
(1 − p(x̄n(s)))[

(
k
1

)2

x̄n(2k − 2, s)

+2
(
k
1

)(
k
2

)
x̄n(2k − 3, s) + · · · + 1] + (1 − γk)2 p(x̄n(s))x̄n(2k, s)ds

(5.15)

We will prove similar conclusions for {Zn(k, t)}, with similar methods to the ones we

used for {Zn(t)}.

5.3 Tightness of (Zn(k, t)), k ≥ 2

Proposition 5.3. For the sequence of stochastic processes defined as in (2.27)

Zn(k, t) = 〈ξn(t, dx), xk〉 t ≥ 0 ,

indexed by n ≥ 1, is tight as a family of stochastic processes in the Skorokhod space.

Proof. Preliminary considerations. In Proposition 4.3, we have already shown that when

j = 1, {Zn( j, t)} is tight. Using induction hypothesis, we know that for every j ≤ k − 1,
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0 ≤ t ≤ T ,

(according to (7.12))
∫ t

0
E[ sup

0≤s′≤s

∣∣∣Zn( j, s′)
∣∣∣2]ds is bounded, and

( according to (7.13)) {Zn( j, t)} satisfies the modulus of continuity bound .

For the tightness of Zn(k, t), we divide our proof into two parts, as we did for the k = 1 case.

Part 1. Equations (5.14) and (5.15) show that there exists g j(n, k, s), 1 ≤ j ≤ k, such that

Zn(k, t) = Zn(k, 0) +

k∑
j=1

∫ t

0
g j(n, k, s)Zn( j, s)ds +

√
nMn(k, t) (5.16)

and

∣∣∣Zn(k, t)
∣∣∣2 ≤ 3k{

∣∣∣Zn(k, 0)
∣∣∣2 +

k∑
j=1

∣∣∣ ∫ t

0
g j(n, k, s)Zn( j, s)ds

∣∣∣2 +
∣∣∣√nMn(k, t)

∣∣∣2} , (5.17)

since ∣∣∣ ∫ t

0
g j(n, k, s)Zn( j, s)ds

∣∣∣2 ≤ ∫ t

0

∣∣∣g j(n, k, s)
∣∣∣2ds

∫ t

0

∣∣∣Zn( j, s)
∣∣∣2ds . (5.18)

Actually by Lemma 2.6 and (5.14), we already have that for every n ∈ N,
∣∣∣g j(n, k, s)

∣∣∣ are

bounded by a constant, and in Proposition 4.3 and our assumption, for every 1 ≤ j ≤ k − 1,

at any moment 0 ≤ t ≤ T ,
∫ t

0
E[sup0≤s′≤s

∣∣∣Zn( j, s′)
∣∣∣2]ds is bounded, which we still denote

this common bound as M1.

Thus, at any moment 0 ≤ t ≤ T , for 1 ≤ j ≤ k − 1,
∫ t

0
E[sup0≤s′≤s

∣∣∣Zn( j, s′)
∣∣∣2]ds < M1

and for every n ∈ N,
∣∣∣g j(n, k, s)

∣∣∣ < M1. Thus we have that

∣∣∣Zn(k, t)
∣∣∣2 ≤ 3k{

∣∣∣Zn(k, 0)
∣∣∣2 + M2

1T
k∑

j=1

∫ t

0

∣∣∣Zn( j, s)
∣∣∣2ds +

∣∣∣√nMn(k, t)
∣∣∣2} (5.19)
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Denote An(k, ω) = 3k{
∣∣∣Zn(k, 0)

∣∣∣2 + sup0≤t≤T

∣∣∣√nMn(k, t)
∣∣∣2}. Boundedness of E[An(k, ω)]

be proved the same way as for the case when k = 1, at any moment 0 ≤ t′ ≤ t, we have

∣∣∣Zn(k, t′)
∣∣∣2 ≤ An(k, ω) + 3kM2

1T
k−1∑
j=1

∫ t′

0

∣∣∣Zn( j, s)
∣∣∣2ds + 3kM2

1T
∫ t′

0

∣∣∣Zn(k, s)
∣∣∣2ds (5.20)

∣∣∣Zn(k, t′)
∣∣∣2 ≤ An(k, ω) + 3kM2

1T
k−1∑
j=1

∫ t′

0
sup

0≤s′≤s

∣∣∣Zn( j, s′)
∣∣∣2ds + 3kM2

1T
∫ t′

0
sup

0≤s′≤s

∣∣∣Zn(k, s′)
∣∣∣2ds

(5.21)

then

sup
0≤t′≤t

∣∣∣Zn(k, t′)
∣∣∣2 ≤ An(k, ω) + 3kM2

1T
k−1∑
j=1

∫ t

0
sup

0≤s′≤s

∣∣∣Zn( j, s′)
∣∣∣2ds + 3kM2

1T
∫ t

0
sup

0≤s′≤s

∣∣∣Zn(k, s′)
∣∣∣2ds

(5.22)

Also denote Un(k, s) = sup0≤s′≤s

∣∣∣Zn(k, s′)
∣∣∣2,

E[Un(k, t)] ≤ E[An(k, ω)] + 3kM2
1T

k−1∑
j=1

∫ t

0
E[ sup

0≤s′≤s

∣∣∣Zn( j, s′)
∣∣∣2]ds + 3kM2

1T
∫ t

0
E[Un(k, s)]ds

(5.23)

E[Un(k, t)] ≤ E[An(k, ω)] + 3k2M3
1T 2 + 3kM2

1T
∫ t

0
E[Un(k, s)]ds (5.24)

Also by Gronwall inequality (Lemma 4.1),

E[Un(k, t)] ≤ (E[An(k, ω)] + 3k2M3
1T 2) exp (3kM2

1Tt) (5.25)

Thus E[sup0≤t≤T

∣∣∣Zn(k, t)
∣∣∣2] is bounded.

We have

lim
K→+∞

lim
n→+∞

P( sup
0≤t≤T

∣∣∣Zn(k, t)
∣∣∣ > K) = 0 (5.26)

This ends Part 1.
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Part 2. Also consider
∣∣∣Zn(k, t) − Zn(k, r)

∣∣∣2, with 0 ≤ r < t ≤ T . First,

∣∣∣Zn(k, t) − Zn(k, r)
∣∣∣2 ≤ 2k

{ k∑
j=1

∫ t

r

∣∣∣g j(n, k, s)
∣∣∣2ds

∫ t

r

∣∣∣Zn( j, s)
∣∣∣2ds

+
∣∣∣√n(Mn(k, t) − Mn(k, r))

∣∣∣2} (5.27)

implies

∣∣∣Zn(k, t) − Zn(k, r)
∣∣∣2 ≤ 2k

{
M2

1(t − r)
k∑

j=1

∫ t

r

∣∣∣Zn( j, s)
∣∣∣2ds +

∣∣∣√n(Mn(k, t) − Mn(k, r))
∣∣∣2} .

Notice that

sup
0≤r<t≤T,0<t−r<δ

∣∣∣Zn(k, t) − Zn(k, r)
∣∣∣2

≤ 2kM2
1δ

k∑
j=1

∫ t

r

∣∣∣Zn( j, s)
∣∣∣2ds

+ 2k sup
0≤r<t≤T,0<t−r<δ

∣∣∣√n(Mn(k, t) − Mn(k, r))
∣∣∣2 .

Considering

E[ sup
0≤r<t≤T,0<t−r<δ

∣∣∣√n(Mn(k, t) − Mn(k, r))
∣∣∣2] ,

there exists a constant C1, such that

E[ sup
0≤r<t≤T,0<t−r<δ

∣∣∣√n(Mn(k, t) − Mn(k, r))
∣∣∣2] ≤ C1δ .
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Combining (5.22) and (5.23), we conclude that

E
[

sup
0≤r<t≤T,0<t−r<δ

∣∣∣Zn(k, t) − Zn(k, r)
∣∣∣2]

≤ 2δk
{

M2
1

k∑
j=1

E[
∫ t

r
sup

0≤s′≤s

∣∣∣Zn( j, s′)
∣∣∣2ds] + C1

}
.

By (5.24) and above statements, it can be verified that for every ε > 0, there exists

δ′ > 0 such that if 0 < t − r < δ′, we have

lim sup
n→+∞

E[ sup
0≤r<t≤T,0<t−r<δ′

∣∣∣Zn(k, t) − Zn(k, r)
∣∣∣2] ≤ ε (5.28)

so for any positive number ε0 > 0, we have

lim
λ→0

lim sup
n→+∞

P( sup
0<t−r<λ,0≤r<t≤T

∣∣∣Zn(k, t) − Zn(k, r)
∣∣∣ > ε0) = 0 (5.29)

The sequence of stochastic processes {Zn(k, t)}n≥1 is tight. �

5.4 Proof of Theorem 5.1

By analyzing our stochastic processes {Zn(k, t)} using the differential formulas (1.6)-(1.7)

which is exactly as what we did in our Theorem 4.6, Definition 4.5, we obtain that for a

test function ϕ(x) ∈ C3(R), with |ϕ′|, |ϕ′′|, and |ϕ(3)| bounded, equation (5.30) holds.

Definition 5.4. The martingales Mn(ϕ,Z(k, t), t) are defined by the stochastic differential
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formula

ϕ(Zn(k, t)) = ϕ(Zn(k, 0)) +

∫ t

0
−
√

nϕ′(Zn(k, s))x̄′(k, s)+

n∑
i=1

{(1 − p(x̄n(s)))[ϕ(Zn(k, s) +
1
√

n
(
(
k
1

)
xk−1

i (s) +

(
k
2

)
xk−2

i (s) + · · · + 1)) − ϕ(Zn(k, s))]

+p(x̄n(s))[ϕ(Zn(k, s) −
(1 − γk)
√

n
xk

i (s)) − ϕ(Zn(k, s))]}ds + Mn(ϕ,Z(k, t), t)

(5.30)

In the special case ϕ(z) = z we note that we use the simplified formula (5.7).

By Taylor’s formula with mean value form of remainder, there exists {εi(n, k, s)} (possi-

bly random), 0 ≤ i ≤ n, with the property that 0 < εi(n, k, s) < 1, such that

ϕ(Zn(k, s) +
1
√

n

k∑
j=1

(
k
j

)
xk− j

i (s)) − ϕ(Zn(k, s)) =

1
√

n

k∑
j=1

(
k
j

)
xk− j

i (s)ϕ′(Zn(k, s)) +
1

2n
(

k∑
j=1

(
k
j

)
xk− j

i (s))2ϕ′′(Zn(k, s))+

1

6n
3
2

(
k∑

j=1

(
k
j

)
xk− j

i (s))3ϕ(3)(Zn(k, s) +
ε0(n, k, s)
√

n

k∑
j=1

(
k
j

)
xk− j

i (s))

(5.31)

and

ϕ(Zn(k, s) −
(1 − γk)
√

n
xk

i (s)) − ϕ(Zn(k, s)) =

−
1
√

n
(1 − γk)xk

i (s)ϕ′(Zn(k, s)) +
1
2n

(1 − γk)2x2k
i (s)ϕ′′(Zn(k, s))

−
1

6n
3
2

(1 − γk)3x3k
i (s)ϕ(3)(Zn(k, s) −

εi(n, k, s)
√

n
(1 − γk)xk

i (s))

(5.32)

and

x̄′(k, s) = (1 − p(x̄(s)))
k∑

j=1

(
k
j

)
x̄(k − j, s) − (1 − γk)p(x̄(s))x̄(k, s) (5.33)
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So we have

ϕ(Zn(k, t)) = ϕ(Zn(k, 0)) +

∫ t

0

√
nϕ′(Zn(k, s))[(1 − p(x̄n(s)))

k∑
j=1

(
k
j

)
x̄n(k − j, s)

−(1 − p(x̄(s)))
k∑

j=1

(
k
j

)
x̄(k − j, s) − (1 − γk)(p(x̄n(s))x̄n(k, s) − p(x̄(s))x̄(k, s))]+

1
2
ϕ′′(Zn(k, s))[(1 − p(x̄n(s)))

1
n

n∑
i=1

(
k∑

j=1

(
k
j

)
xk− j

i (s))2 + (1 − γk)2 p(x̄n(s))x̄n(2k, s)]ds

+Rn(ϕ, k, t) + Mn(ϕ,Z(k, t), t)

(5.34)

Rn(ϕ, k, t) =

∫ t

0

1
6
√

n
{(1 − p(x̄n(s)))

1
n

n∑
i=1

[(
k∑

j=1

(
k
j

)
xk− j

i (s))3×

ϕ(3)(Zn(k, s) +
ε0(n, k, s)
√

n

k∑
j=1

(
k
j

)
xk− j

i (s))] − (1 − γk)3 p(x̄n(s))
1
n

n∑
i=1

[x3k
i (s)

×ϕ(3)(Zn(k, s) −
εi(n, k, s)
√

n
(1 − γk)xk

i (s))]}ds

(5.35)

E[
∣∣∣Rn(ϕ, k, t)

∣∣∣2] ≤
CRn(ϕ,k,t)

n
(5.36)

with CRn(ϕ,k,t) a positive constant.

As n→ +∞, E[
∣∣∣Rn(ϕ, k, t)

∣∣∣2] vanishes uniformly in t.

Since

√
n[(1 − p(x̄n(s)))

k∑
j=1

(
k
j

)
x̄n(k − j, s) − (1 − p(x̄(s)))

k∑
j=1

(
k
j

)
x̄(k − j, s)−

(1 − γk)(p(x̄n(s))x̄n(k, s) − p(x̄(s))x̄(k, s))] = {

k∑
j=1

(
k
j

)
[Zn(k − j, s) − p(x̄n(s))Zn(k − j, s)

−p′(x̄(s))Zn(s)x̄(k − j, s)] − (1 − γk)(p(x̄n(s))Zn(k, s) + p′(x̄(s))Zn(s)x̄(k, s))} + Rn(2, k, s)
(5.37)
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with

Rn(2, k, s) = −
1
2

p′′(x̄(s) + ηn(s)(x̄n(s) − x̄(s)))[
k∑

j=1

(
k
j

)
x̄(k − j, s)

+(1 − γk)x̄(k, s)]Zn(s)(x̄n(s) − x̄(s))

(5.38)

As n→ +∞, E[Rn(2, k, s)] vanishes uniformly in s.

ϕ(Zn(k, t)) = ϕ(Zn(k, 0)) +

∫ t

0
ϕ′(Zn(k, s)){

k∑
j=1

[(1 − p(x̄n(s)))
(
k
j

)
Zn(k − j, s)

−p′(x̄(s))Zn(s)
(
k
j

)
x̄(k − j, s)] − (1 − γk)[p(x̄n(s))Zn(k, s) + p′(x̄(s))Zn(s)x̄(k, s)]}ds+

1
2

∫ t

0
ϕ′′(Zn(k, s)){(1 − p(x̄n(s)))[

(
k
1

)2

x̄n(2k − 2, s) + 2
(
k
1

)(
k
2

)
x̄n(2k − 3, s) + · · · + 1]

+(1 − γk)2 p(x̄n(s))x̄n(2k, s)}ds +

∫ t

0
Rn(2, k, s)ϕ′(Zn(k, s))ds + Rn(ϕ, k, t) + Mn(ϕ,Z(k, t), t)

(5.39)

then for any arbitrarily chosen bounded variable H(ω) ∈ Ft′ ,

E{[ϕ(Zn(k, t)) − ϕ(Zn(k, t′)) −
∫ t

t′
ϕ′(Zn(k, s))qn(k,Zn(s),Zn(2, s), ...,Zn(k, s), s)+

1
2
ϕ′′(Zn(k, s))rn(k, s)ds −

∫ t

t′
Rn(2, k, s)ϕ′(Zn(k, s))ds − (Rn(ϕ, k, t) − Rn(ϕ, k, t′))]H(ω)} = 0

(5.40)

As n→ +∞, we have

E{[ϕ(Z(k, t)) − ϕ(Z(k, t′)) −
∫ t

t′
ϕ′(Z(k, s))q(k,Z(s),Z(2, s), ...,Z(k, s), s)+

1
2
ϕ′′(Z(k, s))r(k, s)ds]H(ω)} = 0

(5.41)
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Thus we conclude that

M(ϕ,Z(k, t), t) = ϕ(Z(k, t)) − ϕ(Z(k, 0))

−

∫ t

0
ϕ′(Z(k, s))q(k,Z(s),Z(2, s), ...,Z(k, s), s) +

1
2
ϕ′′(Z(k, s))r(k, s)ds

(5.42)

is a (Ft)t≥0 - martingale. This ends the proof of Theorem 5.1.



Chapter 6

The joint process Z(k, t), k ∈ N

In Chapter 4 (k = 1) and 5 (k ≥ 2) we have shown that for each k ∈ N, (Zn(k, t))t≥0 defined

in (5.1) is tight. In the case k = 1 we know explicitly it is a linear diffusion (Theorem 4.6).

In addition, if we know that if (Zn(k − 1, t))t≥0 converges in distribution to Z(k − 1, t), then

any limit point Z(k, t) of Zn(k, t) is a diffusion with coefficients depending on Z(k−1, t) and

itself, linear in the variable representing itself (Theorem 5.1).

Theorem 4.6 is the verification step and Theorem 5.1 is the induction step of the iden-

tification of the joint law of the process (Z(k, t)) as a linear diffusion. This is accomplished

in Theorem 6.3. The result is possible because the coefficients of Z(k, t) are depending, for

any k > 1, on Z( j, t) with 1 ≤ j ≤ k − 1 only. In that sense we characterize the process

hierarchically over k ≥ 1.

In our Theorem 6.3, we will give an explicit formula for the coefficients of (Z(k, t)).

Moreover, for Gaussian initial value, the process is Gaussian. This is because, under proper

assumptions for initial conditions, Z(t) = Z(1, t) is a Gaussian process, with an explicit

formula for the covariance. Since the vector given as Z(k, t) = (Z(1, t),Z(2, t), ...,Z(k, t)),

for each k > 1 (recall that Z(1, t) = Z(t)) is a multidimensional linear process, it is a

65
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Gaussian process.

6.1 The martingale part

In the presentation of Proposition 6.1, we are looking at the joint distribution of the multi-

dimensional martingale (M(Z(1, t), t),M(Z(2, t), t), ...,M(Z(k, t), t)). Each M(Z( j, t), t), 1 ≤

j ≤ k a martingale that had already been defined in eq. (5.42) for k > 1 and eq. (4.52) for

k = 1.

Proposition 6.1. For every k ∈ N, the (Ft)t≥0 - martingales

(M(Z(1, t), t),M(Z(2, t), t), ...,M(Z(k, t), t)) t ≥ 0

obtained in (5.42) as limits of the martingales in Definition 5.4, are continuous, square

integrable with absolutely continuous cross variation

〈M(Z(i1, t), t),M(Z(i2, t), t)〉 =
1
4

[〈M(Z(xi1 + xi2 , t), t)〉 − 〈M(Z(xi1 − xi2 , t), t)〉] (6.1)

Based on Proposition 6.1, we can define a square integrable matrix in t ≥ 0

A2(t) =



h1(t) h2(t) h3(t) . . . hk(t)

h1(2, t) h2(2, t) h3(2, t) . . . hk(2, t)
...

...
...

. . .
...

h1(k, t) h2(k, t) h3(k, t) . . . hk(k, t)


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with the property that A2(t)AT
2 (t) equals, componentwise for 1 ≤ i1, i2 ≤ k,

〈M(Z(i1, t), t),M(Z(i2, t), t)〉 =

k∑
j=1

∫ t

0
h j(i1, s)h j(i2, s)ds . (6.2)

In fact, based on (6.6) and (6.7), we shall give the exact form of the deterministic

continuous functions h j(i, t), 1 ≤ i ≤ k, 1 ≤ j ≤ k, t ≥ 0

k∑
j=1

h2
j(k, s) = (1 − p(x̄(s)))[

(
k
1

)2

x̄(2k − 2, s) + 2
(
k
1

)(
k
2

)
x̄(2k − 3, s) + · · · + 1]

+ (1 − γk)2 p(x̄(s))x̄(2k, s)

(6.3)

Corollary 6.2. There exists a k-dimensional Brownian motion

Wk(t) = (W1
k (t),W2

k (t), ...,Wk
k (t))T , t ≥ 0 ,

possibly adapted an extenson (F̃t)t≥0 of the filtration (Ft)t≥0 such that

M(Z(i, t), t) =

k∑
j=1

∫ t

0
h j(i, s)dW j

k (s) . (6.4)

We shall prove the proposition and corollary together.

Proof. (Proposition 6.1 and Corollary 6.2)

Consider ϕ(z) = z. Repeating the estimates from the proof of Theorem 5.1 we have

〈Mn(ϕ,Z(k, t), t)〉 =

∫ t

0
ϕ′(Zn(k, s)){(1 − p(x̄n(s)))[

(
k
1

)2

x̄n(2k − 2, s)+

2
(
k
1

)(
k
2

)
x̄n(2k − 3, s) + · · · + 1] + (1 − γk)2 p(x̄n(s))x̄n(2k, s)}ds + Rn(3, ϕ, k, t)

(6.5)
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With Rn(3, ϕ, k, t) as the remainder term. Using a similar argument as we did for

Rn(3, ϕ, t) in Theorem 5.1, as n → +∞, E[
∣∣∣Rn(3, ϕ, k, t)

∣∣∣2] vanishes uniformly in t, so we

have that (we recall that now ϕ(z) = z and Definition 5.4)

〈M(Z(k, t), t)〉 =

∫ t

0
(1 − p(x̄(s)))[

(
k
1

)2

x̄(2k − 2, s) + 2
(
k
1

)(
k
2

)
x̄(2k − 3, s)

+ · · · +1] + (1 − γk)2 p(x̄(s))x̄(2k, s)ds .

(6.6)

For each k, we have a corresponding martingale M(Z(k, t), t). As had already been given

in Section 2.4, when 1 ≤ i1, i2 ≤ k,

Zn(xi1 + xi2 , t) = Zn(i1, t) + Zn(i2, t) . (6.7)

We have already shown that both Zn(i1, t) and Zn(i2, t) and their corresponding martingales

M(Z(i1, t), t) and M(Z(i2, t), t) are tight. Considering a limit point for the pair, we may

consider, without loss of generality, that all converge in distribution as n → +∞. In the

same manner Zn(xi1 + xi2 , t) and Zn(xi1 − xi2 , t), as applied to test functions φ(x) = xi1 + xi2 ,

respectively φ(x) = xi1 − xi2 converge in distribution, together with their martingales.

Using a similar argument as we did for Z(k, t), we have that the quadratic variations

for martingale parts of Z(xi1 + xi2 , t) and Z(xi1 − xi2 , t) are both integrations with respect to

continuous deterministic functions.

The cross variation between M(Z(i1, t), t) and M(Z(i2, t), t) ([22], Sec 1.5), is given by

(6.1). We deduce that the cross-variation between M(Z(i1, t), t) and M(Z(i2, t), t) is abso-

lutely continuous with respect to t.

By Theorem 7.9, there exists a k-dimensional Brownian motion, denoted as Wk(t) =
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(W1
k (t),W2

k (t), ...,Wk
k (t))T , such that

M(Z(i, t), t) =

k∑
j=1

∫ t

0
h j(i, s)dW j

k (s) ,

and the cross-variation, by Ito formula is exactly

〈M(Z(i1, t), t),M(Z(i2, t), t)〉 =

k∑
j=1

∫ t

0
h j(i1, s)h j(i2, s)ds .

�

6.2 Explicit form of the k - dimensional diffusion

The goal is to show Theorem 6.3, which claims that the limit point (Z(k, t))t≥0 can be

identified as a k - dimensional linear diffusion. We describe its drift coefficients with the

following notation, for s ≥ 0

g1(s) = g1(1, s) = −p′(x̄(s)) − (1 − γ)
[
p(x̄(s)) + x̄(s)p′(x̄(s))

]
gk(k, s) = −(1 − γk)p(x̄(s)), k ≥ 2 .

(6.8)

In here, g1(k, s),g2(k, s),...,hk(k, s) are all continuous deterministic functions.

Let U(k, t) be the solution to the equation with coefficients (6.8), respectively (6.3)

U(k, t) = U(k, 0) +

k∑
j=1

∫ t

0
g j(k, s)U( j, s)ds +

k∑
j=1

∫ t

0
h j(k, s)dW j

k (s) (6.9)

with

Wk(t) = (W1
k (t),W2

k (t), ...,Wk
k (t))T
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a k-dimensional Brownian motion.

By (6.9), the vector process

U(k, t) = (U(1, t),U(2, t),U(3, t), ...,U(k − 1, t),U(k, t))T

is a solution to the stochastic differential equation

Y(t) = Y(0) +

∫ t

0
A1(s)Y(s)ds +

∫ t

0
A2(s)dWk(s) ,

Y(0) = (U(1, 0),U(2, 0), ...,U(k, 0))T .

(6.10)

In matrix form, the coefficients are

A1(t) =



g1(t) 0 0 . . . 0

g1(2, t) g2(2, t) 0 . . . 0
...

...
...

. . .
...

g1(k, t) g2(k, t) g3(k, t) . . . gk(k, t)


(6.11)

and A2(t) from (6.1).

The matrices A1(t) ∈ Rk×k, A2(t) ∈ Rk×k. A1(t), A2(t) are continuous, deterministic,

measurable and locally bounded. Then

U(k, t) = (U(1, t),U(2, t), . . . ,U(k − 1, t),U(k, t))

is a k - dimensional linear diffusion process according to Definition 7.7. Then, if the initial

value is Gaussian, so is (U(k, t))t≥0. This is based on a multidimensional argument similar

to our proof of Proposition 4.7 but results directly from the literature, e.g. [22], Sec 5.6.

It remains to identify Z(k, t) with the solution U(k, t).
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Theorem 6.3. For every k ∈ N, Z(k, t) = (Z(t),Z(2, t), ...,Z(k, t))T defined in (5.3) has

the same distribution as the unique solution of the multidimensional stochastic differen-

tial equation (6.10), implying that (Z(t),Z(2, t), ...,Z(k, t)) is a linear diffusion process. If

Z(k, 0) is Gaussian, then (Z(k, t)) is a Gaussian process.

Proof. By our Theorem 5.1, we conclude that

ϕ(Z(k, t)) = ϕ(Z(k, 0)) +

∫ t

0
ϕ′(Z(k, s)){

k∑
j=1

[(1 − p(x̄(s)))
(
k
j

)
Z(k − j, s)−

p′(x̄(s))Z(s)
(
k
j

)
x̄(k − j, s)] − (1 − γk)[p(x̄(s))Z(k, s) + p′(x̄(s))Z(s)x̄(k, s)]}ds

+
1
2

∫ t

0
ϕ′′(Z(k, s)){(1 − p(x̄(s)))[

(
k
1

)2

x̄(2k − 2, s) + 2
(
k
1

)(
k
2

)
x̄(2k − 3, s) + · · · + 1]

+(1 − γk)2 p(x̄(s))x̄(2k, s)}ds + M(ϕ,Z(k, t), t)

(6.12)

with

〈M(ϕ,Z(k, t), t)〉 =

∫ t

0
ϕ′(Z(k, s)){(1 − p(x̄(s)))[

(
k
1

)2

x̄(2k − 2, s)

+2
(
k
1

)(
k
2

)
x̄(2k − 3, s) + · · · + 1] + (1 − γk)2 p(x̄(s))x̄(2k, s)}ds

(6.13)

choose ϕ(x) = x, we have

Z(k, t) = Z(k, 0) +

∫ t

0

k∑
j=1

[(1 − p(x̄(s)))
(
k
j

)
Z(k − j, s) − p′(x̄(s))Z(s)

(
k
j

)
x̄(k − j, s)]

−(1 − γk)[p(x̄(s))Z(k, s) + p′(x̄(s))Z(s)x̄(k, s)]ds + M(Z(k, t), t)

(6.14)

Recall that

(A2(t)AT
2 (t))i1i2 = 〈M(Z(i1, t), t),M(Z(i2, t), t)〉 .

By our (6.14), we conclude that for every k ∈ N, Z(k, t) have the form as (6.9). �
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6.3 The fluctuation field ξ(t), indexed by polynomials, is

Gaussian

To finish the proof of our Theorem 3.4, we still need to show that for a general polynomial

test function φ, Zn(φ, t) converges in distribution to Z(φ, t), which is our Corollary 6.4.

Corollary 6.4. For every polynomial function φ(x) = akxk +ak−1xk−1 + · · ·+a1x+a0, Zn(φ, t)

converges in distribution to a Z(φ, t). Z(φ, t) satisfies the equation given by (3.17).

Proof. In here, denote vk = (a1, a2, ..., ak), and Y(t) = (Z(t),Z(2, t), ...,Z(k, t))T . Since

Zn(φ, t) =

k∑
j=1

a jZn( j, t)

for each j, Zn( j, t) converges in distribution to Z( j, t),
∑k

j=1 a jZn( j, t) converges in distri-

bution to
∑k

j=1 a jZ( j, t). So Zn(φ, t) converges in distribution, which we denote as Z(φ, t),

with

Z(φ, t) =

k∑
j=1

a jZ( j, t) = vkY(t)

By (6.10), we have that

d(vkY(t)) = vkA1(t)Y(t)dt + vkA2(t)dWk(t) (6.15)

By our Theorem 6.3,

vkA2(t)dWk(t) =

k∑
i=1

k∑
j=1

a jhi( j, t)dW i
k(t) (6.16)



73

For Z(φ, t), by our (6.16),

〈Z(φ, t)〉 =

∫ t

0

k∑
i=1

[
k∑

j=1

a jhi( j, s)]2ds (6.17)

which is

〈Z(φ, t)〉 =

∫ t

0

k∑
i=1

∑
1≤ j1, j2≤k

a j1a j2hi( j1, s)hi( j2, s)ds (6.18)

By our Proposition 6.1,

〈Z(φ, t)〉 =
∑

1≤ j1, j2≤k

∫ t

0

k∑
i=1

a j1a j2hi( j1, s)hi( j2, s)ds

=
∑

1≤ j1, j2≤k

a j1a j2〈M(Z( j1, t), t),M(Z( j2, t), t)〉
(6.19)

In Chapter 3, (3.15) gives a Gaussian random field W(φ, t), in here, denote q j(x) = a jx j.

As we have already given a sequence of martingales {
√

nMn(φ, t)} in Chapter 3, and

〈
√

nMn(φ, t)〉 =
1
n

n∑
i=1

∫ t

0
{(1 − p(x̄n(s))[

k∑
j=1

(q j(xi(s) + 1) − q j(xi(s)))]2

+p(x̄n(s))[
k∑

j=1

(q j(γxi(s)) − q j(xi(s)))]2}ds

=
1
n

n∑
i=1

∫ t

0
{p(x̄n(s))

∑
1≤ j1, j2≤k

(q j1(γxi(s)) − q j1(xi(s)))(q j2(γxi(s)) − q j2(xi(s)))+

(1 − p(x̄n(s))
∑

1≤ j1, j2≤k

(q j1(xi(s) + 1) − q j1(xi(s)))(q j2(xi(s) + 1) − q j2(xi(s)))}ds

=
1
n

n∑
i=1

∑
1≤ j1, j2≤k

∫ t

0
{p(x̄n(s))(q j1(γxi(s)) − q j1(xi(s)))(q j2(γxi(s)) − q j2(xi(s)))+

(1 − p(x̄n(s))(q j1(xi(s) + 1) − q j1(xi(s)))(q j2(xi(s) + 1) − q j2(xi(s)))}ds

(6.20)
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In here, we notice that

〈
√

nMn(φ, t)〉 =

∫ t

0
〈µn(s, dx),Ds,nφ〉ds

For every 1 ≤ j1, j2 ≤ k, by what we have proved in Chapter 5, below two formulas

converge in distribution as n→ ∞.

1
n

n∑
i=1

∫ t

0
{p(x̄n(s))(q j1(γxi(s)) − q j1(xi(s)))2+

(1 − p(x̄n(s))(q j1(xi(s) + 1) − q j1(xi(s)))2}ds

(6.21)

1
n

n∑
i=1

∫ t

0
{p(x̄n(s))(q j2(γxi(s)) − q j2(xi(s)))2+

(1 − p(x̄n(s))(q j2(xi(s) + 1) − q j2(xi(s)))2}ds

(6.22)

and their weak limits represent for 〈M(Z( j1, t), t)〉 and 〈M(Z( j2, t), t)〉.

By the cross variation formula, for (6.23),

1
n

n∑
i=1

∫ t

0
{p(x̄n(s))(q j1(γxi(s)) − q j1(xi(s)))(q j2(γxi(s)) − q j2(xi(s)))+

(1 − p(x̄n(s))(q j1(xi(s) + 1) − q j1(xi(s)))(q j2(xi(s) + 1) − q j2(xi(s)))}ds

(6.23)

(6.23) converges in distribution.

By our formula (6.20), 〈
√

nMn(φ, t)〉 converges in distribution, which is equal to 〈W(φ, t)〉,

by (6.20), we have

〈W(φ, t)〉 =
∑

1≤ j1, j2≤k

a j1a j2〈M(Z( j1, t), t),M(Z( j2, t), t)〉 (6.24)

By (6.19) and (6.24), 〈Z(φ, t)〉 = 〈W(φ, t)〉.
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Also, using similar argument, in here,

vkA1(t)Y(t) =

k∑
j=1

a j
( k∑

i=1

gi( j, t)Z(i, t)
)

(6.25)

and by the linearity of the inner product between ξ(t, dx) and the L◦t φ,

〈ξ(t, dx),L◦t φ〉 =

k∑
j=1

〈ξ(t, dx),L◦t q j〉 (6.26)

For every 1 ≤ j ≤ k,

k∑
i=1

gi( j, t)Z(i, t) = g1( j, t)Z(t) + g2( j, t)Z(2, t) + · · · + g j( j, t)Z( j, t) (6.27)

and

〈ξ(t, dx),L◦t (x j)〉 = 〈ξ(t, dx),Lt(x j)〉 + 〈ξ(t, dx),Gt(x j)〉 =

(1 − p(x̄(s)))
(( j

1

)
Z( j − 1, t) +

(
j
2

)
Z( j − 2, t) + · · · +

(
j

j − 1

)
Z(t)

)
− (1 − γ j)p(x̄(t))Z( j, t)

−p′(x̄(t))Z(t)
(
(1 − γ j)x̄( j, t) +

(
j
1

)
x̄( j − 1, t) + · · · +

(
j

j − 1

)
x̄(t) + 1

)
(6.28)

By our (6.14), gi( j, t) in (6.27) equals the coefficient for each Z(i, t) in (6.28).

So we have for every 1 ≤ j ≤ k,

a j

k∑
i=1

gi( j, t)Z(i, t) = 〈ξ(t, dx),L◦t q j〉 .

That is, vkA1(t)Y(t) = 〈ξ(t, dx),L◦t φ〉. Also, W(φ, t) =
∫ t

0
vkA2(s)dWk(s). So Z(φ, t) satisfies

(3.17). �



Chapter 7

Appendix

We give a brief overview of some general concepts and definitions used throughout this

paper, adapted to our specific context.

7.1 Gaussian processes and random fields

In here we will present Gaussian random fields based on [22] and [1]. We will present the

definition of Gaussian random fields from both sources.

Definition 7.1. Let a probability space (Ω,F , P), a parameter set, T , ∅, and a metric

space M be given. A stochastic process on M, indexed by T , is a family of M - valued

random variables X(τ, ω), i.e. for every fixed τ ∈ T , X : Ω → M is a measurable function

from F to the Borel sets of M, denoted BM.

The most common choices of M are the Euclidean space but also other spaces, as

for example the path space (Skorokhod for rcll valued processes, or simply the space of

continuous functions for diffusions). An important case is when M is a Banach space, and

specifically a Hilbert space.

76
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The Kolmogorov Extension Theorem shows that the finite dimensional distributions are

sufficient to define a stochastic process if a consistency condition is satisfied ([5]).

Among stochastic processes, a Gaussian process can be given by only the mean and

covariance, since the two determine completely the finite dimensional distributions. Gaus-

sian processes play a central role in stochastic processes. First we introduce the Definition

7.3 and Definition 7.4 based on [22].

Below we will introduce the concept of multivariate Gaussian distribution first, as we

will use this definition to define a Gaussian random field.

Definition 7.2. An n - dimensional vector-valued random variable X = (X1, X2, ..., Xn) on

M = Rn is said to have a multivariate normal (or Gaussian) distribution with mean µ ∈ Rn

and covariance matrix Σ ∈ S ++
n if its probability density function is given by

p(x; µ,Σ) =
1

(2π)
n
2 |Σ|

1
2

exp
(
−

1
2

(x − µ)T Σ−1(x − µ)
)

(7.1)

In here, S ++
n is the space of symmetric positive definite n×n matrices, defined as S ++

n =

{A ∈ Rn×n : A = AT and xT Ax > 0 for all x ∈ Rn such that x , 0}. In here,

µ = E[X] , (Σ)i, j = Cov(Xi, X j)

Definition 7.3 (Gaussian process). Let M = Rd with the Euclidean norm. A stochastic

process X(τ, ω) indexed by T (which needs not be a time interval) on M is Gaussian if for

any finite collection τ1, . . . , τk ∈ T ,

(X(τ1, ω), . . . , X(τk, ω)) is jointly Gaussian (normal) .
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Equivalently, we can define as follows.

Definition 7.4 (Gaussian process - Alternative definition). A stochastic process is Gaussian

if for any finite collection t1, . . . , tk ∈ T and α ∈ Rk the random variable

X(ω) =

k∑
i=1

αiX(ti, ω) is Gaussian (normal)

Remark. The index set T is not necessarily a subset of R but often it is, in fact,

representing time.

A special case is the following, in which I = [0,T ] a time interval and M = Rd. An

Rd-valued random field X(t, ω) with index set [0,T ] 3 t is called Gaussian process if, for

any integer k > 1 and real numbers 0 < t1 < t2 < ... < tk < ∞, the random vector

(X(t1), X(t2), ..., X(tk)) has a joint normal distribution.

Some of the most important processes are Gaussian. For example, Brownian motion

and Ornstein-Uhlenbeck process. As examples, some of their properties will be stated

below.

The finite-dimensional distributions of a Gaussian random field X(t, ω) are determined

by its expectation vector m(t) ∆
= EX(t), t > 0, and its covariance matrix cov(X(s), X(t)) =

E[(X(s) − m(s))(X(t) − m(t))T ], s, t > 0, where the superscript T indicates transposition. If

m(t) = 0, t > 0, we say that X(t, ω) is a zero-mean Gaussian process.

One-dimensional Brownian motion is a zero-mean Gaussian random field with covari-

ance function

cov(X(s), X(t)) = s ∧ t, s, t > 0 (7.2)

Conversely, any zero-mean Gaussian random field X = {X(t, ω),F X
t : 0 ≤ t < ∞} with a.s.

continuous paths and covariance function given by (7.2) is a one dimensional Brownian
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motion.

We now give the definition of a Gaussian random field adapted to our context. Let M

be a Hilbert space whose elements will be denoted by φ, ψ (like test functions) with inner

product denoted by the bracket 〈·, ·〉, norm ‖ · ‖ and I be a subset of M.

Definition 7.5 (Gaussian random field). Let (Ω,F , P) be a probability space. We say that

ξ = ξ(ω) : Ω → M, a random variable on M, is a Gaussian random field on M indexed

by I ⊆ M, denoted by (ξ(φ, ω))φ∈I , if the family of real valued random variables ξ(φ, ω) :=

〈ξ(ω), φ〉, φ ∈ I is a Gaussian process indexed by I with covariance Cov(ξ(φ, ω), ξ(ψ,ω)) =

〈φ, ψ〉.

The random field at the center of this work presented in Chapter 3 is described in Defi-

nition 3.1 and Proposition 3.2 using a Gaussian random field on a special Hilbert space.

Let φ(t, x), ψ(t, x), t ∈ [0,∞) and x ∈ (0,∞) be two variable test functions bounded in t

satisfying the exponential growth bound in x as stated in Definition 1.4. RecallDs is the bi-

linear form defined in (3.14) and µ(·, dx) is the solution, belonging to C([0,∞); M1((0,∞))

of the fluid limit equation from Theorem 2.3. Fix T > 0 and consider the inner product

〈φ, ψ〉 =

∫ T

0

∫
(0,∞)
Ds(φ(s, x), ψ(s, x)) µ(s, dx)ds , (7.3)

where φ(t, x), ψ(t, x) are test functions with exponential growth bound, hence 〈φ, φ〉 < ∞.

The Hilbert space is the closure under the norm induced by (7.3) of the vector space of test

functions.

Of course this space is abstract and we hope to pursue its study in future work. For-

tunately, to obtain our main results we only need functions φ(t, x) = 1[0,t]φ1(x) where

φ1 ∈ R[x] (polynomial) which belong to the space of test functions with exponential growth

bound. This is a consequence of the basic bounds from Definition 1.4 and further down, the
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bounds from Section 2.2, more specifically Lemma 2.6. The analysis can be done in finite

dimensional setting (cf. Theorem 3.6) because polynomials are invariant to the operators

Ls,Ds and the degree can only be lowered - see Lemma 3.5.

7.2 Linear diffusions

The central topic in our model is a formal discussion of a system of linear stochastic dif-

ferential equations, with solutions Gaussian processes of a special type, namely Linear

Diffusions. In Chapter 5 and Chapter 6, we focused on such form of time dependent linear

case process, in our case, we consider the k-dimensional stochastic differential equation, in

the form of

dY(t) = A1(t)Y(t)dt + A2(t)dWd(t) (7.4)

with the initial distribution Y(0) well defined. Wd(t) is a d-dimensional Brownian motion,

independent of the k-dimensional initial vector Y(0), and the (k × k), (k × d) matrices A1(t),

A2(t) are deterministic, measurable and locally bounded. When the initial distribution Y(0)

is normally distributed, then Y(t) is a Gaussian random field and the finite dimensional

distribution of this Gaussian random field given in (7.4) are completely determined by the

mean and covariance functions.

Ornstein-Uhlenbeck process is the special case of the equation (7.4), when d = 1,

and the matrix A1(t) is replaced by a negative constant, A2(t) by a positive constant. The

character of Ornstein-Uhlenbeck process will be given in detail in the next section.

An important character for the Ornstein-Uhlenbeck process is A1(t) is replaced by a

negative constant. In this paper, we did not discuss the stationary Gaussian process, which

is an important feature of the Ornstein-Uhlenbeck process. In our model, A1(t) is a ma-
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trix with all eigenvalues negative for every t ≥ 0, and this is one of the most important

characters for our AIMD model. All eigenvalues of the matrix A1(t) are negative, and this

is the reason we call the fluctuation limit of our AIMD model has a similar form to the

Ornstein-Uhlenbeck process.

In our work, Gaussian random fields are indexed also by test functions. For test func-

tions, denoted as φ1, φ2, and parameters t1 and t2, covariance between Gaussian random

fields X(φ1, t1) and X(φ2, t2) had been analyzed in our Chapter 4-Chapter 6. When φ1 = φ2,

denoted commonly as φ, which is the special case, covariance between X(φ, t1) and X(φ, t2)

is much more simpler in our model, with explicit formula been given.

In the next section we will introduce the Ornstein-Uhlenbeck process, which is the most

important kind of Gaussian random fields. Materials from [22] largely be cited in order to

give a revelation of their relationships.

7.3 Multidimensional linear diffusion processes

Now let us talk briefly about linear processes and Ornstein-Uhlenbeck process. We start

with the one dimensional classical Ornstein-Uhlenbeck process, based on [22].

Definition 7.6. A stochastic process {Y(t) : t ≥ 0} is an Ornstein-Uhlenbeck process if

dY(t) = −ρ(Y(t) − µ)dt + σdW(t), Y(0) = Y0 (7.5)

where {W(t) : t ≥ 0} is a one dimensional Brownian motion with unit parameter and µ,

ρ, σ are constants, with ρ > 0 and σ > 0.

When µ = 0, this corresponds to the Langevin (1908) equation for the Brownian motion
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of a particle with friction. The solution of this equation is

Y(t) = Y(0)e−ρt + σ

∫ t

0
e−ρ(t−s)dW(s), 0 ≤ t < ∞. (7.6)

If EY2(0) < ∞, the expectation, variance, and covariance functions are follows, with

notations consistent to the above

m(t) ∆
= EY(t) = m(0)e−ρt (7.7)

V(t) ∆
= Var(Y(t)) =

σ2

2ρ
+ (V(0) −

σ2

2ρ
)e−2ρt (7.8)

cov(Y(t),Y(r)) = [V(0) +
σ2

2ρ
(e2ρ(t∧r) − 1)]e−ρ(t+r) (7.9)

If the initial random variable Y(0) has a normal distribution with mean zero and variance

σ2

2ρ , then Y(t) is a stationary, zero-mean Gaussian random field with covariance function

cov(Y(t),Y(r)) = σ2

2ρ e−ρ|t−r|.

A detailed description of Ornstein-Uhlenbeck process and its generalization is in [19],

[18] and [23]. In Chapter 4, we discussed a stochastic process with a similar form to

Ornstein-Uhlenbeck process, though in our case, coefficients are deterministic functions

with the time parameter as the variable, not constants, as given below

dY(t) = −γ1(t)Y(t)dt + γ2(t)dW(t) (7.10)

where γ1(t) is a deterministic positive function of time, γ2(t) is a deterministic function of

time. In here, we also require that both γ1(t) and γ2(t) are bounded by a constant. Actually,
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in our fluctuation limit case, both γ1(t) and γ2(t) converge as t → +∞.

Please notice that in our (7.10), γ1(t) is a positive function of time, which is an important

character for this kind of stochastic differential equation. For the higher dimensional case,

those differential equations are a bit different, as will be carefully described below.

We give the definition of a linear diffusion, according to [22].

Definition 7.7. If a k-dimensional stochastic process Y(t) satisfies the k-dimensional stochas-

tic differential equation, in the form of

dY(t) = [A1(t)Y(t) + a(t)]dt + A2(t)dWd(t),Y(0) = ξ0 (7.11)

{Wd(t)}t≥0 is a d-dimensional Brownian motion, independent of the k-dimensional ini-

tial vector Y(0) = ξ0, and the (k × k), (k × d), (k × 1) matrices A1(t), A2(t) and a(t) are

deterministic, measurable and locally bounded.

Then Y(t) is a linear diffusion process.

7.4 Tightness

First let us state the general conditions for the tightness on the Skorohod space of right

continuous left limit functions. We refer to Billingsley [5] for the study of the Skorokhod

space and Jacod-Shireaev [21] for C - tightness.

Definition 7.8 (C - tightness). Let (Ω,F , P) be a probability space. Consider a family of

random variables on D([0,+∞);R) , i.e. real - valued continuous time right continuous

with left limit random processes, denoted as {Yn(t)}t≥0, indexed by n ∈ N. If

lim
K→+∞

lim
n→+∞

P(|Yn(t)| > K) = 0 (7.12)
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and for every T > 0, for any ε > 0,

lim
λ→0

lim sup
n→+∞

P( sup
0<t−s<λ,0≤s≤t≤T

|Yn(t) − Yn(s)| > ε) = 0 . (7.13)

Then {Yn(t)}t≥0 is tight in D([0,+∞);R) and any limit point is in C([0,+∞);R).

7.5 Martingale Representation Theorem

We discussed a multidimensional martingale, in which we applied the result of [22], Chap-

ter 3, Sec 3.4. This result is presented here, which is a version of Martingale Representation

Theorem.

Theorem 7.9 (from [22]). Suppose M = {(M(1, t),M(2, t), ...,M(d, t))}, 0 ≤ t < +∞ is

defined on the filtered probability space (Ω,F , (Ft)t≥0, P) with each M(i, t) a continuous

and local Ft - martingale, 1 ≤ i ≤ d. Suppose also for each 1 ≤ i1, i2 ≤ d, the cross

variaion 〈M(i1, t),M(i2, t)〉 is absolutely continuous with respect to t, for P-almost sure

ω. Then there is an extension (Ω̃, F̃ , P̃) of (Ω,F , P) on which is defined a d-dimensional

Brownian motion W = {Wd(t) = (W1
d (t),W2

d (t), ...,Wd
d (t))T , F̃t, 0 ≤ t < +∞}, and a matrix

X = {(Xi, j(t))d
i, j=1, F̃t, 0 ≤ t < +∞} of measurable, adapted processes with

P̃[
∫ t

0
(X(i, j)(s))2ds < ∞] = 1, 1 ≤ i, j ≤ d, 0 ≤ t < ∞

such that we have P̃-a.s. the representation

M(i, t) =

d∑
j=1

∫ t

0
X(i, j)(s)dW j

d(s), 1 ≤ i ≤ d, 0 ≤ t < ∞ (7.14)
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and

〈M(i1, t),M(i2, t)〉 =

d∑
j=1

∫ t

0
X(i1, j)(s)X(i2, j)(s)ds, 1 ≤ i1, i2 ≤ d, 0 ≤ t < ∞ . (7.15)
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