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CHAPTER 1

Introduction

Throughout this work X C P¥ will be a smooth complex subvariety of the complex
projective space PY. We will assume it is non-degenerate. The focus will be on X for
which the codimension is small relative to the dimension, in particular, dim(X) = n
will satisfy the inequality n > 2/3(N — 1). The goal is to investigate the connection
between three apparently unrelated algebras associated with X: the algebra of sym-
metric twisted differentials, the algebra generated by the quadrics through X, and
the algebra generated by tangentially homogeneous polynomials relative to X. It is
conjectured that these algebras coincide in the dimensional range n > 2/3(N —1) and
we prove this for codimension one and two and for complete intersections in general.
The proof of the equivalence of these three algebras leads to interesting questions
about the local projective differential geometry of X as well as the classical question

of the number of linearly independent quadrics through X.

1.1 Background

Let X C PN be as above. In [BO0S8], Bogomolov and De Oliveira investigated the

non-vanishing of the space H°(X, S™[Qx]®Ox(k)) of symmetric twisted differentials.
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The context for this work was the following theorem of Schneider [Sch92] from the

early nineties showing that any smooth subvariety X C PV of dimension n > N/2

has no symmetric differentials of order m even if twisted by Ox(k) for k < m:

Theorem 1.2 (Schneider) Let X C PN be a smooth projective subvariety with di-

mension n > N/2. Then if k < m,
HY(X, $™[Qx] ® Ox (k) =0

Bogomolov and De Oliveira viewed the border case kK = m as special and were able
to give a geometric characterization of the space H°(X,S™[Qx(1)]) in the range
n > 2/3(N — 1). Moreover, using this characterization they were able to study the
local invariance of the dimensions (X, S™Qx ® Kx) in smooth families, answering
a question of M. Paun.

The range n > 2/3(N — 1) is special in projective geometry. For instance, every
smooth subvariety in this range is linearly normal [Zak93] and it is conjectured that
every smooth subvariety in the range n > 2/3N is a complete intersection [Har74].
The siginificance for the present work is the properties of the tangent map 7 : TX —

PV that appear in the range n > 2/3(N — 1). In particular:

Theorem 1.3 (Bogomolov-De Oliveira) Let X C PN be a smooth nondegenerate
subvariety with dimension n > 2/3(N —1). Then 7 : TX — PV is surjective with

connected fibers.
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Roughly speaking, these properties of 7 allow one to pull back a special subclass of
homogeneous polynomials on PV to the tangent spaces of X and obtain symmetric
twisted differentials on X. Their characterization of this subclass is the following

theorem:

Theorem 1.4 (Bogomolov-De Oliveira) Let X C PN be a smooth nondegenerate
subvariety with dimension n > 2/3(N — 1) then there is an isomorphism of vector

spaces:

HY(X,S™Qx(1)) 2 {P € H°(P,Opn(m)) : V(P)NT,X is a cone with vertex x for all x € X}

In other words, given a homogeneous polynomial of degree m in PV, it pulls back
to a symmetric twisted differential if and only if the intersection of its zero locus with
each projective tangent space T, X is a cone with vertex . Note that an example of
such a polynomial is a quadric vanishing on X and an understanding of this subspace
of polynomials in general is one of the main goals of this thesis. Along these lines,

they have the following result for codimension one and two:

Theorem 1.5 (Bogomolov-DeOliveira) Let X C PN be a smooth subvariety of codi-

mension less than or equal two. Then
H(X,S™Qx(1)) =0

if and only if X is not contained in a quadric hypersurface.



Note that if X is a hypersurface, then this result says that X only has symmetric
twisted differentials if X = @ is a quadric and in which case there is a graded

isomorphism of graded algebras:

P H(Q, 5m(1)) = C[Q)]

However, there was no corresponding isomorphism for codimension two which led

to the following question which we phrase as a conjecture:

Conjecture 1.6 Let X C PV be a smooth nondegenerate subvariety with dimension

n>2/3(N —1) and n > 1 then there is a graded isomorphism of graded algebras:

@D HO(X, 5™ (1)) = C[Qp, .., Q]

where C[Qo, ..., Q] is the C-algebra generated by the linear system of quadrics through

X.

The primary aim of this thesis is to prove this conjecture and other results sur-
rounding it. Our main results in this direction are a verification of the conjecture for
complete intersections and for codimension one and two varieties in general.

An important remark to be made is that while the the algebra @.°_, H°(X, S™Qx(1))
has historically been studied in the context of manifolds with ample cotangent bun-
dle, and hence in the high codimensional range n < N/2 when the algebra is big, our
work lies on the opposite side of the spectrum in low codimensions when the algebra

is in some sense as small as possible. In this light, the above conjecture should be
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viewed as a statement about the linear system of quadrics through X and properties
of the rational map they define when the codimension of X is small relative to its

dimension.

1.7 Summary of Results

We introduce the notion of tangentially homogeneous polynomials and the C-

algebra they generate, TH(X):

Definition 1.8 Let x € X. A degree m homogeneous polynomial P is tangentially
homogeneous at x if the dehomogenization of P in a neighborhood of x is homogeneous
relative to x when restricted to T, X . It is tangentially homogeneous relative to X if

it 1s tangentially homogeneous at every x € X.

TH(X) is a subalgebra of C[Zy, ..., Zy| containing C[Qy, ..., Q,]. Thus, to X we
associate the three algebras TH(X), C[Qo, ..., Q,] and @, _, H*(X, S™Qx(1)). The
goal of this thesis is to investigate the relationship of these three algebras for varieties
whose codimension is small relative to their dimension. Their relationship can be

summarized by the following diagram where 7 is inclusion and 7 is the tangent map

of X:



C[Qo, Q]\ » P HO(X, S™x (1))
TH(X) '

The relationship between TH(X) and @@°°_, H*(X, S™Qx(1)) induced by the pull

back of the tangent map 7 is in fact an isomorphism in the range n > 2/3(N — 1):

Theorem 1.9 Let X C PN be a smooth nondegenerate subvariety with dimension
n > 2/3(N —1). Then there is a graded isomorphism of C-algebras:

é H(X,S™0x(1)) 2 TH(X)

m=0

induced by the tangent map 7.

The relationship between C[Qo, ..., @Q,] and T'H(X) is more delicate and although
it is expected that the two algebras coincide in the dimensional range n > 2/3(N —1),
the equivalence is only currently understood for complete intersections and varieties
with codimension less than or equal to two and dimension n > 2/3(N — 1). It is
under this assumption that one can establish a correspondence between the defining
equations of X and the quadrics of the projective second fundamental form at a point
x € X which in turn can be used to compute the dimension of the image of 7. We

have the following result:

Theorem 1.10 Let X C PV be a smooth complete intersection for which the tangent

map 7 : TX — PV is surjective. Then there is a graded isomorphism of C-algebras:

TH(X) 2 C[Qo, ..., Q]



where {Qo, ..., Q. } is a basis for HO(PY, Ix(2)).

Note that surjectivity of 7 is guaranteed in the range n > 2/3(N — 1) and we have

the following equivalence for complete intersections:

Corollary 1.11 Let X C P¥ be a smooth complete intersection with dimension n >

2/3(N —1). Then we have graded isomorphisms of the three algebras:

P HO(X, 57k (1) = TH(X) = C[Qy, ... Q]

m=0

This result is of course weaker than one would hope since there certainly exist
varieties with dimension n > 2/3(/N — 1) that are not complete intersections. For
instance, the six dimensional Grassmannian of lines in P* can be embedded G(1,4) —
P? as a non-complete intersection (it is the intersection of five quadric hypersurfaces.)
Our belief in the conjecture is justified though by the following result for codimension

two subvarieties:

Theorem 1.12 Let X C PV be a smooth subvariety of codimension two then we have

graded isomorphisms of the three algebras
P HO(X, 5"x (1) = TH(X) = C[Qy, .., Q)]
m=0

If one believes the Hartshorne conjecture, then in light of the theorem for complete
intersections, one would expect the difficulty to arise in the range 2/3(N — 1) <n <
2/3N. Indeed, much of the proof of theorem 1.12 can be reduced to the case of the
Segre three-fold ¥ 5, which is the image of the embedding P! x P? < P® and lies in
the range 2/3(N — 1) < n < 2/3N for N = 5. In this situation, one can compute
the dimensions of the graded pieces of @;._, H%(212, 5™, ,(1)) and C[Qo, Q1, Q]

directly:
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Theorem 1.13 Let X = X5 be the Segre three-fold given by the embedding P! x

P? < P® and let {Qo, Q1,Q2} be a basis for H'(PN, Iy, ,(2)) Then there is a graded
1somorphism

B H(S15.5"0s,4(1)) = C[Qo, Q1 Qo)
m=0

Note that since ¥ 5 has dimension n > 2/3(N —1) we in fact have an isomorphism

of all three algebras since TH (1) = @;r_o H'(X1,2, 5™y, ,(1)).

The proof of theorem 1.12 requires the introduction of the variety C'x X of trisecant
lines that are tangent and meet X in at least two distinct points. The significance
of this subvariety is that tangentially homogeneous polynomials must vanish on it.
Note that in general C'y X is a subvariety of S3(X), the variety of trisecant lines of

X. In the dimensional range n > 2/3(N — 1) we prove that these varieties coincide:

Theorem 1.14 Let X C PN be a smooth subvariety of codimension two and n > 3.
Then

The value of this arises from the fact that trisecant varieties of codimension two
subvarieties are well understood, see for instance [Kwa0l]. We are able to use this
classification to understand tangentially homogeneous polynomials and prove theorem
4.4.

An interesting observation about this classicifation of trisecant varieties for X
with ¢ = 2 and n > 3 is that they always coincide with the base locus of the linear

system of quadrics through X which we call the quadric envelope of X and denote
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QFE(X). We conjecture that this holds in general for smooth subvarieties in the range

n > 2/3(N —1). In this direction we verify it for complete intersections:

Theorem 1.15 Let X C PN be a smooth complete intersection of dimension n >
2/3(N —1). Then

S3(X) = QE(X)

Our belief is that establishing this for any smooth variety with n > 2/3(N — 1)
will allow us to drop the condition of complete intersection in theorem 4.4. Roughly
speaking, it will allow us to pass from X to its quadric envelope QE(X) and adapt
the proof of theorem 4.4. It seems this strategy will require an understanding of when
the quadric algebra is freely generated. At the moment this has only been verified

for complete intersections with surjective tangent map.



CHAPTER 2

Preliminaries

In this thesis X C PV will always mean a smooth complex subvariety of the
complex projective space PY. We will typically use n to denote its dimension and ¢
its codimension. We will denote by Zx the ideal sheaf of X and I(.X) the homogeneous
ideal of X. We will write I(X) = (F1, ..., Fx) where F; are homogeneous polynomials

to denote a set of generators for I(X).

2.1 The Tangent Spaces 7T,.X, T,X and T}X

A smooth projective variety has a few different notions of tangent space. If x € X
is contained in the affine open set U C PY then X NU is an affine subvariety of U and
thus has a notion of tangent space at x. We denote this tangent space T, X. These
tangent spaces define a bundle over X which we denote T'X which is isomorphic to
the tangent bundle of X when considered as a complex manifold.

In addition, if we consider the Gauss map vx : X — G(n+ 1, N + 1) and the

universal subbundle S C G(n + 1, N + 1) x CN*1, then the extended tangent bundle

10
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on X is defined as:

fX =%S

If # € CN*! is the line through  then the tangent spaces to the affine cone X are

constant along & and we define

T,X:=T.X

where z € 7 is any point on the line defined by x. The extended tangent bundle T\X
is then the bundle of these extended tangent spaces.
We define the projective tangent bundle of X to be the projectivization of the

extended tangent bundle:

The projectivizations T, X := ]P’(TIX ) we call the projective tangent spaces of X.

Note that if I(X) = (F},..., Fg), the k equations Z;.V:O gf; (r)z; = 0 define an n-
dimensional linear subspace of PV which is the projective tangent space T,X.
The relationships between the three tangent spaces 7,X, T,X and fo are as

follows:

P(T,X)=T,X

T.XNU=T,X

T,X/% =T, X
Remark 2.2 where U is an open neighborhood of x. The last isomorphism arises
from the differential of the quotient map q : C¥NT1\ {0} — PV restricted to T, X.

Specifically, if a point z € T is chosen, the differential at z of q restricted to TA}X

defines a map dq, : pr — T, X whose kernel is the line through x. In other words,
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at each x € X, if one chooses z € & we have a short exact sequence of vector spaces:
P S dq.
0—&——>T,X 5T,X—0

An interesting observation to be made here is that this sequence not come from a
sequence of vector bundles. In other words although for each x € X we have T\IX/Q?; =
T, X, there is no corresponding isomorphism of the vector bundles ﬁCX/(’)X(—l) and
Tx. This is because at each x, the isomorphism YA}X/:% = T, X requires a choice of

z € & and such a choice cannot be made globally as there are no non-trivial global

sections of Ox(—1).

2.3 The Tangent Map and the Tangent Variety

The projective tangent bundle is a subbundle of the trivial vector bundle on X:

T)(CXXPN

and so comes with two projections:

TX;>]P)N

d

X

We call 7 the tangent map of X. Its image is the subvariety of PV swept out by the
projective tangent spaces T, X and is called the tangent variety of X which we will

denote T'an(X):
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Tan(X) = | T.X
zeX

Since T'an(X) is the union of an n—dimensional family of n—dimensional linear
subspaces of PV, the expected dimension of T'an(X) is 2n. From the tangent map 7
we see that

dim Tan(X) =2n — 0

where 0 is the dimension of the generic fiber of 7 and is typically referred to as
the tangent defect of X. Note that for a generic variety of dimension n > N/2
one expects T'an(X) = PV in other words, the tangent spaces of X should fill up
PV, Moreover, one would also expect that once the dimension is "large enough” one
would have Tan(X) = PV for all X. This is in fact true for varieties with dimension

n > 2/3(N — 2) and follows from two theorems of Zak, [Zak93].

Theorem 2.4 (Zak) Let X C PN be a smooth subvariety then one of the following

holds:
i) dim Tan(X) =2n  and dim Sec(X)=2n+1
ii) Tan(X)=Sec(X)

Here Sec(X) is the secant variety of X defined as the join of X with itself. One
always has T'an(X) C Sec(X) for smooth X. As a consequence of the theorem, note
that if n > N/2 then one has Tan(X) = Sec(X). Now, we also have Zak’s theorem

on linear normality:

Theorem 2.5 (Zak) Let X C PN be a smooth nondegenerate subvariety with dimen-

sionn > 2/3(N —2). Then Sec(X) =PV,
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Thus, together these theorems imply that Tan(X) = PV for smooth nondegener-

ate X with dimension n > 2/3(N — 2) i.e. 7 is surjective. The results of this thesis
rely heavily on one additional property of the tangent map 7 concerning its fibers.

Given y € PV, we have
T Hy) = {(z,y) 1y € T X}

and so 77(y) projects via 7 to the subvariety on X where the tangent spaces pass
through y. The following theorem says that in the dimensional range n > 2/3(N —1)

this subvariety is connected for general y € PV:

Theorem 2.6 (Bogomolov- De Oliveira) Let X C PN be a smooth nondegenerate
subvariety with dimension n > 2/3(N — 1) and n > 1. Then 7 : Tx — PV is

surjective with connected fibers.

This geometry is one of our main tools for understanding symmetric twisted dif-
ferentials. It allows us to pull back a certain subclass of homogeneous polynomials

on PV to sections of S™Qx(1).

2.7 Symmetric Twisted Differentials: @HO(X, S"0x (1))

m=0

2.7.1 Symmetric powers of a vector bundle

Let 7 : E — X be a vector bundle over X of rank ». We can define a new vector
bundle S™FE whose fiber (S™FE), over a point z € X is the m-th symmetric power of
E,. It {U;} is an open cover of X and ¢; : 7~ 1(U;) — U; x C" trivializations, then ¢;

n+1l+m

induces trivializations ¢; : S E|y, — U; X c(""%™). Note that if o1 € H'(X,S™E)
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and o € H°(X,S™F) then there is a product @10, € H°(X,S™ ™™ F). This

multiplication gives us a graded algebra of global sections

é H°(X,S™E)

m=0

2.7.2 The projective bundle of a vector bundle

Let P(E) — X denote the projective bundle of lines of E i.e. the P'~! bundle
over X whose fiber over x € X is the projective space of lines through the origin of

E,. P(E) has a tautological line bundle Op(g(1):

Op() (1)
|
P(E) S"E
N A

and we have isomorphisms induced via pushforward:

W*OP(E)<m> = SmE (2.1)

H(B(E), Op(s)(m)) = H'(X, S™E) (2.2)
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2.7.3 Section ring of a line bundle

Let L be a line bundle over X and L®™ the m — th tensor power of L. If s; €
HO(X, L®™) and s, € HO(X, L®™2) then s; ® s, € HO(X, L®™¥™2) giving rise a to

graded C-algebra referred to as the section ring of L:

é HO(X, L®™)

m=0

For the case L = Op(g)(1), the isomorphism 2.2 gives:

D H(X. 5™ E) = D) H(B(E), Ouy (m) (23)

m=0

where @,._, H(P(E), Opg)(m)) is the section ring of the line bundle Opg) (1) on

P(E).

2.7.4 Iitaka dimension of a line bundle

For each m, the complete linear system |L®™| defines a rational mapping

G+ X ——» P(H(X, L®™))

The litaka dimension of L is defined to be the maximal dimension of the images of

these rational maps:

K(X, L) := max{dim(¢,,(X))}
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Note that one always has x(X, L) < dim(X). The litaka dimension measures the

asymptotic growth of the dimensions h°(X,L®™) in the following sense: set xk =

k(X, L) then there exist constants a, A > 0 such that

a-m® <KX, L8 < A-m"

and we view this as a measure of the growth of the section ring @,-_, H°(X, L®™). In
this way, by setting L = Op(g)(1), we obtain a notion of the growth of the graded alge-

bra @.°_, H°(X, S™E) via the isomorphism 2.3 and the Iitaka dimension of Op(g)(1).

2.7.5 The algebra of symmetric twisted differentials

We now consider the above ideas for the vector bundle 2x (1) := Qx®Ox (1) where
Qx is the cotangent bundle of X. An element of the vector space H°(X, S™Qx (1)) we
call a symmetric twisted differential of degree m. As above we have the corresponding

graded algebra:

éHO(X, SO (1))

m=0

which we call the algebra of symmetric twisted differentials. We have the isomorphism

P HO(X, 5mx (1)) = P H(P(2x (1)), O 1y (m)
m=0 m=0
and we measure the growth of this algebra by the litaka dimension of the line bundle

OP(QX(I))(l)v K(OP(Qx(l))(l))'
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2.7.6 Examples
Example 2.8 Let [ : P — PV be a line. Then Q = Opi(—2) and Oy(1) = Op (1).
Hence S™(1) & Opi(—1) and H°(1,S™Q (1)) = 0 for all m > 0. In other words,

lines do not have nontrivial symmetric twisted differentials and we have

éHo(z,Sle(l)) =0

with K = —00.

Example 2.9 Consider a smooth quadric plane curve Q = P! C P2, We have
Og(1) = Op1(2) and Qg = Op:(—2). Thus H*(Q, S™Q(1)) = H(Q, S™[Op (—2) ®
Op1(2)]) = HY(Q,Op) = C. In other words, the only symmetric twisted differentials

on smooth conics are constants and we have

D H(Q.smx(1) = C

with k = 0.

Example 2.10 More generally, consider a smooth plane curve C' of degree d > 2.
Oc(1) will be a degree d line bundle on C' and the genus of C will be g = 1(d—1)(d—2)
making Q¢ a line bundle of degree (d—1)(d—2) —2. Thus S™Qc(1) is a line bundle
of degree m((d — 1)(d — 2) — 2+ d) = m(d®> — 2d) = md(d — 2). By Riemann-Roch,

the dimensions h°(C, S™Qc(1)) grow like md(d — 2) i.e. kK =1 ford > 2.
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Example 2.11 Consider the twisted cubic P! — C C P? since C' is a degree three

curve with genus zero. We have Q¢ = Op(—2) and Oc(1) = Op(3). Thus,

S™Qc(1) = Opi(m). Since h°(PY, Opi(m)) = (™) we have

1

P H(C, "0 (1)) = Cla, ]

m=0

with k = 1.

Note that what makes these computations possible is that {2x is a line bundle when
X a curve and so S™Qx (1) is a line bundle as well. When n > 1 these computations
become much more difficult. In chapter five we compute S™Qx (1) explicitly for a

quadric hypersurface in P? and the segre three fold in P°.

2.12 Tangentially Homogeneous Polynomials: TH(X)

Let {U;} be the open covering of P where U; = CV is defined by the equation

2 # 0. If P is a homogeneous polynomial of degree m on CN*! then Z% defines a

k3

polynomial function on U;. We refer to ZI; as the dehomogenization of P in the neigh-

borhood U;. We will often denote this dehomogenization as P. P can be expanded

about the point = and we denote this expansion P?.

Definition 2.13 Let x € X. A degree m homogeneous polynomial P is tangentially
homogeneous at x if the dehomogenization of P in an open neighborhood of x is
homogeneous relative to x when restricted to T, X. It is tangentially homogeneous

relative to X if it tangentially homogeneous at every x € X.

The vector space of all tangentially homogenous polynomials relative to X of de-
gree m is denoted by TH) (X) and the graded algebra generated by tangentially

homogeneous polynomials relative to X we denote TH(X):
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TH(X) := é TH™(X)

The following are two basic facts about tangentially homogeneous polynomials

used repeatedly throughout this work.

Let X C P¥ be a smooth subvariety and P € TH™)(X) with m # 0. Then
Pel(X).
Proof: Let P € TH™)(X). Since P is homogeneous of degree m on T, X in

particular it vanishes at = and we have X C V(P). Thus P € I(X). |

Let X C PY be a smooth subvariety whose tangent map is surjective. If P,Q €
C[Xo, ..., Xn]| are so that PQ € TH(X), then P and @ are both in TH(X).

Proof: Without loss of generality suppose P* |7, x was not homogeneous at the
general point € X. Note that since Tan(X) = PV, we know that Q does not vanish
on T,X. It follows that F/QQC 7, x= p* 7, x Q" |7, x is not homogeneous since the
product of a non-zero inhomogeneous polynomial with a non-zero polynomial cannot

be homogeneous.

2.13.1 Examples

Example 2.14 Constant polynomials are tautologically tangentially homogenous rel-

ative to any X C PN and form the zeroth graded piece of TH(X):

THO(X)=C
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Example 2.15 The homogeneous polynomials F in the ideal of the tangent variety

of X i.e. F e I(Tan(X)) are tangentially homogeneous relative to X .

Example 2.16 A linear polynomial L is tangentially homogeneous relative to X if

and only if X C V(L).

Example 2.17 The key example of tangentially homogeneous polynomials that are
not constant on the tangent variety Tan(X), are the quadratic polynomials Q € 1(X).
This holds, since Vo € X Q”|§%)X =0 and Q" %)X = 0 making Q*|r, x homogeneous

of degree two.

Remark 2.18 If X s such that the tangent map T is not surjective then the algebra
TH(X) is not finitely generated. For instance, if X is a smooth quadric inside the

hyperplane { Xy = 0} C P* then TH(X) = (Xo)+C|[Q] which is not finitely generated.

2.19 The Quadric Algebra: C[Q, ..., Q,]

Consider the ideal sheaf sequence for X twisted by Opn(2) :

0— Zx(2) = Opn(2) » Ox(2) —» 0
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and the corresponding long exact sequence of cohomology:

0 — H'PY,Zx(2)) = H(PY,0pn(2)) — H(X,0x(2)) — ---

The vector space H(PY, Zx(2)) corresponds to degree two homogeneous polynomials
that vanish on X. We will typically use the letter r to denote the dimension the

projectivization of this vector space:
r=h'(PY, Ix(2)) -1

The vector space H°(PY,Zx(2)) defines a linear system on PV and thus a rational

map:

¢ :PN -5 P

We also define a subalgebra of C[Zy, ..., Zy| generated by the quadric polynomials

vanishing on X:

Definition 2.20 Let X C PV be a projective subvariety and {Qq, ..., Q,} a basis for
HO(PN Zx(2)). These quadrics generate a graded algebra C[Qy, ..., Q] which we refer

to as the quadric algebra of X. Note that this definition does not depend on a choice

of basis for H'(PN,Ix(2)).

Since C[Qq, ..., @,] is finitely generated there exists some ideal I C Clxy, ..., z,]| such
that C[Qo, ..., Q,] = C[zo,...,x,]/I. If we consider the rational map ¢ : PV --» P"
then C[Qy, ..., Q,] is equal to the homogeneous coordinate ring of the image ¢(PY)

viewed as a C-algebra. In other words, there is a graded isomorphism of C-algebras:
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C[Qo, ..., Q] = Cla, ..., .] /I ($(PV)) (2.4)

where I(¢(PY)) is the ideal of the image of the rational map ¢.
We can decompose C[Qo, ..., Q,] into graded components:
ClQo, Q] = P S*[CQ@-- ®CQ]
me2Zs

and there is function N — N associating to each m the dimension of the vector space
S%[CQyD---®CQ,]. By the isomorphism 2.4, this is just the hilbert function of the
subvariety ¢(IP’N ). Recall that this function is equal to a polynomial in m for large
m where the degree of the polynomial is equal to the dimension of the image ¢(PY).
In other words, for large m the algebra C[Qy, ..., @,] grows like m"™ where n is the

dimension of ¢(PY).

2.20.1 Examples

Example 2.21 Consider a line | C P3. The vector space H°(P?,7;(2)) is seven-
dimensional, spanned by say, {Qo, ..., Qs }. The linear system spanned by these quadrics
defines a rational map ¢ : P ——» P®. The image is a projection of the degree two
Veronese embedding vy : P2 < P, the map defined by the complete linear system of
quadrics on P3. Thus ¢(P3) is the blowup of P3 along | and so has dimension 3. Thus

the dimension of the graded pieces of C[Qy, ..., Qs] grow like m3 for large m.

Example 2.22 As a more interesting example consider the Segre embedding P! x

P? < P°. The image of this embedding is denoted 3 5. The linear system of quadrics
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in P° through Y1 5 is spanned by the three quadrics

Qo = 20R4 — X173 Ql = 21%5 — %224 Q2 = 205 — R2%3

which defines a rational map ¢ : P> —-» P2. We would like to compute the dimension
of the image of this map. To do this we need to compute the rank of the jacobian
matrix at a generic point. Using the explicit equations listed above we compute the
rank at the point (0,0,0,1,0) to be 2. Since rank is lower semicontinuous, there is
an open neighborhood of (0,0,0,1,0) such that the rank is two. Thus the rational
map ¢ is dominant and the homogeneous coordinate ring of the image is isomorphic
to Clzo, 21, 22). In other words, the quadrics {Qq,Q1,Q2} through 315 do not sat-

1sfy any polynomaial relations and the quadric algebra is the free algebra generated by

{Qm Q1, Qz}-‘

ClQo, Q1, Q2] = ClZy, Z1, Zo]

Example 2.23 Consider the linear system of quadrics through the twisted cubic in
P3. They define a dominant rational map P3 --» P2. Thus, these quadrics generate

a free algebra.

An interesting question is under what conditions C[Qy, ..., @,] is free. Note that
this is equivalent to the rational map ¢ : PV --» P" defined by {Qo, ..., @, } being dom-
inant. We prove later that the quadric algebra of a smooth complete intersection X

with Tan(X) = P" has a free quadric algebra. Briefly, the idea is that any polynomial
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relation of the {Qo, ..., @, } restricts to a polynomial relation of {Qo|z,x, ---, @r|7, x }-

However, since X is a complete intersection these quadrics define a sub system of
the linear system of quadrics defining the second fundamental form at x and hence

cannot satisfy any polynomial relations by lemma 4.5.



CHAPTER 3

Symmetric Twisted Differentials and
Tangentially Homogeneous Polynomials

Using theorem 2.6 Bogomolov and De Oliveira in [BO08| gave a geometric charac-
terization of symmetric one-twisted differentials. In this section we give an alternative
characterization of these differentials identifying them with homogeneous polynomials
which are tangentially homogeneous relative to X. Following [BOO08] we consider first
the bundle x (1) of differential one-forms on the affine cone X and the correspond-
ing symmetric differentials H°(X, SmQ) x(1)). Homogeneous polynomials on PV can
be pulled back via the tangent map to sections of SmQ) x (1) and bijectivity of this
pullback is guaranteed when 7 is both surjective and connected. Thus in this context
H°(X,5mQx (1)) can be identified with homogencous polynomials on PV and we try
to understand the inclusion HO(X, S™Qx (1)) < H(X,S™Qx (1)) arising from the

Euler sequence on X.

26
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3.1 Preliminaries

3.1.1 Symmetric Powers and Projective Bundles

Recall that for a vector bundle 7 : E — X we have isomorphisms

H(B(E), Op(s)(m)) = H'(X, S™E) (3.2)

These isomorphisms will allow us to work with line bundles instead of vector
bundles and to see the tangent map in our calculations. We will need the following

basic fact about projective bundles:

Lemma 3.2 Letm : E — X be a vector bundle over X and me : L — X a line bundle

o)

over X. Then there is a natural isomorphism of projective bundles ¢ : P(E ® L) —

P(E).

The tangent map will be used to pull back the line bundle Op~ (1) and its sections

to the tangent bundle P(Ty) and we will need the following lemma:

Lemma 3.3 Let f : X — Y be a morphism and L a line bundle on Y. Then f
induces a map of sections f* : H'(Y,L) — HY(X, f*L). Furthermore, if f is both

surjective and connected then f* induces an isomorphism of sections.
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Proof: By the projection formula we have:

If f is both surjective and connected then f,Ox = Oy and the previous isomorphism

becomes
f(ffL)= L

Thus H(X, f*L) = HO(Y, f.(f*L)) = H'(Y. ). "

Morphisms X — PV are equivalent to the specification of a line bundle L on X.
If F is a vector bundle on X then the analogue of this for morphisms Y — P(FE) is
the folowing. Let p: Y — X. Then giving a line subbundle L — p*F of the pullback

of E is equivalent to specifying a map f:Y — P(E) over X:

Y—HP>

\/

Under this correspondence L = f*Op(g)(1). The following is a special case of this

that arises frequently in our arguments.

Lemma 3.4 Let f : E — F be a morphism of vector bundles on X. Then there is
an induced rational map [ : P(E) — P(F) of projective bundles defined outside the

projective bundle P(ker f) C P(E). Moreover, we have f*Opp)(1) = Opg)(1).
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Proof: ~ Since f is a morphism of vector bundles we have the commutative

diagram:

E 1, F

id
X — X
and thus the induced maps f, : £, — F, on the fibers where f, are linear maps

of vector spaces for all z € X. Linearity implies that the f, define rational maps
fo @ P(E,) --» P(F,) defined outside ker f,. Thus f induces a map f : P(E) --»
P(F) defined outside the projectivization of the kernel bundle, P(ker f) such that the

diagram
P(E)/P(ker f) —1— P(F)

id
X — X
commutes. Now consider the pullback of the tautological line bundle f*Op(r)(1) to

P(E). In afiber, f was induced by a linear map E, — F, and thus f, : P(E) --» P(F)
is either an inclusion of a linear subspace into a projective space or a linear projection
from one projective space to a linear subspace. In either case, we see that the pullback
[* restricted to a fiber gives an isomorphism f;Opr)(1)|r, = Opg)(1)|g, and thus
f2Opr) (1) = Opg) (1)
|
Let E be a vector bundle on X which is a subbundle of @"*' L where L is a line
bundle on X,

N+1

0—>Ei>@L
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Let P(E) and P(@" ™" L) be the corresponding projective bundles. The map ¢ induces

an inclusion:
N4+1

i:P(E) > P(EDL)
and an isomorphism
i*OIP(@N+1L)(1) = Opp (1)
via lemma 3.4. By lemma 3.2 there is a natural isomorphism ¢ : P(@" ' L) —
P(@" ! Oy) for which 9" Opgv+10)(1) = Opgyn+1 1) (1) ® T L1
The projective bundle IP’(G}NJrl Ox) is the product X x PV if p, denotes the

projection onto the secnod factor, then Opgyn+14,)(1) = p;Opn (1). Concluding, the

inclusion 4 induces a map f; = pyo ¢oi: P(E) — PV and the isomorphism

JiOpn (1) = Op(gy(1) @ 7 L7}

As in lemma 3.3, f, induces a map on sections
fi o HY (PN, Opn (1)) — HY(P(E), Opey(1) @ 7 L71)

where injectivity and surjectivity of f depend upon surjectivity and connectivity of
fi- An important special case for us is the following.

Let E be a vector bundle on a smooth projective variety X. If E is a subbundle
of a trivial vector bundle

N+1

and the induced map f; : P(E) — PV is surjective with connected fibers, then f;

induces an isomorphism

H(X,S™E) = H(PY, Opx(m))



31

via the pullback f;. Indeed, since the map f; : P(E) — PV arises from the inclusion
i of vector bundles, we have an isomorphism Op(g)(m) = f;Opx(m) by lemma 3.4.
Moreover, since f; is both surjective and connected, by lemma 3.3 there is an isomor-
phism HY(P(E), Opgy(m)) = H°(PY, Opn (m)) which by proposition ?? is equivalent
to an isomorphism

H(X,S™E) = H(PY, Opy (m))

To make this more concrete, if we choose a basis {eq, ..., ex } for CN*1 this gives a
global frame {sg, ..., sy} for the trivial bundle X x CV*1. A section of H(PY, Opn (m))
which we view as an element of S™[Cef@ - - - ®Cel| then pulls back via the projection
p2 i X x PV — PV to an element of HO(X x PY Oy pn(m)) which we view as an
element of S™[Csfy @ - @ Cs%]. Now, the dual map ¢ : X x CN*! — E* — 0 maps
this element to an element of S™[Cq(sf) @ - - - @ Cq(sy)] which we finally view as an

element of H°(P(E), Op(gy(m)).
3.4.1 The Euler Sequence on X

The relationship between Qx (1) and (1) and the inclusion H°(X, S™Qx (1)) C
H°(X,5™Q(1)) arises from the Euler sequence on X and many of our arguments in
general come from the geometric idea it encodes. Let us first recall the construction
of this sequence on PV. Let G := G(k, V) denote the Grassmannian of k-dimensional
subspaces of a vector space V over C and V := G x V the trivial vector bundle on
G where the fiber over a point [A] € G is the vector space V. We denote by S the
subbundle of V whose fiber Sjx) over a point [A] is the subspace A itself. S is called
the universal subbundle on G. The quotient Q := V/S is called the universal quotient

bundle. Note that for the case k = 1 we have G = P(V) and & = Op(yy(—1). The
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relavance of these ideas for us comes from the following fact expressing the tangent

bundle of G in terms of & and O.

Theorem 3.5 The tangent bundle T to the Grassmannian G := G(k, V') is isomor-

phic to Homg(S, Q).

See for example, [cite]. Suppose now that G' = PV and consider the universal sequence

N+1

0— Opn(—1) %@OPN - Q=0

and tensor with Op~ (1) to obtain
N+1
0 — OPN — @OPN(l) — O[pN(].) ® Q—> 0
By the identification Tpy = Hom(Opn (—1), Q)) = Opn (1) ® Q we arrive at the euler
sequence

N+1
0— Opy — @OPN(l) —Tpy — 0

This sequence identifies an element of #* ® CN*! with an element of T,PY via the
identification T,PY = Hom(z, CN*1/2) = 2* @ CN*1/2. An element of #* @ CN*!
can be thought of as vector field on CN*! that descends to PV via the quotient
CN*1\{0} — P and the kernel of this correspondence consists of the radial or euler

fields on CN+L,

We will also need the dual sequence:

N+1

0— Qpn — @OPN(—l) — Opy — 0
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Now suppose X C PV is a smooth projective subvariety of dimension n. The

Euler sequences can be restricted to X:

N+1
0—O0x — @Ox(l) — Tpn|x =0

N+1

0 — Qpn|x —)@OX(—I) — Ox — 0

We can also consider the euler sequence on X. Corresponding to theorem 3.5 we have

the following characterization of the tangent bundle of X:
Lemma 3.6 Let X C PV be a smooth subvariety. Then Ty = Hom(Ox(—1), Tx/Ox(—1)).

Now, corresponding to the univsersal subbundle 0 — Ox(—1) — @N+1 Opn , we have

on X the subbundle 0 - Ox(—-1) — Tx and a universal sequence on X:
O—>OX(—1)—>7?X—>QX—>O

By the lemma we have Tx = Hom(Ox(—1),Qx) = Ox(1) ® Qx and so by

tensoring the above sequence by Ox(1) we obtain the euler sequence on X
O—>0X—>fx®0)((1)—>TX—>O

and its dual

O—>Qx—>ﬁx®0X(—1)%0X—>o
We define Ty = T\X ® Ox(1) and Qy = QX ® Ox(—1) and rewrite these sequences:
0—>(’)X%T/X—>TX—>O

and

0—>QX—>S~)X—>0X—>O
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3.6.1 Conormal Sequence on X

Given a smooth projective subvariety X C PV we have the normal sequence
0 — Tx — Tpn|x — Nxjpv — 0

arising from the pushforward of the inclusion X < P¥. Moreover, if we pull back

the universal sequence

0=-S=V—=>9—=0
via the gauss map v we have 0 — fx — @NH Ox — v*Q — 0 and after twisting

by Ox<1)

N+1

0— Tx — @(’)x(l) =7 9®0x(1) —0
3.6.2 A Fundamental Commutative Diagram

Putting everything together we have the following commutative diagram:

0 0 0

0 —— Ox —— Tx — Tx — 0

N+1

00— Ox — &P Ox(1) —— Tpv|x —— 0

00— 0 — 7"Q®0x(1) — Nypy —— 0
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Note that this implies 7*Q ® Ox (1) = Nx/p~v and we arrive at the following funda-

mental commutative diagram:

0 0
0 —— Ox —— Tx — Tx — 0
0 — Ox — P Ox(1) — Tpv|x —— 0

Nx/]pN T) Nx/]pN

0 0
as well as its dual diagram:
0 0
Nigpv — Ny
N+1
0 —— QpN|X —_— @ Ox(—l) > Ox 0
0 —— QX — QX > OX > 0
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Once we twist this diagram by Ox (1) we will be able to understand H°(X, S™Qx (1))

via the surjection @V Ox(=1) = Qx (1) = 0 and consequently HO(X, S™Qx (1))

via the inclusion 0 — Qx — ﬁX.

3.7 Theorem for @, H'(X,5"0x(1)) and TH(X)

In this section we establish the equivalence of the algebra of symmetric twisted
differentials and the algebra generated by tangentially homogeneous polynomials for

smooth subvarieties with dimension n > 2/3(N — 1).

Theorem 3.8 Let X C PV be a nondegenerate smooth subvariety with dimension
satisfyingn > 2/3(N —1) and n > 1. Then there is a graded isomorphism of algebras

induced by the tangent map:

P (X, S (1)]) ~ TH(X)

m=0

Proof: By twisting the above commutative diagram by Ox(1) we obtain:
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N+1

0 — Qpn|x(1) — @B 7 Ox —— Ox(1) —— 0

and we see that we have an inclusion
HY(X,5™0x(1)) € HY(X, S™Qx(1))

To understand this inclusion we will projectivize the vector bundles Qx (1) and Qx (1)

to obtain
HO(P(Tx (1)), Op(ry (-1 (m)) € HO(P(Tx(~1)), Opz, (1) (m))

Moreover, if we make the identifications Ty (—1)) = Ty and P(fx) = Ty, then this

inclusion becomes:

HY(P(Tx(=1)), Oz (-1y)(m)) € H*(Tx, Oy (m))



38
The relevant commutative diagram is then dualization of the one above:

0 0

0 — Ox(-1) —s  Tx  —— Tx(=1) —— 0
id

0 — Ox(=1) — DM Ox —— Tpv|x(-1) — 0

NX/pN(—l) 7 NX/JPN(_l)

—_—

0 0

The projectivization of the inclusion Tx — @NH Ox is the natural inclusion of

projective bundles:

0= Ty 5 X x PV

Since this map was induced by a map of vector bundles, by lemma 3.4 we have
i*Oxxpn (1) 22 Op, (1). If we denote the second projection py : X x PV — PV then
we also have p;Opn (1) = Ox,pn (1) since in each fiber of X x PN p, is the identity
map id : PV — PV. Lastly, by composing i with p, we obtain the tangent map 7 :
Tx — PV and the pullback of 7 induces the isomorphism 7*Opn~ (1) = O (1). Now,
our assumption is that the dimension n of X satisfies the inequality n > 2/3(N — 1)
and thus by theorem 2.6, 7 is surjective with connected fibers. Hence, by lemma 3.3,

7 induces the isomorphism of global sections:

™ H(Tx, Or, (m)) = H(PY, Opn (m)) (3.3)
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In other words, H(X, S™Qx (1)) = HO(PY, Opn(m)). To summarize, this isomor-

phism is obtained by pulling back homogeneous polynomials of degree m on CN*! to
the bundle of tangent spaces TX via the inclusion 0 — Ty — X x CN+1.

The idea now is to understand which of these polynomials descend via the Euler
map fX — Tx(—1). In other words, we would like to understand the image of the

inclusion :
p*: HY(P(Tx (1)), Oy (1)) (m)) < H*(Tx, Oy (m))

arising from the pullback of the map p:

0= Ox(=1) = Tx 5 Tx(=1) = 0 (3.4)

Let P be an element in this image. By the isomorphism 3.3, P is a homogeneous

polynomial of degree m on PV. In a fiber over z € X the exact sequence 3.4 becomes
0—>§3—>fo—>7})(—>0

and we see that P|5 | is in fact a homogeneous polynomial on the quotient T,X /& =
T,X. After a linear change of coordinates we can assume that fo is spanned by

{6%), o %} and that T = (8%0). It follows that P|7 y is a homogeneous polynomial

in the variables {dzi, ...,dz,}. Since T, X = Uy N T,X where Uy C PV is defined by

Pl =
the equation zy # 0, P |ﬁc + defines a function Pz, x on the open subset T, X C T,X.

i
Since, P|:Fz + did not involve the variable dzy, we obtain a homogeneous polynomial

on T, X which is exactly the dehomogenization of the restriction P|ﬂ + in the open

set T, X NUy. Now, by the commutative diagram:
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T, X —— PV

]

TJCX — U()
if we instead pull back P via the chain of inclusions T, X < Uy — P we still obtain
something homogeneous and so P is tangentially homogeneous at x in the sense of

definition 2.13 i.e. P € TH(X).

Remark 3.9 We see from the proof that the pullback of a tangentially homogeneous
polynomial P to each T\xX descends to a homogeneous polynomial on the quotient
ﬁ;X/i. Moreover, once a point z € & is chosen we can identify me/:f: with the
tangent space T, X and we see P is in fact homogeneous on T,X. Note, however,
that there can be no global choice of z € & as there are no non-trivial global sec-
tions of Ox(—1). In other words, although T,X = fo/i there is no corresponding
isomorphism of vector bundles Tx = fX/OX(—l). Thus, almost paradozically, a tan-
gentially homogeneous polynomial pulls back to a homogeneous polynomial on each

tangent space T, X but does not pull back to a homogeneous polynomial on the bundle

Tx i.e. a section of HY(P(Tx), Opry)(m)).

In the next chapter we turn to question of characterizing TH (X'). While it is clear
that C[Qo,...,Q,] C TH(X), TH(X) can in general be larger. For instance, we saw
in chapter one that curves of degree greater than two in P? have many symmetric
twisted differentials. Surprisingly, the relationship between C[Qo, ..., Q,] and TH(X)

is also connected to the tangent map 7 and the tangent variety T'an(X).



CHAPTER 4

Tangentially Homogeneous Polynomials
and the Quadric Algebra

In the previous section the equivalence of the algebra of symmetric twisted dif-
ferentials and the algebra generated by tangentially homogeneous polynomials was
established. What is needed now is an understanding of the connection between the al-
gebra generated by tangentially homogeneous polynomials and the algebra generated
by quadrics vanishing on X. The goal of this section is to establish this connection

for complete intersections. Recall the following definition:

Definition 4.1 A subvariety X C PN of dimension n > 1 is a complete intersection
if there exist N — n homogeneous polynomials f; € C[Zy, ..., Zn|a, of degree d; > 1,

generating the homogeneous ideal I(X) C C[Zy, ..., Zn].

We'll see that the assumption of complete intersection allows us to conclude local
properties of the defining equations of X. The framework for doing this is the connec-
tion between the projective second fundamental form of X and the dimension of the
tangent variety Tan(X). Roughly speaking, the dimension of the tangent variety is

determined by how much X bends at a general point z, which in turn is determined

41
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by the number of algebraic relations in the degree two parts of the local equations of

X restricted to the tangent space T,,.X.

4.2 Preliminaries

4.2.1 The Projective Second Fundamental Form

We will need a detailed understanding of the projective second fundamental form
11, of X at a point x € X. Let us begin by recalling the necessary background.

Let G(k, N) be the Grassmannian of k-planes in C and let V € G(k, N). Recall
that there is an identification Ty G(k, N) = Hom(V,C"/V). Loosely speaking, tan-
gential movement away from V is equivalent to the specification of a normal vector
for each v € V. To make this identification explicit, let a(t) be a curve in G(k, N)
with «(0) = V. We would like to show how this curve defines an element ¢, €
Hom(V,CY/V). Let v € V and let 3(t) be a curve in CV such that 5(t) € a(t) for all
¢t and 4(0) = v. Then we define p,(v) to be the image of £3(0) under the quotient
map CY — CV/V. The correspondence « 5 ¢, is well defined since if another curve
() is chosen then f(t) — '(t) = u(t) € a(t). Since u(0) = B(0) — '(0) =v—v =0,
we can write u(t) = ta(t) and so £5(0) — f'(t) = a(0) € V.

To define the projective second fundamental form of a projective subvariety X C
PN at a point x € X we apply these ideas to the Gauss map v: X — G(n+1, N +1)
which associates to each x € X the n + 1-dimensional subspace me . At x we have

the differential of this map
dy(x) : T, X — T3 yG(n+1,N +1)

Using the identification Ty G(k, n) = Hom(V,C"/V') we can rewrite this map
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dy(z) : T,X — Hom(T,X,CN*' /T, X)

We can make this more explicit in the following way. Without loss of generality

assume ¥ € Uy C PN. We can choose coordinates (z, ..., zy) on C¥*1 so that

x=1[1:0:---:0] and T, X is spanned by {%,..., 3»?1\1}' Let {%ﬂ,...,%} be a

basis for T, X. We can locally parameterize X by T,.X:

f : (xC—i-la ,ZL'N) = (fla "')fC7xc+17"~uxN> exXn UO

where f; € O(T,X) and f(0) = x. The tangent space T X is spanned by:

)
g ()

o
e ()

0
for i=c+1,...N

We can also view f this as a map into X via the map Uy < {2z = 1} € CN*1;

f : (IL‘C+1, ...,I‘N) —> (fl; ...,fc, 1,£L'c+1, ...,I‘N) - )?

The tangent space ff(x/)X for 2’ = (zey1, ..., zn) € T, X is then spanned by:
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o 2 ()
Si(@')
| 2% ()
fe(2') .
J ., o . o
aZc(x) 1 and @zz(x) = | for i=c+1,..,N
Tet1
1
TN
B ) 0

Moreover, we can choose the parameterization f so that %(0) = %. To under-

7

stand the image of a tangent vector ai €T, X,i=c+1,...,N, under the differential

Ty

dy(z), we take a holomorphic curve a;(t) € X N Uy such that La;(0) = %. For

instance, we can take «; to be the composition o; : A = T, X — X N Uy given by:

a:tte; — f(te) € X

where e; = 8%2- € T, X. The image of this curve v(a;(t)) C Gr(n+ 1, N + 1) is the

one-dimensional family of tangent spaces {fai(t)X }and dy(x)( 822_) =94y0q(0) €T
To understand ¢; := 24~ 0 o;(0) € Hom (T, X, CN*1/T, X)), we need to say how ¢;
acts on the vectors a%j € fo for j = ¢, ..., N. As explained in the first paragraph of

this section, we need to choose a curve 3;(t) in CN*' such that 3;(t) € T\ai(t)X and
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B;(0) = %. For j =c+1,..., N we can take the curve:

-] | |ecw
] o .
1
0
and we have ~ _
o d FEO)] s
%(T> =7 ;(0) = ’ e C'"/T. X (4.1)
Z; t 0
0

Now, for j = ¢ we have the vector % € T, X and we can take the curve:



fi(tei)
ft:(tei)
1
Be(t) =
t
0
and we have -~
0 d
@i(a—zc) = %5(:(0) =

46

e CNF!
2L (0)
2=(0)
0 N
cT.X
1
0

In other words, the tangent vector pointing in the direction of the line Z is in the

kernel of every homomorphism ¢; € Hom(T,X,C¥*1/T,X) in the image of dv(z).

Thus, the differential gives a map dy(z) : T,X — Hom(T,X/# CN+!/T, X) and with

identifications T, X/& = T, X and CN*!/T, X = N, X a map

dvy(z): T,X — Hom(T, X, N, X)
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Summarizing, the image of a tangent vector v is the specification of the normal
component of first order motion of each point in 7, X as you move along X in the
tangential direction v. Now, with the identification Hom(7, X, N, X) 2 T, XV ® N, X

we arrive at a bilinear map

11, : T, X®T,X - N, X

known as the projective second fundamental form of X at x where given a pair of
tangent directions u ® v, Il specifies how v moves in the normal direction when one

moves tangentially along X in the direction of u. By equation 4.2.1 we have

55555 (0)
0 0
— : e N, X 4.2
| 5o (0)

fori,j € {c+1,...,N}. For v,u € T,X we have

62
> (wivy + ujvi) g B ()

V& U : €N, X (4.3)

82 f.
Zi,j (Uivj + ujvi)vgjj(@_

Note that by the implicit function theorem the functions fi, ..., f. are holomorphic
and we have equality of mixed partial second derivatives. Thus I, : T, X @ T, X —

N, X is a symmetric bilinear form:

II,: S*T, X — N, X
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4.2.2 The Second Fundamental Form and the Tangent Vari-
ety
The relevance of 11, for us comes from an observation originally due to Terracini
relating 11, with the dimension of the tangent variety T'an(X):

Let X C PV be a smooth subvariety and 7 : TX — PV the tangent map. Let
(x,1) € Tx be a point on a generic fiber of 7 and © any vector in the direction of I. Let
v E TA}X/i be its image in the quotient. Then dim(7(TX)) = 2n — dim ker/7, (v, )
where (x,0) is a point on a generic fiber.

Proof: ~ This can be proved using the method of moving frames, see [GHT79].
However, the full force of this theory is not needed and we give an alternative proof
here.

The dimension of 7(X) is 2n minus the dimension of a generic fiber of 7 and the
dimension of a fiber is equal to the dimension of the kernel of the differential at a
point along the fiber. Let (z,1) € TX C X x PV be a point along a generic fiber of

7. We have the following commutative diagram:

fX —%> CN+1

| |

P(Tx) ——— PV
Note that T(, ) TX = T, X © T, X. Suppose u ® w € ker dr, and let 3(t) C Tx
such that 5(0) = (z,1) and £3(0) = u® w. Let B c Tx be a lifting of 8 such that
B(0) = (x,0). We have

WQO%OB(t) =70 (1)
and

d A d
EWQOTO/B(O):%TO/B(O):O
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which gives

d

dma(0)(27 0 A(0))) = 0.

and so 47 o 3(0) points in the direction of ¢ and in particular %%OB(O) € T,X. Thus

I, (v,w) =01ie w e ker(Il,(v,-)). Since 7 is injective on fibers of Tx, we have:
ker dr(; 1) = dn(g ) (ker dr(zp)) C ker(I11,(v-))

Thus, dim ker(dr,y)) < dim ker(11,(v,-)).

Now suppose w € kerlI,(v,_) and choose a curve f(t) C Ty through (z,l) such
that d(5'(0)) = 0 ® w and let  be a lifting of 3 such that B(O) = 0. As before we

have:

d

d .4 n,d )
570 B(0) =m0 7 0 B(0) = dma(0) (7 0 H(0))) = dma(0)(U L(w, v))

Since II,(v,w) = 0 € N, X, 470 B(0)) € T, X, say 470 B(0)) = 4. Let u =
dm5(0) (1) then we have £703(0) = u € T, X. We can adjust our original curve so that
3'(0) = —u@® w. Then by linearity of the derivative we have 470 3(0) = —u+u =0

and we’ve established ker I1,(v, ) C dm(ker dr(z ). Thus

dim ker(drizy)) > dim ker(11,(v, -))
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4.2.3 The Second Fundamental Form and the Local Defining
Equations of X

We will need a characterization of proposition 4.2.2 in terms of the generators of
the local ideal of X. To do this we consider the dual map [T} : N} X — S?*T*X. By
equation 4.2, the image of I is spanned by forms

N N

2 2
8f1 0)dzdz;, ... Y 8fc (0)da;dzx;

8%0% it 1 ox; 6.1,’]

i,j=c+1
where f @ (2ey1, . xn) = (f1y ooy for Tet1, -, xn) is a local parameterization of X.
Thus the image of IT} is spanned by the quadrics {fl(2), ...,fC(Q)} on X. Note that

if F} is a local defining equation of X then dF, = > °_ 6—F’?(:L‘)dxi € N;X and the

=1 Ox;
image under I} is
OF, N o2 OF, =~ 0
— 0)dz;dx; . 0)dz;dx; 4.4
axl (.Z') ~ amzaxj( ) Z ‘CE] + + axc (x) =~ axlaxj( ) Z x] ( )

Consider the the expansion of F} about x:

N
9°F,
Z &m +JZ:1 D, (DT

If we denote ¥p, = Zfil %(z)xi, then equation 4.4 is the degree two part of the

composition 9p, o f i.e. ka|g?).

If {Fy,..., F.} are local generators of the ideal of X then since {[dF},...,dF.} is a

basis for N} X, we see that the image of /1% is spanned by the quadrics:

{Wrl%, - ¥R} € HYP(T,X), Opcr, x)(2)) (4.5)
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We define |I1,| to be the linear system on T,X defined by these quadrics and

iy : P(T,X) --» P(N,X) the rational map defined by this linear system. We have
the following proposition relating iz, and I1,:

Let € X then I1,X is the derivative of ii,. More precisely dii,(v)(-) = 311,(v, )
for a tangent vector v € T, X.

Proof:  First, we have ii,(v) = I, (v,v):

N N
. dfr of.
le(v) = Z Uﬂ)jm, ey Z Uﬂ}jm
i,j=c+1 v ij=c+1 1Y
N N
1 ofi 1 of.
= Z 5( iijrUjvi)ami@xj""’,Z 5( ivj+vjvi)axiaxj
t,j=c+1 i,j=c+1
1
— 5U:,;(v,v)

Now, let v(t) be a curve in 7, X with v(0) = v. We compute the derivative of

iiz(v(t)) at t = 0:



52

=1 i) = 2| L))
t=0 t=0

d N of, o of.

- dt|t:0 Z U’l(t) ](t)axlamjﬁ ’ Z Ul(t)vj(t>axlax]

1,j=c+1 1,j=c+1

[ N of N

= | Y 0)(0) + v (0 (0) 55— D (@(0)5(0) +i(0)e}(0))
i,j=c+1 v J i,j=c+1
[ N / 9 N / of,

| X OO Y O 0) 5
t,j=c+1 i,j=c+1

al 0 Al of.

FLYD w0505 S uf0)(0) e

ij=c+1 L ij=c+1 (et

4.3 Theorem for TH(X) and C[Q,, ..., Q,]

In this section we use the local differential geometry described above to establish
an equivalence of tangentially homogeneous polynomials and the quadric algebra for

complete intersections.

Theorem 4.4 Let X C PN be a smooth nondegenerate complete intersection with

Tan(X) =PN. Then:

TH(X) = C[Qy, ..., Q]
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Proof: Let ¢ = codim(X) and X be of multi-degree (di, ...,d.), d; > dy > ... > d,

where I(X) = (F1,..., F.) and deg F; = d;. With this notation we aim to show that

h
TX’

it P € C[Xy,...,Xn|.., then P € C[F},..., F.], where k = min{i | d; = 2}. Note
that {F}, ..., F.} form a basis for H°(PY Ix(2)). This follows from the fact that X is

non-degenerate and hence there are no degree one generators.

Let P € C[Xy, ..., Xx],, have degree d. By proposition 2.12 we have P € I(X).

h
T
This allows us the following representation of P in terms of the defining equations of

X:

P= > Gi.F'.Fr (4.6)
(il ..... ic)el

where I is some finite index set, G;, ;. ¢ [(X) and deg(G;, ;) = d — (irdy +
-+ +i.d.). Indeed, since P € I(X), there exist homogeneous polynomials Gy, ..., G.
such that P = G1F| + -+ - G.F.. Now, if G; € I(X) then it can again be split using
Fy, ..., F.. By iterating this process we arrive at equation 4.6 in a finite number of

steps.

Now, we would like to use this representation to understand what the condition
of being tangentially homogeneous imposes on P at a point x € X. To do this, we
should consider the Taylor expansion at  in T, X of the dehomogenization P. Since

Exl’g(i))( =0 and E$|(T11)X =0 Vie{l,..,c}, we have

Plr,x = > GV ..

i1+ tic=1d(P)/2

TIX(Fl|%)X)i1...(FC|%)X)iC + higher order terms
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where [d(P) = 2min{i; + - - - + i.|(i1, ..., %) € I} is the lowest degree present in the

expansion of P*|r, x. To proceed we show that the collection {Ff]%X, o Fg’]%)x} C

S?(T,X)*] = HY(P(T. X),O(2)) is algebraically independent.

Lemma 4.5 Let X C PN be a non-degenerate complete intersection, X = V(F, ..., F,),

with n > 2/3(N —2). Then if x € X is general the collection:

(B9, BOIY € SH(T.X)] = HO(PY(TL X), O(2))

15 algebraically independent.

Proof: (Proof of Lemma) At each x € X we have the projective second funda-

mental form arising from the differential of the Gauss map:
Il : S*[T,X] — N, X

The functions £,°, ..., F." generate the local ring of X and hence the differentials
dEy”, ..., dF." give a basis for the conormal space N;X. Thus the image of the dual
map II} : N}*X — S?T*X has image spanned by the quadrics {wF? g?), ...,wﬁg“)?)}
in T, X (by 4.5.) As explained in the previous section, these quadrics define a linear
system |I1,| and a rational map i, : P*~1 --» P!, Note that for each defining
equation F;, we have Ex\ x = 0 in a neighborhood of x. In particular, the degree two

part, Eﬂﬁ?, must vanish and we have

2 ~ (2
¢F}|g() + F; |§})X =0
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Thus g« g?) = —Fiwjg)x and the set of quadrics {ﬁlx]%)x, ...,ﬁcxﬁ)x} defines the
same linear system on T, X as {4z g?), g |§§)} and hence define the same rational

map ii, : P"7! --» P"~!. Now by propositions 4.2.2 and 4.2.3,

N = 2n — dim ker(dii,(v)) (4.7)

for generic x and v € T, X since the dimensional hypothesis n > 2/3(N — 2) implies
surjectivity of the tangent map 7. Suppose {ﬁﬂgX, ...,Fc]%)x} were algebraically
dependent, i.e. H(Fﬂ%)X, s FJ%)X) = 0 for some homogeneous polynomial H of ¢
variables. It follows that ii,(P"~1) is contained in the hypersurface H and in particu-
lar, dim (7i,(P"™!)) < ¢—1 or equivalently dim 7' (y) > n—c for a generic y € P71

By equation 4.7, we would then have the contradiction

N =2n—dimii,'(y) <2n—(n—¢c) =N

To proceed with the proof of the theorem we conclude from the lemma that:
0 2 i 2 ie
> Gl (Rl (R #0
iy +ootic=1d(P)/2
since {Flz|%)x, -~-7ch|%)x} are algebraically independent at the general x and the
defining condition G;, ;. ¢ I(X) forces éflzc|£)x # 0 at general z € X. The

assumption that P is tangentially homogeneous means that ﬁz]Tz x is homogeneous

of degree d, and so:
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Moreover, if (i1, ...,i.) € I then

P
dzz-@szuﬁ---wmd

Thus i1+ - - +1i. = ld(P)/2 for all (iy, ..., i.) € I and we have both dyi;+---+d.i. < d

and 2iy + -+ 2i, = d. Since dj, = - - - d. = 2 we obtain
(d1 — 2)i1 + -+ (dk—l — Q)ik_l <0

Since d; —2 > 0 for i = 1,...,k — 1 we conclude iy = -+ - = i1 = 0 for (i, ...,7.) € I.

In other words,

P= Y ¢..F}. FreClF, .. F]
it tic=d/2

as desired.

4.6 Freeness of the Quadric Algebra

An interesting consequence of lemma 4.5 is that the quadric algebra C[Q, ..., @;]

of a smooth complete intersection subvariety with T'an(X) = P must be free:

Theorem 4.7 Let X C PV be smooth with Tan(X) = PY. Then C[Qo, ..., Q,] is

free.

Proof:  Since Tan(X) = P¥, X must be non-degenerate. It follows that the
homogeneous ideal of X contains no degree one polynomials and thus any generating

set for Iy must contain a basis for H°(PY,Zx(2)). Suppose {Qq,...,Q,} is such a
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basis. These quadrics generate Qx and so if Qx was not free, we would have at
least one polynomial relation in the ); and moreover, this relation would pull back
to a polynomial relation of the restrictions Q;|r, x on the generic T, X. However, the
Qi|T,x extend to a basis of |II,| at = since they are linearly independent on T,X.

This contradicts lemma 4.5. [ |



CHAPTER 5

Symmetric Twisted Differentials and the
Quadric Algebra

To summarize what we have so far, there is an equivalence of @-_, H°(X, S™Qx (1))
and TH(X) when n > 2/3(N — 1) and an equivalence of TH(X) and C[Q, ..., Q,]
when n > 2/3(N — 1) and X is a complete intersection. In this section we show
that in some cases it is possible to relate @), H°(X,S™Qx(1)) and C[Qq, ..., Q]
directly without going through the intermediate algebra T'H(X). This is because
in the dimensional range n > 2/3(N — 1) we are always guaranteed an inclusion of

graded algebras:

ClQo, -, Q] = EP HO (X, S™Qx (1)) (5.1)

m=0

and thus an equivalence can be established if one is able to compute the dimensions
of the grade pieces, for instance, when {2y decomposes into line bundles and we have

an explicit list of equations for H°(PY, Zx(2)).

Remark 5.1 The relationship between C[Qy, ..., Q,] and @B, _, H°(X, S™Qx (1)) pro-

vides an interesting perspective on the question of the number of linearly independent

o8
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quadrics vanishing on a smooth variety whose codimension is small relative to its
dimension. In the range n > 2/3N one expects h°(PN,Ix(2)) < ¢ if one believes
Hartshorne’s conjecture. An interesting question in the context of our work is then
what sort of bound exists for h°(PN,Ix(2)) for varieties in the range 2/3(N — 1) <
n < 2/3N. For instance, the segre threefold P! x P> C P° has codimension two but
three linearly independent quadrics vanishing on it. The classical bound for a smooth

variety of codimension c is due to Castelnuovo and proved by Zak [?]:

RPY, Ty (2)) < (C; 1) (5.2)

Thus, in a fized PV in the range n > 2/3(N — 1), one might expect a better bound
for varieties close to the boundary (2/3(N — 1)) when ¢ is as large as possible. We

remark here that if the quadric algebra is freely generated and the dimension of X

satisfies n > 2/3(N — 1) then
PV, Ix(2)) < K(X, Qx(1))

Moreover, since k(X,Qx(1)) < k(X ﬁx(l)) < N — 1 we would obtain the following

bound on the number of linearly independent quadrics through X :

RO(PY Ix(2)) < N —1 (5.3)

For varieties in the range 2/3(N —1) < n < 2/3N, the bound N — 1 grows like N

and (cgl) like N? and thus 5.3 would give a better bound then 5.2 for large N.
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5.2 The Quadric Hypersurface in P?

Suppose X = Q@ is the quadric hypersurface o : P! xP' — P3. Note C[Qq, ..., Q,] =
C[Q] and the m-th graded component is just C[Q™]. To compute @, >_, H°(Q, S™Q(1)),
we consider the pullback 0*S™Qq(1) to P! x P!, Since o is an embedding we have

H(Q,5™Qg(1)) =2 HY(P! x P!, 0*5™Qg(1)). Note that we have
a*S™Qo(1) = S [o" Qg ® 0" Op(1)]

To compute 0*g and 0*Og(1), consider the two projections
P! x P! —— P!
Pl

Since o is an embedding we have 0*Qg = Qpiypr = Qp1 & Qp = 77 0p1(—2)

N D

730p1(—2). Note that the projections induce an isomorphism Pic(P! x P') ~ Z &

I

via pullback we can write Qpiypr = Opiypi(—2,0) @ Opiyp1 (0, —2) and 0*Og(1)

Opiyxpi(1,1). We have:

§"0(1) = 5" (O,01(-2.0) Or1.1(0,~2) & Orn (1, 1)
= {Ouﬂxpl —1,1) ® Op1yp (1, _1)}
@ Opiwpr (—i 4 J,i — )
and so
HO(P' x P, 0"S™Qo(1) = @) HO(P' x P!, Opiypi (—i + j,i — ) (54)

i+j=m
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Note that HO(P! x P!, Opi1p1 (k, 1)) = C if at least one of k or [ is negative. Indeed,

suppose k < 0 then any non-trivial section of Op:iyp1(k, 1) pulls back to a non-trivial
section on each fiber of m;. However, the pull back of the line bundle Op1yp1(k, 1)) to
each fiber is trivial and has no non-constant sections. Thus, by 5.4 we see that the
only terms HO(P' x P', Opiypi(—i + j,i — j)) that contribute something non-trivial

are those for which ¢ = j. This gives

0 if m is odd
H(Q,S™Q(1)) =

C if m is even

Thus, the dimensions of the m—th graded pieces of the algebras @.>_, H°(Q, S™Qq(1))

and C[Q)] coincide and the inclusion 5.1 implies:

@ H(Q, 5"q(1)) = C[Q)
Moreover, since a hypersurface in P? lies in the range n > 2/3(N — 1) we have an

equivalence of all three algebras @,_, H°(Q, S™Qq(1)), TH(Q) and C[Q)].

5.3 The Segre Threefold

Let 35 denote the image of the segre embedding P! x P? < P°. The ideal of
Y12 is generated by three quadrics which we will denote {Qo, @1, Q2}. Thus, ;5 is
an example of a subvariety in the range 2/3(N — 1) < n < 2/3(N)) that is not a

complete intersection and cannot be handled by theorem 4.4.
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Theorem 5.4 Let 15 be the Segre three-fold o : Pt x P? < P° and {Qo, Q1,Q2} «a

basts for H*(P°, Iy, ,(2)). Then

P H(S12, 570y, ,(1)) 2 C[Qo, @1, Qs

m=0
Proof: Let p; : P! x P? — P* be the natural projections. Using the embedding

o and 0*Opn (1) = Op14p2(1, 1), we have that:

U*(QE1,2(1)) = O]P’IXIP’Q(_L 1) @p;(Qﬁu) & Oplx]}ﬂ(l, 1)

and hence:

H°(S1, 8™(Q4;,,(1)]) 2 HO (P! x P2, € Opr w2 (—m + 2i,m) @ p5(S'[Qp2])) (5.5

i=0
The summands H°(P! x P2, Op1yp2 (—m + 2i,m) @ p(S*[Qp2])) of the right side of 5.5

vanish:
i) if i < m/2, on the fibers of py, p;'(t) = P! the bundle
Op1 yp2(—m + 2i,m) @ pi (S [Qp2])|pr =~ O(—m + 20) @ ... & O(—m + 27)

has no nontrivial sections on P!.

ii) if 4 > m/2, on the fibers of py, p; '(t) = P?, we have the bundle:

O]}DlXPQ(—m + 2Z, m) ®p;(Sz[QP2])‘P2 ~ SiQ]pz X O]]:DQ(m)

which has no notrivial sections by the following lemma by setting X = P2
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Lemma 5.5 Let X C PV be a smooth subvariety such that for the general x € X

the lines in X passing through x fill the embedded the embedded tangent space T,X .

Then

HY(X,5'Q% ® Ox(m)) =0 ifm < 2i

Proof: A symmetric differential w € H°(X, S‘Q% ® Op2(m) defines at z € X

where w(z) # 0 a hypersurface:

Zy(z) C T, X

consisting of all tangent vectors in the zero locus of w(z), where w(x) is viewed as an

homogenous polynomial of degree i on 7, X (with values in Ox(m)(x) = C).

If there is a nontrivial differential w, then by hypothesis at a general point x € X

there is a line 4; : [ < X through x such that i, (z)(T,l) ¢ Z,(z). This implies

0#irfw e H°(1, 5" ® O)(m))

contradicting H(I, S ® Oy(m)) ~ H°(P*, O(—2i +m)) = 0 when m < 2i.
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Thus, in 5.5 we are left only with the terms for which —m + 2i = 0. Of course,

these terms only exist if m is even and we have:

0 if m is odd
H(312,5™(Qy,,(1)]) =

HO(P?, S% [Qp2(2)]) if m is even

What remains is to show H’(31,,5™[Q5, ,(1)]) = 7%(S%[Qo, Q1,Q1]). Recall that

we always have
T (S%[Qo, Q1,Qa]) C HO(E12, 5™ [, ,(1)])

since quadrics are tangentially homogeneous relative to X. Moreover, as we computed
. . . * m m+2
in example 2.22, C[Q, @1, Q2] is free and so dimt*(S2[Qg, Q1,Q2]) = (22 ) (the

tangent map is surjective). As a consequence, the result will follow if:

B(Sh, S0, , (1) = WP, S %[0k (2)]) < (m ) 2)

To see that this is true, consider the ideal sequence for P* C P? tensored by

m

S% [ (2)]:

0— S2[Qp(2)] ® O(—1) = SZ[Qp2(2)] = SZ [Qp2(2)]|p1 — 0

and the long exact sequence of cohomology:

0 — H(P? 5% [Qp2(2)] @ O(—1)) — H(P?, S% [Qp2(2)]) — HO(P', 5% [Qp2(2)][p1) —

By lemma 5.5, H°(P?, S [Qp2(2)] ® O(—1)) = 0 and we have an inclusion
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0 — HO(P? 5% [Qp2(2)]) — HO(P', S% [Qp2(2)]|p1)

and hence

HO(F?, S 22 (2)]) < OB, 5 [Q2(2)] )

Now, since Qp2(2)][p1 = Op1 (1) ® Op1 we have S% [25,(2)][p1 = Op1 (2) & Op1 (2 —

1)@ ... ® O and hence

KO(PY, S% [k (2)][p1) = (%;2)

5.6 Iitaka Dimension of @, H'(X,S™Qx(1)) and
the dual defect of X

Note that the inclusions:

ClQo, -, @] € @ H (X, S™Qx (1)) ¢ @D H (X, S™Qx(1))

m=0
and the isomorphism @°_, H(X, S™x (1)) =2 HO(PY, Opx (m)) (which always hold
in the range n > 2/3(N—1)) imply that both the litaka dimension of @,_, H°(X, S™Qx(1))
and the dimension of the image of the rational map P [QO—::;QT} P are bounded by N.
In this section we investigate the consquences of an isomorphism of @,°_, H°(X, S™Qx (1)
and C[Qy, ..., @,] in the dimensional range n > 2/3(N — 1). The existence of such
an isomorphism implies that the Iitaka dimension of @), H°(X, S™Qx(1), which

is equal to the dimension of the image of the rational map P(7x(—1)) --» P" defined

by the linear system P(H°(P(Tx(—1)), Opiry(-1))(2)) = P(H*(PY,Zx(2))) is in turn
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equal to the dimension of the rational map on PV defined by {Qq, ..., Q,}. Thus, we

wish to understand the rational map:

BTy (1)) @ pr
The second fundamental form gives the following map of locally free sheaves:
S*Tx — Nxpv

Twisting by Ox(—2) gives
ST (~1)) = Nyjon (—2)
and any choice of hyperplane H gives a map to Nx/p~(—1) via multiplication by H:
S2(Tx(—1)) = Nypn (—2) 5 Ny jpr (—1)
Finally, projectivizing gives:

P(S*(Tx(~1))) = P(Nx/pv(=2)) = P(Nx/en(—1))

Consider the diagram:

The isomorphism m,Op(py (1)) (m) = S™(Tx (—1)) implies 7* 1, Op(ry (—1))(m) C 7*5™(T'x(—1))

and so this line subbundle defines a rational map:

¢ P(Tx (1)) --» P(S*(Tx(-1)))
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such that ¢*Ops2(1y(—1)))(1) = Op(ry(-1))(2). Thus, we have:

1 H
P(Tx(~1)) - B(S(Tx (~1))) > P(Nyjen (~2)) 5 B(Nyex (~1)
The bundle P(Nx/pv(—1)) has a natural identification:
P(Nxpv(—1)) = {(z,H) : T,X C H} C X x P"*

The image of the second projection is the dual variety of X denoted X*, it is the
variety of tangent hyperplanes to X. For any X one always hasn > dim(X*) < N—1.

Composing with the second projection we finally arrive the following rational map:

|O _1y(2)]
6 P(Tx(-1)) 577 x

Where gb*(’)X*(l) = O]P’(TX(—l))<2)'
Thus, the conjectured isomorphism implies that the Iitaka dimension of @ °_, H(X, S™x (1)

is bounded by dim(X*) which in turn implies the image of the rational map PY --+ P~

defined by {Qo, ..., @} is bounded by dim(X*) < N — 1. Note that if the quadric
algebra C[Qo, ..., Qe,(x))] is free, then this gives the bound ey (X) < dim(X*) < N —1.
It is unclear at the moment when one can expect C[Qy, ..., Qc,(x)] to be free in the
dimensional range n > 2/3(N — 1). However, as a consequence of theorem 4.7, we
do know that the quadric algebra is free for smooth varieties defined by quadratic

equations in the range n > 2/3N.



CHAPTER 6

Tangentially Homogeneous Polynomials
and Trisecant Lines

Let P € TH(X)". Since the restriction P|r,x is in the image of the pullback of
the projection

p: T, X --+» P(T,X)

it follows that V(P) N T,X is a cone with vertex = for each x € X. We see then
that tangentially homogeneous polynomials correspond to hypersurfaces that contain
many lines. To make this more precise, we introduce the global tangent cone variety

Cx X of trisecant lines that are tangent and meet X in at least two distinct points.

6.1 Global Tangent Cone Varieties, Trisecant Va-
rieties, and Quadrics

Definition 6.2 Let X C PV be a subvariety andl € G(1,N), [ is of X-type (dy, ..., dy)
if IN X = {xy,...,xr} set theoretically and length,, (X N1) = d;. The convention

d1 Z 2 dk will be used. Set ZX,(dl dp) = {l € G(l,N)|l of X-type (dl, ,dk)}

.....

Definition 6.3 Let X C PV be a subvariety, set:

Z) ZX,S = {(ZE’,Z) € ]P)N X G(l,N)|ZL’ c l,l c EX,(dl dk)’Zkzl dl Z 3}
68
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.....

.....

Let p; : PN x G(1,N) — PN be the natural projection into the 1st factor. Then we

have:

i) 93(X) = p1(EXx3), the trisecant variety of X, i.e. the union of all trisecant lines

to X.

i) SLX) = p1(Bxa4), the tangent-trisecant variety of X, i.e. the union of all

tangent trisecant lines to X.

iii) CxX = p1(Xx3,st), the global tangent cone variety of X, i.e. the closure of union

of all tangent trisecant lines to X that meet X at least at two distinct points.

The projections of ¥x 3, Yx3: and Yx 34 into G(1, N) via the 2nd natural pro-
jection are denoted respectively by [Xx 3], [Ex3.] and [Xx 3] Note that in general,

one always has the inclusions:

CxX C Si(X) c S3(X)

The main results of this section is that for X with dimension n > 2/3(N — 1), one

has CxX = Si(X) = S3(X). An important tool will be the following lemma of

Bogomolov and De Oliveira:

Lemma 6.4 (Bogomolov-De Oliveira) Let X C PN and C PN x T be a family of

lines in PN over an irreducible projective curve T such that all lines pass through a
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fized z ¢ X and whose union is not a line. If the general lines meets X at least twice,

then one of the lines must meet X with multiplicity at least two at some point.

We can deduce from this the following theorem:

Theorem 6.5 Let X C PV be a nondegenerate smooth subvariety of codimension

two with dimension n > 3. Then:

Cx X = Sy(X)

Proof:

Note that S3(X) is irreducible, see [Kwa01l]. The proof of the theorem proceeds

in two steps:

Step 1: SL(X) = S3(X).

Since a tangent trisecant line is in particular a trisecant line one always has
SE(X) C S3(X) and so we need to establish the inclusion S3(X) C Si(X). Let
z € S3(X), PN=t c PV \ {2} be a hyperplane, and p, : P¥ — PN~! be the projection
with center z into PV~1. The subvariety of G(1, N) consisting of the lines through
z can be naturally identified with PY~! and we set [Xx 3], [Sx3:. € PY7! to be
respectively the subvariety of trisecant, tangent-trisecant lines to X through z. To
establish S3(X) C SL(X) it is sufficient to show [Xx 3], N [Xx3.4]. # 0. Note that this
will follow from lemma 6.4 if we can show there is a positive dimensional subvariety

Of [2){73]2.



71

We note that the case z € X can be resolved by a simple dimensional argument.
The dimensional hypothesis on X implies N > 5 and hence dim XNT,X > N—4 >0
guaranteeing the existence of tangent-trisecant lines through z. So assume from now

on that z € S5(X) \ X.

The projection p, : X — PN¥~1is a finite map with p,(X) C PY~! irreducible of
dimension n. Let y € [¥x 3], i.e. y is a triple point of p,(X), and x4, z2, 3 be points
in [,N.X, where [, is the line corresponding to y (we can assume that the x; are distinct,
otherwise y € [¥x34],). Denote by Z, the local irreducible components of p,(X) at
y. There is an open neighborhood U of y such that each point z; has a neighborhood
surjecting onto the Z, N U. This implies Zy, N Zg, N Zx, NU C [Ex3]. and by the
intersection inequality dim Zy, N Zy, N Zx, NU > 3(2/3(N — 1)) —2(N — 1) > 0 there
is a positive dimensional family of trisecant lines through z. Hence [Xx 3], intersects

[Xx3.:). by lemma 6.4.

Step 2: Cx X = SL(X)

Note that one always has S(X) = Ox X U SE(X) where S (X) is the variety of
trisecant lines meeting X at only one point. However, suppose [ is a line that meets
X at the point  with multiplicity three. Then [ is in the tangent cone C, (7, X N X)

and thus is the limit of secant lines xy where y € T, X N X and so is contained in

CxX. Thus S¥(X) € CxX and we have Cx X = Si(X).
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Thus we have the following geometric characterization of tangentially homoge-

neous polynomials:

Corollary 6.6 Let X C PV be a smooth nondegenerate subvariety with dimension
n > 2/3(N —1). Then every homogeneous polynomial P € TH(X) must vanish on

the trisecant variety Ss(X).

Proof: ~ Any P € TH(X) must vanish on CxX. By theorem 6.5 we have
CxX = S3(X) and so P vanishes on S5(X). [ |
Clearly this characterization of tangentially homogeneous polynomials is valuable
insofar as one understands the variety S3(X). As constructed, S3(X) has many lines,
and it is possible in some situations to use classification results about varieties with
many lines to understand S3(X). For instance, in codimension two there are the

following three possibilies [kwak]:
1. S3(X) = Pprt?
2. dim S3(X) =n+ 1 and S3(X) = @ is a quadric hypersurface.
3. dim S3(X) < n and X is one of the following:

(a) complete intersection of two quadrics.
(b) cone over a twisted cubic curve in P3.
(c) cubic scroll surface in P4

(d) segre threefold P* x P? C P?
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In the range n > 2/3(N — 1), codimension two subvarieties must have dimension
greater or equal to three and so we can rule out cases b) and c¢). In the next chapter
this classification will allow us to establish the equivalence of @)-_, H*(X, S"Qx (1)),

TH(X) and C[Qy, ..., @,] for codimension two subvarieties.

6.7 Trisecant Variety and the Quadric Envelope

An interesting observation about the above classification is that for smooth sub-
varieties in codimension two in the range n > 2/3(N — 1), S5(X) is the intersection

of quadrics containing X. Based on this evidence we introduce the conjecture:

Conjecture 6.8 Let X C PV be a smooth nondegenerate subvariety with dimenen-
sionn > 2/3(N —1) and let QE(X) denote the intersection of quadrics vanishing on

X. If i9(PNZx(2)) = 0 we define QE(X) =PN. Then
S3(X) = QE(X)

Note that by Bezout’s theorem one always has the inclusion S3(X) C QE(X) and
so the question is whether every point z € QF(X) lies on some trisecant line. In
this section we establish this for complete intersection varieties. First, we need the

following lemma.

Lemma 6.9 Let H C PN be a hypersurface and z € PV a point not contained in H.
Consider PN blown up at z as a projective bundle over PN~ with the blow up map

0. and its natural projection:
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P(OPN—1<1> D O]pN—l) 25 PN

IP)Nfl
Denote X = 0. (X). Then there exists a base change

P(f*Opr1(1) @ Oy) —1—s P(Opn1(1) @ Opx1)

1 |

Y A PN -1

where f 1Y — PN~ is a finite map and f‘l(ﬁ) 15 a union of d sections of p.

Proof: We first consider the base change via the projection p,_ |z : H — PN,

P(po. 5 0pnv-1(1) © Oy) L% B(Opn-i (1) @ Opror)

1 |

H Do |H ]P)N_l

The preimage ﬁgz|;11(lfl ) defines a multisection p however, the diagonal map h —
(h,h) gives a section of p and thus p,. \;Il(fl ) decomposes into the union of a section
and a multisection of degree one less. Repeating this process a finite number of times

gives the lemma. [ |

Theorem 6.10 Let X™ C PV be a smooth complete intersection with n > 2/3(N —

2 —r) where r = hO(PY,Zx(2)). Then:

SS(X) = QE(X)

where QE(X) denotes the quadric envelope of X .
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Proof:  Let X be a complete intersection, Ix = (F,..., F.), of multi-degree
(dy,...,d.), where ¢ =codim(X), dy > dy > ... > d.. Let k =min{i|d; = 2} if
{ild; = 2} # 0, the quadric envelope QFE(X) = V(Fy,..., F.) if {ild; = 2} # 0,
otherwise QE(X) = PV. The irreducibility of QF(X) is forced by the smoothness of
X.

Note that in the dimensional range n > 2/3(N — 1) we always have
X C Trisec(X) C QE(X)

The first inclusion follows from the implication n > 2/3(N —1) = dim T, X N
X > 1 and the second from Bezout’s theorem. Thus if X is a complete intersection
of quadrics we have X = QE(X) which forces Trisec(X) = QE(X). Consider then
the case X # QF(X) and let z be a general point of QF(X) in the sense that
2 ¢ [V(F)U...UV(F,_1)]NQE(X), hence in particular z ¢ X. Consider PV blown
up at z as a projective bundle over PV~ with the blow up map o, and its natural

projection:

]P(OPN—l(l) @ Oprl) L> ]PN

poz‘/

PN_l
The pre-image 0~1(z) = Im(sg), where sg is the section of p,. corresponding to the

subbundle O(1) 0 C O(1) @ O. The section sg is rigid, but the projection p, has
sections which move, corresponding to the hyperplanes in PV not meeting z. The
complement P(O(1) ® O) \ Im(sg) is the total space of the line bundle O(1) over

PN-1 Tot(O(1)).
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P(O(1) ® O)\ Im(sg) = Tot(O(1)) —Z— PN\ {2}

]P)Nfl
The map o, : Tot(O(1)) — PN\ {2z} is a biregular map and p, := p,.

Tot(O(1))
corresponds via the biregular map o, to the projection p, : PV --» PV~! with center

z (the fibers of p, : Tot(O(1)) — P¥~! correspond to the lines through z in P¥

punctured at z).

By the generality condition on z € QFE(X),

H; :=V(F) c PV \ {z} Vi=1,..,k—1

and hence correspond via o, to multi-sections H; = o '(H;) of degree d; of O(1) over
P¥=1 in the sense that p,. : H — PY~1 is a finite surjective map. The pre-images
-1

o, '(H;), where i = k, ..., c are no longer multi-sections since z € V(F;), i = k, ..., c.

Moreover, an essential feature due to Bezout’s theorem is that if x € X, then:

l.. C H; Vi=k, .. c

since length(l,. N H;) > 3 and degH; = 2, for i = k,...,c. Note that there is
a N — 3 dimensional family of lines in H; passing through z for ¢« = k,...,c. Let
Z; C PN=! for i = k, ..., c denote these lines and W := Z, N---N Z..

We proceed by doing a base change of P(Opn-1(1) & PN71) via the projection

. N—1.
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P(Opn-1(1) ® Opn-1) Xpnv-1 H] 2, P(Opn-1(1) ® Opn-1)

PZ‘H’
! 1 N-—1
Hj —5 P

Note that P(O]}DNfl(l) D OPNA) XpN-1 H{ = ]P)(’]T*|Hio]p1v71(1) D OHi) and we have

P(7* |11 Opn-1(1) @ Opry) —— P(Opn-1(1) & Opr-1)

pz|Hi

Hj PNt
The key observation here is that p;'(H]) now is the union of a section and a
multisection where the degree of the multisection is one less than the degree of Hj.

Moreover, the preimages p;* (Hj), ..., p; - (H},_,) remain multisections of p;. Repeating

the process we arrive in a finite number of steps at:

P(f*Opv1(1) @ Oy) —I— P(Opx-1(1) ® Opr 1)

Y f ; IP)N -1
where f:Y — PN is a finite surjective map and the preimages f~(V (H;)) are
the union of sections of p:

~ —

FUV(H)) =Dy, + -+ + D,

where the D;, are divisors corresponding to sections s;; of the ample line bundle
J*Opn-1(1) over Y

Dlﬂ -

J

Si, (Y)



78

Note that f‘l(Qf(?)) contains p~(f~H(W)) and f~1(W) is of codimension 2(c+
1—k)onY.

A general point z € QE(X), as chosen before, belongs to Trisec(X) if and only if
there is a fiber of p,_, p;zl(:c), containing at least three points in the intersection of
the quasi-sections @, s V/(_H\C) and the multisections V/(H\l), s Vﬁ_}:l) Note
that this implies in particular that r € W = Z, N --- N Z. with the Z; as described
above, since otherwise the line corresponding to x would meet one of the quadrics
V(H;), i =k,...,cin at most two points.

The condition for z € Trisec(X) after base change translates to: thereisay €Y

such that y € f~*(WW) and

k—1
i (p_l(y) N)(DyuU---U Didi> >3
i=1

This is guaranteed, in particular, if y is in the following subset of Y:

T :={te f{(W)|(s1, —s;)(t) =0for j=2,...,k —1and [ = 1,2,3}

Now, since the s;; — s; are sections of the ample line bundle f*Opn-1(1), their
zeros define Weil divisors on Y i.e. codimension one subvarieties of Y and together
cut out a subvariety of codimension at most 3(k — 2). Thus dim (7") > dim(Y") —
cod(f~1(W))—3(k—2) and this is greater than or equal to zero if n > 2/3(N —2—7).



CHAPTER 7

Symmetric Twisted Differentials,

Tangentially Homogeneous Polynomials
and the Quadric Algebra

In this final chapter we summarize our current understanding of the equivalence
of @, H'(X,5™Qx(1)), TH(X) and C[Qo, ..., Q.| in the dimensional range n >
2/3(N —1). The main result is the equivalence of the three algebras for codimension
two subvarieties with dimension n > 3. The proof of this equivalence uses the global
tangent cone variety C'x X introduced in the previous chapter and the fact that it

coincides with the trisecant variety S3(X) in codimension two.

7.1 Hypersurfaces

The hypersurface case was actually known to Bogomolov and De Oliveira in
[BOO08] and was stated in theorem 1.5. As noted above, it also follows from corollary
7.12 since hypersurfaces are complete intersections. Thus if H is a hypersurface of de-
gree greater than two all three algebras are trivial. If H = () is a quadric hypersurface

then

79
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@HO(Q, S™0o(1) 2 TH(Q) = C[Q)

7.2 Codimension Two

The strategy here is to break into cases based on the dimension of the trisecant
variety S3(X). There are three possibilities for a codimension two subvariety with

dimension n > 3:
1. dim S5(X) =N
2. dim S3(X) =N —1=n+1 and S3(X) is a quadric hypersurface.
3. dim S3(X) = N — 2 = n and there are two possibilities for X:

(a) X is the complete intersection of quadrics.

(b) X is the segre threefold X 5

Theorem 7.3 Let X C PV be a nondegenerate smooth subvariety with codim(X) = 2

and dimension n > 3. Then we have graded isomorphisms

P HO(X, S [Q4(1)]) = TH(X) = C[Qo, ... Q]

where {Qo, ..., Q. } is any basis of H(PN, Ix(2)).

Proof: 'We break this into cases according to the dimension of S3(X).

Case 0: dim S5(X) =N
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In this case S3(X) = PV and hence the tangentially homogeneous polynomials

relative to X of positive degree must be trivial. Therefore

P HO(X, S04 (1)) = TH(X) = C[Qy, ., Q) = C

m=0

as desired.
Case 1: dim S3(X) =N —1

In this case S3(X) = V(Q) with @ spanning H°(PY,Zx(2)). An irreducible
tangentially homogeneous polynomial relative to X of positive degree H must vanish
on V(Q) and hence H = Q. If cod(X) = 2 and n > 3 the tangent map of X is
surjective, and so by proposition 2.12 the product of two homogeneous polynomials
is a tangentially homogeneous polynomial relative to X if and only if both factors
are. As a consequence the algebra T'H (X)) is generated by the irreducible tangentially

homogeneous polynomials giving in this case the graded isomorphism:

D HO(X, 5™ [ (1)) ~ TH(X) = C[Q)

m=0

as desired.

Case 2: dimS3(X)=N—-2=n
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As mentioned previously, the only smooth subvarieties with this property are
complete intersections of two quadrics and the Segre Threefold. In the first case we
can apply theorem 4.4. The case of the Segre Threefold was confirmed in theorem

0.4.

7.4 The Range n > 2/3N

The Harshorne conjecture asserts that every smooth subvariety in this range is a
complete intersection. If this conjecture were confirmed, our theorem 4.4 for complete
intersections would confirm the equivalence of @ H°(X, S™Qx (1)), TH(X) and
ClQo, ..., Qey(x)) in this range. At present, the Hartshorne conjecture has only been
confirmed for quadratic manifolds. A subvariety is called quadratic if its homogeneous
ideal is generated by degree two polynomials. The following theorem of Ionescu and
Russo [IR13] confirms the Hartshorne conjecture for smooth quadratic subvarieties

allowing us to apply theorem 4.4 for this class of varieties.

Theorem 7.5 (lonescu-Russo) Let X C PN be a smooth quadratic subvariety with

dimension n > 2/3N. Then X is a complete intersection.

As a corollary we have an equivalence of our three algebras for quadratic manifolds

in the range n > 2/3N:
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Corollary 7.6 Let X C PN be a quadratic manifold with dimension n > 2/3N and

ideal I(X) = (Qo,...,Qr). Then
@ HO(Xa SmQX(1>) = TH(X) = C[QO) ) Qez(X)]
m=0
Proof: By theorem 7.5 X must be a complete intersection and so we can apply

theorem 4.4. [ ]

7.7 The Range n > 2/3N

Smooth subvarieties for which n = 2/3N are referred to as Hartshorne mani-
folds. The following result of Ionescu and Russo classifies the quadratic Hartshorne

manifolds:

Theorem 7.8 (Ionescu-Russo) Let X C PN be a smooth quadratic subvariety of

dimension n = 2/3N. Then X is either a complete intersection, G(1,4) or Si.

Here G(1,4) is the grassmannian of lines in P* and Sy is the ten dimensional spinor
variety. To confirm our conjecture for quadratic manifolds in the range n > 2/3N
would require only the two cases G(1,4) and S;0. Note that G(1,4) has five linearly
independent quadrics through it while S;y has ten. We state these two cases as

conjectures:

Conjecture 7.9 Let G := G(1,4) C PY be the grassmannian of lines in P* and let

{Qo, ..., Q4} be a basis for HY (PN, Zg(2)). Then there is a graded isomorphism of
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algebras:

@ HO(G, SmQG(1>) = (C[Q(h Qb QQa Q?n Q4]

m=0

Conjecture 7.10 Let Sy C P be the ten dimensional spinor variety and let {Qy, ...., Qo }

be a basis for H'(PN,Zs,,(2)). Then there is a graded isomorphism of algebras:

@ HO(Sw, S™Qg,,(m)) = ClQo, Q1, Q2, Qs, Q4, Qs, Qs, Q7, Qs, Qo]

m=0

At present, it is not clear to what extent these computations will be possible.

7.11 The Range n > 2/3(N — 1)

By theorems 4.4 and 4.7 we have the following corollary:

Corollary 7.12 Let X C P¥ be either a smooth nondegenerate strict complete in-
tersection with dimension n > 2/3(N — 1) or a smooth nondegenerate subvariety of

codimension two and n > 3 then

P (X, S0k (V)]) = ClQu, ... Q] = TH(X)

m=0

where {Qo, ..., Q. } is a basis for HO(PY, Ix(2)).
Proof: Sincen > 2/3(N—1), we have the correspondence @-_, H*(X, S™[Qx(1)]) =
TH(X) by theorem 4.7. Moreover, by theorem 2.6 the tangent map is surjective when

n > 2/3(N —1) and theorem 4.4 plus the assumption of complete intersection implies

the equivalence TH(X) = C[Qo, ..., Q).
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This is the most general statement we can make in the range n > 2/3(N — 1).
At the moment, our justification for the truth of this equivalence for non-complete
intersections in the range n > 2/3(N — 1) is the verification for codimension two

subvarieties and the Segre threefold ¥ 5 C P>,
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