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We study the relationships of the algebra of symmetric twisted differentials, the

algebra generated by tangentially homogeneous polynomials and the quadric algebra

of a smooth projective subvariety whose codimension is small relative to its dimension.

It is conjectured that these three algebras coincide when the dimension of X ⊂ PN

satisfies n > 2/3(N −1) and we prove this for complete intersections and subvarieties

of codimension two. The connection between these three algebras leads to questions

about the local projective differential geometry of X, trisecant varieties and the linear

system of quadrics through X.
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CHAPTER 1

Introduction

Throughout this workX ⊂ PN will be a smooth complex subvariety of the complex

projective space PN . We will assume it is non-degenerate. The focus will be on X for

which the codimension is small relative to the dimension, in particular, dim(X) = n

will satisfy the inequality n > 2/3(N − 1). The goal is to investigate the connection

between three apparently unrelated algebras associated with X: the algebra of sym-

metric twisted differentials, the algebra generated by the quadrics through X, and

the algebra generated by tangentially homogeneous polynomials relative to X. It is

conjectured that these algebras coincide in the dimensional range n > 2/3(N−1) and

we prove this for codimension one and two and for complete intersections in general.

The proof of the equivalence of these three algebras leads to interesting questions

about the local projective differential geometry of X as well as the classical question

of the number of linearly independent quadrics through X.

1.1 Background

Let X ⊂ PN be as above. In [BO08], Bogomolov and De Oliveira investigated the

non-vanishing of the space H0(X,Sm[ΩX ]⊗OX(k)) of symmetric twisted differentials.
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The context for this work was the following theorem of Schneider [Sch92] from the

early nineties showing that any smooth subvariety X ⊂ PN of dimension n > N/2

has no symmetric differentials of order m even if twisted by OX(k) for k < m:

Theorem 1.2 (Schneider) Let X ⊂ PN be a smooth projective subvariety with di-

mension n > N/2. Then if k < m,

H0(X,Sm[Ω1
X ]⊗OX(k)) = 0

Bogomolov and De Oliveira viewed the border case k = m as special and were able

to give a geometric characterization of the space H0(X,Sm[ΩX(1)]) in the range

n > 2/3(N − 1). Moreover, using this characterization they were able to study the

local invariance of the dimensions h0(X,SmΩX ⊗KX) in smooth families, answering

a question of M. Paun.

The range n > 2/3(N − 1) is special in projective geometry. For instance, every

smooth subvariety in this range is linearly normal [Zak93] and it is conjectured that

every smooth subvariety in the range n > 2/3N is a complete intersection [Har74].

The siginificance for the present work is the properties of the tangent map τ : TX →

PN that appear in the range n > 2/3(N − 1). In particular:

Theorem 1.3 (Bogomolov-De Oliveira) Let X ⊂ PN be a smooth nondegenerate

subvariety with dimension n > 2/3(N − 1). Then τ : TX → PN is surjective with

connected fibers.
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Roughly speaking, these properties of τ allow one to pull back a special subclass of

homogeneous polynomials on PN to the tangent spaces of X and obtain symmetric

twisted differentials on X. Their characterization of this subclass is the following

theorem:

Theorem 1.4 (Bogomolov-De Oliveira) Let X ⊂ PN be a smooth nondegenerate

subvariety with dimension n > 2/3(N − 1) then there is an isomorphism of vector

spaces:

H0(X,SmΩX(1)) ∼= {P ∈ H0(P,OPN (m)) : V (P )∩TxX is a cone with vertex x for all x ∈ X}

In other words, given a homogeneous polynomial of degree m in PN , it pulls back

to a symmetric twisted differential if and only if the intersection of its zero locus with

each projective tangent space TxX is a cone with vertex x. Note that an example of

such a polynomial is a quadric vanishing on X and an understanding of this subspace

of polynomials in general is one of the main goals of this thesis. Along these lines,

they have the following result for codimension one and two:

Theorem 1.5 (Bogomolov-DeOliveira) Let X ⊂ PN be a smooth subvariety of codi-

mension less than or equal two. Then

H0(X,SmΩX(1)) = 0

if and only if X is not contained in a quadric hypersurface.
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Note that if X is a hypersurface, then this result says that X only has symmetric

twisted differentials if X = Q is a quadric and in which case there is a graded

isomorphism of graded algebras:

∞⊕
m=0

H0(Q,SmΩQ(1)) ∼= C[Q]

However, there was no corresponding isomorphism for codimension two which led

to the following question which we phrase as a conjecture:

Conjecture 1.6 Let X ⊂ PN be a smooth nondegenerate subvariety with dimension

n > 2/3(N − 1) and n > 1 then there is a graded isomorphism of graded algebras:

∞⊕
m=0

H0(X,SmΩX(1)) ∼= C[Q0, ..., Qr]

where C[Q0, ..., Qr] is the C-algebra generated by the linear system of quadrics through

X.

The primary aim of this thesis is to prove this conjecture and other results sur-

rounding it. Our main results in this direction are a verification of the conjecture for

complete intersections and for codimension one and two varieties in general.

An important remark to be made is that while the the algebra
⊕∞

m=0H
0(X,SmΩX(1))

has historically been studied in the context of manifolds with ample cotangent bun-

dle, and hence in the high codimensional range n < N/2 when the algebra is big, our

work lies on the opposite side of the spectrum in low codimensions when the algebra

is in some sense as small as possible. In this light, the above conjecture should be
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viewed as a statement about the linear system of quadrics through X and properties

of the rational map they define when the codimension of X is small relative to its

dimension.

1.7 Summary of Results

We introduce the notion of tangentially homogeneous polynomials and the C-

algebra they generate, TH(X):

Definition 1.8 Let x ∈ X. A degree m homogeneous polynomial P is tangentially

homogeneous at x if the dehomogenization of P in a neighborhood of x is homogeneous

relative to x when restricted to TxX. It is tangentially homogeneous relative to X if

it is tangentially homogeneous at every x ∈ X.

TH(X) is a subalgebra of C[Z0, ..., ZN ] containing C[Q0, ..., Qr]. Thus, to X we

associate the three algebras TH(X), C[Q0, ..., Qr] and
⊕∞

m=0H
0(X,SmΩX(1)). The

goal of this thesis is to investigate the relationship of these three algebras for varieties

whose codimension is small relative to their dimension. Their relationship can be

summarized by the following diagram where i is inclusion and τ is the tangent map

of X:
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C[Q0, ..., Qr]
∞⊕
m=0

H0(X,SmΩX(1))

TH(X)

i

τ∗◦i

τ∗

The relationship between TH(X) and
⊕∞

m=0H
0(X,SmΩX(1)) induced by the pull

back of the tangent map τ is in fact an isomorphism in the range n > 2/3(N − 1):

Theorem 1.9 Let X ⊂ PN be a smooth nondegenerate subvariety with dimension

n > 2/3(N − 1). Then there is a graded isomorphism of C-algebras:

∞⊕
m=0

H0(X,SmΩX(1)) ∼= TH(X)

induced by the tangent map τ .

The relationship between C[Q0, ..., Qr] and TH(X) is more delicate and although

it is expected that the two algebras coincide in the dimensional range n > 2/3(N−1),

the equivalence is only currently understood for complete intersections and varieties

with codimension less than or equal to two and dimension n > 2/3(N − 1). It is

under this assumption that one can establish a correspondence between the defining

equations of X and the quadrics of the projective second fundamental form at a point

x ∈ X which in turn can be used to compute the dimension of the image of τ . We

have the following result:

Theorem 1.10 Let X ⊂ PN be a smooth complete intersection for which the tangent

map τ : TX → PN is surjective. Then there is a graded isomorphism of C-algebras:

TH(X) ∼= C[Q0, ..., Qr]
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where {Q0, ..., Qr} is a basis for H0(PN , IX(2)).

Note that surjectivity of τ is guaranteed in the range n > 2/3(N −1) and we have

the following equivalence for complete intersections:

Corollary 1.11 Let X ⊂ PN be a smooth complete intersection with dimension n >

2/3(N − 1). Then we have graded isomorphisms of the three algebras:

∞⊕
m=0

H0(X,SmΩX(1)) ∼= TH(X) ∼= C[Q0, ..., Qr]

This result is of course weaker than one would hope since there certainly exist

varieties with dimension n > 2/3(N − 1) that are not complete intersections. For

instance, the six dimensional Grassmannian of lines in P4 can be embedded G(1, 4) ↪→

P9 as a non-complete intersection (it is the intersection of five quadric hypersurfaces.)

Our belief in the conjecture is justified though by the following result for codimension

two subvarieties:

Theorem 1.12 Let X ⊂ PN be a smooth subvariety of codimension two then we have

graded isomorphisms of the three algebras

∞⊕
m=0

H0(X,SmΩX(1)) ∼= TH(X) ∼= C[Q0, ..., Qr]

If one believes the Hartshorne conjecture, then in light of the theorem for complete

intersections, one would expect the difficulty to arise in the range 2/3(N − 1) < n <

2/3N . Indeed, much of the proof of theorem 1.12 can be reduced to the case of the

Segre three-fold Σ1,2, which is the image of the embedding P1 × P2 ↪→ P5 and lies in

the range 2/3(N − 1) < n < 2/3N for N = 5. In this situation, one can compute

the dimensions of the graded pieces of
⊕∞

m=0 H
0(Σ1,2, S

mΩΣ1,2(1)) and C[Q0, Q1, Q2]

directly:
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Theorem 1.13 Let X = Σ1,2 be the Segre three-fold given by the embedding P1 ×

P2 ↪→ P5 and let {Q0, Q1, Q2} be a basis for H0(PN , IΣ1,2(2)) Then there is a graded

isomorphism
∞⊕
m=0

H0(Σ1,2, S
mΩΣ1,2(1)) ∼= C[Q0, Q1, Q2]

Note that since Σ1,2 has dimension n > 2/3(N−1) we in fact have an isomorphism

of all three algebras since TH(Σ1,2) ∼=
⊕∞

m=0 H
0(Σ1,2, S

mΩΣ1,2(1)).

The proof of theorem 1.12 requires the introduction of the variety CXX of trisecant

lines that are tangent and meet X in at least two distinct points. The significance

of this subvariety is that tangentially homogeneous polynomials must vanish on it.

Note that in general CXX is a subvariety of S3(X), the variety of trisecant lines of

X. In the dimensional range n > 2/3(N − 1) we prove that these varieties coincide:

Theorem 1.14 Let X ⊂ PN be a smooth subvariety of codimension two and n ≥ 3.

Then

CXX = S3(X)

The value of this arises from the fact that trisecant varieties of codimension two

subvarieties are well understood, see for instance [Kwa01]. We are able to use this

classification to understand tangentially homogeneous polynomials and prove theorem

4.4.

An interesting observation about this classicifation of trisecant varieties for X

with c = 2 and n ≥ 3 is that they always coincide with the base locus of the linear

system of quadrics through X which we call the quadric envelope of X and denote
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QE(X). We conjecture that this holds in general for smooth subvarieties in the range

n > 2/3(N − 1). In this direction we verify it for complete intersections:

Theorem 1.15 Let X ⊂ PN be a smooth complete intersection of dimension n >

2/3(N − 1). Then

S3(X) = QE(X)

Our belief is that establishing this for any smooth variety with n > 2/3(N − 1)

will allow us to drop the condition of complete intersection in theorem 4.4. Roughly

speaking, it will allow us to pass from X to its quadric envelope QE(X) and adapt

the proof of theorem 4.4. It seems this strategy will require an understanding of when

the quadric algebra is freely generated. At the moment this has only been verified

for complete intersections with surjective tangent map.



CHAPTER 2

Preliminaries

In this thesis X ⊂ PN will always mean a smooth complex subvariety of the

complex projective space PN . We will typically use n to denote its dimension and c

its codimension. We will denote by IX the ideal sheaf of X and I(X) the homogeneous

ideal of X. We will write I(X) = 〈F1, ..., Fk〉 where Fi are homogeneous polynomials

to denote a set of generators for I(X).

2.1 The Tangent Spaces TxX, TxX and T̂xX

A smooth projective variety has a few different notions of tangent space. If x ∈ X

is contained in the affine open set U ⊂ PN then X∩U is an affine subvariety of U and

thus has a notion of tangent space at x. We denote this tangent space TxX. These

tangent spaces define a bundle over X which we denote TX which is isomorphic to

the tangent bundle of X when considered as a complex manifold.

In addition, if we consider the Gauss map γX : X → G(n + 1, N + 1) and the

universal subbundle S ⊂ G(n + 1, N + 1)× CN+1, then the extended tangent bundle

10
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on X is defined as:

T̂X := γ∗XS

If x̂ ⊂ CN+1 is the line through x then the tangent spaces to the affine cone X̂ are

constant along x̂ and we define

T̂xX := TzX̂

where z ∈ x̂ is any point on the line defined by x. The extended tangent bundle T̂X

is then the bundle of these extended tangent spaces.

We define the projective tangent bundle of X to be the projectivization of the

extended tangent bundle:

TX := P(T̂X)

The projectivizations TxX := P(T̂xX) we call the projective tangent spaces of X.

Note that if I(X) = 〈F1, ..., Fk〉, the k equations
∑N

j=0
∂Fi
∂zj

(x)zj = 0 define an n-

dimensional linear subspace of PN which is the projective tangent space TxX.

The relationships between the three tangent spaces TxX, TxX and T̂xX are as

follows:

P(T̂xX) = TxX

TxX ∩ U ∼= TxX

T̂xX/x̂ ∼= TxX

Remark 2.2 where U is an open neighborhood of x. The last isomorphism arises

from the differential of the quotient map q : CN+1 \ {0} → PN restricted to T̂xX.

Specifically, if a point z ∈ x̂ is chosen, the differential at z of q restricted to T̂xX

defines a map dqz : T̂xX → TxX whose kernel is the line through x. In other words,
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at each x ∈ X, if one chooses z ∈ x̂ we have a short exact sequence of vector spaces:

0→ x̂
i−→ T̂xX

dqz−→ TxX → 0

An interesting observation to be made here is that this sequence not come from a

sequence of vector bundles. In other words although for each x ∈ X we have T̂xX/x̂ ∼=

TxX, there is no corresponding isomorphism of the vector bundles T̂xX/OX(−1) and

TX . This is because at each x, the isomorphism T̂xX/x̂ ∼= TxX requires a choice of

z ∈ x̂ and such a choice cannot be made globally as there are no non-trivial global

sections of OX(−1).

2.3 The Tangent Map and the Tangent Variety

The projective tangent bundle is a subbundle of the trivial vector bundle on X:

TX ⊂ X × PN

and so comes with two projections:

TX
τ−−−→ PN

π

y
X

We call τ the tangent map of X. Its image is the subvariety of PN swept out by the

projective tangent spaces TxX and is called the tangent variety of X which we will

denote Tan(X):
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Tan(X) =
⋃
x∈X

TxX

Since Tan(X) is the union of an n−dimensional family of n−dimensional linear

subspaces of PN , the expected dimension of Tan(X) is 2n. From the tangent map τ

we see that

dim Tan(X) = 2n− δ

where δ is the dimension of the generic fiber of τ and is typically referred to as

the tangent defect of X. Note that for a generic variety of dimension n > N/2

one expects Tan(X) = PN in other words, the tangent spaces of X should fill up

PN . Moreover, one would also expect that once the dimension is ”large enough” one

would have Tan(X) = PN for all X. This is in fact true for varieties with dimension

n > 2/3(N − 2) and follows from two theorems of Zak, [Zak93].

Theorem 2.4 (Zak) Let X ⊂ PN be a smooth subvariety then one of the following

holds:

i) dim Tan(X) = 2n and dim Sec(X)=2n+1

ii) Tan(X)=Sec(X)

Here Sec(X) is the secant variety of X defined as the join of X with itself. One

always has Tan(X) ⊂ Sec(X) for smooth X. As a consequence of the theorem, note

that if n > N/2 then one has Tan(X) = Sec(X). Now, we also have Zak’s theorem

on linear normality:

Theorem 2.5 (Zak) Let X ⊂ PN be a smooth nondegenerate subvariety with dimen-

sion n > 2/3(N − 2). Then Sec(X) = PN .
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Thus, together these theorems imply that Tan(X) = PN for smooth nondegener-

ate X with dimension n > 2/3(N − 2) i.e. τ is surjective. The results of this thesis

rely heavily on one additional property of the tangent map τ concerning its fibers.

Given y ∈ PN , we have

τ−1(y) = {(x, y) : y ∈ TxX}

and so τ−1(y) projects via π to the subvariety on X where the tangent spaces pass

through y. The following theorem says that in the dimensional range n > 2/3(N −1)

this subvariety is connected for general y ∈ PN :

Theorem 2.6 (Bogomolov- De Oliveira) Let X ⊂ PN be a smooth nondegenerate

subvariety with dimension n > 2/3(N − 1) and n > 1. Then τ : TX → PN is

surjective with connected fibers.

This geometry is one of our main tools for understanding symmetric twisted dif-

ferentials. It allows us to pull back a certain subclass of homogeneous polynomials

on PN to sections of SmΩX(1).

2.7 Symmetric Twisted Differentials:
∞⊕
m=0

H0(X,SmΩX(1))

2.7.1 Symmetric powers of a vector bundle

Let π : E → X be a vector bundle over X of rank r. We can define a new vector

bundle SmE whose fiber (SmE)x over a point x ∈ X is the m-th symmetric power of

Ex. If {Ui} is an open cover of X and ϕi : π−1(Ui)→ Ui×Cn trivializations, then ϕi

induces trivializations ϕ̃i : SmE|Ui → Ui × C(n+1+m
m ). Note that if ϕ1 ∈ H0(X,Sm1E)
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and ϕ2 ∈ H0(X,Sm2E) then there is a product ϕ1ϕ2 ∈ H0(X,Sm1+m2E). This

multiplication gives us a graded algebra of global sections

∞⊕
m=0

H0(X,SmE)

2.7.2 The projective bundle of a vector bundle

Let P(E) → X denote the projective bundle of lines of E i.e. the Pr−1 bundle

over X whose fiber over x ∈ X is the projective space of lines through the origin of

Ex. P(E) has a tautological line bundle OP(E)(1):

OP(E)(1)

P(E) SmE

X

π
π

and we have isomorphisms induced via pushforward:

π∗OP(E)(m) ∼= SmE (2.1)

H0(P(E),OP(E)(m)) ∼= H0(X,SmE) (2.2)
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2.7.3 Section ring of a line bundle

Let L be a line bundle over X and L⊗m the m − th tensor power of L. If s1 ∈

H0(X,L⊗m1) and s2 ∈ H0(X,L⊗m2) then s1 ⊗ s2 ∈ H0(X,L⊗m1+m2) giving rise a to

graded C-algebra referred to as the section ring of L:

∞⊕
m=0

H0(X,L⊗m)

For the case L = OP(E)(1), the isomorphism 2.2 gives:

∞⊕
m=0

H0(X,SmE) ∼=
∞⊕
m=0

H0(P(E),OP(E)(m)) (2.3)

where
⊕∞

m=0H
0(P(E),OP(E)(m)) is the section ring of the line bundle OP(E)(1) on

P(E).

2.7.4 Iitaka dimension of a line bundle

For each m, the complete linear system |L⊗m| defines a rational mapping

φm : X 99K P(H0(X,L⊗m))

The Iitaka dimension of L is defined to be the maximal dimension of the images of

these rational maps:

κ(X,L) := max{dim(φm(X))}
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Note that one always has κ(X,L) ≤ dim(X). The Iitaka dimension measures the

asymptotic growth of the dimensions h0(X,L⊗m) in the following sense: set κ =

κ(X,L) then there exist constants a,A > 0 such that

a ·mκ ≤ h0(X,L⊗m) ≤ A ·mκ

and we view this as a measure of the growth of the section ring
⊕∞

m=0 H
0(X,L⊗m). In

this way, by setting L = OP(E)(1), we obtain a notion of the growth of the graded alge-

bra
⊕∞

m=0 H
0(X,SmE) via the isomorphism 2.3 and the Iitaka dimension of OP(E)(1).

2.7.5 The algebra of symmetric twisted differentials

We now consider the above ideas for the vector bundle ΩX(1) := ΩX⊗OX(1) where

ΩX is the cotangent bundle of X. An element of the vector space H0(X,SmΩX(1)) we

call a symmetric twisted differential of degree m. As above we have the corresponding

graded algebra:

∞⊕
m=0

H0(X,SmΩX(1))

which we call the algebra of symmetric twisted differentials. We have the isomorphism

∞⊕
m=0

H0(X,SmΩX(1)) ∼=
∞⊕
m=0

H0(P(ΩX(1)),OP(ΩX(1))(m))

and we measure the growth of this algebra by the Iitaka dimension of the line bundle

OP(ΩX(1))(1), κ(OP(ΩX(1))(1)).



18

2.7.6 Examples

Example 2.8 Let l : P1 ↪→ PN be a line. Then Ωl = OP1(−2) and Ol(1) = OP1(1).

Hence SmΩl(1) ∼= OP1(−1) and H0(l, SmΩl(1)) = 0 for all m > 0. In other words,

lines do not have nontrivial symmetric twisted differentials and we have

∞⊕
m=0

H0(l, SmΩl(1)) = 0

with κ = −∞.

Example 2.9 Consider a smooth quadric plane curve Q ∼= P1 ⊂ P2. We have

OQ(1) = OP1(2) and ΩQ = OP1(−2). Thus H0(Q,SmΩQ(1)) = H0(Q,Sm[OP1(−2)⊗

OP1(2)]) = H0(Q,OP1) ∼= C. In other words, the only symmetric twisted differentials

on smooth conics are constants and we have

∞⊕
m=0

H0(Q,SmΩX(1)) = C

with κ = 0.

Example 2.10 More generally, consider a smooth plane curve C of degree d > 2.

OC(1) will be a degree d line bundle on C and the genus of C will be g = 1
2
(d−1)(d−2)

making ΩC a line bundle of degree (d− 1)(d− 2)− 2. Thus SmΩC(1) is a line bundle

of degree m((d − 1)(d − 2) − 2 + d) = m(d2 − 2d) = md(d − 2). By Riemann-Roch,

the dimensions h0(C, SmΩC(1)) grow like md(d− 2) i.e. κ = 1 for d > 2.
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Example 2.11 Consider the twisted cubic P1 ↪→ C ⊂ P3 since C is a degree three

curve with genus zero. We have ΩC = OP1(−2) and OC(1) = OP1(3). Thus,

SmΩC(1) = OP1(m). Since h0(P1,OP1(m)) =
(
m+1

1

)
we have

∞⊕
m=0

H0(C, SmΩC(1)) ∼= C[x, y]

with κ = 1.

Note that what makes these computations possible is that ΩX is a line bundle when

X a curve and so SmΩX(1) is a line bundle as well. When n > 1 these computations

become much more difficult. In chapter five we compute SmΩX(1) explicitly for a

quadric hypersurface in P3 and the segre three fold in P5.

2.12 Tangentially Homogeneous Polynomials: TH(X)

Let {Ui} be the open covering of PN where Ui ∼= CN is defined by the equation

zi 6= 0. If P is a homogeneous polynomial of degree m on CN+1 then P
zmi

defines a

polynomial function on Ui. We refer to P
zmi

as the dehomogenization of P in the neigh-

borhood Ui. We will often denote this dehomogenization as P̃ . P̃ can be expanded

about the point x and we denote this expansion P̃ x.

Definition 2.13 Let x ∈ X. A degree m homogeneous polynomial P is tangentially

homogeneous at x if the dehomogenization of P in an open neighborhood of x is

homogeneous relative to x when restricted to TxX. It is tangentially homogeneous

relative to X if it tangentially homogeneous at every x ∈ X.

The vector space of all tangentially homogenous polynomials relative to X of de-

gree m is denoted by TH(m)(X) and the graded algebra generated by tangentially

homogeneous polynomials relative to X we denote TH(X):
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TH(X) :=
∞⊕
m=0

TH(m)(X)

The following are two basic facts about tangentially homogeneous polynomials

used repeatedly throughout this work.

Let X ⊂ PN be a smooth subvariety and P ∈ TH(m)(X) with m 6= 0. Then

P ∈ I(X).

Proof: Let P ∈ TH(m)(X). Since P is homogeneous of degree m on TxX in

particular it vanishes at x and we have X ⊂ V (P ). Thus P ∈ I(X).

Let X ⊂ PN be a smooth subvariety whose tangent map is surjective. If P,Q ∈

C[X0, ..., XN ] are so that PQ ∈ TH(X), then P and Q are both in TH(X).

Proof: Without loss of generality suppose P̃ x |TxX was not homogeneous at the

general point x ∈ X. Note that since Tan(X) = PN , we know that Q does not vanish

on TxX. It follows that P̃Q
x
|TxX= P̃ x |TxX ·Q̃x |TxX is not homogeneous since the

product of a non-zero inhomogeneous polynomial with a non-zero polynomial cannot

be homogeneous.

2.13.1 Examples

Example 2.14 Constant polynomials are tautologically tangentially homogenous rel-

ative to any X ⊂ PN and form the zeroth graded piece of TH(X):

TH(0)(X) = C
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Example 2.15 The homogeneous polynomials F in the ideal of the tangent variety

of X i.e. F ∈ I(Tan(X)) are tangentially homogeneous relative to X.

Example 2.16 A linear polynomial L is tangentially homogeneous relative to X if

and only if X ⊂ V (L).

Example 2.17 The key example of tangentially homogeneous polynomials that are

not constant on the tangent variety Tan(X), are the quadratic polynomials Q ∈ I(X).

This holds, since ∀x ∈ X , Q̃x|(0)
TxX

= 0 and Q̃x|(1)
TxX

= 0 making Q̃x|TxX homogeneous

of degree two.

Remark 2.18 If X is such that the tangent map τ is not surjective then the algebra

TH(X) is not finitely generated. For instance, if X is a smooth quadric inside the

hyperplane {X0 = 0} ⊂ P4 then TH(X) = (X0)+C[Q] which is not finitely generated.

2.19 The Quadric Algebra: C[Q0, ..., Qr]

Consider the ideal sheaf sequence for X twisted by OPN (2) :

0→ IX(2)→ OPN (2)→ OX(2)→ 0
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and the corresponding long exact sequence of cohomology:

0→ H0(PN , IX(2))→ H0(PN ,OPN (2))→ H0(X,OX(2))→ · · ·

The vector space H0(PN , IX(2)) corresponds to degree two homogeneous polynomials

that vanish on X. We will typically use the letter r to denote the dimension the

projectivization of this vector space:

r = h0(PN , IX(2))− 1

The vector space H0(PN , IX(2)) defines a linear system on PN and thus a rational

map:

φ : PN 99K Pr

We also define a subalgebra of C[Z0, ..., ZN ] generated by the quadric polynomials

vanishing on X:

Definition 2.20 Let X ⊂ PN be a projective subvariety and {Q0, ..., Qr} a basis for

H0(PN , IX(2)). These quadrics generate a graded algebra C[Q0, ..., Qr] which we refer

to as the quadric algebra of X. Note that this definition does not depend on a choice

of basis for H0(PN , IX(2)).

Since C[Q0, ..., Qr] is finitely generated there exists some ideal I ⊂ C[x0, ..., xr] such

that C[Q0, ..., Qr] ∼= C[x0, ..., xr]/I. If we consider the rational map φ : PN 99K Pr

then C[Q0, ..., Qr] is equal to the homogeneous coordinate ring of the image φ(PN)

viewed as a C-algebra. In other words, there is a graded isomorphism of C-algebras:



23

C[Q0, ..., Qr] ∼= C[x0, ..., xr]/I(φ(PN)) (2.4)

where I(φ(PN)) is the ideal of the image of the rational map φ.

We can decompose C[Q0, ..., Qr] into graded components:

C[Q0, ..., Qr] =
⊕

m∈2Z≥0

S
m
2 [CQ0 ⊕ · · · ⊕ CQr]

and there is function N→ N associating to each m the dimension of the vector space

S
m
2 [CQ0⊕· · ·⊕CQr]. By the isomorphism 2.4, this is just the hilbert function of the

subvariety φ(PN). Recall that this function is equal to a polynomial in m for large

m where the degree of the polynomial is equal to the dimension of the image φ(PN).

In other words, for large m the algebra C[Q0, ..., Qr] grows like mn where n is the

dimension of φ(PN).

2.20.1 Examples

Example 2.21 Consider a line l ⊂ P3. The vector space H0(P3, Il(2)) is seven-

dimensional, spanned by say, {Q0, ..., Q6}. The linear system spanned by these quadrics

defines a rational map φ : P3 99K P6. The image is a projection of the degree two

Veronese embedding ν2 : P3 ↪→ P9, the map defined by the complete linear system of

quadrics on P3. Thus φ(P3) is the blowup of P3 along l and so has dimension 3. Thus

the dimension of the graded pieces of C[Q0, ..., Q6] grow like m3 for large m.

Example 2.22 As a more interesting example consider the Segre embedding P1 ×

P2 ↪→ P5. The image of this embedding is denoted Σ1,2. The linear system of quadrics
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in P5 through Σ1,2 is spanned by the three quadrics

Q0 = z0z4 − z1z3 Q1 = z1z5 − z2z4 Q2 = z0z5 − z2z3

which defines a rational map φ : P5 99K P2. We would like to compute the dimension

of the image of this map. To do this we need to compute the rank of the jacobian

matrix at a generic point. Using the explicit equations listed above we compute the

rank at the point (0, 0, 0, 1, 0) to be 2. Since rank is lower semicontinuous, there is

an open neighborhood of (0, 0, 0, 1, 0) such that the rank is two. Thus the rational

map φ is dominant and the homogeneous coordinate ring of the image is isomorphic

to C[z0, z1, z2]. In other words, the quadrics {Q0, Q1, Q2} through Σ1,2 do not sat-

isfy any polynomial relations and the quadric algebra is the free algebra generated by

{Q0, Q1, Q2}:

C[Q0, Q1, Q2] ∼= C[Z0, Z1, Z2]

Example 2.23 Consider the linear system of quadrics through the twisted cubic in

P3. They define a dominant rational map P3 99K P2. Thus, these quadrics generate

a free algebra.

An interesting question is under what conditions C[Q0, ..., Qr] is free. Note that

this is equivalent to the rational map φ : PN 99K Pr defined by {Q0, ..., Qr} being dom-

inant. We prove later that the quadric algebra of a smooth complete intersection X

with Tan(X) = PN has a free quadric algebra. Briefly, the idea is that any polynomial



25

relation of the {Q0, ..., Qr} restricts to a polynomial relation of {Q0|TxX , ..., Qr|TxX}.

However, since X is a complete intersection these quadrics define a sub system of

the linear system of quadrics defining the second fundamental form at x and hence

cannot satisfy any polynomial relations by lemma 4.5.



CHAPTER 3

Symmetric Twisted Differentials and
Tangentially Homogeneous Polynomials

Using theorem 2.6 Bogomolov and De Oliveira in [BO08] gave a geometric charac-

terization of symmetric one-twisted differentials. In this section we give an alternative

characterization of these differentials identifying them with homogeneous polynomials

which are tangentially homogeneous relative to X. Following [BO08] we consider first

the bundle Ω̃X(1) of differential one-forms on the affine cone X̂ and the correspond-

ing symmetric differentials H0(X,SmΩ̃X(1)). Homogeneous polynomials on PN can

be pulled back via the tangent map to sections of SmΩ̃X(1) and bijectivity of this

pullback is guaranteed when τ is both surjective and connected. Thus in this context

H0(X,SmΩ̃X(1)) can be identified with homogeneous polynomials on PN and we try

to understand the inclusion H0(X,SmΩX(1)) ↪→ H0(X,SmΩ̃X(1)) arising from the

Euler sequence on X.

26
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3.1 Preliminaries

3.1.1 Symmetric Powers and Projective Bundles

Recall that for a vector bundle π : E → X we have isomorphisms

π∗OP(E)(m) ∼= SmE (3.1)

H0(P(E),OP(E)(m)) ∼= H0(X,SmE) (3.2)

These isomorphisms will allow us to work with line bundles instead of vector

bundles and to see the tangent map in our calculations. We will need the following

basic fact about projective bundles:

Lemma 3.2 Let π1 : E → X be a vector bundle over X and π2 : L→ X a line bundle

over X. Then there is a natural isomorphism of projective bundles φ : P(E ⊗ L)
∼=−→

P(E).

The tangent map will be used to pull back the line bundle OPN (1) and its sections

to the tangent bundle P(T̂X) and we will need the following lemma:

Lemma 3.3 Let f : X → Y be a morphism and L a line bundle on Y . Then f

induces a map of sections f ∗ : H0(Y, L) → H0(X, f ∗L). Furthermore, if f is both

surjective and connected then f ∗ induces an isomorphism of sections.
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Proof: By the projection formula we have:

f∗(f
∗L) ∼= L⊗ f∗OX

If f is both surjective and connected then f∗OX ∼= OY and the previous isomorphism

becomes

f∗(f
∗L) ∼= L

Thus H0(X, f ∗L) ∼= H0(Y, f∗(f
∗L)) ∼= H0(Y, L).

Morphisms X → PN are equivalent to the specification of a line bundle L on X.

If E is a vector bundle on X then the analogue of this for morphisms Y → P(E) is

the folowing. Let p : Y → X. Then giving a line subbundle L ↪→ p∗E of the pullback

of E is equivalent to specifying a map f : Y → P(E) over X:

Y P(E)

X

p

f

π

Under this correspondence L = f ∗OP(E)(1). The following is a special case of this

that arises frequently in our arguments.

Lemma 3.4 Let f : E → F be a morphism of vector bundles on X. Then there is

an induced rational map f : P(E) → P(F ) of projective bundles defined outside the

projective bundle P(ker f) ⊂ P(E). Moreover, we have f ∗OP(F )(1) ∼= OP(E)(1).
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Proof: Since f is a morphism of vector bundles we have the commutative

diagram:

E
f−−−→ F

π1

y
yπ2

X
id−−−→ X

and thus the induced maps fx : Ex → Fx on the fibers where fx are linear maps

of vector spaces for all x ∈ X. Linearity implies that the fx define rational maps

fx : P(Ex) 99K P(Fx) defined outside ker fx. Thus f induces a map f : P(E) 99K

P(F ) defined outside the projectivization of the kernel bundle, P(kerf) such that the

diagram

P(E)/P(ker f)
f−−−→ P(F )

π1

y
yπ2

X
id−−−→ X

commutes. Now consider the pullback of the tautological line bundle f ∗OP(F )(1) to

P(E). In a fiber, f was induced by a linear map Ex → Fx and thus fx : P(E) 99K P(F )

is either an inclusion of a linear subspace into a projective space or a linear projection

from one projective space to a linear subspace. In either case, we see that the pullback

f ∗ restricted to a fiber gives an isomorphism f ∗xOP(F )(1)|Fx ∼= OP(E)(1)|Ex and thus

f ∗xOP(F )(1) ∼= OP(E)(1).

Let E be a vector bundle on X which is a subbundle of
⊕N+1 L where L is a line

bundle on X,

0→ E
i→
N+1⊕

L
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Let P(E) and P(
⊕N+1 L) be the corresponding projective bundles. The map i induces

an inclusion:

i : P(E) ↪→ P(
N+1⊕

L)

and an isomorphism

i∗OP(
⊕N+1 L)(1) ∼= OP(E)(1)

via lemma 3.4. By lemma 3.2 there is a natural isomorphism φ : P(
⊕N+1 L) →

P(
⊕N+1OX) for which φ∗OP(

⊕N+1O)(1) ∼= OP(
⊕N+1 L)(1)⊗ π∗L−1.

The projective bundle P(
⊕N+1OX) is the product X × PN , if p2 denotes the

projection onto the secnod factor, then OP(
⊕N+1OX)(1) ∼= p∗2OPN (1). Concluding, the

inclusion i induces a map fi = p2 ◦ φ ◦ i : P(E)→ PN and the isomorphism

f ∗i OPN (1) ∼= OP(E)(1)⊗ π∗L−1

As in lemma 3.3, fq induces a map on sections

f ∗i : H0(PN ,OPN (1))→ H0(P(E),OP(E)(1)⊗ π∗L−1)

where injectivity and surjectivity of f ∗i depend upon surjectivity and connectivity of

fi. An important special case for us is the following.

Let E be a vector bundle on a smooth projective variety X. If E is a subbundle

of a trivial vector bundle

0→ E
i→
N+1⊕
OX

and the induced map fi : P(E) → PN is surjective with connected fibers, then fi

induces an isomorphism

H0(X,SmE) ∼= H0(PN ,OPN (m))
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via the pullback f ∗i . Indeed, since the map fi : P(E)→ PN arises from the inclusion

i of vector bundles, we have an isomorphism OP(E)(m) ∼= f ∗i OPN (m) by lemma 3.4.

Moreover, since fi is both surjective and connected, by lemma 3.3 there is an isomor-

phism H0(P(E),OP(E)(m)) ∼= H0(PN ,OPN (m)) which by proposition ?? is equivalent

to an isomorphism

H0(X,SmE) ∼= H0(PN ,OPN (m))

To make this more concrete, if we choose a basis {e0, ..., eN} for CN+1 this gives a

global frame {s0, ..., sN} for the trivial bundleX×CN+1. A section ofH0(PN ,OPN (m))

which we view as an element of Sm[Ce∗0⊕· · ·⊕Ce∗N ] then pulls back via the projection

p2 : X × PN → PN to an element of H0(X × PN ,OX×PN (m)) which we view as an

element of Sm[Cs∗0 ⊕ · · · ⊕ Cs∗N ]. Now, the dual map q : X × CN+1 → E∗ → 0 maps

this element to an element of Sm[Cq(s∗0)⊕ · · · ⊕Cq(s∗N)] which we finally view as an

element of H0(P(E),OP(E)(m)).

3.4.1 The Euler Sequence on X

The relationship between ΩX(1) and Ω̃(1) and the inclusion H0(X,SmΩX(1)) ⊂

H0(X,SmΩ̃(1)) arises from the Euler sequence on X and many of our arguments in

general come from the geometric idea it encodes. Let us first recall the construction

of this sequence on PN . Let G := G(k, V ) denote the Grassmannian of k-dimensional

subspaces of a vector space V over C and V := G × V the trivial vector bundle on

G where the fiber over a point [Λ] ∈ G is the vector space V . We denote by S the

subbundle of V whose fiber S[Λ] over a point [Λ] is the subspace Λ itself. S is called

the universal subbundle on G. The quotient Q := V/S is called the universal quotient

bundle. Note that for the case k = 1 we have G = P(V ) and S = OP(V )(−1). The
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relavance of these ideas for us comes from the following fact expressing the tangent

bundle of G in terms of S and Q.

Theorem 3.5 The tangent bundle TG to the Grassmannian G := G(k, V ) is isomor-

phic to HomG(S,Q).

See for example, [cite]. Suppose now that G = PN and consider the universal sequence

0→ OPN (−1)→
N+1⊕
OPN → Q→ 0

and tensor with OPN (1) to obtain

0→ OPN →
N+1⊕
OPN (1)→ OPN (1)⊗Q → 0

By the identification TPN ∼= Hom(OPN (−1),Q)) ∼= OPN (1)⊗Q we arrive at the euler

sequence

0→ OPN →
N+1⊕
OPN (1)→ TPN → 0

This sequence identifies an element of x̂∗ ⊗ CN+1 with an element of TxPN via the

identification TxPN ∼= Hom(x̂,CN+1/x̂) ∼= x̂∗ ⊗ CN+1/x̂. An element of x̂∗ ⊗ CN+1

can be thought of as vector field on CN+1 that descends to PN via the quotient

CN+1\{0} → PN and the kernel of this correspondence consists of the radial or euler

fields on CN+1.

We will also need the dual sequence:

0→ ΩPN →
N+1⊕
OPN (−1)→ OPN → 0
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Now suppose X ⊂ PN is a smooth projective subvariety of dimension n. The

Euler sequences can be restricted to X:

0→ OX →
N+1⊕
OX(1)→ TPN |X → 0

0→ ΩPN |X →
N+1⊕
OX(−1)→ OX → 0

We can also consider the euler sequence on X. Corresponding to theorem 3.5 we have

the following characterization of the tangent bundle of X:

Lemma 3.6 Let X ⊂ PN be a smooth subvariety. Then TX ∼= Hom(OX(−1), T̂X/OX(−1)).

Now, corresponding to the univsersal subbundle 0→ OX(−1)→
⊕N+1OPN , we have

on X the subbundle 0→ OX(−1)→ T̂X and a universal sequence on X:

0→ OX(−1)→ T̂X → QX → 0

By the lemma we have TX = Hom(OX(−1),QX) ∼= OX(1) ⊗ QX and so by

tensoring the above sequence by OX(1) we obtain the euler sequence on X

0→ OX → T̂X ⊗OX(1)→ TX → 0

and its dual

0→ ΩX → Ω̂X ⊗OX(−1)→ OX → 0

We define T̃X := T̂X ⊗OX(1) and Ω̃X := Ω̂X ⊗OX(−1) and rewrite these sequences:

0→ OX → T̃X → TX → 0

and

0→ ΩX → Ω̃X → OX → 0
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3.6.1 Conormal Sequence on X

Given a smooth projective subvariety X ⊂ PN we have the normal sequence

0→ TX → TPN |X → NX/PN → 0

arising from the pushforward of the inclusion X ↪→ PN . Moreover, if we pull back

the universal sequence

0→ S → V → Q → 0

via the gauss map γ we have 0 → T̂X →
⊕N+1OX → γ∗Q → 0 and after twisting

by OX(1):

0→ T̃X →
N+1⊕
OX(1)→ γ∗Q⊗OX(1)→ 0

3.6.2 A Fundamental Commutative Diagram

Putting everything together we have the following commutative diagram:

0 0 0y
y

y
0 −−−→ OX −−−→ T̃X −−−→ TX −−−→ 0y

y
y

0 −−−→ OX −−−→
⊕N+1OX(1) −−−→ TPN |X −−−→ 0y

y
y

0 −−−→ 0 −−−→ γ∗Q⊗OX(1) −−−→ NX/PN −−−→ 0y
y

y
0 0 0
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Note that this implies γ∗Q ⊗ OX(1) ∼= NX/PN and we arrive at the following funda-

mental commutative diagram:

0 0y
y

0 −−−→ OX −−−→ T̃X −−−→ TX −−−→ 0

id

y
y

y
0 −−−→ OX −−−→

⊕N+1OX(1) −−−→ TPN |X −−−→ 0y
y

NX/PN −−−→
id

NX/PNy
y

0 0

as well as its dual diagram:

0 0y
y

N∗X/PN −−−→id N∗X/PNy
y

0 −−−→ ΩPN |X −−−→
⊕N+1OX(−1) −−−→

c
OX −−−→ 0y

y
yid

0 −−−→ ΩX −−−→
e

Ω̃X −−−→ OX −−−→ 0y
y

0 0
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Once we twist this diagram byOX(1) we will be able to understandH0(X,SmΩ̃X(1))

via the surjection
⊕N+1OX(−1) → Ω̃X(1) → 0 and consequently H0(X,SmΩX(1))

via the inclusion 0→ ΩX → Ω̃X .

3.7 Theorem for
⊕∞

m=0H
0(X,SmΩX(1)) and TH(X)

In this section we establish the equivalence of the algebra of symmetric twisted

differentials and the algebra generated by tangentially homogeneous polynomials for

smooth subvarieties with dimension n > 2/3(N − 1).

Theorem 3.8 Let X ⊂ PN be a nondegenerate smooth subvariety with dimension

satisfying n > 2/3(N −1) and n > 1. Then there is a graded isomorphism of algebras

induced by the tangent map:

∞⊕
m=0

H0(X,Sm[Ω1
X(1)]) ' TH(X)

Proof: By twisting the above commutative diagram by OX(1) we obtain:
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0 0y
y

N∗X/PN (1) −−−→
id

N∗X/PN (1)y
y

0 −−−→ ΩPN |X(1) −−−→
⊕N+1OX −−−→

c
OX(1) −−−→ 0y

y
yid

0 −−−→ ΩX(1) −−−→
e

Ω̃X(1) −−−→ OX(1) −−−→ 0y
y

0 0

and we see that we have an inclusion

H0(X,SmΩX(1)) ⊂ H0(X,SmΩ̃X(1))

To understand this inclusion we will projectivize the vector bundles ΩX(1) and Ω̃X(1)

to obtain

H0(P(TX(−1)),OP(TX(−1))(m)) ⊂ H0(P(T̃X(−1)),OP(T̃X(−1))(m))

Moreover, if we make the identifications T̃X(−1)) ∼= T̂X and P(T̂X) = TX , then this

inclusion becomes:

H0(P(TX(−1)),OP(TX(−1))(m)) ⊂ H0(TX ,OTX (m))
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The relevant commutative diagram is then dualization of the one above:

0 0y
y

0 −−−→ OX(−1) −−−→ T̂X −−−→ TX(−1) −−−→ 0

id

y
y

y
0 −−−→ OX(−1) −−−→

⊕N+1OX −−−→ TPN |X(−1) −−−→ 0y
y

NX/PN (−1) −−−→
id

NX/PN (−1)y
y

0 0

The projectivization of the inclusion T̂X →
⊕N+1OX is the natural inclusion of

projective bundles:

0→ TX
i→ X × PN

Since this map was induced by a map of vector bundles, by lemma 3.4 we have

i∗OX×PN (1) ∼= OTX (1). If we denote the second projection p2 : X × PN → PN then

we also have p∗2OPN (1) ∼= OX×PN (1) since in each fiber of X × PN , p2 is the identity

map id : PN → PN . Lastly, by composing i with p2 we obtain the tangent map τ :

TX → PN and the pullback of τ induces the isomorphism τ ∗OPN (1) ∼= OTX (1). Now,

our assumption is that the dimension n of X satisfies the inequality n > 2/3(N − 1)

and thus by theorem 2.6, τ is surjective with connected fibers. Hence, by lemma 3.3,

τ induces the isomorphism of global sections:

τ ∗ : H0(TX ,OTX (m)) ∼= H0(PN ,OPN (m)) (3.3)



39

In other words, H0(X,SmΩ̃X(1)) ∼= H0(PN ,OPN (m)). To summarize, this isomor-

phism is obtained by pulling back homogeneous polynomials of degree m on CN+1 to

the bundle of tangent spaces T̂X via the inclusion 0→ T̂X → X × CN+1.

The idea now is to understand which of these polynomials descend via the Euler

map T̂X → TX(−1). In other words, we would like to understand the image of the

inclusion :

p∗ : H0(P(TX(−1)),OP(TX(−1))(m)) ↪→ H0(TX ,OTX (m))

arising from the pullback of the map p:

0→ OX(−1)→ T̂X
p→ TX(−1)→ 0 (3.4)

Let P be an element in this image. By the isomorphism 3.3, P is a homogeneous

polynomial of degree m on PN . In a fiber over x ∈ X the exact sequence 3.4 becomes

0→ x̂→ T̂xX → TxX → 0

and we see that P |T̂xX is in fact a homogeneous polynomial on the quotient T̂xX/x̂ ∼=

TxX. After a linear change of coordinates we can assume that T̂xX is spanned by

{ ∂
∂z0
, ..., ∂

∂zn
} and that x̂ = 〈 ∂

∂z0
〉. It follows that P |T̂xX is a homogeneous polynomial

in the variables {dz1, ..., dzn}. Since TxX = U0 ∩ TxX where U0 ⊂ PN is defined by

the equation z0 6= 0, P |T̂xX defines a function
P |
T̂xX

zm0
on the open subset TxX ⊂ TxX.

Since, P |T̂xX did not involve the variable dz0, we obtain a homogeneous polynomial

on TxX which is exactly the dehomogenization of the restriction P |T̂xX in the open

set TxX ∩ U0. Now, by the commutative diagram:
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TxX PN

TxX U0

if we instead pull back P via the chain of inclusions TxX ↪→ U0 ↪→ PN we still obtain

something homogeneous and so P is tangentially homogeneous at x in the sense of

definition 2.13 i.e. P ∈ TH(X).

Remark 3.9 We see from the proof that the pullback of a tangentially homogeneous

polynomial P to each T̂xX descends to a homogeneous polynomial on the quotient

T̂xX/x̂. Moreover, once a point z ∈ x̂ is chosen we can identify T̂xX/x̂ with the

tangent space TxX and we see P is in fact homogeneous on TxX. Note, however,

that there can be no global choice of z ∈ x̂ as there are no non-trivial global sec-

tions of OX(−1). In other words, although TxX ∼= T̂xX/x̂ there is no corresponding

isomorphism of vector bundles TX ∼= T̂X/OX(−1). Thus, almost paradoxically, a tan-

gentially homogeneous polynomial pulls back to a homogeneous polynomial on each

tangent space TxX but does not pull back to a homogeneous polynomial on the bundle

TX i.e. a section of H0(P(TX),OP(TX)(m)).

In the next chapter we turn to question of characterizing TH(X). While it is clear

that C[Q0, ..., Qr] ⊂ TH(X), TH(X) can in general be larger. For instance, we saw

in chapter one that curves of degree greater than two in P2 have many symmetric

twisted differentials. Surprisingly, the relationship between C[Q0, ..., Qr] and TH(X)

is also connected to the tangent map τ and the tangent variety Tan(X).



CHAPTER 4

Tangentially Homogeneous Polynomials
and the Quadric Algebra

In the previous section the equivalence of the algebra of symmetric twisted dif-

ferentials and the algebra generated by tangentially homogeneous polynomials was

established. What is needed now is an understanding of the connection between the al-

gebra generated by tangentially homogeneous polynomials and the algebra generated

by quadrics vanishing on X. The goal of this section is to establish this connection

for complete intersections. Recall the following definition:

Definition 4.1 A subvariety X ⊂ PN of dimension n ≥ 1 is a complete intersection

if there exist N − n homogeneous polynomials fi ∈ C[Z0, ..., ZN ]di of degree di ≥ 1,

generating the homogeneous ideal I(X) ⊂ C[Z0, ..., ZN ].

We’ll see that the assumption of complete intersection allows us to conclude local

properties of the defining equations of X. The framework for doing this is the connec-

tion between the projective second fundamental form of X and the dimension of the

tangent variety Tan(X). Roughly speaking, the dimension of the tangent variety is

determined by how much X bends at a general point x, which in turn is determined

41
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by the number of algebraic relations in the degree two parts of the local equations of

X restricted to the tangent space TxX.

4.2 Preliminaries

4.2.1 The Projective Second Fundamental Form

We will need a detailed understanding of the projective second fundamental form

IIx of X at a point x ∈ X. Let us begin by recalling the necessary background.

Let G(k,N) be the Grassmannian of k-planes in CN and let V ∈ G(k,N). Recall

that there is an identification TVG(k,N) ∼= Hom(V,CN/V ). Loosely speaking, tan-

gential movement away from V is equivalent to the specification of a normal vector

for each v ∈ V . To make this identification explicit, let α(t) be a curve in G(k,N)

with α(0) = V . We would like to show how this curve defines an element ϕα ∈

Hom(V,CN/V ). Let v ∈ V and let β(t) be a curve in CN such that β(t) ∈ α(t) for all

t and β(0) = v. Then we define ϕα(v) to be the image of d
dt
β(0) under the quotient

map CN → CN/V . The correspondence α 7→ ϕα is well defined since if another curve

β′(t) is chosen then β(t)−β′(t) = u(t) ∈ α(t). Since u(0) = β(0)−β′(0) = v− v = 0,

we can write u(t) = tũ(t) and so d
dt
β(0)− β′(t) = ũ(0) ∈ V .

To define the projective second fundamental form of a projective subvariety X ⊂

PN at a point x ∈ X we apply these ideas to the Gauss map γ : X → G(n+ 1, N + 1)

which associates to each x ∈ X the n + 1-dimensional subspace T̂xX. At x we have

the differential of this map

dγ(x) : TxX → TT̂xXG(n+ 1, N + 1)

Using the identification TVG(k, n) ∼= Hom(V,Cn/V ) we can rewrite this map
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dγ(x) : TxX → Hom(T̂xX,CN+1/T̂xX)

We can make this more explicit in the following way. Without loss of generality

assume x ∈ U0 ⊂ PN . We can choose coordinates (z0, ..., zN) on CN+1 so that

x = [1 : 0 : · · · : 0] and T̂xX is spanned by { ∂
∂zc
, ..., ∂

∂zN
}. Let { ∂

∂xc+1
, ..., ∂

∂xN
} be a

basis for TxX. We can locally parameterize X by TxX:

f : (xc+1, ..., xN) 7→ (f1, ..., fc, xc+1, ..., xN) ∈ X ∩ U0

where fi ∈ O(TxX) and f(0) = x. The tangent space Tf(x′)X is spanned by:

∂f1
∂xi

(x′)

...

∂fc
∂xi

(x′)

0

...

1

...

0



for i = c+ 1, ..., N

We can also view f this as a map into X̂ via the map U0 ↪→ {z0 = 1} ⊂ CN+1:

f : (xc+1, ..., xN) 7→ (f1, ..., fc, 1, xc+1, ..., xN) ∈ X̂.

The tangent space T̂f(x′)X for x′ = (xc+1, ..., xN) ∈ TxX is then spanned by:
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∂

∂zc
(x′) :=



f1(x′)

...

fc(x
′)

1

xc+1

...

xN



and
∂

∂zi
(x′) :=



∂f1
∂xi

(x′)

...

∂fc
∂xi

(x′)

0

...

1

...

0



for i = c+ 1, ..., N

Moreover, we can choose the parameterization f so that ∂
∂zi

(0) = ∂
∂zi

. To under-

stand the image of a tangent vector ∂
∂xi
∈ TxX, i = c+ 1, ..., N , under the differential

dγ(x), we take a holomorphic curve αi(t) ∈ X ∩ U0 such that d
dt
αi(0) = ∂

∂xi
. For

instance, we can take αi to be the composition αi : ∆→ TxX → X ∩ U0 given by:

α : t 7→ tei 7→ f(tei) ∈ X

where ei = ∂
∂xi
∈ TxX. The image of this curve γ(αi(t)) ⊂ Gr(n + 1, N + 1) is the

one-dimensional family of tangent spaces {T̂αi(t)X} and dγ(x)( ∂
∂xi

) = d
dt
γ ◦αi(0) ∈ T.

To understand ϕi := d
dt
γ ◦ αi(0) ∈ Hom(T̂xX,CN+1/T̂xX), we need to say how ϕi

acts on the vectors ∂
∂zj
∈ T̂xX for j = c, ..., N . As explained in the first paragraph of

this section, we need to choose a curve βj(t) in CN+1 such that βj(t) ∈ T̂αi(t)X and
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βj(0) = ∂
∂zj

. For j = c+ 1, ..., N we can take the curve:

βj(t) =



∂f1
∂xj

(tei)

...

∂fc
∂xj

(tei)

0

...

1

...

0



∈ CN+1

and we have

ϕi(
∂

∂zj
) =

d

dt
βj(0) =



∂2f1
∂xixj

(0)

...

∂2fc
∂xixj

(0)

0

...

0


∈ CN+1/T̂xX (4.1)

Now, for j = c we have the vector ∂
∂zc
∈ T̂xX and we can take the curve:
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βc(t) =



f1(tei)

...

fc(tei)

1

...

t

...

0



∈ CN+1

and we have

ϕi(
∂

∂zc
) =

d

dt
βc(0) =



∂f1
∂xi

(0)

...

∂fc
∂xi

(0)

0

...

1

...

0



∈ T̂xX

In other words, the tangent vector pointing in the direction of the line x̂ is in the

kernel of every homomorphism ϕi ∈ Hom(T̂xX,CN+1/T̂xX) in the image of dγ(x).

Thus, the differential gives a map dγ(x) : TxX → Hom(T̂xX/x̂,CN+1/T̂xX) and with

identifications T̂xX/x̂ ∼= TxX and CN+1/T̂xX ∼= NxX a map

dγ(x) : TxX → Hom(TxX,NxX)
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Summarizing, the image of a tangent vector v is the specification of the normal

component of first order motion of each point in TxX as you move along X in the

tangential direction v. Now, with the identification Hom(TxX,NxX) ∼= TxX
∨⊗NxX

we arrive at a bilinear map

IIx : TxX ⊗ TxX → NxX

known as the projective second fundamental form of X at x where given a pair of

tangent directions u⊗ v, IIx specifies how v moves in the normal direction when one

moves tangentially along X in the direction of u. By equation 4.2.1 we have

∂

∂xi
⊗ ∂

∂xj
7→


∂2f1
∂xi∂xj

(0)

...

∂2fc
∂xi∂xj

(0)

 ∈ NxX (4.2)

for i, j ∈ {c+ 1, ..., N}. For v, u ∈ TxX we have

v ⊗ u 7→


∑

i,j(uivj + ujvi)
∂2f1
∂xi∂jj

(x)

...∑
i,j(uivj + ujvi)

∂2fc
∂xi∂jj

(x)

 ∈ NxX (4.3)

Note that by the implicit function theorem the functions f1, ..., fc are holomorphic

and we have equality of mixed partial second derivatives. Thus IIx : TxX ⊗ TxX →

NxX is a symmetric bilinear form:

IIx : S2TxX → NxX
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4.2.2 The Second Fundamental Form and the Tangent Vari-

ety

The relevance of IIx for us comes from an observation originally due to Terracini

relating IIx with the dimension of the tangent variety Tan(X):

Let X ⊂ PN be a smooth subvariety and τ : TX → PN the tangent map. Let

(x, l) ∈ TX be a point on a generic fiber of τ and v̂ any vector in the direction of l. Let

v ∈ T̂xX/x̂ be its image in the quotient. Then dim(τ(TX)) = 2n − dim kerIIx(v, )

where (x, ṽ) is a point on a generic fiber.

Proof: This can be proved using the method of moving frames, see [GH79].

However, the full force of this theory is not needed and we give an alternative proof

here.

The dimension of τ(X) is 2n minus the dimension of a generic fiber of τ and the

dimension of a fiber is equal to the dimension of the kernel of the differential at a

point along the fiber. Let (x, l) ∈ TX ⊂ X × PN be a point along a generic fiber of

τ . We have the following commutative diagram:

T̂X CN+1

P(T̂X) PN

τ̂

τ

Note that T(x,l)TX ∼= TxX ⊕ TxX. Suppose u⊕ w ∈ ker dτ(x,l) and let β(t) ⊂ TX

such that β(0) = (x, l) and d
dt
β(0) = u ⊕ w. Let β̂ ⊂ T̂X be a lifting of β such that

β̂(0) = (x, v̂). We have

π2 ◦ τ̂ ◦ β̂(t) = τ ◦ β(t)

and

d

dt
π2 ◦ τ̂ ◦ β̂(0) =

d

dt
τ ◦ β(0) = 0
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which gives

dπ2(v̂)(
d

dt
τ̂ ◦ β̂(0))) = 0.

and so d
dt
τ̂ ◦ β̂(0) points in the direction of v̂ and in particular d

dt
τ̂ ◦ β̂(0) ∈ T̂xX. Thus

IIx(v, w) = 0 i.e. w ∈ ker(IIx(v, )). Since τ is injective on fibers of TX , we have:

ker dτ(x,l)
∼= dπ(x,l)(ker dτ(x,l)) ⊂ ker(IIx(v ))

Thus, dim ker(dτ(x,l)) ≤ dim ker(IIx(v, )).

Now suppose w ∈ kerIIx(v, ) and choose a curve β(t) ⊂ TX through (x, l) such

that d(β′(0)) = 0 ⊕ w and let β̂ be a lifting of β such that β̂(0) = v̂. As before we

have:

d

dt
τ ◦ β(0) =

d

dt
π2 ◦ τ̂ ◦ β̂(0) = dπ2(v̂)(

d

dt
τ̂ ◦ β̂(0))) = dπ2(v̂)(IIx(w, v))

Since IIx(v, w) = 0 ∈ NxX, d
dt
τ̂ ◦ β̂(0)) ∈ T̂xX, say d

dt
τ̂ ◦ β̂(0)) = û. Let u =

dπ2(v̂)(û) then we have d
dt
τ ◦β(0) = u ∈ TxX. We can adjust our original curve so that

β′(0) = −u⊕w. Then by linearity of the derivative we have d
dt
τ ◦ β(0) = −u+ u = 0

and we’ve established ker IIx(v, ) ⊂ dπ(x,l)(ker dτ(x,l)). Thus

dim ker(dτ(x,l)) ≥ dim ker(IIx(v, ))
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4.2.3 The Second Fundamental Form and the Local Defining

Equations of X

We will need a characterization of proposition 4.2.2 in terms of the generators of

the local ideal of X. To do this we consider the dual map II∗x : N∗xX → S2T ∗xX. By

equation 4.2, the image of II∗x is spanned by forms
N∑

i,j=c+1

∂2f1

∂xi∂xj
(0)dxidxj, ...,

N∑
i,j=c+1

∂2fc
∂xi∂xj

(0)dxidxj


where f : (xc+1, ..., xN) 7→ (f1, ..., fc, xc+1, ..., xN) is a local parameterization of X.

Thus the image of II∗x is spanned by the quadrics {f (2)
1 , ..., f

(2)
c } on X. Note that

if Fk is a local defining equation of X then dFk =
∑c

i=1
∂Fk
∂xi

(x)dxi ∈ N∗xX and the

image under II∗x is

∂Fk
∂x1

(x) ·
N∑

i,j=c+1

∂2f1

∂xi∂xj
(0)dxidxj + · · ·+ ∂Fk

∂xc
(x) ·

N∑
i,j=c+1

∂2fc
∂xi∂xj

(0)dxidxj (4.4)

Consider the the expansion of Fk about x:

Fk = Fk(x) +
N∑
i=1

∂Fk
∂xi

(x)xi +
N∑

i,j=1

∂2Fk
∂xi∂xj

(x)xixj + · · ·

If we denote ψFk =
∑N

i=1
∂Fk
∂xi

(x)xi, then equation 4.4 is the degree two part of the

composition ψFk ◦ f i.e. ψFk |
(2)
X .

If {F1, ..., Fc} are local generators of the ideal of X then since {[dF1, ..., dFc} is a

basis for N∗xX, we see that the image of II∗X is spanned by the quadrics:

{ψF1|
(2)
X , ..., ψFc |

(2)
X } ⊂ H0(P(TxX),OP(TxX)(2)) (4.5)
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We define |IIx| to be the linear system on TxX defined by these quadrics and

iix : P(TxX) 99K P(NxX) the rational map defined by this linear system. We have

the following proposition relating iix and IIx:

Let x ∈ X then IIxX is the derivative of iix. More precisely diix(v)( ) = 1
2
IIx(v, )

for a tangent vector v ∈ TxX.

Proof: First, we have iix(v) = IIx(v, v):

iix(v) =

 N∑
i,j=c+1

vivj
∂f1

∂xi∂xj
, ...,

N∑
i,j=c+1

vivj
∂fc

∂xi∂xj


=

 N∑
i,j=c+1

1

2
(vivj + vjvi)

∂f1

∂xi∂xj
, ...,

N∑
i,j=c+1

1

2
(vivj + vjvi)

∂fc
∂xi∂xj


=

1

2
IIx(v, v)

Now, let v(t) be a curve in TxX with v(0) = v. We compute the derivative of

iix(v(t)) at t = 0:
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d

dt

∣∣∣∣∣∣∣
t=0

iix(v(t)) =
d

dt

∣∣∣∣∣∣∣
t=0

IIx(v(t), v(t))

=
d

dt
|t=0

 N∑
i,j=c+1

vi(t)vj(t)
∂f1

∂xi∂xj
, ...,

N∑
i,j=c+1

vi(t)vj(t)
∂fc

∂xi∂xj


=

 N∑
i,j=c+1

(v′i(0)vj(0) + vi(0)v′j(0))
∂f1

∂xi∂xj
, ...,

N∑
i,j=c+1

(v′i(0)vj(0) + vi(0)v′j(0))
∂fc

∂xi∂xj


=

 N∑
i,j=c+1

v′i(0)vj(0)
∂f1

∂xi∂xj
, ...,

N∑
i,j=c+1

v′i(0)vj(0)
∂fc

∂xi∂xj


+

 N∑
i,j=c+1

vi(0)v′j(0)
∂f1

∂xi∂xj
, ...,

N∑
i,j=c+1

vi(0)v′j(0)
∂fc

∂xi∂xj


= 2IIx(v(0), v′(0))

4.3 Theorem for TH(X) and C[Q0, ..., Qr]

In this section we use the local differential geometry described above to establish

an equivalence of tangentially homogeneous polynomials and the quadric algebra for

complete intersections.

Theorem 4.4 Let X ⊂ PN be a smooth nondegenerate complete intersection with

Tan(X) = PN . Then:

TH(X) ∼= C[Q0, ..., Qr]
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Proof: Let c = codim(X) and X be of multi-degree (d1, ..., dc), d1 ≥ d2 ≥ ... ≥ dc

where I(X) = (F1, ..., Fc) and degFi = di. With this notation we aim to show that

if P ∈ C[X0, ..., XN ]
h

TX
, then P ∈ C[Fk, ..., Fc], where k = min{i | di = 2}. Note

that {Fk, ..., Fc} form a basis for H0(PN , IX(2)). This follows from the fact that X is

non-degenerate and hence there are no degree one generators.

Let P ∈ C[X0, ..., XN ]
h

TX
have degree d. By proposition 2.12 we have P ∈ I(X).

This allows us the following representation of P in terms of the defining equations of

X:

P =
∑

(i1,...,ic)∈I

Gi1...icF
i1
1 ...F

ic
c (4.6)

where I is some finite index set, Gi1...ic /∈ I(X) and deg(Gi1...ic) = d − (i1d1 +

· · · + icdc). Indeed, since P ∈ I(X), there exist homogeneous polynomials G1, ..., Gc

such that P = G1F1 + · · ·GcFc. Now, if Gi ∈ I(X) then it can again be split using

F1, ..., Fc. By iterating this process we arrive at equation 4.6 in a finite number of

steps.

Now, we would like to use this representation to understand what the condition

of being tangentially homogeneous imposes on P at a point x ∈ X. To do this, we

should consider the Taylor expansion at x in TxX of the dehomogenization P̃ . Since

F̃i
x|(0)
TxX

= 0 and F̃i
x|(1)
TxX

= 0 ∀i ∈ {1, ..., c}, we have

P |TxX =
∑

i1+···+ic=ld(P )/2

G
(0)
i1...ic
|TxX(F1|(2)

TxX
)i1 ...(Fc|(2)

TxX
)ic + higher order terms
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where ld(P ) = 2min{i1 + · · · + ic|(i1, ..., ic) ∈ I} is the lowest degree present in the

expansion of P̃ x|TxX . To proceed we show that the collection {F x
1 |

(2)
TxX

, ..., F x
c |

(2)
TxX
} ⊂

S2[(TxX)∗] = H0(Pl(TxX),O(2)) is algebraically independent.

Lemma 4.5 Let X(n) ⊂ PN be a non-degenerate complete intersection, X = V (F1, ..., Fc),

with n > 2/3(N − 2). Then if x ∈ X is general the collection:

{F̃1
x|(2)
TxX

, ..., F̃c
x|(2)
TxX
} ⊂ S2[(TxX)∗] = H0(Pl(TxX), O(2))

is algebraically independent.

Proof: (Proof of Lemma) At each x ∈ X we have the projective second funda-

mental form arising from the differential of the Gauss map:

IIx : S2[TxX]→ NxX

The functions F̃1
x
, ..., F̃c

x
generate the local ring of X and hence the differentials

dF̃1
x
, ..., dF̃c

x
give a basis for the conormal space N∗xX. Thus the image of the dual

map II∗x : N∗xX → S2T ∗xX has image spanned by the quadrics {ψF̃x1 |
(2)
X , ..., ψF̃xc |

(2)
X }

in TxX (by 4.5.) As explained in the previous section, these quadrics define a linear

system |IIx| and a rational map iix : Pn−1 99K Pc−1. Note that for each defining

equation Fi, we have F̃i
x|X ≡ 0 in a neighborhood of x. In particular, the degree two

part, F̃i
x|(2)
X , must vanish and we have

ψF̃xi |
(2)
X + F̃i

x|(2)
TxX
≡ 0
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Thus ψF̃i
x|(2)
X = −F̃i

x|(2)
TxX

and the set of quadrics {F̃1
x|(2)
TxX

, ..., F̃c
x|(2)
TxX
} defines the

same linear system on TxX as {ψF̃ix |
(2)
X , ..., ψF̃cx |

(2)
X } and hence define the same rational

map iix : Pn−1 99K Pn−1. Now by propositions 4.2.2 and 4.2.3,

N = 2n− dim ker(diix(v)) (4.7)

for generic x and v ∈ TxX since the dimensional hypothesis n > 2/3(N − 2) implies

surjectivity of the tangent map τ . Suppose {F̃1|(2)
TxX

, ..., F̃c|(2)
TxX
} were algebraically

dependent, i.e. H(F̃1|(2)
TxX

, ..., F̃c|(2)
TxX

) ≡ 0 for some homogeneous polynomial H of c

variables. It follows that iix(Pn−1) is contained in the hypersurface H and in particu-

lar, dim (iix(Pn−1)) < c−1 or equivalently dim ii−1
x (y) > n−c for a generic y ∈ Pc−1.

By equation 4.7, we would then have the contradiction

N = 2n− dim ii−1
x (y) < 2n− (n− c) = N

To proceed with the proof of the theorem we conclude from the lemma that:

∑
i1+···+ic=ld(P )/2

G
(0)
i1...ic
|TxX(F1|(2)

TxX
)i1 ...(Fc|(2)

TxX
)ic 6≡ 0

since {F̃1
x|(2)
TxX

, ..., F̃c
x|(2)
TxX
} are algebraically independent at the general x and the

defining condition Gi1...ic /∈ I(X) forces G̃x
i1...ic
|(0)
TxX

6= 0 at general x ∈ X. The

assumption that P is tangentially homogeneous means that P̃ x|TxX is homogeneous

of degree d, and so:

d = ld(P )
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Moreover, if (i1, ..., ic) ∈ I then

d = 2 · ld(P )

2
≤ 2(i1 + · · ·+ ic) ≤ d

Thus i1 + · · ·+ic = ld(P )/2 for all (i1, ..., ic) ∈ I and we have both d1i1 + · · ·+dcic ≤ d

and 2i1 + · · ·+ 2ic = d. Since dk = · · · dc = 2 we obtain

(d1 − 2)i1 + · · ·+ (dk−1 − 2)ik−1 ≤ 0

Since di − 2 > 0 for i = 1, ..., k − 1 we conclude i1 = · · · = ik−1 = 0 for (i1, ..., ic) ∈ I.

In other words,

P =
∑

ik+...+ic=d/2

cik...icF
ik
k ...F

ic
c ∈ C[Fk, ..., Fc]

as desired.

4.6 Freeness of the Quadric Algebra

An interesting consequence of lemma 4.5 is that the quadric algebra C[Q0, ..., Qr]

of a smooth complete intersection subvariety with Tan(X) = PN , must be free:

Theorem 4.7 Let X ⊂ PN be smooth with Tan(X) = PN . Then C[Q0, ..., Qr] is

free.

Proof: Since Tan(X) = PN , X must be non-degenerate. It follows that the

homogeneous ideal of X contains no degree one polynomials and thus any generating

set for IX must contain a basis for H0(PN , IX(2)). Suppose {Q0, ..., Qr} is such a
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basis. These quadrics generate QX and so if QX was not free, we would have at

least one polynomial relation in the Qi and moreover, this relation would pull back

to a polynomial relation of the restrictions Qi|TxX on the generic TxX. However, the

Qi|TxX extend to a basis of |IIx| at x since they are linearly independent on TxX.

This contradicts lemma 4.5.



CHAPTER 5

Symmetric Twisted Differentials and the
Quadric Algebra

To summarize what we have so far, there is an equivalence of
⊕∞

m=0 H
0(X,SmΩX(1))

and TH(X) when n > 2/3(N − 1) and an equivalence of TH(X) and C[Q0, ..., Qr]

when n > 2/3(N − 1) and X is a complete intersection. In this section we show

that in some cases it is possible to relate
⊕∞

m=0H
0(X,SmΩX(1)) and C[Q0, ..., Qr]

directly without going through the intermediate algebra TH(X). This is because

in the dimensional range n > 2/3(N − 1) we are always guaranteed an inclusion of

graded algebras:

C[Q0, ..., Qr] ↪→
∞⊕
m=0

H0(X,SmΩX(1)) (5.1)

and thus an equivalence can be established if one is able to compute the dimensions

of the grade pieces, for instance, when ΩX decomposes into line bundles and we have

an explicit list of equations for H0(PN , IX(2)).

Remark 5.1 The relationship between C[Q0, ..., Qr] and
⊕∞

m=0H
0(X,SmΩX(1)) pro-

vides an interesting perspective on the question of the number of linearly independent

58
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quadrics vanishing on a smooth variety whose codimension is small relative to its

dimension. In the range n > 2/3N one expects h0(PN , IX(2)) ≤ c if one believes

Hartshorne’s conjecture. An interesting question in the context of our work is then

what sort of bound exists for h0(PN , IX(2)) for varieties in the range 2/3(N − 1) <

n < 2/3N . For instance, the segre threefold P1 × P2 ⊂ P5 has codimension two but

three linearly independent quadrics vanishing on it. The classical bound for a smooth

variety of codimension c is due to Castelnuovo and proved by Zak [?]:

h0(PN , IX(2)) ≤
(
c+ 1

2

)
(5.2)

Thus, in a fixed PN in the range n > 2/3(N − 1), one might expect a better bound

for varieties close to the boundary (2/3(N − 1)) when c is as large as possible. We

remark here that if the quadric algebra is freely generated and the dimension of X

satisfies n > 2/3(N − 1) then

h0(PN , IX(2)) ≤ κ(X,ΩX(1))

Moreover, since κ(X,ΩX(1)) ≤ κ(X, Ω̃X(1)) ≤ N − 1 we would obtain the following

bound on the number of linearly independent quadrics through X:

h0(PN , IX(2)) ≤ N − 1 (5.3)

For varieties in the range 2/3(N − 1) < n < 2/3N , the bound N − 1 grows like N

and
(
c+1

2

)
like N2 and thus 5.3 would give a better bound then 5.2 for large N .
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5.2 The Quadric Hypersurface in P3

Suppose X = Q is the quadric hypersurface σ : P1×P1 ↪→ P3. Note C[Q0, ..., Qr] =

C[Q] and them-th graded component is just C[Qm]. To compute
⊕∞

m=0H
0(Q,SmΩQ(1)),

we consider the pullback σ∗SmΩQ(1) to P1 × P1. Since σ is an embedding we have

H0(Q,SmΩQ(1)) ∼= H0(P1 × P1, σ∗SmΩQ(1)). Note that we have

σ∗SmΩQ(1) = Sm[σ∗ΩQ ⊗ σ∗OQ(1)]

To compute σ∗ΩQ and σ∗OQ(1), consider the two projections

P1 × P1 π2−−−→ P1

π1

y
P1

Since σ is an embedding we have σ∗ΩQ
∼= ΩP1×P1 = ΩP1 ⊕ ΩP1 = π∗1OP1(−2) ⊕

π∗2OP1(−2). Note that the projections induce an isomorphism Pic(P1 × P1) ∼= Z⊕ Z

via pullback we can write ΩP1×P1 = OP1×P1(−2, 0) ⊕ OP1×P1(0,−2) and σ∗OQ(1) ∼=

OP1×P1(1, 1). We have:

σ∗SmΩQ(1) = Sm
[
(OP1×P1(−2, 0)⊕OP1×P1(0,−2))⊗OP1×P1(1, 1)

]
= Sm

[
OP1×P1(−1, 1)⊕OP1×P1(1,−1)

]
=
⊕
i+j=m

OP1×P1(−i+ j, i− j)

and so

H0(P1 × P1, σ∗SmΩQ(1)) =
⊕
i+j=m

H0(P1 × P1,OP1×P1(−i+ j, i− j)) (5.4)
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Note that H0(P1×P1,OP1×P1(k, l)) ∼= C if at least one of k or l is negative. Indeed,

suppose k < 0 then any non-trivial section of OP1×P1(k, l) pulls back to a non-trivial

section on each fiber of π1. However, the pull back of the line bundle OP1×P1(k, l)) to

each fiber is trivial and has no non-constant sections. Thus, by 5.4 we see that the

only terms H0(P1 × P1,OP1×P1(−i + j, i − j)) that contribute something non-trivial

are those for which i = j. This gives

H0(Q,SmΩQ(1)) =


0 if m is odd

C if m is even

Thus, the dimensions of them−th graded pieces of the algebras
⊕∞

m=0H
0(Q,SmΩQ(1))

and C[Q] coincide and the inclusion 5.1 implies:

∞⊕
m=0

H0(Q,SmΩQ(1)) ∼= C[Q]

Moreover, since a hypersurface in P3 lies in the range n > 2/3(N − 1) we have an

equivalence of all three algebras
⊕∞

m=0H
0(Q,SmΩQ(1)), TH(Q) and C[Q].

5.3 The Segre Threefold

Let Σ1,2 denote the image of the segre embedding P1 × P2 ↪→ P5. The ideal of

Σ1,2 is generated by three quadrics which we will denote {Q0, Q1, Q2}. Thus, Σ1,2 is

an example of a subvariety in the range 2/3(N − 1) < n < 2/3(N)) that is not a

complete intersection and cannot be handled by theorem 4.4.
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Theorem 5.4 Let Σ1,2 be the Segre three-fold σ : P1 × P2 ↪→ P5 and {Q0, Q1, Q2} a

basis for H0(P5, IΣ1,2(2)). Then

∞⊕
m=0

H0(Σ1,2, S
mΩΣ1,2(1)) ∼= C[Q0, Q1, Q2]

Proof: Let pi : P1 × P2 → Pi be the natural projections. Using the embedding

σ and σ∗OPN (1) ∼= OP1×P2(1, 1), we have that:

σ∗(ΩΣ1,2(1)) ∼= OP1×P2(−1, 1)⊕ p∗2(Ω1
P2)⊗OP1×P2(1, 1)

and hence:

H0(Σ1,2, S
m[Ω1

Σ1,2
(1)]) ' H0(P1 × P2,

m⊕
i=0

OP1×P2(−m+ 2i,m)⊗ p∗2(Si[ΩP2 ])) (5.5)

The summands H0(P1×P2, OP1×P2(−m+ 2i,m)⊗ p∗2(Si[ΩP2 ])) of the right side of 5.5

vanish:

i) if i < m/2, on the fibers of p2, p−1
2 (t) = P1 the bundle

OP1×P2(−m+ 2i,m)⊗ p∗2(Si[Ω1
P2 ])|P1 ' O(−m+ 2i)⊕ ...⊕O(−m+ 2i)

has no nontrivial sections on P1.

ii) if i > m/2, on the fibers of p1, p−1
1 (t) = P2, we have the bundle:

OP1×P2(−m+ 2i,m)⊗ p∗2(Si[ΩP2 ])|P2 ' SiΩP2 ⊗OP2(m)

which has no notrivial sections by the following lemma by setting X = P2:
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Lemma 5.5 Let X ⊂ PN be a smooth subvariety such that for the general x ∈ X

the lines in X passing through x fill the embedded the embedded tangent space TxX.

Then

H0(X,SiΩ1
X ⊗OX(m)) = 0 if m < 2i

Proof: A symmetric differential w ∈ H0(X,SiΩ1
X ⊗ OP2(m) defines at x ∈ X

where w(x) 6= 0 a hypersurface:

Zw(x) ⊂ TxX

consisting of all tangent vectors in the zero locus of w(x), where w(x) is viewed as an

homogenous polynomial of degree i on TxX (with values in OX(m)(x) ∼= C).

If there is a nontrivial differential w, then by hypothesis at a general point x ∈ X

there is a line il : l ↪→ X through x such that il∗(x)(Txl) 6⊂ Zw(x). This implies

0 6= i∗lw ∈ H0(l, SiΩl ⊗Ol(m))

contradicting H0(l, SiΩl ⊗Ol(m)) ' H0(P1,O(−2i+m)) = 0 when m < 2i.
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Thus, in 5.5 we are left only with the terms for which −m + 2i = 0. Of course,

these terms only exist if m is even and we have:

H0(Σ1,2, S
m[Ω1

Σ1,2
(1)]) =


0 if m is odd

H0(P2, S
m
2 [ΩP2(2)]) if m is even

What remains is to show H0(Σ1,2, S
m[Ω1

Σ1,2
(1)]) = τ ∗(S

m
2 [Q0, Q1, Q2]). Recall that

we always have

τ ∗(S
m
2 [Q0, Q1, Q2]) ⊂ H0(Σ1,2, S

m[Ω1
Σ1,2

(1)])

since quadrics are tangentially homogeneous relative to X. Moreover, as we computed

in example 2.22, C[Q0, Q1, Q2] is free and so dim t∗(S
m
2 [Q0, Q1, Q2]) =

(m
2

+2
2

)
(the

tangent map is surjective). As a consequence, the result will follow if:

h0(Σ1,2, S
m[Ω1

Σ1,2
(1)]) = h0(P2, S

m
2 [Ω1

P2(2)]) ≤
(
m
2

+ 2

2

)

To see that this is true, consider the ideal sequence for P1 ⊂ P2 tensored by

S
m
2 [ΩP2(2)]:

0→ S
m
2 [ΩP2(2)]⊗O(−1)→ S

m
2 [ΩP2(2)]→ S

m
2 [ΩP2(2)]|P1 → 0

and the long exact sequence of cohomology:

0→ H0(P2, S
m
2 [ΩP2(2)]⊗O(−1))→ H0(P2, S

m
2 [ΩP2(2)])→ H0(P1, S

m
2 [ΩP2(2)]|P1)→

By lemma 5.5, H0(P2, S
m
2 [ΩP2(2)]⊗O(−1)) = 0 and we have an inclusion
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0→ H0(P2, S
m
2 [ΩP2(2)])→ H0(P1, S

m
2 [ΩP2(2)]|P1)

and hence

h0(P2, S
m
2 [ΩP2(2)]) ≤ h0(P1, S

m
2 [ΩP2(2)]|P1)

Now, since ΩP2(2)]|P1 = OP1(1)⊕OP1 we have S
m
2 [Ω1

P2(2)]|P1 = OP1(m
2

)⊕OP1(m
2
−

1)⊕ ...⊕O and hence

h0(P1, S
m
2 [Ω1

P2(2)]|P1) =

(
m
2

+ 2

2

)

5.6 Iitaka Dimension of
⊕∞

m=0H
0(X,SmΩX(1)) and

the dual defect of X

Note that the inclusions:

C[Q0, ..., Qr] ⊂
∞⊕
m=0

H0(X,SmΩX(1)) ⊂
∞⊕
m=0

H0(X,SmΩ̃X(1))

and the isomorphism
⊕∞

m=0H
0(X,SmΩ̃X(1)) ∼= H0(PN ,OPN (m)) (which always hold

in the range n > 2/3(N−1)) imply that both the Iitaka dimension of
⊕∞

m=0H
0(X,SmΩX(1))

and the dimension of the image of the rational map PN
[Q0:···:Qr]
99K Pr are bounded by N .

In this section we investigate the consquences of an isomorphism of
⊕∞

m=0H
0(X,SmΩX(1)

and C[Q0, ..., Qr] in the dimensional range n > 2/3(N − 1). The existence of such

an isomorphism implies that the Iitaka dimension of
⊕∞

m=0H
0(X,SmΩX(1), which

is equal to the dimension of the image of the rational map P(TX(−1)) 99K Pr defined

by the linear system P(H0(P(TX(−1)),OP(TX(−1))(2)) ∼= P(H0(PN , IX(2))) is in turn
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equal to the dimension of the rational map on PN defined by {Q0, ..., Qr}. Thus, we

wish to understand the rational map:

P(TX(−1))
[Q0:···:Qr]
99K Pr

The second fundamental form gives the following map of locally free sheaves:

S2TX → NX/PN

Twisting by OX(−2) gives

S2(TX(−1))→ NX/PN (−2)

and any choice of hyperplane H gives a map to NX/PN (−1) via multiplication by H:

S2(TX(−1))→ NX/PN (−2)
·H−→ NX/PN (−1)

Finally, projectivizing gives:

P(S2(TX(−1)))→ P(NX/PN (−2))→ P(NX/PN (−1))

Consider the diagram:

OP(TX(−1))(2)

P(TX(−1)) S2(TX(−1))

X

π
π

The isomorphism π∗OP(TX(−1))(m) ∼= Sm(TX(−1)) implies π∗π∗OP(TX(−1))(m) ⊂ π∗Sm(TX(−1))

and so this line subbundle defines a rational map:

φ : P(TX(−1)) 99K P(S2(TX(−1)))
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such that φ∗OP(S2(TX(−1)))(1) = OP(TX(−1))(2). Thus, we have:

P(TX(−1)) 99K P(S2(TX(−1)))
II
99K P(NX/PN (−2))

·H
99K P(NX/PN (−1))

The bundle P(NX/PN (−1)) has a natural identification:

P(NX/PN (−1)) ∼= {(x,H) : TxX ⊂ H} ⊂ X × PN∗

The image of the second projection is the dual variety of X denoted X∗, it is the

variety of tangent hyperplanes to X. For any X one always has n ≥ dim(X∗) ≤ N−1.

Composing with the second projection we finally arrive the following rational map:

φ : P(TX(−1))
|OP(TX (−1))(2)|

99K X∗

where φ∗OX∗(1) = OP(TX(−1))(2).

Thus, the conjectured isomorphism implies that the Iitaka dimension of
⊕∞

m=0H
0(X,SmΩX(1)

is bounded by dim(X∗) which in turn implies the image of the rational map PN 99K Pr

defined by {Q0, ..., Qr} is bounded by dim(X∗) ≤ N − 1. Note that if the quadric

algebra C[Q0, ..., Qe2(X)] is free, then this gives the bound e2(X) ≤ dim(X∗) ≤ N−1.

It is unclear at the moment when one can expect C[Q0, ...., Qe2(X)] to be free in the

dimensional range n > 2/3(N − 1). However, as a consequence of theorem 4.7, we

do know that the quadric algebra is free for smooth varieties defined by quadratic

equations in the range n ≥ 2/3N .



CHAPTER 6

Tangentially Homogeneous Polynomials
and Trisecant Lines

Let P ∈ TH(X)(m). Since the restriction P |TxX is in the image of the pullback of

the projection

p : TxX 99K P(TxX)

it follows that V (P ) ∩ TxX is a cone with vertex x for each x ∈ X. We see then

that tangentially homogeneous polynomials correspond to hypersurfaces that contain

many lines. To make this more precise, we introduce the global tangent cone variety

CXX of trisecant lines that are tangent and meet X in at least two distinct points.

6.1 Global Tangent Cone Varieties, Trisecant Va-

rieties, and Quadrics

Definition 6.2 Let X ⊂ PN be a subvariety and l ∈ G(1, N), l is of X-type (d1, ..., dk)

if l ∩ X = {x1, ..., xk} set theoretically and lengthxi(X ∩ l) = di. The convention

d1 ≥ ... ≥ dk will be used. Set ΣX,(d1,...,dk) = {l ∈ G(1, N)|l of X-type (d1, ..., dk)}.

Definition 6.3 Let X ⊂ PN be a subvariety, set:

i) ΣX,3 = {(x, l) ∈ PN ×G(1, N)|x ∈ l, l ∈ ΣX,(d1,...,dk),
∑k

i=1 di ≥ 3}
68
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ii) ΣX,3,t = {(x, l) ∈ PN ×G(1, N)|x ∈ l, l ∈ ΣX,(d1,...,dk),
∑k

i=1 di ≥ 3, d1 ≥ 2}

iii) ΣX,3,st = {(x, l) ∈ PN ×G(1, N)|x ∈ l, l ∈ ΣX,(d1,...,dk),
∑k

i=1 di ≥ 3, d1 ≥ 2, k ≥ 2}

Let p1 : PN × G(1, N) → PN be the natural projection into the 1st factor. Then we

have:

i) S3(X) = p1(ΣX,3), the trisecant variety of X, i.e. the union of all trisecant lines

to X.

ii) St3(X) = p1(ΣX,3,t), the tangent-trisecant variety of X, i.e. the union of all

tangent trisecant lines to X.

iii) CXX = p1(ΣX,3,st), the global tangent cone variety of X, i.e. the closure of union

of all tangent trisecant lines to X that meet X at least at two distinct points.

The projections of ΣX,3, ΣX,3,t and ΣX,3,st into G(1, N) via the 2nd natural pro-

jection are denoted respectively by [ΣX,3], [ΣX,3,t] and [ΣX,3,st]. Note that in general,

one always has the inclusions:

CXX ⊂ St3(X) ⊂ S3(X)

The main results of this section is that for X with dimension n > 2/3(N − 1), one

has CXX = St3(X) = S3(X). An important tool will be the following lemma of

Bogomolov and De Oliveira:

Lemma 6.4 (Bogomolov-De Oliveira) Let X ⊂ PN and ⊂ PN × T be a family of

lines in PN over an irreducible projective curve T such that all lines pass through a
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fixed z 6∈ X and whose union is not a line. If the general lines meets X at least twice,

then one of the lines must meet X with multiplicity at least two at some point.

We can deduce from this the following theorem:

Theorem 6.5 Let X ⊂ PN be a nondegenerate smooth subvariety of codimension

two with dimension n ≥ 3. Then:

CXX = S3(X)

Proof:

Note that S3(X) is irreducible, see [Kwa01]. The proof of the theorem proceeds

in two steps:

Step 1: St3(X) = S3(X).

Since a tangent trisecant line is in particular a trisecant line one always has

St3(X) ⊂ S3(X) and so we need to establish the inclusion S3(X) ⊂ St3(X). Let

z ∈ S3(X), PN−1 ⊂ PN \ {z} be a hyperplane, and pz : PN → PN−1 be the projection

with center z into PN−1. The subvariety of G(1, N) consisting of the lines through

z can be naturally identified with PN−1 and we set [ΣX,3]z, [ΣX,3,t]z ⊂ PN−1 to be

respectively the subvariety of trisecant, tangent-trisecant lines to X through z. To

establish S3(X) ⊂ St3(X) it is sufficient to show [ΣX,3]z ∩ [ΣX,3,t]z 6= ∅. Note that this

will follow from lemma 6.4 if we can show there is a positive dimensional subvariety

of [ΣX,3]z.
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We note that the case z ∈ X can be resolved by a simple dimensional argument.

The dimensional hypothesis on X implies N ≥ 5 and hence dimX∩TzX ≥ N−4 > 0

guaranteeing the existence of tangent-trisecant lines through z. So assume from now

on that z ∈ S3(X) \X.

The projection pz : X → PN−1 is a finite map with pz(X) ⊂ PN−1 irreducible of

dimension n. Let y ∈ [ΣX,3]x, i.e. y is a triple point of pz(X), and x1, x2, x3 be points

in ly∩X, where ly is the line corresponding to y (we can assume that the xi are distinct,

otherwise y ∈ [ΣX,3,t]x). Denote by Zk the local irreducible components of pz(X) at

y. There is an open neighborhood U of y such that each point xi has a neighborhood

surjecting onto the Zki ∩ U . This implies Zk1 ∩ Zk2 ∩ Zk3 ∩ U ⊂ [ΣX,3]x and by the

intersection inequality dimZk1 ∩Zk2 ∩Zk3 ∩U > 3(2/3(N − 1))− 2(N − 1) > 0 there

is a positive dimensional family of trisecant lines through z. Hence [ΣX,3]z intersects

[ΣX,3,t]z by lemma 6.4.

Step 2: CXX = St3(X)

Note that one always has St3(X) = CXX ∪ Stt3 (X) where Stt3 (X) is the variety of

trisecant lines meeting X at only one point. However, suppose l is a line that meets

X at the point x with multiplicity three. Then l is in the tangent cone Cx(TxX ∩X)

and thus is the limit of secant lines xy where y ∈ TxX ∩ X and so is contained in

CXX. Thus Stt3 (X) ⊂ CXX and we have CXX = St3(X).
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Thus we have the following geometric characterization of tangentially homoge-

neous polynomials:

Corollary 6.6 Let X ⊂ PN be a smooth nondegenerate subvariety with dimension

n > 2/3(N − 1). Then every homogeneous polynomial P ∈ TH(X) must vanish on

the trisecant variety S3(X).

Proof: Any P ∈ TH(X) must vanish on CXX. By theorem 6.5 we have

CXX = S3(X) and so P vanishes on S3(X).

Clearly this characterization of tangentially homogeneous polynomials is valuable

insofar as one understands the variety S3(X). As constructed, S3(X) has many lines,

and it is possible in some situations to use classification results about varieties with

many lines to understand S3(X). For instance, in codimension two there are the

following three possibilies [kwak]:

1. S3(X) = Pn+2

2. dim S3(X) = n+ 1 and S3(X) = Q is a quadric hypersurface.

3. dim S3(X) ≤ n and X is one of the following:

(a) complete intersection of two quadrics.

(b) cone over a twisted cubic curve in P3.

(c) cubic scroll surface in P4

(d) segre threefold P1 × P2 ⊂ P5
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In the range n > 2/3(N − 1), codimension two subvarieties must have dimension

greater or equal to three and so we can rule out cases b) and c). In the next chapter

this classification will allow us to establish the equivalence of
⊕∞

m=0H
0(X,SmΩX(1)),

TH(X) and C[Q0, ..., Qr] for codimension two subvarieties.

6.7 Trisecant Variety and the Quadric Envelope

An interesting observation about the above classification is that for smooth sub-

varieties in codimension two in the range n > 2/3(N − 1), S3(X) is the intersection

of quadrics containing X. Based on this evidence we introduce the conjecture:

Conjecture 6.8 Let X ⊂ PN be a smooth nondegenerate subvariety with dimenen-

sion n > 2/3(N − 1) and let QE(X) denote the intersection of quadrics vanishing on

X. If h0(PNIX(2)) = 0 we define QE(X) = PN . Then

S3(X) = QE(X)

Note that by Bezout’s theorem one always has the inclusion S3(X) ⊂ QE(X) and

so the question is whether every point z ∈ QE(X) lies on some trisecant line. In

this section we establish this for complete intersection varieties. First, we need the

following lemma.

Lemma 6.9 Let H ⊂ PN be a hypersurface and z ∈ PN a point not contained in H.

Consider PN blown up at z as a projective bundle over PN−1, with the blow up map

σz and its natural projection:
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P(OPN−1(1)⊕OPN−1)
σz−−−→ PN

pσz

y
PN−1

Denote X̂ := σ−1
z (X). Then there exists a base change

P(f ∗OPN−1(1)⊕OY )
f̂−−−→ P(OPN−1(1)⊕OPN−1)

p

y
y

Y
f−−−→ PN−1

where f : Y → PN−1 is a finite map and f̂−1(Ĥ) is a union of d sections of p.

Proof: We first consider the base change via the projection pσz |H : Ĥ → PN−1:

P(pσz |∗HOPN−1(1)⊕OY )
ˆpσz |H−−−→ P(OPN−1(1)⊕OPN−1)

p

y
y

H
pσz |H−−−→ PN−1

The preimage p̂σz |−1
H (Ĥ) defines a multisection p however, the diagonal map h 7→

(h, h) gives a section of p and thus p̂σz |−1
H (Ĥ) decomposes into the union of a section

and a multisection of degree one less. Repeating this process a finite number of times

gives the lemma.

Theorem 6.10 Let X(n) ⊂ PN be a smooth complete intersection with n ≥ 2/3(N −

2− r) where r = h0(PN , IX(2)). Then:

S3(X) = QE(X)

where QE(X) denotes the quadric envelope of X.
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Proof: Let X be a complete intersection, IX = (F1, ..., Fc), of multi-degree

(d1, ..., dc), where c =codim(X), d1 ≥ d2 ≥ ... ≥ dc. Let k =min{i|di = 2} if

{i|di = 2} 6= ∅, the quadric envelope QE(X) = V (Fk, ..., Fc) if {i|di = 2} 6= ∅,

otherwise QE(X) = PN . The irreducibility of QE(X) is forced by the smoothness of

X.

Note that in the dimensional range n > 2/3(N − 1) we always have

X ⊂ Trisec(X) ⊂ QE(X)

The first inclusion follows from the implication n > 2/3(N − 1) =⇒ dim TxX ∩

X ≥ 1 and the second from Bezout’s theorem. Thus if X is a complete intersection

of quadrics we have X = QE(X) which forces Trisec(X) = QE(X). Consider then

the case X 6= QE(X) and let z be a general point of QE(X) in the sense that

z /∈ [V (F1) ∪ ... ∪ V (Fk−1)] ∩QE(X), hence in particular z /∈ X. Consider PN blown

up at z as a projective bundle over PN−1, with the blow up map σz and its natural

projection:

P(OPN−1(1)⊕OPN−1)
σz−−−→ PN

pσz

y
PN−1

The pre-image σ−1(z) = Im(sE), where sE is the section of pσz corresponding to the

subbundle O(1) ⊕ 0 ⊂ O(1) ⊕ O. The section sE is rigid, but the projection pz has

sections which move, corresponding to the hyperplanes in PN not meeting z. The

complement P(O(1) ⊕ O) \ Im(sE) is the total space of the line bundle O(1) over

PN−1, Tot(O(1)).
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P(O(1)⊕O) \ Im(sE) = Tot(O(1))
σz−−−→ PN \ {z}

pz

y
PN−1

The map σz : Tot(O(1)) → PN \ {z} is a biregular map and pz := pσz |Tot(O(1))

corresponds via the biregular map σz to the projection pz : PN 99K PN−1 with center

z (the fibers of pz : Tot(O(1)) → PN−1 correspond to the lines through z in PN

punctured at z).

By the generality condition on z ∈ QE(X),

Hi := V (Fi) ⊂ PN \ {z} ∀i = 1, ..., k − 1

and hence correspond via σz to multi-sections H ′i = σ−1
z (Hi) of degree di of O(1) over

PN−1, in the sense that pσz : H ′i → PN−1 is a finite surjective map. The pre-images

σ−1
z (Hi), where i = k, ..., c are no longer multi-sections since z ∈ V (Fi), i = k, ..., c.

Moreover, an essential feature due to Bezout’s theorem is that if x ∈ Xz, then:

lx,z ⊂ Hi ∀i = k, ..., c

since length(lx,z ∩ Hi) ≥ 3 and degHi = 2, for i = k, ..., c. Note that there is

a N − 3 dimensional family of lines in Hi passing through z for i = k, ..., c. Let

Zi ⊂ PN−1 for i = k, ..., c denote these lines and W := Zk ∩ · · · ∩ Zc.

We proceed by doing a base change of P(OPN−1(1) ⊕ PN−1) via the projection

pz|H′1 : H ′1 → PN−1:
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P(OPN−1(1)⊕OPN−1)×PN−1 H ′1
p1−−−→ P(OPN−1(1)⊕OPN−1)

p2

y
ypz

H ′1
pz |H′1−−−→ PN−1

Note that P(OPN−1(1)⊕OPN−1)×PN−1 H ′1
∼= P(π∗|H′1OPN−1(1)⊕OH′1) and we have

P(π∗|H′1OPN−1(1)⊕OH′1)
p1−−−→ P(OPN−1(1)⊕OPN−1)

p2

y
ypz

H ′1
pz |H′1−−−→ PN−1

The key observation here is that p−1
1 (H ′1) now is the union of a section and a

multisection where the degree of the multisection is one less than the degree of H ′1.

Moreover, the preimages p−1
2 (H ′2), ..., p−1

2 (H ′k−1) remain multisections of p1. Repeating

the process we arrive in a finite number of steps at:

P(f ∗OPN−1(1)⊕OY )
f̂−−−→ P(OPN−1(1)⊕OPN−1)

p

y
ypz

Y
f−−−→ PN−1

where f : Y → PN−1 is a finite surjective map and the preimages f̂−1(V (Hi)) are

the union of sections of p:

f̂−1(V̂ (Hi)) = Di1 + · · ·+Didi

where the Dij are divisors corresponding to sections sij of the ample line bundle

f ∗OPN−1(1) over Y :

Dij = sij(Y )
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Note that f̂−1(Q̂E(X)) contains p−1(f−1(W )) and f−1(W ) is of codimension 2(c+

1− k) on Y .

A general point z ∈ QE(X), as chosen before, belongs to Trisec(X) if and only if

there is a fiber of pσz , p
−1
σz (x), containing at least three points in the intersection of

the quasi-sections V̂ (Hk), ..., V̂ (Hc) and the multisections V̂ (H1), ..., ̂V (Fk−1). Note

that this implies in particular that x ∈ W = Zk ∩ · · · ∩ Zc with the Zi as described

above, since otherwise the line corresponding to x would meet one of the quadrics

V (Hi), i = k, ..., c in at most two points.

The condition for z ∈ Trisec(X) after base change translates to: there is a y ∈ Y

such that y ∈ f−1(W ) and

#

(
p−1(y) ∩

k−1⋂
i=1

(Di1 ∪ · · · ∪Didi

)
≥ 3

This is guaranteed, in particular, if y is in the following subset of Y :

T := {t ∈ f−1(W )|(s1l − sjl)(t) = 0 for j = 2, ..., k − 1 and l = 1, 2, 3}

Now, since the s1,l − sjl are sections of the ample line bundle f ∗OPN−1(1), their

zeros define Weil divisors on Y i.e. codimension one subvarieties of Y and together

cut out a subvariety of codimension at most 3(k − 2). Thus dim (T ) ≥ dim(Y ) −

cod(f−1(W ))−3(k−2) and this is greater than or equal to zero if n ≥ 2/3(N−2−r).



CHAPTER 7

Symmetric Twisted Differentials,
Tangentially Homogeneous Polynomials
and the Quadric Algebra

In this final chapter we summarize our current understanding of the equivalence

of
⊕∞

m=0H
0(X,SmΩX(1)), TH(X) and C[Q0, ..., Qr] in the dimensional range n >

2/3(N − 1). The main result is the equivalence of the three algebras for codimension

two subvarieties with dimension n ≥ 3. The proof of this equivalence uses the global

tangent cone variety CXX introduced in the previous chapter and the fact that it

coincides with the trisecant variety S3(X) in codimension two.

7.1 Hypersurfaces

The hypersurface case was actually known to Bogomolov and De Oliveira in

[BO08] and was stated in theorem 1.5. As noted above, it also follows from corollary

7.12 since hypersurfaces are complete intersections. Thus if H is a hypersurface of de-

gree greater than two all three algebras are trivial. If H = Q is a quadric hypersurface

then

79



80

∞⊕
m=0

H0(Q,SmΩQ(1)) ∼= TH(Q) ∼= C[Q]

7.2 Codimension Two

The strategy here is to break into cases based on the dimension of the trisecant

variety S3(X). There are three possibilities for a codimension two subvariety with

dimension n ≥ 3:

1. dim S3(X) = N

2. dim S3(X) = N − 1 = n+ 1 and S3(X) is a quadric hypersurface.

3. dim S3(X) = N − 2 = n and there are two possibilities for X:

(a) X is the complete intersection of quadrics.

(b) X is the segre threefold Σ1,2

Theorem 7.3 Let X ⊂ PN be a nondegenerate smooth subvariety with codim(X) = 2

and dimension n ≥ 3. Then we have graded isomorphisms

∞⊕
m=0

H0(X,Sm[Ω1
X(1)]) ∼= TH(X) ∼= C[Q0, ..., Qr]

where {Q0, ..., Qr} is any basis of H0(PN , IX(2)).

Proof: We break this into cases according to the dimension of S3(X).

Case 0: dim S3(X) = N



81

In this case S3(X) = PN and hence the tangentially homogeneous polynomials

relative to X of positive degree must be trivial. Therefore

∞⊕
m=0

H0(X,Sm[Ω1
X(1)]) ∼= TH(X) ∼= C[Q0, ..., Qr] ∼= C

as desired.

Case 1: dimS3(X) = N − 1

In this case S3(X) = V (Q) with Q spanning H0(PN , IX(2)). An irreducible

tangentially homogeneous polynomial relative to X of positive degree H must vanish

on V (Q) and hence H = Q. If cod(X) = 2 and n ≥ 3 the tangent map of X is

surjective, and so by proposition 2.12 the product of two homogeneous polynomials

is a tangentially homogeneous polynomial relative to X if and only if both factors

are. As a consequence the algebra TH(X) is generated by the irreducible tangentially

homogeneous polynomials giving in this case the graded isomorphism:

∞⊕
m=0

H0(X,Sm[Ω1
X(1)]) ' TH(X) = C[Q]

as desired.

Case 2: dimS3(X) = N − 2 = n
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As mentioned previously, the only smooth subvarieties with this property are

complete intersections of two quadrics and the Segre Threefold. In the first case we

can apply theorem 4.4. The case of the Segre Threefold was confirmed in theorem

5.4.

7.4 The Range n > 2/3N

The Harshorne conjecture asserts that every smooth subvariety in this range is a

complete intersection. If this conjecture were confirmed, our theorem 4.4 for complete

intersections would confirm the equivalence of
⊕∞

m=0H
0(X,SmΩX(1)), TH(X) and

C[Q0, ..., Qe2(X)] in this range. At present, the Hartshorne conjecture has only been

confirmed for quadratic manifolds. A subvariety is called quadratic if its homogeneous

ideal is generated by degree two polynomials. The following theorem of Ionescu and

Russo [IR13] confirms the Hartshorne conjecture for smooth quadratic subvarieties

allowing us to apply theorem 4.4 for this class of varieties.

Theorem 7.5 (Ionescu-Russo) Let X ⊂ PN be a smooth quadratic subvariety with

dimension n > 2/3N . Then X is a complete intersection.

As a corollary we have an equivalence of our three algebras for quadratic manifolds

in the range n > 2/3N :
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Corollary 7.6 Let X ⊂ PN be a quadratic manifold with dimension n > 2/3N and

ideal I(X) = 〈Q0, ..., Qr〉. Then

∞⊕
m=0

H0(X,SmΩX(1)) ∼= TH(X) ∼= C[Q0, ..., Qe2(X)]

Proof: By theorem 7.5 X must be a complete intersection and so we can apply

theorem 4.4.

7.7 The Range n ≥ 2/3N

Smooth subvarieties for which n = 2/3N are referred to as Hartshorne mani-

folds. The following result of Ionescu and Russo classifies the quadratic Hartshorne

manifolds:

Theorem 7.8 (Ionescu-Russo) Let X ⊂ PN be a smooth quadratic subvariety of

dimension n = 2/3N . Then X is either a complete intersection, G(1, 4) or S10.

HereG(1, 4) is the grassmannian of lines in P4 and S10 is the ten dimensional spinor

variety. To confirm our conjecture for quadratic manifolds in the range n ≥ 2/3N

would require only the two cases G(1, 4) and S10. Note that G(1, 4) has five linearly

independent quadrics through it while S10 has ten. We state these two cases as

conjectures:

Conjecture 7.9 Let G := G(1, 4) ⊂ P9 be the grassmannian of lines in P4 and let

{Q0, ..., Q4} be a basis for H0(PN , IG(2)). Then there is a graded isomorphism of
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algebras:
∞⊕
m=0

H0(G,SmΩG(1)) ∼= C[Q0, Q1, Q2, Q3, Q4]

Conjecture 7.10 Let S10 ⊂ P15 be the ten dimensional spinor variety and let {Q0, ...., Q9}

be a basis for H0(PN , IS10(2)). Then there is a graded isomorphism of algebras:

∞⊕
m=0

H0(S10, S
mΩS10(m)) ∼= C[Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7, Q8, Q9]

At present, it is not clear to what extent these computations will be possible.

7.11 The Range n > 2/3(N − 1)

By theorems 4.4 and 4.7 we have the following corollary:

Corollary 7.12 Let X ⊂ PN be either a smooth nondegenerate strict complete in-

tersection with dimension n > 2/3(N − 1) or a smooth nondegenerate subvariety of

codimension two and n ≥ 3 then

∞⊕
m=0

H0(X,Sm[ΩX(1)]) ∼= C[Q0, ..., Qr] ∼= TH(X)

where {Q0, ..., Qr} is a basis for H0(PN , IX(2)).

Proof: Since n > 2/3(N−1), we have the correspondence
⊕∞

m=0 H
0(X,Sm[ΩX(1)]) ∼=

TH(X) by theorem 4.7. Moreover, by theorem 2.6 the tangent map is surjective when

n > 2/3(N−1) and theorem 4.4 plus the assumption of complete intersection implies

the equivalence TH(X) ∼= C[Q0, ..., Qr].
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This is the most general statement we can make in the range n > 2/3(N − 1).

At the moment, our justification for the truth of this equivalence for non-complete

intersections in the range n > 2/3(N − 1) is the verification for codimension two

subvarieties and the Segre threefold Σ1,2 ⊂ P5.
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