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The singular instanton Floer homology was defined by Kronheimer and Mrowka

in connection with their proof that the Khovanov homology is an unknot detector.

We study this theory for knots and two-component links using equivariant gauge

theory on their double branched covers. We show that the special generator in the

singular instanton Floer homology of a knot is graded by the knot signature mod

4, thereby providing a purely topological way of fixing the absolute grading in the

theory. Our approach also results in explicit computations of the generators of the

singular instanton Floer chain complex for several classes of knots with simple double

branched covers, such as two-bridge knots, torus knots, and Montesinos knots, as well

as for several families of two-components links.

The instanton Floer homology of admissible bundles on 3-manifolds was defined

by Floer in the late 1980s. Taubes proved that, for integral homology spheres, its

Euler characteristic equals twice the Casson invariant. We extend this result to all

closed oriented 3-manifolds with positive first Betti number by establishing a similar

relationship between the Lescop invariant of the manifold and its instanton Floer

homology. Our formula matches the one conjectured in the physics literature.
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Chapter 1

Introduction

The Floer homology I∗(Σ,L) for two-component links L ⊂ Σ in homology 3-spheres

was defined by Kronheimer and Mrowka [22] using singular SO(3) instantons. An

important special case of this theory is the singular instanton knot Floer homology

I♮(k) for knots k ⊂ S3 obtained by applying I∗(S
3,L) to the link L, which is a

connected sum of k with the Hopf link H. Kronheimer and Mrowka [22] used I♮(k)

and its close cousin I♯(k) to prove that Khovanov homology is an unknot-detector.

The definition of groups I∗(Σ,L) uses singular gauge theory, which makes them

difficult to compute. We propose a new approach to these computations which uses

equivariant gauge theory in place of the singular one. Given a two-component link L

in an integral homology sphere Σ, we pass to the double branched coverM → Σ with

branch set L and observe that the singular connections on Σ used in the definition

of I∗(Σ,L) pull back to equivariant smooth connections on M . The generators of the

Floer chain complex IC∗(Σ,L), whose homology is I∗(Σ,L), are then derived from

the equivariant representations π1(M) → SO(3), and their mod 4 Floer indices can

1
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be computed using equivariant rather than singular index theory.

We use this approach to determine the index of the special generator in the Floer

chain complex IC♮(k) of a knot k ⊂ S3, see Section 2.4. This fixes the absolute

grading on I♮(k) and confirms the conjecture of Hedden, Herald and Kirk [17].

Theorem. For any knot k ⊂ S3, the index of the special generator in the Floer chain

complex IC♮(k) equals sign k mod 4.

We also achieve significant simplifications in computing the generators of the

Floer chain complexes IC♮(k) and IC∗(Σ,L) for knots and links with simple dou-

ble branched covers, such as torus knots, two-bridge knots, and general Montesinos

knots and links, whose double branched covers are Seifert fibered manifolds. Ex-

plicit calculations for these knots and links are possible because the gauge theory on

Seifert fibered manifolds is sufficiently well developed, see Fintushel and Stern [11]

and, in the equivariant setting, Collin–Saveliev [8] and Saveliev [37]. Some of these

results concerning two-bridge and torus knots were obtained earlier by Hedden, Her-

ald, and Kirk [17] using pillowcase techniques, which are completely different from

our equivariant methods.

Chapter 2 begins with a sketch of the definition of I∗(Σ,L) mainly following

Kronheimer and Mrowka [22] but using the language of projective representations

developed in [34]. We obtain a purely algebraic description of the generators in

IC∗(Σ,L) as well as of the natural Z/2 ⊕ Z/2 action on them, which is crucial to the

rest of the chapter.

Equivariant gauge theory is developed in Section 2.2. The section begins with

a computation of Z/2 cohomology rings of double branched covers M → Σ of two-
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component links, followed by a computation of the characteristic classes of SO(3)

bundles on M pulled back from orbifold bundles on Σ. The results are used to

establish a bijective correspondence between equivariant SO(3) representations of

π1M and orbifold SO(3) representations of π1Σ.

The next three sections are dedicated to the singular knot Floer homology I♮(k)

for knots k ⊂ S3. Section 2.3 describes generators in the chain complex IC♮(k) in

terms of equivariant representations π1(Y ) → SO(3) on the double branched cover

Y → S3 with branch set the knot K. These representations fall into three different

categories: trivial, reducible non-trivial, and irreducible. Each equivariant irreducible

representation π1(Y ) → SO(3) gives rise to four generators in IC♮(k), while each non-

trivial reducible representations π1(Y ) → SO(3) contributes two generators.

The trivial representation θ : π1(Y ) → SO(3) gives rise to a special generator

α ∈ IC♮(k) which was used in [22] to fix an absolute grading on I♮(k). We pass to the

double branched cover and use Taubes [42] index theory on manifolds with periodic

ends to show that the Floer grading of α equals sign (k) mod 4.

Section 2.6 contains calculations of IC∗(Σ,L) for several two-component links L

not of the form k#H. In the special case of the pretzel link L = P (2,−3,−6) in

the 3-sphere, we provide an independent verification of our answer by computing

the Floer homology of Harper–Saveliev [16] of L: the latter theory is isomorphic to

I∗(Σ,L) but does not use singular connections in its definition.

Finally, Section 2.7 contains proofs of some topological results, which were post-

poned earlier for the sake of exposition.

Chapter 3 studies a different version of instanton Floer homology in connection

with a combinatorial invariant of 3-manifolds called the Lescop invariant. The latter
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is a rational valued invariant λL(M) defined by Lescop [27] for an arbitrary closed

oriented 3-manifold M as a generalization of the Casson invariant [2]. The Casson

invariant, while only defined for integral homology 3-spheres, has a very useful gauge

theoretic interpretation, due to Taubes [41], as half the Euler characteristic of the

instanton Floer homology [12]. We provide a similar interpretation of the Lescop

invariant for all 3-manifolds with positive first Betti number using a version of in-

stanton Floer homology I∗(M,P ) defined by Floer [14] for admissible SO(3) bundles

P → M . In fact, our formula matches the one conjectured in the physics literature,

where the Lescop invariant arises as a partition function of the Donaldson-Witten

theory of a 4-manifold of the form S1 ×M ; see Mariño–Moore [28].

Theorem. Let M be a closed oriented connected 3-manifold with b1(M) ≥ 1, and

let λL(M) be its Lescop invariant. Then there exists an admissible bundle P over M

such that

λL(M) = −
1

2
χ(I∗ (M,P ))−

1

12
|Tor(H1(M))|, if b1(M) = 1, and

λL(M) =
1

2
(−1)b1(M) · χ(I∗ (M,P )), if b1(M) ≥ 2,

where χ(I∗ (M,P )) stands for the Euler characteristic of the instanton Floer homology

of the pair (M,P ); see Section 3.1.

In addition, we show that χ(I∗ (M,P )) is independent of the choice of admissible

bundle P and hence the above formulas hold for any admissible bundle P . Still lacking

is a gauge theoretic interpretation of the Lescop invariant for rational homology 3-
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spheres with non-trivial torsion because there is no satisfactory definition of instanton

Floer homology for such manifolds.

Our proof of the above theorem proceeds by induction on the first Betti number

b1(M) of the manifold and uses the Floer exact triangle [14]. In caseM has no torsion

in homology, we start the induction at b1(M) = 0 and use Taubes’ theorem [41]. In

the presence of torsion, due to the aforementioned problem with defining instanton

Floer homology for rational homology spheres, we start at b1(M) = 1 and use an

extension of Taubes’ theorem due to Masataka [29].

This chapter also contains applications of Theorem 1 to the singular instanton

knot homology of Kronheimer and Mrowka [23] and to the instanton homology of two

component links of Harper and Saveliev [16], together with an example explaining the

factor |Tor(H1(M))| in the Lescop invariant from a gauge-theoretic viewpoint.



Chapter 2

Link Homology and Equivariant

Gauge Theory

2.1 Link homology

In this section, we sketch the definition of the singular instanton homology I∗(Σ,L)

of a two-component link L ⊂ Σ in an integral homology sphere using the language

of projective representations. Complete details of the construction can be found in

Kronheimer and Mrowka [22].

2.1.1 The Chern–Simons functional

Given a two-component link L in an integral homology sphere Σ, the second homology

of its exterior X = Σ− intN(L) is isomorphic to a copy of Z spanned by either one of

the boundary tori of X. Let P → X be the unique SO(3) bundle with a non-trivial

second Stiefel–Whitney class w2(P ) ∈ H2(X;Z/2) = Z/2. The flat connections in

this bundle serve as the starting point for building I∗(Σ,L). Since w2(P ) evaluates

non-trivially on the boundary tori, these connections are necessarily irreducible and

6
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have order two holonomy along the meridians of the link components. Therefore,

they give rise to orbifold flat connections in an orbifold SO(3) bundle on Σ, which

we again call P . The homology sphere Σ itself is viewed as an orbifold with the cone

angle π along the singular set L and with a compatible orbifold Riemannian metric.

Kronheimer and Mrowka [22] interpret the gauge equivalence classes of the orbifold

flat connections in P as the critical points of an orbifold Chern–Simons functional

cs : B (Σ,L) → R/Z, (2.1)

and define I∗(Σ,L) as its Morse homology. An important feature of this construction

is the use of the determinant-one gauge group G in the definition of the configuration

space,

B (Σ,L) = A (Σ,L)/GS,

where A (Σ,L) is an affine space of connections.

We will next describe the critical points of cs algebraically using the holonomy cor-

respondence between flat connections and representations of the fundamental group.

A variant of this classical correspondence which applies to the situation at hand was

described in [34, Section 3.2] using projective SU(2) representations. We will review

these first, see [34, Section 3.1] for details.
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2.1.2 Projective representations

Let G be a finitely presented group and view the center of SU(2) as Z/2 = {±1}. A

map ρ : G→ SU(2) is called a projective representation if

c(g, h) = ρ(gh)ρ(h)−1ρ(g)−1 ∈ Z/2 for all g, h ∈ G.

The function c : G × G → Z/2 is a 2-cocycle on G defining a cohomology class

[c] ∈ H2(G;Z/2). This class has the following interpretation. The composition of

ρ : G→ SU(2) with Ad : SU(2) → SO(3) is a representation Ad ρ : G→ SO(3). As

such, it induces a continuous map BG → BSO(3) which is unique up to homotopy.

The pull back of the universal Stiefel–Whitney class w2 ∈ H2(BSO(3);Z/2) via this

map is our class [c] = w2(Ad ρ) ∈ H2(G;Z/2). It serves as an obstruction to lifting

Ad ρ : G→ SO(3) to an SU(2) representation.

Let PRc(G;SU(2)) be the space of conjugacy classes of projective representations

ρ : G → SU(2) whose associated cocycle is c. The topology on PRc(G;SU(2)) is

supplied by the algebraic set structure. One can easily see that PRc(G;SU(2)) is

determined uniquely up to homeomorphism by the cohomology class of c. The group

H1(G;Z/2) = Hom(G,Z/2) acts on PRc(G;SU(2)) by sending ρ to χ · ρ for any

χ ∈ Hom(G,Z/2). The orbits of this action are in a bijective correspondence with

the conjugacy classes of representations G → SO(3) whose second Stiefel–Whitney

class equals [c]. The bijection is given by taking the adjoint representation.

Projective representations ρ : G → SU(2) can also be described in terms of a

presentation G = F/R. Consider a homomorphism γ : R → Z/2 defined by its values

γ(r) = ±1 on the relators r ∈ R and by the condition that it is constant on the orbits
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of the adjoint action of F on R. Also, choose a set-theoretic section s : G −→ F in

the exact sequence

1 R F G 1
i π

and denote by r : G × G −→ R the function defined by the formula s(gh) =

r(g, h)s(g)s(h).

2.1.1 Proposition. A choice of a section s : G → F establishes a bijective corre-

spondence between the conjugacy classes of projective representations ρ : G→ SU(2)

with the cocycle c(g, h) = γ(r(g, h)), and the conjugacy classes of homomorphisms

σ : F → SU(2) such that i∗σ = γ. A different choice of s results in a cohomologous

cocycle.

Proof. We begin by checking that c(g, h) = γ(r(g, h)) is a cocycle. For any g, h, k ∈ G,

we have

s(ghk) = r(gh, k)s(gh)s(k) = r(gh, k)r(g, h)s(g)s(h)s(k),

s(ghk) = r(g, hk)s(g)s(hk) = r(g, hk)s(g)r(h, k)s(h)s(k),

which results in r(gh, k)r(g, h) = r(g, hk)s(g)r(h, k)s(g)−1. Since the homomorphism

γ is constant on the orbits of the adjoint action of F on R, its application to the

above equality gives the cocycle condition c(gh, k)c(g, h) = c(g, hk)c(h, k) as desired.

Now, given a homomorphism σ : F → SU(2) such that i∗σ = γ, define ρ : G →

SU(2) by the formula ρ(g) = σ(s(g)). Then ρ(gh) = σ(s(gh)) = σ(r(g, h)s(g)s(h)) =

γ(r(g, h))σ(s(g))σ(s(h)) = c(g, h)ρ(g)ρ(h), hence ρ is a projective representation with
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cocycle c. It is clear that conjugate representations σ define conjugate projective

representations ρ, and that a different choice of s leads to a cohomologous cocycle c.

The inverse correspondence is defined as follows. Given a projective representation

ρ : G → SU(2), write elements of F in the form r · s(g), with r ∈ R and g ∈ G,

and define σ : F → SU(2) by the formula σ(r · s(g)) = γ(r)ρ(g). That σ is a

homomorphism can be checked by a straightforward calculation using the fact that

c(g, h) = γ(r(g, h)).

2.1.2 Example. Let G = π1(M) be the fundamental group of a manifoldM obtained

by 0–surgery on a knot K in an integral homology sphere Σ. The group π1(M)

is obtained from π1(K) by imposing the relation ℓ = 1, where ℓ is a longitude of

K. Therefore, π1(M) admits a presentation π1(M) = F/R with ℓ being one of the

relators. Let γ(ℓ) = −1 and γ(r) = 1 for the rest of the relators r ∈ R. It has been

known since Floer [13] that the action of H1(M ;Z/2) = Z/2 on the set of conjugacy

classes of projective representations σ : F → SU(2) with i∗σ = γ is free, providing

a two-to-one correspondence between this set and the set of the conjugacy classes of

representations π1(M) → SO(3) with non-trivial w2 ∈ H2(M ;Z/2) = Z/2.

2.1.3 Holonomy correspondence

We will now apply the general theory of Section 2.1.2 to the group G = π1(X), where

X is the exterior of a two-component link L in an integral homology sphere Σ. We

begin with the following simple observation.

2.1.3 Lemma. Unless the link L is split, H2(X;Z/2) = H2(π1(X);Z/2) = Z/2. For

split links, I∗(Σ,L) = 0.
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Proof. For a split link L, the splitting sphere generates the group H2(X;Z) = Z.

Since there are no flat connections on this sphere with non-trivial w2(P ) the group

I∗(Σ,L) must vanish. For a non-split link, the claimed equality follows from the Hopf

exact sequence

π2(X) H2(X) H2(π1(X)) 0

and the vanishing of the Hurewicz homomorphism π2(X) → H2(X).

From now on, we will assume that the link L ⊂ Σ is not split. The holonomy

correspondence of [34, Section 3.1] identifies the critical point set of the functional

(2.1) with the set PRc(X,SU(2)) of the conjugacy classes of projective representa-

tions ρ : π1(X) → SU(2), for any choice of cocycle c such that 0 6= [c] = w2(P ) ∈

H2(X;Z/2) = Z/2. Note that this identification commutes with the H1(X;Z/2)

action, and the orbits of this action on PRc(X,SU(2)) are in a bijective correspon-

dence with the conjugacy classes of representations Ad ρ : π1(X) → SO(3) having

w2(Ad ρ) 6= 0.

2.1.4 Lemma. Any representation Ad ρ : π1(X) → SO(3) with w2(Ad ρ) 6= 0 is

irreducible, that is, its image is not contained in a copy of SO(2) ⊂ SO(3).

Proof. The restriction to ρ to either boundary torus of X has non-trivial second

Stiefel–Whitney class, which implies that it does not lift to an SU(2) representa-

tion. However, any reducible representation π1(T
2) → SO(3) admits an SU(2) lift,

therefore, the image of ρ cannot be contained in a copy of SO(2) ⊂ SO(3).
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2.1.4 Floer gradings

Given flat orbifold connections ρ and σ in the orbifold bundle P → Σ, consider an

arbitrary orbifold connection A in the pull back bundle on the product R×Σ matching

ρ and σ near the negative and positive ends. Equip R×Σ with the orbifold product

metric and consider the ASD operator

DA (ρ, σ) = d∗A ⊕ −d+A : Ω1(R× Σ, adP ) → (Ω0 ⊕ Ω2
+)(R× Σ, adP ) (2.2)

completed in the orbifold Sobolev L2 norms as in [22, Section 3.1]. Since ρ and σ

are irreducible, this operator will be Fredholm if we further assume that ρ and σ are

non-degenerate as the critical points of the Chern–Simons functional (2.1). Define

the relative Floer grading as

gr (ρ, σ) = indDA (ρ, σ) (mod 4). (2.3)

2.1.5 Perturbations

The critical points of the Chern–Simons functional need not be non-degenerate, there-

fore, the Chern–Simons functional has to be perturbed. The perturbations used in

[22, Section 3.4] are the standard Wilson loop perturbations along loops in Σ disjoint

from the link L. There are sufficiently many such perturbations to guarantee the non-

degeneracy of the critical points of the perturbed Chern–Simons functional as well

as the transversality properties for the moduli spaces of trajectories of its gradient

flow. This allows to define the boundary operator and to complete the definition of

I∗(Σ,L).
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2.2 Equivariant gauge theory

In this section, we survey some equivariant gauge theory on the double branched cover

M → Σ of a homology sphere Σ with branch set a two-component link L. It will be

used in the forthcoming sections to make headway in computing the link homology

I∗(Σ,L).

2.2.1 Topological preliminaries

Let Σ be an integral homology 3-sphere and L = ℓ1 ∪ ℓ2 a link of two components

in Σ. The link exterior X = Σ − intN(L) is a manifold whose boundary consists

of two tori, with H1(X;Z) = Z2 spanned by the meridians µ1 and µ2 of the link

components. The homomorphism π1(X) → Z/2 sending µ1 and µ2 to the generator

of Z/2 gives rise to a regular double cover X̃ → X, and also to a double branched

cover π : M → Σ with branching set L and the covering translation τ : M → M .

Denote by ∆(t) the one-variable Alexander polynomial of L.

2.2.1 Proposition. The first Betti number of M is one if ∆(−1) = 0 and zero

otherwise. In the latter case, H1(M ;Z) is a finite group of order |∆(−1)|. The

induced involution τ∗ : H1(M) → H1(M) is multiplication by −1.

Proof. This is essentially proved in Kawauchi [19, Section 5.5]. The statement about

τ∗ follows from an isomorphism of Z[t, t−1] modules H1(M) = H1(E)/(1 + t)H1(E),

where E is the infinite cyclic cover of X, proved in [19, Theorem 5.5.1]. A completely

different proof for the special case of double branched covers of S3 with branch set a

knot can be found in Ruberman [32, Lemma 5.5].
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2.2.2 Proposition. Let M be the double branched cover of an integral homology

sphere with branch set a two-component link L = ℓ1 ∪ ℓ2. Then Hi(M ;Z/2) =

H i(M ;Z/2) is isomorphic to Z/2 if i = 0, 1, 2, 3, and is zero otherwise. The cup-

product H1(M ;Z/2) × H1(M ;Z/2) → H2(M ;Z/2) is given by the linking number

ℓk(ℓ1, ℓ2) (mod 2).

The proof of Proposition 2.2.2 will be postponed until Section 2.7 for the sake of

exposition.

An important example of L to consider is that of the two-component link k♮

obtained by connect summing a knot k ⊂ S3 with the Hopf link. The double branched

cover M → S3 in this case is the connected sum M = Y # RP3, where Y is the

double branched cover of k. Proposition 2.2.2 easily follows because H∗(Y ;Z/2) =

H∗(S
3;Z/2).

2.2.2 The orbifold exact sequence

It will be convenient to view Σ =M/τ as an orbifold with the singular set L. To be

precise, the regular double cover X̃ is a 3-manifold whose boundary consists of two

tori, and

M = X̃ ∪h N(L),

where the gluing homeomorphism h : ∂X̃ → ∂N(L) identifies π−1(µi) with the merid-

ian µi for i = 1, 2. The involution τ : M → M acts by meridional rotation on N(L),

thereby fixing the link L, and by covering translation on X̃. Define the orbifold

fundamental group

πV
1 (Σ,L) = π1(X)

/
〈µ1

2 = µ2
2 = 1〉.
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Then the homotopy exact sequence of the covering X̃ → X gives rise to a split short

exact sequence, called the orbifold exact sequence,

1 π1(M) πV
1 (Σ,L) Z/2 1

π∗ j

(2.4)

The homomorphism j maps the meridians µ1, µ2 onto the generator of Z/2 and one

obtains a splitting by sending this generator to either µ1 or µ2.

2.2.3 Pulled back bundles

Let P → Σ be the orbifold SO(3) bundle used in the definition of I∗(Σ,L) in Section

2.1. It pulls back to an orbifold SO(3) bundle Q → M because the projection map

π :M → Σ is regular in the sense of Chen–Ruan [6]. The bundle Q is in fact smooth

because orbifold connections on P , with order-two holonomy along the meridians of

L, lift to connections in Q with trivial holonomy along the meridians of the two-

component link L̃ = π−1(L).

2.2.3 Proposition. The bundle Q→M is non-trivial.

The rest of this section is dedicated to the proof of this proposition. We will

accomplish it by showing the non-vanishing of w2(Q) ∈ H2(M ;Z/2) = Z/2. Our

argument will split into two cases, corresponding to the parity of the linking number

between the components of L.

Suppose that ℓk(ℓ1, ℓ2) is even and consider the regular double cover π :M−L̃ →

Σ− L. It gives rise to the Gysin exact sequence
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H1(Σ− L;Z/2) H2(Σ− L;Z/2) H2(M − L̃;Z/2)
∪w1 π∗

H2(Σ− L;Z/2) H3(Σ− L;Z/2) · · ·
∪w1

where ∪w1 means taking the cup-product with the first Stiefel–Whitney class of the

cover. The cup-product on H∗(Σ − L;Z/2) can be determined from the following

commutative diagram

H1(Σ− L;Z/2)×H1(Σ− L;Z/2) H2(Σ− L;Z/2)

H2(Σ,L;Z/2)×H2(Σ,L;Z/2) H1(Σ,L;Z/2)

PD PD

∪

·

where PD stands for the Poincaré duality isomorphism and the dot in the upper row

for the intersection product. Note that Seifert surfaces of knots ℓ1 and ℓ2 generate

H2(Σ,L;Z/2) = Z/2 ⊕ Z/2, and any arc in Σ with one endpoint on ℓ1 and the other

on ℓ2 generates H1(Σ,L;Z/2) = Z/2. An easy calculation shows that, with respect

to these generators, the intersection product is given by the matrix




0 ℓk(ℓ1, ℓ2)

ℓk(ℓ1, ℓ2) 0




Since ℓk(ℓ1, ℓ2) is even, this gives a trivial cup product structure on the link comple-

ment Σ − L. Therefore, the map ∪w1 in the Gysin sequence is zero and the map

π∗ : H2(Σ− L;Z/2) → H2(M − L̃;Z/2) is injective. Since w2(P ) ∈ H2(Σ− L;Z/2)

is non-zero we conclude that π∗(w2(P )) 6= 0. This implies that w2(Q) 6= 0 because
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Q = π∗P over M − L̃.

Now suppose that ℓk(ℓ1, ℓ2) is odd. The above calculation implies that the second

Stiefel–Whitney class of π∗P vanishes in H2(M − L̃;Z/2). We will prove, however,

that w2(Q) ∈ H2(M ;Z/2) is non-zero, by showing that Q carries a flat connection

with non-zero w2.

Note that the orbifold bundle P carries a flat SO(3) connection whose holonomy

is a representation α : πV
1 (Σ,L) −→ SO(3) of the orbifold fundamental group

πV
1 (Σ,L) = π1(X)/〈µ1

2 = µ2
2 = 1〉

sending the two meridians to Ad i and Ad j. This flat connection pulls back to a flat

connection on Q with holonomy π∗α : π1(M) → SO(3). We wish to compute the

second Stiefel–Whitney class of π∗α.

2.2.4 Lemma. The representation π∗α : π1(M) −→ Z/2 ⊕ Z/2 is non-trivial.

Proof. Our proof will rely on the orbifold exact sequence (2.4). Assume that

π∗α is trivial. Then π1(M) ⊂ kerα hence α factors through a homomorphism

πV
1 (Σ,L)/π1(M) → Z/2 ⊕ Z/2. Since πV

1 (Σ,L)/π1(M) = Z/2 we obtain a con-

tradiction with the surjectivity of α.

Since the group Z/2 ⊕ Z/2 is abelian, the representation π∗α : π1(M) →

Z/2 ⊕ Z/2 factors through a homomorphism H1(M) → Z/2 ⊕ Z/2 which is uniquely

determined by its two components ξ, η ∈ Hom(H1(M),Z/2) = H1(M ;Z/2) = Z/2,

see Proposition 2.2.2. A calculation identical to that in [34, Proposition 4.3] shows

that w2(π
∗α) = ξ2 + ξη + η2 (note that, unlike in [34], the classes ξ2 and η2 need
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not vanish). Since ξ and η cannot be both trivial by Lemma 2.2.4, we may assume

without loss of generality that ξ 6= 0. If η = 0 then w2(π
∗α) = ξ2. If η 6= 0 then

ξ = η due to the fact that H1(M ;Z/2) = Z/2, and therefore again w2(π
∗α) = ξ2.

Since ℓk(ℓ1, ℓ2) is odd, it follows from Proposition 2.2.2 that w2(π
∗α) 6= 0.

2.2.4 Pulled back representations

Assuming that L ⊂ Σ is non-split, in Section 2.1.3, we identified the critical point set

of the Chern–Simons functional (2.1) with the space PRc(X,SU(2)) of the conjugacy

classes of projective representations π1(X) → SU(2), for any choice of cocycle c not

cohomologous to zero. We further identified the quotient of PRc(X,SU(2)) by the

natural H1(X;Z/2) action with the subspace Rw(X;SO(3)) of the SO(3) character

variety of π1(X) cut out by the condition w2 6= 0. The latter condition implies that

both meridians µ1 and µ2 are represented by SO(3) matrices of order two, which

leads to a natural identification of this subspace with

Rω(Σ,L;SO(3)) = { ρ : πV
1 (Σ,L) → SO(3)) | w2(ρ) 6= 0 }/AdSO(3),

where the condition w2(ρ) 6= 0 applies to the representation ρ restricted to X. To

summarize, the groupH1(X;Z/2) acts on the space PRc(X,SU(2)) with the quotient

map

PRc(X,SU(2)) −→ Rω(Σ,L;SO(3)).

We wish to study the space Rω(Σ,L;SO(3)) using equivariant representations on the

double branched cover M → Σ.
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2.2.5 Lemma. Let ρ : πV
1 (Σ,L) → SO(3) be a representation and π∗ρ : π1(M) →

SO(3) its pull back via the homomorphism π∗ of the orbifold exact sequence (2.4).

Then there exists an element u ∈ SO(3) of order two such that τ ∗(π∗ρ) = u·(π∗ρ)·u−1.

Proof. Let X̃ → X be the regular double cover as in Section 2.2.2. Choose a point b

in one of the boundary tori of X̃ and consider the commutative diagram

π1(X̃, b) π1(X̃, τ(b)) π1(X̃, b)

π1(X, π(b)) π1(X, π(b))

τ∗

π∗ π∗ π∗

ϕ

ψf

whose maps ψf and ϕ are defined as follows. Given a path f : [0, 1] → X from

τ(b) to b, take its inverse f(s) = f(1 − s) and define the map ψf by the formula

ψf (β) = f · β · f . Since π(b) = π(τ(b)), the path f projects to a loop in X based at

π(b), and the map ϕ is the conjugation by that loop. In fact, one can choose the path

f to project onto the meridian µi of the boundary torus on which π(b) lies so that

ϕ(x) = µi · x · µ
−1
i . After filling in the solid tori, we obtain the commutative diagram

πV
1 (Σ,L) πV

1 (Σ,L)

π1(M) π1(M)

ϕ

τ∗

π∗ π∗

which tells us that, for any ρ : πV
1 (Σ,L) → SO(3), the pull back representation π∗ρ

has the property that τ ∗(π∗ρ) = u · (π∗ρ) · u−1 with u = ρ(µi) of order two.
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2.2.6 Example. Let L ⊂ S3 be the Hopf link then M = RP3 and the orbifold exact

sequence (2.4) takes the form

1 Z/2 Z/2 ⊕ Z/2 Z/2 1
π∗ j

with the two copies of Z/2 in the middle group generated by the meridians µ1 and µ2.

Define ρ : Z/2 ⊕ Z/2 → SO(3) on the generators by ρ(µ1) = Ad i and ρ(µ2) = Ad j;

up to conjugation, this is the only representation Z2 ⊕Z/2 → SO(3) with w2(ρ) 6= 0.

The pull back representation π∗ρ : Z/2 → SO(3) sends the generator to Ad i ·Ad j =

Ad k. Since τ ∗(π∗ρ) = π∗ρ, the identity τ ∗(π∗ρ) = u · (π∗ρ) · u−1 holds for multiple

choices of u including the second order u of the form u = Ad q, where q is any unit

quaternion such that −qk = kq.

Given a double branched cover π : M → Σ with branch set L and the covering

translation τ :M →M , define

Rω(M ;SO(3)) = { β : π1M → SO(3) | w2(β) 6= 0 }/AdSO(3).

Since w2(τ
∗β) = w2(β) ∈ H2(M ;Z/2) = Z/2, the pull back of representations via τ

gives rise to a well defined involution

τ ∗ : Rω(M ;SO(3)) −→ Rω(M ;SO(3)). (2.5)

Its fixed point set Fix (τ ∗) consists of the conjugacy classes of representations β :

π1M → SO(3) such that w2(β) 6= 0 and there exists an element u ∈ SO(3) having
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the property that τ ∗β = u · β · u−1. Consider the sub-variety

Rτ
w(M ;SO(3)) ⊂ Fix (τ ∗) (2.6)

defined by the condition that the conjugating element u has order two. It is well

defined because all elements of order two in SO(3) are conjugate to each other. The

following proposition is the main result of this section.

2.2.7 Proposition. The homomorphism π∗ : π1(M) → πV
1 (Σ,L) of the orbifold exact

sequence (2.4) induces via the pull back a homeomorphism

π∗ : Rω(Σ,L;SO(3)) −→ Rτ
ω(M ;SO(3)).

Proof. Orbifold representations πV
1 (Σ,L) → SO(3) with non-trivial w2 pull back to

representations π1(M) → SO(3) with non-trivial w2, see Section 2.2.3. In addition,

these pull back representations are equivariant in the sense of Lemma 2.2.5. Therefore,

the map π∗ : Rω(Σ,L;SO(3)) −→ Rτ
ω(M ;SO(3)) is well defined. To finish the proof,

we will construct an inverse of π∗. Given β : π1M → SO(3) whose conjugacy class

belongs to Rτ
ω(M ;SO(3)), there exists an element u ∈ SO(3) of order two such

that τ ∗β = u · β · u−1. The pair (β, u) then defines an SO(3) representation of

πV
1 (Σ,L) = π1(M) ⋊ Z/2 by the formula ρ(x, tℓ) = β(x) · uℓ, where x ∈ π1(M) and

t is the generator of Z/2.
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2.3 Knot homology: the generators

We will now use the equivariant theory of Section 2.2 to better understand the

chain complex IC♮(k) which computes the singular instanton knot homology I♮(k) =

I∗(S
3, k♮) of Kronheimer and Mrowka [22]. In this section, we describe the conjugacy

classes of projective SU(2) representations on the exterior of k♮ with non-trivial [c]

and separate them into the orbits of the canonical Z/2 ⊕ Z/2 action.

2.3.1 Projective representations

Given a knot k ⊂ S3, denote by K = S3 −N(k) its exterior and by K♮ = S3 −N(k♮)

the exterior of the two-component link k♮ = k ∪ ℓ, obtained by connect summing k

with the Hopf link. The Wirtinger presentation

π1(K) = 〈a1, a2, · · · , an | r1, . . . , rm〉

with meridians ai and relators rj gives rise to the Wirtinger presentation

π1(K
♮) = 〈a1, a2, · · · , an, b | r1, . . . , rm, [a1, b] = 1〉,

where b stands for the meridian of the component ℓ. Since the link k♮ is not split, it

follows from Lemma 2.1.3 that H2(π1(K
♮);Z/2) = H2(K♮;Z/2) = Z/2. The genera-

tor of the latter group evaluates non-trivially on both boundary components of K♮,

which makes it Poincaré dual to any arc connecting these two boundary components.

It follows from Proposition 2.1.1 that the projective representations with non-trivial

[c] which we are interested in are precisely the homomorphisms ρ : F → SU(2) of the
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free group F generated by the meridians a1, . . . , an, b such that

ρ(r1) = . . . = ρ(rn) = 1 and ρ([a1, b]) = −1.

Representations ρ are uniquely determined by the SU(2) matrices Ai = ρ(ai) and

B = ρ(b) subject to the above relations, and the space PRc(K
♮, SU(2)) consists of

all such tuples (A1, . . . , An;B) up to conjugation.

Observe that the relation A1B = −BA1 implies that, up to conjugation, A1 = i

and B = j. Since the Wirtinger relations r1 = 1, · · · , rm = 1 are of the form

aiaja
−1
i = ak, all the matrices Ai must have zero trace. In particular, the matrices

A1 = . . . = An = i and B = j satisfy all of the relations, thereby giving rise

to the special projective representation α = (i, i, . . . , i; j). On the other hand, if we

assume that not all Ai commute with each other, we have an entire circle of projective

representations,

(i, eiϕA2 e
−iϕ, · · · , eiϕAn e

−iϕ; j). (2.7)

It is parameterized by e2iϕ ∈ S1 due to the fact that the center of SU(2) is the

stabilizer of the adjoint action of SU(2) on itself. Note that two tuples like (2.7) are

conjugate if and only if they are equal to each other. One can easily see that the

formula ψ(A1, . . . , An;B) = (A1, . . . , An) defines a surjective map

ψ : PRc(K
♮, SU(2)) → R0(K,SU(2)), (2.8)

where R0(K,SU(2)) is the space of the conjugacy classes of traceless representations

ρ0 : π1(K) → SU(2). If ρ0 is irreducible, the fiber C(ρ0) = ψ−1([ρ0]) is a circle of
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the form (2.7). The special projective representation α is a fiber of (2.8) in its own

right over the unique (up to conjugation) reducible traceless representation π1(K) →

H1(K) → SU(2) sending all the meridians to the same traceless matrix i. Therefore,

assuming thatR0(K,SU(2)) is non-degenerate, the space PRc(K
♮, SU(2)) consists of

an isolated point and finitely many circles, one for each conjugacy class of irreducible

representations inR0(K,SU(2)). The same result holds in general after perturbation.

2.3.2 The action of H1(K♮;Z/2)

The group H1(K♮;Z/2) = Z/2 ⊕ Z/2 generated by the duals χk and χℓ of the

meridians of the link k♮ = k ∪ ℓ acts on the space of projective representations

PRc(K
♮, SU(2)) as explained in Section 2.1.2. In terms of the tuples (2.7), the

generators χk and χℓ send (i, eiϕA2e
−iϕ, . . . , eiϕAne

−iϕ; j) to

(−i,−eiϕA2e
−iϕ, . . . ,−eiϕAne

−iϕ; j) and

(i, eiϕA2e
−iϕ, . . . , eiϕAne

−iϕ;−j),

respectively. The isolated point α = (i, i, . . . , i; j) is a fixed point of this action since

(−i,−i, . . . ,−i; j) = j · (i, i, . . . , i; j) · j−1 and (i, i, . . . , i;−j) = i · (i, i, . . . , i; j) · i−1.

To describe the action of χℓ on the circle C(ρ0) for an irreducible ρ0 conjugate

(i, eiϕA2e
−iϕ, . . . , eiϕAne

−iϕ;−j) by i to obtain

(i, ei(ϕ+π/2)A2e
−i(ϕ+π/2), . . . , ei(ϕ+π/2)Ane

−i(ϕ+π/2); j).

Since the circle C(ρ0) is parameterized by e2iϕ, we conclude that the involution χℓ
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acts on C(ρ0) via the antipodal map.

The action of χk on the circle C(ρ0) for an irreducible ρ0 will depend on whether ρ0

is a binary dihedral representation or not. Recall that a representation ρ0 : π1(K) →

SU(2) is called binary dihedral if it factors through a copy of the binary dihedral

subgroup S1 ∪ j ·S1 ⊂ SU(2), where S1 stands for the circle of unit complex numbers.

Equivalently, ρ0 is binary dihedral if its adjoint representation Ad(ρ0) : π1(K) →

SO(3) is dihedral in that it factors through a copy of O(2) embedded into SO(3) via

the map A→ (A, detA).

One can show that a representation ρ0 is binary dihedral if and only if χ · ρ0 is

conjugate to ρ0, where χ : π1(K) → Z/2 is the generator of H1(K;Z/2) = Z/2. Note

that χ defines an involution on R0(K,SU(2)) which makes the following diagram

commute

PRc(K
♮, SU(2)) R0(K,SU(2)).

PRc(K
♮, SU(2)) R0(K,SU(2))

χk χ

π

π

The action of χk can now be described as follows. If an irreducible ρ0 : π1(K) →

SU(2) is not binary dihedral, the involution χk takes the circle C(ρ0) to the circle

C(χ · ρ0). Since χ · ρ0 is not conjugate to ρ0, these two circles are disjoint from

each other, and χk permutes them. If an irreducible ρ0 : π1(K) → SU(2) is binary

dihedral, there exists u ∈ SU(2) such that uiu−1 = −i and uAiu
−1 = −Ai for

i = 2, . . . , n. The irreducibility of ρ0 also implies that u2 = −1 so after conjugation

we may assume that u = k. Now conjugate χk · (i, eiϕA2e
−iϕ, . . . , eiϕAne

−iϕ; j) =
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(−i,−eiϕA2e
−iϕ, . . . ,−eiϕAne

−iϕ; j) by j to obtain

(i, j(−eiϕA2e
−iϕ)j−1, · · · , j(−eiϕAne

−iϕ)j−1; j)

= (i,−e−iϕjA2j
−1eiϕ, · · · ,−e−iϕjAnj

−1eiϕ; j)

= (i,−(ie−iϕ) kA2k
−1(i−1eiϕ), · · · ,−(ie−iϕ) kAnk

−1(i−1eiϕ); j)

= (i, ei(π/2−ϕ)A2e
−i(π/2−ϕ), · · · , ei(π/2−ϕ)Ane

−i(π/2−ϕ); j).

Therefore, χk acts on C(ρ0) by sending e2iϕ to −e−2iϕ, which is an involution on the

complex unit circle with two fixed points, i and −i.

Finally, observe that the quotient of R0(K,SU(2)) by the involution χ is precisely

the space R0(K,SO(3)) of the conjugacy classes of representations Ad ρ0 : π1(K) →

SO(3). Since H2(K;Z/2) = 0, every SO(3) representations lifts to an SU(2) repre-

sentations, hence R0(K,SO(3)) can also be described as the space of the conjugacy

classes of representations π1(K) → SO(3) sending the meridians to SO(3) matrices

of trace −1. Compose (2.8) with the projection R0(K,SU(2)) → R0(K,SO(3)) to

obtain a surjective map ψ : PRc(K
♮, SU(2)) → R0(K,SO(3)). The above discussion

can now be summarized as follows.

2.3.1 Proposition. The group H1(K♮,Z/2) = Z/2 ⊕ Z/2 acts on the space

PRc(K
♮, SU(2)) preserving the fibers of the map ψ : PRc(K

♮, SU(2)) →

R0(K,SO(3)). Furthermore,

(a) for the unique reducible in R0(K,SO(3)), the fiber of ψ consists of just one

point, which is the conjugacy class of the special projective representation α.

This point is fixed by both χk and χℓ;
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(b) for any dihedral representation in R0(K,SO(3)), the fiber of ψ is a circle. The

involution χk is a reflection of this circle with two fixed points, while χℓ is the

antipodal map;

(c) otherwise, the fiber of ψ consists of two circles. The involution χk permutes

these circles, while χℓ acts as the antipodal map on both.

2.3.3 Double branched covers

Next, we would like to describe the space PRc(K
♮, SU(2)) using the equivariant the-

ory of Section 2.2. We could proceed as in that section, by passing to the double

branched cover M → S3 with branch set the link k♮ and working with the equiv-

ariant representations π1(M) → SO(3). However, in the special case at hand, one

can observe that M is simply the connected sum Y #RP3, where Y is the dou-

ble branched cover of S3 with branch set the knot k, hence the same information

about PRc(K
♮, SU(2)) can be extracted more easily by working directly with Y and

using Proposition 2.3.1. The only missing step in this program is a description of

R0(K,SO(3)) in terms of equivariant representations π1(Y ) → SO(3), which we will

take up next.

Every representation ρ : π1(K) → SO(3) which sends the meridians to SO(3)

matrices of trace −1, gives rise to a representation of the orbifold fundamental group

πV
1 (S

3, k) = π1(K)/〈µ2 = 1〉, where we choose µ = a1 to be our meridian. The latter

group can be included into the split orbifold exact sequence

1 π1(Y ) πV
1 (S

3, k) Z/2 1.
π∗ j
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2.3.2 Proposition. Let Y be the double branched cover of S3 with branch set a knot

k and let τ : Y → Y be the covering translation. The pull back of representations via

the map π∗ in the orbifold exact sequence establishes a homeomorphism

π∗ : R0(K,SO(3)) −→ Rτ (Y, SO(3)),

where Rτ (Y ) is the fixed point set of the involution τ ∗ : R(Y, SO(3)) → R(Y, SO(3)).

The unique reducible representation in R0(K,SO(3)) pulls back to the trivial repre-

sentation of π1(Y ), and the dihedral representations in R0(K,SO(3)) are the ones

and only ones that pull back to reducible representations of π1(Y ).

Proof. A slight modification of the argument of Proposition 2.2.7, see also [8, Propo-

sition 3.3], establishes a homeomorphism between R0(K,SO(3)) and the subspace

of Rτ (Y, SO(3)) consisting of the conjugacy classes of representations β : π1(Y ) →

SO(3) such that τ ∗β = u · β · u−1 for some u ∈ SO(3) of order two. The proof of the

first statement of the proposition will be complete after we show that this subspace

in fact comprises the entire space Rτ (Y, SO(3)).

If β : π1(Y ) → SO(3) is reducible, it factors through a representation H1(Y ) →

SO(2). According to Proposition 2.2.1, the involution τ∗ acts on H1(Y ) as multipli-

cation by −1. Therefore, τ ∗β = β−1, and the latter representation can obviously be

conjugated to β by an element u ∈ SO(3) of order two. If β : π1(Y ) → SO(3) is irre-

ducible, the condition β ∈ Fix (τ ∗) implies that there exists a unique u ∈ SO(3) such

that τ ∗β = u · β · u−1 and u2 = 1. If u = 1,then τ ∗β = β, which implies that β is the

pull back of a representation of πV
1 (S

3, k) which sends the meridian µ to the identity

matrix and hence factors through π1(S
3) = 1. This contradicts the irreducibility of
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β.

To prove the second statement of the proposition, observe that the homomorphism

j in the above orbifold exact sequence, sending µ to the generator of Z/2, is in fact the

abelianization homomorphism. This implies that the unique reducible representation

in R0(K,SO(3)) pulls back to the trivial representation of π1(Y ). Since π1(Y ) is the

commutator subgroup of πV
1 (S

3, k), any dihedral representation ρ : πV
1 (S

3, k) → O(2)

must map π1(Y ) to the commutator subgroup of O(2), which happens to be SO(2).

This ensures that the pull back of ρ is reducible. Conversely, if the pull back of ρ is

reducible, its image is contained in a copy of SO(2), and the image of ρ itself in its

2-prime extension. The latter group is of course just a copy of O(2) ⊂ SO(3).

2.3.3 Remark. For future use note that, for any projective representation ρ :

π1(K
♮) → SU(2) in C(ρ0) described by a tuple (2.7), the adjoint representation

Ad ρ : π1(K
♮) → SO(3) pulls back to an SO(3) representation of π1(Y #RP3) =

π1(Y ) ∗ Z/2 of the form

β ∗ γ : π1(Y ) ∗ Z/2 → SO(3),

where β = π∗Ad ρ0 and γ : Z/2 → SO(3) sends the generator of Z/2 to Ad i ·Ad j =

Ad k. The representation β ∗ γ is equivariant in that τ ∗(β ∗ γ) = u · (β ∗ γ) · u−1 with

the conjugating element u = Ad ρ0(a1) = Ad i.
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2.4 Knot homology: grading of the special gener-

ator

Given a knot k ⊂ S3, we will continue using the notations K for its exterior and K♮

for the exterior of the two-component link k♮ = k ∪ ℓ obtained by connect summing

k with the Hopf link H. The special projective representation α : π1(K
♮) → SU(2),

which sends all the meridians of k to i and the meridian of ℓ to j, is a generator in

the chain complex IC♮(k). In this section, we compute its Floer grading.

2.4.1 Theorem. For any knot k in S3, we have gr (α) = sign k (mod 4).

Before we go on to prove this theorem recall that, according to [22, Proposition

4.4], the absolute Floer index of α is given by the formula

gr (α) = − indDA′ (α, α)−
3

2
(χ(W ′) + σ(W ′))− χ(S ′) (mod 4), (2.9)

where (W ′, S ′) is a cobordism of the pairs (S3, H) and (S3, k♮) in the sense of [22,

Section 4.3], and the two representations bearing the same name α are the special

generators in the Floer chain complexes of the unknot and of the knot k. The operator

DA′ (α, α) refers to the ASD operator on the non-compact manifold obtained from

W ′ by attaching cylindrical ends to the two boundary components; this manifold is

again called W ′. The connection A′ can be any connection on W ′ which is singular

along the surface S ′ and which limits to flat connections with the holonomy α on the

two ends. The index of DA′ (α, α) is understood as the L2
δ index for a small δ > 0.
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2.4.1 Constructing the cobordism

Our calculation of the Floer index gr (α) will use a specific cobordism (W ′, S ′) con-

structed as follows.

Let Σ be the double branched cover of S3 with branch set the knot k. Choose

a Seifert surface F ′ of k and push its interior slightly into the ball D4 so that the

resulting surface, which we still call F ′, is transversal to ∂D4 = S3. Let V be the

double branched cover ofD4 with branch set F ′. Then V is a smooth simply connected

spin 4-manifold with boundary Σ, which admits a handle decomposition with only

0– and 2–handles, see Akbulut–Kirby [1, page 113].

Next, choose a point in the interior of the surface F ′ ⊂ D4. Excising a small open

4-ball containing that point from (D4, F ′) results in a manifold W ′
1 diffeomorphic to

I×S3 together with the surface F ′
1 = F ′− int(D2) properly embedded into it, thereby

providing a cobordism (W ′
1, F

′
1) from an unknot to the knot k. The double branched

cover W1 → W ′
1 with branch set F ′

1 is a cobordism from S3 to Σ. The manifold W1

is simply connected because it can be obtained from the simply connected manifold

V by excising an open 4-ball.

Similarly, consider the manifold W ′
2 = I × S3 and surface F ′

2 = I × H ⊂ W ′
2

providing a product cobordism from the Hopf link H to itself. The double branched

cover W2 → W ′
2 with branch set F ′

2 is then a cobordism W2 = I × RP3 from RP3 to

itself.

As the final step of the construction, consider a path γ′1 in the surface F ′
1 connect-

ing its two boundary components. Similarly, consider a path γ′2 of the form I × {p}

in the surface F ′
2 = I × H. Remove tubular neighborhoods of these two paths and
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glue the resulting manifolds and surfaces together using an orientation reversing dif-

feomorphism 1 × h : I × S2 → I × S2. The resulting pair (W ′, S ′) is the desired

cobordism of the pairs (S3, H) and (S3, k♮). One can easily see that

χ(W ′) = σ(W ′) = 0 and χ(S ′) = χ(F ′)− 1. (2.10)

Note that the double branched cover W → W ′ with branch set S ′ is a cobordism

from RP3 to Σ#RP3 which can be obtained from the cobordisms W1 and W2 by

taking a connected sum along the paths γ1 ⊂ W1 and γ2 ⊂ W2 lifting, respectively,

the paths γ′1 and γ′2. To be precise,

W = W ◦

1 ∪ W ◦

2 , (2.11)

where W ◦
1 and W ◦

2 are obtained from W1 and W2 by removing tubular neighborhoods

of γ1 and γ2. The identification in (2.11) is done along a copy of I×S2. In particular,

we see that π1(W ) = Z/2.

2.4.2 L2–index

We will rely on Ruberman [33] and Taubes [42] in our index calculations. Let π :

W → W ′ be the double branched cover with branch set S ′ constructed in the previous

section, and τ : W → W the covering translation. The non-trivial representation γ :

π1(RP
3) → SO(3) and the representation θ ∗γ : π1(Σ) ∗ π1(RP

3) → SO(3) obviously

extend to a representation π1(W ) → SO(3), making W into a flat cobordism. This

representation is equivariant with respect to τ , with the conjugating element of order
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two, hence it is of the form π∗ρ for an orbifold representation ρ : πV
1 (W

′, S ′) → SO(3).

The representation ρ restricts to the representations α on the two ends of W ′.

Let A and A′ be flat connections onW andW ′ whose holonomies are, respectively,

π∗ρ and ρ. We will use A′ as the twisting connection of the operator DA′ (α, α).

Instead of computing the index of this operator we will compute the equivariant

index indDτ
A(γ, θ ∗ γ) of its pull back to W . The latter index equals minus the

equivariant index of the elliptic complex

0 Ω0(W, adP ) Ω1(W, adP ) Ω2
+(W, adP ).

−dA d+A

The equivariance here is understood with respect to a lift of τ : W → W to the

bundle adP which has second order on the fiber. The connection A is equivariant

with respect to this lift.

The zeroth equivariant cohomology of the above elliptic complex vanishes because

the lift of τ acts as minus identity on H0(W ; adA) = R, compare with Example

2.2.6. This vanishing result can also be derived from the irreducibility of the singular

connection A′.

To compute the remaining cohomology, notice that the coefficient bundle adP

splits into a sum of two bundles, adP = R ⊕ L, with the lift of τ acting as identity

on R and as multiplication by −1 on L. The above elliptic complex splits corre-

spondingly into a sum of two elliptic complexes, one with the trivial real coefficients,

and the other with coefficients in L. Applying [33, Proposition 4.1] to the former

complex and [33, Corollary 4.2] to the latter, we conclude that the non-equivariant

cohomology of the above complex in degrees one and two is isomorphic to the reduced
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singular cohomology of W with coefficients in adP . Restricting to the equivariant

part identifies the equivariant cohomology of the above complex in degrees one and

two with the reduced equivariant singular cohomology of W with coefficients in adP .

This argument reduces the index problem to computing the cohomology groups

Hk(W ; ad π∗γ) = Hk(W ;R) ⊕ Hk(W ;R−) ⊕ Hk(W ;R−), k = 1, 2,

and their equivariant versions, where R− stands for the real line coefficients on which

Z/2 acts as multiplication by −1.

2.4.3 Trivial coefficients

Our computation will be based on the Mayer–Vietoris exact sequence applied twice,

first to compute cohomology of W ◦
1 and W ◦

2 , and then to compute cohomology of

W = W ◦
1 ∪ W ◦

2 . The cohomology groups of W ◦
1 and W1 = W ◦

1 ∪ (I×D3) are related

by the following long exact sequence

0 H1(W1;R) H1(W ◦
1 ;R) 0

H2(W1;R) H2(W ◦
1 ;R) H2(I × S2;R)

H3(W1;R) H3(W ◦
1 ;R) 0,

δ

Since W1 and therefore W ◦
1 are simply connected, both H1(W1;R) and H1(W ◦

1 ;R)

vanish. Applying the Poincaré–Lefschetz duality to the manifold W1 and using the
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long exact sequence of the pair (W1, ∂W1) we obtain

H3(W1;R) = H1(W1, ∂W1;R) = H̃0(∂W1;R) = R.

Similarly, viewing W ◦
1 as a manifold whose boundary is a connected sum of the two

boundary components of W1, we obtain

H3(W ◦

1 ;R) = H1(W
◦

1 , ∂W
◦

1 ;R) = H̃0(∂W
◦

1 ;R) = 0.

Therefore, the connecting homomorphism δ in the above exact sequence must be an

isomorphism, which leads to the isomorphisms

H2(W ◦

1 ;R) = H2(W1;R) = H2(V ;R).

A similar long exact sequence, relating the cohomology of W ◦
2 and W2 = W ◦

2 ∪ (I ×

D3), implies that

H2(W ◦

2 ;R) = H2(W2;R) = H2(RP3;R) = 0.

Since π1(W2) = π1(W
◦
2 ) = Z/2, both H1(W2;R) and H

1(W ◦
2 ;R) vanish. The Mayer–

Vietoris exact sequence of the splitting W = W ◦
1 ∪ W ◦

2 ,
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0 H1(W ;R) H1(W ◦
1 ;R) ⊕ H1(W ◦

2 ;R) 0

H2(W ;R) H2(W ◦
1 ;R) ⊕ H2(W ◦

2 ;R) H2(I × S2;R)

H3(W ;R) H3(W ◦
1 ;R) ⊕ H3(W ◦

2 ;R) 0

together with the isomorphisms H3(W ;R) = H1(W, ∂W ;R) = H̃0(∂W ;R) = R and

π1(W ) = Z/2, implies that

H1(W ;R) = 0 and H2(W ;R) = H2(V ;R).

2.4.4 Twisted coefficients

We will now do a similar calculation using the Mayer–Vietoris sequence of W =

W ◦
1 ∪ W ◦

2 with twisted coefficients. Since W ◦
1 is simply connected, the twisted coeffi-

cients R− pull back to the trivial R–coefficients over W ◦
1 and the cohomology calcula-

tions from the previous section are unchanged. A direct calculation using homotopy

equivalences W2 ≃ RP3 and W ◦
2 ≃ RP2 shows that

H1(W ◦

2 ;R−) = 0 and H2(W ◦

2 ;R−) = R.

The latter isomorphism is induced by the inclusion I × S2 → W ◦
2 , which can be

easily seen from the Mayer–Vietoris exact sequence of W2 = W ◦
2 ∪ (I × D3). Now,

consider the Mayer–Vietoris exact sequence of the splitting W = W ◦
1 ∪ W ◦

2 with

twisted R–coefficients,
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0 H1(W ;R−) H1(W ◦
1 ;R) ⊕ H1(W ◦

2 ;R−) 0

H2(W ;R−) H2(W ◦
1 ;R) ⊕ H2(W ◦

2 ;R−) H2(I × S2;R)

H3(W ;R−) H3(W ◦
1 ;R) ⊕ H3(W ◦

2 ;R−) 0.

Keeping in mind that the map H2(W ◦
1 ;R) → H2(I × S2;R) in this sequence is zero

and the map H2(W ◦
2 ;R−) → H2(I × S2;R) is an isomorphism R → R, we conclude

that

H1(W ;R−) = 0 and H2(W ;R−) = H2(V ;R).

2.4.5 Equivariant cohomology

Combining results of the previous two sections we obtain H1(W ; adP ) = 0 and

H2(W ; adP ) = H2(V ;R3). The action of τ is compatible with these isomorphisms,

from which we immediately conclude that

H1
τ (W ; adP ) = 0

and H2
τ (W ; adP ) is the fixed point set of the map H2(V ;R3) → H2(V ;R3) obtained

by twisting τ ∗ : H2(V ;R) → H2(V ;R) by the action on the coefficients R3 → R3. The

involution τ ∗ is minus the identity, which follows from the usual transfer argument

applied to the covering V → D4, while the action on the coefficients is given by an

SO(3) operator of second order. Such an operator must have a single eigenvalue 1

and a double eigenvalue −1, which leads us to the conclusion that rkH2
τ (W ; adP ) =
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2 · b2(V ). Similarly,

rkH2
τ,+(W ; adP ) = 2 · b+2 (V ).

2.4.6 Proof of Theorem 2.4.1

It follows from the discussion in Section 2.4.2 and the calculation in Section 2.4.5 that

indDA′ (α, α) = rkH1
τ (W ; adP )− rkH2

+,τ (W ; adP ) = −2 · b+2 (V ).

Taking into account (2.9) and (2.10), we obtain the formula

gr (α) = 2 · b+2 (V ) − χ(F ′) + 1 (mod 4).

To simplify it, let us compute χ(V ) in two different ways: χ(V ) = 1+ b+2 (V )+ b−2 (V )

by definition, and χ(V ) = 2χ(D4) − χ(F ′) = 2 − χ(F ′) using the fact that V is a

double branched cover of D4 with branch set F ′. Combining these formulas with the

knot signature formula of Viro [43], we obtain the desired result,

gr (α) = − signV = − sign k = sign k (mod 4).

2.5 Computations for some classes of knots

Proposition 2.3.1 identified the critical points of the Chern–Simons functional with

the fibers of the map ψ : PRc(K
♮, SU(2)) → R0(K,SO(3)). Assuming that the space

R0(K,SO(3)) is non-degenerate, all of these fibers with the exception of the special

generator α are Morse–Bott circles. The actual generators of the chain complex
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of I♮(k) are then obtained by perturbing each Morse–Bott circle into two points

[17]. Our calculation will depend on whether an irreducible trace-free representation

ρ0 : π1K → SO(3) giving rise to the Morse–Bott circle C(ρ0) is dihedral or not.

The two cases will be considered separately starting with the easier case when ρ0 is

not dihedral. If R0(K,SO(3)) fails to be non-degenerate, similar results hold after

additional perturbations.

2.5.1 Non-dihedral representations

Let ρ0 : π1K → SO(3) be an irreducible trace-free representation which is not dihe-

dral, and assume that it is non-degenerate. Proposition 2.3.1 (c) then tells us that the

fiber C(ρ0) consists of two circles. Perturbing each of these circles into two isolated

points contributes four generators the the chain complex.

This completes the calculation of the generators of the Floer chain complex IC♮(k)

for an important special class of knots k ⊂ S3 with ∆(−1) = 1, where ∆(t) is the

Alexander polynomial of k normalized so that ∆(t) = ∆(t−1) and ∆(1) = 1. These

are precisely the knots k ⊂ S3 whose double branched covers Y are integral homology

spheres, and which are known to have no dihedral representations in R0(K,SO(3));

see [21, Theorem 10] or [8, Proposition 3.4]. Also note that sign k = 0 (mod 8) for

all such knots because 1 = ∆(−1) = det(i ·Q), where Q is the (even) quadratic form

of the knot.

2.5.1 Example. Let p and q be positive integers which are odd and relatively prime.

The double branched cover of the right handed (p, q)–torus knot Tp,q is the Brieskorn

homology sphere Σ(2, p, q). According to Fintushel–Stern [11, Proposition 2.5], all
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irreducible SO(3) representations of the fundamental group of Σ(2, p, q) are non-

degenerate and, up to conjugacy, there are a = − sign(Tp,q)/4 of them. All of these

representations are equivariant [8, Section 4.2] hence each of them contributes four

generators to the chain complex of I♮(Tp,q). Since sign(Tp,q) = 0 mod 4, the special

generator resides in degree zero, and we conclude that the rank of the chain complex

IC♮(Tp,q) is 4a+ 1.

2.5.2 Example. Let p, q, and r be pairwise relatively prime positive integers, and

view the Brieskorn homology sphere Σ(p, q, r) as the link of singularity of the complex

polynomial xp + yq + zr = 0. The involution induced by the complex conjugation

on the link makes Σ(p, q, r) into a double branched cover of S3 with branch set a

Montesinos knot k(p, q, r), see for instance [37, Section 7]. According to Fintushel–

Stern [11, Proposition 2.5], all irreducible SO(3) representations of the fundamental

group of Σ(p, q, r) are non-degenerate, and there are b = −2λ(Σ(p, q, r)) of them,

where λ(Σ(p, q, r)) is the Casson invariant of Σ(p, q, r). These representations are all

equivariant [37, Proposition 8] hence each of them contributes four generators to the

Floer chain complex of I♮(k(p, q, r)). Since sign k(p, q, r) = 0 (mod 4), the special

generator has degree zero, and the rank of the chain complex is IC♮(k(p, q, r)) is

4b+ 1.

For example, Σ(2, 3, 7) is a double branched cover of S3 whose branch set k(2, 3, 7)

is the pretzel knot P (−2, 3, 7). Since λ(Σ(2, 3, 7)) = −1, we conclude that the rank

of the chain complex is IC♮(P (−2, 3, 7)) is 9. This is consistent with the calculation

in [15, Section 5].

One can show that the same formula holds for all Brieskorn homology spheres

Σ(a1, . . . , an) and the corresponding Montesinos knots k(a1, . . . , an) using the τ–
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equivariant perturbations of [39] modeled after the perturbations of Kirk and Klassen

[20]. Note that the action of H1(K;Z/2) on the conjugacy classes of projective rep-

resentations is free hence it causes no equivariant transversally issues.

2.5.2 Dihedral representations

Let ρ0 : π1K → SO(3) be an irreducible trace-free representation which is dihedral,

and assume that it is non-degenerate. Proposition 2.3.1 (c) then tells us that the fiber

C(ρ0) consists of one circle. After perturbation, this circle contributes two generators

to the chain complex.

2.5.3 Two-bridge knots

Let p be an odd positive integer and k a two-bridge knot of type −p/q in the 3-sphere.

Its double branched cover Y is the lens space L(p, q) oriented as the (−p/q)–surgery

on an unknot in S3. One can easily check that all representations β : π1(Y ) → SO(3)

are equivariant.

For example, the figure-eight knot k is the two-bridge knot of type −5/3. Its

double branched cover is the lens space L(5, 3) whose fundamental group has no

irreducible representations and has two non-trivial reducible representations, up to

conjugacy. These two representations contribute the 4 generators to the chain complex

and therefore the rank of the chain complex IC♮(k) is 5. The Khovanov homology of

the mirror image of k has rank 5, hence we conclude from the Kronheimer–Mrowka

spectral sequence that the generators of the chain complex are also the generators of

I♮(k).
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2.5.4 General torus knots

Let p and q be positive relatively prime integers. The double branched cover Y of a

torus knot Tp,q is an integral homology sphere if and only if both p and q are odd,

which is the case we studied in Example 2.5.1. In this section, we will assume that

p is odd and q = 2r is even. Then Y can be viewed as the link of singularity at

zero of the complex polynomial x2 + yp + z2r = 0, with the covering translation given

by the formula τ(x, y, z) = (−x, y, z). Neumann and Raymond [31] showed that Y

admits a fixed point free circle action making it into a Seifert fibration over S2 with

the Seifert invariants {(a1, b1), . . . , (an, bn)} = {(1, b1), (p, b2), (p, b2), (r, b3)}, where

b1 ·pr+2b2 ·r+b3 ·p = 1. The involution τ is a part of the circle action, which implies

that all reducible representations β : π1(Y ) → SO(3) are equivariant.

Note that sign (Tp,q) = (p− 1)(q − 1) mod 4 for all relatively prime p and q, even

or odd, see for instance [3, Proposition 4.1].

2.5.3 Example. We will illustrate this calculation for the torus knot T3,4. The Seifert

invariants of the manifold Y are {(1,−1), (3, 1), (3, 1), (2, 1)} and its fundamental

group has presentation

π1(Y ) = 〈x1, x2, x3, x4, h |h central, x1 = h, x32 = h−1,

x33 = h−1, x24 = h−1, x1 x2 x3 x4 = 1〉

It admits one non-trivial reducible representation β with β(x1) = β(x4) = 1, β(x2) =

Ad(exp(2πi/3)) and β(x3) = Ad(exp(−2πi/3)), which contributes 2 generators to

the chain complex. One can easily see that π1(Y ) admits exactly one irreducible
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representation, therefore, the rank of the chain complex IC♮(T3,4) is 7.

2.5.5 General Montesinos knots

Let (a1, b1), . . . , (an, bn) be pairs of integers such that, for each i, the integers ai and bi

are relatively prime and ai is positive. Burde and Zieschang [5, Chapter 7] associated

with these pairs a Montesinos link K((a1, b1), . . . , (an, bn)) and showed that its double

branched cover is a Seifert fibered manifold Y with unnormalized Seifert invariants

(a1, b1), . . . , (an, bn). In particular,

π1(Y ) = 〈 x1, . . . xn, h | h central, xaii = h−bi , x1 · · · xn = 1 〉,

with the covering translation τ : Y → Y acting on the fundamental group by the rule

τ∗(h) = h−1, τ∗(xi) = x1 · · · xi−1x
−1
i x−1

i−1 · · · x
−1
1 , i = 1, . . . , n,

see Burde–Zieschang [5, Proposition 12.30]. Two-bridge and pretzel knots and links

are special cases of Montesinos knots and links. In this section, we will only be

interested in Montesinos knots.

Let k be a Montesinos knotK((a1, b1), . . . , (an, bn)) and Y the double branch cover

of S3 with branch set k. The manifold Y need not be an integral homology sphere; in

fact, one can easily see that its first homology is a finite abelian group of the order

|H1(Y ;Z)| =

(
n∑

i=1

bi/ai

)
· a1 · · · an.
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Note that this integer is always odd because Y is a Z/2 homology sphere.

All reducible representations β : π1(Y ) → SO(3) are equivariant because the invo-

lution τ∗ : H1(Y ) → H1(Y ) acts as multiplication by −1, see Proposition 2.2.1. There

are no irreducible representations for n ≤ 2. If n = 3, all irreducible representations

are non-degenerate and equivariant, which can be shown using a minor modification

of the arguments of [11, Proposition 2.5] and [37, Proposition 30]. For n ≥ 4, one en-

counters positive dimensional manifolds of representations; the action of τ ∗ on these

manifolds can be described as in [39], together with equivariant perturbations making

them non-degenerate. This discussion followed by Propositions 2.3.1 and 2.3.2 iden-

tifies the generators of the chain complex IC♮(k) for all Montesinos knots in terms of

representations for Seifert fibered manifolds, which are well known. An independent

calculation of the generators of IC♮(k) for pretzel knots k with n = 3 can be found

in Zentner [44].

2.6 Floer homology of other two-component links

This section deals with general two-component links L = ℓ1∪ℓ2 and not just the links

L = k♮ used in the definition of the knot Floer homology I♮(k). After computing the

Euler characteristic of I∗(Σ,L), we explicitly compute the generators of the Floer

chain groups for some links L with particularly simple double branched covers.

2.6.1 Euler characteristic

Let L = ℓ1 ∪ ℓ2 be a two-component link in an integral homology sphere Σ. The link-

ing number ℓk(ℓ1, ℓ2) is well defined up to a sign by choosing an arbitrary orientation
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on L.

2.6.1 Theorem. The Euler characteristic of the Floer homology I∗(Σ,L) of a two-

component link L = ℓ1 ∪ ℓ2 equals ± ℓk(ℓ1, ℓ2).

Proof. The Floer excision principle can be used as in [22] to establish an isomorphism

between I∗(Σ,L) and the sutured Floer homology of L. The latter is the Floer

homology of the 3-manifold Xϕ obtained by identifying the two boundary components

of S3−intN(L) via an orientation reversing homeomorphism ϕ : T 2 → T 2. According

to [16, Lemma 2.1], the homeomorphism ϕ can be chosen so that Xϕ has integral

homology of S1×S2. The result then follows from [16, Theorem 2.3] which asserts that

the Euler characteristic of the sutured Floer homology of L equals ± ℓk(ℓ1, ℓ2).

Theorem 2.6.1 implies in particular that the Euler characteristic of I♮(k) equals

±1, which is the linking number of the two components of the link k♮. This also follows

from the fact that the critical point set of the orbifold Chern–Simons functional used

to define I♮(k) consists of an isolated point and finitely many isolated circles, possibly

after a perturbation. An absolute grading on I♮(k) was fixed in [22] so that the grading

of the isolated point is even; this is consistent with our Theorem 2.4.1 because sign k

is always even. The Euler characteristic of I♮(k) then equals +1. We do not know

how to fix an absolute grading on I∗(Σ,L) for a general two-component link L.

2.6.2 Pretzel link P (2,−3,−6)

This is the two-component link L whose double branched cover is the Seifert fibered

manifold M with unnormalized Seifert invariants (2, 1), (3,−1), and (6,−1), see for
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instance [40, Section 4]. In particular,

π1(M) = 〈 x, y, z, h | h central, x2 = h−1, y3 = h, z6 = h, xyz = 1 〉,

with the covering translation τ : M → M acting on the fundamental group by the

rule

τ∗(h) = h−1, τ∗(x) = x−1, τ∗(y) = xy−1x−1, τ∗(z) = xyz−1y−1x−1,

see Burde–Zieschang [5, Proposition 12.30]. The manifold M has integral homology

of S1×S2. In fact, it can be obtained by 0–surgery on the right-handed trefoil so that

π1(M) = π1(K)/〈ℓ〉, where K is the exterior of the trefoil and ℓ is its longitude. The

relation ℓ = 1 shows up as the relation z6 = h in the above presentation of π1(M).

We will use this surgery presentation ofM to describe representations of π1(M) →

SO(3) with non-trivial w2 ∈ H2(M ;Z/2) = Z/2. According to Example 2.1.2, the

conjugacy classes of such representations are in one-to-two correspondence with the

conjugacy classes of representations ρ : π1(K) → SU(2) such that ρ(ℓ) = −1. In

the terminology of Section 2.1.2, these ρ are projective representations ρ : π1(M) →

SU(2), and the group H1(M ;Z/2) = Z/2 acts on them freely providing the claimed

one-to-two correspondence. Therefore, we wish to find all the SU(2) matrices ρ(h),

ρ(x), ρ(y), and ρ(z) such that

ρ(x)2 = ρ(h)−1, ρ(y)3 = ρ(h), ρ(z)6 = −ρ(h), ρ(x)ρ(y)ρ(z) = 1,

and ρ(h) commutes with ρ(x), ρ(y), and ρ(z). Since ρ is irreducible, we conclude as
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in Fintushel–Stern [11, Section 2] that ρ(h) = −1 and that ρ(x) is conjugate to i, ρ(y)

is conjugate to eπi/3, and ρ(z) is conjugate to either eπi/3 or e2πi/3. These give rise to

two conjugacy classes of projective representations ρ : π1(M) → SU(2) corresponding

to a single conjugacy class of representations Ad ρ : π1(M) → SO(3).

The arguments of [11, Proposition 2.5] and [37, Proposition 8] can be easily

adapted to conclude that the representation Ad ρ is non-degenerate and equivariant.

It gives rise to a single Z/2 ⊕ Z/2 orbit of generators in IC∗(S
3,L), and therefore

the rank of the chain complex is 4.

2.6.2 Remark. Amore precise result can be obtained using the isomorphism between

I∗(S
3,L) and the sutured Floer homology of L defined in [23]. The latter is the Floer

homology of the manifold Xϕ obtained by identifying the two boundary components

of X = S3 − intN(L) via an orientation reversing homeomorphism ϕ : T 2 → T 2.

A surgery description of Xϕ can be found in [16]; computing its Floer homology is

then an exercise in applying the Floer exact triangle to this surgery description. The

resulting Floer homology groups are free abelian of the ranks (2, 0, 2, 0) up to cyclic

permutation.

2.7 Homology of double branched covers

In this section, we will compute the groups H∗(M ;Z/2) using the transfer homomor-

phism approach of [26].

The transfer homomorphisms can be defined in the following two equivalent ways,

see for instance [10, Section 3]. For each singular simplex σ : ∆ → Σ, choose a

lift σ̃ : ∆ → M and define the chain map π! : C∗(Σ) −→ C∗(M) by the formula
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π!(σ) = σ̃+τ ◦ σ̃. This map is obviously independent of the choice of σ̃, and it induces

homomorphisms π! : H∗(Σ) −→ H∗(M) and π! : H∗(M) −→ H∗(Σ) in homology and

cohomology with arbitrary coefficients, called transfer homomorphisms. Another way

to define π! is as the map that makes the following digram commute,

H∗(Σ) H∗(Σ)

H∗(M) H∗(M)

π! π∗

PD

PD

where PD stands for the Poincaré duality isomorphism, and similarly for π!.

From now on, all chain complexes and (co)homology will be assumed to have Z/2

coefficients. It is then immediate from the definition of π! : C∗(Σ) −→ C∗(M) that

ker π! = C∗(L) and that we have a short exact sequence of chain complexes

0 C∗(Σ,L) C∗(M) C∗(Σ) 0
π! π∗

This exact sequence induces long exact sequences in homology

0 H3(Σ,L) H3(M) H3(Σ)
π!

H2(Σ,L) H2(M) H2(Σ)
π!

H1(Σ,L) H1(M) H1(Σ) 0
π!
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and in cohomology

0 H1(Σ) H1(M) H1(Σ,L)
π!

H2(Σ) H2(M) H2(Σ,L)
π!

H3(Σ) H3(M) H3(Σ,L) 0
π!

Combining these with the long exact sequence of the pair (Σ,L) we obtain the fol-

lowing result.

2.7.1 Proposition. Let π : M −→ Σ be a double branched cover over an integral

homology sphere Σ with branching set a two-component link L. Then Hi(M ;Z/2) =

H i(M ;Z/2) is isomorphic to Z/2 if i = 0, 1, 2, 3, and is zero otherwise.

2.7.1 The cup-product on H∗(M ;Z/2)

This section is devoted to the proof of the following result. We continue working with

Z/2 coefficients.

2.7.2 Proposition. The cup-product H1(M)×H1(M) → H2(M) is the bilinear form

Z/2× Z/2 → Z/2 with the matrix ℓk(ℓ1, ℓ2) (mod 2).

Proof. We will reduce the cup-product calculation to intersection theory using the
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commutative diagram

H1(M)×H1(M) H2(M)

H2(M)×H2(M) H1(M)

PD PD

∪

·

where PD stands for the Poincaré duality isomorphisms and · for the intersection

product. The transfer homomorphism π! : H∗(Σ,L) → H∗(M) will give us explicit

generators of H1(M) and H2(M) that we need to proceed with this approach.

We begin with the group H1(M). Note that H1(Σ,L) = Z/2 is generated by

the homology class [w] of any embedded arc w ⊂ Σ whose endpoints belong to two

different components of L. The transfer homomorphism π! : H1(Σ,L) → H1(M) maps

the homology class of w to that of the circle π−1(w). Since π! is an isomorphism, we

conclude that the circle π−1(w) represents a generator of H1(M).

To describe a generator ofH2(M), observe thatH2(Σ,L) = Z/2⊕Z/2 is generated

by the homology classes of Seifert surfaces S1 and S2 of the knots ℓ1 and ℓ2. We will

assume that S1 and S2 intersect transversely in a finite number of circles and arcs,

and note that S1 ∩ S2 is homologous to ℓk(ℓ1, ℓ2) · w. We claim that the closed

orientable surfaces π−1(S1) and π−1(S2), representing the homology classes π! ([S1])

and π! ([S2]), are homologous to each other and generate H2(M). To see this, we will

appeal to Theorem 2 of [26], which supplies us with the commutative diagram with

an exact row,
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0 H3(Σ) H2(Σ,L) H2(M) 0

H1(L)

d∗ π!

∂∗
f

where f([Σ]) = [ℓ1] + [ℓ2] and ∂∗ is the connecting homomorphism in the long exact

sequence of the pair (Σ,L). One can easily see that ∂∗ is an isomorphism. Since

∂∗([S1] + [S2]) = [ℓ1] + [ℓ2] = f([Σ]) we conclude that [S1] + [S2] ∈ im d∗ = ker π! and

hence π! ([S1]) = π! ([S2]) is a generator of H2(M).

The calculation of the intersection form H2(M)×H2(M) → H1(M) is now com-

pleted as follows :

[π−1(S1)] · [π
−1(S2)] = [π−1(S1) ∩ π−1(S2)]

= [π−1(S1 ∩ S2)] = ℓk(ℓ1, ℓ2) · [π
−1(w)].

2.7.3 Remark. Let β ∈ H1(M) be a generator and assume that ℓk(ℓ1, ℓ2) is odd.

Then β ∪ β ∈ H2(M) is non-trivial, and a straightforward argument with the Poincaré

duality shows that β ∪ β ∪ β generates H3(M). If ℓk(ℓ1, ℓ2) is even then all cup-

products are of course zero. This gives a complete description of the cohomology ring

H∗(M).
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2.7.2 An example

The real projective space RP3 is a double branched cover over the Hopf link in S3

with linking number ±1. Choose Seifert surfaces S1 and S2 to be the obvious disks

intersecting in a single interval w. Then π−1(S1) and π
−1(S2) are two copies of RP2,

each represented as a double branched cover of a disk with branching set a disjoint

union of a circle and a point. These two copies of RP2 intersect in the circle π−1(w)

thereby recovering the familiar cup-product structure on H∗(RP3;Z/2).



Chapter 3

Lescop’s Invariant and Gauge

Theory

3.1 Floer homology of admissible bundles

Let M be a closed oriented connected 3-manifold and P → M a principal bundle

such that one of the following conditions holds:

(1) M is an integral homology sphere and P is a trivial SU(2)-bundle, or

(2) b1(M) ≥ 1 and P is a U(2)-bundle whose first Chern class c1(P ) has an odd

pairing with some integral homology class in H2(M). Note that the second

Stiefel-Whitney class w2(ad(P )) ∈ H2(M ;Z/2) of the associated SO(3)-bundle

ad(P ) is then not zero as a map H2(M) → Z/2.

Both the bundle P and its adjoint bundle ad(P ) will be referred to as admissible

bundles.

Given an admissible bundle P , consider the space C of SO(3)-connections in ad(P ).

This space is acted upon by the group G of determinant one gauge transformations

53
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of P . The instanton Floer homology I∗(M,P ) is the Floer homology arising from the

Chern-Simons function of the space C/G; see Donaldson [9].

The groups I∗(M,P ) depend on the choice of ad(P ) but not P . They have an

absolute Z/2-grading defined as in Section 5.6 of [9]. These groups also admit a

relative Z/8-grading, which becomes an absolute Z/8-grading if M is an integral

homology sphere. Note that our setup is consistent with that of Kronheimer and

Mrowka [24], Section 7.1. Using their notations, I∗(M,P ) = I∗(M)w, where w =

det (P ) is the determinant bundle of P . Before we proceed with the calculations we

will establish a few notations used throughout this chapter.

Let L = ℓ1 ∪ ℓ2 · · · ∪ ℓn be a framed link in a rational homology sphere Σ with

framings γ = (γ1, · · · , γn). Then denote by Σγ1,··· ,γn (ℓ1 ∪ · · · ∪ ℓn) or Σγ (L) the

manifold obtained by surgery on L with the given framings. In particular, Σ0(L) will

denote the manifold obtained by surgery on 0-framed link L.

If Σ is a rational homology sphere and k is an arbitrary knot in Σ, then there

exists an integer q such that q · k represents a trivial class in H1(Σ). For any disjoint

knot ℓ in Σ, the linking number ℓkΣ(q · k, ℓ) is defined as the intersection number of

a Seifert surface of q · k with ℓ, and one further defines

ℓkΣ(k, ℓ) =
1

q
· ℓkΣ(q · k, ℓ) ∈ Q.

Two main ingredients that go into our calculation of the Euler characteristic of

I∗(M,P ) are as follows. The first one is a special surgery presentation of M as in

[27], Lemma 5.1.1.

3.1.1 Lemma. Let M be a closed connected oriented 3-manifold with b1(M) = n, and



55

ad(P ) be any admissible SO(3)-bundle over M. Then there exists a rational homology

sphere Σ and an algebraically split n-component link L ⊂ Σ such that M = Σ0(L),

each component of L is null-homologous in Σ, |H1(Σ)| = |Tor(H1(M))|, and the

restriction of ad(P ) to the exterior of L ⊂ Σ is trivial.

Proof. The proof will be very similar to the proof of Lemma 5.1.1 in [27], the only

difference being that we pick a specific basis in H1(M)/Tor, which depends on the

choice of our admissible bundle ad(P ).

Given an admissible SO(3)-bundle ad(P ) overM , its second Stiefel-Whitney class

w2(ad(P )) evaluates non-trivially on the fundamental class of some surface inM . We

can define a link C = {C1, · · ·Cn} in M which represents a basis of H1(M)/Tor. The

link C is chosen so that we pick a link dual to w2(ad(P ) and it is completed to a basis

of H1(M)/Tor. Then ad(P ), when restricted to the exterior of C in M , is trivial.

By Poincaré duality, we can pick embedded oriented surfaces S1, · · · , Sn, where

Si transversally intersects Ci at exactly one point and Si is disjoint from Cj for i 6= j.

Let S ′
i denote the complement of meridional disk of Ci in Si. Then the meridian µi

of Ci bounds a surface S ′
i in M − C and therefore the inclusion from H1(M − C;Z)

to H1(M ;Z) is an isomorphism.

Let mi be a closed curve on the boundary of the tubular neighborhood N(Ci) of

Ci which runs parallel to Ci. Let Σ be the manifold obtained by performing surgery

on Ci with framing mi in M . An immediate consequence of this surgery is that

H1(Σ) = H1(M)/〈mi〉 = Tor(H1(M)), and therefore Σ is a rational homology sphere.

Denote by ℓi the core of the surgery in Σ and by L the link ℓ1 ∪ · · · ∪ ℓn. Then

M is obtained by performing surgery on 0-framed surgery on L. Each component

ℓi of L is null homologous in Σ since it bounds a Seifert surface S ′
i in Σ − L and
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ℓkΣ(ℓi, ℓj) = 0 for i 6= j. Furthermore, Σ − N(L) is homeomorphic to M − N(C),

and therefore the restriction of ad(P ) to Σ−N(L) is trivial.

The second ingredient is a long exact sequence known as the Floer exact triangle;

see Theorem 2.5 of [4, Part II]. Let Σ be a rational homology sphere and L = ℓ1 ∪

ℓ2 ∪ · · · ∪ ℓn be an algebraically split link in Σ. Denote by L′ the link ℓ1 ∪ · · · ∪ ℓn−1.

If n = 1, we will require that Σ be an integral homology sphere. Then we have the

following Floer exact triangle :

I∗(Σ0,0(L
′ ∪ ℓn))

I∗ (Σ0(L
′)) I∗ (Σ0,−1(L

′ ∪ ℓn))

−1

The admissible bundles P , which are omitted from the notations, have c1(P ) pair non-

trivially with the natural homology classes obtained by capping off a Seifert surface

of ℓj by a meridional disk of the surgery. In addition, the three admissible bundles

that show up in the Floer exact triangle match when restricted to the exterior of the

link L in Σ. If n = 1, the bundles P over Σ and Σ−1(ℓ1) are trivial SU(2)-bundles.

It should be pointed out that we will not use the complete strength of the Floer

exact triangle; all we will derive from it is the following relation on Euler character-

istics:

χ(I∗ (Σ0,0(L
′ ∪ ℓn)) = χ(I∗ (Σ0,−1(L

′ ∪ ℓn))− χ(I∗ (Σ0(L
′))
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The obvious observation that

b1(Σ0,0(L
′ ∪ ℓn))− 1 = b1(Σ0,−1(L

′ ∪ ℓn)) = b1(Σ0(L
′))

allows us to proceed via induction on b1(M).

3.2 Case of b1(M) = 0

If M is an integral homology sphere, then λL(M) = λ(M), which is the Casson

invariant of M ; see Section 1.5 of [27]. On the Floer homology side, we work with

the trivial SU(2)-bundle P over M , and denote the instanton Floer homology by

I∗(M,P ). According to Taubes [41], we have χ(I∗ (M,P )) = 2 · λ(M). Therefore,

χ(I∗ (M,P )) = 2 · λL(M).

3.3 Case of b1(M) = 1

Let k ⊂ Σ be a null-homologous knot in a rational homology sphere Σ. Choose a

Seifert surface F of k, and denote by V its Seifert matrix with respect to a basis of

H1(F ). The Laurent polynomial

∆k⊂Σ(t) = |H1(Σ)| · det (t
1/2 V − t−1/2 V ⊤)

is called the Alexander polynomial of k ⊂ Σ. Note that ∆k⊂Σ(t) = ∆k⊂Σ(t
−1) and

∆k⊂Σ(1) = |H1(Σ)| > 0.

Given a closed oriented connected 3-manifold M with b1(M) = 1, according to
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Lemma 3.1.1, there exists a null-homologous knot ℓ1 ⊂ Σ in a rational homology

sphere Σ such that M = Σ0(ℓ1). The Lescop invariant of M is then equal to

λL(M) =
1

2
∆

′′

ℓ1⊂Σ(1)−
1

12
|Tor(H1(M))|, (3.1)

see [27], Section 1.5. It is independent of the choice of surgery presentation of M .

In the special case when Σ is an integral homology sphere, it follows from the

Floer exact triangle and Casson’s surgery formula [2] that

χ(I∗ (M,P )) = χ(I∗ (Σ−1(ℓ1))− χ(I∗ (Σ)) = 2λ(Σ−1(ℓ1))− 2λ(Σ)

= 2

(
−
1

2
∆

′′

ℓ1⊂Σ(1)

)
= −∆

′′

ℓ1⊂Σ(1).

Therefore,

χ(I∗ (M,P )) = −2λL(M)−
1

6
|Tor(H1(M))| (3.2)

as claimed, for the unique admissible SO(3)-bundle P over M . The general case is

handled similarly using the following result.

3.3.1 Proposition. LetM = Σ0(ℓ1), where ℓ1 is a null-homologous knot in a rational

homology sphere Σ. Then χ(I∗ (M,P )) = −∆
′′

ℓ1⊂Σ(1) for any admissible bundle ad(P )

over M whose restriction to the exterior of ℓ1 ⊂ Σ is trivial.

Proof. If H1(Σ) has non-trivial torsion, the starting point for our calculation will be

the result from [29] which, with our normalization, reads

1

2
χ(I∗ (M,P )) = −λL(Σ1(ℓ1)) + λL(Σ).
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We wish to identify the right hand side of this equation with −1
2
∆

′′

ℓ1⊂Σ(1). By Lescop

[27],

λL(Σ1(ℓ1)) =
H1(Σ1(ℓ1))

H1(Σ)
· λL(Σ) + FΣ(ℓ1),

where FΣ(ℓ1) is defined by equation 1.4.8 in [27]. Since |H1(Σ1(ℓ1))| = |H1(Σ)|, we

conclude that λL(Σ1(ℓ1)) = λL(Σ) + FΣ(ℓ1) and therefore

1

2
χ(I∗ (M,P )) = −FΣ(ℓ1).

A straightforward calculation of FΣ(ℓ1) shows that

FΣ(ℓ1) =
1

2
∆

′′

ℓ1⊂Σ(1),

which leads to the desired formula. Therefore, for our choice of admissible bundle P

over M ,

χ(I∗ (M,P )) = −2λL(M)−
1

6
|Tor(H1(M))|.

3.3.2 Remark. In fact, the above theorem holds for any admissible bundle P over

M since λL(M) is independent of the choice of surgery presentation.

3.4 Case of b1(M) = 2

Let L = ℓ1 ∪ ℓ2 be an oriented two-component link in a rational homology sphere

Σ such that ℓ1, ℓ2 are null-homologous in Σ and ℓkΣ(ℓ1, ℓ2) = 0. There exist Seifert

surfaces F1 and F2 of ℓ1 and ℓ2, respectively, such that F1∩ ℓ2 = ∅ and F2∩ ℓ1 = ∅. If
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the surfaces intersect, they may be assumed to intersect in a circle c, see [7]. The self

linking number of c with respect to either F1 or F2 is called the Sato-Levine invariant

[36] and is denoted by s(ℓ1 ∪ ℓ2 ⊂ Σ) . To be precise, s(ℓ1 ∪ ℓ2 ⊂ Σ) = ℓkΣ(c, c
+),

where c+ is a positive push-off of c with respect to either F1 or F2. If the surfaces do

not intersect then s(ℓ1 ∪ ℓ2 ⊂ Σ) =0.

Given a closed oriented connected 3-manifold M with b1(M) = 2, according to

Lemma 3.1.1, there exists an algebraically split link ℓ1∪ℓ2 ⊂ Σ in a rational homology

sphere Σ such that M = Σ0,0(ℓ1 ∪ ℓ2). According to Lescop [27], Section 5.1,

λL(M) = −|Tor(H1(M))| · s(ℓ1 ∪ ℓ2 ⊂ Σ); (3.3)

it is independent of the choice of surgery presentation of M .

Before we proceed with the main theorem of the section, we will establish a fact

which we will need for the calculations.

3.4.1 Lemma. Let Σ be a rational homology sphere, ℓ2 ⊂ Σ a null-homologous knot

and k1, k2 knots in ΣrN(ℓ2). Then

ℓkΣ−1 (ℓ2)(k1, k2) = ℓkΣ(k1, k2) + ℓkΣ(k1, ℓ2) · ℓkΣ(k2, ℓ2). (3.4)

Proof. If k1, k2 are null-homologous in Σ r N(ℓ2), the proof proceeds exactly as in

[18, Lemma 1.2]. If k1 and k2 are arbitrary knots in ΣrN(ℓ2), there exist non-zero

integers q1, q2 such that q1 · k1 and q2 · k2 are null-homologous in Σ r N(ℓ2) and
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therefore in Σ−1(ℓ2). Then

ℓkΣ−1 (ℓ2)(q1 · k1, q2 · k2) = ℓkΣ(q1 · k1, q2 · k2) + ℓkΣ(q1 · k1, ℓ2) · ℓkΣ(q2 · k2, ℓ2)

and the result follows by dividing both sides by q1 · q2.

3.4.2 Proposition. Let M = Σ0,0(ℓ1 ∪ ℓ2), where Σ is a rational homology sphere

and ℓ1, ℓ2 ⊂ Σ are null-homologous knots such that ℓkΣ(ℓ1, ℓ2) = 0. Then

χ(I∗ (M,P )) = 2 · λL(M) (3.5)

for any admissible bundle ad(P ) overM whose restriction to the exterior of ℓ1∪ℓ2 ⊂ Σ

is trivial.

Proof. Let P be a U(2)-bundle over M such that w2(ad(P )) evaluates non-trivially

on both homology classes obtained by capping off Seifert surfaces of ℓ1 and ℓ2 by

meridional disks of the surgery. It follows from the induction hypothesis that,

χ(I∗ (Σ0,0(ℓ1 ∪ ℓ2)) = χ(I∗ (Σ0,−1(ℓ1 ∪ ℓ2))− χ(I∗ (Σ0(ℓ1))

= −∆
′′

ℓ1⊂Σ−1 (ℓ2)
(1) + ∆

′′

ℓ1⊂Σ(1).

By a similar reasoning as in [18], we can choose Seifert surfaces F1 and F2 of ℓ1

and ℓ2, respectively, such that F1 ∩ F2 is either empty or a single ribbon intersection,

and furthermore, F1 ∩ F2 does not separate F1 or F2.

If F1 ∩ F2 is non-empty then it is a single ribbon intersection as in Figure 3.1.

The intersection F1 ∩ ∂F2 ⊂ ℓ2 consists of two points that separate ℓ2 into two arcs,
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F1

F2

Figure 3.1: Single Ribbon Intersection

F ′
1

F2

e1

Figure 3.2: Stabilization of F1

ℓ
′

2 and ℓ
′′

2 . Stabilize the surface F1 by adding a tube with core ℓ
′

2 and call this new

modified surface F
′

1, see Figure 3.2. If F1 had genus g, the genus of F
′

1 will be g + 1.

The intersection F
′

1 ∩ F2 is a closed loop c which represents a primitive homology

class in H1(F
′

1). Complete c to a basis {e1, c, e3, ..., e2g+2} of H1(F
′

1), where e1 is a

meridional curve of ℓ2 and {e3, ..., e2g+2} is a basis for H1(F1). In addition, the basis of

H1(F1) is chosen so that em∩F2 = ∅ and hence ℓkΣ(em, ℓ2) = 0 for m ≥ 3. Moreover,

it is obvious that ℓkΣ(e1, ℓ2) = ±1, and that ℓkΣ(c, ℓ2) = ℓkΣ(c
+, ℓ2) = 0, where c+

is a positive push-off of c with respect to F2. To summarize, we have the matrix

E =




ℓkΣ(e1, ℓ2)

ℓkΣ(c, ℓ2)

...

ℓkΣ(e2g+2, ℓ2)




=




±1

0

...

0




.

This matrix accounts for the difference in the Seifert matrices of ℓ1 when viewed

as a knot in Σ and Σ−1(ℓ2). To be precise, it follows from Lemma 3.4.1 and Hoste
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[18],

V (ℓ1 ⊂ Σ−1(ℓ2)) = V (ℓ1 ⊂ Σ) + E · E⊤. (3.6)

We would like next to determine the Seifert matrix V (ℓ1 ⊂ Σ) with respect to

the basis {e1, c, e3, . . . e2g+2} in H1(F
′

1). As e1 bounds a meridional disk D, it is null-

homologous in Σ. Since e+1 is disjoint from D, we have ℓkΣ(e1, e
+
1 ) = 0. For m ≥ 3,

ℓkΣ(e1, e
+
m) = 0, since the curve em lies on the surface F1 and therefore its push-off

e+m can be isotoped to make it disjoint from D . Similarly ℓkΣ(em, e
+
1 ) = 0 for m ≥ 3.

Next, ℓkΣ(c, e
+
1 ) = ±1 and since c+ does not intersect the meridional disk bounded

by e1, ℓkΣ(e1, c
+) = 0. To finish the calculation, observe that V (ℓ1 ⊂ Σ) − V (ℓ1 ⊂

Σ)⊤ = −I, where where I is the intersection form on H1(F
′

1;Q) given by I(v, w) =

v · w. For our choice of basis, c · em = 0 and therefore ℓkΣ(c
+, em)− ℓkΣ(c, e

+
m) = 0.

For m ≥ 3, denote ℓkΣ(c
+, em) = ℓkΣ(c, e

+
m) = am−2. Finally, ℓkΣ(c, c

+)= s by the

definition of s = s(ℓ1 ∪ ℓ2 ⊂ Σ). Therefore, we obtain the matrix

V (ℓ1 ⊂ Σ) =




0 0 0 · · · 0

±1 s a1 · · · a2g

0 a1

W

... ...

0 a2g




where W is the Seifert matrix of ℓ1 with respect to the basis e3, . . . e2g ∈ H1(F1).

Using Hoste’s formula (3.6), we obtain
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V (ℓ1 ⊂ Σ−1(ℓ2)) =




1 0 0 · · · 0

±1 s a1 · · · a2g

0 a1

W

...
...

0 a2g




Now we are ready to compute the Alexander polynomials. Denote V (ℓ1 ⊂ Σ−1(ℓ2))

by V and let z = t1/2 − t−1/2. Then

t1/2V − t−1/2V ⊤ =




z ∓t−1/2 0 · · · 0

±t1/2 sz a1z · · · a2gz

0 a1z

t1/2W − t−1/2W⊤

...
...

0 a2gz




Hence det(t1/2V − t−1/2V ⊤) =

= z

∣∣∣∣∣∣∣∣∣∣∣∣∣

sz a1z · · · a2gz

a1z

t1/2W − t−1/2W⊤

...

a2gz

∣∣∣∣∣∣∣∣∣∣∣∣∣

∓ t1/2

∣∣∣∣∣∣∣∣∣∣∣∣∣

∓t−
1

2 0 · · · 0

a1z

t1/2W − t−1/2W⊤

...

a2gz

∣∣∣∣∣∣∣∣∣∣∣∣∣
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= z3

∣∣∣∣∣∣∣∣∣∣∣∣∣

sz−1 a1 · · · a2g

a1

t1/2W − t−1/2W⊤

...

a2g

∣∣∣∣∣∣∣∣∣∣∣∣∣

+ det(t1/2W − t−1/2W⊤)

= s z2 · det(t1/2W − t−1/2W⊤) + z3 · f(t) + det(t1/2W − t−1/2W⊤)

for some function f(t), which is a polynomial in t1/2 and t−1/2. Therefore,

∆ℓ1⊂Σ−1 (ℓ2)(t)

|H1(Σ−1(ℓ2))|
=
sz2∆ℓ1⊂Σ(t)

|H1(Σ)|
+ z3f(t) +

∆ℓ1⊂Σ(t)

|H1(Σ)|
.

Next we differentiate twice and set t = 1. An easy calculation taking into account

that |H1(Σ−1(ℓ2))| = |H1(Σ)|, z(1) = 0 and z′(1) = 1 leads to the formula

∆
′′

ℓ1⊂Σ−1 (ℓ2)
(1) = 2s ·∆ℓ1⊂Σ(1) + ∆

′′

ℓ1⊂Σ(1)

= 2s · |H1(Σ)|+∆
′′

ℓ1⊂Σ(1).

Since |H1(Σ)| = |Tor(H1(M))|,

χ(I∗ (M,P )) = −2s(ℓ1 ∪ ℓ2 ⊂ Σ) · |Tor(H1(M))| = 2 · λL(M).

This is independent of the choice of admissible bundle which restricts to a trivial

bundle on the exterior of ℓ1 ∪ ℓ2 ⊂ Σ.
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3.4.3 Remark. We can show that Proposition 3.4.2 holds for an arbitrary admissible

bundle as follows.

The above calculation holds for a specific bundle which has w2(ad(P )) = (1, 1) in

the natural basis of Hom(H2(M),Z/2). We will now prove the result for admissible

bundles with w2(ad(P )) = (0, 1) and w2(ad(P )) = (1, 0) using the fact that λL(M) =

−|Tor(H1(M))| · s(ℓ1 ∪ ℓ2 ⊂ Σ) is an invariant of the manifold M and therefore is

independent of the surgery presentation.

Without loss of generality, let us assume that w2(ad(P )) = (1, 0). After sliding ℓ1

over ℓ2, we will obtain a new surgery presentation for M , namely, M = Σ0,0(ℓ1 ∪ ℓ♯),

where ℓ♯ is the new knot obtained by sliding ℓ1 over ℓ2. Note that ℓ♯ bounds a Seifert

surface which is a band sum of F1 and F2 and also that ℓkΣ(ℓ1, ℓ♯) = 0. In the

new basis, w2(ad(P )) = (1, 1), hence χ(I∗ (M,P )) = s(ℓ1 ∪ ℓ♯ ⊂ Σ) by the above

argument. The independence of surgery presentation then implies that s(ℓ1∪ ℓ♯ ⊂ Σ)

= s(ℓ1∪ ℓ2 ⊂ Σ) and therefore χ(I∗ (M,P )) is independent of the choice of admissible

bundle.

3.4.4 Example. Given a two component link L = ℓ1 ∪ ℓ2 in an integral homology

sphere Σ, Harper and Saveliev [16] defined its Floer homology I∗(Σ,L) as follows.

The link exterior X = Σ \ int N(L) is a compact manifold whose boundary consists

of two 2-tori. Furl it up by gluing the boundary tori together via an orientation

reversing diffeomorphism ϕ : T 2 −→ T 2 chosen so that the resulting closed manifold

Xϕ has homology of S1 × S2. Then I∗(Σ,L) = I∗(Xϕ). By Floer’s excision principle,

I∗(Σ,L) is independent of the choice of ϕ.

The manifold Xϕ can be chosen so that it has the following surgery description,

see [16]. Attach a band from one component of L to the other, and call the resulting
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knot k1. Let k2 be a small unknotted circle going once around the band with linking

number zero. Then Xϕ is the manifold obtained from Σ by performing surgery on

the link k1 ∪ k2, with k1 framed by ±1 and k2 framed by 0. A quick argument with

Floer exact triangle shows that I∗(Xϕ) = I∗(Y, P ), where Y is the manifold obtained

by surgery on the link k1 ∪ k2 with both components framed by zero [16, Section 4].

Since the link k1 ∪ k2 is algebraically split, it follows from equations (3.3) and (3.5)

that

χ(I∗(Σ,L)) = χ(I∗(Y, P )) = −2s(k1 ∪ k2).

A straightforward calculation then shows that s(k1 ∪ k2) = ±ℓkΣ (ℓ1, ℓ2), which re-

covers the formula χ(I∗(Σ,L)) = ±2 · ℓkΣ (ℓ1, ℓ2) of [16].

3.5 Case of b1(M) = 3

Let L = ℓ1 ∪ ℓ2 ∪ ℓ3 be an algebraically split oriented three-component link in

a rational homology sphere Σ such that each component of L is null-homologous.

Let F1, F2, F3 be Seifert surfaces of the knots ℓ1, ℓ2, ℓ3, respectively, chosen so that

Fi ∩ ℓj = ∅ for i 6= j. Define the Milnor triple linking number µ(ℓ1, ℓ2, ℓ3) as a signed

count of points in the intersection F1 ∩ F2 ∩ F3.

Given a closed oriented connected 3-manifold with b1(M) = 3, by Lemma 3.1.1,

there exists an algebraically split link L = ℓ1 ∪ ℓ2 ∪ ℓ3 in a rational homology sphere

Σ such thatM = Σ0(L) and the components of L are all null-homologous. According

to Lescop [27],

λL(M) = |Tor(H1(M))| · (µ(ℓ1, ℓ2, ℓ3))
2. (3.7)
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Again, λL(M) is independent of the choice of surgery presentation as above.

3.5.1 Proposition. Let M = Σ0(L), where Σ is a rational homology sphere, L =

ℓ1 ∪ ℓ2 ∪ ℓ3 is a link in Σ such that each component of L is null-homologous and

ℓkΣ(ℓi, ℓj) =0 for i 6= j. Then

χ(I∗ (M,P )) = −2 · λL(M) (3.8)

for any admissible bundle ad(P ) over M whose restriction to the exterior of ℓ1 ∪ ℓ2 ∪

ℓ3 ⊂ Σ is trivial.

Proof. Let P be a U(2)-bundle over M such that w2(ad(P )) evaluates non-trivially

on all three homology classes obtained by capping off Seifert surfaces of ℓ1, ℓ2 and ℓ3

by meridional disks of the surgery. It follows from the induction hypothesis that,

χ(I∗ (M,P ))) = χ(I∗ (Σ0,0,−1(ℓ1 ∪ ℓ2 ∪ ℓ3))− χ(I∗ (Σ0,0(ℓ1 ∪ ℓ2))

= −2s(ℓ1 ∪ ℓ2 ⊂ (Σ−1(ℓ3)) · |H1(Σ−1(ℓ3))|+ 2s(ℓ1 ∪ ℓ2 ⊂ Σ) · |H1(Σ)|

= −2 · ℓkΣ−1 (ℓ3)(c, c
+) · |H1(Σ−1(ℓ3))|+ 2 · ℓkΣ(c, c

+) · |H1(Σ)|

where c is the intersection circle c = F1 ∩ F2 of the Seifert surfaces F1 and F2

chosen to intersect in a circle. Since |H1(Σ−1(ℓ3))| = |H1(Σ)|, we can conclude that

χ(I∗ (M,P ))) = −2 ·
[
ℓkΣ−1 (ℓ3)(c, c

+)− ℓkΣ(c, c
+)
]
· |H1(Σ)|

We wish to identify the right hand side of this equation with −2(µ(ℓ1, ℓ2, ℓ3))
2 ·
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|Tor(H1(M))|. By (3.4),

ℓkΣ−1 (ℓ3)(c, c
+)− ℓkΣ(c, c

+) = ℓkΣ(c, ℓ3) · ℓkΣ(c
+, ℓ3),

therefore,

χ(I∗ (M,P ))) = −2 ·
[
ℓkΣ(c, ℓ3) · ℓkΣ(c

+, ℓ3)
]
· |H1(Σ)|

= −2 · ℓk(c, ℓ3)
2 · |Tor(H1(M))|.

Since ℓkΣ(c, ℓ3)= c · F3 = µ(ℓ1, ℓ2, ℓ3), the result follows.

3.5.2 Remark. By the same reasoning as in the remark after Proposition 3.4.2, the

statement of Proposition 3.5.1 holds for any admissible bundle over M .

It is worth mentioning that Ruberman and Saveliev [34] showed that 1/2 ·

χ(I∗ (M,P )) = λL(M) mod 2 for all M with H∗(M) = H∗(T
3) using techniques

different from ours.

3.5.3 Example. Given a knot ℓ ⊂ S3, Kronheimer and Mrowka [23] defined its

reduced singular instanton knot homology I♮(ℓ) as follows. Take the knot exterior

S3rN(ℓ) and construct a closed 3-manifold Y by attaching, along the boundary, the

manifold F × S1, where F is a punctured 2-torus. The attaching is done so that the

curve ∂F ×{point} matches the canonical longitude of ℓ, and the curve {point}×S1

matches its meridian. Then

I∗(Y, P ) = I♮∗(ℓ)⊕ I♮∗(ℓ) (3.9)
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for a particular choice of admissible bundle P over Y ; see [22, Proposition 5.7]. One

can easily see that Y is homeomorphic to the manifold obtained by (0, 0, 0)-surgery on

ℓ#Br, where Br stands for the Borromean rings. Since the link ℓ# Br is algebraically

split with µ(ℓ#Br) = 1, it follows from equations (3.7), (3.8) and (3.9) that

χ(I♮∗(ℓ)) =
1

2
· χ(I∗ (Y, P )) = −1.

3.6 Case of b1(M) ≥ 4

For all closed oriented connected 3-manifolds M with b1(M) = n ≥ 4, the Lescop

invariant λL(M) is known to vanish.

3.6.1 Proposition. Let M = Σ0(L), where Σ is a rational homology sphere, L =

ℓ1 ∪ · · · ∪ ℓn is a link in Σ such that each component of L is null-homologous and

ℓkΣ(ℓi, ℓj) =0 for i 6= j. Then χ(I∗ (M,P )) = 0 for any admissible bundle ad(P ) over

M whose restriction to the exterior of L = ℓ1 ∪ · · · ∪ ℓn in Σ is trivial.

Proof. Let P denote the U(2)-bundle over M such that w2(ad(P )) evaluates non-

trivially on the homology classes obtained by capping off Seifert surfaces of the com-

ponents ℓi, i = 1, . . . , n, by meridional disks of the surgery. It follows from the

induction hypothesis that, if n = 4,

χ(I∗ (M,P )) = χ(I∗ (Σ0,0,0,−1(ℓ1 ∪ ℓ2 ∪ ℓ3 ∪ ℓ4))

− χ(I∗ (Σ0,0,0(ℓ1 ∪ ℓ2 ∪ ℓ3))

= −2 · ℓkΣ−1 (ℓ4)(c, ℓ3)
2 · |H1(Σ−1(ℓ4))|+ 2 · ℓkΣ(c, ℓ3)

2 · |H1(Σ)|
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As |H1(Σ−1(ℓ4))| = |H1(Σ)|, the result now follows because

ℓkΣ−1 (ℓ4)(c, ℓ3)− ℓkΣ(c, ℓ3) = ℓkΣ(c, ℓ4) · ℓkΣ(ℓ3, ℓ4) = 0,

using equation (3.4) and the fact that ℓk(ℓ3, ℓ4) = 0.

If n ≥ 5, choose an admissible bundle ad(P ) whose restriction to the exterior of

L ⊂ Σ is trivial, and proceed by induction. Suppose that χ(I∗ (M
′, P )) = 0 for all

M ′ with b1(M
′) = k, where 4 ≤ k ≤ n− 1.

Let M = Σ0(L), where Σ is a rational homology sphere, L = ℓ1 ∪ · · · ∪ ℓn is a

link in Σ such that each component of L is null-homologous and ℓkΣ(ℓi, ℓj) =0 for

i 6= j. Denote by L′ the link ℓ1 ∪ · · · ∪ ℓn−1. Then it follows from the induction

hypothesis that

χ(I∗ (M,P )) = χ(I∗ (Σ0,−1(L
′ ∪ ℓn))− χ(I∗ (Σ0(L

′))

Since

b1(Σ0,0(L
′ ∪ ℓn))− 1 = b1(Σ0,−1(L

′ ∪ ℓn)) = b1(Σ0(L
′)) ≥ 4

we conclude that χ(I∗ (M,P )) = 0.

3.6.2 Remark. As before, the result holds for all admissible bundles over M .

3.7 An example

The following example illustrates the appearance of the factor |TorH1(M)| in the

Lescop invariant from a gauge-theoretic viewpoint.
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Let Y be a closed oriented 3-manifold with torsion-free first homology of rank at

least one, and consider the manifold M = Y # L(p, q) obtained by connect summing

Y with a lens space L(p, q). It follows from the connected sum formula in Theorem

T4 [27, Page 13] that

λL(M) = p · λL(Y ) = |TorH1(M)| · λL(Y )

but we wish to explain the factor |TorH1(M)| from a gauge-theoretic viewpoint.

Let P be an admissible bundle overM obtained by matching an admissible bundle

Q over Y with a trivial bundle over L(p, q). As in [34, Section 3.2], the holonomy map

provides a bijective correspondence between gauge equivalence classes of projectively

flat connections in P and conjugacy classes of projective representations

α : π1(Y # L(p, q)) → SU(2)

with the Stiefel–Whitney class w2(P ). Since π1(Y #L(p, q)) = π1(Y ) ∗ π1(L(p, q))

is a free product, all such α will be of the form α = β ∗ γ, where β : π1(Y ) →

SU(2) is a projective representation with the Stiefel–Whitney class w2(Q), and γ :

π1(L(p, q)) → SU(2) is a representation. We will assume for the sake of simplicity

that the character variety of π1(Y ) is non-degenerate; the general case can be handled

using perturbations. Note that since β is irreducible, each pair of conjugacy classes

[β], [γ] gives rise to a family of [α] parameterized by SU(2)/ Stab(γ).

We will next examine the SU(2)-character variety of π1(L(p, q)). Since the group

π1(L(p, q)) = Z/p is abelian, one may assume after conjugation that the image of a
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representation γ : π1(L(p, q)) → SU(2) is a unit complex number. Fix a generator

1 ∈ π1(L(p, q)), then such representations γ correspond to the roots of unity γ(1) =

exp(2πin/p), with 0 ≤ n ≤ p− 1. The number of conjugacy classes of γ and the size

of Stab(γ) depend on the parity of p as follows.

When p is odd, the trivial representation θ corresponding to n = 0 is the only

central representation. Its stabilizer equals SU(2) hence it gives rise to a single point

in the character variety of π1(M) for each [β]. Other representations γ are non-central

and, since cos(2πn/p) = cos(2π(p − n)/p), there are (p − 1)/2 conjugacy classes of

them enumerated by tr(γ(1)) = 2 cos(2πn/p), 1 ≤ n ≤ (p− 1)/2. Since each of these

γ has stabilizer U(1), it gives rise to a copy of SU(2)/U(1) = S2 in the character

variety of π1(M) for each [β].

When p is even, there are two central representations, ±θ, each giving rise to two

points in the character variety of π1(M) for each [β]. Like in the odd case, each of

the remaining (p − 2)/2 conjugacy classes corresponding to tr(γ(1)) = 2 cos(2πn/p)

gives rise to a 2-sphere’s worth of representations in the character variety of π1(M)

for each [β].

One can easily see that the 2-spheres in the character variety of π1(M) described

above are non-degenerate in the Morse–Bott sense. Therefore, each of them con-

tributes ±χ(S2) = ±2 to the Euler characteristic of the instanton Floer homology of

M . The latter follows for instance from [38, Theorem 5.1] which compares the Wil-

son loop perturbations of Floer [12] to Morse-type perturbations. The signs of these

contributions can be figured out by either computing the Floer indices of β ∗ γ or by

using an ad hoc argument equating the Euler characteristic of instanton homology to

the Lescop invariant.
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The final outcome is that each [β] in the character variety of π1(Y ) contributes

1+2·(p−1)/2 = p to the Euler characteristic χ(I∗ (M,P ) if p is odd, and it contributes

2 + 2 · (p − 2)/2 = p if p is even. In both cases, this results in the desired formula

χ(I∗ (M,P )) = p · χ(I∗ (Y,Q)) = |TorH1(M)| · χ(I∗ (Y,Q)).
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[14] A. Floer, Instanton homology, surgery and knots, In: Geometry of low-
dimensional manifolds, 1 (Durham, 1989). 97–114, London Math. Soc. Lec-
ture Note Ser., 150, Cambridge Univ. Press, 1990

[15] Y. Fukumoto, P. Kirk, J. Pinzón-Caicedo, Traceless SU(2) representations of
2-stranded tangles. Preprint arXiv:1305.6042

[16] E. Harper, N. Saveliev, Instanton Floer homology for two-component links, J.
Knot Theory Ramifications 21 (2012), 1250054 (8 pages)

[17] M. Hedden, C. Herald, P. Kirk, The pillowcase and perturbations of traceless
representations of knot groups, Geom. Topol. 18 (2014), 211–287

[18] J. Hoste, A formula for Casson’s invariant, Trans. Amer. Math. Soc. 297
(1986), 547–562

[19] A. Kawauchi, A survey of knot theory, Birkhäuser, 1996
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