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In this treatise we present an introduction to the concepts of curves and embeddings 

in Euclidean spaces.  We discuss what it means for embeddings to be equivalent, and pre-

sent the most recent findings in the field.  The survey is meant to be appropriate for first 

year graduate mathematics students to grasp, given the appropriate prerequisite 

knowledge of calculus and abstract algebra.  Exercises for student practice are given 

throughout, and solutions to selected exercises are offered as an appendix.  Glossaries of 

terms and notation, including entries considered part of the prerequisite knowledge and 

therefore not defined in the text itself, are also available as appendices.  
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CHAPTER 1 

INTRODUCTION 

 

The aim of this treatise is a quick introduction to some serious results and prob-

lems of modern mathematics intended for first year graduate mathematics students.  The 

prerequisites which are necessary for understanding this paper are the standard introduc-

tory courses in abstract algebra, real analysis, topology, and complex analysis.  In the 

University of Miami coding system this currently corresponds to the classes MTH 561-

562, MTH 533-534, MTH 531-532, and MTH 512.   

The problems that are discussed below belong to a branch of algebraic geometry 

which is called affine algebraic geometry.  The latter studies sets of common zeros of 

polynomial systems in Euclidean spaces - such sets are called affine algebraic varieties.  

One characteristic of this area of study that makes it so appealing as a choice for a topic 

of a paper of this type is the simplicity of the formulations of some of its crucial prob-

lems.  In this aspect affine algebraic geometry is quite similar to another area of mathe-

matics so intertwined with it - number theory. 

Indeed, some examples of the zero sets  0),(),( yxPyx  of polynomials P in 

two variables x and y are quite familiar to school students.  They know such zero sets as 

algebraic curves:  parabolas 02 cxy , hyperbolas 0cxy , ellipses 012

2

2

2 
b

y

a
x , 

etc. which are nothing but the simplest affine algebraic varieties.  However, even for such 

objects one can formulate very difficult and interesting problems. 
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For instance, the question whether for 3n  there exist points with rational coor-

dinates on the curve 01 nn yx  (i.e. /x p r  and /y q r  where , ,p q r   and 

0r  ) is equivalent to the famous Fermat's last problem formulated in 1637 (which states 

that an equation nnn rqp   has no integer solution for 3n ). 

Similarly, one can ask concerning a "general" polynomial P of degree at least 5 

(or more precisely, a polynomial such that the corresponding curve, while treated as a 

Reimann surface, is smooth of genus at least 2), whether the curve  0),(),( yxPyx  

may contain only a finite number of points with rational coordinates.  This is essentially 

the famous Mordell conjecture formulated in 1922. 

Both conjectures were proved respectively by Wiles (1995) and Faltings (1983) 

but in spite of the simplicity of the formulation, their proofs are based on the deepest 

methods and achievements of modern mathematics including algebraic geometry.  Ac-

cordingly our aim is to attract students to such methods via the simplicity of the formula-

tions of the problems.  

The fact central to our narrative is the remarkable Abhyankar-Moh-Suzuki theo-

rem (1974-1975) that states that any smooth algebraic curve homeomorphic to a complex 

line in a complex plane can be viewed as a coordinate axis in a suitable polynomial coor-

dinate system, i.e. it may be given by an equation 0x [1], [35].  Another crucial result 

is the Lin-Zaidenberg theorem (1983) that says that in the absence of smoothness such a 

curve can be given by an equation 0 lk yx  for relatively prime k and l in a suitable 

polynomial coordinate system [23]. 
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In order to explain these formulations more precisely we introduce the notion of a 

polynomial coordinate substitution (or, in other words, a polynomial automorphism) in 

Euclidean spaces, and the notion of equivalence of two embeddings of a curve into Eu-

clidean space (which means that one can be obtained from the other by a polynomial 

automorphism). 

This enables us to discuss the general problem of the classification of curve 

embeddings up to polynomial automorphisms (also called algebraic automorphisms), and 

present up-to-date results and problems as well as their interplay with other areas of 

mathematics.  For example, we illustrate how these problems are related unexpectedly to 

knot theory and exploit their extension to analytic curves and analytic automorphisms of 

Euclidean spaces.  This will lead, in particular, to the formulation of the famous Gromov-

Eliashberg theorem about optimal embedding dimensions of Stein manifolds into Euclid-

ean spaces [11], [31].  

There is also discussion of some very difficult conjectures of affine algebraic ge-

ometry related to classification of curved embeddings, including the Jacobian conjecture.  

We make some historical remarks about these problems and supply exercises throughout 

the sections.  Some standard facts and definitions are reminded in the appendices in order 

to make this text more self-contained. 
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CHAPTER 2 

ALGEBRAIC AUTOMORPHISMS 

 

We begin this treatise with some basic definitions and examples to set the stage 

for the remainder of the discussion.  Here we include a refresher on Euclidean spaces and 

an introduction to algebraic automorphisms.  We present some simple and intuitive ex-

amples of embeddings and equivalent embeddings before offering more precise defini-

tions, so as to allow the reader to get into the mindset of the discipline before being 

bogged down with the details. 

Definition 2.1.  Euclidean space nF  of dimension n over a field F is 

1{( ,..., ) }n
n iF x x x F    the set of all n-tuples with coordinates in the field F. 

Mostly we will deal with examples where F is the field of complex numbers, .  

However, for illustration we consider also F as the field of real numbers,  .  The reader 

is expected to have familiarity with fields, therefore only a definition for quick reference 

is included in Appendix D as a refresher.  For a more in-depth review of abstract algebra, 

we recommend E. H. Connell’s Elements of Abstract and Linear Algebra [40].  
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 Example 2.2.  Embeddings of a line   into 2   

 

    y        
            
     y = 5  

     y = 2 

       x 

 

 Pictured above are two embeddings of   into 2  that differ by translation along 

the y-axis.  It is reasonable to consider them as equivalent.  How shall we?  Consider the 

translation ( , ) ( , 3)x y x y .  It is an example of an algebraic automorphism of 2  (de-

fined below), or equivalently, an example of a polynomial coordinate substitution.  It is 

the existence of such a map that will allow us to categorize the two embeddings above as 

equivalent.  

 Definition 2.3.  A map 1( ,..., ) : n n
n F F     is called a polynomial map 

when each coordinate function i  is an element of  1,... nF x x  (where  1,... nF x x  = the ring 

of polynomials in n variables with coefficients in the field F).  Furthermore, if   a poly-

nomial map nn
n FF  :),...,( 1   such that   = Id nF , then   is called 

an algebraic (or, polynomial) automorphism or equivalently, a polynomial coordinate 

substitution. 

 When   is an algebraic automorphism, the functions 1,..., n   may be viewed as 

new coordinates, since n
n Fxxx  ),...,( 1  and n

n Fyyy  ),...,( 1  such that yx  , 

 such that ( ) ( )i i ix y    . (Indeed, otherwise   is not injective!)  Hence, the term 
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polynomial coordinate substitution is a suitable alternative to the term algebraic 

automorphism.  

 Exercise 2.4.  Describe all algebraic automorphisms of .  (Hint: Use the Fun-

damental Theorem of Algebra). 

 Example 2.5.  Let 2 2
1 2 , ,( , ) : x y u v     where (x, y) (and respectively, (u, v)) 

are coordinates on the corresponding sample of 2 .  Then the following are examples 

where  is an algebraic automorphism of 2 .  

  (1)  Linear automorphisms:  1 11 12

2 21 22

( , )

( , )

u x y a x a y

v x y a x a y



  
  

      

where the matrix 









2221

1211

aa

aa
A is invertible, i.e. 

















y

x
A

v

u
.    

The inverse map  is given by 















 

v

u
A

y

x 1 .  

  (2)  Affine transformations:  


























2

1

b

b

y

x
A

v

u

  
 

In this case the inverse map is given by  

















 

2

11

bv

bu
A

y

x
. 

  (3)  Triangular automorphisms:  

    xyxu  ),(1  

     )(),(2 xpyyxv   (where [ ]p x ).  

Here, the inverse  is given by: uvux  ),(1  

      2 ( , ) ( )y u v v p u    
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 Theorem 2.6.  (Jung - Van der Kulk):  Every algebraic automorphism of 2F  is a 

composition of linear and triangular automorphisms.  

 Exercise 2.7.  Show how the affine transformation 22: FF   given by 

1

2

bx x
A

by y

    
     

     
  where A is the invertible matrix 11 12

21 22

a a
A

a a

 
  
 

, can be constructed 

by the composition of linear and triangular automorphisms. 

Exercise 2.8.  

     (A)  Write the inverse of the triangular automorphism of 3F  which by definition is of 

the form: ( , , ) ( , ( ), ( , ))x y z x y p x z q x y   where p and q are polynomials. 

     (B) Write a composition of the two automorphisms of 2F  given by

3: ( , ) ( , )x y x y x   and 3: ( , ) ( , )x y x y y  .  

 In a more general setting we have the following: 

Definition 2.9.  Let a Euclidean space nF  be equipped with a coordinate system 

1,..., nx x .  An automorphism of the form  

   1 1 2 2 1 3 3 1 2 1 1( ,..., ) ( , ( ), ( , ),..., ( ,..., ))n n n nx x x x p x x p x x x p x x        

where each ip  is a polynomial in 1i   variables, is called triangular.   

Theorem 2.10.  There exist algebraic automorphisms of 3  that are not composi-

tions of linear and triangular automorphisms.  

Historical Remark.  More precisely, in 1972 Nagata conjectured that the follow-

ing automorphism of 3F   
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  2 2 2 2( , , ) ( ( ) , 2( ) ( ) , )x y z x x yz z y x yz x x yz z z       

cannot be presented as a composition of linear and triangular automorphisms.  Nobody 

had the slightest idea how to approach this problem until 2004 when Shestakov and 

Umirbaev proved it using tools from a completely different area [33].  For this solution 

they were awarded the 2007 E. H. Moore Research Article Prize by the American Math-

ematical Society (AMS).  [41]. 



 
 

 

9 

 

CHAPTER 3 

ALGEBRAIC DESCRIPTION OF AUTOMORPHISMS 

 

 We now employ the power of abstract algebra, namely rings, and establish a con-

nection between algebraic automorphisms and ring isomorphisms.  This will allow us to 

look on the ring level and utilize results from ring theory to make conclusions about the 

behavior and relationships of the automorphisms themselves.  The concept is introduced 

now, and employed often later.  

 Let nn
n FF  :),...,( 1   be a polynomial map, i.e. ixxF ni  ],...[ 1 .  

Then consider the ring homomorphism *
1 1: [ ,..., ] [ ,..., ]n nF x x F x x   defined by 

*( )f f    for every polynomial ],...[ 1 nxxFf  .  The best way to get a handle on 

these ring homomorphisms and their relationships to the polynomial maps is to get one's 

hands dirty with the details.  Hence we present: 

 Exercise 3.1.  Let : n n
x uF F   be a polynomial map.  

     (A)  Show that *
1 1: [ ,..., ] [ ,..., ]n nF u u F x x   defined by *( )f f    is a homo-

morphism of rings, and that *( )i iu    where iu  is a coordinate, FFu n
i :  given by 

1( ,..., )n iu u u .  

     (B)  Show that   is an algebraic automorphism of nF  if and only if *  is an isomor-

phism of the polynomial rings. 
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 It is important to have criteria showing when a given polynomial map 

: n nF F   is an automorphism, i.e. when it is invertible.  Following is one of such cri-

teria, which is a consequence of a theorem of James Ax described below in Chapter 5 

amidst the discussion of morphisms [6].  

Proposition 3.2  If the polynomial map 1( ,... ) : n n
n F F     is injective then 

it is an automorphism.   

 Remark.  It is interesting that, as this Proposition indicates, injectivity is not only 

a necessary, but also a sufficient condition for a polynomial map 

1( ,..., ) : n n
n F F     to be an automorphism.  However, if one allows : n n    

(with 2n  ) to be an analytic map (defined below in Chapter 4), then this proposition is 

no longer true.  In fact there is a famous example of Fatou of an injective analytic map 

2 2   which is not surjective [14].     

 However, the most effective criterion for recognizing when a polynomial map 

: n n    with 2n   is an automorphism has not yet been proven.  The following is 

one of the most difficult problems in modern mathematics and is over 70 years old: 

Conjecture 3.3 (The Jacobian Conjecture) [2].   Let 1( ,..., )nx x  be a coordinate 

system on n  and : n n    be a polynomial map with coordinate functions 

1( ,..., )n   .  Suppose that the Jacobian of  , ( )J   (i.e. the determinant of the 

Jacobian matrix  
, 1

i

j

n

x
i j





) is nowhere zero. Then   is an automorphism.  
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 Exercise 3.4.  Show that if ( )J   does not vanish on n  then it is a nonzero con-

stant. 

Exercise 3.5.  Prove the Jacobian conjecture for dimension 1n  . 

  Exercise 3.6.  Recall the Nagata automorphism given in Section 2 as 

2 2 2 2( , , ) ( ( ) , 2( ) ( ) , )x y z x x yz z y x yz x x yz z z       .  Show that its Jacobian is 1.  

This is of course, no proof of the Jacobian, but a nice illustration of an automorphism 

whose Jacobian is never zero.   

 Remark.  We know from Calculus that the Jacobian of a differentiable map 

2 2:    is nothing but the coefficient of the local change of area.  Thus in the real 

two-dimensional case the Jacobian conjecture can be reformulated as follows:  Show that 

a polynomial map of 2  into itself locally preserving the area is invertible.   

 Historical Remark.  The Jacobian conjecture was formulated by Keller in 1939.  

There were several wrong solutions of this problem.  The most notorious one is due to W. 

Engel [12] who announced a solution for the two-dimensional case in 1955 and it was 

considered correct for around 15 years.  However in the 1970’s two groups of mathema-

ticians independently found a mistake in Engel’s paper.  One group was led by 

Abhyankar in the USA, and the other by Vitushkin in Russia.  By now there are hundreds 

of papers devoted to this problem, but the general case remains resistant even in dimen-

sion 2.  Clearly, the Jacobian conjecture is not a good choice for a PhD thesis! 
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CHAPTER 4 

HOLOMORPHIC AUTOMORPHISMS AND EQUIVALENCE OF MAPS 

 

 Let ),...,( 1 niiI   be a multi-index with each ki  a non-negative integer.  

Let ),...,( 1 nzzz   be a coordinate system on n .  Let Ia   and 1
1

niiI
nz z z  . 

Definition 4.1.  A power series 
I

I
I za  mapping n    is an entire function 

(or a function holomorphic, equivalently, analytic on all of n ) if this power series is 

absolutely convergent for every nz  .  We will use the notation  1,..., nz z  to repre-

sent the set of entire functions on n . 

 Exercise 4.2.  Show that  1,..., nz z is a ring. 

 Definition 4.3.  A map 1( ,..., ) : n n
n      is called holomorphic if every 

coordinate function i  is holomorphic on n .  Furthermore, if a holomorphic map   

has a holomorphic inverse   such that nF
Id      , then it is called a holomor-

phic automorphism. 

 Note that all algebraic automorphisms are holomorphic automorphisms but not all 

holomorphic automorphsims are algebraic.  
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 Example 4.4.   Consider the following function:  1
1 2 1 2( , ) ( , )zz z z e z  .  It is hol-

omorphic, as 
0 !

n
z

n

z
e

n





  .  Also, it is an automorphism as its inverse is: 

),(),( 2121
1 zezzz z .  However, it is not algebraic. 

 Theorem 4.5.  A holomorphic map   is an automorphism if and only if it is 

bijective. 

 Note.  As mentioned above, there exists an example of Fatou of an injective hol-

omorphic map 2 2   that is not surjective.  Compare this with Proposition 2.11, 

where the map is a polynomial map, and injectivity is sufficient to conclude the map is 

bijective. 

 Exercise 4.6.  Show that on  each holomorphic automorphism is an affine 

transformation, that is, of the form ( )f z az b  , where 0a  .  (Hint:  Use the  

 Note.  Consider the map zezf )( .  It is a holomorphic map of  to .  Howev-

er, it is not a counter-example to the conclusion of Exercise 4.6, with inverse 

)ln()( zzg  .  Indeed, on , the natural log is a multi-valued function, so it is not a true 

inverse, and so zezf )(  is not a holomorphic automorphism of  and is not a counter-

example to Exercise 4.6.  In particular, the Casorati-Weierstrass theorem applies to )(zf  

at zero, with a change of variable of zw 1 , which is another proof that )(zf  is not a hol-

omorphic automorphism of .     
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Now, we once again employ the power of rings to investigate these holomorphic 

maps.    The idea should be very accessible to those who have mastered the details behind 

Exercise 3.1.  

For every holomorphic map, 1( ,..., ) : n n
n     , consider a map

   *
1 1: ,..., , ...,n nz z z z    given by  ff )(* . 

 Exercise 4.7.    

     (A)  Show that *  as described above is a homomorphism of rings.  

     (B)  Show that   is a holomorphic automorphism of Euclidean space if and only if 

*  is an automorphism of rings.  

 Definition 4.8.  (Equivalence of maps)  Two maps : nf X   and : ng X   

(of some geometrical object X) are called algebraically (respectively, holomorphically) 

equivalent if there exists an algebraic (respectively, holomorphic) automorphism   of 

n  such that fg  .  That is, the following diagram commutes:  

  f n nX     

        g  

Remark.  In the algebraic case we can use this definition for any field, F  (not 

just the field ).  

Example 4.9.  Consider again Example 2.2:  Embeddings of a line   into 2  

            y         
            
     y = 5  

     y = 2 

      x 
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Let X be the x-axis  x x  .  Then the line y = 2 can be thought of as the result of the 

map 2:f X   by ( ,2)x x .  Similarly, the line y = 5 results from 2:g X   by 

( ,5)x x .  Consider the algebraic automorphism 2 2:    defined by 

( , ) ( , 3)x y x y .  Then clearly fg  , and so according to the definition above, f 

and g are algebraically equivalent maps. 
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CHAPTER 5 

AFFINE ALGEBRAIC CURVES AND MORPHISMS 

 

 Definition 5.1.  A closed affine algebraic subvariety X of nF  is the set of com-

mon zeros of a system of polynomial equations on nF .  Though an affine algebraic va-

riety is a more general object, it can always be presented as a closed affine algebraic sub-

variety of nF .  Hence we shall treat the affine algebraic varieties below as such closed 

subvarieties.  Affine algebraic curves are one-dimensional affine algebraic varieties.  

(Dimension of an affine algebraic variety is defined more accurately in Chapter 9.)  

Example 5.2.  

     (1)  Euclidean spaces are affine algebraic varieties.  

     (2)  2 2{ 0}y x     —  parabola  

     (3)  2{ 1 0}xy    —  hyperbola  

     (4)  
2 2

2
2 2

1
x y

a b

 
   

 
  —  ellipse  

     (5)  2 3
, ,{ 0} x y zxy z     —  surface (i.e. two dimensional object)  

     (6)   2 2 3 40x x y z t      —  hypersurface in 4  (that is, it is given by one non-

constant polynomial equation)  

Remark.  For examples (2) through (4) above, one may consider such curves in 

2  where they have the same names.  
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 Definition 5.3.  Let X be a closed affine algebraic subvariety of nF  and  F X  

be the restriction of the ring of polynomials to X.  That is, 
XnxxFXF ],...[][ 1 .  Then 

 F X  is called the ring of regular functions on X. 

 Exercise 5.4.  Show that the ring of regular functions on the hyperbola 1xy   in 

2  is naturally isomorphic to the ring of Laurant polynomials 1,t t   . 

 Exercise 5.5.  Prove the following Theorem:  Let I be the ideal of all polynomials 

in  nxxF ,...,1  that vanish on X, where X is a closed affine algebraic subvariety of nF .  

Show that  XF    IxxF n /,...,1 . 

Remark.  For a hypersurface, this ideal I is principal. 

 Definition 5.6.  Let nFX  and mFY   be closed affine algebraic subvarieties 

of the Euclidean spaces.  A map YX  :  is called a morphism if it is a restriction of a 

polynomial map mn FF  :
~

.  That is, one has the following commutative diagram:  

     
n m

X Y

F F







 



     

where the maps  and n mX F Y F   are the inclusion maps.  

 Exercise 5.7.  Clearly, the morphism YX  :  generates a map, 

   * : F Y F X  .  Show that it is a homomorphism of the rings of regular functions. 
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 Definition 5.8.  A morphism YX  :  is an isomorphism if   has an inverse 

morphism XY  :1  (i.e. XId   and YId  ).   

 Exercise 5.9.  Show that YX  :  is an isomorphism if and only if 

   XFYF  :*  is an isomorphism of rings. 

 Example 5.10.  Let X   with coordinate t, i.e.    X t   and 

 2 2
,0 x yY y x    .  That is,      2, ( )Y x y y x X     . 

 Exercise 5.11.  Let X    and  2 2
,0 x yY y x    .  Consider 2

,: t x y    

given by ),( 2ttt  .  Show that YX  :  is an isomorphism.  

 Exercise 5.12.  Consider hyperbola   2
,1 0 x yH xy      and its projection on-

to the x-axis, : , ( , )xH x y x   .  Show that   is not an isomorphism. 

 Remark.  Note that   is not a homeomorphism either.  

 Fact.  If YXf :  is an isomorphism of complex (respectively, real) algebraic 

varieties, then it is automatically a homeomorphism in the standard topology. 

 Exercise 5.13.  Consider a semi-cubic parabola  3 2 0Y x y    and X   

with coordinate t.  Show that the morphism 2
,: x yX Y       given by ),()( 32 ttt   is 

a homeomorphism but not an isomorphism. 
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Exercise 5.14.  Consider  

      2
1,1 ,1 0 x yX xy      and   

           2
, ,1 0k l

k l u vX x y       

where k, l > 0 are relatively prime.  Show that 1,1 ,: k lX X   by ( , ) ( , )l kx y x y  is an 

isomorphism. 

 Definition 5.15.  When an isomorphism : X Y  exists between closed affine 

algebraic subvarieties nX F  and mY F , we say that X is isomorphic to Y and write 

X Y .  Similarly, when there exists an isomorphism between rings, we say that the rings 

are isomorphic, and also use the symbol  .  Thus, in this language and notation, Exercise 

5.9 showed that    X Y F Y F X  . 

 As noted in Chapter 3, it is desirable to have criteria showing when a given en-

domorphism is an automorphism.  We now state the theorem of James Ax, a consequence 

of which was made use of in the form of Proposition 3.2.   

 Theorem 5.16 (James Ax) [6].  Let : X X   be an injective morphism of an 

affine algebraic variety into itself.  Then   is surjective.   

 Remark.  The Ax theorem holds for objects even more general than affine alge-

braic varieties (algebraic schemes).   



 
 

 

20 

 

CHAPTER 6 

EQUIVALENCE 

 

 We now consider a relationship between closed affine algebraic subvarieties X 

and Y that is stronger than their being isomorphic.  We consider what it means for X and 

Y to be equivalent. 

 Definition 6.1.  (Equivalence of closed affine algebraic subvarieties)  Let X and Y 

be closed affine algebraic subvarieties of nF , and X Y  with isomorphism : X Y  .  

If there also exists an algebraic automorphism  : n nF F  , such that   is the re-

striction of  , then we say that X and Y are equivalent. 

 Note.  Earlier, in Chapter 4, we defined the notion of algebraic equivalence of 

maps f and g, both mapping some geometrical object X into nF .  It required the existence 

of an automorphism,   of nF  with gf   .  This notion of equivalence is essentially 

the same, but we could not use it in Chapter 4, as we had not yet been introduced to 

closed affine algebraic subvarieties, nor the notion of isomorphisms of such objects.  

 Exercise 6.2.  Consider 2
,, x yX Y    with  0X y   and  2 0Y y x   .  In 

Exercise 5.11 it was shown that X Y .  Show that in fact, X and Y are equivalent. 

 To illustrate the essential “equivalence” of our two notions of equivalence, note 

that we can think of Exercise 6.2 in the language of equivalence of maps instead of 
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equivalence of closed affine algebraic varieties.  Let  0X y   be represented as the 

map 2:f    by )0,(xx  and let  2 0Y y x    be represented as the map 

2:g    by ),( 2xxx .  Then f and g are equivalent maps by the same automorphism 

as given in the solution to Exercise 6.2. 

Example 6.3.  Consider   2
1,1 ,1 0 x yX xy      and   2

, ,1 0k l
k l u vX x y     

where k, l > 0 are relatively prime.  In Exercise 5.14 it was shown that 1,1 ,k lX X .  How-

ever, in the next Chapter we will show that although they are isomorphic, they are not 

equivalent.   

Before continuing, those needing to should go through the algebra refresher sup-

plied in Appendix A, as it reviews some results necessary for the following exercise, 

which will in turn be used in the proof in Chapter 7.   

Exercise 6.4.  Show that the polynomials 1xy   and 1k lx y   (where k, l > 0 are 

relatively prime) are irreducible in the ring [ , ]x y .      

 The following consequence of the Nagata lemma for Unique Factorization Do-

mains will also be useful in the proof in Chapter 7. 

Lemma 6.5.  Let p be an irreducible element of the ring ][nF  of polynomials in n 

variables with coefficients in F and let H be the set of points in nF  where p vanishes.  

Then every polynomial [ ]nq F  that vanishes on this hypersurface H is divisible by p.  In 

particular the ideal I of polynomials that vanish on H is the principal ideal generated by p.  
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Example 6.6.  Consider  2 3X xy z   .  We have that x, y, and z are irre-

ducible on X, but z is not divisible by x.    

Exercise 6.7.  Consider the ring of continuous real-valued functions on the real 

line equipped with a coordinate t.  Show that there is a function in this ring that vanishes 

at 0t  but is not divisible by t.  Furthermore, show that the ideal of a function that van-

ishes at 0t   is not a principal one. 
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CHAPTER 7 

NON-EQUIVALENCE OF 1,1X  AND ,k lX  

 

In Exercise 6.4 it is established that the polynomials 1xy   and 1k lx y   (where 

, 0k l   are relatively prime) are irreducible in the ring [ , ]x y . With the help of this re-

sult we are now ready to show that although 1,1 ,and k lX X  are isomorphic, still they are 

not equivalent. 

 Proof 7.1.  Assume they are equivalent.  Then by definition, we have an 

automorphism  2 2:    whose restriction, 1,1 ,: k lX X   is an isomorphism.  These 

extend to the ring automorphism     *: , ,x y x y   , and the ring isomorphism 

, 1,1*: k lX X          both defined in the usual way.  Since   is an isomorphism, *  

must transform the ideal ,k lI  of functions vanishing on ,k lX  into the ideal 1,1I  of func-

tions vanishing on 1,1X .  Both ideals are principal which yields the existence of a nonzero 

constant c such that:  

     (i)   *( 1) ( 1)k lx y c xy        

But, since  *  is a homomorphism, it preserves addition, multiplication and multiplica-

tive identity, so this gives:   

    (ii)      *( 1) *( ) *( ) 1
k l

k lx y x y          

Now, putting together (i) and (ii), gives   
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     (iii)     *( ) *( ) 1
k l

cxy c x y    
 
 

which is not possible, as the degrees do not match up.  This gives us a contradiction, 

which proves that our assumption was false.  Thus 1,1 ,and k lX X are not equivalent.  

 Exercise 7.2.  Show that , , and k l m nX X  are equivalent if and only if ( , ) ( , )k l m n  

or ( , ) ( , )k l n m . 
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CHAPTER 8 

THE THEOREMS 

 

 We now list some major theorems regarding this topic, preceded by some relevant 

definitions.   

 Definition 8.1.  

     (1)  Let mX   be a closed affine algebraic subvariety.  Then : nX  , the re-

striction of the polynomial map,  : m n    is called an algebraic embedding when X 

is isomorphic to its image, ( )Y X  under  , and the embedding is called proper 

when additionally its image, ( )Y X  is closed.      

     (2)  To say that an embedding of kF  into nF (where n k ) is rectifiable is to say 

that it can be sent to a coordinate line, which is to say that it is equivalent to a linear em-

bedding.  

Note.  For 1( ( ),..., ( )) : n
n tp t p t    to be an embedding, it must be a homeo-

morphism as well, so we need both of: 

     (i)  1 2 tt t j     such that 1 2( ) ( )j jp t p t   (injectivity for homeomorphism). 

     (ii) tt j    such that ( ) 0jp t   (no t with derivative everywhere zero; the 

smoothness of the image, making this an embedding). 
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Note that in general the image of an affine algebraic variety under a morphism is 

not necessarily closed.  As an example consider 2{ 1 0}X xy     and the forgetting 

projection : X   given by ( , )x y x  .  Then the image ( )X  coincides with * , 

the non-zero complex numbers, and in particular it is not closed.  However, this map is a 

homeomorphism between X and * .  This is an example of a non-proper embedding.  

Remarks.  In the case of F    or F    every (not necessarily proper) embed-

ding : nX F   yields a homeomorphism (and even diffeomorphism) between X and 

( )X .  If the image of a morphism : nX   is not closed, it is not a closed affine 

subvariety of n .  However we have the following weak form of Chevalley’s theorem.  

 Theorem 8.2.  (Chevalley)  Consider the closure ( )X  of the image of an alge-

braic variety X under morphism : nX  .  It is always an affine algebraic subvariety 

of n . 

 As an example, consider again 2{ 1 0}X xy     and : X  , the projec-

tion onto the x coordinate.  Though the image, *( )X   is not closed, its closure, 

*( )X     is an affine algebraic subvariety of  .  

Theorem 8.3.  (Abhyanker-Moh-Suzuki)  Let C be a closed affine curve in 2
,x y  

such that C   .  Then C is equivalent to  0y   [1], [35]. 

 Using the language of the above definitions, Theorem 8.3 says:  Every polynomial 

embedding of  into 2  is rectifiable. 
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 Historical Remark.  This theorem was proven independently around 1975 by 

Suzuki [35] and by Abhyankar and Moh [1]. The two last mathematicians worked on this 

theorem while trying to fix Engel’s proof of the Jacobian conjecture.  It is one of the most 

beautiful theorems in affine algebraic geometry and now there are at least a dozen differ-

ent proofs of this fact [5], [22], [25], [30], [36].     

 Theorem 8.4.  (Lin-Zaidenberg)  Let L be a closed affine algebraic curve in 2 , 

homeomorphic to  but not isomorphic to .  Then there exists relatively prime k and l 

such that L is equivalent to  0 lk yx  [23]. 

Note.  We saw an example of such an L in Exercise 5.13.  It was the semi-cubic 

parabola  3 2 0Y x y   . 

Historical Remark.  This theorem was proven in 1983 by V. Ya. Lin and M. 

Zaidenberg who were working in Russia [23].  (A special case of this theorem was prov-

en earlier by Lee Rudolph [29] by means of knot theory which will be discussed later.)  

Before starting to work on this theorem they contacted foreign experts including Pierre 

Deligne.  After a few weeks of reflection Deligne said that in his opinion modern mathe-

matics could not solve this problem.  After such inspiring encouragement the problem 

was quickly solved! 

Theorem 8.5.  (Craighero-Jelonek)  Let C be a closed affine algebraic curve in 

n , 4n   and C   .  Then C is equivalent to a coordinate axis.  That is, any polynomi-

al embedding of n   for 4n  , is rectifiable.  Note: It is still unknown whether this 

holds for n = 3 [9], [18].  
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 Theorem 8.6.  (Kaliman)  [20] For all polynomial embeddings, 3:   , 

there is a holomorphic automorphism, 3 3:    such that    has as its image a 

coordinate line.  Note: It is still unknown however, if there exists some polynomial map 

which would do the same .   

 Theorem 8.7.  (Rosay, Forstnerič, Globevnik)  [15] For all 2n  , there exists a 

closed proper holomorphic curve in n , biholomorphic to , which can’t be sent to a 

coordinate line.     
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CHAPTER 9 

MANIFOLDS AND EMBEDDINGS 

 

 Definition 9.1.  Let X be a closed affine algebraic or analytic subvariety of m .  

Then we say that X is smooth of dimension n (or, an n manifold) if, as illustrated be-

low, x X   a neighborhood, mU   of x, and a holomorphic map : nf U   such 

that : n n

X U
f X U B


    is bijective.  (Where nB  is a unit ball in n .)  

    

 

      

m  

   U      (   .   ) 

      X     n  

 

 

A Stein n manifold is the set of common zeros of a finite number of analytic 

functions, mX   such that x X   a neighborhood, U X  of x biholomorphic 

(that is, with a holomorphic inverse) to a ball in n .  That is, locally, this set of common 

zeros of analytic functions is organized as a Euclidean space.  A one-dimensional mani-

fold is called a curve.  A two-dimensional manifold is called a surface.   

    x  .     
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Remark.  Dimension depends on the choice of a field.  For example, whereas the 

complex line   and the real plane 2  are essentially the same,   is one dimensional in 

the field of complex numbers, while 2  is two dimensional in the field of reals.       

 Example 9.2.    

     (1)  2 2( 1)( 2)y x x x     (or, any polynomial of degree 3 with three distinct roots) 

This is a 1-curve in the field of complex numbers;  a punctured torus, illustrated below 

with an asterisk to represent the puncture  – as a surface over  .   

 

           

       * 

 

     (2)  2( , ) 0p x y    where ( , )p x y  is an analytic function.  This yields a curve C.  

Suppose there is no point of C such that , 0, 0x yp p p       .  Then C is smooth be-

cause of the implicit function theorem, which in the two-dimensional case states that if

2( , ) 0p x y    is continuous and 0yp   at some point P, then y may be expressed as a 

smooth function of x in some domain about P; i.e., there exists a function over that do-

main such that ( )y y x  and locally C coincides with the graph of this function. 

     (3) the cross 0xy   is non-smooth at the origin. 
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     (4)  3 2 2( 1)y x x    is not a manifold due to the point of overlap: 

 

    
 

     (5)  3 2x y , the semi-cubic parabola, is non-smooth (see Exercise 5.13) 

 Theorem 9.3.  (Kaliman [19], Srinivas [34], Nori)  Let X and Y be two isomor-

phic closed affine algebraic submanifolds of N  and of dimension n.  If 2 2N n  , then 

every isomorphism : X Y   can be extended to an automorphism of N . 

Note.  In the case 1n  , this is simply the Craighero-Jelonek Theorem (8.5). 

Fact. Any n-dimensional affine algebraic manifold can be embedded into 2 1n .  

(It is unknown if this can be improved upon.  That is, if it can be embedded into a lower 

power.) 

Theorem 9.4.  (Gromov, Eliashberg, Schürmann [11], [31])  Let 2n  .  Then 

any Stein holomorphic n-manifold can be embedded into N  where 3
2 1nN     . 

Historical Remark.  The conjecture that 3
2 1n     is the optimal dimension N was 

formulated by Forster in 1970.  In 1971 Eliashberg and Gromov announced that they can 

show that 3
2 2nN     .  They published the proof in 1992 only, with improvement for 

even n given by 3
2 1nN      [11].  During the period (1971 – 1992), many mathemati-

cians tried to recover the proof but failed.  As R. Narasimhan wrote with some bitterness 

in his joint paper [7] with S. Bell, “It has to be confessed that at least one of the authors 
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of this article has been unable to carry out the proof of this theorem.”  For odd n the final 

improvement was obtained by Schürmann in 1997, who also used methods from 

Eliashberg and Gromov. 

It is unknown if any non-compact analytic curve can be embedded into 2 .  

However, for the best analogue of the Gromov-Eliashberg-Schürmann Theorem (9.4) for 

the case 1n  , we have: 

Theorem 9.5. (Fornæss Wold [37], [38], [39])  

     (a)  A finitely connected domain (that is, a domain with finitely many holes) in  can 

be embedded as a closed Stein manifold in 2 .  

     (b)  A torus with a finite number of holes (not punctures) can also be embedded as a 

closed Stein manifold in 2 .  

 Below we consider analytic and algebraic curves over , which from a real point 

of view, are surfaces (meaning, locally they are like a disc), called Riemann Surfaces. 

 Example 9.6.  Below are examples of compact surfaces; closed Riemann Surfac-

es: 

     (a)  Perhaps the best example is a sphere.  

     (b)  A disc is not an example.  With its boundary, a disc is not a manifold because it is 

not locally like a disc on its boundary.  Without its boundary a disc is not closed, as it 

does not contain all of its limit points – namely its boundary points!    

     (c)  A torus (which is simply a sphere with a handle), as well as a sphere with any 

non-negative integral number of handles is an example of a closed Riemann surface.  The 

number of handles is called the genus. 
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 Exercise 9.7.  Show that a compact analytic curve can NOT be embedded into the 

Euclidean space m .        

 Notes. 

      Punctured Riemann surfaces (with any finite, positive number of punctures) are 

Stein.  Any algebraic curve is of this type. 

      Removing a closed disc from (that is, making a hole in) a closed Riemann surface 

will give a Stein curve (a one-dimensional manifold).  However, it is not biholomorphic 

to an algebraic curve. 

 Exercise 9.8.  Although a puncture (removal of a point) and a hole (removal of a 

closed disc) are not the same, show that an annulus,  1 20nA z r z r     (an open 

disc with a hole) and a punctured open disc,  * 0z z R     are homeomorphic 

but not biholomorphic. 
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CHAPTER 10 

FOCUS ON THE REALS 

 

 We now focus on real curves.  We begin with some discussion of embeddings of 

  into 3 .    

 To set the stage for this topic we first recall a bit about the one-point 

compactification of n-dimensional real space.  Recall that by way of the Riemann stereo-

graphic projection, we show that the one-point compactification of 2 , that is two-

dimensional real space plus one point, gives the two sphere.  So, 2 2S  .  Below is 

an illustration of the Riemann stereographic projection which represents how 2S  without 

its north-pole is mapped to the real plane, 2 .  Then, the north-pole is mapped to infini-

ty, showing how 2 2S   .    
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The one-dimensional equivalent is that 1S  , and although higher dimen-

sion cases are difficult to visualize, we have that 3  plus one point gives 3S  and in gen-

eral, n nS  .  

 Exercise 10.1.  Describe explicitly a relation that shows how   plus one point 

gives a circle, S1 . 

 Definitions 10.2.  An embedding 3:    is proper if it can be extended to an 

embedding 1 3S S .  Two proper embeddings, 3
1 2, :     are equivalent if   a 

homeomorphism 3 3:    such that 1 2   .  That is, the following diagram 

commutes: 

1 3 3      

              
2   

 

 Example 10.3.  Below are examples of two embeddings that are not equivalent to 

each other: 

(1)           z                (2)           z 

                
L = straight line      K = knot   

  y       y 
  x          x 
         
        Note that the knot does not touch       
       itself because it would not be a  
       manifold if it did. 
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 To show that these embeddings are not equivalent, we make use of the Poincaré 

fundamental group, that is, the first homotopy group.  We know that 3 \ L  is not 

homeomorphic to 3 \ K  because their associated groups aren’t isomorphic, which 

means of course that L and K are not equivalent.   

 The basic idea due to Poincaré is that we assign to manifolds X and Y, groups, 

1( )X  and 1( )Y  such that from each continuous map :f X Y  there arises a natural 

group homomorphism * 1 1: ( ) ( )f X Y   which is a group isomorphism whenever f is a 

homeomorphism.  As it can be shown that 3
1( \ )L   is isomorphic to the integers, , 

while 3
1( \ )K   is not even abelian, it follows clearly that 3

1( \ )L   is not isomorphic 

to 3
1( \ )K  .  Therefore, there is no homeomorphism 3 3: ( \ ) ( \ )f L K  , which 

means that 3 \ L  and 3 \ K  are not equivalent, and so L and K are not equivalent.    

 We now give some attention to embeddings of the type 3
1 2 3( , , ) :f f f f    

where 1 2,f f  and 3f  are polynomials.   

 Theorem 10.4.  (Shastri [32])  Let 3ˆ ( ( ), ( ), ( )) :r x t y t z t    be a knot K such 

that for any general projection 3 2:   , the composition, 2ˆ :r     has a finite 

number of double points.  Then, the knot ˆ( )K r t  is equivalent to a polynomial knot, 

that is, a knot represented by a polynomial embedding.    

 Notes.  Here, a “double point” refers to two different points in   that are 

mapped to the same point in 2  under r̂ .  Also, the composition need not have a pos-
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itive number double points, as we consider the circle (with zero double points) to be the 

“unknot”. 

 Example 10.5.  3
, ,ˆ : t x y zr    by 3 5 3 7ˆ( ) 3 , 5 4 , 42r t t t t t t t t      is non-

rectifiable [32].   

   

  

 Remark.  Consider 3ˆ :r     defined exactly as r̂  is the above example, but in 

the complex system instead of restricted to the reals.  It is unknown whether this embed-

ding of  into 3  is rectifiable. 

 Exercise 10.6.  Show that ˆ\ ( )r   is biholomorphic to 3 \coordinate-line, 

where 3ˆ :r     is as above. That is, show that    3 2
1 1ˆ\ ( )r       .     

 Following is some discussion of the Neumann-Rudolph approach to the study of 

algebraic curves,  ( , ) 0f x y    in 2  [28]. 

 Recall that the two-dimensional complex plane is isomorphic to four dimensional 

real space.  Also, a three-sphere of radius R is the same as three-dimensional real space 

plus one point.  That is: 3 3 4 2
RS      . 
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Consider R  defined here by 3
R RS   .  Then R  is a link in 3

RS .  That is, R  

is a disjoint union of several knots.  (So, knot theory is related to algebraic curves in 2 .)  

For sufficiently large R, the equivalence type of 3
R S   is independent of R.   

 Neumann and Rudolph [28] studied these embeddings 3
R S   in order to de-

scribe algebraically equivalent embeddings of 2  , and using these ideas they re-

proved the Abhyankar-Moh-Suzuki and Lin-Zaidenberg theorems (8.3 and 8.4).  Fur-

thermore, Neumann himself then wrote the following: 

 Theorem 10.7.  (Neumann) [27]    

     (1)  Every once punctured torus (a curve, analytically) in 2  is equivalent algebraical-

ly to a curve in 2
,x y  given by 2 3y x ax b   .  

     (2)  Every embedding of  into 2  with one node is equivalent to 2 3 2y x x  .  

     (3)  Every once punctured surface of genus 2 is equivalent to a curve of the form

2 5 3 2y x ax bx cx d     . 

      * 

 

 Neumann’s Theorem describes embeddings of once punctured curves.   

 Developing these methods further, Nakazawa and Oka [26] classified embeddings 

of all smooth once-punctured curves of genus up to 16. 

Exercise 10.8.  The simplest twice punctured surface is  .  Justify that indeed 

  is a twice punctured surface. 
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 Russel, Koras, Cassou-Nogues [3], classified almost all equivalent embeddings of 

  into 2 .  The final classification is expected to appear in the coming paper of M. 

Koras who announced the solution of the problem in 2011.  The formulation presented by 

Russel, Koras and Cassou-Nogues is too complicated to present here.  Instead, we con-

sider one special case discovered approximately 3 years prior to Russel, Koras and 

Cassou-Nogues’ paper.  This example demonstrates the difficulty of the problem. 

 Theorem 10.9.  (Kaliman [21])  Let   be an algebraic *  curve, 

  2
,( , ) 0 x yf x y     such that the genus of  ( , )f x y c  is zero c  .  Then   is 

equivalent to the zero fiber of one of the following functions:  

  (1)  
1 ( )mn n m

m

x

x

   
, or (2) 

1 ( )mn n m

m

x

x

   
   

where 2, 1m n   in (1) and 2, 2m n   in (2), and  ( , )x y   is defined as

1
1 1( , ) 1m m

mx y x y a x a x
      , where the coefficients 1 1, ,ma a   are such that (1) 

and (2) are polynomials. 
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CHAPTER 11 

EMBEDDINGS OF HIGHER-DIMENSIONAL EUCLIDEAN SPACES 

 

A line   is nothing but a one-dimensional Euclidean space.  Hence the question 

about embeddings of   into n  admits a natural generalization.  That is, to describe 

equivalent proper embeddings k n   for k n .  It should be emphasized that in the 

case of 1k   the word proper can be omitted as it is automatic. 

Exercise 11.1.  Prove that any embedding of   into n  is automatically proper. 

Exercise 11.2.  Consider the so-called Danielewsky surface S given by the equa-

tion 2 1xy z   in 3 .  It contains the line L given by 1 0z x   .  Find a one-to-one 

polynomial morphism from 2  onto \S L .  This is an example of a non-proper embed-

ding of 2  into 3 .  

As a consequence of the Kaliman-Srinivas-Nori theorem, one has the following. 

Theorem 11.3.  For 2 2n k   every proper algebraic embedding : k n    is 

rectifiable, i.e. the image ( )k   can be viewed as a coordinate k-dimensional subspace 

k  of n  after a suitable coordinate substitution.   

Except for the Abhyankar-Moh-Suzuki theorem nothing is known about the case 

of 2 1k n k   .  There is however the following hypothesis. 
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Conjecture 11.4.  (Abhyankar-Sathaye).  Every proper algebraic embedding 

1n n    is rectifiable.   

Example 11.5.  There are startling examples of non-rectifiable hypersurfaces H in 

n  that are diffeomorphic to Euclidean space (i.e. equivalent to 2 2n  as real manifolds) 

such that they are either non-isomorphic to 1n  or it is unknown whether they are iso-

morphic to 1n .  One of the most beautiful among them is the so-called Russell cubic R 

which is the hypersurface 2 2 3 0x x y z t     in 4 .  It is indeed diffeomorphic to 6  

(by the Choudary-Dimca [4] theorem mostly based on a very difficult h-cobordism theo-

rem) but not isomorphic to 3 [24]. 

Historical Remark.  This cubic appeared in connection with another important 

problem of affine algebraic geometry and it was important to distinguish it from 3 .  

The old methods did not work in this case until Makar-Limanov [24] introduced a new 

invariant (a very similar invariant was found later by Derksen) which showed that the 

Russell cubic R is not 3 . 

It is unknown whether R   is isomorphic to 4  or not.  In particular, the Rus-

sell cubic is a potential counterexample to another famous hypothesis: 

Conjecture 11.6.  (Zariski-Ramanujam).  If a complex affine algebraic variety X 

is such that X   is isomorphic to 1n  then X is isomorphic to n . 

The answer is known only in the case of 2n   [16]. 



42 
 

 

Theorem 11.7.  (Fujita [16]).  If X is a smooth two-dimensional affine algebraic 

variety such that kX   is isomorphic to 2k  then X is isomorphic to the plane 2 . 

Historical Remarks.  Actually the original question of Zariski was whether an 

isomorphism of X Y     implies an isomorphism X Y .  The first counterexample 

was constructed by Danielewsky who showed, for instance, that the surfaces 

 2 1X xy z    and  2 2 1Y x y z    are not isomorphic, although X   and Y   

are.  He never published this result. 
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CHAPTER 12 

SUMMARY 

 

The modern mathematical area of study known as affine algebraic geometry is re-

plete with interesting questions, elegant answers, decades-old resistant conjectures, and 

entertaining historical anecdotes.  This survey was meant to introduce the graduate math-

ematics student to some of the basic definitions, powerful results, modern theorems, and 

classic open problems in the area, in an effort to whet the appetite and attract the student 

to further study of this topic.   

We began with a definition and some examples of polynomial maps and algebraic 

automorphisms of n dimensional Euclidean space.  This tool was later used as a means to 

establish important notions of equivalence. To gain confidence with algebraic 

automorphisms, the reader was encouraged through stated exercises to investigate 

automorphisms of one dimensional complex space, to build an affine transformation of 

two dimensional space by composition of linear and triangular automorphisms, and to 

practice building an inverse of a triangular automorphism of Euclidean 3-space.  We 

mentioned the fascinating result that whereas all automorphisms of 2F  are the composi-

tion of linear and triangular automorphisms, the same cannot be said for automorphisms 

of 3F , as illustrated by an automorphism of Nagata.  It took over 30 years from the time 

Nagata suggested it until Shestakov and Umirbaev finally proved conclusively that Naga-
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ta’s automorphism cannot be expressed as a composition of linear and triangular 

automorphisms.   

Once the definition of an algebraic automorphism was developed, we investigated 

this tool on the ring level by building for any polynomial map, a corresponding ring ho-

momorphism such that the polynomial map is an algebraic automorphism if and only if 

the ring homomorphism is a ring automorphism.  This gave us a new strategy as to how 

to view these maps and make conclusions about their behavior and properties – through 

the power of ring theory.  Criteria for identifying when a polynomial map is an 

automorphism were discussed, including Ax’s result that all injective polynomial maps 

are automorphisms, and the famous Jacobian conjecture – the nearly 80-year old, as-yet 

unproven claim that if the determinant of the Jacobian matrix of a polynomial map is no-

where zero, then the map is an automorphism. 

Time was taken to investigate holomorphic automorphisms.  Similarities between 

these and polynomial automorphisms include that they too have a natural extension to the 

ring level, (this time to the ring of entire functions), and that still the only automorphisms 

of the complex line remain the non-constant linear functions.  One remarkable difference 

is that injectivity is no longer a sufficient condition for bijectivity, as it was in the alge-

braic case.   

Next, we saw how automorphisms are used to establish the notion of equivalence 

of maps, and later, equivalence of closed affine algebraic subvarieties.  First, morphisms 

and isomorphisms of affine algebraic curves were considered.  We saw how 

isomorphisms of closed affine algebraic subvarieties are similarly extended to ring 
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isomorphisms, and used this connection to investigate some classic examples.  We saw 

how the complex line and the parabola are shown to be isomorphic, how the hyperbola is 

neither isomorphic to nor even homeomorphic to the coordinate axis, and how the semi-

cubic parabola, while homeomorphic to the coordinate axis, is not isomorphic to it.  Fi-

nally we saw how 1,1X  and lkX ,  are isomorphic, which led us into the discussion of 

equivalence of affine algebraic subvarieties, which is a stronger relationship than isomor-

phism.   

Through the power of ring theory, we were able to show how the isomorphic 1,1X  

and lkX ,  fail to be equivalent to each other, while the isomorphic parabola and x-axis do 

share this stricter relationship of equivalence.   

We then defined what it means for an embedding to be rectifiable, and reviewed 

some of the most central theorems of this discipline.  Chevalley guaranteed that the clo-

sure of the image of any algebraic variety under a morphism will always be an affine al-

gebraic variety.  Predominantly, Abhyanker-Moh-Suzuki gave the result that every poly-

nomial embedding of   into 2  is rectifiable.  Lin-Zaidenberg took this further and 

found that in the absence of smoothness, a closed affine algebraic curve in 2  that is 

homeomorphic to but not isomorphic to  , is equivalent to  0k lx y  , with relatively 

prime k and l.  Craighero-Jelonek similarly stood on the shoulders of the giants 

Abhyankar-Moh-Suzuki and found that every polynomial embedding of   into n  is 

rectifiable for 4n  .  Though it is still not known if this holds for 3n  , we have a theo-

rem of Kaliman that guarantees for all polynomial embeddings of   into 3 , a holo-

morphic automorphism of 3  with a coordinate line as its image.         
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We then discussed manifolds and embeddings.  We gave some classic examples 

such as the punctured torus, and counter-examples such as the cross and the semi-cubic 

parabola, which are not manifolds.  This led us to some interesting results concerning op-

timal embedding dimensions of manifolds.  Kaliman, Srinivas and Nori took the 

Craighero-Jelonek Theorem a step further with the result that every isomorphism of two 

closed affine algebraic submanifolds of dimension N can be extended to an 

automorphism of N  if 2 2N n  .  Finally, we made it to the Gromov-Eliashberg-

Schürmann result that for 2n  , any Stein holomorphic n-manifold can be embedded 

into N  when 3
2 1nN     .  We saw also Fornæss Wold’s results giving the best current 

analogue of Gromov-Eliashberg-Schürmann for the case 1n  . 

We spent some time focusing on the field  , and in specific, embeddings and 

proper embeddings of   into 3 .  We saw that in 3 dimensional real space, a straight 

line and a knot are not equivalent, and saw a particular example of a knot of Shastri that 

is not rectifiable in real space, but is not yet known to be rectifiable or not in complex 

space.  We spoke briefly of the many remarkable results of equivalence classes such as 

Neumann’s theorem about embeddings of once punctured curves, Nakazawa and Oka’s 

classification of embeddings of all smooth once-punctured curves of genus up to 16, and 

Russel, Koras and Cassou-Nogues’ classification of almost all equivalent embeddings of 

*  into 2 , whose completion is expected to be published soon by Koras.   

Finally we gave some attention to embeddings of higher dimensional Euclidean 

spaces.  A consequence of the Kaliman-Srinivas-Nori theorem gives that every proper 

algebraic embedding : k n    is rectifiable for 2 2n k  .  The conjecture of 
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Abhyankar-Sathaye that every proper algebraic embedding of 1n n    is rectifiable is 

mentioned.  The incredible Russel cubic which has been shown to be diffeomorphic to 

6  but not isomorphic to 3  is noted as an example of a non-rectifiable hypersurface in 

4  that is not isomorphic to 3 .  Finally, we present the conjecture of Zariski-

Ramanujan, that if a complex affine algebraic variety X is such that 1nX    , then 

X   .  This has been proven so far only for the case of 2n   by Fujita. 

It is our hope that this paper may serve as an introduction for the graduate math-

ematics student to this area of the discipline.  Perhaps exposure to this topic will have in-

spired the next Keller to go forth and study and eventually bring another worthy conjec-

ture for contemplation, or even better - the next Wiles to supply finally a proof to a wait-

ing conjecture such as the Jacobian!   
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APPENDIX A 

ALGEBRA REVIEW TO PRECEDE CHAPTER 7 

 

 We now go through a short review of some algebraic concepts that are necessary 

for results used in Chapter 7 of the text.  It is assumed that the reader has some working 

knowledge of groups, rings and fields, and the definitions below are a refresher, not an 

introduction.  For the following, let R be a commutative ring with identity.  

 Definition A1.  *R  is the multiplicative group formed by the set of all units of R, 

where a unit of R is an element of R that has a multiplicative inverse in R.  

 Example A2.   * *
1,..., nx x    all non-zero complex numbers. 

 Definition A3.  Two elements a and b of a ring are said to be associates if there 

exists a unit u in R such that a = ub.  In this case we write a ~ b. 

 Exercise A4.  Show that ~ is an equivalence relation.  Also, show that when a and 

b are associates, the principal ideal generated by a, denoted (a), is the same as the princi-

pal ideal generated by b. 

 Definition A5.   To say that an element a of a ring is irreducible means that if 

a bc  (where b and c are elements of the ring), then either a ~ b or a ~ c.  

 Example A6.  In  x  only the linear functions are irreducible.   
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 Definition A7.   

     (1)  An element p of a ring is called prime if or p ab p a p b , where p a  (p di-

vides a) means !  with c R pc a   .  Fact: if an element is prime, then it is irreducible.   

     (2)  A domain is a ring with no zero divisors (where a zero divisor is a non-zero ele-

ment of the ring that can be multiplied by another non-zero element of the ring, giving 

the product 0 R ).    

     (3)  A domain R is called a Unique Factorization Domain (UFD) if 

*\ , 0a R R a   , a can be written in the form 1
1

tss
ta up p    where u is a unit in the 

ring, each ip  is a distinct irreducible in the ring, each is  is a positive integer, and this 

representation of a is unique up to permutation or switching to associates.    Whereas 

primes are always irreducible, in a UFD all irreducibles are prime as well.  The ring 

 1 , ..., nx x  is a UFD.  

 Example A8.  The integers form a UFD.  The rings  x  and [ , ]x y  are UFDs. 

 An important result we have involving these concepts is that the following are 

equivalent in a commutative ring R:   

  (i) p R  is a prime element  

   (ii) the ideal generated by p, denoted (p), is a prime ideal  

  (iii) the quotient ring / ( )R p  is a domain 

 A principal ideal, pR is prime IFF p is prime.  Also, two ideals, pR and qR are the 

same IFF their generating elements p and q are associates.   
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APPENDIX B 

SOLUTIONS TO SELECTED EXERCISES 

 

 Exercise 2.4. Use the Fundamental Theorem of Algebra to show that if 

the polynomial map :    is of degree > 1, then it cannot be one-to-one.  Similarly, 

a zero-degree polynomial (a constant) is not one-to-one.  This leaves only one-degree 

polynomials (non-constant linear functions) which are all algebraic automorphisms of  .   

Exercise 2.7.  Let H be the matrix 
0 1

1 0

 
 
 

.  Then consider the following 

automorphisms: 

21 22

11 12

:HA

a x a yx

a x a yy

  
       

  (linear with matrix HA) 

  
1

1

:b

xx

y by

  
       

   (triangular with 1( )p x b ) 

  :H

x y

y x

   
    

   
   (linear with matrix H) 

2

2

:b

xx

y by

  
       

   (triangular with 2( )p x b ) 

 

It is readily checked that 
2 1b H b HA        , showing one way that the affine trans-

formation   can be constructed by the composition of linear and triangular 

automorphisms. 
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Exercise 2.8.  (A)  The inverse of the triangular automorphism defined as 

( , , ) ( , ( ), ( , ))x y z x y p x z q x y   is given by )))(,(),(,(),,( xpyxqzxpyxzyx  .  

(B)  Given 3: ( , ) ( , )x y x y x   and 3: ( , ) ( , )x y x y y  , the compositions are given 

by   33 3( )( , ) ,x y x y y x y        and  

    33 3( )( , ) ,x y x y x y x      . 

Exercise 3.1.  (B) ( )  If   is an algebraic automorphism of nF , then let 

  be the inverse of  , and define    *
1 1: ,..., ,...,n nF x x F u u   according to

*( )g g   .  Then *  is the inverse of * , making *  a ring isomorphism whenev-

er   is an algebraic automorphism. 

    ( )  If *  is an isomorphism of rings, then define 

nn
n FF  :),...,( 1   according to * ( )i ix    where FFx n

i :  is given by 

in xxx ),...,( 1 .  Then   is the inverse of   so that whenever *  is an isomorphism of 

rings, then   is an algebraic automorphism. 

Exercise 3.4.  In the one-dimensional case, the Jacobian of   is simply its deriv-

ative, which is a polynomial in one variable.  As a simple consequence of the Fundamen-

tal Theorem of Algebra, if this polynomial is never zero, it must be a non-zero constant.  

As for higher dimensions, the Jacobian is obtained from multiplying and adding of the 

first partials, which are all polynomials, and is thus itself a polynomial in n variables.  

The Fundamental Theorem of Algebra still applies and thus if this polynomial is non-

constant then it has a zero. 
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Exercise 3.5.  From Exercise 3.4 we have that if the Jacobian is nowhere zero 

then it is a non-zero constant.  In dimension 1 the Jacobian being a non-zero constant 

gives that   is a non-constant linear function.  Then from Exercise 2.4 we have that   is 

an automorphism. 

Exercise 3.6  The Jacobian matrix of the Nagata is: 

2 2

2 3 2 2 2 3 4 2 2 2

1 2 2

6 2 4 4 1 2 2 2 2 4 3

0 0 1

xz z x yz

x yz x z xyz xz x z yz xy x x yz y z

   
           
  

 

The determinant is calculated as 

2 2 3 2 2 3 2(1 2 )(1 2 2 2 )(1) 0 0 0 0 ( )(6 2 4 4 )(1)xz xz x z yz z x yz x z xyz              

which simplifies to 1.  

 Exercise 4.6.  If f has only finitely many non-zero coefficients, then by the Fun-

damental Theorem of Algebra f must be an affine transformation in order to be a holo-

morphic automorphism (as shown in Exercise 2.4). 

When f has infinitely many non-zero coefficients, we can show that f is not a hol-

omorphic automorphism by employing a change of variable and calling on the Casorati-

Weierstrass Theorem which states that an analytic function comes arbitrarily close to all 

values in any neighborhood of an essential singularity.   

Consider ( ) i
i

i

f z a z   with finitely many zero coefficients, and f  holomorphic 

on all of  .  Using a change of variable, 1
zw   we get a function which is holomorphic 

for all w except 0w  , has an essential singularity at 0w  , and has infinitely many 
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non-zero terms with negative exponents.  The Casorati-Weierstrass Theorem applies to 

this function and gives that it is dense in   on any open disc with radius R > 0 and center 

0w  .  Such a disc corresponds to the exterior of a disc of points z centered at 0z  .  

Thus ( )f z  is dense in   on the exterior of any open disc centered at 0z  .  Consider 

such an open disc, D of radius r, centered at 0z  .  We know that ( )f z   maps this disc 

holomorphically to a disc of radius R, with center (0)f .  Since f is dense in   on the ex-

terior of the disc D, we can find a 0z  outside of D, with 0( ) (0)f z f , although 0 0z  .  

Therefore, f  is not injective, and is not an automorphism.    

Exercise 4.7  This essentially a repetition of Exercise 3.1, but in the analytic case. 

Exercise 5.4.  Let us call the hyperbola  2( , ) 1x y xy H   .  Then the ring of 

regular functions on H is denoted [ ]H .  An obvious map to build would be 

1: [ ] [ , ]H t t    defined by 1: ( , ) ( , )f x y f t t  , which gives a natural isomor-

phism between the ring of regular functions on the hyperbola 1xy   and 1[ , ]t t . 

Exercise 5.5.  Construct the surjective homomorphism    1: ,..., nF x x F X 

defined by :
X

f f  .  Its kernel is I.  Then use the First Isomorphism Theorem for 

Rings which states that in a ring homomorphism, the domain mod the kernel is isomor-

phic to the image, giving us here that   IxxF n /,...1   XF . 
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Exercise 5.9.     If   is an isomorphism with inverse  , then define 

   * : F X F Y   by *( )g g   .  Then it is readily verified that   1* * 
   so that 

*  is a ring isomorphism whenever   is an isomorphism. 

    If *  is an isomorphism of rings, then build  1( ,..., ) :n Y X     ac-

cording to i if    where  if F Y  is the pre-image of the projection map  ig F X  

under * , where :ig X F  is defined by 1: ( ,..., )i n ig x x x x  .  Such an if  is guar-

anteed to exist for each {1,..., }i n  due to the surjectivity of * .  It is easily checked that 

  is a morphism, *( )i i ig      for all i, and in fact   is the inverse morphism 

of  , so that   is an isomorphism whenever *  is a ring isomorphism.  

Exercise 5.11.  Its inverse is given by :Y X   defined by 2( , )x x x . 

Exercise 5.12.    is clearly not an isomorphism, as it is not surjective.  In partic-

ular, 0 is not in the image of  . 

Exercise 5.13.   is a homeomorphism, as it is continuous and bijective, with a 

continuous inverse given by 1 :Y X   by 2 3( , )x x x .  However,   is not an iso-

morphism, as the associated ring homomorphism,      * : Y X t      defined by 

*( )f f    is not an isomorphism, because all polynomials in the image have zero 

derivative at 0t  .  In particular, *  is not surjective, as the polynomial  t t  is not in 

the image of * . 
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Exercise 5.14.  Show that when k and l are relatively prime we can find positive 

integers ', '', '  and ''m m n n  such that ' ' 1m k n l   and '' '' 1m l n k  .  Then check that 

the map . 1,1: k lX X   by '' '' ' '( , ) ( , )m n n mu v u v u v  is the inverse of  , showing that

1,1 , and k lX X  are isomorphic. 

Exercise 6.2.  Consider  2 2:    defined by  2: ( , ) ( , )x y x y x  .  It is an 

automorphism with inverse  2 2:    defined by  2: ( , ) ( , )x y x y x  , the re-

striction of which is the isomorphism : X Y  .  Thus X and Y are not only isomorphic, 

they are equivalent.   

Exercise 6.4.  To show 1xy   is irreducible check first that no two non-constant 

polynomials can multiply to give 1xy  .  Thus whenever two polynomials multiply to 

give 1xy  , one of them is a unit, making the two associates, and 1xy   irreducible.  For 

1k lx y  where k and l are relatively prime, recall that in a UFD such as  ,x y , 

irreducibles and primes are the same.  Therefore 1xy   which was shown above to be 

irreducible, is also prime.  Apply the result that p R  is a prime element   the quo-

tient ring / ( )R p  is a domain, gives that  , / ( 1)x y xy   is a domain.  Now, since 

 , / ( 1)x y xy     1,1X      ,k lX       , / ( 1)k lx y x y  , we have that 

 , / ( 1)k lx y x y   must also be a domain, and therefore 1k lx y 
 
is prime, so 1k lx y 

 
is 

irreducible. 
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Exercise 6.7.  An answer to the first question is t .  In the second question, for 

any f that vanishes at 0t , one can consider f .   

Exercise 7.2.  The proof is very similar to Proof 7.1 of the text. 

Exercise 9.7.  Assume that there is a compact analytic curve that can be embed-

ded into the Euclidean space n .  Then it would be analytic in any disc, and have no 

maximum there as it is an embedding with derivative nowhere zero.  However, because it 

is compact, it must attain a maximum on the disc, and so by the maximum principle, it 

must be constant.  Therefore it is a point, not an analytic curve. 

Exercise 9.8.  Consider these structures in their polar form, each point z a bi   

represented as ( , )r   where 2 2r a b  , cosa r  , and sinb r  .  The homeo-

morphism : nf A   defined by 2 1
1( , ) ,

r r
f r r r

R
    

 
 and with inverse, 

1 : nf A    given by 1 1

2 1

( , ) ,
r r

f r R
r r

   
   

 shows that the annulus and the punc-

tured disc are homeomorphic. 

Proof that they are not biholomorphic:  Consider f, a bounded analytic map from 

*  to nA .  By the Riemann theorem about deleting a singularity, f extends to the origin.  

Then the origin would map to a point on the boundary of the annulus.  However, the disc 

and the annulus plus a point on the boundary are not even homeomorphic, thus the punc-

tured disc and the annulus are not biholomorphic. 
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      f 

O.            . 

 

  Exercise 10.1.  On the real x, y plane, take 1S  to be the circle of radius R, cen-

tered at (0, )R  and therefore tangent to the x–axis at the origin.  That is, 

 1 2 2 2 2( , ) ( )S x y x y R R     .  Call the point (0,2 )R  on the circle the “north-

pole”.  Now, for each point ( , )P x y  on 1S  that is not the north-pole, draw the line 

segment connecting the north-pole to the x–axis through P.  This line segment hits the x–

axis at 
2

2

Rx
x

R y
 


. 

                  north-pole 

 

  

 

 

  

This gives a one-to-one, onto function from 1 \ (0,2 )S R  to   (represented here by 

the x-axis).  Now map the north-pole to infinity, and this shows that the circle and the re-

als union infinity are the same. 

Exercise 10.6.  Use Kaliman Theorem (8.6). 
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Exercise 10.8.  We showed in Exercise 10.1 that 2 2S  .  We also know 

that 2  and   are the same.  Since   is just   with zero removed, consider starting 

with 2S  and removing both 0 and  .  When you remove   from 2S , you are back to 

2  (which is  ), and then when you remove 0, you have left  .  Therefore   is just 

a twice punctured 2S .  That is,   is 2S  with both 0 and   removed.     
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APPENDIX C 

GLOSSARY OF NOTATION 

 

Entries here are given by order of appearance, and each entry is listed under the chapter 

or appendix  in which the symbol first appears. 

 

CHAPTER 1 

 0),(),( yxPyx ;  set notation.  Here specifically we indicate the set of all points 

( , )x y  such that the polynomial P maps ( , )x y  to zero.   

 ;  indicative of an element being a member of a set. 

 ;  the set of integers. 

 

CHAPTER 2 

 ;  the field of the complex numbers.  That is, the set of all a bi  where a and b are real 

numbers and 2 1i   .  

 ;  the field of real numbers.  

 ;  indicating where a particular element is sent under the mapping in discussion.  

 ,  ;  respectively, the upper and lower case Greek letters, Phi.  



63 
 

 

: n nF F  ;   indicating that the map   maps the domain nF  to the codomain nF .  

1[ ,..., ]nF x x ;   the ring of polynomials in n variables with coefficients in the field F.  

 ;  there exists.  

 ,  ;  respectively, the upper and lower case Greek letters, Psi.  

  ;  the composition of the two maps,   composed with  , here composition is 

from right to left.  

nF
Id ;  the identity function on nF .  Explicitly, the function which maps each element of 

nF  to itself.  In general, RId  is the identity function on the set R.   

 ;  for all  

2
,x y , 2

,u v ;  two-dimensional complex space with coordinates specified as x and y or, 

respectively, u and v.  

1A ; the inverse of A.  Here, A is a matrix, so this is multiplicative inverse.  However, the 

-1 superscript is also used as compositional inverse.   

[ ]x ;  the field of polynomials in variable x with coefficients in the complex numbers. 

 ;  the upper case Greek letter, Lambda. 
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CHAPTER 3 

( )J  ;  the Jacobian of a map  .  That is, the determinant of the Jacobian matrix of the 

map  .  If the Jacobian is non-zero, the equations have a non-trivial solution. 

 
, 1

i

j

n

x
i j





;  the Jacobian matrix of the map 1( ,... ) : n n

n     .  Specifically the n n  

matrix whose i th row is the vector of partial derivatives of the i th function. 

 

CHAPTER 4 


I

I
I za ;  summation notation.  Here, specifically indicating the sum of all terms of the 

form I
Ia z  such that I = 1( ,... )ni i  with each ki  a non-negative integer, Ia   and 

1
1

niiI
nz z z  .  

 1,..., nz z ;  the ring of entire functions on n .  

e;  the Euler number.  Specifically, 1 1 1
2 6 24

0

1
1 1 ...

!n

e
n





       , or  1lim 1
n

nn
e


  .  

The approximate value of e is 2.718281828.  

0 !

n

n

z

n




 ;  again, summation notation.  Here, the sum of all terms of the form 

!

nz

n
 as n rang-

es through the non-negative integers.  
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CHAPTER 5 

 ; a subset of.  For example, 2 2{ 0}y x     refers to the set of all points ( , )x y  with 

2y x  and ,x y  so that the set 2{ 0}y x   is a subset of 2 .  

[ ]F X ;  where X is a closed affine algebraic subvariety of nF , the notation [ ]F X  de-

notes the ring of regular functions on X.  That is, the restriction of the ring 

1[ ,... ]nF x x  to X.  

 ; is isomorphic to.  Used to indicate when two algebraic structures are isomorphic to 

each other.  That is, when an isomorphism exists between the two.  

1[ ,... ] /nF x x I ;  more generally, /R I  where R is any ring and I is an ideal of the ring.  

This denotes the quotient ring “R mod I”.   

 ;  pronounced “phi tilde”.  Used here often to represent a map whose restriction to a 

closed affine algebraic subvariety is also of importance.  

1 ;  the inverse of  .  Here,   is a map, so this refers to the compositional inverse.  

That is, 1  is the map which, when composed with   gives the identity map on 

the domain of  . 

 ; the lower case Greek letter, rho.   

1,1X ;  the set of all 2( , )x y   such that 1 0xy   .  
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,k lX ;  the set of all 2( , )x y   such that 1 0k lx y   , where , 0k l   are relatively prime.  

 ; if and only if.  

 

CHAPTER 6 

[ ]nF ; another notation for  1,..., nF x x , the ring of polynomials in n variables with coef-

ficients in the field F.   

 

CHAPTER 7 

,k lI  and 1,1I ; the ideals of functions vanishing on ,k lX  and respectively, 1,1X .  

 

CHAPTER 8 

* ; the units of  , namely the non-zero complex numbers.  In general, the notation *R  

denotes the units of the ring R.  

( )X ; the closure of ( )X .  

 

CHAPTER 9 

 ;  intersection.  As in, the set of common elements of two sets.   
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X U
f


;  the function f restricted to the subset X U  of its domain .  

nB ;  a unit ball in n-space.  That is,  1nB x x  .   

,x yp p p  ; the gradient of the map p.  

3

2

n 
  

;  a specific use of the floor function, where in general x     the largest integer no 

larger than x.  

 1 20nA z r z r    ;  an annulus.  Here specifically, the open disc centered at 0z   

of radius 2r , with a hole.  The hole is has been made by removing the closed disc 

centered at 0z   of radius 1 2r r .  

 * 0z z R    ;  a punctured open disc.  Here specifically, the open disc of radius R 

centered at 0z  , but with the point 0z   removed.  This removal of a point is a 

“puncture”.  

 

CHAPTER 10 

2S , 3S , nS  and 1S  ;  2S  is the two-sphere – the set of all points 3( , , )x y z   a specific 

distance from a specific point.  In general, nS  is the n-sphere – all n-tuples in 

1n  that are a specific distance from a specific point.  In particular, the one-

sphere, 1S  is a circle.  
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3 \ L , 3 \ K ;  the “\” indicates removal.  Thus these are representing three-

dimensional real space with L and K, respectively, removed, where L is a straight 

line and K is a knot.   

1( )X , 1( )Y , 3
1( \ )L  , and 3

1( \ )K  ; the Poincaré fundamental groups of X, Y, 

3 \ L  and 3 \ K  respectively.   

r̂ ; pronounced “r hat”.  Used here in reference to a knot discussed in the Shastri theorem. 

2 *  ; the Cartesian product of 2  and * .  In general, the Cartesian product of two 

sets A and B is defined by  ( , ) and A B a b a A b B    .  

 ;  the capital Greek letter, gamma.  Used here to represent an algebraic curve, 

  2( , ) 0f x y    .  

3
RS ;  a three-sphere with radius specified as R.  

R ;  pronounced “gamma sub-R”.  Defined here as the link 3
R RS    where   is an 

algebraic curve   2( , ) 0f x y    . 

 

APPENDIX A 

a b ; indicating that a and b are associate elements in their ring.  

p ab ; indicating that p divides ab.   

0R ; the zero element in the ring R.  That is, the additive identity in the ring.   
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( )p  or pR;  the ideal generated by the element p.  That is,  pr r R .  

IFF;  also,  .  “if and only if”. 

 

APPENDIX B 

( ) ;  indicating that a proof of the “if” part of an if and only if statement follows.  

( ) ;  indicating that a proof of the “only if” part of an if and only if statement follows. 
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APPENDIX D 

GLOSSARY OF TERMS 

 

Absolutely convergent, (of a series) such that the series of absolute values of its terms 

converges. [8] 

Algebraic geometry, the study of geometry by algebraic methods. [8] 

Associates,  two elements a and b of a ring R such that there exists a unit u in R with 

uba  .  In this case we write a ~ b. 

Automorphism,  as isomorphism, the domain and range of which are identical.  [8] 

Biholomorphic mapping, (or, conformal), a holomorphic function that is one-to-one, 

onto, and has a holomorphic inverse.  [17]    

Cartesian product, the set of ordered n-tuples, the elements of which are respectively 

members of any sequence of given sets.  [8] 

Casorati-Weierstrass Theorem, states that an analytic function comes arbitrarily close 

to all values in any neighborhood of an essential singularity, that is, that the image 

of any ball centered on the singularity is dense in the complex numbers. [8] 

Closure, the set of points in a space every neighborhood of which has a non-empty inter-

section with a given set. [8] 

Compact, having the property that every collection of open sets the union of which is the 

whole space has a finite subcollection with the same property. [8] 

Diffeomorphism, a differentiable mapping that has a differentiable inverse. [8] 
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Disc, an open or closed ball – the set of all points whose distance from a fixed point is 

less than (or equal to in the closed disc) a fixed number, the radius of the disc. 

Endomorphism, a homomorphism of a structure into itself. [8] 

Embedding,  another word for an injection.  That is, a mapping whereby different mem-

bers of the domain are associated with different members of the range.  [8] 

Field, a commutative ring whose non-zero elements form a group under multiplication.  

[40] 

First Isomorphism Theorem for Rings, the result that, in a ring homomorphism, the 

domain mod the kernel is isomorphic to the image. 

Genus, (of an algebraic plane curve) the difference between the maximum number of 

double points (points at which a curve intersects itself) a curve of the given degree 

may possess, and the actual number of the given curve. [8] 

Group, a non-void set that is closed under an associative binary operation with respect to 

which there exists a unique identity element within the set, and every element has 

an inverse within the set. [8] 

Hole, the removal of a closed disc from a space. 

Homeomorphic, related by a homeomorphism. [8] 

Homeomorphism, a one-to-one correspondence that is continuous in both directions be-

tween the points of two geometric figures or between two topological spaces.  [8] 

Homomorphism, (of rings) a function between rings that commutes with the group op-

eration, preserve multiplicative identity, and commutes with the multiplicative 

operation. [8] 
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Ideal, a subring of a ring that is closed under subtraction and under multiplication by any 

ring element whatever.  [8] 

Injective, a function :f X Y is injective or 1-1 (“one-to-one”) provided that if 1x  and 

2x  are distinct elements of X, then 1( )f x  and 2( )f x  are distinct elements of Y. 

[40]  

Isomorphism, (of rings) a bijective homomorphism. [8] 

Kernel, (of a homomorphism), the pre-image of the zero element of a ring under the ho-

momorphism.  

Neighborhood, a neighborhood of a point p in a space X is a subset of X which includes 

an open set containing p. 

Node, a point at which a continuous curve crosses itself.    

One-Point Compactification, adding a single point, designated , to a Hausdorff space, 

in such a manner that the result is compact.  

Poincaré fundamental group, denoted as ( , )X x consists of all equivalence classes of 

loops based at x and the product operation between them. [42] 

Proper holomorphic, holomorphic but not a polynomial.   

Prime ideal, in a commutative ring, R, an ideal P is called a prime ideal if P R  and 

whenever the product ab of two elements ,a b R  is an element of P, then at least 

one of a and b is an element of P. [10] 

Principal ideal, an ideal in a ring that is generated by a single element. [8] 

Puncture, the removal of a single point from a neighborhood. 

Quotient Ring, of ring R, modulo ideal I, is the ring of all equivalence classes created by 

the equivalence relation ~a b a b I   . 
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Relatively prime, a pair of integers not having any common divisors other than unity. [8] 

Riemann surface, a topological device for rendering multiple-valued complex functions 

into single-valued functions. [13] 

Ring, a commutative additive group with an additional binary, associative operation 

(multiplication), such that the distributive law holds, and there is a multiplicative 

identity [40].  

Smooth, (of a function or curve) differentiable at every point. [8] 

Stein manifold, a complex submanifold of the vector space of n complex dimensions. 

Surjective, a function :f X Y is surjective or onto if for all y Y  there exists at least 

one x X  such that ( )f x y . [40] 

Unit, (Algebra) a multiplicatively invertible element of a ring. [8]
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