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In this work we studied a nonlocal spatial model on continuous time and space.

Based on Levins’ metapopulation framework, we developed a population model with

nonlocal dispersal. The dispersal is modeled by an integro-differential equation.

In the first chapter, we studied the well-posedness of a single species model. We

established the existence and uniqueness of solution, and proved a version of maxi-

mum principal as well as comparison theorem. To study the stability of equilibria,

we considered an eigenvalue problem and provided an estimation of the eigenvalue.

Then we gave the condition of having a stable positive equilibrium, which biologi-

cally implies the persistence of species; and we also gave the condition of a stable zero

equilibrium, which means the species goes extinct.

In the second chapter, we investigated the two species competition model. We did

the stability analysis for the zero equilibrium and two semi-trivial equilibria. Also

we have a sufficient condition for the existence of a coexistence equilibrium. Then

we studied the evolutionarily stable strategy for this model. Ideal free dispersal is

a kind of conditional strategy which feature dependence on environments and leads

to an equilibrium distribution where there is no net movement of individuals and

any location has the same environmental fitness. Suppose two competing species are

identical except their dispersal strategy. We showed that a species with ideal free



dispersal can invade when rare while the other species’ dispersal is not ideal free.

In chapter three we are interested in the spreading speed on a infinite domain. The

case of single species has been treated in an SIS epidemiology model. For two species

competition, we proved the existence of spreading speed and showed that for each

wave speed greater than the spreading speed, there exists a traveling wave solution

connecting the two semi-trivial equilibria for the system.
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Chapter 1

The Well-posedness of a Metapopu-
lation Model with Nonlocal Disper-
sal

1.1 Background

Dispersal mechanisms are a very important factor in the persistence, interaction, and

evolution of species especially in habitats that are spatially heterogeneous. There

are several ways that dispersal and its effects have been modeled in spatial ecology.

They reflect various assumptions about the nature of the dispersal process and its

connections to population dynamics. One type of model, the patch occupancy type of

metapopulation models in Levins’ [44] and Hanski [31], [32], do not treat population

dynamics explicitly, but instead describe the probability that a population will be

present on any given patch. These can be related to population models, by thinking

of each patch as the space it takes for one individual. This is essentially the idea

underlying the Hamilton and May [54] type model.

There are two broad classes of models that do include population dynamics. One

class typically assumes that adult individuals are mobile, that the reproduction pro-

cess is independent of dispersal, and that individuals compete for resources other than

1
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space itself. The other class typically assumes that adult individuals are not mobile,

but produce seeds or larvae that are mobile, so that reproduction and dispersal are

combined into a single process, and that dispersers compete for space to settle. Our

model is similar to the second type of population model, but in continuous time and

space.

Metapopulation patch occupancy models were introduced by [44]. They treat

the environment as a collection of discrete patches that may become extinct, but

unoccupied patches may be colonized by individuals dispersing from other patches.

Such models have been used to study many types of populations, including butterflies

Hanski [30] and reef fish ( [2], [39]; to name a few). Levins’ model describes a system

of infinitely many identical patches, then describes how colonization and extinction

determine the fraction of patches occupied. Let k be the fraction of habitat potentially

suitable for some species. n is the fraction of patches occupied and k − n is thus the

patches available. The change with time of n is determined by:

dn

dt
= cn(k − n)− en

Levins’ model [44] is spatially implicit. It assumes the habitat patches are all

the same and thus the parameters are constants, that the dispersal rates between

any two patches are the same, and that there are infinitely many patches so that

the fraction occupied is a continuous variable. Hanski’s model [30], an extension of

Levins’ model, can be viewed as spatially explicit. It assumes a set of habitat patches

in which species occur at a dynamic colonization-extinction equilibrium. Let pi be the

probability that patch i is occupied, and let cij be the colonization rate from patch j
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to i. Let ei be the extinction rate of patch i. Hanski’s model is:

dpi
dt

= (1− pi)
∑
j

cijpj − eipi

Mouquet and Loreau [48] introduced a model that is considered to be similar to Han-

ski’s for multiple species. They showed that immigration is a key factor determining

persistence and extinction for any single species in a metacommunity. Mouquet and

Loreau [55] and [56] studied the dynamics of the metacommunity network in which

communities are linked by dispersal.

For the two types of population dynamical models, the class where all individuals

are mobile includes reaction-diffusion models and their discrete diffusion analogues

Cantrell and Cosner [6], integrodifferential models similar to reaction-diffusion models

but with nonlocal dispersal (see Bates and Zhao [5], Hetzer, Nguyen and Shen [36],

Hutson, Martinez, Mischaikow and Vickers [38]), and some types of integrodifference

models in discrete time (see Kot et al. [42], etc). The second class, where adults are

sessile but seeds or larvae disperse so that reproduction is combined with dispersal,

include the type of models introduced by Hamilton and May [54], and Comins et

al. [19], and used to study the evolution of dispersal in organisms with these life

histories (see Levin and Muller-Landau [43]).

Our model is similar in concept to these latter types of models, combining the

ideas coming Hanski and Mouquet-Loreau models with a general modeling viewpoint

similar to [54], [19] and [43]. Our model captures competition for space and dis-

persal together with reproduction, but in a heterogeneous environment, explicit in

space. It also tracks population dynamics, and uses continuous space, so it uses con-

tinuous kernels, representing nonlocal diffusion. Dispersal by the integral operator
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∫
Ω
k(x, y)u(y)dy (Holt [37]) is similar to Coville [22], Hetzer, Nguyen and Shen [36],

Hutson, Mischaikow Martinez and Vickers [38].

There are various ways to model dispersal. The class of reaction-diffusion models is

used to study unconditional dispersal based on derivations from random walks. The

extension to conditional dispersal with spatial variation, has the form of reaction-

advection-diffusion or integro-difference models (Cantrell and Cosner [6]). Reaction-

diffusion models have the restrictive assumptions that the movement is derived from

a random walk, which is not suitable model for the dispersal of seeds. They may be

good models for animals in cases where migration and other long-distance dispersal

can be ignored. However, they are not such good models for organisms that may

have long distance dispersal, or for seeds or larvae that can be moved long distances

by winds, or currents or animal dispersers. Lou and Ni [49], [50], [51] studied the

cross-diffusion system that arises from population dynamics. There are some other

modeling approaches that address long distance movement. One particular type are

position saltation processes, which have been discussed for the movements involving

alternating pauses and jumps across long distances (see Hadeler [29] and Othmer

et al. [59]). In contrast, Hutson et al. [38] derived continuous time models in with

dispersal is described by an integral operator. This class of nonlocal spatial models:

ut(x, t) =

∫
Ω

J(x, y)u(y, t)dy + b(x)u(x, t) + f(x, u(x, t)), (1.1.1)

which was then studied in [5]. A Lotka-Volterra competition model was studied

in [36]. Cantrell et al [10] investigated the evolutionary stability of ideal free dispersal

strategies for nonlocal models. Kao et al. [40] studied the competition of one species

with random dispersal and the other with nonlocal dispersal. Coville [22] studied the
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existence of principal eigenfunctions for the model:

∫
Ω

J(
x− y
g(y)

)
φ(y)

gn(y)
dy + a(x)φ = ρφ

The only way these model differ from reaction-diffusion models is that they allow

long distance movement as well as local movement.

The above models assume that the reproduction process is separated from move-

ment. However, for some sessile animals like sponges, corals, oysters, and some plants,

adult organisms do not move but produce seeds, eggs or juveniles that can move long

distance, then settle in some location, reproduction and movement cannot be sep-

arated. There are some models more related to our models in that we make this

assumption, but assume discrete time. Kot and Schaffer [42] proposed the integrod-

ifference models for population ecology.

Nt+1(x) =

∫
Ω

k(x, y)f(Nt(y); y)dy

They described species with a growth phase and a dispersal phase which produce

seeds in discrete time period on continuous habitat. Van Kirk et al. [61] studied the

role of dispersal and environment heterogeneity for discrete-time models. Hardin et

al. [33], [34], [35] studied survival and extinction of the population under different

dispersal strategies. This integro-difference model assumes the adults do not move

but produce juveniles or seeds that can disperse long distances. The nonlinear inte-

grodifference equations with a product of dispersal kernel and growth rate model the

mechanism that dispersal and reproduction occur simultaneously, because the seeds

or larvae have to disperse to find places to settle and survive. The Hamilton and
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May [54] model is based on a similar idea in a metapopulation framework. Those

authors studied the dispersal strategies on discrete patches. The reproductive agents

(offspring, seeds, etc.) disperse away from their birth location. Comins et al. [19] ex-

tended the work to transient environments and general probability distributions for

the number of progeny. They allowed more than one organism to occupy each site.

Hamilton and May, and Comins et al., were motivated by trying to understand the

evolution of dispersal. They wanted to see what strategies were evolutionarily stable.

Then Levin et al [43] studied more general situations which are still in discrete space,

but where the dispersal is defined by a kernel. Muneepeerakul et al. [57] investigated

the evolution of a class of dispersal kernels in metacommunities.

Our model, continuous in time and space, uses the population dynamical model

proposed by Holt and Keitt [37].

ut = [K(x)− u(x, t)]

∫
Ω

k(x, y)u(y, t)dy − d(x)u(x, t) (1.1.2)

This model replaced the colonization term in Levins’ model with a nonlocal integral∫
Ω
k(x, y)u(y, t)dy. k(x, y) is the ”dispersal kernel”. The term (k − n) was replaced

by [K(x) − u(x, t)] where K(x) represented the maximum fraction of suitable sites

of the heterogeneous habitat and u(x, t) depends on the location x and time t. d(x)

described the extinct rate at point x along the gradient. Holt and Keitt [37] studied

the process of colonization and extinction in environments with spatial gradients in the

availability of suitable habitat. They look a metapopulation approach, and suggested

that there were two ways to model such a process: analytic continuum models and

spatially explicit simulations. They used a simulation model. In this work, we will

develop and use the analytic continuum model.
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The quantity k(x, y) is a ”dispersal kernel”, which can be written as k(x, y) =

D(x, y)r(y). D(x, y) is the transition probability from y to x, and it satis-

fies
∫

Ω
D(x, y)dy = 1. r(y) is the reproduction rate at x along the gradient.∫

Ω
k(x, y)u(y, t)dy describes the contribution to colonization at each site by colonists

emanating from all other sites. The dispersal kernel k(x, y) usually decreases with

increasing the distance |x − y|. This term is similar to
∫

Ω
J(x, y)u(y, t)dy in (1.1.1)

except k(x, y) is a product of D(x, y) and r(y). The product of these two terms

describes the reproductive agents, which are mobile and disperse from y to x. This

is similar to
∫

Ω
k(x, y)f(Nt(y); y)dy except it is continuous in time. K(x) is the po-

tential habitat available for organisms at each site and K(x)− u(x, t) is the habitat

unoccupied. This integrodifferential equation with the colonization term is an exten-

sion of Levins’ metapopulation framework. The model treats competition for space

in a way that is mathematically similar to Hanski or Mouquet-Loreau’s models, but

is continuous in space; and it uses the nonlocal integral to characterize the dispersion,

which is a good model for sessile animals like sponges, corals, or oysters, along with

some plants, which produce larvae or seeds that can move long distances.

In this chapter, we will first establish the existence and uniqueness of solution

for single species model. Then we will prove a version of maximum principle and

comparison theorem. For stability analysis, we will study the linearized system around

zero equilibrium. Since the nonlocal model may not have an eigenfunction associated

with the spectral bound, we will consider an equivalent eigenvalue problem where the

Krein-Rutman theorem (See Amann [1]) may apply. Once we have the estimation

of principal eigenvalue, we can give sufficient conditions for zero equilibrium to be

stable or unstable.
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1.2 Existence, Uniqueness of solution and some

properties.

Let Ω ∈ Rn be a connected open domain. In applications, n =1,2 or 3.

Our model is:

ut = [K(x)− u(x, t)]
∫

Ω
k(x, y)u(y, t)dy − d(x)u(x, t)

u(x, 0) = u0(x)

x ∈ Ω̄

(1.2.1)

Here u(x, t) represents the population density that already occupied at x and K(x)

is the potential suitable site. Assume we have 0 ≤ u(x, 0) ≤ K(x). For the model

to make sense, we further need 0 ≤ u(x, t) ≤ K(x) for t > 0 (this is to be proved

in Maximum Principle). k(x, y) represents the population dispersal rate from x to y

and it is nonnegative on Ω̄× Ω̄ and is continuous w.r.t x. d(x) is the death rate.

Remark 1.1. The kernel k(x, y) can be written as the product: r(y)D(x, y). r(y)

is the rate of production of seeds or juveniles, per capita, by population at location

y. D(x, y) denotes the rate of movement from y to x and satisfies
∫

Ω
D(x, y)dy = 1.

This assumption on D(x, y) reflects the idea that there is no loss or gain of population

in transit, other than what is described by the death rate d(x).

1.2.1 Existence and Uniqueness of Solution

In this section, we are going to show the existence and uniqueness of system (1.2.1).

Let C([0, T ], C(Ω̄)) = X be the space of continuous function from [0, T ] to C(Ω̄).

We have u(x, t) ∈ C([0, T ], C(Ω̄)). Let Z ⊆ C([0, T ], C(Ω̄)), and Z = {u(x, t)|u ∈ X :
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maxΩ̄×[0,T ]|u(x, t)− u0(x)| ≤M}. Assume u0(x) ∈ C(Ω̄).

Theorem 1.2. Let K(x), d(x) be positive and continuous on Ω̄. Assume k(x, y) ≥ 0

is bounded on Ω̄×Ω̄ and it is continuous with respect to x and measurable with respect

to y. u(x, 0) = u0(x). Assume
∫

Ω
k(x, y) is bounded, i.e. maxx∈Ω̄ |

∫
Ω
k(x, y)dy| <∞.

There exists a unique solution for system(1.2.1) on [0, T ] for some T > 0.

Proof. Here u ∈ Z, 0 < t < T , and 0 < T,M ≤ 1 are constants to be determined

later.

Integrate (1.2.1) from 0 to t, we have

F(u)(x) = u(x, 0) +

∫ t

0

[

∫
Ω

k(x, y)u(y, s)dy[K(x)− u(x, s)]− d(x)u(x, s)]ds (1.2.2)

We are going to use (1.2.2) to construct a contraction mapping in order to prove

the existence and uniqueness by applying Contraction Mapping Theorem.

We use norms: ‖u(x, t)‖ = max[0,T ]×Ω̄ |u(x, t)|.

For u ∈ Z, ‖u‖ ≤ ‖u0‖+M ≤ ‖u0‖+ 1 = U0.

‖F(u)‖ ≤ ‖u0‖+ T · [max
Ω̄
|
∫

Ω

k(x, y)dy| ·max
Ω
|K(x)| · U0

+ max
Ω̄
|
∫

Ω

k(x, y)dy| · U2
0 + max

Ω̄
|d(x)| · U0]

So the integral on the right side of (1.2.2) converges.

We require F(u) ∈ Z.
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‖F(u)− u0(x)‖ = ‖
∫ t

0

{
∫

Ω

k(x, y)u(y, s)dy[K(x)− u(x, s)]− d(x)u(x, s) }ds‖

≤ max
Ω̄
|
∫

Ω

k(x, y)dy| · ‖u‖ · [max
Ω̄

K(x) + ‖u‖] · t+ max
Ω̄

d(x) · ‖u‖ · t

≤ max
Ω̄
|
∫

Ω

k(x, y)dy| · U0 · [max
Ω̄

K(x) + U0] · t+ max
Ω̄

d(x) · U0 · t

≤ t · (constant · U0 + constant · U2
0 )

Select T1(M) small enough such that for 0 < t < T1(M) we have

‖F(u)− u0(x)‖ < M

so F(u) ∈ Z. Next we want to show that we can choose T ≤ T1(M) such that

‖F(u)−F(v)‖ < C‖u− v‖

for u, v ∈ Z,C < 1, and u0(x) = v0(x)

‖F(u)−F(v)‖

= ‖
∫ t

0

{
∫

Ω

k(x, y)u(y, s)dy[K(x)− u(x, s)]− d(x)u(x, s) }ds

−
∫ t

0

{
∫

Ω

k(x, y)v(y, s)dy[K(x)− v(x, s)]− d(x)v(x, s) }ds‖

= ‖
∫ t

0

{
∫

Ω

k(x, y)[u(y, s)− v(y, s)]dy ·K(x)− d(x) · |u(x, s)− v(x, s)| −∫
Ω

k(x, y)[u(y, s)u(x, s)− v(y, s)u(x, s) + v(y, s)u(x, s)− v(y, s)v(x, s)]dy}ds‖

≤ {C1‖u− v‖+ C2‖u− v‖+ C3‖u− v‖} · t
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C1 ≤ max
Ω̄
|
∫

Ω

k(x, y)dy| · ‖K(x)‖, C2 ≤ ‖d(x)‖,

C3 ≤ max
Ω̄
|
∫

Ω

k(x, y)dy| · (‖u‖+ ‖v‖) ≤ 2U0 ·
∫

Ω

k(x, y)dy|

We pick T < min{T1(M), 1
C1+C2+C3

} and M = 1, then obtain a contraction on Z.

By the contraction mapping theorem, there exists a unique u∗ ∈ Z such that

F(u∗) = u∗. Then

u∗ = u(x, 0) +

∫ t

0

[

∫
Ω

k(x, y)u∗(y, s)dy[K(x)− u∗(x, s)]− d(x)u∗(x, s)]ds. (1.2.3)

So u∗ satisfies the equation and the integrand on the right side of (1.2.3) is continuous

so u∗ is differentiable in t and satisfies (1.2.1) thus it is the unique solution for the

system.

Remark 1.3. The domain Ω is not necessarily bounded. If it is bounded and k(x, y)

is bounded on Ω, then the integral
∫

Ω
k(x, y)dy is automatically bounded. If Ω is not

bounded but the kernel k(x, y) satisfies some appropriate conditions, then the integral

is also bounded. For example, if k(x, y) = k(x − y), and k(x − y) has the form of a

Gaussian or exponential kernel, then
∫

Ω
k(y)dy = k0 <∞ is still valid.

We have the following hypothesis on kernel k(x, y):

Hypothesis 1.4. (1) The kernel k(x, y) ≥ 0 is bounded for all x, y ∈ Ω̄, and∫
Ω
k(x, y)dy <∞.

(2) k(x, y) ≥ 0 on Ω̄ and for any continuous function φ(x) ≥ 0 on Ω with φ(x) > 0

for some x, we have
∫

Ω
k(x, y)φ(y)dy > 0.
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1.2.2 Maximum Principle and Comparison Theorem

In this section we will derive a maximum principle and comparison theorems that will

be important for later analysis. We will define the super-(sub-) solution which will

be used in the stability analysis.

Theorem 1.5. (Maximum Principle)

(I) If for any fixed x, u(x, 0) ≤ K(x) and u(x, t) is a solution of (1.2.1), then

u(x, t) < K(x) for t > 0.

(II) If we assume further that u(x, 0) ≥ 0, u(x, 0) > 0 on some open subset of Ω,

k(x, y) ≥ 0 and Ω is bounded, and we assume (2) in Hypothesis 1.4, then u(x, t) > 0

for t ∈ [0, T ] where u(x, t) exists.

Proof. (I) Suppose u(x, 0) ≤ K(x).

If u(x, 0) = K(x), then ut(x, t)|t=0 = −d(x)K(x) < 0. If u(x, 0) < K(x), then by

continuity, there exists a small enough t > 0 such that u(x, t) < K(x) on (0, t).

So for any x there is an interval (0, ε(x)) in which u(x, t) < K(x).

Let t0(x) = inf{t > 0 : u(x, t) = K(x)}, we have t0(x) > 0.

If t0(x) < T , so t0(x) < +∞, then for any x, by (1.2.1), ut(x, t)|t=t0(x) < 0.

However, since u(x, t0(x)) = K(x) by continuity, u(x, t) has a maximum relative

to t on (0, t0(x)) at t = t0(x), and by the definition of t0(x) we have ut(x, t)|t0(x) ≥ 0.

This is a contradiction.

So t0(x) =∞, so t0(x) ≥ T , i.e. u(x, t) < K(x) for all t ∈ [0, T ].

(II)

Suppose 0 ≤ u(x, 0) ≤ K(x). We already have u(x, t) < K(x) for t > 0.

Let ũ(x, t) = eatu(x, t), then u(x, t) > 0 if and only if ũ(x, t) > 0 for t > 0. By
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(1.2.1)

ũt(x, t) = aũ(x, t) + eat ·
∫

Ω

k(x, y)u(y, t)dy[K(x)− u(x, t)]− d(x)ũ(x, t) (1.2.4)

Note that if u(x, t) ≡ 0, then it is an equilibrium and thus a solution. If u(x, 0) ≥ 0

and u(x, 0) 6≡ 0, then we have 0 < k1 ≤
∫

Ω
k(x, y)u(y, 0)dy ≤

∫
Ω
k(x, y)K(y)dy = k2

for some positive number k1, k2, by continuity of u(x, 0) and hypothesis on k(x, y).

Also we have ũ(x, 0) = u(x, 0), and

ũt(x, 0)

= [a− d(x)]ũ(x, 0) + (
∫

Ω
k(x, y)u(y, 0)dy)K(x)− (

∫
Ω
k(x, y)u(y, 0)dy)ũ(x, 0)

(1.2.5)

Thus,

ũt(x, 0) ≥ [a− d(x)− k2]ũ(x, 0) + k1K(x) (1.2.6)

Hence by choosing a > maxΩ̄ d(x) + k2, we can get ũt(x, 0) > 0 for each x.

Let t0(x) = inf{t > 0 : ũ(x, t) = 0}. So ũ(x, t0(x)) = 0. Then for some t > 0 small

enough, we have ũ(x, t) > 0.

We want to show infx∈Ω̄ t0(x) is strictly larger than 0. Suppose infx∈Ω̄ t0(x) = 0,

then there must exists a sequence (xn, t0(xn)) converging to (x0, t0(x0)) = (x0, 0),

x0 ∈ Ω̄. For each xn we have ũ(xn, t0(xn)) = 0 and ũ(x0, 0) = 0. The continuity of

k(x, y), K(x) and d(x) implies ũt(x, t) is continuous. Since we have ũ(xn, t0(xn)) =

0 but ũ(xn, t) > 0 for 0 < t < t0(xn), we must have ũt(xn, t0(xn)) ≤ 0. Since

(xn, t0(xn)) → (x0, 0) as n → ∞, we have ut(x0, 0) ≤ 0 by continuity. However, we

also have ũ(xn, t0(xn)) = 0, so again by continuity, we must have ũ(x0, 0) = 0. It
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then follows by (1.2.6) that ũt(x0, 0) ≥ k1K(x0) > 0, which is a contradiction. Thus,

these is a t∗ > 0 such that ũ(x, t) > 0 for all x if 0 < t < t∗.

We want to see that ũ(x, t) > 0 for all t > 0 where the solution exists. Let

t∗∗ = sup{t : ũ(x, s) > 0 for all x if 0 < s < t}. We know that t∗∗ ≥ t∗ > 0, and by

continuity we have ũ(x, t∗∗) ≥ 0. Also, if t∗∗ < ∞, then for any n = 1, 2, 3, ... there

must be some t̃n ∈ (t∗∗, t∗∗ + 1
n
) such that ũ(x̂n, t̃n) ≤ 0 for some x̂n. If ũ(x̂n, t̃n) = 0,

let t̂n = t̃n. If ũ(x̂n, t̃n) < 0, then by the intermediate value theorem there is a

t̂n ∈ [t∗∗, t∗∗ + 1
n
] with ũ(x̂n, t̂n) = 0 (since ũ(x̂n, t) > 0 for t < t∗∗). It also follows

from ũ(x̂n, t) > 0 for t < t∗∗ that t̂n ≥ t∗∗ in this case as well. Hence, we have a

sequence (x̂n, t̂n) with t̂n ≥ t∗∗, t̂n → t∗∗ as n → ∞, and ũ(x̂n, t̂n) = 0. Since Ω̄ is

bounded, we must have a subsequence (ˆ̂xn) of (x̂n) that converges to some x̂0, so that

ũ(x̂0, t
∗∗) = 0 by continuity (since (ˆ̂xn, t̂n)→ (x̂0, t

∗∗) and ũ(ˆ̂xn, t̂n) = 0.)

However, for 0 < ε < t∗∗, we have

ũ(x̂0, t
∗∗) = ũ(x̂0, t

∗∗ − ε) +

∫ t∗∗

t∗∗−ε
ũt(x̂0, s)ds

=ũ(x̂0, t
∗∗ − ε) +

∫ t∗∗

t∗∗−ε
(a− d(x))ũ(x̂0, s)ds

+

∫ t∗∗

t∗∗−ε
eas(

∫
Ω

k(x̂0, y)u(y, s)dy)[K(x̂0)− u(x̂0, s)]ds

We have ũ(x̃, s) > 0 and u(x̂0, s) < K(x̂0) for t∗∗ − ε ≤ s < t∗∗, so we have

ũ(x̂0, t
∗∗) > 0, contradiction.

So t∗ cannot be a finite number. This shows u(x, t) > 0 for t > 0 where the

solution exists, i.e. [0, T ].

Corollary 1.6. (Global Existence) From the Maximum Principle, we have 0 ≤

u(x, t) ≤ K(x) for all t where u(x, t) exists. Similarly if v(x, t) satisfy (1.2.1),
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0 ≤ v(x, t) ≤ K(x) where v(x, t) exists. Let [0, T ] be the existence interval in The-

orem 1.1. Since the constants C1 to C3 and U0 depend only on the coefficients of

(1.2.1) and the supremum of the initial data, and since u is uniformly bounded on

[0, T ] by the Maximum Principle, we can repeat the argument of Maximum Principle

and Comparison Theorem on [0, T ] to [T, 2T ] using u(x, T ) as initial data and so on.

Definition 1.7. We say that u(x, t) is a super-(sub-)solution if

ut ≥ (≤)[K(x)− u(x, t)]

∫
Ω

k(x, y)u(y, t)dy − d(x)u(x, t)

Theorem 1.8. (Comparison Theorem)

Suppose u(x, t) and v(x, t) satisfy (1.2.1).

a) If 0 ≤ v(x, 0) ≤ u(x, 0) ≤ K(x), then 0 ≤ v(x, t) ≤ u(x, t) ≤ K(x) for all t > 0

where both u(x, t), v(x, t) exist.

b) Moreover, if v(x, 0) < u(x, 0) for some x, and Hypothesis 1.4 holds, then

v(x, t) < u(x, t) for all t > 0 where both u(x, t), v(x, t) exist.

c) Suppose Ω is bounded. u1(x, t) is a sub-solution and u2(x, t) is a super-solution

with u1(x, 0) ≤ u2(x, 0). Then u1(x, t) ≤ u2(x, t) for t > 0 where both u1(x, t), u2(x, t)

exist.

Proof. We are going to prove the theorem by showing that eat(u(x, t) − v(x, t)) =

w(x, t) satisfies an equation with a solution that is uniquely determined and non-

negative. We will do that by using the contraction mapping theorem on a problem

related to (1.2.1).

a) Clearly if u(x, 0) ≡ v(x, 0) then u(x, t) ≡ v(x, t). If u(x, 0) ≥ v(x, 0), u(x, 0) >
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v(x, 0) for some x, let ũ = eatu and ṽ = eatv. So we have

ũt(x, t) = (a− d(x))ũ(x, t) +K(x)

∫
Ω

k(x, y)ũ(y, t)dy −
∫

Ω

k(x, y)u(y, t)eatu(x, t)dy

=(a− d(x))ũ(x, t) +K(x)

∫
Ω

k(x, y)ũ(y, t)dy −
∫

Ω

k(x, y)ũ(y, t)dy · u(x, t)

=(a− d(x))ũ(x, t) +K(x)

∫
Ω

k(x, y)ũ(y, t)dy −
∫

Ω

k(x, y)u(y, t)dy · ũ(x, t)

We have a similar expression for ṽ(x, t). Let w = ũ − ṽ, so ũ = w + ṽ and v(x, t) =

u − w(x, t) · e−at. We have w ≥ 0 if and only if ũ ≥ ṽ if and only if u ≥ v.

w(x, 0) = w0(x). Let [0, T0] be the intersection of the existence intervals of u and v

given by Theorem 1.5.

Then

wt = [a− d(x)]w(x, t) +K(x)

∫
Ω

k(x, y)w(y, t)dy

−
∫

Ω

k(x, y)u(y, t)eatdy · u(x, t) +

∫
Ω

k(x, y)v(y, t)eatdy · v(x, t)

= [a− d(x)]w(x, t) +K(x)

∫
Ω

k(x, y)w(y, t)dy

−
∫

Ω

k(x, y)u(y, t)dyeat(u(x, t)− v(x, t))

−
∫

Ω

k(x, y)u(y, t)dyv(x, t)eat +

∫
Ω

k(x, y)v(y, t)eatv(x, t)

= [a− d(x)]w(x, t) +K(x)

∫
Ω

k(x, y)w(y, t)dy

−
∫

Ω

k(x, y)u(y, t)dyw(x, t)−
∫

Ω

k(x, y)w(y, t)dyv(x, t)

= [a− d(x)−
∫

Ω

k(x, y)u(y, t)dy]w(x, t)

+[K(x)− u(x, t) + w(x, t)e−at]

∫
Ω

k(x, y)w(y, t)dy
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Equation for w(x, t) can be also written as

wt = [a− d(x)−
∫

Ω

k(x, y)u(y, t)dy]w(x, t) + [K(x)− v(x, t)]

∫
Ω

k(x, y)w(y, t)dy

(1.2.7)

We now show that equation (1.2.7) with initial condition w(x, 0) = u(x, 0)−v(x, 0)

has a unique solution that is nonnegative, and then since w(x, t) = eat(u(x, t)−v(x, t))

satisfies (1.2.7), that must be the unique solution.

We can choose a large enough such that a− d(x)−
∫

Ω
k(x, y)u(y, t)dy > 0. Since

u(x, t) ≤ K(x), the choice of a does not depend on u. In the same way that (1.2.2)

is the integration of (1.2.1), integrate (1.2.7) and we have for t ∈ [0, T0],

w(x, t) =w(x, 0) +

∫ t

0

[a− d(x)−
∫

Ω

k(x, y)u(y, s)dy]w(x, s)ds

+

∫ t

0

[K(x)− u(x, s) + w(x, s)e−as]

∫
Ω

k(x, y)w(y, s)dyds

Suppose 0 ≤ w(x, 0) ≤ M0

2
, 0 ≤ u, v ≤ K(x), M0 = 2maxΩK(x). Let

M(w) = w(x, 0) +
∫ t

0
[a− d(x)−

∫
Ω
k(x, y)u(y, s)dy]w(x, s)ds

+
∫ t

0
[K(x)− u(x, s) + w(x, s)e−as]

∫
Ω
k(x, y)w(y, s)dyds.

Here we use the fact that u(x, t) ≤ K(x) such that the term
∫ t

0
[K(x) − u(x, s) +

w(x, s)e−as]
∫

Ω
k(x, y)w(y, s)dyds is nonnegative to get M(w) ≥ 0. Let Z := {w :

w(x, t) ≥ 0, supΩ̄×[0,T ]w(x, t)−w(x, 0) ≤M0}, and we want to show that by selecting

T > 0 small enough, M(w) maps Z into itself. ‖w(x, t)‖ ≤ ‖w0‖ + M0 = W0.
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‖u‖ ≤ U0.

‖M(w)− w(x, 0)‖ = ‖
∫ t

0

[a− d(x)−
∫

Ω

k(x, y)u(y, s)dy]w(x, s)ds

+

∫ t

0

[K(x)− u(x, s) + w(x, s)e−as]

∫
Ω

k(x, y)w(y, s)dyds‖

≤ ‖w‖(a+ max
x∈Ω̄
|d(x)|+ ‖u‖max

x∈Ω̄

∫
Ω

k(x, y)dy) · t

+(maxx∈Ω̄K(x) + ‖u‖+ ‖w‖max
x∈Ω̄

∫
Ω

k(x, y)dy)‖w‖ · t

Suppose 0 ≤ w ≤ M0, since all terms above are bounded, we can choose T1 > 0

small enough such that M(w) ≤M0 for 0 ≤ t ≤ T1 provided t ≤ T1.

Next we want to proveM is a contraction mapping. For any 0 ≤ p, q ≤M0, with

p(x, 0) = q(x, 0),

M(p)−M(q) =

∫ t

0

[a− d(x)−
∫

Ω

k(x, y)u(y, s)dy][p(x, s)− q(x, s)]ds

+

∫ t

0

[K(x)− u(x, s) + p(x, s)e−as]

∫
Ω

k(x, y)p(y, s)dyds

−
∫ t

0

[K(x)− u(x, s) + q(x, s)e−as]

∫
Ω

k(x, y)q(y, s)dyds

=

∫ t

0

[a− d(x)−
∫

Ω

k(x, y)u(y, s)dy][p(x, s)− q(x, s)]ds

+

∫ t

0

[K(x)− u(x, s)]

∫
Ω

k(x, y)(p(y, s)− q(y, s))dyds

+

∫ t

0

p(x, s)e−as
∫

Ω

k(x, y)(p(y, s)− q(y, s))dyds

−
∫ t

0

(q(x, s)− p(x, s))e−as
∫

Ω

k(x, y)q(y, s)dyds
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Since each term is bounded, we have

‖M(p)−M(q)‖ ≤C1 · t‖p− q‖+ C2 · t‖p− q‖+ C3 · ‖p− q‖+ C4 · t‖p− q‖

Here 0 ≤ C1 ≤ maxΩ̄[a− d(x)−
∫

Ω
k(x, y)u(y, s)dy] ≤ a,

0 ≤ C2 ≤ maxΩ̄ |
∫

Ω
k(x, y)dy| ·maxΩ̄ |K(x)|,

0 ≤ C3 ≤M0 ×maxΩ̄ |
∫

Ω
k(x, y)dy|,

0 ≤ C4 ≤ 2M0 ×maxΩ̄ |
∫

Ω
k(x, y)dy|.

So we can select 0 < T2 < T1 with T2 small enough such that

‖M(p)−M(q)‖ ≤ C · ‖p− q‖ = C · max
Ω̄×[0,T2]

‖p− q‖

with C < 1.

We can conclude that for given u(x, t), v(x, t) the equation (1.2.7) has a unique

solution w̃ on (0, T2) for some T2 > 0. Furthermore, w̃ ≥ 0. However, w is also a

solution of (1.2.7), so w̃ = w on [0, T2] and hence w ≥ 0. Further, the constants C1 to

C4 depend only on the coefficients of the model so this argument can be repeated on

[T2, 2T2], [2T2, 3T2] and so on. So the result holds on [0, T ] where the solution exists.

So w ≥ 0 on [0, T ].

b)

We have u(x, 0) ≥ 0 by hypothesis, so by Theorem 1.8 we have 0 ≤ u(x, t) ≤ K(x).

Then for (1.2.7) w(x, t) has a unique solution on Ω̄ × [0, T2] with w(x, t) ≥ 0. We

have

wt = [a− d(x)−
∫

Ω

k(x, y)u(y, t)dy]w(x, t) + [K(x)− v(x, t)]

∫
Ω

k(x, y)w(y, t)dy



20

with w ≥ 0 on [0, T2].

It is easy to see at the points where w(x, 0) > 0 or v(x, 0) < K(x) we have

wt(x, 0) > 0.

Because u(x, 0) 6≡ v(x, 0) we must have w(x, 0) > 0 for some x1 ∈ Ω. We have

w(x, t) ≥ 0 by part a), so for any x ∈ Ω̄,

wt ≥ [K(x)− v(x, t)]

∫
Ω

k(x, y)w(y, t)dy ≥ 0.

Since w(x, 0) > 0 for x = x1, we must have w(x1, t) > 0 on some interval 0 < t < ε(x1),

so by the hypothesis on k(x, y) we must have for any x ∈ Ω̄

∫
Ω

k(x, y)w(y, t)dy > 0 on 0 < t < ε(x1).

Also, we have v(x, t) < K(x) for t > 0 by the maximum principle. Thus, we have

wt(x, t) > 0 for 0 < t < ε(x1) for any x, with w(x, 0) ≥ 0 and wt(x, 0) ≥ 0. It follows

that w(x, t) > 0 for 0 < t < ε(x1) for all x ∈ Ω̄. Thus w(x, t) > 0 on Ω̄ × (0, ε0] for

some ε0 with ε(x1) ≥ ε0 > 0.

Thus, at t = ε0 we have 0 < v(x, ε0) < u(x, ε0) < K(x). So the equation satisfies

wt(x, ε0) > 0, w(x, ε0) > 0

Now let t0(x) = inf{t > ε0 : w(x, t) = 0}. So t0(x) > ε0 for all x. If there is a

finite number t∗ = infΩ̄ t0(x), then by continuity w(x, t∗) = 0 and for any 0 < δ <
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ε0, w(x, t∗ − δ) > 0.

w(x, t∗) = w(x, t∗ − δ) +

∫ t∗

t∗−δ
ws(x, s)ds

Each term in the right hand side is positive but w(x, t∗) = 0. So we have a

contradiction.

So we have for w(x, 0) ≥ 0 if w(x0, 0) > 0 for some x0, then w(x, t) > 0 for all

t > 0 as long as it exists. And thus ũ > ṽ so u > v.

c) Suppose Ω is bounded. Let w(x, t) = [u2(x, t)− u1(x, t)]eat.

wt(x, t) ≥ [K(x)−u1(x, t)]

∫
Ω

k(x, y)w(y, t)dy+w(x, t)[a−d(x)−
∫

Ω

k(x, y)u2(y, t)dy]

(1.2.8)

w(x, 0) ≥ 0. Consider (1.2.8) for 0 ≤ t ≤ T for some fixed t. We will show that for

any ε0 > 0 we have w(x, t) ≥ ε0 > 0 on Ω̄ × [0, T ] so that w(x, t) ≥ 0 on Ω̄ × [0, T ].

Suppose ε0 > 0 is given. Let z(x, t) = w(x, t) + εebt, where b and ε are positive and

will be chosen later. We have z(x, 0) ≥ ε. From (1.2.8) we get

zt(x, t) ≥ [K(x)− u1(x, t)]

∫
Ω

k(x, y)dy(z(y, t)− εebt)

+ [a− d(x)−
∫

Ω

k(x, y)u2(y, t)dy](z(x, t)− εbbt)dy + εbebt

so,

zt(x, t) ≥ [K(x)− u1(x, t)]

∫
Ω

k(x, y)z(y, t)dy + [a− d(x)−
∫

Ω

k(x, y)u2(y, t)dy]z(x, t)

+εebt[b− [K(x)− u1(x, t)]

∫
Ω

k(x, y)dy − [a− d(x)−
∫

Ω

k(x, y)u2(y, t)dy]]

(1.2.9)
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Choose b > 0 large enough that

b

2
− [K(x)− u2(x, t)]

∫
Ω

k(x, y)dy − [a− d(x)−
∫

Ω

k(x, y)u(y, t)dy] > 0

Then zt(x, 0) > 0 and z(x, t) > 0 for small t by continuity.

Let t0(x) = inf{t : z(x, t) = 0}. We have t0(x) > 0 for each x ∈ Ω̄. Let

t∗ = inf{t0(x) : x ∈ Ω̄}. We have t∗ ≥ 0. Suppose t∗ = 0. Then there exists a

sequence {xn} ∈ Ω̄ with t0(xn)→ 0 as n→∞. Also, by continuity, z(xn, t0(xn)) = 0.

Choose a subsequence of {xn} such that xn → x∗. Again by continuity, z(x∗, 0) = 0.

This contradicts z(x, 0) > 0 on Ω̄, so we must have t∗ > 0.

Suppose now that t∗ < T for some T < ∞. Let t∗∗ = sup{t ∈ [0, T ] : z(x, t) >

0 for t < t∗}. We have t∗∗ ≤ t∗ < T . If t∗∗ < T we have z(x, t) ≥ 0 for t ≤ t∗∗.

Repeating the argument used at the end of the proof of Maximum Principle Part

(II), we obtain z(x, t) ≥ 0 on [0, nt∗∗] for arbitrary n > 0. It is a contradiction, so we

must have t∗∗ > T and then t∗ > T . Thus, z(x, t) > 0 on Ω̄ × [0, T ]. It follows that

w(x, t) > −εebt on Ω̄× [0, T ]. Choose ε > 0 small enough so that εebt < ε0. Then we

have w(x, t) ≥ −ε0 for 0 ≤ t ≤ T . Since ε0 > 0 was arbitrary, we have w(x, t) ≥ 0

for 0 ≤ t ≤ T so that u2(x, t) ≥ u1(x, t) for 0 ≤ t ≤ T . Since T was arbitrary,

u2(x, t) ≥ u1(x, t) for t > 0.

We have a weaker condition on kernel k(x, y):

Hypothesis 1.9. (1) The kernel k(x, y) ≥ 0 is bounded for all x, y ∈ Ω̄, and∫
Ω
k(x, y)dy <∞.

(2) There exist positive constants k0 and δ such that k(x, y) ≥ c0 > 0 for all
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x, y ∈ Ω satisfying |x− y| < δ.

Corollary 1.10. Part (II) of Theorem 1.5 remains valid under the weaker condition

Hypothesis 1.9 and Ω is connected.

Proof. We have from maximum principle (I) that if u(x, t) is a solution of (1.2.1) with

u(x, 0) ≥ 0 then u(x, t) ≥ 0.

Let w(x, t) = ed(x)tu(x, t). Then

wt = ed(x)t[K(x)− u(x, t)]

∫
Ω

k(x, y)u(y, t)dy

By maximum principle (I) we have wt(x, t) ≥ 0 on Ω̄, so if w(x, t0) > 0 for some

t0 then w(x, t) > 0 for t > t0 and hence u(x, t) > 0 for t > t0.

Suppose u(x, 0) > 0 for x ∈ Bγ(x0)∩ Ω̄ for some γ > 0 and x0 ∈ Ω̄ (here Bγ(x0) is

the ball of radius γ centered at x0). By the hypothesis on k(x, y) we have wt(x, 0) > 0

for all x ∈ Bδ+γ(x0) ∩ Ω̄, so for any t > 0 we have w(x, t) > 0 and thus u(x, t) > 0.

For x ∈ Bγ+2δ(x0) ∩ Ω̄ we then have wt(x, t) > 0 for any t > 0, so w(x, t) > 0 and

hence we have u(x, t) > 0. This argument can then be repeated to show u(x, t) > 0

on Bγ+Nδ(x0)∩ Ω̄ for N = 2, 3, 4, .... Any point in Ω̄ will belong to Bγ+Nδ(x0)∩ Ω̄ for

some N , so u(x, t) > 0 for t > 0.

1.3 Stability of Equilibria

1.3.1 Preliminary

In the following definitions and theorems are from Amann [1].
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Definition 1.11. 1. Let V be a real vector space. An ordering in V is called linear

if

(i) x 5 y implies x+ z 5 y + z for all z ∈ V .

(ii) x 5 y implies αx 5 αy for all α ∈ R+ := [0,∞).

A real vector space together with a linear ordering is called an ordered vector space.

2. Let V be an ordered vector space. Let P := {x ∈ V | x = 0}. And P satisfies

the following properties:

(i) P + P ⊂ P ;

(ii) R+P ⊂ P ;

(iii) P ∩ (−P ) = {0}.

Such a nonempty subset P of a real vector space V is called a cone. Every cone

P defines a linear ordering in V by

x ≤ y iff y − x ∈ P,

the ordering induced by P. The elements in

Ṗ := P\{0} = {x ∈ V | x = 0, x 6= 0}

are called positive and P is said to be the positive cone of the ordering.

3. Let E be a Banach space ordered by a cone P . Then E is called an ordered

Banach space (OBS) if the positive cone is closed.

4. Let V and W be ordered vector spaces with positive cones P and Q, respectively.

A linear operator T : V → W is called positive if T (P ) ⊂ Q and strictly positive if

T (Ṗ ) ⊂ Q̇. If (W,Q) is an ordered Banach space and Q has nonempty interior, then
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T is called strongly positive if T (Ṗ ) ⊂ Q̊.

5. Let E be a Banach space and P be the positive cone. P is total if P − P = E.

We define K to be the positive cone in C(Ω̄) if K = {u ∈ C(Ω̄) : u(x) ≥ 0, ∀x ∈

Ω̄}. For every u(x) ∈ C(Ω̄), there exists u1, u2 ∈ K such that u(x) = u1(x) − u2(x).

Then the positive cone K is total in C(Ω̄).

Theorem 1.12. (Krein-Rutman) Let (C,K) be an ordered Banach space with total

positive cone. Let L(C) denote the space of bounded linear operators from C into

itself. Suppose that T ∈ L(C) is compact and has a positive spectral radius r(T ).

Then r(T ) is an eigenvalue of T and of the dual operator T ∗, with eigenvectors in P

and in P ∗, respectively.

The following theorem we consider strongly positive compact operators.

Theorem 1.13. Let (C,K) be an ordered Banach space whose positive cone has

nonempty interior. Let T be a strongly positive compact endomorphism of C. Then

the following is true:

1. The spectral radius r(T ) is positive;

2. r(T ) is a simple eigenvalue of T having a positive eigenvector and there is no other

eigenvalue with a positive eigenvector;

3. r(T ) is a simple eigenvalue of T ∗ having a strictly positive eigenvector;

4. For every y ∈ K̇ = K\{0}, the equation

λx− Tx = y

has exactly one positive solution if λ > r(T ), and no positive solution for λ ≤ r(T ).

The equation r(T )x− Tx = −y has no positive solution.
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5. For every S ∈ L(C) satisfying S ≥ T, r(S) ≥ r(T ). If S − T is strongly positive,

then r(S) > r(T ).

1.3.2 Positive Equilibrium

To study the persistence and extinction of the system, we want to analyze the sta-

bility of equilibria. Since we have the comparison theorem, the super-(sub-)solution

approach shows that if the zero equilibrium is stable, then the species go extinct. If

the zero is not stable, then the system will persist.

We make the following hypotheses:

Hypothesis 1.14. (i) Ω is a bounded domain in this case, k(x, y) is uniformly Lip-

shitz w.r.t. x, and maxΩ̄×Ω̄ |k(x, y)| <∞.

(ii) f(x) := K(x)
d(x)

is uniformly Lipschitz and there exists d1, d2 > 0 such that

∀x ∈ Ω, 0 < d1 ≤ K(x)
d(x)
≤ d2 <∞.

(iii) k(x, y)ψ(y)dy > 0 for all x ∈ Ω̄ if ψ(x) ≥ 0, ψ ∈ C(Ω̄) and ψ(x0) > 0 for

some x0 ∈ Ω̄.

To study the stability of zero, we linearize the equation at zero and get:

ut = K(x)

∫
Ω

k(x, y)u(y, t)dy − d(x)u(x, t)

Define Mf [φ](x) := K(x)
d(x)

∫
Ω
k(x, y)φ(y)dy. Then for eigenvalue problem −λφ(x) =

Mf [φ](x), we have the following theorem:

Theorem 1.15. Assume Hypothesis 1.4 and 1.14. Then there exists an eigenpair

(λ, φ) satisfying

−λφ(x) =
K(x)

d(x)

∫
Ω

k(x, y)φ(y)dy
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Proof. Suppose S ⊂ C(Ω̄) is bounded so that for u ∈ S we have ‖u‖ ≤ U0. If

v = Mf [u] for some ‖u‖ ≤ U0, then

‖v‖ ≤ d2

∫
Ω

k(x, y)‖u‖dy ≤ d2(maxΩ̄×Ω̄|k(x, y)|)|Ω|U0

and for x, y ∈ Ω̄,

|v(x)− v(y)| = |f(x)

∫
Ω

k(x, z)u(z)dz − f(y)

∫
Ω

k(y, z)u(z)dz|

≤ |f(x)

∫
Ω

[k(x, z)− k(y, z)]u(z)dz|+ |(f(x)− f(y))

∫
Ω

k(x, y)u(z)dz|

≤ [sup |f(x)| sup(
|k(x, z)− k(y, z)|

|x− y|
)U0

+ sup(
|f(x)− f(y)|
|x− y|

) sup |k(y, z)||Ω|U0]|x− y|

≤ C1|x− y|

for some constant C1. Thus, Mf maps bounded sets in C(Ω̄) into sets of functions

that are uniformly bounded and equicontinuous, which have compact closure by the

Arzela-Ascoli theorem. Hence Mf is compact. By the assumptions on k(x, y), Mf is

strongly positive, so the Krein-Rutman theorem applies. It follows that there exist

φ(x) > 0, λp > 0 so that

λpφ = Mf [φ],

so

−λp[φ](x) =
K(x)

d(x)

∫
Ω

k(x, y)φ(y)dy
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Remark 1.16. The hypothesis 1.4 can be replaced by Hypothesis 1.9: there exists δ >

0 and c0 > 0 such that for all x, y ∈ Ω satisfying |x−y| ≤ δ we have k(x, y) ≥ c0 > 0.

Proof. Let T [w] = (
∫

Ω
k̃(x, y)w(y, t)dy where k̃(x, y) satisfies Hypothesis (1.9). The

spectral radius of T is still positive. To see that, take

T (1) =

∫
Ω

k(x, y)dy ≥
∫

Ωδ

k(x, y) · 1dy = c0 · |Ω0| = γ

where Ω0 = {y : |x− y| < δ} ∩ Ω. Then

T 2(1) ≥ γT (1)

and so on. So we have ‖T k‖ ≥ γk. ∴ r(T ) = limk→∞ ‖T k‖
1
k ≥ γ > 0.

By the Krein Rutman Theorem we obtain a positive eigenvalue σ with a nonneg-

ative eigenfunction φ(x) ≥ 0 on Ω. Suppose φ(x) > 0 on a subset Ω0 ⊂ Ω. Apply

T on φ we get T [φ](x) = σφ(x) > 0 on Ω1 = {x : |x − y| < δ for y ∈ Ω0}. Then

T 2[φ](x) = σ2φ(x) > 0 on Ω2 = {x : |x − y| < δ for y ∈ Ω1}, and so on. Since Ω

is connected, repeat this process N times and we will eventually get ΩN covering Ω

and σNφ(x) > 0 on Ω. The eigenfunction φ(x) is thus proved to be positive on Ω.

The next two theorems are similar from the analysis from Coville [22].

Theorem 1.17. Define Λ = {λ ∈ R | ∃φ ∈ C+(Ω̄)\{0}, s.t.Mf [φ] + λφ(x) ≤ 0} and

µ(Mf ) = sup Λ. Then µ(Mf ) is well defined.

Proof. For 0 < ψ ≡ 1, ψ ∈ C(Ω) Let c(x) = f(x) ·
∫

Ω
k(x, y)dy ∈ L∞ If λ < −‖c‖∞,
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then

Mf [ψ] + λψ ≤ (c(x)− ‖c‖∞) ≤ 0

So Λ is nonempty.

On the other hand, Mf [φ] ≥ 0, ∀φ ∈ C+(Ω). Thus 0 is upper bound of Λ.

∴ µ(Mf ) is well defined.

Theorem 1.18. The quantity µ[Mf ] equals the principal eigenvalue obtained from

Theorem 1.15.

Proof. For all λp satisfying the eigenvalue problem, we have λp ∈ Λ. Thus λp ≤

supΛ = µ[Mf ].

On the other hand, if there exists λ′ ∈ Λ, such that λ′ > λp then there exists

φ ∈ int(C+(Ω̄)), such that

f(x)

∫
Ω

k(x, y)φ(y)dy + λ′φ(x) ≤ 0.

We also have

f(x)

∫
Ω

k(x, y)φp(y)dy + λpφp(x) = 0.

Since φ(x) > 0

φp(x)

φ(x)
[f(x)

∫
Ω

k(x, y)φ(y)dy + λ′φ(x)] ≤ f(x)

∫
Ω

k(x, y)φp(y)dy + λpφp(x)

f(x)

∫
Ω

k(x, y)φp(y)dy − f(x)

∫
Ω

k(x, y)
φ(y)φp(x)

φ(x)
dy ≥ (λ′ − λp)φp(x) > 0

Thus,

f(x)

∫
Ω

k(x, y)(w(y)− w(x))dy > 0,∀x ∈ Ω̄
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Let w(x) = φp(x)

φ(x)
∈ C(Ω̄). Suppose w(x) achieves its supremum at x̄ ∈ Ω̄, i.e.

supΩ̄{w(x)} = w(x̄), x̄ ∈ Ω̄.

Then we obtain an inequality

0 < f(x̄)

∫
Ω̄

k(x̄, y)(w(y)− w(x̄))dy ≤ 0.

Contradiction. So we must have λ′ = λp.

Theorem 1.19. Assume Hypothesis (1.4)(1), (1.9) and (1.14). Let g(x, y) =

f(x)k(x, y), then there exist g1, g2, δ > 0, for all x, y ∈ Ω, such that |x − y| < δ,

we have 0 < g1 ≤ g(x, y). Suppose also g(x, y) ≤ g2 for all (x, y).

So an estimation of −λ is g1 · |Ω ∩Bδ/2| ≤ −λ ≤ g2 · |Ω|

Proof. Consider the eigenvalue problem

K(x)

d(x)

∫
Ω

k(x, y)φ(y)dy = −λφ(x) (1.3.1)

That is , ∫
Ω

g(x, y)φ(y)dy = −λφ(x) (1.3.2)

By Krein-Rutman theorem we know −λ > 0 exists and we know that there exists

φ(x) > 0 such that for any x ∈ Ω,

∫
Ω

g(x, y)φ(y)dy = −λφ(x)
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Since g(x, y), φ(x) > 0, we have for any z ∈ Ω

∫
B δ

2
(z)∩Ω

g(x, y)φ(y)dy ≤ −λφ(x).

Thus ∫ ∫
B δ

2
(z)∩Ω

g(x, y)φ(y)dydx ≤ −λ
∫
B δ

2
(z)∩Ω

φ(x)dx.

If x, y ∈ B δ
2
(z) ∩ Ω, then |x− y| < δ, so g(x, y) ≥ g1.

∫ ∫
B δ

2
(z)∩Ω

g1φ(y)dydx ≤ −λ
∫
B δ

2
(z)∩Ω

φ(x)dx

so that

g1|B δ
2
(z) ∩ Ω|

∫
B δ

2
(z)∩Ω

φ(y)dy ≤ −λ
∫
B δ

2
(z)∩Ω

φ(x)dx.

Since the integrals on the left and right sides are positive and equal, we have

g1|B δ
2
(z) ∩ Ω| ≤ −λ

for any z ∈ Ω. Hence

−λ ≥ g1|Bδ/2 ∩ Ω|.

On the other hand, φ(x) is integrable on the bounded domain Ω and g(x, y) ≤ g2, so

− λ
∫

Ω

φ(x)dx =

∫
Ω

∫
Ω

g(x, y)φ(y)dydx

≤
∫

Ω

∫
Ω

g2φ(y)dydx = g2|Ω|
∫

Ω

φ(y)dy.

Again, the integrals on both sides are positive and are equal to each other so −λ ≤
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g2|Ω|.

Thus we have

K(x)

d(x)

∫
Ω

k(x, y)φ(y)dy − φ(x) = (−λ− 1)φ(x) := γpφ(x).

The next lemma explains the situation when the initial condition is itself a sub-

or super-solution:

Lemma 1.20. Suppose that k(x, y) has the property k(x, y) ≥ g1 > 0 if |x − y| < δ

for some g1, δ > 0. If u(x, t) is a solution of (1.2.1) with 0 ≤ u(x, 0) ≤ K(x) where

u(x, 0) = u0(x) ∈ C(Ω̄) such that

(1) If

0 < [K(x)− u0(x)]

∫
Ω

k(x, y)u0(y)dy − d(x)u0(x), (1.3.3)

then u(x, t) is increasing in t and as t → ∞, u(x, t) → u∗(x) where u∗(x) is the

smallest equilibrium for (1.2.1) satisfying u(x, 0) ≤ u(x, t) ≤ K(x).

(2) If the inequality is replaced with

0 > [K(x)− u0(x)]

∫
Ω

k(x, y)u0(y)dy − d(x)u0(x), (1.3.4)

then u(x, t) is decreasing in t and as t → ∞, u(x, t) → u∗(x) where u∗(x) is the

largest equilibrium for (1.2.1) that is less than u(x, 0).

Proof. By (1), u0(x) is a sub-solution to (1.2.1), and u(x, t) is a solution to (1.2.1)

and thus is a super-solution. We have u(x, 0) = u0(x) so by Theorem 1.8 we have

u(x, t) ≥ u0(x). By (1) we also have ut(x, 0) > 0 so that for each x ∈ Ω̄, there is a t0(x)
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such that u(x, t) > u0(x) for 0 < t < t0(x). Pick some x0 ∈ Ω̄; then for 0 < δ < t0(x0)

we have u(x, δ) ≥ u0(x) for all x and u(x0, δ) > u0(x0). (b) of Theorem 1.8 implies δ

is independent of x. Let v(x, t) = u(x, t+ δ). Then v(x, t) is a solution. By Theorem

1.8 with v(x, 0) = u(x, δ), so v(x, 0) ≥ u(x, 0) for all x and v(x, 0) > u(x, 0) for some

x, so v(x, t) > u(x, t) by Theorem 1.8. Thus u(x, t + δ) > u(x, t), so that u(x, t)

is increasing. For each x ∈ Ω̄ we have u(x, t) < K(x) for t > 0 by Theorem 1.5.

Thus, for each x we have u(x, t) → u∗(x) as t → ∞ for some u∗(x) ≤ K(x). By the

monotone convergence theorem u∗(x) is measurable and

∫
Ω

k(x, y)u(y, t)dy →
∫

Ω

k(x, y)u∗(y)dy.

Since u(x, t)→ u∗(x) as t→∞, we have u(x, tn)→ u∗(x) for any sequence tn →∞.

Then, u∗(x) must be an equilibrium for (1.2.1), because if not then for some x we

would have ut(x, t) > 0 with u(x, t) = u∗(x), contradicting u(x, t)→ u∗(x) as t→∞.

Finally, if u∗∗ is a equilibrium of (1.2.1) with u∗∗(x) > u(x, 0) = u0(x), then u∗∗(x) is

a solution of (1.2.1) so by Theorem 1.8 we have u∗∗(x) ≥ u∗(x). Hence u∗(x) is the

minimal equilibrium larger than u0(x).

The proof for the case (2) is identical except that in that case u(x, t) decreases to

the largest equilibrium less than u0(x).

There are two kinds of hypotheses of the kernel k(x, y)

(i) Hypothesis 1.4:
∫

Ω
k(x, y)φ(y)dy > 0 for all x ∈ Ω̄ if φ(x) ≥ 0, φ(x) > 0 on an

open set.

Or,

(ii) Hypothesis 1.9: There exist g1, δ > 0 so that if |x− y| < δ then k(x, y) > g1.
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Under (i) the operator Mf is strongly positive so we can use Theorem 1.13. How-

ever, we can prove something with a weaker condition (ii) because in that case there

is still a principal eigenvalue γp > 0 and the comparison principle and maximum

principle hold.

Next we assume the stronger hypothesis 1.4 and show that with (ii) u = 0 is

locally stable if γp < 0 and unstable if γp > 0.

Theorem 1.21. Suppose that Hypothesis 1.4 is satisfied and that γp < 0. Then u = 0

is locally asymptotically stable.

Proof. Let φ(x) > 0 be an eigenfunction for γp, normalized so that φ(x) < K(x).

Then we have K(x)
d(x)

∫
Ω
k(x, y)φ(y)dy − φ(x) = γpφ(x).

There will be a constant φ0 such that φp(x) ≥ φ0 on Ω. Let uε = εφ. We have

[K(x)− uε]
∫

Ω

k(x, y)uε(y)dy − d(x)uε(x)

= d(x)ε[
K(x)

d(x)

∫
Ω

k(x, y)φ(y)dy − φ(x)]− ε2[φ(x)

∫
Ω

k(x, y)φ(y)dy]

≤ d(x)εγpφ(x)

(1.3.5)

so for any ε with 0 < ε ≤ 1, the solution to (1.2.1) with u(x, 0) = uε(x) is decreasing

by Lemma 1.20.

Claim: In this case, (1.2.1) does not have any positive equilibrium less than or

equal to φ0 for all x.

Now choose ε > 0 small enough that maxuε(x) < φ0, and let u2(x, t) be the solution

to (1.2.1) with u2(x, 0) = uε(x). We have minuε(x) > 0. u2(x, 0) = uε(x). By (1.3.5)

and the Lemma, u2(x, t) decreases to the largest equilibrium less than u2(x, 0) which

in this case is 0. Hence, any solution v(x, t) of (1.2.1) with v(x, 0) <minuε(x) must
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have limt→∞v(x, t) = 0 by Theorem 1.8. Hence if γp < 0, the zero equilibrium is

locally asymptotically stable.

Proof. (Proof of the Claim) Suppose there is such an equilibrium. Call it v∗(x).

Let ε∗ = inf{ε | εφ(x) > v∗(x) for all x ∈ Ω̄}. Since φ(x) ≥ φ0 ≥ v∗(x) > 0, we

have 0 < ε∗ ≤ 1.

Let u1(x, t) be the solution to (1.2.1) with u(x, 0) = uε∗(x). Then u(x, 0) ≥ v∗(x)

and u, v∗ are both solutions of (1.2.1) so u1(x, t) ≥ v∗(x) for all x and t. Also, for

some x̄ ∈ Ω̄ we must have u1(x̄, 0) = v∗(x). Finally, by (1.3.5), we have u1t(x̄, 0) < 0,

so for small t > 0 we have

v∗(x̄) ≤ u1(x̄, t) < u1(x̄, 0) = v∗(x),

which contradicts the hypothesis that v∗(x) is an equilibrium. Hence, in this case,

(1.2.1) cannot have any equilibrium with maximum less than φ0.

If we assume Hypothesis 1.4 that
∫

Ω
k(x, y)φ(y)dy > 0 for any φ(x) ≥ 0 with φ(x)

positive on an open set, then the operator

Mf [φ](x) = f(x)

∫
Ω

k(x, y)φ(y)dy

is strongly positive, then Theorem 1.13 applies.

This can be used to show nonexistence of a positive equilibrium if γp ≤ 0 (thus zero

equilibrium is globally stable) and uniqueness of the positive equilibrium if γp > 0.
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Lemma 1.22. Suppose hypothesis 1.4 holds and γp ≤ 0. Then there is no positive

equilibrium for (1.2.1) with 0 < u∗(x) ≤ K(x).

Proof. Suppose u∗(x) > 0 is an equilibrium of (1.2.1). Let

S[φ](x) =
K(x)

d(x)

∫
Ω

k(x, y)φ(y)dy

and

T [φ](x) =
K(x)− u∗(x)

d(x)

∫
Ω

k(x, y)φ(y)dy

Since u∗(x) is a solution of (1.2.1), by Theorem 1.5 we have u∗(x) < K(x). So both

S and T are strongly positive.

u∗(x) satisfies

u∗(x) =
K(x)− u∗(x)

d(x)

∫
Ω

k(x, y)u∗(y)dy

So r(T ) = 1.

We already have r(S)− 1 = γp ≤ 0, so r(S) ≤ r(T ).

However, (S−T )φ(x) = u∗(x)
d(x)

∫
Ω
k(x, y)φ(y)dy is strongly positive, so r(S) > r(T ).

Contradiction.

Theorem 1.23. If Hypothesis 1.4 holds and γp ≤ 0, then u(x, t) = 0 is globally

asymptotically stable.

Proof. Note that if u0(x) = K(x), then (1.3.4) is satisfied. So if u(x, t) is a solution to

(1.2.1) with u(x, 0) = K(x), then u(x, t) is decreasing and as t→∞, u(x, t)→ ū∗(x)

where ū∗(x) is the largest equilibrium for (1.2.1) and ū∗(x) < K(x).

Since γp ≤ 0, by previous lemma there is no positive equilibrium of (1.2.1), we
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must have u(x, t)→ 0.

However, Theorem 1.8 implies that if there is v(x, t) satisfying (1.2.1) and 0 ≤

v(x, 0) ≤ K(x), then 0 ≤ v(x, t) ≤ u(x, t), and so v(x, t) → 0 as t → ∞. Thus 0 is

globally asymptotically stable.

If γp > 0, for small ε > 0 we have as in (1.3.5) that uε = εφ satisfies

[K(x)− uε(x)]

∫
Ω

k(x, y)uε(y)dy − d(x)uε(x)

= d(x)εγpφ(x)− ε2(

∫
Ω

k(x, y)φ(y)dy)φ(x) > 0

(1.3.6)

Thus, by Lemma 1.20, the solution of (1.2.1) with initial data u(x, 0) = uε(x)

increases toward an equilibrium u∗(x) > 0. Since ε > 0 can be arbitrarily small,

u∗(x) will be the minimal positive equilibrium of (1.2.1).

The next lemma shows that the positive equilibrium u∗(x) is unique when it exists.

So if γp > 0, u(x, t) starting from uε(x) goes to the unique positive equilibrium u∗(x)

as t→∞.

Lemma 1.24. If hypothesis 1.4 holds and γp > 0, then equilibrium u∗(x) in this

case exists and is the minimal equilibrium of (1.2.1). Moreover, u∗(x) is the unique

positive equilibrium of (1.2.1).

Proof. Suppose u∗∗ > 0 is any other equilibrium of (1.2.1). We have u∗∗ ≥ u∗(x) since

u∗(x) is minimal. Also, since u∗∗(x) and u∗(x) are both solutions of (1.2.1) it follows

from Theorem 1.8 that if u∗∗(x) > u∗(x) for some x then u∗∗(x) > u∗(x) for all x.
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Let

S[φ](x) =
K(x)− u∗(x)

d(x)

∫
Ω

k(x, y)φ(y)dy

T [φ](x) =
K(x)− u∗∗(x)

d(x)

∫
Ω

k(x, y)φ(y)dy

Then r(S) = 1 because Su∗ = u∗ > 0, and r(T ) = 1 because Tu∗∗ = u∗∗ > 0.

But (S − T )φ = u∗(x)−u∗∗(x)
d(x)

∫
Ω
k(x, y)φ(y)dy is strongly positive since u∗∗(x) >

u∗(x). So r(S) > r(T ) which is a contradiction. Thus u∗(x) is the unique positive

equilibrium.

Theorem 1.25. Suppose Hypothesis (ii) holds, and γp > 0, then u∗(x) is globally

asymptotically stable.

Proof. If u(x, 0) ≤ K(x) and u(x, t) satisfies (1.2.1) then by Theorem 1.8 we have

u(x, t) ≤ v(x, t) where v(x, 0) = K(x). As in the proof that 0 is globally asymp-

totically stable we have that K(x) satisfies (1.3.4), so v(x, t) decreases to the largest

equilibrium that is less than K(x), which is u∗(x).

If u(x, 0) ≥ 0, u(x, 0) > 0 for some x, then we have u(x, δ) > 0 for some δ > 0 by

Theorem 1.8. We can choose ε > 0 so that εφ < u(x, δ) and εφ satisfies (2.5.21). Let

w(x, t) be the solution of (1.2.1) with w(x, 0) = εφ(x), then by Lemma 1.20 we have

w(x, t) increasing to the minimal equilibrium of (1.2.1) that is larger than εφ, which

is u∗(x).

Also, if z is the solution of (1.2.1) with z(x, 0) = u(x, δ) then z(x, t) ≥ w(x, t) by

Theorem 1.8; also, by uniqueness u(x, t+ δ) = z(x, t). Hence, u(x, t+ δ) is bounded

below by w(x, t), and w(x, t) → u∗(x) as t → ∞. It follows that u(x, t) is bounded
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below by w(x, t − δ) for t ≥ δ, so for t > δ we have w(x, t − δ) ≤ u(x, t) ≤ v(x, t),

with w(x, t − δ) → u∗(x) and v(x, t) → u∗(x) as t → ∞. Hence u(x, t) → u∗(x) as

t→∞.

Corollary 1.26. From Theorem 1.19, Theorem 1.23 and 1.25, we have the following:

(1) If g2 · |Ω| < 1, then zero equilibrium is asymptotically stable.

(2) If g1 · |Ω ∩ Bδ/2| > 1, then as t → ∞, the equilibrium u∗(x) is asymptotically

stable.

1.4 Conclusions

For our nonlocal metapopulation model on continuous time and space, we obtained

the existence and uniqueness for the solution for all t > 0 by applying contrac-

tion mapping theorem. This result holds for both Ω finite or on infinite domain.

Maximum principle and comparison theorem are valid if Ω is finite and Hypothesis

1.9 is satisfied. However, to apply Krein-Rutman theorem on eigenvalue problem

−λφ(x) = K(x)
d(x)

∫
Ω
k(x, y)φ(y)dy − φ(x), we need Hypothesis 1.4, which is stronger

than Hypothesis 1.9. By the approach of super-(sub-) solution, we have the sta-

bility analysis of zero equilibrium and the unique positive equilibrium under some

conditions based on the estimation of the principal eigenvalue.



Chapter 2

Two Species Competition Model

2.1 Background

In Chapter 1, we studied some basic properties for the nonlocal metapopulation model

for single species. In this chapter, we will look at the coexistence and extinction for a

two-species competition system. The Lotka Volterra competition model of population

dynamics is based on logistic equations and describes species competition for common

resources. The Lotka Volterra competition system with random dispersal usually has

the following form

ut = d14u+ u[a1(x)− b1(x)u− c1(x)v], x ∈ Ω

vt = d24v + v[a2(x)− b2(x)u− c2(x)v], x ∈ Ω

(2.1.1)

This system, describing the dynamics of two competing species, has been widely

investigated. The functions ai(x), bi(x), ci(x), i = 1, 2 are assumed to be smooth and

nonnegative on Ω̄×(0,+∞). di are the diffusion constants and they are positive. The

functions ai(x) represent the growth rates, b1(x), c2(x) represents the self-regulation of

each species and c1(x), b2(x) account for competition. Cosner and Lazer [21] studied

the existence and stability of coexistence states for this model under two types of

40
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growth and boundary conditions.

Hetzer, Nguyen and Shen [36] considered the Lotka-Volterra competition with

nonlocal dispersal:

ut = d1[

∫
Ω

k(x, y)u(y, t)dy − u(x, t)] + u[a1(x)− b1(x)u− c1(x)v], x ∈ Ω

vt = d2[

∫
Ω

k(x, y)v(y, t)dy − v(x, t)] + v[a2(x)− b2(x)u− c2(x)v], x ∈ Ω

(2.1.2)

The system describes the population dynamics with two competing species, where

dispersal is affected by long distance interaction.

In our model, we consider the competition for space between two species. The

model is:

ut = [K(x)− a(x)u(x, t)− b(x)v(x, t)]

∫
Ω

k1(x, y)u(y, t)dy − d1(x)u(x, t), x ∈ Ω

vt = [K(x)− a(x)u(x, t)− b(x)v(x, t)]

∫
Ω

k2(x, y)v(y, t)dy − d2(x)v(x, t), x ∈ Ω

(2.1.3)

a(x) is the size of individual of species u, b(x) is the size of species v. ki(x, y) are the

dispersal kernel of u, v respectively. ei(x) are the death rate of each species. Chesson

et al. [14] [15] and [16] have a different modeling setup but with the similar idea that

species compete for spaces. It is different from the previous models where the two

species compete for resources.

Another important feature is the dispersal strategy of organisms. How the species

distribute in space leads to spatial distributions and biological invasions, and colo-

nizations. The evolution of dispersal strategies is a problem of particular interest in

spatial ecology, especially what dispersal strategies can be selected over the evolution
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process. A strategy is said to be evolutionarily stable if it cannot be invaded by a

small population of mutants using any other strategy. We will investigate the evo-

lutionary stability of a nonlocal dispersal strategy in a metapopulation framework.

Cressman et al. [23] showed that the ideal free distribution is an evolutionarily stable

strategy in a two-patch environment metapopulation model, from the aspect of game

theory. A metapopulation is a collection of local populations distributed across a

network of patches. Dispersal is viewed as the rate of colonization where individuals

can recolonize a habitat once the local population has gone extinct.

Our study is based on an extension of Levins metapopulation model which as-

sumed a infinite number of identical patches where the colonization is also driven

by the dispersal of focal organisms. The modeling viewpoint is generally similar to

the idea in Hamilton and May [54]. [54] assumed that the adults do not move while

they produce offspring such that only one propagule (carrying capacity of each site

is one) stays at home, while the others are migrants. This is a dispersal strategy

which is shown to be evolutionary stable in contrast to the strategy where adults

keep propagules at their own sites, even though the migrants in the dispersal strat-

egy suffer a mortality rate during the dispersal process. The migrants and local

organisms compete for space, and dispersal occurs together with reproduction, in

a heterogeneous environment (sometimes temporally invariant). Comins et al. [19]

extended the result to transient environments and allowed more than one organism

to occupy each site. [19] showed that the migration rate can be chosen to maximize

the proportion of sites occupied by considering exogenous extinction. On the other

hand, Hanski’s spatially explicit patch occupancy model, which is an extension of

Levins’ metapopulation model with a similar assumption, and Mouquet and Loreau

studied the dynamics of the metacommunity model where communities are linked by
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dispersal. Our model (2.1.3) is continuous in time and space.

The ideal free distribution is caused by a form of conditional dispersal, known

as balanced dispersal, which results in an equilibrium population that will have the

same fitness at each location ( [12]). This dispersal strategy is evolutionarily stable in

a considerable number of situations (Fretwell et al. [28]). The ideal free distribution

is a theory about how organisms would locate themselves if they were omniscient

and able to move as they wanted. See Cantrell et al. [13], Cantrell, et al. [7], [8],

[9], Cosner et al. [20], Cantrell et al. [10]. [9] investigated the ideal free dispersal

strategy in discrete patchy environments. In contrast to Cressman et al’s approach

of game theory which based on comparing payoffs at equilibrium, they addressed

the mechanisms and dynamics in their model. In [20] the authors extended the

results developed for discrete diffusion models to the case of nonlocal dispersal models

and found conditions of determining evolutionarily stable dispersal strategies. They

showed that the ideal free dispersal strategy is likely to evolve and persist. For random

dispersal, Dockery [25] showed that the mutant with smaller dispersal rate can not

only invade the resident species but also drive it to extinction. Hutson [38] suggested

that the slower dispersal is favored in nonlocal dispersal. Cantrell et al. [10] introduced

a more general class of ideal free dispersal kernels that are indeed evolutionarily

stable. In [24] the authors investigated the effect of cost-associated forced movement

for spatial metapopulation dynamics by considering a food chain between patches.

In this chapter, we will provide proof of the existence and uniqueness of solutions

to the model and prove a version of maximum principle and comparison theorem

for our continuum nonlocal metapopulation model. The stability of the equilibrium

(0, 0) in this model and the two semi-trivial equilibria will be studied. In the case

that none of these three equilibria is stable, we will give a condition of the existence of
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coexistence state and a specific example. For evolutionarily stability analysis, we will

investigate the model via competition models between two species that are identical

except for their dispersal strategy. The discrete patch model for this scenario is the

Mouquet-Loreau model for metacommunity network in which communities are linked

by dispersal. Cantrell, Cosner, Lou, Schreiber [11] studied the dispersal strategy

for Mouquet- Loreau model. In this model, dispersal occurs during the process of

recruitment. The species with an ideal free dispersal strategy will invade successfully

in this case.

2.2 Existence and Uniqueness

2.2.1 The model

Let

ut = [K(x)− a(x)u(x, t)− b(x)v(x, t)]

∫
Ω

k1(x, y)u(y, t)dy − d1(x)u(x, t)

vt = [K(x)− a(x)u(x, t)− b(x)v(x, t)]

∫
Ω

k2(x, y)v(y, t)dy − d2(x)v(x, t)

(2.2.1)

where u(x, t), v(x, t) are population density of two species respectively. K(x)

represents the potential suitable site for both species. k1,2(x, y) are dispersal kernel

for two species and d1,2(x) are extinction rate. The variable a(x) represents the

individual size of species u which may depend on the location x and b(x) represents

the individual size for species v. For the system setup, we assume that the individuals

(offspring, juveniles) of two species compete for the space, which results in the form

that two equations have the same a(x) and b(x).
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2.2.2 Existence and Uniqueness of Solution

Suppose we start with ~w(x, 0) = ~w0 = (u(x, 0), v(x, 0)) = (u0, v0). ~w = (u, v) ∈

[C([0, T ], C(Ω̄))]2.

Let S ⊆ [C([0, T ], C(Ω̄))]2. X is the set of continuous functions from [0, T ] to

C(Ω̄). S = {~w(x, t) = (u(x, t), v(x, t)) | u(x, t), v(x, t) ∈ X and ‖~w − ~w0‖ ≤ M}.

Here ‖~w‖ = supΩ×[0,T ] |u(x, t)| + supΩ×[0,T ] |v(x, t)| and 0 < M,T < 1 are constants

to be determined later.

We have ∀~w ∈ S, ‖~w‖ ≤ ‖~w0‖ + M ≤ ‖~w0‖ + 1 := W0. ‖u‖ ≤ ‖u0 + M
2
‖ :=

U0,‖v‖ ≤ ‖v0 + M
2
‖ := V0.

For ~w ∈ S, 0 < t < T , define F(~w) = (F1(u),F2(v))

F1(u) = u(x, 0) +
∫ t

0

(
[K(x)− a(x)u(x, s)− b(x)v(x, t)]

·
∫

Ω
k1(x, y)u(y, t)dy − d1(x)u(x, s)

)
ds

F2(v) = v(x, 0) +
∫ t

0

(
[K(x)− a(x)u(x, s)− b(x)v(x, t)]

·
∫

Ω
k2(x, y)v(y, t)dy − d2(x)v(x, s)

)
ds

(2.2.2)

First, we have

‖F1(u)‖

≤([‖K(x)‖+ sup
Ω
|a(x)| · ‖u(x, s)‖+ sup

Ω
|b(x)|‖v(x, s)‖] ·

∫
Ω

k1(x, y)dxdy · |Ω|

+‖d1(x)‖)U0 · t+ ‖u0‖

Similar for F2(v). So the integrals converge.



46

Then we want to show F(~w) ∈ S.

‖F1(u)− u0‖

≤ ([‖K(x)‖+ sup
Ω
|a(x)| · ‖u(x, s)‖+ sup

Ω
|b(x)|‖v(x, s)‖] ·

∫
Ω

k1(x, y)dxdy · |Ω|

+‖d1(x)‖)U0 · t

≤ constant ·M · t

We can select T1(M) small enough such that for 0 < t < T1(M) we have

‖F1(u)− u0(x)‖ < M

2

Similarly, we can select T2(M) such that for 0 < t < T2(M) we have

‖F2(v)− v0(x)‖ < M

2

So F(~w) ∈ S.

Next we want to show that we can choose T ≤ T3(M) such that

‖F(~w1)−F(~w2)‖ < C‖~w1 − ~w2‖

for ~w1, ~w2 ∈ S,C < 1, and starting from the same ~w0 = (u0, v0).
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‖F1(u1)−F1(u2)‖

= ‖
∫ t

0

{
∫

Ω

k1(x, y)u1(y, s)dy[K(x)− a(x)u1(x, s)− bv1(x, s)]− d1(x)u1(x, s)}ds

−
∫ t

0

{
∫

Ω

k1(x, y)u2(y, s)dy[K(x)− a(x)u2(x, s)− bv2(x, s)]− d1(x)u2(x, s)}ds‖

= ‖
∫ t

0

{
∫

Ω

K(x) · k1(x, y)[u1(y, s)− u2(y, s)]dy − d1(x) · |u1(x, s)− u2(x, s)|

−a(x)
(

[u1(x, s)− u2(x, s)][

∫
Ω

k1(x, y)u1(y, s)dy]

+u2(x, s)[

∫
Ω

k1(x, y) · (u1(y, s)− u2(y, s))dy]
)

−b(x)
(

[v1(x, s)− v2(x, s)][

∫
Ω

k1(x, y)u1(y, s)dy]

+v2(x, s)[

∫
Ω

k1(x, y)(u1(y, s)− u2(y, s))dy]
)
‖

= C1 · ‖u1 − u2‖ · t+ C2 · ‖v1 − v2‖ · t

Here, C1 = supΩ |
∫

Ω
k1(x, y)dy| ·

(
sup |K(x)|+ sup |d1(x)|+ sup |a(x)|(‖u1‖+‖u2‖) +

sup |b(x)‖v2‖|
)

, C2 = sup |b(x)| · supΩ |
∫

Ω
k1(x, y)dy| · ‖u1‖
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‖F2(v1)−F2(v2)‖

= ‖
∫ t

0

{
∫

Ω

k2(x, y)v1(y, s)dy[K(x)− a(x)u1(x, s)− bv1(x, s)]− d2(x)v1(x, s) }ds

−
∫ t

0

{
∫

Ω

k2(x, y)v2(y, s)dy[K(x)− a(x)u2(x, s)− b(x)v2(x, s)]− d2(x)v2(x, s) }ds‖

= ‖
∫ t

0

{
∫

Ω

K(x) · k2(x, y)[v1(y, s)− v2(y, s)]dy − d2(x) · |v1(x, s)− v2(x, s)|

−a(x)
(

[u1(x, s)− u2(x, s)][

∫
Ω

k2(x, y)v1(y, s)dy]

+u2(x, s)[

∫
Ω

k2(x, y) · (v1(y, s)− v2(y, s))dy]
)

−b(x)
(

[v1(x, s)− v2(x, s)][

∫
Ω

k2(x, y)v2(y, s)dy]

+v1(x, s)[

∫
Ω

k2(x, y)(v1(y, s)− v2(y, s))dy]
)
‖

= C3 · ‖v1 − v2‖ · t+ C4 · ‖u1 − u2‖ · t

Here C3 = supΩ |
∫

Ω
k2(x, y)dy|·

(
sup |K(x)|+sup |d2(x)|+sup |a(x)|·‖u2‖+sup |b(x)|·

(‖v1‖+ ‖v2‖)
)

, C4 = sup |a(x)| · supΩ |
∫

Ω
k2(x, y)dy| · ‖v1‖.

Let C = max{C1 + C4, C2 + C3}. Select t < min{T1(M), T2(M), 1
C
},M = 1, we

have

‖F(~w)1 −F(~w2)‖ ≤ α‖~w1 − ~w2‖

with α < 1. Thus F is a contraction on S.

Theorem 2.1. There exists a unique solution for system (2.2.1) for some [0, T ].

Proof. By Banach fixed point theorem, there exists a unique ~w∗ such that F(~w∗) =
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~w∗. So by the previous discussion, there exists a solution to

u∗ = u(x, 0) +

∫ t

0

[

∫
Ω

k1(x, y)u∗(y, s)dy[K(x, t)− a(x)u∗(x, s)− b(x)v∗(x, t)]

−d1(x)u∗(x, s)]ds

v∗ = v(x, 0) +

∫ t

0

[

∫
Ω

k2(x, y)v∗(y, s)dy[K(x, t)− a(x)u∗(x, s)− b(x)v∗(x, t)]

−d2(x)v∗(x, s)]ds.

As in the case of a single equation, the integrands are continuous, so u∗(x), v∗(x) are

differentiable and satisfy (2.2.1).

Remark 2.2. Similar to the single equation, to obtain the existence of solution, the

domain Ω is not necessarily bounded. For example, if k(x, y) = k(x− y) is Gaussian

kernel and Ω = R, then we need
∫

Ω
ki(y)dy = ki <∞ and can also obtain the existence

of solutions.

In the following context, we have the following hypotheses:

(H1) k(x, y) ≥ 0 is a C1 function,
∫

Ω
k(x, y)dx <∞,

∫
Ω
k(x, y)dy <∞ and there

is δ0 > 0 such that for any x ∈ Ω̄, we have k(x, y) > 0 for y ∈ Ω̄ and ‖x− y‖ < δ0.

(H2) k(x, y) ≥ 0 is a C1 function,
∫

Ω
k(x, y)dx <∞,

∫
Ω
k(x, y)dy <∞ and for all

φ(x) ≥ 0 on Ω and φ(x) > 0 for some x, we have
∫

Ω
k(x, y)dy > 0.

(H1) is a weak assumption on the kernel (Hypothesis 1.9). (H2) is a strong

assumption (Hypothesis 1.4).
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2.3 Maximum Principle

Theorem 2.3. Suppose ki(x, y) ≥ 0 and satisfy (H1) and (H2) for i = 1, 2

(I) If 0 ≤ a(x)u(x, 0) + b(x)v(x, 0) ≤ K(x), and (u(x, t), v(x, t)) is a solution of

the system, then a(x)u(x, t) + b(x)v(x, t) < K(x), and either u ≡ 0 or u > 0, either

v ≡ 0 or v > 0 for t ∈ [0, T ] where (u(x, t), v(x, t)) exists.

(II) If we further assume u(x, 0) > 0, v(x, 0) > 0 on some open subset of Ω, then

u(x, t) > 0 and v(x, t) > 0 for t ∈ [0, T ] where (u(x, t), v(x, t)) exists.

Proof. If u ≡ 0, then it becomes the single species model for v. Similarly if v ≡ 0.

Let u, v ≥ 0. For t = 0, u, v ≥ 0 and u, v > 0 for some x ∈ Ω.

At points where a(x)u(x, 0) + b(x)v(x, 0) = K(x), we have ut = −d1(x)u(x, 0),

vt = −d2(x)v(x, 0).

If a(x)u(x, 0) + b(x)v(x, 0) = K(x), then either u > 0 or v > 0; so since

u(x, 0) ≥ 0, v(x, 0) ≥ 0, (a(x)u(x, t) + b(x)v(x, t))t < 0 at t = 0. Otherwise

a(x)u(x, 0) + b(x)v(x, 0) < K(x). In either case there exists an interval (0, t0(x))

such that a(x)u(x, t) + b(x)v(x, t) < K(x) at point x.

We could have u(x, 0) ≡ 0 (or v(x, 0) ≡ 0). If so, then u(x, t) ≡ 0 (or v(x, t) ≡ 0),

and the system reduces to the single equation model.

In any other case we would have u(x, 0) > 0 for some x, v(x, 0) > 0 for some x.

Since (H2), we get ut(x, 0) > 0, vt(x, 0) > 0 at any point where u(x, 0) = 0

(v(x, 0) = 0) and a(x)u(x, 0) + b(x)v(x, 0) < K(x). For such values of x we have

u(x, t) > 0 for 0 < t < t1u(x) (v(x, t) > 0 for 0 < t < t1v(x)). We also get u(x, t) > 0

for 0 < t < t1u(x) by continuity if u(x, 0) > 0 (similar for v).

Consider the case u(x, 0) = 0 and a(x)u(x, 0) + b(x)v(x, 0) = K(x). We already

know that if a(x)u(x, 0) + b(x)v(x, 0) = K(x), then as above, (since u(x, 0), v(x, 0) ≥
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0) we must have a(x)ut(x, 0)+b(x)vt(x, 0) < 0 so thatK(x)−a(x)u(x, t)−b(x)v(x, t) >

0 on some interval (0, t0(x)). Also, if u = 0 and a(x)u(x, 0) + b(x)v(x, 0) = K(x),

then ut(x, 0) = 0. If u(x, 0) ≥ 0 and u(x, 0) > 0 somewhere, then by (H2),

∫
Ω

k1(x, y)u(y, 0)dy > 0

and then by continuity
∫

Ω
k1(x, y)u(y, t)dy > 0 on some interval 0 < t < t2(x). We

have

ut + d1(x)u(x, t) = [K(x)− a(x)u(x, t)− b(x)v(x, t)]

∫
Ω

k1(x, y)u(y, t)dy

so

[u(x, t)ed1(x)t]t = ed1(x)t[K(x)− a(x)u(x, t)− b(x)v(x, t)]

∫
Ω

k1(x, y)u(y, t)dy

so

u(x, t) =

∫ t

0

e−d1(x)(t−s)[K(x)− a(x)u(x, t)− b(x)v(x, t)]

∫
Ω

k1(x, y)u(y, s)dyds.

The expression inside the integral will be positive for 0 < t < min{t0(x), t2(x)} so

again u(x, t) > 0 on 0 < t < t1u(x) for some t1u(x) > 0. Hence for each x, u(x, t) > 0

on 0 < t < t1u(x). Similarly for v(x, t).

Let t∗0(x) = sup{t : a(x)u(x, s) + b(x)v(x, s) < K(x) for 0 < s < t}.

Similarly, let t∗1 = sup{t : u(x, s) > 0 for 0 < s < t}, t∗2 = sup{t : v(x, s) >

0 for 0 < s < t}. Then t∗0(x), t∗1(x) and t∗2(x) are all positive.

Claim: t∗0(x) > min{t∗1(x), t∗2(x)}.
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Proof of claim:

If t∗0(x) ≤ min{t∗1(x), t∗2(x)}, note that we have a(x)u(x, t∗0(x)) + b(x)v(x, t∗0(x)) =

K(x), but a(x)u(x, t) + b(x)v(x, t) < K(x) for 0 < t < t∗0(x), so (a(x)u(x, t) +

b(x)v(x, t))t ≥ 0 at t = t∗0(x).

On the other hand, since K(x)− a(x)u− b(x)v = 0 at (x, t∗0(x)), if t∗1(x), t∗2(x) ≥

t∗0(x), then u, v ≥ 0 at (x, t∗0(x)) so ut = −d1(x)u(x, t∗0(x)) ≤ 0, vt =

−d2(x)v(x, t∗0(x)) ≤ 0, and since a(x)u + b(x)v = K(x) at (x, t∗0(x)), one of those

inequalities must be strict, so (au+bv)t < 0 at (x, t∗0(x)), which gives a contradiction.

Thus the claim holds true.

Let g1(x, t) =
∫

Ω
k1(x, y)u(y, t)dy.

We have u(z, 0) ≥ 0 for all z ∈ Ω̄, u(z, 0) > 0 for some z ∈ Ω̄. So by hypothesis

(H2) on k1(x, y), we have g1(x, 0) > 0 for all x. Also, g1 is continuous.

Let t∗4(z) = inf{t > 0 : g1(z, s) > 0 for 0 < s < t}. Suppose infz∈Ω̄ t
∗
4(z) = 0.

We must have g1(z, t∗4(z)) = 0 by definition of t∗4(z) and continuity. Also there exist

(xn, t
∗
4(xn)) so that g1(xn, t

∗
4(xn))→ 0, t∗4(xn)→ 0 as n→∞. Choosing a subsequence

we get xn → x∗ so 0 = g1(xn, t
∗
4(xn))→ g1(x∗, 0) > 0. This is a contradiction. Thus,

we must have infz∈Ω̄t
∗
4(z) = t∗∗4 > 0.

For 0 < t < t∗∗4 , we have g1(x, t) =
∫

Ω
k1(x, y)u(y, t)dy positive for x ∈ Ω̄. (Simi-

larly, there is a t∗∗5 so that
∫

Ω
k2(x, y)v(y, t)dy is positive on 0 < t < t∗∗5 ).

Suppose t∗1(x) ≤ t∗2(x) with t∗1(x) < t∗∗4 . We must have u(x, t∗1(x)) = 0.

Claim: This yields a contradiction. (If t∗2(x) ≤ t∗1(x) < t∗∗5 , we get a contradiction

by a similar argument.)

Proof of claim: If t∗1(x) ≤ t∗2(x) with t∗1(x) < t∗∗4 , then for 0 < t < t∗∗4 we have

t < t∗0(x) so K(x)− a(x)u(x, t)− b(x)v(x, t) > 0, and also g1(x, t) > 0. Furthermore,

we must have u(x, t∗1(x)) = 0, with u(x, t) > 0 for 0 < t < t∗1(x). We must also
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have ut(x, t) > −d1(x)u(x, t) on (0, t∗1(x)), with u(x, ε) > 0 for some ε with 0 <

ε < t∗1(x). However, this implies u(x, t) ≥ e−d1(x)(t−ε)u(x, ε) > 0 on (0, t∗1(x)), so

that u(x, t∗1(x)) ≥ e−d1(x)(t∗1(x)−ε)u(x, ε) > 0, contradiction. Hence in this case we get

t∗∗4 ≤ t∗1(x) ≤ t∗2(x). Thus the claim holds true.

A similar argument shows that if t∗2(x) < t∗1(x), there is a t∗∗5 with t∗∗5 ≤ t∗2(x) ≤

t∗1(x).

It follows that infx∈Ω̄ t
∗
1(x) ≥ min{t∗∗4 , t∗∗5 } > 0.

Suppose t∗∗6 = infx∈Ω̄ t
∗
1(x) > 0, for some x. Then there exists a sequence

(xn, t
∗
1(xn)) with t∗1(xn) → t∗∗6 . Choose a convergent subsequence; then relabel it

as xn, so that xn → x∗. We have u(xn, t
∗
1(xn)) = 0 so u(x∗, t∗∗6 ) = 0 so t∗∗6 ≥ t∗1(x∗).

But by definition we have t∗∗6 ≤ t∗1(z) for all z, so t∗∗6 = t∗1(x∗) and so t∗1(z) ≥ t∗1(x∗)

for all z; also, t∗1(z) ≥ min{t∗∗4 , t∗∗5 } > 0 for all z, so t∗1(x∗) > 0.

We have u(x∗, t∗∗6 ) = u(x∗, t∗1(x∗)) = 0.

However, consider again ũ = ed1(x)tu, we have

ũt = [K(x)− a(x)u(x, t)− b(x)v(x, t)]ed1(x)t

∫
Ω

k1(x, y)u(y, t)dy

So

ũ(x, t) =

∫ t

0

[K(x)− a(x)u(x, s)− b(x)v(x, s)]ed1(x)s

∫
Ω

k1(x, y)u(y, s)dyds

Hence ũ(x∗, t∗1(x∗)) > 0 since K(x) − a(x)u(x, t) − b(x)v(x, t) > 0 for 0 < t < t∗0(x∗)

with t∗0(x∗) > t∗1(x∗) and by previous analysis we know u(y, s) > 0 on 0 < t < t∗1(x∗)

so ũ(x∗, t∗1(x∗)) > 0. So u(x∗, t∗1(x∗)) > 0, a contradiction.

It follows that t∗∗6 = ∞ so t∗1(x) = ∞ for all x. (A similar argument shows



54

t∗2(x) =∞ for all x) and then t∗0(x) =∞ for all x.

This shows u(x, t) > 0, v(x, t) > 0 and K(x) − a(x)u(x, t) − b(x)v(x, t) > 0 for

t > 0.

Corollary 2.4. Global Existence

Let u(x, 0) ≥ 0 and v(x, 0) ≥ 0, a(x)u(x, 0) + b(x)v(x, 0) ≤ K(x), then

(u(x, t), v(x, t)) exists for all t > 0 where the solution exists.

Proof. In the case either u(x, t) ≡ 0 or v(x, t) ≡ 0, the global existence follows

from the single species model. If not, from Maximum principle we have u(x, t) > 0,

v(x, t) > 0 and K(x)− a(x)u(x, t)− b(x)v(x, t) > 0 for t ∈ [0, T ]. These inequalities

imply uniform bounds on u, v and the quantities determined T are in the proof of

Theorem 2.1. This argument can be repeated on [T, 2T ], [2T, 3T ] and so on. So we

obtain the global existence of the system.

2.4 Comparison Principle and Global Existence

Let X = C(Ω̄,R) be equipped with the maximum norm, and

X+ = {u ∈ X | u(x) ≥ 0, x ∈ Ω̄},

X++ := Int(X+) := {u ∈ X+ | u(x) > 0, x ∈ Ω̄}.
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For given u1, u2 ∈ X, we define

u1 ≤ u2(u2 ≥ u1) if u2 − u1 ∈ X+,

u1 � u2(u2 � u1) if u2 − u1 ∈ X++.

Define the following orderings in X ×X:

(u1, v1) ≤1 (�1)(u2, v2) if u1 ≤ (� u2), v1 ≤ (�)v2,

(u1, v1) ≤2 (�2)(u2, v2) if u1 ≤ (� u2), v1 ≥ (�)v2.

”≤1 (�1)” is the usual order and ”≤2 (�2)” is the called the competition ordering.

We assume (H1) and (H2) in following context.

Theorem 2.5. Monotonicity

a) If (0, 0) ≤1 (ui, vi) for i = 1, 2. (u1(x, 0), v1(x, 0)) ≤2 (u2(x, 0), v2(x, 0)) and

K(x)−a(x)ui(x, 0)−b(x)vi(x, 0) ≤ K(x), then (u1(x, t), v1(x, t)) ≤2 (u2(x, t), v2(x, t))

for t > 0.

b) If u1(x, 0) < u2(x, 0), v1(x, 0)) > v2(x, 0) for some x ∈ Ω and a(x)ui(x, 0) +

b(x)vi(x, 0) ≤ K(x), then (u1(x, t), v1(x, t))�2 (u2(x, t), v2(x, t)) for t > 0.

Proof. a) Define:

u(x, t) = u2(x, t)− u1(x, t) + εeαt, ũ(x, t) = u(x, t)eβt.

v(x, t) = v1(x, t)− v2(x, t) + εeαt, ṽ(x, t) = v(x, t)eβt.

By previous theorem, all solutions are nonnegative with au+ bv ≤ K(x). So they

are uniformly bounded and we can pick

α > maxx∈Ω,t≥0{−[K(x) − a(x)u2 − b(x)v2](
∫

Ω
k1(x, y)dy) + [a(x) −

b(x)]
∫

Ω
k1(x, y)u1(y, t)dy − d1(x),−[K(x)− a(x)u1 − b(x)v1](

∫
Ω
k2(x, y)dy) + [a(x)−
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b(x)]
∫

Ω
k2(x, y)v2(y, t)dy − d2(x)},

β > maxx∈Ω,t≥0{d1(x) + a(x)
∫

Ω
k1(x, y)u1(y, t)dy, d2(x) +

b(x)
∫

Ω
k2(x, y)v2(y, t)dy}

Claim: u > 0, v > 0 for all t > 0 where u, v exist.

Suppose otherwise, there exists t0 ∈ [0, T ], t0 = inf{t ∈ [0, T ) | u(x, t) ≤ 0 or

v(x, t) ≤ 0 for some x ∈ Ω̄}.

Since u(x, 0) > 0,v(x, 0) > 0, then by continuity, we have t0 > 0.

Then for t ∈ [0, t0), u(x, t) > 0 and v(x, t) > 0.

For t ∈ (0, t0],

ũt · e−β·t

= [K(x)− a(x)u2(x, t)− b(x)v2(x, t)]

∫
Ω

k1(x, y)u(y, t)dy + b(x)v(x, t)

·
∫

Ω

k1(x, y)u1(y, t)dy + u(x, t)(β − d1(x)− a(x)

∫
Ω

k1(x, y)u1(y, t)dy)

+εeα·t(α− [K(x)− a(x)u2 − b(x)v2]

·(
∫

Ω

k1(x, y)dy)− [a(x)− b(x)]

∫
Ω

k1(x, y)u1(y, t)dy + d1(x))

> [K(x)− a(x)u2(x, t)− b(x)v2(x, t)]

∫
Ω

k1(x, y)u(y, t)dy

+b(x)v(x, t)

∫
Ω

k1(x, y)u1(y, t)dy

+(β − d1(x)− a(x)

∫
Ω

k1(x, y)u1(y, t)dy)u(x, t)

≥ 0



57

ṽt · e−β·t

= [K(x)− a(x)u1(x, t)− b(x)v1(x, t)]

∫
Ω

k2(x, y)v(y, t)dy

+a(x)u(x, t)

∫
Ω

k2(x, y)v2(y, t)dy + v(x, t)(β − d2(x)− b2(x)

∫
Ω

k2(x, y)v2(y, t)dy)

+εeα·t(α− [K(x)− a(x)u1 − b(x)v1](

∫
Ω

k2(x, y)dy)− [a(x)− b(x)]

·
∫

Ω

k2(x, y)v2(y, t)dy + d2(x))

> [K(x)− a(x)u1(x, t)− b(x)v1(x, t)]

∫
Ω

k2(x, y)v(y, t)dy

+a(x)u(x, t)

∫
Ω

k2(x, y)v2(y, t)dy + (β − d2(x)− b(x))

∫
Ω

k2(x, y)v2(y, t)dy)v(x, t)

≥ 0

∴ ũ(x, t) > 0 for t ∈ [0, t0].

∴ u(x, t) > 0 for t ∈ [0, t0]. A similar argument shows v(x, t) > 0 on [0, t0].

Contradiction!

∵ ε can be arbitrarily small

∴ u2(x, t) ≥ u1(x, t) for t > 0.

Similarly we get v1(x, t) ≥ v2(x, t).

b)

Suppose 0 ≤ u1(x, 0) ≤ u2(x, 0), 0 ≤ v2(x, 0) ≤ v1(x, 0), a(x)ui(x, 0) +

b(x)vi(x, 0) ≤ K(x) ,i = 1, 2 and u2(x, 0 > u1(x, 0) ≥ 0 for some x.

Then by Maximum Principle and part a), we have for all t > 0, 0 ≤ u1(x, t) ≤

u2(x, t), 0 ≤ v2(x, t) ≤ v1(x, t), and u2(x, t) > 0, a(x)ui(x, 0) + b(x)vi(x, 0) < K(x),

i = 1, 2.
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Also, since u2(x, 0) ≥ u1(x, 0) for all x, u2(x, 0) > u1(x, 0) for some x, we have

∫
Ω

k1(x, y)[u2(x, 0)− u1(x, 0)]dy > 0

(by hypothesis (H2) on k1(x, y)).

Let g(x, t) =
∫

Ω
k1(x, y)[u2(x, t)− u1(x, t)]dy.

We have g(x, 0) > 0 for all x. So if we define t0(x) as

t0 = inf{t > 0 : g(x, t) > 0}

then t0(x) > 0. We have infz∈Ω̄ t0(z) ≥ 0.

As in the proof of maximum principle, suppose infz∈Ω̄ t0(z) = 0.

Then there exists (xn, t0(xn)) with t0(xn) → 0 such that g(xn, t0(xn)) → 0. By

compactness of Ω̄ and continuity, we can choose a subsequence and reindex such that

xn → x∗ and g(xn, tn)(xn))→ g(x∗, 0), but that implies g(x∗, 0) = 0, a contradiction.

Thus, infz∈Ω̄ t0(z) = t∗0 > 0.

Now consider what happens with u(x, t) near t = 0.

If we let ū = eβt(u2 − u1), v̄ = eβt(v1 − v2), we get

ūt · e−β·t

= [K(x)− a(x)u2(x, t)− b(x)v2(x, t)]

∫
Ω

k1(x, y)u(y, t)dy

+ b(x)v(x, t)

∫
Ω

k1(x, y)u1(y, t)dy + u(x, t)(β − d1(x)− a(x)

∫
Ω

k1(x, y)u1(y, t)dy)

= [K(x)− a(x)u2(x, t)− b(x)v2(x, t)]

∫
Ω

k1(x, y)u(y, t)dy

+ b(x)v(x, t)

∫
Ω

k1(x, y)u1(y, t)dy + (β − d1(x)− a(x))

∫
Ω

k1(x, y)u1(y, t)dy)u(x, t).
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Since we can choose β so that β − d1(x) − a(x) > 0. b(x)v(x, t) ≥ 0 and K −

a(x)u2(x, t)− b(x)v2(x, t) > 0 for t > 0 by maximum principle, it follows that ūt > 0

for 0 < t < t∗0, so that ū(x, t) > 0 for 0 < t < t∗0.

Let t1(x) = inf{t > 0 : ū(x, t) = 0}, we know t1(x) ≥ t∗0 for all x, so t∗1 =

infx∈Ω t1(x) ≥ t∗0.

Suppose t∗1 < ∞. For t = t∗1, we must have u(x0, t
∗
1) = 0 for some x0. Suppose

this is the case we have ū > 0 and thus u > 0 for 0 < t < t∗1 and for all x.

Also,

ū(x, t)e−βt

= ū(x, t− ε)e−β(t−ε) +

∫ t

t−ε
([K(x)− a(x)u(x, s)− b(x)v(x, s)]

·
∫

Ω

k1(x, y)u(y, s)dy) |t=s ds

+

∫ t

t−ε
[b(x)v(x, s)

∫
Ω

k1(x, y)u1(y, s)dy

+(β − d1(x)− a(x)

∫
Ω

k1(x, y)u1(y, s)dy)u(x, s)] |t=s ds

≥
∫ t

t−ε
[b(x)v(x, s)

∫
Ω

k1(x, y)u1(y, s)dy

+(β − d1(x)− a(x)

∫
Ω

k1(x, y)u1(y, s)dy)u(x, s)] |t=s ds

> 0

since u(x, t) > 0 on 0 < t < t∗1, which gives a contradiction as ū(x0, t
∗
1) > 0.

So t∗1 =∞, which implies ū(x, t) > 0 for all t > 0, thus u2(x, t) > u1(x, t). Similar

for v1(x, t) and v2(x, t).

Lemma 2.6. For a solution (u(x, t), v(x, t)) starting from (u(x, 0), v(x, 0)) =
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(u0(x), v0(x)):

(1) If

0 < [K(x)− a(x)u(x, 0)− b(x)v(x, 0)]

∫
Ω

k1(x, y)u(y, 0)dy − d1(x)u(x, 0)

0 > [K(x)− a(x)u(x, 0)− b(x)v(x, 0)]

∫
Ω

k2(x, y)v(y, 0)dy − d2(x)v(x, 0),

then u(x, t) is increasing in t and u(x, t)→ u∗(x) as t→∞; v(x, t) is decreasing in t

and v(x, t) → v∗(x) as t → ∞. (u∗(x), v∗(x)) is the smallest equilibrium larger than

(u(x, 0), v(x, 0)) under the competing ordering.

(2) If

0 > [K(x)− a(x)u(x, 0)− b(x)v(x, 0)]

∫
Ω

k1(x, y)u(y, 0)dy − d1(x)u(x, 0)

0 < [K(x)− a(x)u(x, 0)− b(x)v(x, 0)]

∫
Ω

k2(x, y)v(y, 0)dy − d2(x)v(x, 0),

then u(x, t) is decreasing of t and u(x, t)→ u∗(x) as t→∞; v(x, t) is increasing

of t and v(x, t) → v∗(x) as t → ∞. (u∗(x), v∗(x)) is the largest equilibrium smaller

than (u(x, 0), v(x, 0)) under the competing ordering.

Proof. (1) In this case, (u0(x), v0(x)) is a sub solution, and (u(x, t), v(x, t)) is solution

thus is a super-solution. We then by comparison principle have (u(x, t), v(x, t)) ≥2

(u0(x), v0(x)). We also have ut(x, 0) > 0, vt(x, 0) < 0 so that for each x ∈ Ω̄ there

exists a t0(x) such that u(x, t) > u0(x), v(x, t) < v0(x) for 0 < t < t0(x). Pick

some x0 ∈ Ω̄; then for 0 < δ < t0(x) we have u(x0, δ) > u(x0, 0). Let u1(x, t) =

u(x, t + δ), v1(x, t) = v(x, t + δ). Then (u1(x, t), v1(x, t)) is also a solution of system

with u1(x, 0) = u(x, δ), v1(x, 0) = v(x, δ). So u1(x, 0) ≥ u(x, 0), v1(x, 0) ≤ v(x, 0) and
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u1(x, 0) > u(x, 0), v1(x, 0) < v(x, 0) for some x ∈ Ω. Thus u(x, t) is increasing and

v(x, t) is decreasing in t. For each x ∈ Ω, we have a(x)u(x, t) + b(x)v(x, t) < K(x) for

t > 0. Thus, for each x we have u(x, t) → u∗(x) and v(x, t) → v∗(x). By monotone

convergence theorem

∫
Ω

k1(x, y)u(y, t)dy →
∫

Ω

k1(x, y)u∗(y)dy∫
Ω

k2(x, y)v(y, t)dy →
∫

Ω

k2(x, y)v∗(y)dy

where we have (u(x, tn), v(x, tn)) → (u∗(x), v∗(x)) for any sequence tn → ∞. Then

(u∗(x), v∗(x)) must be an equilibrium for the system because if not then for some x

we would have ut(x, t) > 0, vt(x, t) < 0 with (u(x, t), v(x, t)) → (u∗(x), v∗(x)) which

contradicting (u(x, t), v(x, t))→ (u∗(x), v∗(x)) as t→∞.

Finally, if (u∗∗(x), v∗∗(x)) is an equilibrium with u∗∗(x) > u0(x), v∗∗(x) < v0(x),

then we have (u∗∗(x), v∗∗(x)) ≥2 (u∗(x), v∗(x)). Hence (u∗(x), v∗(x)) is the minimal

equilibrium under the competing ordering.

(2) The proof for the case (2) is identical except reversing the inequalities.

Let γ1, φ1(x) be the principal eigenvalue and eigenvector of the operator

M1[φ](x) =
K(x)

d1(x)

∫
Ω

k1(x, y)φ(y)dy

respectively. And γ2, φ2(x) be the principal eigenvalue and eigenvector of the operator

M2[φ](x) =
K(x)

d2(x)

∫
Ω

k2(x, y)φ(y)dy
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respectively.

Theorem 2.7. Assume γ1 ≤ 1, then

(i) If γ2 ≤ 1, then (0, 0) is asymptotically stable equilibrium.

(ii) If γ2 > 1, then (0, v∗(x)) is asymptotically stable equilibrium.

Proof. Suppose (ũ(x, t), ṽ(x, t)) starts from (ũ(x, 0), ṽ(x, 0)) = (K(x)
a(x)

, 0). Let

(u(x, t), v(x, t)) be any solution starting from (u0(x), v0(x)) where u0(x) ≥ 0,

v0(x) ≥ 0, K(x) − a(x)u0(x) − b(x)v0(x) ≥ 0. By comparison principle, we have

u(x, t) ≤ ũ(x, t), v(x, t) ≥ ṽ(x, t). But by analysis for single equation, 0 is globally

stable and thus ũ(x, t) → 0 as t → ∞ by analysis for single equation. This im-

plies u(x, t) → 0 as t → ∞ and there will have no equilibrium (u∗∗(x), v∗∗(x)) with

u∗∗(x) > 0.

(i)

If γ2 ≤ 1, then let (ū(x, t), v̄(x, t)) starts from (ū(x, 0), v̄(x, 0)) = (0, K(x)
b(x)

). Then

for solution (u(x, t), v(x, t)) starting from (u0(x), v0(x)), we have u(x, t) ≥ ū(x, t),

v(x, t) ≤ v̄(x, t). The analysis for single equation shows that v̄(x, t) → 0 as t → ∞

since 0 is globally stable. So then v(x, t) → 0 as t → ∞. So (0, 0) is asymptotically

stable.

(ii)

If γ2 > 1, then let (u(x, t), v(x, t)) start from (uε(x), vε(x)) = (εφ1(x), εφ2(x)),

where φi(x) are eigenvector of operator Mi, i = 1, 2 and ε > 0. And we have

[K(x)− a(x)εφ1(x)− b(x)εφ2(x)]

∫
Ω

k1(x, y)εφ1(y)dy − d1(x)εφ1(x)

< d1(x)ε[
K(x)

d1(x)

∫
Ω

k1(x, y)φ1(y)dy − φ1(x)]

= d1(x)ε(γ1 − 1)φ1(x) ≤ 0,
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and by selecting ε > 0 sufficiently small, such that εφ2(x) < v∗(x) and we have

[K(x)− a(x)εφ1(x)− b(x)εφ2(x)]

∫
Ω

k2(x, y)εφ2(y)dy − d2(x)εφ2(x)

= d2(x)ε(γ2 − 1)φ2(x)− ε2(a(x)φ1(x) + b(x)φ2(x))

∫
Ω

k2(x, y)φ2(y)dy > 0.

Thus (uε(x), vε(x)) is a super-solution. As t → ∞, u(x, t) decreases to u∗∗(x) = 0

and v(x, t) increases to the positive equilibrium v∗(x), which is the unique positive

equilibrium for single equation. So then (0, v∗(x)) is asymptotically stable.

Theorem 2.8. Assume γ2 ≤ 1, then

(i) If γ1 ≤ 1, then (0, 0) is asymptotically stable equilibrium.

(ii) If γ1 > 1, then (u∗(x), 0) is asymptotically stable equilibrium.

The proof is similar to previous theorem.

Next, we give a sufficient condition of the existence of coexistence state.

Let µ1, µ2 be the principal eigenvalue of the problems:

K(x)− b(x)v∗(x)

d1(x)

∫
Ω

k1(x, y)ψ1(y)dy = µ1ψ1(x),

K(x)− a(x)u∗(x)

d2(x)

∫
Ω

k2(x, y)ψ2(y)dy = µ2ψ2(x).

Theorem 2.9. Suppose γ1 > 1, γ2 > 1, and moreover, µ1 > 1, µ2 > 1, then there

exists some positive equilibrium (u∗(x), v∗(x)).
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Proof. If µ1 > 1, then for ε > 0 small enough, (εψ1(x), v∗(x)) is a sub-solution since

[K(x)− b(x)v∗(x)− a(x)εψ1(x)]

∫
Ω

k1(x, y)εψ1(y)dy − d1(x)εψ1(x)

= εd1(x)[
K(x)− v∗(x)

d1(x)

∫
Ω

k1(x, y)ψ1(y)dy − ψ1(x)]− a(x)ε2ψ1(x)

∫
Ω

k1(x, y)ψ1(y)dy

= ε[d1(x)(µ1 − 1)− a(x)ε

∫
Ω

k1(x, y)ψ1(y)dy]ψ1(x) > 0

Also, we have

[K(x)− b(x)v∗(x)− a(x)εψ1(x)]

∫
Ω

k2(x, y)v∗(y)dy − d2(x)v∗(x)

= −a(x)εψ1(x)

∫
Ω

k2(x, y)v∗(y)dy < 0.

Thus if (u(x, t), v(x, t)) starts from (u(x, 0), v(x, 0)) = (εψ1(x), v∗(x)), then u(x, t)

increases in t and v(x, t) decreases. Similarly, if µ2 > 1, for (u(x, t), v(x, t)) starts from

(u(x, 0), v(x, 0)) = (u∗(x), εψ2(x)), then u(x, t) decreases in t and v(x, t) increases.

Choose ε > 0 such that εψ2(x) < v∗(x), εψ1(x) < u∗(x) for all x. Then we have

0 < u(x, t) < u(x, t) < K(x), 0 < v(x, t) < v(x, t) < K(x). So then (u(x, t), v(x, t))

”increases” (in the sense of compete ordering) toward a minimal positive equilibrium

(u∗∗(x), v∗∗(x)), and (u(x, t), v(x, t)) ”decreases” toward a maximal positive equilib-

rium (u∗∗∗(x), v∗∗∗(x)).

We will have u∗∗(x) ≤ u∗∗∗(x), and v∗∗(x) ≥ v∗∗∗(x).

2.4.1 An Example of Coexistence in the Bounded Domain

Let Ω = [−L,L]. K = K0 coshx. k1(x, y) = k2(x, y) = r. d1(x) = d0(1 + e−2x) and

d2(x) = d0(1 + e2x).
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Consider u(x) = aex, v(x) = ae−x.

∫ L

−L
k1(x, y)u(y)dy =

∫ L

−L
k2(x, y)v(y)dy = (eL − e−L)r = 2r sinhL

(K(x)− u(x)− v(x))

∫ L

−L
k1(x, y)u(y)dy = a(K0 − 2a)2r sinhL coshx

d1(x)u(x) = ad0(1 + e−2x)ex = 2ad0 coshx

so (K(x) − u(x) − v(x))
∫ L
−L k1(x, y)u(y)dy − d1(x)u(x) = 0 if 2ad0 = 2ra(K0 −

2a) sinhL. Similarly, (K(x) − u(x) − v(x))
∫ L
−L k2(x, y)v(y)dy − d2(x)v(x) = 0 if

2ad0 = 2ra(K0 − 2a) sinhL.

So for the parameters satisfy 2ad0 = 2ra(K0 − 2a) sinhL, there is a positive

equilibrium (u(x), v(x)).

Remark 2.10. In this example, we can see that for a one dimensional bounded do-

main, one end is more favorable (same birth rate as species v but lower death rate) for

species u and the other end is more favorable for species v. If, in addition, we have

proper constraint on the parameters, the mechanism of nonlocal dispersal will leads

to the coexistence state for the two species, i.e. species u maintain a relatively high

population density in the area where it has lower death rate and species v occupied the

other end.
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2.5 Evolutionarily Stable Strategy

2.5.1 Single Species

Our model:

ut = [K(x)− u(x, t)]

∫
Ω

d(x, y)r(y)u(y, t)dy − e(x)u(x, t), x ∈ Ω, t > 0 (2.5.1)

u(x, t) is the fraction of occupied sites at location x ∈ Ω and time t. d(x, y) ∈

C(Ω̄ × Ω̄) is the fraction of individuals moving from y to x satisfying d(x, y) ≥ 0

and
∫

Ω
d(x, y)dx = 1. k(x, y) = r(y)d(x, y) satisfies the hypotheses (H1) and (H2).

To avoid extinction, we need the principal eigenvalue γ > 1 for the operator T [φ] =

K(x)
e(x)

∫
Ω
d(x, y)r(y)φ(y)dy = γφ(x). This implies there is a unique globally stable

positive equilibrium u∗(x). See Lemma 1.24 and Theorem 1.25.

The existence and uniqueness of solution follows from Theorem 1.2 and Corollary

1.6.

Under these conditions, the Maixmum Principle and Comparison Theorem for

single species are thus obtained. We also have global existence for (2.5.1).

The equation without dispersal is:

ut = [K(x)− u(x)]r(x)u(x)− e(x)u(x) (2.5.2)

The equilibrium distribution with no diffusion is u∗(x) = K(x)− e(x)
r(x)

. The fitness at

each site x characterized as growth rate is given by [K(x)− u(x)]r(x)− e(x).
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Definition 2.11. d(x, y) is an ideal free dispersal strategy if the growth rate is same

for every location (equal fitness), i.e. r(x)[K(x)−u∗(x)]−e(x) = r(y)[K(y)−u∗(y)]−

e(y) for all x, y ∈ Ω.

Set m(x) = r(x)K(x)− e(x) = r(x)u∗(x).

Lemma 2.12. d(x, y) is an ideal free distribution strategy if and only if u∗(x) = m(x)
r(x)

and

∫
Ω

d(x, y)m(y)dy = m(x) (2.5.3)

Proof. Suppose the condition of equal fitness holds.

Set r(x)[K(x)− u∗(x)]− e(x) = r(y)[K(y)− u∗(y)]− e(y) = C for some constant

C. Then u∗(x) = K(x)− e(x)+C
r(x)

Since (K(x)− u∗(x))
∫

Ω
d(x, y)r(y)u∗(y)dy − e(x)u∗(x) = 0, we have

∫
Ω

d(x, y)(K(y)r(y)− e(y)− C)dy =
e(x)

e(x) + C
(K(x)r(x)− e(x)− C)

Integrate on Ω and we get

∫
Ω

∫
Ω

d(x, y)(K(y)r(y)− e(y)− C)dydx =

∫
Ω

e(x)

e(x) + C
(K(x)r(x)− e(x)− C)dx

Therefore,

∫
Ω

(K(y)r(y)− e(y)− C)dy =

∫
Ω

e(x)

e(x) + C
(K(x)r(x)− e(x)− C)dx

So C ·
∫

Ω
K(x)r(x)−e(x)−C

e(x)+C
dx = 0 Since we know u∗(x) < K(x) so e(x) + C > 0, also

u∗(x) > 0, so K(x)r(x)− e(x)− C > 0, hence C = 0. So we have u∗(x) = m(x) and
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∫
Ω
d(x, y)m(y)dy = m(x).

Once we have C = 0, so that u∗(x) = K(x)− e(x)
r(x)

, it follows that r(x)u∗(x) = m(x).

Since

[K(x)− u∗(x)]

∫
Ω

d(x, y)r(y)u∗(y)dy = e(x)u∗(x)

we have

e(x)

r(x)

∫
Ω

d(x, y)m(y)dy =
e(x)m(x)

r(x)

so
∫

Ω
d(x, y)m(y)dy = m(x).

If r(x)u∗(x) = m(x) and
∫

Ω
d(x, y)m(y)dy = m(x), then

0 = [K(x)− u∗(x)]

∫
Ω

d(x, y)m(y)dy − e(x)u∗(x)

0 = [K(x)− m(x)

r(x)
]m(x)− e(x)m(x)

r(x)

so m(x) = K(x)r(x)− e(x). In that case, r(x)[K(x)− u∗(x)]− e(x) = 0 for all x, so

the condition of equal fitness holds.

Since
∫

Ω
d(y, x)dy = 1, we have

∫
Ω
d(y, x)m(x)dy = m(x), so (2.5.3) implies that

for h(x, y) = d(x, y)m(y) = d(x, y)r(y)u∗(y), we have
∫

Ω
h(x, y)dy =

∫
Ω
h(y, x)dy.

Suppose
∫

Ω
d(x, y)m(y)dy = m(x).

The next theorem is Theorem 2 in [10].

Theorem 2.13. Let h : Ω̄×Ω̄→ [0,∞) be a continuous non-negative function. Then
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the following two statements are equivalent:

(i)

∫
Ω

h(x, y)dy =

∫
Ω

h(y, x)dy for all x ∈ Ω

(ii)

∫
Ω

∫
Ω

h(x, y)
f(x)

f(y)
dxdy ≥

∫
Ω

∫
Ω

h(x, y)dxdy

for all f ∈ C(Ω̄) with f(x) > 0 on Ω̄.

(i) is called line sum symmetry and
∫

Ω
d(x, y)r(y)u∗(y)dy has this property, so it

satisfies property (ii) too.

2.5.2 Stability for Single Species

If we linearize a single species model at u = 0, we get the problem

K(x)

∫
Ω

k(x, y)φ(x)dy − e(x)φ(x) = −λφ(x) (2.5.4)

This can be written as

K(x)

e(x)

∫
Ω

k(x, y)φ(y)dy − φ(x) = −λφ(x)

e(x)
(2.5.5)

or alternatively as

φ(x)− Tφ(x) = λ
φ(x)

e(x)
(2.5.6)

where Tφ(x) = K(x)
e(x)

∫
Ω
k(x, y)φ(y)dy. If

∫
Ω
k(x, y)φ(y)dy > 0 for all x, if φ(x) ≥ 0

and φ(x) > 0 for some x, and k(x, y) is smooth, then T is strongly positive and has

a principal eigenvalue γp = r(T ).
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The strong version of Krein-Rutman Theorem applies by the hypothesis, so

γφ(x)− Tφ(x) = ρ(x) > 0 (2.5.7)

has a solution φ(x) > 0 if and only if γ > γp.

Lemma 2.14. If λ is actually an eigenvalue, then

(i) λ > 0 if and only if γp < 1, which implies the linear stability of equilibrium

u = 0.

(ii) λ < 0 if and only if γp > 1, which implies the linear instability of equilibrium

u = 0.

(iii) λ = 0 if and only if γp = 1, which gives the neutral stability.

Proof. (i)

If λ > 0, then λφ(x)
e(x)

= φ(x) − Tφ(x) < 0. So Tφ(x) = γpφ(x) > φ(x). Thus

γp > 1.

If γp > 1, then 0 < φ(x) − γpφ(x) = λφ(x)
e(x)

. Since φ(x)
e(x)

> 0 for some x, we have

λ < 0.

Let u(x, 0) = εφ(x), then

ut |t=0= [K(x)− εφ(x)]

∫
Ω

k(x, y)εφ(y)dy − e(x)εφ(x)

= ε[K(x)

∫
Ω

k(x, y)φ(y)dy − e(x)φ(x)]− ε2φ(x)

∫
Ω

k(x, y)φ(y)dy

= −ελφ(x)− ε2φ(x)

∫
Ω

k(x, y)φ(y)dy < 0

So εφ(x) is a super-solution and decreases as t increases. So u(x, t)→ 0 as t→∞.

(ii) Similarly, let u(x, 0) = εφ(x). For ε > 0 small enough, we have ut |t=0> 0.
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Then u(x, t) increases as t increases. Thus zero is not stable.

2.5.3 Two Species Model

For two species, a model for ecological similar competitors is:

ut = [K(x, t)− u(x, t)− v(x, t)] ·
∫

Ω
d(x, y)r(y)u(y, t)dy − e(x, t)u(x, t)

vt = [K(x, t)− u(x, t)− v(x, t)] ·
∫

Ω
D(x, y)r(y)v(y, t)dy − e(x, t)v(x, t)

(2.5.8)

where u(x, t), v(x, t) are the population at location x ∈ Ω and time t respectively.

d(x, y), D(x, y) ∈ C(Ω̄× Ω̄) are the fraction of individuals moving from y to x satis-

fying d(x, y) ≥ 0, D(x, y) ≥ 0 and
∫

Ω
d(x, y)dx = 1,

∫
Ω
D(x, y)dx = 1. The last two

hypotheses reflect on assumption that the terms d(x, y) and D(x, y) describe move-

ment only so that all mortality is described by e(x) and there is no lose in movement.

Assume r(x)K(x) > e(x) for all x ∈ Ω to avoid extinction.

This is a special case of competitor model (2.1.3) by setting ai(x) = bi(x) ≡ 1

and the two species are identical except their dispersal strategy. Thus we obtain the

existence, uniqueness and even global existence for two species model from Theorem

2.1. Moreover, kernel D(x, y)r(y) and d(x, y)r(y) satisfy the hypothesis on kernel.

Assume d(x, y) is ideal free but D(x, y) and it is not. We are going to study the

stability of semi-trivial equilibria and prove the nonexistence of coexistence equilib-

rium.
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2.5.4 Stability of (u∗(x), 0)

If d(x, y) is an ideal free distribution, then (u∗(x), 0) = (K(x)− e(x)
r(x)

, 0).

Linearization at (u∗(x), 0) is given by

u-equation:

d
dε
|ε=0

(
[K(x)− u∗(x)− εφ(x)− εψ(x)]

∫
Ω
d(x, y)r(y)(u∗(y) + εφ(y))dy

−e(x)(u∗(x) + εφ(x))
)

= −(ψ(x) + φ(x))
∫

Ω
d(x, y)u∗(y)dy + [K(x)− u∗(x)]

∫
Ω
d(x, y)r(y)φ(y)dy

−e(x)φ(x)

= −λφ(x)

(2.5.9)

v-equation decouples, and gives

d
dε
|ε=0

(
[K(x)− u∗(x)− εφ(x)− εψ(x)]

∫
Ω
D(x, y)r(y)ψ(y)dyε− e(x)εψ(x)

)
= [K(x)− u∗(x)]

∫
Ω
D(x, y)r(y)ψ(y)dy − e(x)ψ(x)

= −λψ(x)

(2.5.10)

That is the same type of problem as for a single species in Lemma (1.22) with T

replaced by

Tu∗ψ =
K(x)− u∗(x)

e(x)

∫
Ω

D(x, y)r(y)ψ(y)dy.

We get λ = 0 (for neutral stability) if γ(u∗) = r(Tu∗) = 1.

Equation (2.5.10) is equivalent to

−λψ(x) = [K(x)− u∗(x)]

∫
Ω

D(x, y)r(y)ψ(y)dy − e(x)ψ(x) (2.5.11)
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which gives λ = 0 if γp = 1 for

Tu∗ψ =
K(x)− u∗(x)

e(x)

∫
Ω

D(x, y)r(y)ψ(y)dy.

We need to work with Tu∗ψ = γψ, with Tu∗ [ψ] = 1
r(x)

∫
Ω
D(x, y)r(y)ψ(y)dy. From

(2.5.11), eigenvalue problem (2.5.4) should be

−λψ(x)

e(x)
=

1

r(x)

∫
Ω

D(x, y)r(y)ψ(y)dy − ψ(x)

Remark: To have no loss in transit other than the background mortality e(x) we

need ∫
Ω

[

∫
Ω

D(x, y)ρ(y)dy]dx =

∫
Ω

ρ(y)dy

which is true if
∫

Ω
D(x, y)dx = 1 for all y0.

We have for γ = r(Tu∗) that

1

r(x)

∫
Ω

D(x, y)r(y)ψ(y)dy = γψ(x)

so ∫
Ω

D(x, y)r(y)ψ(y)dy = γr(x)ψ(x)

so ∫
Ω

∫
Ω

D(x, y)r(y)ψ(y)dydx = γ

∫
Ω

r(x)ψ(x)dx

by Fubini ∫
Ω

∫
Ω

D(x, y)r(y)ψ(y)dydx = γ

∫
Ω

r(x)ψ(x)dx
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so ∫
Ω

1 · r(y)ψ(y)dy = γ

∫
Ω

r(x)ψ(x)dx

so γ = 1. So (u∗(x), 0) is neutrally stable.

2.5.5 Stability of (0, v∗(x))

v∗(x) satisfies

vt = [K(x)− v(x, t)]

∫
Ω

D(x, y)r(y, t)v(y)dy − e(x)v(x, t) (2.5.12)

We want to study the eigenvalue problem:

ρφ(x) = [K(x)− v∗(x)]

∫
Ω

d(x, y)r(y)φ(y)dy − e(x)φ(x) (2.5.13)

For Ω ⊂ RN , this eigenvalue problem is guaranteed to have a principal eigenvalue

with a positive eigenfunction only if e(x) achieve a global maximum at some point

x0 ∈ Ω, and satisfy 1
(e(x0)−e(x))

6∈ L1(Ω). That will be true if e(x) ∈ CN(Ω̄) when

N = 1, 2 , and for N ≥ 3 we require additional condition that all derivatives of e(x)

of order N − 1 or less vanish at x0. See Coville [22] Theorem 1.1, 1.2 and Hetzer

et al. [36] Theorem 2.6. The eigenvalue problem (2.5.13) may not have a principal

eigenvalue. However, we can always construct an sub-solution arbitrarily close to the

equilibrium. By Theorem 2.6 in Hetzer et al., for any ε > 0, we can find an eε(x)

such that for any ε > 0, |e(x)− eε(x)| ≤ ε for all x since eε ∈ C1(Ω). Then eigenvalue
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problem:

−ρεφ(x) = [K(x)− v∗(x)]

∫
Ω

d(x, y)r(y)φ(y)dy − eε(x)φ(x) (2.5.14)

has a principal eigenvalue ρε. It is equivalent to

−ρεφ(x) = [K(x)− v∗(x)]

∫
Ω

d(x, y)r(y)φ(y)dy − e(x)φ(x) + ε(x)φ(x) (2.5.15)

Multiply (2.5.15) by u∗(x)
φ(x)[K(x)−v∗(x)]

, then integrate both part over Ω. By line sum

symmetry property of d(x, y)r(y)u∗(y), we have

− ρε
∫

Ω

u∗(x)

K(x)− v∗(x)
dx

=

∫
Ω

∫
Ω

d(x, y)r(y)u∗(y)
φ(y)/u∗(y)

φ(x)/u∗(x)
dydx−

∫
Ω

u∗(x)e(x)

K(x)− v∗(x)
dx+

∫
Ω

u∗(x)ε(x)

K(x)− v∗(x)
dx

≥
∫

Ω

r(x)u∗(x)dx−
∫

Ω

e(x)u∗(x)

K(x)− v∗(x)
dx+

∫
Ω

ε(x)u∗(x)

K(x)− v∗(x)
dx

And since e(x) = [K(x)− u∗(x)]r(x),

∫
Ω

r(x)u∗(x)dx−
∫

Ω

e(x)u∗(x)

K(x)− v∗(x)
dx+

∫
Ω

ε(x)u∗(x)

K(x)− v∗(x)
dx

=

∫
Ω

r(x)u∗(x)[u∗(x)− v∗(x)]

K(x)− v∗(x)
dx+

∫
Ω

u∗(x)ε(x)

K(x)− v∗(x)
dx

=

∫
Ω

u∗(x)r(x)[u∗(x)− v∗(x) + ε(x)
r(x)

]

K(x)− v∗(x)
dx
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Also we have

[K(x)− v∗(x)]

∫
Ω

D(x, y)r(y)v∗(y)dy − e(x)v∗(x) = 0 (2.5.16)

Divide (2.5.16) by K(x)− v∗(x), then integrate over Ω.

∫
Ω

e(x)v∗(x)

K(x)− v∗(x)
dx =

∫
Ω

∫
Ω

D(x, y)r(y)v∗(x)dydx =

∫
Ω

r(x)v∗(x)dx (2.5.17)

∴
∫

Ω
r(x)v∗(x)[u∗(x)−v∗(x)]

K(x)−v∗(x)
dx = 0.

∴ −ρε
∫

Ω

u∗(x)

K(x)− v∗(x)
dx ≥

∫
Ω

r(x)[u∗(x)− v∗(x)]2

K(x)− v∗(x)
dx+

∫
Ω

u∗(x)ε(x)

K(x)− v∗(x)
dx

(2.5.18)

Since supΩ|ε(x)| > 0 on Ω̄ can be arbitrarily small, and u∗(x)
K(x)−v∗(x)

is bounded below,

∴ −ρε
∫

Ω
u∗(x)

K(x)−v∗(x)
dx ≥

∫
Ω
r(x)[u∗(x)−v∗(x)]2

K(x)−v∗(x)
dx ≥ 0. −ρε ≥ ρ0 > 0, is independent

of the choice of ε. The ”=” holds if and only if u∗(x) = v∗(x), which contradicts the

fact that D(x, y) is not ideal free.

Let ū(x) = δφ(x), v̄(x) = (1 + ε)v∗(x).

[K(x)− ū(x)− v̄(x)]

∫
Ω

d(x, y)r(y)δφ(y)dy − e(x)δφ(x)

= δ[[K(x)− v∗(x)]

∫
Ω

d(x, y)r(y)φ(y)dy − eε(x)φ(x) + (eε(x)− e(x))φ(x)

−δφ(x)

∫
Ω

d(x, y)r(y)φ(y)dy − εv∗(x)

∫
Ω

d(x, y)r(y)φ(y)dy]

= δ[−ρεφ(x) + (eε(x)− e(x))φ(x)− (δφ(x) + εv∗(x))

∫
Ω

d(x, y)r(y)φ(y)dy] > 0
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for ρε > ρ0 and ε, δ small, such as

[K(x)− ū(x)− v̄(x)]

∫
Ω

d(x, y)r(y)ū(y)dy − e(x)ū(x) > 0

and

[K(x)− ū(x)− v̄(x)]

∫
Ω

D(x, y)r(y)v̄(y)dy − e(x)v̄(x)

= (1 + ε)([(K(x)− v∗(x))− (δφ(x) + εv∗(x))]

∫
Ω

D(x, y)r(y)v∗(y)dy − e(x)v∗(x))

= −(1 + ε)(δφ(x) + εv∗(x))

∫
Ω

D(x, y)r(y)v∗(y)dy < 0

Thus (ū, v̄) gives a sub-solution which is independent of t. Then for (u(x, 0), v(x, 0))

with u(x, 0) ≥ 0, u(x, 0) 6≡ 0, v(x, 0) = v∗(x), we get for t0 > 0 small, we will

have u(x, t0) > 0 v(x, t0) < (1 + δ
2
)v∗(x), so that for ε, δ small, ū(x) < u(x, t0),

v̄(x) > v(x, t0). Then u(x, t) > ū for t ≥ t0 and u(x, t) goes to u∗∗(x). v(x, t) < v̄ for

t ≥ t0 and v(x, t) goes to v∗∗(x) where (u∗∗(x), v∗∗(x)) is some equilibrium.

2.5.6 Nonexistence of Coexistence equilibrium

Lemma 2.15. Suppose d(x, y) is an ideal free distribution.
∫

Ω
D(x, y)m(y)dy 6= m(x)

for some x ∈ Ω. Then the model has no coexistence equilibrium.

Proof. Divide the first equation of the two species by [K(x) − u(x, t) − v(x, t)] and
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integrate, we have

∫
Ω

ut
K(x)−u(x,t)−v(x,t)

dx

=
∫

Ω

∫
Ω
d(x, y)r(y)u(y, t)dydx−

∫
Ω

e(x)u(x,t)
K(x)−u(x,t)−v(x,t)

dx

=
∫

Ω
r(x)u(x, t)dx−

∫
Ω

e(x)u(x,t)
K(x)−u(x,t)−v(x,t)

dx

(2.5.19)

Similarly,

∫
Ω

vt
K(x)− u(x, t)− v(x, t)

dx =

∫
Ω

r(x)v(x, t)dx−
∫

Ω

e(x)v(x, t)

K(x)− u(x, t)− v(x, t)
dx

(2.5.20)

Adding these (2.5.19) and (2.5.20), we obtain:

∫
Ω

ut+vt
K(x)−u(x,t)−v(x,t)

dx

=
∫

Ω
r(x)(u(x, t) + v(x, t))dx−

∫
Ω

e(x)(u(x,t)+v(x,t))
K(x)−u(x,t)−v(x,t)

dx

=
∫

Ω
r(x)(u(x,t)+v(x,t))[u∗(x)−(u(x,t)+v(x,t))]

K(x)−u(x,t)−v(x,t)
dx

(2.5.21)

Multiply the first equation in the model by u∗(x)
[K(x)−u(x,t)−v(x,t)]u(x,t)

, then integrate over

Ω. By the line sum symmetry of d(x, y)r(y)u∗(y) and Theorem 2.13, we have

∫
Ω

∫
Ω

d(x, y)r(y)u∗(y)
u(y, t)/u∗(y)

u(x, t)u∗(x)
dxdy

≥
∫

Ω

∫
Ω

d(x, y)r(y)u∗(y)dxdy

=

∫
Ω

r(y)u∗(y)dy =

∫
Ω

r(x)u∗(x)dx

Since
∫

Ω
d(x, y)dx = 1, we have
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∫
Ω

u∗(x)(lnu)t
K(x)− u(x, t)− v(x, t)

dx

=

∫
Ω

∫
Ω

d(x, y)r(y)u∗(y)
u(y, t)/u∗(y)

u(x, t)/u∗(x)
dxdy −

∫
Ω

e(x)u∗(x)

K(x)− u(x, t)− v(x, t)
dx

By line sum symmetry of d(x, y)r(y)u∗(y) and the theorem, we get

∫
Ω

u∗(x)(lnu)t
K(x)− u(x, t)− v(x, t)

dx

≥
∫

Ω

r(x)u∗(x)dx−
∫

Ω

e(x)u∗(x)

K(x)− u(x, t)− v(x, t)
dx

=

∫
Ω

r(x)u∗(x)[K(x)− u(x, t)− v(x, t)]− e(x)u∗(x)

K(x)− u(x, t)− v(x, t)
dx

Since [K(x)− u∗(x)]r(x) = e(x), we have

∫
Ω

u∗(x)(lnu)t
K(x)− u(x, t)− v(x, t)

dx ≥
∫

Ω

r(x)u∗(x)[K(x)− u(x, t)− v(x, t)]− e(x)u∗(x)

K(x)− u(x, t)− v(x, t)
dx

then,

∫
Ω

ut + vt − u∗(x)(lnu)t
K(x)− u(x, t)− v(x, t)

dx ≤ −
∫

Ω

r(x)
[u∗(x)− u(x, t)− v(x, t)]2

K(x)− u(x, t)− v(x, t)
≤ 0

If (u, v) is an equilibrium we must have ut = vt = (lnu)t = 0. So we have u(x, t) +

v(x, t) = u∗(x). In that case we have

K(x)− u(x, t)− v(x, t) = K(x)− u∗(x)
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so that

K(x)− u∗(x)

e(x)

∫
Ω

k1(x, y)u(y)dy = u(x) (2.5.22)

The operator T [w] = K(x)−u∗(x)
e(x)

∫
Ω
k1(x, y)w(y)dy is strongly positive and compact, so

by Krein-Rutman Theorem it has a unique simple principal eigenvalue. By (2.5.22),

since u(x) > 0. By assumption that (u, v) is a positive equilibrium, u(x) is an

eigenfunction for the principal eigenvalue of T , and the eigenvalue is 1.

However,

K(x)− u∗(x)

e(x)

∫
Ω

k1(x, y)u∗(y)dy = u∗(x) > 0

so u∗(x) is also an eigenfunction, so u(x) = c1u
∗(x) for some constant c1. Using the

equation for v, if (u, v) is an equilibrium and u+ v = u∗(x), then v = (1− c1)u∗.

(1− c1)[K(x)− u∗(x)]

∫
Ω

D(x, y)r(y)u∗(y)dy − e(x)u∗(x)] = 0 (2.5.23)

If c1 6= 1, then we must have

[K(x)− u∗(x)]

∫
Ω

D(x, y)r(y)u∗(y)dy − e(x)u∗(x) = 0 (2.5.24)

Since [K(x)− u∗(x)]r(x) = e(x) and u∗(x) = m(x)
r(x)

, (2.5.24) implies

e(x)

r(x)

∫
Ω

D(x, y)m(y)dy − e(x)

r(x)
m(x) = 0
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so that

∫
Ω

D(x, y)m(y)dy = m(x). (2.5.25)

This contradicts the hypothesis

∫
Ω

D(x, y)m(y)dy 6= m(x),

so we obtain a contradiction unless c1 = 1, but then (u, v) = (u∗, 0), so we cannot

have a positive equilibrium (u, v).

Since (0, v∗(x)) is unstable and there is no coexistence equilibrium, then solutions

starting near (0, v∗(x)) must increase in u and decrease in v as t increases until they

reach another equilibrium, which must be (u∗(x), 0). Then we have the following

theorem:

Theorem 2.16. Suppose that d(x, y) is an ideal free dispersal strategy and D(x, y)

is not an ideal free dispersal strategy. Then the steady state (u∗(x), 0) is globally

asymptotically stable.

Remark 2.17. If both d(x, y) and D(x, y) satisfy the ideal free dispersal strategy,

then the system has positive s ready states in the form of the 1-parameter family

{(u, v) = (sm, (1 − s)m) : 0 < s < 1}. When this occurs, the steady states are not

locally asymptotically stable among positive continuous initial data.
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2.6 Conclusions and Examples

In this chapter, we extended the nonlocal metapopulation model to two species com-

petition system. First we proved the global existence and uniqueness of solution by

applying contraction mapping theorem. As in the single species model, this result can

be obtained for either Ω finite or infinite domain, under the condition that k1,2(x, y) is

integrable. For the monotonicity of the system, we need Ω to be finite and hypothesis

(H1) and (H2) on kernel. We also studied the stability of two semi-trivial equilibria

and provided a sufficient condition for there is a coexistence states.

Cantrell et al. [10] studied the evolutionarily stable strategy for another nonlocal

model. For our model, we derived the mathematical description for ideal free distri-

bution strategy based on Cantrell et al. [Notes on Ideal Free Distribution] where a

discrete Mouquet-Loreau model was studied. For competition model, the two com-

peting species are assumed to be identical but have different dispersal strategies. We

showed that there is no coexistence equilibrium in this case. Stability analysis of two

semi-trivial equilibria and the monotonicity of the system gives the conclusion that

the species with ideal free dispersal strategy will not only invade by a small initial

population density but also can drive the other species to extinction.

People may wonder that is there real example that organisms are ”intellectual”

enough to evolve the ideal free dispersal strategy. Here is an example about the

how the oysters detect the surrounding environmental conditions. Zimmer-Faust and

Tamburri [65] investigated the chemical identity of planktonic oyster larvae and the

respond to waterborne chemical cues. They provided experimental evidence of larval

settlers identifying substances and oyster settlement induced by water-soluble cues.

Lillis et al. [47] studied the oyster larvae settle in response to habitat-associated
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underwater sounds. They showed that ”oyster larvae have the ability to respond to

sounds indicative of optimal settlement sites”, which make it possible to result in

equal fitness for each site in marine communities, i.e. the idea free distribution.



Chapter 3

Spreading Speed and Traveling
Wave Solution for Infinite Domain

3.1 Background

In the previous two chapters we studied the single species and two species competition

models on finite domain. In Chapter 3 we are interested in the model on infinite

domain how the species spread and the traveling wave solutions. In this case, we

need to assume the potential suitable sites and extinction rate are constants for all

area. There will be further assumptions on dispersal kernel for the convenience of

analysis.

Traveling wave solutions of partial differential equations in areas such as ecology,

and epidemiology are getting more attention. Existence and stability as well as what

initial conditions evolve to a traveling front solution, and the propagation speed of

a traveling front, are questions of interest and these have been applied to studies of

colonization, and spatial spread of epidemics. Our model, based on metapopulation

framework with non local dispersal, becomes:

ut = [K − u(x, t)]

∫
R
k1(x− y)u(y, t)dy − eu(x, t)

84
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where the domain is infinite domain and the functions K and death rate e are con-

stants. The dispersal kernel k(x, y) depends only on |x−y| and satisfies for all m > 0,∫
R e

myk(y)dy <∞.

We are interested in the two species competition model:

ut = [K − u(x, t)− av(x, t)]

∫
R
k1(x− y)u(y, t)dy − e1u(x, t)

vt = [K − u(x, t)− av(x, t)]

∫
R
k2(x− y)v(y, t)dy − e2v(x, t)

There are three equilibria, one trivial and two semi-trivial, and we want to study if one

species could drive the other species extinction. Suppose one semi-trivial equilibrium

is stable and the other is unstable (say species u is the winner). Under certain

conditions, if we can find a traveling wave solution connecting the two semi-trivial

equilibria then we can say that v can be invaded by a small population of u and then

go to extinction.

Reaction-diffusion equations can sometimes support solutions that are traveling

wavefronts connecting 0 and 1. This phenomenon was studied by Fisher in [27] in

models for the spatial spread of an advantageous genes.

ut = 4u+ u(1− u).

Fisher found traveling wave solutions for all speeds c ≥ c∗ where c∗ is the minimal

wave speed and there are no such waves of slower speed. A traveling wave solution

connecting 0 and 1 is u(x−ct) satisfies limt→−∞ u(x−ct) = 0 and limt→+∞ u(x−ct) =

1. We call such a result a spreading result. Kolmogorov, Petrovsky and Piscounoff [41]

proved it for models of the form ut = uxx + f(u). Aronson and Weinberger [3], [4]
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extended the results to more general equations ut = DO2u + f(u). The concept of

traveling wave has been studied in the context of combustion, the spatial spread of

population genetics, population biology and diseases, as well as phenomenon in other

fields.

Weinberger [62] studied the discrete-time recursion system

un+1 = Q[un]

where Q is a translation invariant time τ map. He showed the existence of traveling

wave for speeds greater than or equal to the asymptotic speed of propagation, un.

Lui [52], [53] developed the mathematical theory and extended the methods to multi

species cooperative system. Lui’s work can be applied to partial differential, integro-

differential, or finite difference equations.

Neubert and Caswell [58] applied the results to interaction of stages of a sin-

gle species. They modeled biological invasions with integro-difference equations for

dispersal and demonstrated how to calculate the population’s asymptotic invasion

speed. Lewis et al [63] analyzed the linear determinacy for two cooperative models.

In ecology, cooperative systems can obtained by changing variables of the competition

models. Lewis, Li and Weinberger [63] and [45] extended Lui’s results and applied

them to invasion processes of models for cooperation or competition. They gave the

conditions that lead to the propagation speed of the invader agreeing with the lin-

earized problem. They studied the case that when there are only two equilibria: 0

and β � 0, the system admits a single spreading speed c∗ with hair-trigger property

in the following sense: For every positive ε,
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(i) if u0 vanishes outside a bounded interval and 0 ≤ u0 � β, then

lim
n→∞

[
sup

|x|≥n[c∗+ε]

|un(x)|

]
= 0;

(ii) for any constant vector ω � 0, there is a positive number Rω such that if

u0 ≥ ω on an interval of length 2Rω, then

lim
n→∞

[
sup

|x|≥n[c∗−ε]
|β − un(x)|

]
= 0.

Liang and Zhao [46] developed this theory for monotone discrete and continuous-time

semi-flows with weaker compactness assumptions. In the case Q is sub-homogeneous

they proved that the choice of Rω can be independent of the number ω. They also

established the existence of minimal wave speeds under a weaker compactness as-

sumption. Weng and Zhao [64] studied a multi-type SIS epidemic model which has

a similar form as our model. The multi-type SIS model was presented by Rass and

Radcliffe [60]. The single species case of our model is a special case of Weng and

Zhao’s model for n = 1 after changing variables. However, for two species competi-

tion, we cannot use their result because we have three equilibria in the system. Fang

and Zhao [26] studied the traveling waves for three prototypical non-compact systems

including a nonlocal dispersal competition model which allowed there is an intermedi-

ate equilibrium when there are additional equilibria between 0 and β. For two species

competition in our model, we mainly used the theory in Fang and Zhao [26] to show

the existence of spreading speed and traveling wave solutions.
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3.2 Single Species Model

Let u(x, t) be the population density at x. The model for single species is:

ut = [K − u(x, t)]

∫
R
k(x− y)u(y, t)dy − e0u(x, t) (3.2.1)

Change variables, we obtain

ut = [K − u(x, t)]

∫
R
k(y)u(x− y, t)dy − e0u(x, t) (3.2.2)

This case has been treated by Weng and Zhao [64]. This is a special case of their

model with n = 1. We have the following hypothesis on the kernel:

(H1) k(x) = k0d(x, y) ≥ 0, k(x) = k(−x), for all u ∈ R,
∫
R k(x)dx = k0,∫

R d(x)dx = 1 and for any α > 0,
∫
R e

αxf(x)dx <∞.

The case with no dispersal is:

ut = [K − u(t)]k0u(t)− e0u(t) (3.2.3)

Lemma 3.1. If Kk0 ≤ e0, then the zero equilibrium is globally asymptotically stable.

If Kk0 > e0, then positive equilibrium u∗ = K− e0
k0

is globally asymptotically stable.

Let W = [0, K]. u(x, t) ∈ C(R×R+,W). This is a special case of [64] with n = 1.

Then we have the following conclusions.
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3.2.1 Existence and Uniqueness

The following theorem is Theorem 2.1 in [64].

Theorem 3.2. For any φ ∈ C(R,W ), system (3.2.2) has a unique solution u(x, t;φ)

satisfying u(x, 0;φ) = φ and u(·;φ) ∈ C(R× R+,W ).

3.2.2 Comparison Principle and Super-(Sub-) solutions

Definition 3.3. A function ū ∈ C1(R×R+,W ) is called a super-solution if it satisfies

ūt ≥ [K − ū(x, t)]

∫
R
k(x− y)ū(y, t)dy − e0ū(x, t).

A function u ∈ C1(R× R+,W ) is called a sub-solution if it satisfies

ut ≥ [K − u(x, t)]

∫
R
k(x− y)u(y, t)dy − e0u(x, t).

The following theorem is Theorem 2.2 in Weng and Zhao [2006].

Theorem 3.4. Let ū and u be super and sub solutions respectively. If ū(·, 0) ≥ u(·, 0),

then ū(·, t) ≥ u(·, t) for all t ≥ 0. Furthermore, for any φ ∈ C(R,W ) with φ 6≡ 0, we

have u(x, t;φ)� 0 for all (x, t) ∈ R× (0,+∞).

Theorem 3.4 implies that the model (3.2.2) generates a strongly monotone semi

flow, so that the results of Liang and Zhao [46] can be used.

Weng and Zhao [64] showed in their Lemma 3.2 that if e0 > 0 and Kk0 − e0 > 0

the solution map Qt for (3.2.2) has only the fixed points 0 and u∗ in the interval

[0, u∗].

We have the following hypothesis
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(H2) Either e0 = 0 or e0 > 0 and Kk0 − e0 > 0.

3.2.3 Asymptotic Spreading Speed

Let Qt[φ](x) be the solution u(x, t) of system (3.2.2). When τ = 1 we have time one

map Q1.

Then from Theorem 2.17 in Liang and Zhao [46] and Theorem 3.1 and 3.2 in Weng

and Zhao [64], we have

Theorem 3.5. Assume (H1)-(H2). Let c∗ be the spreading speed of time one map

Q1. Then we have the following:

(1) For any c > c∗, if φ ∈ Cu∗ with 0 � φ � u∗ and φ(x) = 0 for x outside a

bounded interval, then limt→∞,|x|≥tc u(x, t;φ) = 0.

(2) For any c < c∗, if φ ∈ Cu∗ with φ 6≡ 0, then limt→∞,|x|≤tc u(x, t;φ) = u∗.

c∗ is the asymptotic speed of spread of Q1.

Theorem 3.6. Assume (H1)-(H2). Let c∗ be the asymptotic speed of spread of Q1.

Then c∗ = infα>0
1
α

(
∫
R e

αyk(y)dy − e0).

3.2.4 Traveling Waves

The following theorem comes from Theorem 4.1 and 4.2 in [64].

Definition 3.7. A traveling wave solution of system (3.2.2) is a solution with the

form

φ(s) := φ(x+ ct) = u(x, t)

where c > 0 is the wave speed, s = x+ ct. φ is called the wave profile.
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The next theorem comes from Theorem 3.3 in [64].

Theorem 3.8. Assume (H1)-(H2) and let c∗ be the asymptotic speed of spread of Q1.

Then

(1) For any c ≥ c∗, the system has a traveling wave φ(x + ct) connecting 0 to u∗

such that φ(s) is continuous and nondecreasing in s ∈ R.

(2) For any c ∈ (0, c∗), system has no traveling wave φ(x+ ct) connecting 0 to u∗.

Remark 3.9. This is equivalent that

(1) For any c ≥ c∗, the system has a traveling wave φ(x− ct) connecting u∗ to 0.

(2) For any c ∈ (0, c∗), system has no traveling wave φ(x− ct) connecting u∗ to 0.

3.3 Two Species Competition

Then we consider the two species competition model:

ut = [K − u(x, t)− av(x, t)]

∫
R
k1(x− y)u(y, t)dy − e1u(x, t)

vt = [K − u(x, t)− av(x, t)]

∫
R
k2(x− y)v(y, t)dy − e2v(x, t)

(3.3.1)

Change variables, the system becomes:

ut = [K − u(x, t)− av(x, t)]

∫
R
k1(y)u(x− y, t)dy − e1u(x, t)

vt = [K − u(x, t)− av(x, t)]

∫
R
k2(y)v(x− y, t)dy − e2v(x, t)

(3.3.2)

Let C be the set of all bounded and continuous functions from R to R2. We use



92

≥ (�, >) and ≤ (<,�) as the standard ordering in space C. Define Cr := {u ∈ C :

r ≥ u ≥ 0}. ki =
∫
R ki(s)ds =

∫
R kidi(s) = ki · 1 = ki, i = 1, 2.

Similar as the single species model, we have the following hypotheses:

Hypothesis 3.10. (1) ki(x) ≥ 0, ki(x) = ki(−x), ∀x ∈ R, i = 1, 2 and there exists

some constant c > 0 such that for any µ > c,
∫
R e

µxki(x)dx <∞.

(2) There exists k0, δ > 0 such that ki(y) ≥ k0 > 0 for |y| ≤ δ.

3.3.1 Existence, Uniqueness and Comparison Principle

The existence and uniqueness of solution can be obtained from the proof of two species

competition (See Remark 2.2). Thus we have

Theorem 3.11. There exists a unique solution for system (3.3.2)

Proof. By Banach fixed point theorem, there exists a unique ~w∗ such that F(~w∗) =

~w∗. So

u∗ = u(x, 0) +
∫ t

0

(
[K − u(x, s)− av(x, t)] ·

∫
R k1(y)u(x− y, t)dy − e1u(x, s)

)
ds

v∗ = v(x, 0) +
∫ t

0

(
[K − u(x, s)− av(x, t)] ·

∫
R k2(y)v(x− y, t)dy − e2v(x, s)

)
ds
(3.3.3)
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3.3.2 Comparison Principal

Definition 3.12. A function u = (u(x, t), v(x, t)) ∈ C1(R × R+,W ) is called an

upper solution if it satisfies

ut ≥ [K − u(x, t)− av(x, t)]

∫
R
k1(y)u(x− y, t)dy − e1u(x, t)

vt ≤ [K − u(x, t)− av(x, t)]

∫
R
k2(y)v(x− y, t)dy − e2v(x, t)

(3.3.4)

A function u ∈ C1(R× R+,W ) is called an lower solution if it satisfies

ut ≤ [K − u(x, t)− av(x, t)]

∫
R
k1(y)u(x− y, t)dy − e1u(x, t)

vt ≥ [K − u(x, t)− av(x, t)]

∫
R
k2(y)v(x− y, t)dy − e2v(x, t)

(3.3.5)

3.3.3 Monotonicity

Definition 3.13. A function u = (u(x, t), v(x, t)) ∈ C1(R × R+,W ) is called an

upper solution if it satisfies

ut ≥ [K − u(x, t)− av(x, t)]

∫
R
k1(y)u(x− y, t)dy − e1u(x, t)

vt ≤ [K − u(x, t)− av(x, t)]

∫
R
k2(y)v(x− y, t)dy − e2v(x, t)

(3.3.6)

A function u ∈ C1(R× R+,W ) is called an lower solution if it satisfies

ut ≤ [K − u(x, t)− av(x, t)]

∫
R
k1(y)u(x− y, t)dy − e1u(x, t)

vt ≥ [K − u(x, t)− av(x, t)]

∫
R
k2(y)v(x− y, t)dy − e2v(x, t)

(3.3.7)
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Theorem 3.14. (Maximum Principle)

(i) If (0, 0) ≤1 (u(x, 0), v(x, 0)) and u(x, 0) + av(x, 0) ≤ K, then (0, 0) ≤1

(u(x, t), v(x, t)) and u(x, t) + av(x, t) ≤ K for all t > 0 where (u, v) exists.

(ii) If further we assume u(x, 0) > 0, v(x, 0) > 0 on some x, then u(x, t) > 0 and

v(x, t) > 0 for t > 0 where (u, v) exists.

Proof. (i) Let w(x, t) = K − u(x, t)− av(x, t), we have

ut = w(x, t)
∫
R k1(x− y)u(y, t)dy − e1u(x, t)

vt = w(x, t)
∫
R k2(x− y)v(y, t)dy − e2v(x, t)

wt = −w(x, t)
(∫

R k1(x− y)u(y, t)dy + a
∫
R k2(x− y)v(y, t)dy

)
+e1u(x, t) + ae2v(x, t)

(3.3.8)

Then wt = −(ut + avt).

We know the original competition system has a unique solutions on some [0, T ].

If we can show that solution to (3.3.8) with initial data (u0, v0, w0) are uniquely

determined and nonnegative, then we will have u(x, t) ≥ 0, v(x, t) ≥ 0 and u(x, t) +

av(x, t) ≤ K for t ∈ [0, T ] where solutions exist.

Rewrite (3.3.8) with initial data u0, v0, w0 as:

ut + e1u(x, t) = w(x, t)

∫
R
k1(y)u(x− y, t)dy

vt + e2v(x, t) = w(x, t)

∫
R
k2(y)v(x− y, t)dy
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So we have

u(x, t) = u0(x)e−e1t +
∫ t

0
e−e1(t−s)[K − u(x, s)− av(x, s)]

∫
R k1(y)u(x− y, s)dyds

v(x, t) = v0(x)e−e2t +
∫ t

0
e−e2(t−s)[K − u(x, s)− av(x, s)]

∫
R k2(y)v(x− y, s)dyds

w(x, t) = w0(x)e−I[(u,v)](t) +
∫ t

0
e−I[(u,v)](t−s)(e1u(x, s) + ae2v(x, s))ds.

(3.3.9)

where I[(u, v)](t) =
∫ t

0

∫
R[k1(y)u(x− y, s) + ak2(y)v(x− y, s)]dyds, then

(eI[(u,v)](t))t = eI [(u, v)](t)(e1u(x, t) + ae2v(x, t))

Let

F1[u, v, w](x, t) = u0(x)e−e1t +
∫ t

0
e−e1(t−s)[K − u(x, s)− av(x, s)]

·
∫
R k1(y)u(x− y, s)dyds

F2[u, v, w](x, t) = v0(x)e−e2t +
∫ t

0
e−e2(t−s)[K − u(x, s)− av(x, s)]

·
∫
R k2(y)v(x− y, s)dyds

F3[u, v, w](x, t) = w0(x)e−I[(u,v)](t) +
∫ t

0
e−I[(u,v)](t−s)(e1u(x, s) + ae2v(x, s))ds.

(3.3.10)

Clearly, we have u, v, w are nonnegative and continuous, and so are F1,F2,F3 for

u0, v0, w0 nonnegative. Start with space X = C(R × [0, T ])3 and u0, v0, w0. Let

F = (F1(u, v, w),F2(u, v, w),F3(u, v, w)). Let Z be a subspace of X, and Z =

{(u, v, w) ∈ X | supR×[0,T ] ‖u− e−e1tu0‖+ ‖v− e−e2tv0‖+ ‖w− e−I[(u0,v0)](t)w0‖ ≤M}

where M,T > 0 are constant to be determined later. Let ki =
∫
R ki(y)dy, i = 1, 2.

So u ≥ 0, v ≥ 0 and K − u− av ≥ 0 for [0, t] where solution exists. ‖u‖+ ‖v‖+
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‖w‖ ≤M + ‖u0‖+ ‖v0‖+ ‖w0‖ is bounded. ‖u‖, ‖v‖, ‖w‖ are bounded.

‖F1(u)− e−e1tu0‖ = ‖
∫ t

0

e−e1(t−s)
(
w(x, s)

∫
R
k1(y)u(x− y, s)dy

)
ds‖

≤ ‖w‖k1‖u‖t

‖F2(v)− v0e
−e1t‖ = ‖

∫ t

0

e−e2(t−s)
(
w(x, s)

∫
R
k2(y)v(x− y, s)dy

)
ds‖

≤ ‖w‖k2‖v‖t

By selecting T1 < min{ M
3‖w‖k1‖u‖ ,

M
3‖w‖k2‖v‖}, we can get |u(x, t) − e−e1tu0(x)| < M/3,

|v(x, t)− e−e2tv0(x)| < M/3. Then for t ∈ [0, T1], we have

‖F3(w)− e−I[(u0,v0)](t)w0‖

= w0(e−I[(u,v)](t) − e−I[(u0,v0)](t)) +

∫ t

0

e−I[(u,v)](t−s)(e1u(x, s) + ae2v(x, s))

I[(u, v)](t) =
∫ t

0

∫
R[k1(y)u(x − y, s) + ak2(y)u(x − y, s)]dyds. The terms inside the

integral is bounded by constant depend on M and ez is Lipschitz, so we have

e−I[(u,v)](t) − e−I[(u0,v0)](t) ≤ C(M)(I[(u, v)](t)− I[(u0, v0)](t))

= C(M)

∫ t

0

[k1(y)(u(x− y, s)− u0(y)) + ak2(y)(v(x− y, s)− v0(y))]dyds

≤ C(M)t(k1‖u− u0‖+ ak2‖v − v0‖)
M

3
:= C(M)Ct
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and

‖F3(w)− e−I[(u0,v0)](t)w0‖

≤ ‖w0‖C(M)Ct+ t(e1‖u‖+ ae2‖v‖)

By selecting T < min{T1,
M

3(‖w0‖C(M)C+e1‖u‖+ae2‖v‖)}, we have |w(x, t)− e−I[(u0,v0)](t)| <

M/3. Then F : Z → Z.

Next we need to show F is a contraction.

‖F1(u1, v1, w1)−F1(u2, v2, w2)‖

= ‖
∫ t

0

e−e1(t−s)[(w1(x, s)− w2(x, s))

∫
R
k1(y)u1(x− y, s)dy

+ w2(x, s)

∫
R
k1(y)(u1(x− y, s)− u2(x− y, s))dy]ds‖

≤ (‖w1 − w2‖‖u1‖+ ‖w2‖‖u1 − u2‖) · tk1

‖F2(u1, v1, w1)−F2(u2, v2, w2)‖

= ‖
∫ t

0

e−e1(t−s)[(w1(x, s)− w2(x, s))

∫
R
k2(y)v1(x− y, s)dy

+ w2(x, s)

∫
R
k2(y)(v1(x− y, s)− v2(x− y, s))dy]ds‖

≤ (‖w1 − w2‖‖v1‖+ ‖w2‖‖v1 − v2‖) · tk2
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F3(u1, v1, w1)−F3(u2, v2, w2)

= w0(e−I[(u1,v1)](t) − e−I[(u2,v2)](t)) +

∫ t

0

e−I[(u1,v1)](t−s)(e1u1(x, s) + ae2v1(x, s))

−
∫ t

0

e−I[(u2,v2)](t−s)(e1u2(x, s) + ae2v2(x, s)).

Here,

|e−I[(u1,v1)](t) − e−I[(u2,v2)](t)|

≤ C(M)|
∫ t

0

k1(y)[u1(x− y, s)− u2(x− y, s)]dyds

+a

∫ t

0

k2(y)[v1(x− y, s)− v2(x− y, s)]dyds|

≤ C(M)[k1(‖u1 − u2‖+ ak2‖v1 − v2‖)]t
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and

|
∫ t

0

e−I[(u1,v1)](t−s)(e1u1(x, s) + ae2v1(x, s))dyds

−
∫ t

0

e−I[(u2,v2)](t−s)(e1u2(x, s) + ae2v2(x, s))dyds|

= |
∫ t

0

e−I[(u1,v1)](t−s)(e1u1(x, s) + ae2v1(x, s))dyds

−
∫ t

0

e−I[(u2,v2)](t−s)(e1u1(x, s) + ae2v1(x, s))dyds|

+|
∫ t

0

e−I[(u2,v2)](t−s)(e1u1(x, s) + ae2v1(x, s))dyds

−
∫ t

0

e−I[(u2,v2)](t−s)(e1u2(x, s) + ae2v2(x, s))dyds|

= |
∫ t

0

[e−I[(u1,v1)](t−s) − e−I[(u2,v2)](t−s)](e1u1(x, s) + ae2v1(x, s))dyds|

+|
∫ t

0

e−I[(u2,v2)](t−s)[e1(u1(x, s)− u2(x, s)) + ae2(v1(x, s)− v2(x, s))]dyds|

≤ |(e1‖u1‖+ ae2‖v1‖)[k1(‖u1 − u2‖+ ak2‖v1 − v2‖)]C(M)
t2

2
|

+t|e1(‖u1 − u2) + ae2(‖v1 − v2‖)|

≤ (C1(M)t2 + e1t)‖u1 − u2‖+ (D1(M)t2 + e2t)‖v1 − v2‖

Denote

‖F3(u1, v1, w1)−F3(u2, v2, w2)‖

≤ [C1(M)t+ C2(M)]t‖u1 − u2‖+ [D1(M)t+D2(M)]t‖v1 − v2‖
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So

|F(u1, v1, w1)−F(u2, v2, w2)|

≤ (‖w1 − w2‖‖u1‖+ ‖w2‖‖u1 − u2‖) · tk1 + (‖w1 − w2‖‖v1‖+ ‖w2‖‖v1 − v2‖) · tk2

+[C1(M)t+ C2(M)]t‖u1 − u2‖+ [D1(M)t+D2(M)]t‖v1 − v2‖

By selecting t > 0 small enough, we have ‖F(u1, v1, w1) − F(u2, v2, w2)‖ ≤

‖(u1, v1, w1)− (u2, v2, w2)‖. Thus we have F is a contraction map.

By Contraction Mapping Theorem, F has a unique fixed point, i.e. (u∗, v∗, w∗),

satisfying F(u∗, v∗, w∗) = (u∗, v∗, w∗) is uniquely determined. And (u∗, v∗, w∗) is

nonnegative. This implies (i) of the Maximum Principle.

(ii)

Once we have K − u(x, 0)− av(x, 0) > 0 for some x, then by continuity, for some

t0(x), K − u(x, t)− av(x, t) > 0 for 0 ≤ t < t0(x).

If K − u(x, 0)− av(x, 0) = 0, then

ut(x, 0) = −e1u(x, 0)

vt(x, 0) = −e2v(x, 0)

with either ut < 0 or vt < 0 since u(x, 0) ≥ 0, v(x, 0) ≥ 0 and K−u(x, 0)−av(x, 0) =

K. Thus (K − u(x, 0) − av(x, 0))t < 0 so again K − u(x, t) − av(x, t) < 0 for

0 < t < t0(x) for some t0(x).

Given any fixed x, suppose that

t1(x) = sup{t : K − u(x, s)− av(x, s) > 0 for 0 < s < t} <∞.
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Then K − u(x, t)− av(x, t) ≥ 0 on (0, t1(x)), so K − u(x, t1(x))− av(x, t1(x)) = 0, so

(K − u(x, t)− av(x, t))t ≤ 0 at (x, t1(x)).

Also, (K − u(x, t)− av(x, t))t = −ut − avt, ut = −e1u and vt = −e2v at (x, t1(x))

with u, v ≥ 0 and u + av = K > 0, so ut ≤ 0, vt ≤ 0 and either ut < 0 or

vt < 0. So (K − u − av)t(x, t1(x)) > 0, contradiction. Thus t1(x) = ∞. Hence,

K − u(x, t)− av(x, t) > 0 for t > 0.

Now we use the condition on kernel that there exists δ, k0 > 0 such that ki(y) ≥

k0 > 0 for |y| ≤ δ.

u(x, t) = u(x, 0)e−e1t +

∫ t

0

e−e1(t−s)[K − u(x, s)− av(x, s)]

∫
R
k1(y)u(x− y, s)dyds

Suppose u(x, 0) > 0, v(x, 0) > 0 for x ∈ Bγ(x0), then by continuity there is a

t0 > 0 such that u(x, t) > 0, v(x, t) > 0 for t ∈ (0, t0]. By the hypothesis on kernel

ki(y) we have for all x ∈ Bγ+δ(x0),

u(x, t) = u(x, 0)e−e1t+

∫ t

0

e−e1(t−s)[K−u(x, s)−av(x, s)]

∫ −δ
δ

k1(y)u(x−y, s)dyds > 0

for (x, t) ∈ Bγ+δ(x0) × (0, t0]. For x ∈ Bγ+2δ(x0), we also have u(x, t) > 0 for

(x, t) ∈ Bγ+2δ(x0) × (0, t0]. Repeat this argument on Bγ+Nδ for N → ∞. Then we

have u(x, t) > 0 for (x, t) ∈ R× (0, t0].

We also have

u(x, 2t0) = u(x, t0)e−e1t +

∫ 2t0

t0

e−e1(t−s)[K−u(x, s)−av(x, s)]

∫
R
k1(y)u(x− y, s)dyds

We can repeat this argument on t ∈ [nt0, (n+ 1)t0] as long as (u(x, t), v(x, t)) exists.
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Thus we have u(x, t) > 0, v(x, t) > 0 for t > 0 where (u, v) exists.

Theorem 3.15. (i)Let (u1(x, t), v1(x, t)) be sub-solution and (u2(x, t), v2(x, t)) be

super-solution of the system. If (u2(x, 0), v2(x, 0)) ≥2 (u1(x, 0), v1(x, 0)), then

(u2(x, t), v2(x, t)) ≥2 (u1(x, t), v1(x, t)) for t > 0 where the solution exists.

(ii) If (u1(x, t), v1(x, t)) and (u2(x, t), v2(x, t)) are solutions starting from

(u1(x, 0), v1(x, 0)) and (u2(x, 0), v2(x, 0)) respectively, and (u2(x, 0), v2(x, 0)) ≥2

(u1(x, 0), v1(x, 0)), then (u2(x, t), v2(x, t)) ≥2 (u1(x, t), v1(x, t)) for t > 0 where the

solution exists.

(iii )Moreover, if u2(x, 0) > u1(x, 0) and v1(x, 0) > v2(x, 0) on some open subset

of R, then (u2(x, t), v2(x, t))�2 (u1(x, t), v1(x, t)).

Proof. Define:

u(x, t) = u2(x, t)− u1(x, t) + εeαt, ũ(x, t) = u(x, t)eβt.

v(x, t) = v1(x, t)− v2(x, t) + εeαt, ṽ(x, t) = v(x, t)eβt.

By previous theorem, all solutions are nonnegative with au+ bv ≤ K(x). So they

are uniformly bounded.

Claim: ũ > 0, ṽ > 0 for all t ∈ (0, T ) where solution exists.

By selecting β > 0 sufficiently large, we have
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ũt · e−β·t

≥ [K − u2(x, t)− av2(x, t)]

∫
R
k1(y)u(x− y, t)dy + av(x, t)

∫
R
k1(y)u1(x− y, t)dy

+ u(x, t)(β − e1 −
∫
R
k1(y)u1(x− y, t)dy)

+ εeα·t(α− (K − u2 − av2)k1 − (1− a)

∫
R
k1(y)u1(x− y, t)dy + e1)

> [K − u2(x, t)− av2(x, t)]

∫
R
k1(y)u(x− y, t)dy + av(x, t)

∫
R
k1(y)u1(x− y, t)dy

+ (β − e1 −
∫
R
k1(y)u1(x− y, t)dy)u(x, t)

≥ 0

ṽt · e−β·t

≥ [K − u1(x, t)− av1(x, t)]

∫
R
k2(y)v(x− y, t)dy + u(x, t)

∫
R
k2(y)v2(x− y, t)dy

+ v(x, t)(β − e2 − a
∫
R
k2(y)v2(x− y, t)dy)

+ εeα·t(α− (K − u1 − av1)k2 − (1− a)

∫
R
k2(y)v2(x− y, t)dy + e2)

> [K − u1(x, t)− av1(x, t)]

∫
R
k2(y)v(x− y, t)dy + u(x, t)

∫
R
k2(y)v2(x− y, t)dy

+ (β − e2 − a
∫
R
k2(y)v2(x− y, t)dy)v(x, t)

≥ 0

So we must have ũ > 0.

∵ ε can be arbitrarily small
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∴ u2(x, t) ≥ (u1(x, t)) for t > 0 where solution exists.

Similarly we get v1(x, t) ≥ v2(x, t).

(ii) It is a special case of (i).

(iii) Let p(x, t) = eβt(u2(x, t)− u1(x, t)), q(x, t) = (v1(x, t)− v2(x, t))eβt. Suppose

u1(x, 0) < u2(x, 0) on some Bγ(x1) at some Bγ(x1). Then at t = 0

e−βtpt = [K − u2(x, t)− av2(x, t)]

∫
R
k1(y)(u2(x− y, t)− u1(x− y, t))dy

+[β −
∫
R
k1(y)u1(x− y, t)dy − e1](u2(x, t)− u1(x, t))

+a(v1 − v2)

∫
R
k1(y)u2(x− y, t)dy

let β >
∫
R k1(y)u1(x− y, t)dy + e1 be sufficiently large, we have pt > 0 for t = 0. But

this implies that p(x, t) > 0 on [0, t0] for some t0.

Then for x ∈ Bγ+δ(x1), we also have pt > 0. Repeat this process on Bγ+2δ, Bγ+3δ

and so on until we have for x ∈ R, we have pt > 0 on [0, t0]. Then p(x, t) > 0 for

where p(x, t) exists, i.e. u2(x, t) > u1(x, t) for t ∈ [0, t0] where t0 only depends on

the coefficients of system. Repeat this argument on [t0, 2t0], [2t0, 3t0], etc. Then we

obtain u2(x, t) > u1(x, t), v1(x, t) > v2(x, t) for where the solution exists.

Similar argument applies for v1(x, t) > v2(x, t) for where solution exists.

Corollary 3.16. (Global Existence) For φ = (u0, v0) ∈ S, then (u(·, t;φ), v(·, t;φ))

exists for all t > 0.

Proof. We have the global existence for single species and thus

(u(·, t; (u0, 0)), v(·, t; (u0, 0))) and (u(·, t; (0, v0)), v(·, t; (0, v0))) exists for all t > 0.

Also we have (u(·, t; (u0, 0)), v(·, t; (u0, 0))) ≤2 (u(·, t; (u0, v0)), v(·, t; (u0, v0))) ≤2
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(u(·, t; (0, v0)), v(·, t; (0, v0))). Then we obtain the global existence for the two

competitive species model.

Theorem 3.17. Let ki(x) = ki · di(x), where ki is the birth rate and
∫
R di(x)dx = 1,

for i = 1, 2. If k1
e1
6= k2

e2
, without loss of generality, assume k1

e1
> k2

e2
then there exists

no coexistent equilibrium if k1
e1
d1(x) > k2

e2
d2(x) for all x ∈ R.

Proof. If there is a positive equilibrium (u∗(x), v∗(x)), then it must satisfy

K − u∗(x)− av∗(x) =
e1u
∗(x)∫

R k1(x− y)u∗(y)dy
,

K − u∗(x)− av∗(x) =
e2v
∗(x)∫

R k2(x− y)v∗(y)dy
.

Then, k2
e2
u∗(x)

∫
R d2(x, y)v∗(y)dy = k1

e1
v∗(x)

∫
R d1(x, y)u∗(y)dy. Integrate on R, then

since di(y) is symmetric,

k2

e2

∫
R

∫
R
d2(x− y)u∗(x)v∗(y)dydx =

k1

e1

∫
R

∫
R
d1(x− y)u∗(x)v∗(y)dydx

If k1
e1
d1(x) > k2

e2
d2(x) for all x ∈ R, this cannot be true.

Thus there exists no coexistent equilibrium.

Theorem 3.18. If e1
k1
< e2

k2
, then the semi-trivial equilibrium (K − e1

k2
, 0) is asymp-

totically stable and (0, 1
a
(K − e2

k2
)) is unstable.

Proof. Let u∗ = K− e1
k1

, v∗ = 1
a
(K− e2

k2
). We have

∫
R ki(x−y)dy = ki

∫
R di(x−y)dy =

ki · 1 = ki, for all x ∈ R and i = 1, 2.
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Let (u(x, t), v(x, t)) start from (u∗ − ε, ε).

vt = [K − u∗]
∫
R
k2(x− y)εdy − e2ε+ ε2[1− a]

∫
R
k2(x− y)dy

= ε[
e1

k1

k2

∫
R
d2(x− y)dy − e2] + ε2[1− a]

∫
R
k2(x− y)dy

Since e1
k1
< e2

k2
, we can select ε small enough such that

vt < ε[
e2

k2

k2 − e2] = 0.

Then (u∗ − ε, ε) goes to (u∗, 0) as t increase. Thus (u∗, 0) is asymptotically stable.

If (u(x, t), v(x, t)) start from (ε, v∗ − ε),

ut = [K − av∗]
∫
R
k1(x− y)εdy − e1ε− ε2[1− a]

∫
R
k1(x− y)φ1(y)dy

= ε[
e2

k2

k1

∫
R
d1(x− y)dy − e1]− ε2[1− a]

∫
R
k1(x− y)dy

Since e1
k1
< e2

k2
, we can select ε small enough such that

ut > ε[
e1

k1

k1 − e1] = 0.

Then u(x, t) increases near t = 0 as t increases. So (ε, v∗ − ε) is asymptotically

unstable.
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3.4 Spreading Speed and Traveling Waves

In the following text, we assume e1
k1
< e2

k2
, thus the semi trivial equilibrium (0, 1

a
(K −

e2
k2

)) is asymptotically unstable and (K − e1
k2
, 0) is stable. Also assume k1

e1
d1(x) >

k2
e2
d2(x) for all x ∈ R then there is no coexistence equilibrium. (0, 0) is the equilibrium

between them (0, 1
a
(K − e2

k2
)) ≤2 (0, 0) ≤2 (K − e1

k2
, 0) under competing ordering.

3.4.1 Preliminary

The following statements and theorems are from Fang and Zhao [26].

Let (X,X+) be a Banach Lattice with the norm | · | and the positive cone X+.

For any u and v in a Banach lattice, max{u, v} is defined to be the least upper bound

of u and v and min{u, v} to be the greatest lower bound of u and v.

Let M be all non increasing and bounded functions from R to X. We equip M

with the compact open topology. We say a subset S ofM is bounded if {|φ(x)| : φ ∈

S, x ∈ R} is bounded. For any u, v ∈ X, u ≥ (>,�)v if u−v ∈ X+(X+\{0}, IntX+).

For any u, v ∈ M, u ≥ v if u(x) ≥ v(x) for all x ∈ R. For any given subset

A ⊂ M and number s ∈ R, define A(s) := {u(s) : u ∈ A}. For two subsets

B1, B2 of X, we define max{B1, B2} := {max{u1, u2} : u1 ∈ B1, u2 ∈ B2}. We use

the Kuratowski measure of non compactness in X. For any bounded set B, define:

α(B) := inf{r : B has a finite cover of diameter < r}. It is easy to see that B is

pre compact if and only if α(B) = 0. We also have α(max{B1, B2}) ≤ α(B1)+α(B2).

For any y ∈ R, we introduce translation operator ty onM by Ty[u](x) = u(x− y)

for all x ∈ R. Let the map Q :Mβ →Mβ where Mβ := {u ∈ M : 0 ≤ u ≤ β} and

β ∈ IntX+. We have the following assumptions:
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(A1) (Translation invariance) Ty ◦Q = Q ◦ Ty for all y ∈ R.

(A2) (Continuity) If uk → u in M, then Q[uk](x) → Q[u](x) in X almost every-

where.

(A3) (Point-α-contraction) There exists k ∈ [0, 1) such that for any U ⊂ Mβ,

α(Q[U ](0)) ≤ kα(U(0)).

(A4) (Monotonicity) Q :Mβ →Mβ is monotone (order-preserving) in the sense

that Q[u] ≥ Q[v] whenever u ≥ v in Mβ.

(A5) (Monostability) Q admits two fixed points 0 and β in X+, and

limn→∞Q
n[ω] = β for any ω ∈ X+ with 0� ω ≤ β.

With (A1), we have (A3) equivalent to

α(Q[U ](x)) ≤ kα(U(x)) ∀U ⊂Mβ, x ∈ R.

Let ω ∈ X with 0� ω � β. Choose φ to be a continuous function from R to X

with the following properties:

(B1) φ is a non increasing function.;

(B2) φ(x) = 0, for all x ≥ 0.

(B3) φ(−∞) = ω.

Let c and κ be given real numbers with κ ∈ (0, 1]. Following [42], we define an

operator Rc,κ by Rc,κ[a](s) := max{κφ(s), T−cQ[a](s)} and a sequence of functions

an(c, κ; s) by the recursion:

a0(c, κ; s) = κφ(s), an+1(c, κ; s) = Rc,κ[an(c, κ; ·)](s).

Denote Rc = Rc,1, an(c; s) = an(c, 1; s). The following lemmas are Lemma 3.2-3.6
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from [26].

Lemma 3.19. The following statements are valid:

(1) Rc :Mβ →Mβ is order-preserving.

(2) an(c; s) is nondecreasing in n and non increasing in both s and c.

(3) For each n, an(c;−∞) ≥ Qn[ω] and an(c; +∞) = 0.

(4) For each s ∈ R, an(c; s) converges to a(c; s) in X and a(c; s) is non increasing

in both s and c.

(5) a(c;−∞) = β and a(c; +∞) exists in X.

Lemma 3.20. The following statements are valid:

(1) a(c; ·) ∈M and Rc[a(c; ·)](s) = a(c; s) for almost all s ∈ R.

(2) a(c,+∞) ∈ X is a fixed point of Q.

Lemma 3.21. a(c; +∞) = β if and only if an(c; 0)� ω for some n.

Now we define the number

c∗+ = sup{c : a(c; +∞) = β},

then we have

Lemma 3.22. c∗+ > −∞.

Now we define

c̄+ = sup{c : a(c; +∞) > 0}.

Clearly, c∗+ ≤ c̄+ because a(c; ·) is non increasing in c. Since a(c;∞) is a fixed point

of Q, we have c∗+ = c̄+ provided that Q has no fixed point in Xβ other than 0 and β.

Moreover, a(c; +∞) = β if and only if c < c∗+ and a(c; +∞) > 0 if and only if c < c̄+.
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c∗+ and c̄+ are the lower and upper bounds of rightward spreading speeds for the

discrete-time system respectively. In the case where c̄+ = c∗+, the system admits a

single rightward spreading speed.

The following theorem is Theorem 4.2 from [26].

Theorem 3.23. Let {Qt}t≥0 be a continuous-time semi flow on Mβ. Assume that

for any t > 0, Qt satisfies (A1), (A3)-(A5) with fixed points replaced by equlibria of

{Qt}t≥0 in (A5). Let c∗+ and c̄+ be defind as before with Q = Q1 and c∗+ ≤ c̄+. Then

the following statements are valid:

(1) For any c ≥ c∗+, there is a left-continuous traveling wave W (x− ct) connecting

β to some equilibrium β1 ∈ Xβ\{β}.

(2) If, in addition, 0 is an isolated equilibrium of {Qt}t≥0 in Xβ, then for any

c ≥ c̄+ either of the following holds true:

(i) There exists a left-continuous traveling wave W (x− ct) connecting β to 0.

(ii) {Qt}t≥0 has two ordered equilibria α1, α2 in Xβ\{0, β} such that there exist

a left-continuous traveling wave W1(x− ct) connedting α1 to 0 and a left continuous

w2(x− ct) connecting β to α2.

(3) For any c < c∗+, there is no traveling wave connecting β to 0, and for any

c < c̄+, there is no traveling wave connecting β to 0.

Further, if each Qt maps left-continuous functions to left-continuous functions,

then the above obtained traveling waves satisfy Qt[Q](x) = W (x − ct), for all x ∈ R

and t ≥ 0.
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3.4.2 Two species competition model

Recall our model (3.3.2):

ut = [K − u(x, t)− av(x, t)]
∫
R k1(y)u(x− y, t)dy − e1u(x, t)

vt = [K − u(x, t)− av(x, t)]
∫
R k2(y)v(x− y, t)dy − e2v(x, t)

Assume that: e1
k1
< K < e2

k2
. The equilibria:

E0 := (0, 0), E1 := (0,
1

a
(K − e2

k2

)), E2 := (K − e1

k1

, 0).

Change the variable: w(x, t) = 1
a
(K − e2

k2
)− v(x, t), we obtain the system:

ut = [ e2
k2
− u(x, t) + aw(x, t)]

∫
R k1(y)u(x− y, t)dy − e1u(x, t)

wt = [ e2
k2
− u(x, t) + aw(x, t)]

∫
R k2(y)w(x− y, t)dy − k2Kw(x, t) + k2K−e2

a
u(x, t)

(3.4.1)

Then the three equilibria become:

Ē0 := (0,
1

a
(K − e2

k2

)), Ē1 := (0, 0), Ē2 := (K − e1

k1

,
1

a
(K − e2

k2

)).

Let Q be the time-one map of the system:

Q[u](x) = [ e2
k2
− u(x) + aw(x)]

∫
R k1(y)u(x− y)dy − e1u(x)

Q[w](x) = [ e2
k2
− u(x) + aw(x)]

∫
R k2(y)w(x− y)dy − k2Kw(x) + k2K−e2

a
u(x)

(3.4.2)

The next Lemma is Lemma 3.3 from [64]. It will be used later in proof of Theorem

3.25.
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Lemma 3.24. Let Φ1(λ) = K
∫
R k1(y)eλydy − e1, Φ2(λ) = K

∫
R k2(y)eλydy − k2K,

then Φi satisfy the following properties:

(i) Φ(λ)→∞ as λ decreases to 0.

(ii) Φ(λ) is decreasing near 0.

(iii) Φ′(λ) changes sign at most once on (0,∞).

(iv) limλ→∞Φ(λ) exists, where the limit may be infinite.

Theorem 3.25. Let c̄+ ≥ c∗+ be defined as before with Q be Q1 time-one map of

system (3.3.2). Then the following statements are valid:

(i) c̄+ is the minimal wave speed of (3.3.2) in the sense that for any c ≥ c̄+,

there is a traveling wave (U(x− ct), V (x− ct)) connecting E2 to E1, with wave profile

component U non increasing and V non decreasing, and for any c < c̄+, there is no

such traveling wave.

(ii) c̄+ = c∗+, and hence, system (3.3.2) admits a single rightward spreading speed.

Proof. (i) Let X = R2, β = Ē2. U is a subset ofMβ as in (A3). Since system (3.3.2)

has a comparison principle, so does (3.4.2). It then follows that the solution map Qt

for (3.4.2) maps Mβ into itself. It is easy to check translation invariance property

since Tz ◦Q = Q ◦ Tz for all z ∈ R. Since all bounded sets in R2 are pre compact, we

have α(U(0)) = 0 and α(Qt[U(0)]) = 0 as in the proof of Theorem 5.1 in Fang, Zhao

[2014]. Therefore the conditions in Theorem 3.23 are satisfied. We obtain c̄+ as the

minimal wave speed, in the sense that for any c ≥ c̄+ there exists a left-continuous

traveling wave W (x− ct) connecting β to 0 and for any c < c̄+, there is no traveling
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wave connecting β to 0. Moreover, since the terms of right hand side of

u(x, t) = u(x, 0) +
∫ t

0

(
[K − u(x, s)− av(x, s)] ·

∫
R k1(y)u(x− y, s)dy

−e1u(x, s)
)
ds

v(x, t) = v(x, 0) +
∫ t

0

(
[K − u(x, s)− av(x, s)] ·

∫
R k2(y)v(x− y, s)dy

−e2v(x, s)
)
ds

(3.4.3)

are differentiable with respect to t, the obtained traveling waves are also classical

solutions of (3.3.2).

To prove the theorem by using Theorem 3.23, we need to exclude the second

positivity in (2). Assume that (2)(ii) holds true for some c ≥ c̄+. Then since Ē0 is

the only equilibrium between 0 and β, α1 = α2 = Ē0. Restrict the system on the

order interval [Ē1, Ē0] and we obtain

wt = [
e1

k1

− aw(x, t)]

∫
R
k2(y)w(x− y, t)dy − k2Kw(x, t). (3.4.4)

Then by Theorem 3.8, there is a non increasing traveling wave W (x− ct) connecting

1
a
(K − e2

k2
) and 0.

The system restricted on the order interval [Ē1, Ē0] is:

ut = [K − u(x, t)]

∫
R
k1(y)u(x− y, t)dy − e1u(x, t). (3.4.5)

Also there is a non increasing traveling wave U(x − ct) connecting e1
k1

to 0. Let

W̃ (x− ct) = 1
a
(K − e2

k2
)−W (x− ct), it is a non decreasing traveling wave connecting
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0 and 1
a
(K − e2

k2
) of the system:

w̃t = [K − aw̃(x, t)]

∫
R
k2(y)w̃(x− y, t)dy − e2w̃(x, t). (3.4.6)

(3.4.5) admits a positive spreading speed c∗1 > 0, and (3.4.6) admits a positive spread-

ing speed c∗2 > 0. Thus we have c ≥ c∗1 > 0. But also −c ≥ c∗2 > 0. Contradiction.

(ii)

Assume c̄+ > c∗+. By (1) and (3), 3.4.2 has a non increasing traveling wave

(U1(x−c∗+t),W1(x−c∗+t)) connecting Ē2 to Ē0. ∴ W1 ≡ 1
a
(K− e2

k2
). And U1(x−c∗+t)

is a traveling wave of (3.4.5) connecting K − e1
k1

and 0. So we have c∗+ ≥ c∗1 > 0. Let

F1(λ, c) := λc−K
∫
R
k1(y)eλydy + e1.

By Lemma 3.24, we have that c∗1 is the only solution satisfies the following equations:

λ > 0,

F1(λ, c) = 0,

∂λF1(λ, c) = 0.

(3.4.7)

Let λ∗1 and c∗1 satisfy (3.4.7). Choose a number c1 ∈ (c∗+, c̄+), then c1 > c∗+ > c∗1. So

there exists λ1 > 0 such that F1(λ1, c1) > 0.

Let

F2(λ, c) := λc− e2

k2

∫
R
k2(y)eλydy + k2K.
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Then c∗2 is the only solution of

λ > 0,

F2(λ, c) = 0,

∂λF2(λ, c) = 0.

(3.4.8)

Let λ∗2 and c∗2 satisfy (3.4.8). Since c1 ≥ c∗2 > 0, there exists λ2 such that f2(λ2, c1) > 0.

Define

ū(x, t) = min{e−λ1(x−c1t), K}, w̄(x, t) = min{e−λ2(x−c1t),
e2

k2a
}.

Next we show that (ū(x, t), w̄(x, t)) is an upper solution to (3.4.2).

For all x− c1t > − 1
λ1
lnK, ū(x, t) = e−λ1(x−c1t) and hence,

eλ1(x−c1t)
(
ūt − [K − ū(x, t)]

∫
R
k1(y)ū(x− y, t)dy + e1ū(x, t)

)
= eλ1(x−c1t)

(
λ1c1e

−λ1(x−c1t) −K
∫
R
k1(y)eλ1ydye−λ1(x−c1t) + e1e

−λ1(x−c1t)
)

= λ1c1 −K
∫
R
k1(y)eλ1ydy + e1 > 0

For all x− c1t < − 1
λ1
lnK, ū(x, t) = K and hence,

eλ1(x−c1t)
(
ūt − [K −K]

∫
R
k1(y)ū(y, t)dy + e1ū(x, t)

)
= eλ1(x−c1t)e1K > 0
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For all x− c1t < − 1
λ2
lnk2a

e2
, w̄(x, t) = e−λ2(x−c1t) and hence,

eλ2(x−c1t)
(
w̄t − [

e2

k2

− aw̄(x, t)]

∫
R
k2(y)w̄(x− y, t)dy + k2Kw̄(x, t)

)
= eλ2(x−c1t)

(
λ2c1e

−λ2(x−c1t) − e2

k2

∫
R
k2(y)eλ2ydye−λ2(x−c1t) + k2Ke

−λ2(x−c1t)
)

= λ2c1 −
e2

k2

∫
R
k2(y)eλ2ydy + k2K > 0

For all x− c1t > − 1
λ2
lnk2a

e2
, w̄(x, t) = e2

k2a
and hence,

eλ2(x−c1t)
(
w̄t − [

e2

k2

− aw̄(x, t)]

∫
R
k2(y)w̄(x− y, t)dy + k2Kw̄(x, t)

)
= eλ2(x−c1t)

(
0− 0 + k2Ke

−λ2(x−c1t)
)

= k2K > 0

∴ (ū, w̄) is an upper traveling wave solution of (3.4.2).

Let φ(x) be defined as in (B1)-(B3). Choose L > 0 sufficiently large such that

(ū(x−L, 0), w̄(x−L, 0)) ≥ φ(x). Denote (ū(x−L, 0), w̄(x−L, 0)) = ψ(x). We have,

Qt[φ](x) ≤ Qt[ψ](x) ≤ ((ū(x− L, t), w̄(x− L, t))), ∀t ≥ 0, x ∈ R,

where Qt is the solution operator of system (3.4.2), the first inequality follows from

comparison principle and the second follows from the fact that (ū, w̄) is an upper

solution.

Let an be defined as in the recursion and Q = Q1 be the time-one map. Let

a = limn→∞ an, a0 = φ. Then,

a1(c1, x) = max{φ(x), T−c1Q[a0](x)} ≤ max{ψ(x), Q[ψ](x+ c1)}.
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Since

Q[ψ](x+ c1) ≤ ((ū(x+ c1 − L, 1), w̄(x+ c1 − L, 1)))

= (min{e−λ1(x−L), K},min{e−λ2(x−L),
e2

k2a
})

≤ (e−λ1(x−L), e−λ2(x−L))

= (ū(x− L, 0), w̄(x− L, 0)) = ψ(x).

So then a1(c1, x) ≤ ψ(x).

Assume an(c1, x) ≤ ψ(x), then

an+1(c1, x) = max{φ(x), T−c1Q[an](x)} ≤ max{ψ(x), Q[ψ](x+ c1)} ≤ ψ(x).

So we have an(c1, x) ≤ ψ(x) for all n ≥ 0. Then we have

lim
x→+∞

lim
n→+∞

an(c1, x) ≤ lim
x→+∞

lim
n→+∞

ψ(x) = (0, 0).

However, limx→+∞ limn→+∞an(c1, x) = a(c1; +∞). By the property of c∗+ and c̄+,

we have a(c; +∞) 6= Ē2 since c1 > c∗+ and a(c; +∞) > 0 since c1 < c̄+. So we must

have a(c1; +∞) = Ē1 6= (0, 0). Contradiction!

Thus we proved c̄+ = c∗+.

3.5 Conclusions

The single species model for an infinite domain has already been treated in [64] and

the conclusions of spreading speed and existence of traveling wave profiles can be
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drawn directly from the special case when n = 1.

For two species competition model, the theory of spreading speeds and monotone

traveling waves for cooperative and competitive systems of reaction diffusion equa-

tions in Weinberger et al. [63] and [45] cannot be applied because nonlocal system is

not compact. Liang and Zhao [46] extended the theory to systems with weaker com-

pactness. Their theory can be applied to the multi-type SIS model in [64], in which

the single species model for our nonlocal metapopulation model has been treated as

a special case. However, we cannot apply this theory to the two species competition

system because it can only deal with the case where there are only two equilibria. If

there is a coexistence steady state, the system can be restricted to the region where

there are only zero and the positive equilibria, and the two semi-trivial equilibria will

not be in the region. In our system, under certain conditions there will be three equi-

libria: zero and two semi-trivial equilibria. We have to deal with the case where there

is an intermediate equilibrium (zero) between the two semi-trivial equilibria. Fang

and Zhao [26] developed the theory and similar proof of their Theorem 5.3 can be

applied to our model. We do not have linear determinacy for this model but without

the additional conditions, we can still obtain the spreading speed which is also the

minimal wave speed, as well as existence of traveling wave solutions when the wave

speed is no less than the minimal wave speed.



Chapter 4

Summary and Future Study

In this project we studied a spatial model based on metapopulation framework on

continuous time and space, with nonlocal dispersal. Dispersal, which evolves in re-

sponse to any kind of alternation in the environment, has been recognized to be an

imoportant life-history trait. It plays a prominent role in metapopulation dynamics,

species invasion and hence in population dynamics ( [17]). Movement has conse-

quences for individuals as well as for populations and communities, and its effects on

inclusive fitness are ultimately the selecting forces for dispersal, migration and other

types of movement that affect the distribution of individuals ( [18]). There are a

number of observations, such as ”Random dispersal in the theoretical populations”,

that have profoundly affected the study of spatial ecology. [6] provided general study

of ecological spatial modeling discussion of reaction-diffusion models. There are many

challenges in spatial ecology: the impact of space on community structure, incorpo-

rating the scale and structure of landscapes into mathematical models, and developing

the connections between spatial ecology and the three other disciplines of evolution-

ary theory, epidemiology, and economics ( [12]). [12] has provided many sections on

those topics.

In Chapter 1 we established the existence of solution of the single species model

and monotonicity of the system. We also studied an eigenvalue problem for the

119
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stability analysis and gave the estimation of principal eigenvalue. Then by the mono-

tonicity of system, we concluded that under certain conditions zero equilibrium is

asymptotically stable and under other conditions the unique positive equilibrium is

stable, which results in the extinction of persistence of a species. In Chapter 2 we

considered the two species competition, including competing for space and the evolu-

tion of dispersal strategies. The system is monotone under the compete ordering. In

the analysis of semi-trivial equilibria, we used the eigenvalue problem and conclusions

from Chapter 1 to obtain the stability analysis. A sufficient condition for a coexis-

tence equilibrium was given and we also showed that in the case of two competing

species with different dispersal strategy, there is no coexistence equilibrium and the

ideal free dispersal strategy is evolutionarily stable. In Chapter 3 we are interested

in the spreading speed and traveling waves on infinite domain for both single species

and two species competition model. The study of traveling waves and spreading

speed is based on semi-flows theory of monostable type with weak compactness. In

two species competition, the assumption that they compete for space leads to the

competition-exclusion. This problem needs to be treated by the theory in [26] where

extra equilibria are allowed between zero and positive equilibrium for the monostable

system.

There are several versions of existence, uniqueness of the solutions and maxi-

mum principles, comparison theorems. However, these conclusions require different

hypotheses. The existence and uniqueness of solutions are valid on both finite and

infinite domain if the dispersal kernel is integrable. However, in the case that the

variable of potential suitable site K(x) and the death rate e(x) are not constant, to

establish maximum principle and comparison theorem we need to restrict to finite do-

main Ω and have more hypotheses on the kernel k(x, y). When the domain is infinite
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and parameters are constant, we can prove the monotonicity of the system but using

different approaches and have different hypothesis on k(x, y). For the two species

competition model, unlike the general Lotka-Volterra competition model, we require

the competing parameter to be the same for both species since they are competing

for space and the parameters represent the size of each individual. Biologically this

assumption is reasonable for the model setup but it results in the case that there is

one more equilibrium between zero and positive equilibrium in the study of spreading

speed and traveling waves. Many theories cannot apply for our model and we need

the approach with a weaker compactness condition for a more general case to fix it.

There are several types of dispersal models such as reaction-diffusion equations

and the nonlocal integro-differential equation where the dispersal and reproduction

are separated. These models share some features with our model, e.g. existence

and uniqueness of solutions, monotonicity, ideal free dispersal is evolutionarily stable

strategy, etc. However, the conditions and the approaches are different. For example,

our system does not have the compactness thus the classical results do not apply. We

need to consider an equivalent eigenvalue problem in order to analyze the stability

of equilibria. In the evolutionarily stable strategy study, the lack of compactness is

also a problem and we fixed it by perturbation theory to construct an arbitrarily

small positive sub-solution. There are many problems that are not anticipated until

we worked the project out. Besides, many open topics based on this model are also

interesting. A natural question will be that can we extend the system to n ≥ 3

species. In that case, if the n species are not cooperative with each other, then

the system will lost the monotonicity. The same problem arises when considering a

predator-prey system based on our nonlocal metapopulation model. Another topic

may be interesting is that we consider the Allee effect, i.e. the growth rate is small
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when the population density is small and individuals can benefit from the presence

of conspecifics. In this case the system will not possess the mono-stability and there

will be more than one stable steady state.
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